Diff for /imach/src/imach.c between versions 1.50 and 1.169

version 1.50, 2002/06/26 23:25:02 version 1.169, 2014/12/22 23:08:31
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.169  2014/12/22 23:08:31  brouard
      Summary: 0.98p
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Outputs some informations on compiler used, OS etc. Testing on different platforms.
   first survey ("cross") where individuals from different ages are  
   interviewed on their health status or degree of disability (in the    Revision 1.168  2014/12/22 15:17:42  brouard
   case of a health survey which is our main interest) -2- at least a    Summary: udate
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.167  2014/12/22 13:50:56  brouard
   computed from the time spent in each health state according to a    Summary: Testing uname and compiler version and if compiled 32 or 64
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Testing on Linux 64
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.166  2014/12/22 11:40:47  brouard
   conditional to be observed in state i at the first wave. Therefore    *** empty log message ***
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.165  2014/12/16 11:20:36  brouard
   complex model than "constant and age", you should modify the program    Summary: After compiling on Visual C
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    * imach.c (Module): Merging 1.61 to 1.162
   convergence.  
     Revision 1.164  2014/12/16 10:52:11  brouard
   The advantage of this computer programme, compared to a simple    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    * imach.c (Module): Merging 1.61 to 1.162
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.163  2014/12/16 10:30:11  brouard
     * imach.c (Module): Merging 1.61 to 1.162
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.162  2014/09/25 11:43:39  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    Summary: temporary backup 0.99!
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.1  2014/09/16 11:06:58  brouard
   matrix is simply the matrix product of nh*stepm elementary matrices    Summary: With some code (wrong) for nlopt
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Author:
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.161  2014/09/15 20:41:41  brouard
   of the life expectancies. It also computes the prevalence limits.    Summary: Problem with macro SQR on Intel compiler
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.160  2014/09/02 09:24:05  brouard
            Institut national d'études démographiques, Paris.    *** empty log message ***
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.159  2014/09/01 10:34:10  brouard
   It is copyrighted identically to a GNU software product, ie programme and    Summary: WIN32
   software can be distributed freely for non commercial use. Latest version    Author: Brouard
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.158  2014/08/27 17:11:51  brouard
      *** empty log message ***
 #include <math.h>  
 #include <stdio.h>    Revision 1.157  2014/08/27 16:26:55  brouard
 #include <stdlib.h>    Summary: Preparing windows Visual studio version
 #include <unistd.h>    Author: Brouard
   
 #define MAXLINE 256    In order to compile on Visual studio, time.h is now correct and time_t
 #define GNUPLOTPROGRAM "gnuplot"    and tm struct should be used. difftime should be used but sometimes I
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    just make the differences in raw time format (time(&now).
 #define FILENAMELENGTH 80    Trying to suppress #ifdef LINUX
 /*#define DEBUG*/    Add xdg-open for __linux in order to open default browser.
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.156  2014/08/25 20:10:10  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    *** empty log message ***
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.155  2014/08/25 18:32:34  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Summary: New compile, minor changes
     Author: Brouard
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.154  2014/06/20 17:32:08  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Summary: Outputs now all graphs of convergence to period prevalence
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.153  2014/06/20 16:45:46  brouard
 #define YEARM 12. /* Number of months per year */    Summary: If 3 live state, convergence to period prevalence on same graph
 #define AGESUP 130    Author: Brouard
 #define AGEBASE 40  
 #ifdef windows    Revision 1.152  2014/06/18 17:54:09  brouard
 #define DIRSEPARATOR '\\'    Summary: open browser, use gnuplot on same dir than imach if not found in the path
 #define ODIRSEPARATOR '/'  
 #else    Revision 1.151  2014/06/18 16:43:30  brouard
 #define DIRSEPARATOR '/'    *** empty log message ***
 #define ODIRSEPARATOR '\\'  
 #endif    Revision 1.150  2014/06/18 16:42:35  brouard
     Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    Author: brouard
 int erreur; /* Error number */  
 int nvar;    Revision 1.149  2014/06/18 15:51:14  brouard
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    Summary: Some fixes in parameter files errors
 int npar=NPARMAX;    Author: Nicolas Brouard
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.148  2014/06/17 17:38:48  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Summary: Nothing new
 int popbased=0;    Author: Brouard
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Just a new packaging for OS/X version 0.98nS
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.147  2014/06/16 10:33:11  brouard
 int mle, weightopt;    *** empty log message ***
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.146  2014/06/16 10:20:28  brouard
 double jmean; /* Mean space between 2 waves */    Summary: Merge
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Author: Brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Merge, before building revised version.
 FILE *ficlog;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Revision 1.145  2014/06/10 21:23:15  brouard
 FILE *ficresprobmorprev;    Summary: Debugging with valgrind
 FILE *fichtm; /* Html File */    Author: Nicolas Brouard
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    Lot of changes in order to output the results with some covariates
 FILE  *ficresvij;    After the Edimburgh REVES conference 2014, it seems mandatory to
 char fileresv[FILENAMELENGTH];    improve the code.
 FILE  *ficresvpl;    No more memory valgrind error but a lot has to be done in order to
 char fileresvpl[FILENAMELENGTH];    continue the work of splitting the code into subroutines.
 char title[MAXLINE];    Also, decodemodel has been improved. Tricode is still not
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    optimal. nbcode should be improved. Documentation has been added in
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    the source code.
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Revision 1.143  2014/01/26 09:45:38  brouard
 char filelog[FILENAMELENGTH]; /* Log file */    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
 char filerest[FILENAMELENGTH];  
 char fileregp[FILENAMELENGTH];    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 char popfile[FILENAMELENGTH];    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    Revision 1.142  2014/01/26 03:57:36  brouard
     Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
 #define NR_END 1  
 #define FREE_ARG char*    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #define FTOL 1.0e-10  
     Revision 1.141  2014/01/26 02:42:01  brouard
 #define NRANSI    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #define ITMAX 200  
     Revision 1.140  2011/09/02 10:37:54  brouard
 #define TOL 2.0e-4    Summary: times.h is ok with mingw32 now.
   
 #define CGOLD 0.3819660    Revision 1.139  2010/06/14 07:50:17  brouard
 #define ZEPS 1.0e-10    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   
 #define GOLD 1.618034    Revision 1.138  2010/04/30 18:19:40  brouard
 #define GLIMIT 100.0    *** empty log message ***
 #define TINY 1.0e-20  
     Revision 1.137  2010/04/29 18:11:38  brouard
 static double maxarg1,maxarg2;    (Module): Checking covariates for more complex models
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    than V1+V2. A lot of change to be done. Unstable.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.136  2010/04/26 20:30:53  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    (Module): merging some libgsl code. Fixing computation
 #define rint(a) floor(a+0.5)    of likelione (using inter/intrapolation if mle = 0) in order to
     get same likelihood as if mle=1.
 static double sqrarg;    Some cleaning of code and comments added.
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Revision 1.135  2009/10/29 15:33:14  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 int imx;  
 int stepm;    Revision 1.134  2009/10/29 13:18:53  brouard
 /* Stepm, step in month: minimum step interpolation*/    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
 int estepm;    Revision 1.133  2009/07/06 10:21:25  brouard
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    just nforces
   
 int m,nb;    Revision 1.132  2009/07/06 08:22:05  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Many tings
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    Revision 1.131  2009/06/20 16:22:47  brouard
 double dateintmean=0;    Some dimensions resccaled
   
 double *weight;    Revision 1.130  2009/05/26 06:44:34  brouard
 int **s; /* Status */    (Module): Max Covariate is now set to 20 instead of 8. A
 double *agedc, **covar, idx;    lot of cleaning with variables initialized to 0. Trying to make
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.129  2007/08/31 13:49:27  lievre
 double ftolhess; /* Tolerance for computing hessian */    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
   
 /**************** split *************************/    Revision 1.128  2006/06/30 13:02:05  brouard
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    (Module): Clarifications on computing e.j
 {  
    char *s;                             /* pointer */    Revision 1.127  2006/04/28 18:11:50  brouard
    int  l1, l2;                         /* length counters */    (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
    l1 = strlen( path );                 /* length of path */    loop. Now we define nhstepma in the age loop.
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): In order to speed up (in case of numerous covariates) we
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    compute health expectancies (without variances) in a first step
    if ( s == NULL ) {                   /* no directory, so use current */    and then all the health expectancies with variances or standard
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    deviation (needs data from the Hessian matrices) which slows the
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    computation.
 #if     defined(__bsd__)                /* get current working directory */    In the future we should be able to stop the program is only health
       extern char       *getwd( );    expectancies and graph are needed without standard deviations.
   
       if ( getwd( dirc ) == NULL ) {    Revision 1.126  2006/04/28 17:23:28  brouard
 #else    (Module): Yes the sum of survivors was wrong since
       extern char       *getcwd( );    imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Version 0.98h
 #endif  
          return( GLOCK_ERROR_GETCWD );    Revision 1.125  2006/04/04 15:20:31  lievre
       }    Errors in calculation of health expectancies. Age was not initialized.
       strcpy( name, path );             /* we've got it */    Forecasting file added.
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Revision 1.124  2006/03/22 17:13:53  lievre
       l2 = strlen( s );                 /* length of filename */    Parameters are printed with %lf instead of %f (more numbers after the comma).
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    The log-likelihood is printed in the log file
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Revision 1.123  2006/03/20 10:52:43  brouard
       dirc[l1-l2] = 0;                  /* add zero */    * imach.c (Module): <title> changed, corresponds to .htm file
    }    name. <head> headers where missing.
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    * imach.c (Module): Weights can have a decimal point as for
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    English (a comma might work with a correct LC_NUMERIC environment,
 #else    otherwise the weight is truncated).
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Modification of warning when the covariates values are not 0 or
 #endif    1.
    s = strrchr( name, '.' );            /* find last / */    Version 0.98g
    s++;  
    strcpy(ext,s);                       /* save extension */    Revision 1.122  2006/03/20 09:45:41  brouard
    l1= strlen( name);    (Module): Weights can have a decimal point as for
    l2= strlen( s)+1;    English (a comma might work with a correct LC_NUMERIC environment,
    strncpy( finame, name, l1-l2);    otherwise the weight is truncated).
    finame[l1-l2]= 0;    Modification of warning when the covariates values are not 0 or
    return( 0 );                         /* we're done */    1.
 }    Version 0.98g
   
     Revision 1.121  2006/03/16 17:45:01  lievre
 /******************************************/    * imach.c (Module): Comments concerning covariates added
   
 void replace(char *s, char*t)    * imach.c (Module): refinements in the computation of lli if
 {    status=-2 in order to have more reliable computation if stepm is
   int i;    not 1 month. Version 0.98f
   int lg=20;  
   i=0;    Revision 1.120  2006/03/16 15:10:38  lievre
   lg=strlen(t);    (Module): refinements in the computation of lli if
   for(i=0; i<= lg; i++) {    status=-2 in order to have more reliable computation if stepm is
     (s[i] = t[i]);    not 1 month. Version 0.98f
     if (t[i]== '\\') s[i]='/';  
   }    Revision 1.119  2006/03/15 17:42:26  brouard
 }    (Module): Bug if status = -2, the loglikelihood was
     computed as likelihood omitting the logarithm. Version O.98e
 int nbocc(char *s, char occ)  
 {    Revision 1.118  2006/03/14 18:20:07  brouard
   int i,j=0;    (Module): varevsij Comments added explaining the second
   int lg=20;    table of variances if popbased=1 .
   i=0;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   lg=strlen(s);    (Module): Function pstamp added
   for(i=0; i<= lg; i++) {    (Module): Version 0.98d
   if  (s[i] == occ ) j++;  
   }    Revision 1.117  2006/03/14 17:16:22  brouard
   return j;    (Module): varevsij Comments added explaining the second
 }    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 void cutv(char *u,char *v, char*t, char occ)    (Module): Function pstamp added
 {    (Module): Version 0.98d
   /* cuts string t into u and v where u is ended by char occ excluding it  
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)    Revision 1.116  2006/03/06 10:29:27  brouard
      gives u="abcedf" and v="ghi2j" */    (Module): Variance-covariance wrong links and
   int i,lg,j,p=0;    varian-covariance of ej. is needed (Saito).
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {    Revision 1.115  2006/02/27 12:17:45  brouard
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    (Module): One freematrix added in mlikeli! 0.98c
   }  
     Revision 1.114  2006/02/26 12:57:58  brouard
   lg=strlen(t);    (Module): Some improvements in processing parameter
   for(j=0; j<p; j++) {    filename with strsep.
     (u[j] = t[j]);  
   }    Revision 1.113  2006/02/24 14:20:24  brouard
      u[p]='\0';    (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
    for(j=0; j<= lg; j++) {    allocation too.
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    Revision 1.112  2006/01/30 09:55:26  brouard
 }    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
 /********************** nrerror ********************/    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 void nrerror(char error_text[])    (Module): Comments can be added in data file. Missing date values
 {    can be a simple dot '.'.
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);    Revision 1.110  2006/01/25 00:51:50  brouard
   exit(1);    (Module): Lots of cleaning and bugs added (Gompertz)
 }  
 /*********************** vector *******************/    Revision 1.109  2006/01/24 19:37:15  brouard
 double *vector(int nl, int nh)    (Module): Comments (lines starting with a #) are allowed in data.
 {  
   double *v;    Revision 1.108  2006/01/19 18:05:42  lievre
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    Gnuplot problem appeared...
   if (!v) nrerror("allocation failure in vector");    To be fixed
   return v-nl+NR_END;  
 }    Revision 1.107  2006/01/19 16:20:37  brouard
     Test existence of gnuplot in imach path
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)    Revision 1.106  2006/01/19 13:24:36  brouard
 {    Some cleaning and links added in html output
   free((FREE_ARG)(v+nl-NR_END));  
 }    Revision 1.105  2006/01/05 20:23:19  lievre
     *** empty log message ***
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)    Revision 1.104  2005/09/30 16:11:43  lievre
 {    (Module): sump fixed, loop imx fixed, and simplifications.
   int *v;    (Module): If the status is missing at the last wave but we know
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    that the person is alive, then we can code his/her status as -2
   if (!v) nrerror("allocation failure in ivector");    (instead of missing=-1 in earlier versions) and his/her
   return v-nl+NR_END;    contributions to the likelihood is 1 - Prob of dying from last
 }    health status (= 1-p13= p11+p12 in the easiest case of somebody in
     the healthy state at last known wave). Version is 0.98
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)    Revision 1.103  2005/09/30 15:54:49  lievre
 {    (Module): sump fixed, loop imx fixed, and simplifications.
   free((FREE_ARG)(v+nl-NR_END));  
 }    Revision 1.102  2004/09/15 17:31:30  brouard
     Add the possibility to read data file including tab characters.
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Revision 1.101  2004/09/15 10:38:38  brouard
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    Fix on curr_time
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    Revision 1.100  2004/07/12 18:29:06  brouard
   int **m;    Add version for Mac OS X. Just define UNIX in Makefile
    
   /* allocate pointers to rows */    Revision 1.99  2004/06/05 08:57:40  brouard
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    *** empty log message ***
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.98  2004/05/16 15:05:56  brouard
   m -= nrl;    New version 0.97 . First attempt to estimate force of mortality
      directly from the data i.e. without the need of knowing the health
      state at each age, but using a Gompertz model: log u =a + b*age .
   /* allocate rows and set pointers to them */    This is the basic analysis of mortality and should be done before any
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    other analysis, in order to test if the mortality estimated from the
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    cross-longitudinal survey is different from the mortality estimated
   m[nrl] += NR_END;    from other sources like vital statistic data.
   m[nrl] -= ncl;  
      The same imach parameter file can be used but the option for mle should be -3.
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
      Agnès, who wrote this part of the code, tried to keep most of the
   /* return pointer to array of pointers to rows */    former routines in order to include the new code within the former code.
   return m;  
 }    The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)    Current limitations:
       int **m;    A) Even if you enter covariates, i.e. with the
       long nch,ncl,nrh,nrl;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
      /* free an int matrix allocated by imatrix() */    B) There is no computation of Life Expectancy nor Life Table.
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    Revision 1.97  2004/02/20 13:25:42  lievre
   free((FREE_ARG) (m+nrl-NR_END));    Version 0.96d. Population forecasting command line is (temporarily)
 }    suppressed.
   
 /******************* matrix *******************************/    Revision 1.96  2003/07/15 15:38:55  brouard
 double **matrix(long nrl, long nrh, long ncl, long nch)    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 {    rewritten within the same printf. Workaround: many printfs.
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;    Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    (Repository): Using imachwizard code to output a more meaningful covariance
   if (!m) nrerror("allocation failure 1 in matrix()");    matrix (cov(a12,c31) instead of numbers.
   m += NR_END;  
   m -= nrl;    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.93  2003/06/25 16:33:55  brouard
   m[nrl] += NR_END;    (Module): On windows (cygwin) function asctime_r doesn't
   m[nrl] -= ncl;    exist so I changed back to asctime which exists.
     (Module): Version 0.96b
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;    Revision 1.92  2003/06/25 16:30:45  brouard
 }    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    Revision 1.91  2003/06/25 15:30:29  brouard
 {    * imach.c (Repository): Duplicated warning errors corrected.
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    (Repository): Elapsed time after each iteration is now output. It
   free((FREE_ARG)(m+nrl-NR_END));    helps to forecast when convergence will be reached. Elapsed time
 }    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    Revision 1.90  2003/06/24 12:34:15  brouard
 {    (Module): Some bugs corrected for windows. Also, when
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    mle=-1 a template is output in file "or"mypar.txt with the design
   double ***m;    of the covariance matrix to be input.
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Revision 1.89  2003/06/24 12:30:52  brouard
   if (!m) nrerror("allocation failure 1 in matrix()");    (Module): Some bugs corrected for windows. Also, when
   m += NR_END;    mle=-1 a template is output in file "or"mypar.txt with the design
   m -= nrl;    of the covariance matrix to be input.
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Revision 1.88  2003/06/23 17:54:56  brouard
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
     Revision 1.86  2003/06/17 20:04:08  brouard
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    (Module): Change position of html and gnuplot routines and added
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    routine fileappend.
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;    Revision 1.85  2003/06/17 13:12:43  brouard
   for (j=ncl+1; j<=nch; j++)    * imach.c (Repository): Check when date of death was earlier that
     m[nrl][j]=m[nrl][j-1]+nlay;    current date of interview. It may happen when the death was just
      prior to the death. In this case, dh was negative and likelihood
   for (i=nrl+1; i<=nrh; i++) {    was wrong (infinity). We still send an "Error" but patch by
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    assuming that the date of death was just one stepm after the
     for (j=ncl+1; j<=nch; j++)    interview.
       m[i][j]=m[i][j-1]+nlay;    (Repository): Because some people have very long ID (first column)
   }    we changed int to long in num[] and we added a new lvector for
   return m;    memory allocation. But we also truncated to 8 characters (left
 }    truncation)
     (Repository): No more line truncation errors.
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    Revision 1.84  2003/06/13 21:44:43  brouard
 {    * imach.c (Repository): Replace "freqsummary" at a correct
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    place. It differs from routine "prevalence" which may be called
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    many times. Probs is memory consuming and must be used with
   free((FREE_ARG)(m+nrl-NR_END));    parcimony.
 }    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   
 /***************** f1dim *************************/    Revision 1.83  2003/06/10 13:39:11  lievre
 extern int ncom;    *** empty log message ***
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);    Revision 1.82  2003/06/05 15:57:20  brouard
      Add log in  imach.c and  fullversion number is now printed.
 double f1dim(double x)  
 {  */
   int j;  /*
   double f;     Interpolated Markov Chain
   double *xt;  
      Short summary of the programme:
   xt=vector(1,ncom);    
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    This program computes Healthy Life Expectancies from
   f=(*nrfunc)(xt);    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   free_vector(xt,1,ncom);    first survey ("cross") where individuals from different ages are
   return f;    interviewed on their health status or degree of disability (in the
 }    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
 /*****************brent *************************/    (if any) in individual health status.  Health expectancies are
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    computed from the time spent in each health state according to a
 {    model. More health states you consider, more time is necessary to reach the
   int iter;    Maximum Likelihood of the parameters involved in the model.  The
   double a,b,d,etemp;    simplest model is the multinomial logistic model where pij is the
   double fu,fv,fw,fx;    probability to be observed in state j at the second wave
   double ftemp;    conditional to be observed in state i at the first wave. Therefore
   double p,q,r,tol1,tol2,u,v,w,x,xm;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   double e=0.0;    'age' is age and 'sex' is a covariate. If you want to have a more
      complex model than "constant and age", you should modify the program
   a=(ax < cx ? ax : cx);    where the markup *Covariates have to be included here again* invites
   b=(ax > cx ? ax : cx);    you to do it.  More covariates you add, slower the
   x=w=v=bx;    convergence.
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {    The advantage of this computer programme, compared to a simple
     xm=0.5*(a+b);    multinomial logistic model, is clear when the delay between waves is not
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    identical for each individual. Also, if a individual missed an
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    intermediate interview, the information is lost, but taken into
     printf(".");fflush(stdout);    account using an interpolation or extrapolation.  
     fprintf(ficlog,".");fflush(ficlog);  
 #ifdef DEBUG    hPijx is the probability to be observed in state i at age x+h
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    conditional to the observed state i at age x. The delay 'h' can be
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    split into an exact number (nh*stepm) of unobserved intermediate
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    states. This elementary transition (by month, quarter,
 #endif    semester or year) is modelled as a multinomial logistic.  The hPx
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    matrix is simply the matrix product of nh*stepm elementary matrices
       *xmin=x;    and the contribution of each individual to the likelihood is simply
       return fx;    hPijx.
     }  
     ftemp=fu;    Also this programme outputs the covariance matrix of the parameters but also
     if (fabs(e) > tol1) {    of the life expectancies. It also computes the period (stable) prevalence. 
       r=(x-w)*(fx-fv);    
       q=(x-v)*(fx-fw);    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
       p=(x-v)*q-(x-w)*r;             Institut national d'études démographiques, Paris.
       q=2.0*(q-r);    This software have been partly granted by Euro-REVES, a concerted action
       if (q > 0.0) p = -p;    from the European Union.
       q=fabs(q);    It is copyrighted identically to a GNU software product, ie programme and
       etemp=e;    software can be distributed freely for non commercial use. Latest version
       e=d;    can be accessed at http://euroreves.ined.fr/imach .
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
       else {    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
         d=p/q;    
         u=x+d;    **********************************************************************/
         if (u-a < tol2 || b-u < tol2)  /*
           d=SIGN(tol1,xm-x);    main
       }    read parameterfile
     } else {    read datafile
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    concatwav
     }    freqsummary
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    if (mle >= 1)
     fu=(*f)(u);      mlikeli
     if (fu <= fx) {    print results files
       if (u >= x) a=x; else b=x;    if mle==1 
       SHFT(v,w,x,u)       computes hessian
         SHFT(fv,fw,fx,fu)    read end of parameter file: agemin, agemax, bage, fage, estepm
         } else {        begin-prev-date,...
           if (u < x) a=u; else b=u;    open gnuplot file
           if (fu <= fw || w == x) {    open html file
             v=w;    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
             w=u;     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
             fv=fw;                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
             fw=fu;      freexexit2 possible for memory heap.
           } else if (fu <= fv || v == x || v == w) {  
             v=u;    h Pij x                         | pij_nom  ficrestpij
             fv=fu;     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
           }         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
         }         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
   }  
   nrerror("Too many iterations in brent");         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
   *xmin=x;         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
   return fx;    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
 }     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
      Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
 /****************** mnbrak ***********************/  
     forecasting if prevfcast==1 prevforecast call prevalence()
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    health expectancies
             double (*func)(double))    Variance-covariance of DFLE
 {    prevalence()
   double ulim,u,r,q, dum;     movingaverage()
   double fu;    varevsij() 
      if popbased==1 varevsij(,popbased)
   *fa=(*func)(*ax);    total life expectancies
   *fb=(*func)(*bx);    Variance of period (stable) prevalence
   if (*fb > *fa) {   end
     SHFT(dum,*ax,*bx,dum)  */
       SHFT(dum,*fb,*fa,dum)  
       }  #define POWELL /* Instead of NLOPT */
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);  #include <math.h>
   while (*fb > *fc) {  #include <stdio.h>
     r=(*bx-*ax)*(*fb-*fc);  #include <stdlib.h>
     q=(*bx-*cx)*(*fb-*fa);  #include <string.h>
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  #ifdef _WIN32
     ulim=(*bx)+GLIMIT*(*cx-*bx);  #include <io.h>
     if ((*bx-u)*(u-*cx) > 0.0) {  #else
       fu=(*func)(u);  #include <unistd.h>
     } else if ((*cx-u)*(u-ulim) > 0.0) {  #endif
       fu=(*func)(u);  
       if (fu < *fc) {  #include <limits.h>
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  #include <sys/types.h>
           SHFT(*fb,*fc,fu,(*func)(u))  #include <sys/utsname.h>
           }  #include <sys/stat.h>
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  #include <errno.h>
       u=ulim;  /* extern int errno; */
       fu=(*func)(u);  
     } else {  /* #ifdef LINUX */
       u=(*cx)+GOLD*(*cx-*bx);  /* #include <time.h> */
       fu=(*func)(u);  /* #include "timeval.h" */
     }  /* #else */
     SHFT(*ax,*bx,*cx,u)  /* #include <sys/time.h> */
       SHFT(*fa,*fb,*fc,fu)  /* #endif */
       }  
 }  #include <time.h>
   
 /*************** linmin ************************/  #ifdef GSL
   #include <gsl/gsl_errno.h>
 int ncom;  #include <gsl/gsl_multimin.h>
 double *pcom,*xicom;  #endif
 double (*nrfunc)(double []);  
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  #ifdef NLOPT
 {  #include <nlopt.h>
   double brent(double ax, double bx, double cx,  typedef struct {
                double (*f)(double), double tol, double *xmin);    double (* function)(double [] );
   double f1dim(double x);  } myfunc_data ;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  #endif
               double *fc, double (*func)(double));  
   int j;  /* #include <libintl.h> */
   double xx,xmin,bx,ax;  /* #define _(String) gettext (String) */
   double fx,fb,fa;  
    #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
   ncom=n;  
   pcom=vector(1,n);  #define GNUPLOTPROGRAM "gnuplot"
   xicom=vector(1,n);  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   nrfunc=func;  #define FILENAMELENGTH 132
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
     xicom[j]=xi[j];  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   }  
   ax=0.0;  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
   xx=1.0;  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  #define NINTERVMAX 8
 #ifdef DEBUG  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
 #endif  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
   for (j=1;j<=n;j++) {  #define MAXN 20000
     xi[j] *= xmin;  #define YEARM 12. /**< Number of months per year */
     p[j] += xi[j];  #define AGESUP 130
   }  #define AGEBASE 40
   free_vector(xicom,1,n);  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
   free_vector(pcom,1,n);  #ifdef _WIN32
 }  #define DIRSEPARATOR '\\'
   #define CHARSEPARATOR "\\"
 /*************** powell ************************/  #define ODIRSEPARATOR '/'
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  #else
             double (*func)(double []))  #define DIRSEPARATOR '/'
 {  #define CHARSEPARATOR "/"
   void linmin(double p[], double xi[], int n, double *fret,  #define ODIRSEPARATOR '\\'
               double (*func)(double []));  #endif
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  /* $Id$ */
   double fp,fptt;  /* $State$ */
   double *xits;  
   pt=vector(1,n);  char version[]="Imach version 0.98p, December 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
   ptt=vector(1,n);  char fullversion[]="$Revision$ $Date$"; 
   xit=vector(1,n);  char strstart[80];
   xits=vector(1,n);  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   *fret=(*func)(p);  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   for (j=1;j<=n;j++) pt[j]=p[j];  int nvar=0, nforce=0; /* Number of variables, number of forces */
   for (*iter=1;;++(*iter)) {  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
     fp=(*fret);  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
     ibig=0;  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
     del=0.0;  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  int cptcovprodnoage=0; /**< Number of covariate products without age */   
     for (i=1;i<=n;i++)  int cptcoveff=0; /* Total number of covariates to vary for printing results */
       printf(" %d %.12f",i, p[i]);  int cptcov=0; /* Working variable */
     fprintf(ficlog," %d %.12f",i, p[i]);  int npar=NPARMAX;
     printf("\n");  int nlstate=2; /* Number of live states */
     fprintf(ficlog,"\n");  int ndeath=1; /* Number of dead states */
     for (i=1;i<=n;i++) {  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  int popbased=0;
       fptt=(*fret);  
 #ifdef DEBUG  int *wav; /* Number of waves for this individuual 0 is possible */
       printf("fret=%lf \n",*fret);  int maxwav=0; /* Maxim number of waves */
       fprintf(ficlog,"fret=%lf \n",*fret);  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
 #endif  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
       printf("%d",i);fflush(stdout);  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
       fprintf(ficlog,"%d",i);fflush(ficlog);                     to the likelihood and the sum of weights (done by funcone)*/
       linmin(p,xit,n,fret,func);  int mle=1, weightopt=0;
       if (fabs(fptt-(*fret)) > del) {  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
         del=fabs(fptt-(*fret));  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
         ibig=i;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 #ifdef DEBUG  int countcallfunc=0;  /* Count the number of calls to func */
       printf("%d %.12e",i,(*fret));  double jmean=1; /* Mean space between 2 waves */
       fprintf(ficlog,"%d %.12e",i,(*fret));  double **matprod2(); /* test */
       for (j=1;j<=n;j++) {  double **oldm, **newm, **savm; /* Working pointers to matrices */
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
         printf(" x(%d)=%.12e",j,xit[j]);  /*FILE *fic ; */ /* Used in readdata only */
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       }  FILE *ficlog, *ficrespow;
       for(j=1;j<=n;j++) {  int globpr=0; /* Global variable for printing or not */
         printf(" p=%.12e",p[j]);  double fretone; /* Only one call to likelihood */
         fprintf(ficlog," p=%.12e",p[j]);  long ipmx=0; /* Number of contributions */
       }  double sw; /* Sum of weights */
       printf("\n");  char filerespow[FILENAMELENGTH];
       fprintf(ficlog,"\n");  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 #endif  FILE *ficresilk;
     }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  FILE *ficresprobmorprev;
 #ifdef DEBUG  FILE *fichtm, *fichtmcov; /* Html File */
       int k[2],l;  FILE *ficreseij;
       k[0]=1;  char filerese[FILENAMELENGTH];
       k[1]=-1;  FILE *ficresstdeij;
       printf("Max: %.12e",(*func)(p));  char fileresstde[FILENAMELENGTH];
       fprintf(ficlog,"Max: %.12e",(*func)(p));  FILE *ficrescveij;
       for (j=1;j<=n;j++) {  char filerescve[FILENAMELENGTH];
         printf(" %.12e",p[j]);  FILE  *ficresvij;
         fprintf(ficlog," %.12e",p[j]);  char fileresv[FILENAMELENGTH];
       }  FILE  *ficresvpl;
       printf("\n");  char fileresvpl[FILENAMELENGTH];
       fprintf(ficlog,"\n");  char title[MAXLINE];
       for(l=0;l<=1;l++) {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
         for (j=1;j<=n;j++) {  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  char command[FILENAMELENGTH];
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  int  outcmd=0;
         }  
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }  char filelog[FILENAMELENGTH]; /* Log file */
 #endif  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
       free_vector(xit,1,n);  
       free_vector(xits,1,n);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
       return;  /* struct timezone tzp; */
     }  /* extern int gettimeofday(); */
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  struct tm tml, *gmtime(), *localtime();
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];  extern time_t time();
       xit[j]=p[j]-pt[j];  
       pt[j]=p[j];  struct tm start_time, end_time, curr_time, last_time, forecast_time;
     }  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
     fptt=(*func)(ptt);  struct tm tm;
     if (fptt < fp) {  
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  char strcurr[80], strfor[80];
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);  char *endptr;
         for (j=1;j<=n;j++) {  long lval;
           xi[j][ibig]=xi[j][n];  double dval;
           xi[j][n]=xit[j];  
         }  #define NR_END 1
 #ifdef DEBUG  #define FREE_ARG char*
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  #define FTOL 1.0e-10
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++){  #define NRANSI 
           printf(" %.12e",xit[j]);  #define ITMAX 200 
           fprintf(ficlog," %.12e",xit[j]);  
         }  #define TOL 2.0e-4 
         printf("\n");  
         fprintf(ficlog,"\n");  #define CGOLD 0.3819660 
 #endif  #define ZEPS 1.0e-10 
       }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     }  
   }  #define GOLD 1.618034 
 }  #define GLIMIT 100.0 
   #define TINY 1.0e-20 
 /**** Prevalence limit ****************/  
   static double maxarg1,maxarg2;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    
      matrix by transitions matrix until convergence is reached */  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
   int i, ii,j,k;  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
   double min, max, maxmin, maxmax,sumnew=0.;  /* #define mytinydouble 1.0e-16 */
   double **matprod2();  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
   double **out, cov[NCOVMAX], **pmij();  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
   double **newm;  /* static double dsqrarg; */
   double agefin, delaymax=50 ; /* Max number of years to converge */  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
   static double sqrarg;
   for (ii=1;ii<=nlstate+ndeath;ii++)  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     for (j=1;j<=nlstate+ndeath;j++){  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  int agegomp= AGEGOMP;
     }  
   int imx; 
    cov[1]=1.;  int stepm=1;
    /* Stepm, step in month: minimum step interpolation*/
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  int estepm;
     newm=savm;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     /* Covariates have to be included here again */  
      cov[2]=agefin;  int m,nb;
    long *num;
       for (k=1; k<=cptcovn;k++) {  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  double **pmmij, ***probs;
       }  double *ageexmed,*agecens;
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  double dateintmean=0;
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  double *weight;
   int **s; /* Status */
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  double *agedc;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/                    * covar=matrix(0,NCOVMAX,1,n); 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
   double  idx; 
     savm=oldm;  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
     oldm=newm;  int *Ndum; /** Freq of modality (tricode */
     maxmax=0.;  int **codtab; /**< codtab=imatrix(1,100,1,10); */
     for(j=1;j<=nlstate;j++){  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
       min=1.;  double *lsurv, *lpop, *tpop;
       max=0.;  
       for(i=1; i<=nlstate; i++) {  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
         sumnew=0;  double ftolhess; /**< Tolerance for computing hessian */
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  
         prlim[i][j]= newm[i][j]/(1-sumnew);  /**************** split *************************/
         max=FMAX(max,prlim[i][j]);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
         min=FMIN(min,prlim[i][j]);  {
       }    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       maxmin=max-min;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       maxmax=FMAX(maxmax,maxmin);    */ 
     }    char  *ss;                            /* pointer */
     if(maxmax < ftolpl){    int   l1, l2;                         /* length counters */
       return prlim;  
     }    l1 = strlen(path );                   /* length of path */
   }    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 }    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so determine current directory */
 /*************** transition probabilities ***************/      strcpy( name, path );               /* we got the fullname name because no directory */
       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 {      /* get current working directory */
   double s1, s2;      /*    extern  char* getcwd ( char *buf , int len);*/
   /*double t34;*/      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   int i,j,j1, nc, ii, jj;        return( GLOCK_ERROR_GETCWD );
       }
     for(i=1; i<= nlstate; i++){      /* got dirc from getcwd*/
     for(j=1; j<i;j++){      printf(" DIRC = %s \n",dirc);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    } else {                              /* strip direcotry from path */
         /*s2 += param[i][j][nc]*cov[nc];*/      ss++;                               /* after this, the filename */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      l2 = strlen( ss );                  /* length of filename */
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       }      strcpy( name, ss );         /* save file name */
       ps[i][j]=s2;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      dirc[l1-l2] = 0;                    /* add zero */
     }      printf(" DIRC2 = %s \n",dirc);
     for(j=i+1; j<=nlstate+ndeath;j++){    }
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    /* We add a separator at the end of dirc if not exists */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    l1 = strlen( dirc );                  /* length of directory */
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    if( dirc[l1-1] != DIRSEPARATOR ){
       }      dirc[l1] =  DIRSEPARATOR;
       ps[i][j]=s2;      dirc[l1+1] = 0; 
     }      printf(" DIRC3 = %s \n",dirc);
   }    }
     /*ps[3][2]=1;*/    ss = strrchr( name, '.' );            /* find last / */
     if (ss >0){
   for(i=1; i<= nlstate; i++){      ss++;
      s1=0;      strcpy(ext,ss);                     /* save extension */
     for(j=1; j<i; j++)      l1= strlen( name);
       s1+=exp(ps[i][j]);      l2= strlen(ss)+1;
     for(j=i+1; j<=nlstate+ndeath; j++)      strncpy( finame, name, l1-l2);
       s1+=exp(ps[i][j]);      finame[l1-l2]= 0;
     ps[i][i]=1./(s1+1.);    }
     for(j=1; j<i; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];    return( 0 );                          /* we're done */
     for(j=i+1; j<=nlstate+ndeath; j++)  }
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  
   } /* end i */  /******************************************/
   
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  void replace_back_to_slash(char *s, char*t)
     for(jj=1; jj<= nlstate+ndeath; jj++){  {
       ps[ii][jj]=0;    int i;
       ps[ii][ii]=1;    int lg=0;
     }    i=0;
   }    lg=strlen(t);
     for(i=0; i<= lg; i++) {
       (s[i] = t[i]);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      if (t[i]== '\\') s[i]='/';
     for(jj=1; jj<= nlstate+ndeath; jj++){    }
      printf("%lf ",ps[ii][jj]);  }
    }  
     printf("\n ");  char *trimbb(char *out, char *in)
     }  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
     printf("\n ");printf("%lf ",cov[2]);*/    char *s;
 /*    s=out;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    while (*in != '\0'){
   goto end;*/      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
     return ps;        in++;
 }      }
       *out++ = *in++;
 /**************** Product of 2 matrices ******************/    }
     *out='\0';
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    return s;
 {  }
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  char *cutl(char *blocc, char *alocc, char *in, char occ)
   /* in, b, out are matrice of pointers which should have been initialized  {
      before: only the contents of out is modified. The function returns    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
      a pointer to pointers identical to out */       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   long i, j, k;       gives blocc="abcdef2ghi" and alocc="j".
   for(i=nrl; i<= nrh; i++)       If occ is not found blocc is null and alocc is equal to in. Returns blocc
     for(k=ncolol; k<=ncoloh; k++)    */
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    char *s, *t;
         out[i][k] +=in[i][j]*b[j][k];    t=in;s=in;
     while ((*in != occ) && (*in != '\0')){
   return out;      *alocc++ = *in++;
 }    }
     if( *in == occ){
       *(alocc)='\0';
 /************* Higher Matrix Product ***************/      s=++in;
     }
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )   
 {    if (s == t) {/* occ not found */
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      *(alocc-(in-s))='\0';
      duration (i.e. until      in=s;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    }
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    while ( *in != '\0'){
      (typically every 2 years instead of every month which is too big).      *blocc++ = *in++;
      Model is determined by parameters x and covariates have to be    }
      included manually here.  
     *blocc='\0';
      */    return t;
   }
   int i, j, d, h, k;  char *cutv(char *blocc, char *alocc, char *in, char occ)
   double **out, cov[NCOVMAX];  {
   double **newm;    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
        and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   /* Hstepm could be zero and should return the unit matrix */       gives blocc="abcdef2ghi" and alocc="j".
   for (i=1;i<=nlstate+ndeath;i++)       If occ is not found blocc is null and alocc is equal to in. Returns alocc
     for (j=1;j<=nlstate+ndeath;j++){    */
       oldm[i][j]=(i==j ? 1.0 : 0.0);    char *s, *t;
       po[i][j][0]=(i==j ? 1.0 : 0.0);    t=in;s=in;
     }    while (*in != '\0'){
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      while( *in == occ){
   for(h=1; h <=nhstepm; h++){        *blocc++ = *in++;
     for(d=1; d <=hstepm; d++){        s=in;
       newm=savm;      }
       /* Covariates have to be included here again */      *blocc++ = *in++;
       cov[1]=1.;    }
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    if (s == t) /* occ not found */
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      *(blocc-(in-s))='\0';
       for (k=1; k<=cptcovage;k++)    else
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      *(blocc-(in-s)-1)='\0';
       for (k=1; k<=cptcovprod;k++)    in=s;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    while ( *in != '\0'){
       *alocc++ = *in++;
     }
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    *alocc='\0';
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    return s;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  }
       savm=oldm;  
       oldm=newm;  int nbocc(char *s, char occ)
     }  {
     for(i=1; i<=nlstate+ndeath; i++)    int i,j=0;
       for(j=1;j<=nlstate+ndeath;j++) {    int lg=20;
         po[i][j][h]=newm[i][j];    i=0;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    lg=strlen(s);
          */    for(i=0; i<= lg; i++) {
       }    if  (s[i] == occ ) j++;
   } /* end h */    }
   return po;    return j;
 }  }
   
   /* void cutv(char *u,char *v, char*t, char occ) */
 /*************** log-likelihood *************/  /* { */
 double func( double *x)  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
 {  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   int i, ii, j, k, mi, d, kk;  /*      gives u="abcdef2ghi" and v="j" *\/ */
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  /*   int i,lg,j,p=0; */
   double **out;  /*   i=0; */
   double sw; /* Sum of weights */  /*   lg=strlen(t); */
   double lli; /* Individual log likelihood */  /*   for(j=0; j<=lg-1; j++) { */
   long ipmx;  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   /*extern weight */  /*   } */
   /* We are differentiating ll according to initial status */  
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  /*   for(j=0; j<p; j++) { */
   /*for(i=1;i<imx;i++)  /*     (u[j] = t[j]); */
     printf(" %d\n",s[4][i]);  /*   } */
   */  /*      u[p]='\0'; */
   cov[1]=1.;  
   /*    for(j=0; j<= lg; j++) { */
   for(k=1; k<=nlstate; k++) ll[k]=0.;  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  /*   } */
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  /* } */
     for(mi=1; mi<= wav[i]-1; mi++){  
       for (ii=1;ii<=nlstate+ndeath;ii++)  #ifdef _WIN32
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  char * strsep(char **pp, const char *delim)
       for(d=0; d<dh[mi][i]; d++){  {
         newm=savm;    char *p, *q;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;           
         for (kk=1; kk<=cptcovage;kk++) {    if ((p = *pp) == NULL)
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      return 0;
         }    if ((q = strpbrk (p, delim)) != NULL)
            {
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      *pp = q + 1;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      *q = '\0';
         savm=oldm;    }
         oldm=newm;    else
              *pp = 0;
            return p;
       } /* end mult */  }
        #endif
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  /********************** nrerror ********************/
       ipmx +=1;  
       sw += weight[i];  void nrerror(char error_text[])
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  {
     } /* end of wave */    fprintf(stderr,"ERREUR ...\n");
   } /* end of individual */    fprintf(stderr,"%s\n",error_text);
     exit(EXIT_FAILURE);
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  }
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  /*********************** vector *******************/
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  double *vector(int nl, int nh)
   return -l;  {
 }    double *v;
     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     if (!v) nrerror("allocation failure in vector");
 /*********** Maximum Likelihood Estimation ***************/    return v-nl+NR_END;
   }
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  
 {  /************************ free vector ******************/
   int i,j, iter;  void free_vector(double*v, int nl, int nh)
   double **xi,*delti;  {
   double fret;    free((FREE_ARG)(v+nl-NR_END));
   xi=matrix(1,npar,1,npar);  }
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++)  /************************ivector *******************************/
       xi[i][j]=(i==j ? 1.0 : 0.0);  int *ivector(long nl,long nh)
   printf("Powell\n");  fprintf(ficlog,"Powell\n");  {
   powell(p,xi,npar,ftol,&iter,&fret,func);    int *v;
     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    if (!v) nrerror("allocation failure in ivector");
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    return v-nl+NR_END;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  }
   
 }  /******************free ivector **************************/
   void free_ivector(int *v, long nl, long nh)
 /**** Computes Hessian and covariance matrix ***/  {
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    free((FREE_ARG)(v+nl-NR_END));
 {  }
   double  **a,**y,*x,pd;  
   double **hess;  /************************lvector *******************************/
   int i, j,jk;  long *lvector(long nl,long nh)
   int *indx;  {
     long *v;
   double hessii(double p[], double delta, int theta, double delti[]);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   double hessij(double p[], double delti[], int i, int j);    if (!v) nrerror("allocation failure in ivector");
   void lubksb(double **a, int npar, int *indx, double b[]) ;    return v-nl+NR_END;
   void ludcmp(double **a, int npar, int *indx, double *d) ;  }
   
   hess=matrix(1,npar,1,npar);  /******************free lvector **************************/
   void free_lvector(long *v, long nl, long nh)
   printf("\nCalculation of the hessian matrix. Wait...\n");  {
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    free((FREE_ARG)(v+nl-NR_END));
   for (i=1;i<=npar;i++){  }
     printf("%d",i);fflush(stdout);  
     fprintf(ficlog,"%d",i);fflush(ficlog);  /******************* imatrix *******************************/
     hess[i][i]=hessii(p,ftolhess,i,delti);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     /*printf(" %f ",p[i]);*/       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     /*printf(" %lf ",hess[i][i]);*/  { 
   }    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
      int **m; 
   for (i=1;i<=npar;i++) {    
     for (j=1;j<=npar;j++)  {    /* allocate pointers to rows */ 
       if (j>i) {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         printf(".%d%d",i,j);fflush(stdout);    if (!m) nrerror("allocation failure 1 in matrix()"); 
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);    m += NR_END; 
         hess[i][j]=hessij(p,delti,i,j);    m -= nrl; 
         hess[j][i]=hess[i][j];        
         /*printf(" %lf ",hess[i][j]);*/    
       }    /* allocate rows and set pointers to them */ 
     }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   printf("\n");    m[nrl] += NR_END; 
   fprintf(ficlog,"\n");    m[nrl] -= ncl; 
     
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");    
      /* return pointer to array of pointers to rows */ 
   a=matrix(1,npar,1,npar);    return m; 
   y=matrix(1,npar,1,npar);  } 
   x=vector(1,npar);  
   indx=ivector(1,npar);  /****************** free_imatrix *************************/
   for (i=1;i<=npar;i++)  void free_imatrix(m,nrl,nrh,ncl,nch)
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        int **m;
   ludcmp(a,npar,indx,&pd);        long nch,ncl,nrh,nrl; 
        /* free an int matrix allocated by imatrix() */ 
   for (j=1;j<=npar;j++) {  { 
     for (i=1;i<=npar;i++) x[i]=0;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     x[j]=1;    free((FREE_ARG) (m+nrl-NR_END)); 
     lubksb(a,npar,indx,x);  } 
     for (i=1;i<=npar;i++){  
       matcov[i][j]=x[i];  /******************* matrix *******************************/
     }  double **matrix(long nrl, long nrh, long ncl, long nch)
   }  {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   printf("\n#Hessian matrix#\n");    double **m;
   fprintf(ficlog,"\n#Hessian matrix#\n");  
   for (i=1;i<=npar;i++) {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for (j=1;j<=npar;j++) {    if (!m) nrerror("allocation failure 1 in matrix()");
       printf("%.3e ",hess[i][j]);    m += NR_END;
       fprintf(ficlog,"%.3e ",hess[i][j]);    m -= nrl;
     }  
     printf("\n");    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     fprintf(ficlog,"\n");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   }    m[nrl] += NR_END;
     m[nrl] -= ncl;
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    return m;
   ludcmp(a,npar,indx,&pd);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
   m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
   /*  printf("\n#Hessian matrix recomputed#\n");  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
      */
   for (j=1;j<=npar;j++) {  }
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;  /*************************free matrix ************************/
     lubksb(a,npar,indx,x);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     for (i=1;i<=npar;i++){  {
       y[i][j]=x[i];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       printf("%.3e ",y[i][j]);    free((FREE_ARG)(m+nrl-NR_END));
       fprintf(ficlog,"%.3e ",y[i][j]);  }
     }  
     printf("\n");  /******************* ma3x *******************************/
     fprintf(ficlog,"\n");  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   }  {
   */    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     double ***m;
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   free_vector(x,1,npar);    if (!m) nrerror("allocation failure 1 in matrix()");
   free_ivector(indx,1,npar);    m += NR_END;
   free_matrix(hess,1,npar,1,npar);    m -= nrl;
   
     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
 /*************** hessian matrix ****************/    m[nrl] -= ncl;
 double hessii( double x[], double delta, int theta, double delti[])  
 {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   int i;  
   int l=1, lmax=20;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   double k1,k2;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   double p2[NPARMAX+1];    m[nrl][ncl] += NR_END;
   double res;    m[nrl][ncl] -= nll;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    for (j=ncl+1; j<=nch; j++) 
   double fx;      m[nrl][j]=m[nrl][j-1]+nlay;
   int k=0,kmax=10;    
   double l1;    for (i=nrl+1; i<=nrh; i++) {
       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   fx=func(x);      for (j=ncl+1; j<=nch; j++) 
   for (i=1;i<=npar;i++) p2[i]=x[i];        m[i][j]=m[i][j-1]+nlay;
   for(l=0 ; l <=lmax; l++){    }
     l1=pow(10,l);    return m; 
     delts=delt;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     for(k=1 ; k <kmax; k=k+1){             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       delt = delta*(l1*k);    */
       p2[theta]=x[theta] +delt;  }
       k1=func(p2)-fx;  
       p2[theta]=x[theta]-delt;  /*************************free ma3x ************************/
       k2=func(p2)-fx;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       /*res= (k1-2.0*fx+k2)/delt/delt; */  {
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
          free((FREE_ARG)(m[nrl]+ncl-NR_END));
 #ifdef DEBUG    free((FREE_ARG)(m+nrl-NR_END));
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  }
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  
 #endif  /*************** function subdirf ***********/
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  char *subdirf(char fileres[])
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  {
         k=kmax;    /* Caution optionfilefiname is hidden */
       }    strcpy(tmpout,optionfilefiname);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    strcat(tmpout,"/"); /* Add to the right */
         k=kmax; l=lmax*10.;    strcat(tmpout,fileres);
       }    return tmpout;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  }
         delts=delt;  
       }  /*************** function subdirf2 ***********/
     }  char *subdirf2(char fileres[], char *preop)
   }  {
   delti[theta]=delts;    
   return res;    /* Caution optionfilefiname is hidden */
      strcpy(tmpout,optionfilefiname);
 }    strcat(tmpout,"/");
     strcat(tmpout,preop);
 double hessij( double x[], double delti[], int thetai,int thetaj)    strcat(tmpout,fileres);
 {    return tmpout;
   int i;  }
   int l=1, l1, lmax=20;  
   double k1,k2,k3,k4,res,fx;  /*************** function subdirf3 ***********/
   double p2[NPARMAX+1];  char *subdirf3(char fileres[], char *preop, char *preop2)
   int k;  {
     
   fx=func(x);    /* Caution optionfilefiname is hidden */
   for (k=1; k<=2; k++) {    strcpy(tmpout,optionfilefiname);
     for (i=1;i<=npar;i++) p2[i]=x[i];    strcat(tmpout,"/");
     p2[thetai]=x[thetai]+delti[thetai]/k;    strcat(tmpout,preop);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    strcat(tmpout,preop2);
     k1=func(p2)-fx;    strcat(tmpout,fileres);
      return tmpout;
     p2[thetai]=x[thetai]+delti[thetai]/k;  }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k2=func(p2)-fx;  char *asc_diff_time(long time_sec, char ascdiff[])
    {
     p2[thetai]=x[thetai]-delti[thetai]/k;    long sec_left, days, hours, minutes;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    days = (time_sec) / (60*60*24);
     k3=func(p2)-fx;    sec_left = (time_sec) % (60*60*24);
      hours = (sec_left) / (60*60) ;
     p2[thetai]=x[thetai]-delti[thetai]/k;    sec_left = (sec_left) %(60*60);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    minutes = (sec_left) /60;
     k4=func(p2)-fx;    sec_left = (sec_left) % (60);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
 #ifdef DEBUG    return ascdiff;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  }
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
 #endif  /***************** f1dim *************************/
   }  extern int ncom; 
   return res;  extern double *pcom,*xicom;
 }  extern double (*nrfunc)(double []); 
    
 /************** Inverse of matrix **************/  double f1dim(double x) 
 void ludcmp(double **a, int n, int *indx, double *d)  { 
 {    int j; 
   int i,imax,j,k;    double f;
   double big,dum,sum,temp;    double *xt; 
   double *vv;   
      xt=vector(1,ncom); 
   vv=vector(1,n);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   *d=1.0;    f=(*nrfunc)(xt); 
   for (i=1;i<=n;i++) {    free_vector(xt,1,ncom); 
     big=0.0;    return f; 
     for (j=1;j<=n;j++)  } 
       if ((temp=fabs(a[i][j])) > big) big=temp;  
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  /*****************brent *************************/
     vv[i]=1.0/big;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   }  { 
   for (j=1;j<=n;j++) {    int iter; 
     for (i=1;i<j;i++) {    double a,b,d,etemp;
       sum=a[i][j];    double fu=0,fv,fw,fx;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    double ftemp=0.;
       a[i][j]=sum;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     }    double e=0.0; 
     big=0.0;   
     for (i=j;i<=n;i++) {    a=(ax < cx ? ax : cx); 
       sum=a[i][j];    b=(ax > cx ? ax : cx); 
       for (k=1;k<j;k++)    x=w=v=bx; 
         sum -= a[i][k]*a[k][j];    fw=fv=fx=(*f)(x); 
       a[i][j]=sum;    for (iter=1;iter<=ITMAX;iter++) { 
       if ( (dum=vv[i]*fabs(sum)) >= big) {      xm=0.5*(a+b); 
         big=dum;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         imax=i;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       }      printf(".");fflush(stdout);
     }      fprintf(ficlog,".");fflush(ficlog);
     if (j != imax) {  #ifdef DEBUGBRENT
       for (k=1;k<=n;k++) {      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         dum=a[imax][k];      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         a[imax][k]=a[j][k];      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         a[j][k]=dum;  #endif
       }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       *d = -(*d);        *xmin=x; 
       vv[imax]=vv[j];        return fx; 
     }      } 
     indx[j]=imax;      ftemp=fu;
     if (a[j][j] == 0.0) a[j][j]=TINY;      if (fabs(e) > tol1) { 
     if (j != n) {        r=(x-w)*(fx-fv); 
       dum=1.0/(a[j][j]);        q=(x-v)*(fx-fw); 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        p=(x-v)*q-(x-w)*r; 
     }        q=2.0*(q-r); 
   }        if (q > 0.0) p = -p; 
   free_vector(vv,1,n);  /* Doesn't work */        q=fabs(q); 
 ;        etemp=e; 
 }        e=d; 
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 void lubksb(double **a, int n, int *indx, double b[])          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 {        else { 
   int i,ii=0,ip,j;          d=p/q; 
   double sum;          u=x+d; 
            if (u-a < tol2 || b-u < tol2) 
   for (i=1;i<=n;i++) {            d=SIGN(tol1,xm-x); 
     ip=indx[i];        } 
     sum=b[ip];      } else { 
     b[ip]=b[i];        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     if (ii)      } 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     else if (sum) ii=i;      fu=(*f)(u); 
     b[i]=sum;      if (fu <= fx) { 
   }        if (u >= x) a=x; else b=x; 
   for (i=n;i>=1;i--) {        SHFT(v,w,x,u) 
     sum=b[i];          SHFT(fv,fw,fx,fu) 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          } else { 
     b[i]=sum/a[i][i];            if (u < x) a=u; else b=u; 
   }            if (fu <= fw || w == x) { 
 }              v=w; 
               w=u; 
 /************ Frequencies ********************/              fv=fw; 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)              fw=fu; 
 {  /* Some frequencies */            } else if (fu <= fv || v == x || v == w) { 
                v=u; 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;              fv=fu; 
   int first;            } 
   double ***freq; /* Frequencies */          } 
   double *pp;    } 
   double pos, k2, dateintsum=0,k2cpt=0;    nrerror("Too many iterations in brent"); 
   FILE *ficresp;    *xmin=x; 
   char fileresp[FILENAMELENGTH];    return fx; 
    } 
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  /****************** mnbrak ***********************/
   strcpy(fileresp,"p");  
   strcat(fileresp,fileres);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   if((ficresp=fopen(fileresp,"w"))==NULL) {              double (*func)(double)) 
     printf("Problem with prevalence resultfile: %s\n", fileresp);  { 
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    double ulim,u,r,q, dum;
     exit(0);    double fu; 
   }   
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    *fa=(*func)(*ax); 
   j1=0;    *fb=(*func)(*bx); 
      if (*fb > *fa) { 
   j=cptcoveff;      SHFT(dum,*ax,*bx,dum) 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        SHFT(dum,*fb,*fa,dum) 
         } 
   first=1;    *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
   for(k1=1; k1<=j;k1++){    while (*fb > *fc) { /* Declining fa, fb, fc */
     for(i1=1; i1<=ncodemax[k1];i1++){      r=(*bx-*ax)*(*fb-*fc); 
       j1++;      q=(*bx-*cx)*(*fb-*fa); 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         scanf("%d", i);*/        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscisse of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
       for (i=-1; i<=nlstate+ndeath; i++)        ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscisse where function can be evaluated */
         for (jk=-1; jk<=nlstate+ndeath; jk++)        if ((*bx-u)*(u-*cx) > 0.0) { /* if u between b and c */
           for(m=agemin; m <= agemax+3; m++)        fu=(*func)(u); 
             freq[i][jk][m]=0;  #ifdef DEBUG
              /* f(x)=A(x-u)**2+f(u) */
       dateintsum=0;        double A, fparabu; 
       k2cpt=0;        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
       for (i=1; i<=imx; i++) {        fparabu= *fa - A*(*ax-u)*(*ax-u);
         bool=1;        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
         if  (cptcovn>0) {        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
           for (z1=1; z1<=cptcoveff; z1++)  #endif 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
               bool=0;        fu=(*func)(u); 
         }        if (fu < *fc) { 
         if (bool==1) {          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
           for(m=firstpass; m<=lastpass; m++){            SHFT(*fb,*fc,fu,(*func)(u)) 
             k2=anint[m][i]+(mint[m][i]/12.);            } 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
               if(agev[m][i]==0) agev[m][i]=agemax+1;        u=ulim; 
               if(agev[m][i]==1) agev[m][i]=agemax+2;        fu=(*func)(u); 
               if (m<lastpass) {      } else { 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        u=(*cx)+GOLD*(*cx-*bx); 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        fu=(*func)(u); 
               }      } 
                    SHFT(*ax,*bx,*cx,u) 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        SHFT(*fa,*fb,*fc,fu) 
                 dateintsum=dateintsum+k2;        } 
                 k2cpt++;  } 
               }  
             }  /*************** linmin ************************/
           }  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
         }  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
       }  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
          the value of func at the returned location p . This is actually all accomplished by calling the
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  routines mnbrak and brent .*/
   int ncom; 
       if  (cptcovn>0) {  double *pcom,*xicom;
         fprintf(ficresp, "\n#********** Variable ");  double (*nrfunc)(double []); 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);   
         fprintf(ficresp, "**********\n#");  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       }  { 
       for(i=1; i<=nlstate;i++)    double brent(double ax, double bx, double cx, 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);                 double (*f)(double), double tol, double *xmin); 
       fprintf(ficresp, "\n");    double f1dim(double x); 
          void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       for(i=(int)agemin; i <= (int)agemax+3; i++){                double *fc, double (*func)(double)); 
         if(i==(int)agemax+3){    int j; 
           fprintf(ficlog,"Total");    double xx,xmin,bx,ax; 
         }else{    double fx,fb,fa;
           if(first==1){   
             first=0;    ncom=n; 
             printf("See log file for details...\n");    pcom=vector(1,n); 
           }    xicom=vector(1,n); 
           fprintf(ficlog,"Age %d", i);    nrfunc=func; 
         }    for (j=1;j<=n;j++) { 
         for(jk=1; jk <=nlstate ; jk++){      pcom[j]=p[j]; 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      xicom[j]=xi[j]; 
             pp[jk] += freq[jk][m][i];    } 
         }    ax=0.0; 
         for(jk=1; jk <=nlstate ; jk++){    xx=1.0; 
           for(m=-1, pos=0; m <=0 ; m++)    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */
             pos += freq[jk][m][i];    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */
           if(pp[jk]>=1.e-10){  #ifdef DEBUG
             if(first==1){    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
             }  #endif
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    for (j=1;j<=n;j++) { 
           }else{      xi[j] *= xmin; 
             if(first==1)      p[j] += xi[j]; 
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    } 
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    free_vector(xicom,1,n); 
           }    free_vector(pcom,1,n); 
         }  } 
   
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  /*************** powell ************************/
             pp[jk] += freq[jk][m][i];  /*
         }  Minimization of a function func of n variables. Input consists of an initial starting point
   p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
         for(jk=1,pos=0; jk <=nlstate ; jk++)  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
           pos += pp[jk];  such that failure to decrease by more than this amount on one iteration signals doneness. On
         for(jk=1; jk <=nlstate ; jk++){  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
           if(pos>=1.e-5){  function value at p , and iter is the number of iterations taken. The routine linmin is used.
             if(first==1)   */
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);              double (*func)(double [])) 
           }else{  { 
             if(first==1)    void linmin(double p[], double xi[], int n, double *fret, 
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);                double (*func)(double [])); 
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    int i,ibig,j; 
           }    double del,t,*pt,*ptt,*xit;
           if( i <= (int) agemax){    double fp,fptt;
             if(pos>=1.e-5){    double *xits;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    int niterf, itmp;
               probs[i][jk][j1]= pp[jk]/pos;  
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    pt=vector(1,n); 
             }    ptt=vector(1,n); 
             else    xit=vector(1,n); 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    xits=vector(1,n); 
           }    *fret=(*func)(p); 
         }    for (j=1;j<=n;j++) pt[j]=p[j]; 
              rcurr_time = time(NULL);  
         for(jk=-1; jk <=nlstate+ndeath; jk++)    for (*iter=1;;++(*iter)) { 
           for(m=-1; m <=nlstate+ndeath; m++)      fp=(*fret); 
             if(freq[jk][m][i] !=0 ) {      ibig=0; 
             if(first==1)      del=0.0; 
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      rlast_time=rcurr_time;
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);      /* (void) gettimeofday(&curr_time,&tzp); */
             }      rcurr_time = time(NULL);  
         if(i <= (int) agemax)      curr_time = *localtime(&rcurr_time);
           fprintf(ficresp,"\n");      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
         if(first==1)      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
           printf("Others in log...\n");  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
         fprintf(ficlog,"\n");     for (i=1;i<=n;i++) {
       }        printf(" %d %.12f",i, p[i]);
     }        fprintf(ficlog," %d %.12lf",i, p[i]);
   }        fprintf(ficrespow," %.12lf", p[i]);
   dateintmean=dateintsum/k2cpt;      }
        printf("\n");
   fclose(ficresp);      fprintf(ficlog,"\n");
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      fprintf(ficrespow,"\n");fflush(ficrespow);
   free_vector(pp,1,nlstate);      if(*iter <=3){
          tml = *localtime(&rcurr_time);
   /* End of Freq */        strcpy(strcurr,asctime(&tml));
 }        rforecast_time=rcurr_time; 
         itmp = strlen(strcurr);
 /************ Prevalence ********************/        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          strcurr[itmp-1]='\0';
 {  /* Some frequencies */        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
          fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        for(niterf=10;niterf<=30;niterf+=10){
   double ***freq; /* Frequencies */          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
   double *pp;          forecast_time = *localtime(&rforecast_time);
   double pos, k2;          strcpy(strfor,asctime(&forecast_time));
           itmp = strlen(strfor);
   pp=vector(1,nlstate);          if(strfor[itmp-1]=='\n')
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          strfor[itmp-1]='\0';
            printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
   j1=0;        }
        }
   j=cptcoveff;      for (i=1;i<=n;i++) { 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
          fptt=(*fret); 
   for(k1=1; k1<=j;k1++){  #ifdef DEBUG
     for(i1=1; i1<=ncodemax[k1];i1++){            printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
       j1++;            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
        #endif
       for (i=-1; i<=nlstate+ndeath; i++)          printf("%d",i);fflush(stdout);
         for (jk=-1; jk<=nlstate+ndeath; jk++)          fprintf(ficlog,"%d",i);fflush(ficlog);
           for(m=agemin; m <= agemax+3; m++)        linmin(p,xit,n,fret,func); 
             freq[i][jk][m]=0;        if (fabs(fptt-(*fret)) > del) { 
                del=fabs(fptt-(*fret)); 
       for (i=1; i<=imx; i++) {          ibig=i; 
         bool=1;        } 
         if  (cptcovn>0) {  #ifdef DEBUG
           for (z1=1; z1<=cptcoveff; z1++)        printf("%d %.12e",i,(*fret));
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        fprintf(ficlog,"%d %.12e",i,(*fret));
               bool=0;        for (j=1;j<=n;j++) {
         }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         if (bool==1) {          printf(" x(%d)=%.12e",j,xit[j]);
           for(m=firstpass; m<=lastpass; m++){          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
             k2=anint[m][i]+(mint[m][i]/12.);        }
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        for(j=1;j<=n;j++) {
               if(agev[m][i]==0) agev[m][i]=agemax+1;          printf(" p(%d)=%.12e",j,p[j]);
               if(agev[m][i]==1) agev[m][i]=agemax+2;          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
               if (m<lastpass) {        }
                 if (calagedate>0)        printf("\n");
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        fprintf(ficlog,"\n");
                 else  #endif
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      } /* end i */
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
               }  #ifdef DEBUG
             }        int k[2],l;
           }        k[0]=1;
         }        k[1]=-1;
       }        printf("Max: %.12e",(*func)(p));
       for(i=(int)agemin; i <= (int)agemax+3; i++){        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for(jk=1; jk <=nlstate ; jk++){        for (j=1;j<=n;j++) {
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          printf(" %.12e",p[j]);
             pp[jk] += freq[jk][m][i];          fprintf(ficlog," %.12e",p[j]);
         }        }
         for(jk=1; jk <=nlstate ; jk++){        printf("\n");
           for(m=-1, pos=0; m <=0 ; m++)        fprintf(ficlog,"\n");
             pos += freq[jk][m][i];        for(l=0;l<=1;l++) {
         }          for (j=1;j<=n;j++) {
                    ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         for(jk=1; jk <=nlstate ; jk++){            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             pp[jk] += freq[jk][m][i];          }
         }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
                  fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        }
          #endif
         for(jk=1; jk <=nlstate ; jk++){      
           if( i <= (int) agemax){  
             if(pos>=1.e-5){        free_vector(xit,1,n); 
               probs[i][jk][j1]= pp[jk]/pos;        free_vector(xits,1,n); 
             }        free_vector(ptt,1,n); 
           }        free_vector(pt,1,n); 
         }/* end jk */        return; 
       }/* end i */      } 
     } /* end i1 */      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   } /* end k1 */      for (j=1;j<=n;j++) { /* Computes an extrapolated point */
         ptt[j]=2.0*p[j]-pt[j]; 
          xit[j]=p[j]-pt[j]; 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        pt[j]=p[j]; 
   free_vector(pp,1,nlstate);      } 
        fptt=(*func)(ptt); 
 }  /* End of Freq */      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
         /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
 /************* Waves Concatenation ***************/        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
         /* Let f"(x2) be the 2nd derivative equal everywhere.  */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
 {        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        /* f1-f3 = delta(2h) = 2 h**2 f'' = 2(f1- 2f2 +f3) */
      Death is a valid wave (if date is known).        /* Thus we compare delta(2h) with observed f1-f3 */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        /* or best gain on one ancient line 'del' with total  */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        /* gain f1-f2 = f1 - f2 - 'del' with del  */
      and mw[mi+1][i]. dh depends on stepm.        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
      */  
         t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del);
   int i, mi, m;        t= t- del*SQR(fp-fptt);
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        printf("t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
      double sum=0., jmean=0.;*/        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
   int first;  #ifdef DEBUG
   int j, k=0,jk, ju, jl;        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
   double sum=0.;               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
   first=0;        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
   jmin=1e+5;               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
   jmax=-1;        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
   jmean=0.;        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
   for(i=1; i<=imx; i++){  #endif
     mi=0;        if (t < 0.0) { /* Then we use it for last direction */
     m=firstpass;          linmin(p,xit,n,fret,func); /* computes mean on the extrapolated direction.*/
     while(s[m][i] <= nlstate){          for (j=1;j<=n;j++) { 
       if(s[m][i]>=1)            xi[j][ibig]=xi[j][n]; /* Replace the direction with biggest decrease by n */
         mw[++mi][i]=m;            xi[j][n]=xit[j];      /* and nth direction by the extrapolated */
       if(m >=lastpass)          }
         break;          printf("Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
       else          fprintf(ficlog,"Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
         m++;  
     }/* end while */  #ifdef DEBUG
     if (s[m][i] > nlstate){          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       mi++;     /* Death is another wave */          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       /* if(mi==0)  never been interviewed correctly before death */          for(j=1;j<=n;j++){
          /* Only death is a correct wave */            printf(" %.12e",xit[j]);
       mw[mi][i]=m;            fprintf(ficlog," %.12e",xit[j]);
     }          }
           printf("\n");
     wav[i]=mi;          fprintf(ficlog,"\n");
     if(mi==0){  #endif
       if(first==0){        } /* end of t negative */
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);      } /* end if (fptt < fp)  */
         first=1;    } 
       }  } 
       if(first==1){  
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);  /**** Prevalence limit (stable or period prevalence)  ****************/
       }  
     } /* end mi==0 */  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   }  {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   for(i=1; i<=imx; i++){       matrix by transitions matrix until convergence is reached */
     for(mi=1; mi<wav[i];mi++){    
       if (stepm <=0)    int i, ii,j,k;
         dh[mi][i]=1;    double min, max, maxmin, maxmax,sumnew=0.;
       else{    /* double **matprod2(); */ /* test */
         if (s[mw[mi+1][i]][i] > nlstate) {    double **out, cov[NCOVMAX+1], **pmij();
           if (agedc[i] < 2*AGESUP) {    double **newm;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    double agefin, delaymax=50 ; /* Max number of years to converge */
           if(j==0) j=1;  /* Survives at least one month after exam */    
           k=k+1;    for (ii=1;ii<=nlstate+ndeath;ii++)
           if (j >= jmax) jmax=j;      for (j=1;j<=nlstate+ndeath;j++){
           if (j <= jmin) jmin=j;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           sum=sum+j;      }
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    
           }    cov[1]=1.;
         }    
         else{    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
           k=k+1;      newm=savm;
           if (j >= jmax) jmax=j;      /* Covariates have to be included here again */
           else if (j <= jmin)jmin=j;      cov[2]=agefin;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      
           sum=sum+j;      for (k=1; k<=cptcovn;k++) {
         }        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         jk= j/stepm;        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
         jl= j -jk*stepm;      }
         ju= j -(jk+1)*stepm;      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
         if(jl <= -ju)      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
           dh[mi][i]=jk;      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
         else      
           dh[mi][i]=jk+1;      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         if(dh[mi][i]==0)      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
           dh[mi][i]=1; /* At least one step */      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       }      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
     }      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
   }      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
   jmean=sum/k;      
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      savm=oldm;
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      oldm=newm;
  }      maxmax=0.;
       for(j=1;j<=nlstate;j++){
 /*********** Tricode ****************************/        min=1.;
 void tricode(int *Tvar, int **nbcode, int imx)        max=0.;
 {        for(i=1; i<=nlstate; i++) {
   int Ndum[20],ij=1, k, j, i;          sumnew=0;
   int cptcode=0;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   cptcoveff=0;          prlim[i][j]= newm[i][j]/(1-sumnew);
            /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
   for (k=0; k<19; k++) Ndum[k]=0;          max=FMAX(max,prlim[i][j]);
   for (k=1; k<=7; k++) ncodemax[k]=0;          min=FMIN(min,prlim[i][j]);
         }
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        maxmin=max-min;
     for (i=1; i<=imx; i++) {        maxmax=FMAX(maxmax,maxmin);
       ij=(int)(covar[Tvar[j]][i]);      } /* j loop */
       Ndum[ij]++;      if(maxmax < ftolpl){
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        return prlim;
       if (ij > cptcode) cptcode=ij;      }
     }    } /* age loop */
     return prlim; /* should not reach here */
     for (i=0; i<=cptcode; i++) {  }
       if(Ndum[i]!=0) ncodemax[j]++;  
     }  /*************** transition probabilities ***************/ 
     ij=1;  
   double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
     for (i=1; i<=ncodemax[j]; i++) {    /* According to parameters values stored in x and the covariate's values stored in cov,
       for (k=0; k<=19; k++) {       computes the probability to be observed in state j being in state i by appying the
         if (Ndum[k] != 0) {       model to the ncovmodel covariates (including constant and age).
           nbcode[Tvar[j]][ij]=k;       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
                 and, according on how parameters are entered, the position of the coefficient xij(nc) of the
           ij++;       ncth covariate in the global vector x is given by the formula:
         }       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
         if (ij > ncodemax[j]) break;       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
       }         Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
     }       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
   }         Outputs ps[i][j] the probability to be observed in j being in j according to
        the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
  for (k=0; k<19; k++) Ndum[k]=0;    */
     double s1, lnpijopii;
  for (i=1; i<=ncovmodel-2; i++) {    /*double t34;*/
    ij=Tvar[i];    int i,j, nc, ii, jj;
    Ndum[ij]++;  
  }      for(i=1; i<= nlstate; i++){
         for(j=1; j<i;j++){
  ij=1;          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
  for (i=1; i<=10; i++) {            /*lnpijopii += param[i][j][nc]*cov[nc];*/
    if((Ndum[i]!=0) && (i<=ncovcol)){            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
      Tvaraff[ij]=i;  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
      ij++;          }
    }          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
  }  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
          }
  cptcoveff=ij-1;        for(j=i+1; j<=nlstate+ndeath;j++){
 }          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
             /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
 /*********** Health Expectancies ****************/            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )          }
           ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 {        }
   /* Health expectancies */      }
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;      
   double age, agelim, hf;      for(i=1; i<= nlstate; i++){
   double ***p3mat,***varhe;        s1=0;
   double **dnewm,**doldm;        for(j=1; j<i; j++){
   double *xp;          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   double **gp, **gm;          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   double ***gradg, ***trgradg;        }
   int theta;        for(j=i+1; j<=nlstate+ndeath; j++){
           s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   xp=vector(1,npar);        }
   dnewm=matrix(1,nlstate*2,1,npar);        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
   doldm=matrix(1,nlstate*2,1,nlstate*2);        ps[i][i]=1./(s1+1.);
          /* Computing other pijs */
   fprintf(ficreseij,"# Health expectancies\n");        for(j=1; j<i; j++)
   fprintf(ficreseij,"# Age");          ps[i][j]= exp(ps[i][j])*ps[i][i];
   for(i=1; i<=nlstate;i++)        for(j=i+1; j<=nlstate+ndeath; j++)
     for(j=1; j<=nlstate;j++)          ps[i][j]= exp(ps[i][j])*ps[i][i];
       fprintf(ficreseij," %1d-%1d (SE)",i,j);        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   fprintf(ficreseij,"\n");      } /* end i */
       
   if(estepm < stepm){      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     printf ("Problem %d lower than %d\n",estepm, stepm);        for(jj=1; jj<= nlstate+ndeath; jj++){
   }          ps[ii][jj]=0;
   else  hstepm=estepm;            ps[ii][ii]=1;
   /* We compute the life expectancy from trapezoids spaced every estepm months        }
    * This is mainly to measure the difference between two models: for example      }
    * if stepm=24 months pijx are given only every 2 years and by summing them      
    * we are calculating an estimate of the Life Expectancy assuming a linear      
    * progression inbetween and thus overestimating or underestimating according      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
    * to the curvature of the survival function. If, for the same date, we      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
    * to compare the new estimate of Life expectancy with the same linear      /*   } */
    * hypothesis. A more precise result, taking into account a more precise      /*   printf("\n "); */
    * curvature will be obtained if estepm is as small as stepm. */      /* } */
       /* printf("\n ");printf("%lf ",cov[2]);*/
   /* For example we decided to compute the life expectancy with the smallest unit */      /*
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        for(i=1; i<= npar; i++) printf("%f ",x[i]);
      nhstepm is the number of hstepm from age to agelim        goto end;*/
      nstepm is the number of stepm from age to agelin.      return ps;
      Look at hpijx to understand the reason of that which relies in memory size  }
      and note for a fixed period like estepm months */  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  /**************** Product of 2 matrices ******************/
      survival function given by stepm (the optimization length). Unfortunately it  
      means that if the survival funtion is printed only each two years of age and if  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  {
      results. So we changed our mind and took the option of the best precision.    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   */       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    /* in, b, out are matrice of pointers which should have been initialized 
        before: only the contents of out is modified. The function returns
   agelim=AGESUP;       a pointer to pointers identical to out */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    int i, j, k;
     /* nhstepm age range expressed in number of stepm */    for(i=nrl; i<= nrh; i++)
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      for(k=ncolol; k<=ncoloh; k++){
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        out[i][k]=0.;
     /* if (stepm >= YEARM) hstepm=1;*/        for(j=ncl; j<=nch; j++)
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          out[i][k] +=in[i][j]*b[j][k];
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);    return out;
     gp=matrix(0,nhstepm,1,nlstate*2);  }
     gm=matrix(0,nhstepm,1,nlstate*2);  
   
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  /************* Higher Matrix Product ***************/
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
    {
     /* Computes the transition matrix starting at age 'age' over 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */       'nhstepm*hstepm*stepm' months (i.e. until
        age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     /* Computing Variances of health expectancies */       nhstepm*hstepm matrices. 
        Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
      for(theta=1; theta <=npar; theta++){       (typically every 2 years instead of every month which is too big 
       for(i=1; i<=npar; i++){       for the memory).
         xp[i] = x[i] + (i==theta ?delti[theta]:0);       Model is determined by parameters x and covariates have to be 
       }       included manually here. 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
         */
       cptj=0;  
       for(j=1; j<= nlstate; j++){    int i, j, d, h, k;
         for(i=1; i<=nlstate; i++){    double **out, cov[NCOVMAX+1];
           cptj=cptj+1;    double **newm;
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){  
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    /* Hstepm could be zero and should return the unit matrix */
           }    for (i=1;i<=nlstate+ndeath;i++)
         }      for (j=1;j<=nlstate+ndeath;j++){
       }        oldm[i][j]=(i==j ? 1.0 : 0.0);
              po[i][j][0]=(i==j ? 1.0 : 0.0);
            }
       for(i=1; i<=npar; i++)    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for(h=1; h <=nhstepm; h++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for(d=1; d <=hstepm; d++){
              newm=savm;
       cptj=0;        /* Covariates have to be included here again */
       for(j=1; j<= nlstate; j++){        cov[1]=1.;
         for(i=1;i<=nlstate;i++){        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
           cptj=cptj+1;        for (k=1; k<=cptcovn;k++) 
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        for (k=1; k<=cptcovage;k++)
           }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         }        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
       }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       for(j=1; j<= nlstate*2; j++)  
         for(h=0; h<=nhstepm-1; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
      }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                         pmij(pmmij,cov,ncovmodel,x,nlstate));
 /* End theta */        savm=oldm;
         oldm=newm;
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      }
       for(i=1; i<=nlstate+ndeath; i++)
      for(h=0; h<=nhstepm-1; h++)        for(j=1;j<=nlstate+ndeath;j++) {
       for(j=1; j<=nlstate*2;j++)          po[i][j][h]=newm[i][j];
         for(theta=1; theta <=npar; theta++)          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
           trgradg[h][j][theta]=gradg[h][theta][j];        }
            /*printf("h=%d ",h);*/
     } /* end h */
      for(i=1;i<=nlstate*2;i++)  /*     printf("\n H=%d \n",h); */
       for(j=1;j<=nlstate*2;j++)    return po;
         varhe[i][j][(int)age] =0.;  }
   
      printf("%d|",(int)age);fflush(stdout);  #ifdef NLOPT
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
      for(h=0;h<=nhstepm-1;h++){    double fret;
       for(k=0;k<=nhstepm-1;k++){    double *xt;
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    int j;
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    myfunc_data *d2 = (myfunc_data *) pd;
         for(i=1;i<=nlstate*2;i++)  /* xt = (p1-1); */
           for(j=1;j<=nlstate*2;j++)    xt=vector(1,n); 
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
       }  
     }    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
     /* Computing expectancies */    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
     for(i=1; i<=nlstate;i++)    printf("Function = %.12lf ",fret);
       for(j=1; j<=nlstate;j++)    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    printf("\n");
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;   free_vector(xt,1,n);
              return fret;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  }
   #endif
         }  
   /*************** log-likelihood *************/
     fprintf(ficreseij,"%3.0f",age );  double func( double *x)
     cptj=0;  {
     for(i=1; i<=nlstate;i++)    int i, ii, j, k, mi, d, kk;
       for(j=1; j<=nlstate;j++){    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
         cptj++;    double **out;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    double sw; /* Sum of weights */
       }    double lli; /* Individual log likelihood */
     fprintf(ficreseij,"\n");    int s1, s2;
        double bbh, survp;
     free_matrix(gm,0,nhstepm,1,nlstate*2);    long ipmx;
     free_matrix(gp,0,nhstepm,1,nlstate*2);    /*extern weight */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    /* We are differentiating ll according to initial status */
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*for(i=1;i<imx;i++) 
   }      printf(" %d\n",s[4][i]);
   printf("\n");    */
   fprintf(ficlog,"\n");  
     ++countcallfunc;
   free_vector(xp,1,npar);  
   free_matrix(dnewm,1,nlstate*2,1,npar);    cov[1]=1.;
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);  
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    for(k=1; k<=nlstate; k++) ll[k]=0.;
 }  
     if(mle==1){
 /************ Variance ******************/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)        /* Computes the values of the ncovmodel covariates of the model
 {           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
   /* Variance of health expectancies */           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/           to be observed in j being in i according to the model.
   /* double **newm;*/         */
   double **dnewm,**doldm;        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
   double **dnewmp,**doldmp;          cov[2+k]=covar[Tvar[k]][i];
   int i, j, nhstepm, hstepm, h, nstepm ;        }
   int k, cptcode;        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
   double *xp;           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
   double **gp, **gm;  /* for var eij */           has been calculated etc */
   double ***gradg, ***trgradg; /*for var eij */        for(mi=1; mi<= wav[i]-1; mi++){
   double **gradgp, **trgradgp; /* for var p point j */          for (ii=1;ii<=nlstate+ndeath;ii++)
   double *gpp, *gmp; /* for var p point j */            for (j=1;j<=nlstate+ndeath;j++){
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double ***p3mat;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double age,agelim, hf;            }
   int theta;          for(d=0; d<dh[mi][i]; d++){
   char digit[4];            newm=savm;
   char digitp[16];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   char fileresprobmorprev[FILENAMELENGTH];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
             }
   if(popbased==1)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     strcpy(digitp,"-populbased-");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   else            savm=oldm;
     strcpy(digitp,"-stablbased-");            oldm=newm;
           } /* end mult */
   strcpy(fileresprobmorprev,"prmorprev");        
   sprintf(digit,"%-d",ij);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/          /* But now since version 0.9 we anticipate for bias at large stepm.
   strcat(fileresprobmorprev,digit); /* Tvar to be done */           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   strcat(fileresprobmorprev,digitp); /* Popbased or not */           * (in months) between two waves is not a multiple of stepm, we rounded to 
   strcat(fileresprobmorprev,fileres);           * the nearest (and in case of equal distance, to the lowest) interval but now
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     printf("Problem with resultfile: %s\n", fileresprobmorprev);           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);           * probability in order to take into account the bias as a fraction of the way
   }           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);           * -stepm/2 to stepm/2 .
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);           * For stepm=1 the results are the same as for previous versions of Imach.
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");           * For stepm > 1 the results are less biased than in previous versions. 
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);           */
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){          s1=s[mw[mi][i]][i];
     fprintf(ficresprobmorprev," p.%-d SE",j);          s2=s[mw[mi+1][i]][i];
     for(i=1; i<=nlstate;i++)          bbh=(double)bh[mi][i]/(double)stepm; 
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);          /* bias bh is positive if real duration
   }             * is higher than the multiple of stepm and negative otherwise.
   fprintf(ficresprobmorprev,"\n");           */
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);          if( s2 > nlstate){ 
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);            /* i.e. if s2 is a death state and if the date of death is known 
     exit(0);               then the contribution to the likelihood is the probability to 
   }               die between last step unit time and current  step unit time, 
   else{               which is also equal to probability to die before dh 
     fprintf(ficgp,"\n# Routine varevsij");               minus probability to die before dh-stepm . 
   }               In version up to 0.92 likelihood was computed
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {          as if date of death was unknown. Death was treated as any other
     printf("Problem with html file: %s\n", optionfilehtm);          health state: the date of the interview describes the actual state
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);          and not the date of a change in health state. The former idea was
     exit(0);          to consider that at each interview the state was recorded
   }          (healthy, disable or death) and IMaCh was corrected; but when we
   else{          introduced the exact date of death then we should have modified
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");          the contribution of an exact death to the likelihood. This new
   }          contribution is smaller and very dependent of the step unit
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          stepm. It is no more the probability to die between last interview
           and month of death but the probability to survive from last
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");          interview up to one month before death multiplied by the
   fprintf(ficresvij,"# Age");          probability to die within a month. Thanks to Chris
   for(i=1; i<=nlstate;i++)          Jackson for correcting this bug.  Former versions increased
     for(j=1; j<=nlstate;j++)          mortality artificially. The bad side is that we add another loop
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          which slows down the processing. The difference can be up to 10%
   fprintf(ficresvij,"\n");          lower mortality.
             */
   xp=vector(1,npar);            lli=log(out[s1][s2] - savm[s1][s2]);
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);  
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);          } else if  (s2==-2) {
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            for (j=1,survp=0. ; j<=nlstate; j++) 
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);            /*survp += out[s1][j]; */
   gpp=vector(nlstate+1,nlstate+ndeath);            lli= log(survp);
   gmp=vector(nlstate+1,nlstate+ndeath);          }
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/          
            else if  (s2==-4) { 
   if(estepm < stepm){            for (j=3,survp=0. ; j<=nlstate; j++)  
     printf ("Problem %d lower than %d\n",estepm, stepm);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   }            lli= log(survp); 
   else  hstepm=estepm;            } 
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          else if  (s2==-5) { 
      nhstepm is the number of hstepm from age to agelim            for (j=1,survp=0. ; j<=2; j++)  
      nstepm is the number of stepm from age to agelin.              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      Look at hpijx to understand the reason of that which relies in memory size            lli= log(survp); 
      and note for a fixed period like k years */          } 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          
      survival function given by stepm (the optimization length). Unfortunately it          else{
      means that if the survival funtion is printed only each two years of age and if            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
      results. So we changed our mind and took the option of the best precision.          } 
   */          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          /*if(lli ==000.0)*/
   agelim = AGESUP;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          ipmx +=1;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          sw += weight[i];
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        } /* end of wave */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      } /* end of individual */
     gp=matrix(0,nhstepm,1,nlstate);    }  else if(mle==2){
     gm=matrix(0,nhstepm,1,nlstate);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
     for(theta=1; theta <=npar; theta++){          for (ii=1;ii<=nlstate+ndeath;ii++)
       for(i=1; i<=npar; i++){ /* Computes gradient */            for (j=1;j<=nlstate+ndeath;j++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          for(d=0; d<=dh[mi][i]; d++){
             newm=savm;
       if (popbased==1) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(i=1; i<=nlstate;i++)            for (kk=1; kk<=cptcovage;kk++) {
           prlim[i][i]=probs[(int)age][i][ij];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(j=1; j<= nlstate; j++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(h=0; h<=nhstepm; h++){            savm=oldm;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)            oldm=newm;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          } /* end mult */
         }        
       }          s1=s[mw[mi][i]][i];
       /* This for computing forces of mortality (h=1)as a weighted average */          s2=s[mw[mi+1][i]][i];
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){          bbh=(double)bh[mi][i]/(double)stepm; 
         for(i=1; i<= nlstate; i++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           gpp[j] += prlim[i][i]*p3mat[i][j][1];          ipmx +=1;
       }              sw += weight[i];
       /* end force of mortality */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
       for(i=1; i<=npar; i++) /* Computes gradient */      } /* end of individual */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    }  else if(mle==3){  /* exponential inter-extrapolation */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
       if (popbased==1) {          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(i=1; i<=nlstate;i++)            for (j=1;j<=nlstate+ndeath;j++){
           prlim[i][i]=probs[(int)age][i][ij];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
       for(j=1; j<= nlstate; j++){          for(d=0; d<dh[mi][i]; d++){
         for(h=0; h<=nhstepm; h++){            newm=savm;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
       /* This for computing force of mortality (h=1)as a weighted average */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(i=1; i<= nlstate; i++)            savm=oldm;
           gmp[j] += prlim[i][i]*p3mat[i][j][1];            oldm=newm;
       }              } /* end mult */
       /* end force of mortality */        
           s1=s[mw[mi][i]][i];
       for(j=1; j<= nlstate; j++) /* vareij */          s2=s[mw[mi+1][i]][i];
         for(h=0; h<=nhstepm; h++){          bbh=(double)bh[mi][i]/(double)stepm; 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         }          ipmx +=1;
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */          sw += weight[i];
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }        } /* end of wave */
       } /* end of individual */
     } /* End theta */    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
     for(h=0; h<=nhstepm; h++) /* veij */          for (ii=1;ii<=nlstate+ndeath;ii++)
       for(j=1; j<=nlstate;j++)            for (j=1;j<=nlstate+ndeath;j++){
         for(theta=1; theta <=npar; theta++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           trgradg[h][j][theta]=gradg[h][theta][j];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */          for(d=0; d<dh[mi][i]; d++){
       for(theta=1; theta <=npar; theta++)            newm=savm;
         trgradgp[j][theta]=gradgp[theta][j];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for(i=1;i<=nlstate;i++)            }
       for(j=1;j<=nlstate;j++)          
         vareij[i][j][(int)age] =0.;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(h=0;h<=nhstepm;h++){            savm=oldm;
       for(k=0;k<=nhstepm;k++){            oldm=newm;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          } /* end mult */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        
         for(i=1;i<=nlstate;i++)          s1=s[mw[mi][i]][i];
           for(j=1;j<=nlstate;j++)          s2=s[mw[mi+1][i]][i];
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;          if( s2 > nlstate){ 
       }            lli=log(out[s1][s2] - savm[s1][s2]);
     }          }else{
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     /* pptj */          }
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);          ipmx +=1;
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);          sw += weight[i];
     for(j=nlstate+1;j<=nlstate+ndeath;j++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(i=nlstate+1;i<=nlstate+ndeath;i++)  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         varppt[j][i]=doldmp[j][i];        } /* end of wave */
     /* end ppptj */      } /* end of individual */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);      }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     if (popbased==1) {        for(mi=1; mi<= wav[i]-1; mi++){
       for(i=1; i<=nlstate;i++)          for (ii=1;ii<=nlstate+ndeath;ii++)
         prlim[i][i]=probs[(int)age][i][ij];            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                  savm[ii][j]=(ii==j ? 1.0 : 0.0);
     /* This for computing force of mortality (h=1)as a weighted average */            }
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){          for(d=0; d<dh[mi][i]; d++){
       for(i=1; i<= nlstate; i++)            newm=savm;
         gmp[j] += prlim[i][i]*p3mat[i][j][1];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }                for (kk=1; kk<=cptcovage;kk++) {
     /* end force of mortality */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);          
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(i=1; i<=nlstate;i++){            savm=oldm;
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);            oldm=newm;
       }          } /* end mult */
     }        
     fprintf(ficresprobmorprev,"\n");          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
     fprintf(ficresvij,"%.0f ",age );          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     for(i=1; i<=nlstate;i++)          ipmx +=1;
       for(j=1; j<=nlstate;j++){          sw += weight[i];
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     fprintf(ficresvij,"\n");        } /* end of wave */
     free_matrix(gp,0,nhstepm,1,nlstate);      } /* end of individual */
     free_matrix(gm,0,nhstepm,1,nlstate);    } /* End of if */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   } /* End age */    return -l;
   free_vector(gpp,nlstate+1,nlstate+ndeath);  }
   free_vector(gmp,nlstate+1,nlstate+ndeath);  
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);  /*************** log-likelihood *************/
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/  double funcone( double *x)
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");  {
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */    /* Same as likeli but slower because of a lot of printf and if */
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");    int i, ii, j, k, mi, d, kk;
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);    double **out;
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);    double lli; /* Individual log likelihood */
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);    double llt;
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);    int s1, s2;
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);    double bbh, survp;
     /*extern weight */
   free_vector(xp,1,npar);    /* We are differentiating ll according to initial status */
   free_matrix(doldm,1,nlstate,1,nlstate);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   free_matrix(dnewm,1,nlstate,1,npar);    /*for(i=1;i<imx;i++) 
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      printf(" %d\n",s[4][i]);
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);    */
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    cov[1]=1.;
   fclose(ficresprobmorprev);  
   fclose(ficgp);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   fclose(fichtm);  
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(mi=1; mi<= wav[i]-1; mi++){
 /************ Variance of prevlim ******************/        for (ii=1;ii<=nlstate+ndeath;ii++)
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          for (j=1;j<=nlstate+ndeath;j++){
 {            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* Variance of prevalence limit */            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          }
   double **newm;        for(d=0; d<dh[mi][i]; d++){
   double **dnewm,**doldm;          newm=savm;
   int i, j, nhstepm, hstepm;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int k, cptcode;          for (kk=1; kk<=cptcovage;kk++) {
   double *xp;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double *gp, *gm;          }
   double **gradg, **trgradg;          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   double age,agelim;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int theta;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
   fprintf(ficresvpl,"# Age");          savm=oldm;
   for(i=1; i<=nlstate;i++)          oldm=newm;
       fprintf(ficresvpl," %1d-%1d",i,i);        } /* end mult */
   fprintf(ficresvpl,"\n");        
         s1=s[mw[mi][i]][i];
   xp=vector(1,npar);        s2=s[mw[mi+1][i]][i];
   dnewm=matrix(1,nlstate,1,npar);        bbh=(double)bh[mi][i]/(double)stepm; 
   doldm=matrix(1,nlstate,1,nlstate);        /* bias is positive if real duration
           * is higher than the multiple of stepm and negative otherwise.
   hstepm=1*YEARM; /* Every year of age */         */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   agelim = AGESUP;          lli=log(out[s1][s2] - savm[s1][s2]);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        } else if  (s2==-2) {
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          for (j=1,survp=0. ; j<=nlstate; j++) 
     if (stepm >= YEARM) hstepm=1;            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          lli= log(survp);
     gradg=matrix(1,npar,1,nlstate);        }else if (mle==1){
     gp=vector(1,nlstate);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     gm=vector(1,nlstate);        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     for(theta=1; theta <=npar; theta++){        } else if(mle==3){  /* exponential inter-extrapolation */
       for(i=1; i<=npar; i++){ /* Computes gradient */          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
       }          lli=log(out[s1][s2]); /* Original formula */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        } else{  /* mle=0 back to 1 */
       for(i=1;i<=nlstate;i++)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         gp[i] = prlim[i][i];          /*lli=log(out[s1][s2]); */ /* Original formula */
            } /* End of if */
       for(i=1; i<=npar; i++) /* Computes gradient */        ipmx +=1;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        sw += weight[i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(i=1;i<=nlstate;i++)        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         gm[i] = prlim[i][i];        if(globpr){
           fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
       for(i=1;i<=nlstate;i++)   %11.6f %11.6f %11.6f ", \
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     } /* End theta */                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     trgradg =matrix(1,nlstate,1,npar);            llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     for(j=1; j<=nlstate;j++)          }
       for(theta=1; theta <=npar; theta++)          fprintf(ficresilk," %10.6f\n", -llt);
         trgradg[j][theta]=gradg[theta][j];        }
       } /* end of wave */
     for(i=1;i<=nlstate;i++)    } /* end of individual */
       varpl[i][(int)age] =0.;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     for(i=1;i<=nlstate;i++)    if(globpr==0){ /* First time we count the contributions and weights */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      gipmx=ipmx;
       gsw=sw;
     fprintf(ficresvpl,"%.0f ",age );    }
     for(i=1; i<=nlstate;i++)    return -l;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  }
     fprintf(ficresvpl,"\n");  
     free_vector(gp,1,nlstate);  
     free_vector(gm,1,nlstate);  /*************** function likelione ***********/
     free_matrix(gradg,1,npar,1,nlstate);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     free_matrix(trgradg,1,nlstate,1,npar);  {
   } /* End age */    /* This routine should help understanding what is done with 
        the selection of individuals/waves and
   free_vector(xp,1,npar);       to check the exact contribution to the likelihood.
   free_matrix(doldm,1,nlstate,1,npar);       Plotting could be done.
   free_matrix(dnewm,1,nlstate,1,nlstate);     */
     int k;
 }  
     if(*globpri !=0){ /* Just counts and sums, no printings */
 /************ Variance of one-step probabilities  ******************/      strcpy(fileresilk,"ilk"); 
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)      strcat(fileresilk,fileres);
 {      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   int i, j=0,  i1, k1, l1, t, tj;        printf("Problem with resultfile: %s\n", fileresilk);
   int k2, l2, j1,  z1;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   int k=0,l, cptcode;      }
   int first=1, first1;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   double **dnewm,**doldm;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   double *xp;      for(k=1; k<=nlstate; k++) 
   double *gp, *gm;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   double **gradg, **trgradg;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   double **mu;    }
   double age,agelim, cov[NCOVMAX];  
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    *fretone=(*funcone)(p);
   int theta;    if(*globpri !=0){
   char fileresprob[FILENAMELENGTH];      fclose(ficresilk);
   char fileresprobcov[FILENAMELENGTH];      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   char fileresprobcor[FILENAMELENGTH];      fflush(fichtm); 
     } 
   double ***varpij;    return;
   }
   strcpy(fileresprob,"prob");  
   strcat(fileresprob,fileres);  
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  /*********** Maximum Likelihood Estimation ***************/
     printf("Problem with resultfile: %s\n", fileresprob);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   }  {
   strcpy(fileresprobcov,"probcov");    int i,j, iter=0;
   strcat(fileresprobcov,fileres);    double **xi;
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    double fret;
     printf("Problem with resultfile: %s\n", fileresprobcov);    double fretone; /* Only one call to likelihood */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);    /*  char filerespow[FILENAMELENGTH];*/
   }  
   strcpy(fileresprobcor,"probcor");  #ifdef NLOPT
   strcat(fileresprobcor,fileres);    int creturn;
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    nlopt_opt opt;
     printf("Problem with resultfile: %s\n", fileresprobcor);    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    double *lb;
   }    double minf; /* the minimum objective value, upon return */
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    double * p1; /* Shifted parameters from 0 instead of 1 */
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    myfunc_data dinst, *d = &dinst;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);  #endif
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);  
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);  
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    xi=matrix(1,npar,1,npar);
      for (i=1;i<=npar;i++)
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");      for (j=1;j<=npar;j++)
   fprintf(ficresprob,"# Age");        xi[i][j]=(i==j ? 1.0 : 0.0);
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   fprintf(ficresprobcov,"# Age");    strcpy(filerespow,"pow"); 
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    strcat(filerespow,fileres);
   fprintf(ficresprobcov,"# Age");    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   for(i=1; i<=nlstate;i++)    }
     for(j=1; j<=(nlstate+ndeath);j++){    fprintf(ficrespow,"# Powell\n# iter -2*LL");
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    for (i=1;i<=nlstate;i++)
       fprintf(ficresprobcov," p%1d-%1d ",i,j);      for(j=1;j<=nlstate+ndeath;j++)
       fprintf(ficresprobcor," p%1d-%1d ",i,j);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     }      fprintf(ficrespow,"\n");
   fprintf(ficresprob,"\n");  #ifdef POWELL
   fprintf(ficresprobcov,"\n");    powell(p,xi,npar,ftol,&iter,&fret,func);
   fprintf(ficresprobcor,"\n");  #endif
   xp=vector(1,npar);  
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  #ifdef NLOPT
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));  #ifdef NEWUOA
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);  #else
   first=1;    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  #endif
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    lb=vector(0,npar-1);
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
     exit(0);    nlopt_set_lower_bounds(opt, lb);
   }    nlopt_set_initial_step1(opt, 0.1);
   else{    
     fprintf(ficgp,"\n# Routine varprob");    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
   }    d->function = func;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
     printf("Problem with html file: %s\n", optionfilehtm);    nlopt_set_min_objective(opt, myfunc, d);
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    nlopt_set_xtol_rel(opt, ftol);
     exit(0);    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
   }      printf("nlopt failed! %d\n",creturn); 
   else{    }
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    else {
     fprintf(fichtm,"\n");      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
       printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");      iter=1; /* not equal */
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    }
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");    nlopt_destroy(opt);
   #endif
   }    free_matrix(xi,1,npar,1,npar);
     fclose(ficrespow);
      printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   cov[1]=1;    fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   tj=cptcoveff;    fprintf(ficres,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}  
   j1=0;  }
   for(t=1; t<=tj;t++){  
     for(i1=1; i1<=ncodemax[t];i1++){  /**** Computes Hessian and covariance matrix ***/
       j1++;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
        {
       if  (cptcovn>0) {    double  **a,**y,*x,pd;
         fprintf(ficresprob, "\n#********** Variable ");    double **hess;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    int i, j;
         fprintf(ficresprob, "**********\n#");    int *indx;
         fprintf(ficresprobcov, "\n#********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
         fprintf(ficresprobcov, "**********\n#");    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
            void lubksb(double **a, int npar, int *indx, double b[]) ;
         fprintf(ficgp, "\n#********** Variable ");    void ludcmp(double **a, int npar, int *indx, double *d) ;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    double gompertz(double p[]);
         fprintf(ficgp, "**********\n#");    hess=matrix(1,npar,1,npar);
          
            printf("\nCalculation of the hessian matrix. Wait...\n");
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    for (i=1;i<=npar;i++){
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");      printf("%d",i);fflush(stdout);
              fprintf(ficlog,"%d",i);fflush(ficlog);
         fprintf(ficresprobcor, "\n#********** Variable ");         
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
         fprintf(ficgp, "**********\n#");          
       }      /*  printf(" %f ",p[i]);
                printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
       for (age=bage; age<=fage; age ++){    }
         cov[2]=age;    
         for (k=1; k<=cptcovn;k++) {    for (i=1;i<=npar;i++) {
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];      for (j=1;j<=npar;j++)  {
         }        if (j>i) { 
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          printf(".%d%d",i,j);fflush(stdout);
         for (k=1; k<=cptcovprod;k++)          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          hess[i][j]=hessij(p,delti,i,j,func,npar);
                  
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));          hess[j][i]=hess[i][j];    
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          /*printf(" %lf ",hess[i][j]);*/
         gp=vector(1,(nlstate)*(nlstate+ndeath));        }
         gm=vector(1,(nlstate)*(nlstate+ndeath));      }
        }
         for(theta=1; theta <=npar; theta++){    printf("\n");
           for(i=1; i<=npar; i++)    fprintf(ficlog,"\n");
             xp[i] = x[i] + (i==theta ?delti[theta]:0);  
              printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
              
           k=0;    a=matrix(1,npar,1,npar);
           for(i=1; i<= (nlstate); i++){    y=matrix(1,npar,1,npar);
             for(j=1; j<=(nlstate+ndeath);j++){    x=vector(1,npar);
               k=k+1;    indx=ivector(1,npar);
               gp[k]=pmmij[i][j];    for (i=1;i<=npar;i++)
             }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
           }    ludcmp(a,npar,indx,&pd);
            
           for(i=1; i<=npar; i++)    for (j=1;j<=npar;j++) {
             xp[i] = x[i] - (i==theta ?delti[theta]:0);      for (i=1;i<=npar;i++) x[i]=0;
          x[j]=1;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      lubksb(a,npar,indx,x);
           k=0;      for (i=1;i<=npar;i++){ 
           for(i=1; i<=(nlstate); i++){        matcov[i][j]=x[i];
             for(j=1; j<=(nlstate+ndeath);j++){      }
               k=k+1;    }
               gm[k]=pmmij[i][j];  
             }    printf("\n#Hessian matrix#\n");
           }    fprintf(ficlog,"\n#Hessian matrix#\n");
          for (i=1;i<=npar;i++) { 
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)      for (j=1;j<=npar;j++) { 
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          printf("%.3e ",hess[i][j]);
         }        fprintf(ficlog,"%.3e ",hess[i][j]);
       }
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)      printf("\n");
           for(theta=1; theta <=npar; theta++)      fprintf(ficlog,"\n");
             trgradg[j][theta]=gradg[theta][j];    }
          
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);    /* Recompute Inverse */
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    for (i=1;i<=npar;i++)
              for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         pmij(pmmij,cov,ncovmodel,x,nlstate);    ludcmp(a,npar,indx,&pd);
          
         k=0;    /*  printf("\n#Hessian matrix recomputed#\n");
         for(i=1; i<=(nlstate); i++){  
           for(j=1; j<=(nlstate+ndeath);j++){    for (j=1;j<=npar;j++) {
             k=k+1;      for (i=1;i<=npar;i++) x[i]=0;
             mu[k][(int) age]=pmmij[i][j];      x[j]=1;
           }      lubksb(a,npar,indx,x);
         }      for (i=1;i<=npar;i++){ 
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)        y[i][j]=x[i];
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)        printf("%.3e ",y[i][j]);
             varpij[i][j][(int)age] = doldm[i][j];        fprintf(ficlog,"%.3e ",y[i][j]);
       }
         /*printf("\n%d ",(int)age);      printf("\n");
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      fprintf(ficlog,"\n");
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    }
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    */
      }*/  
     free_matrix(a,1,npar,1,npar);
         fprintf(ficresprob,"\n%d ",(int)age);    free_matrix(y,1,npar,1,npar);
         fprintf(ficresprobcov,"\n%d ",(int)age);    free_vector(x,1,npar);
         fprintf(ficresprobcor,"\n%d ",(int)age);    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)  
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));  
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  }
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);  
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);  /*************** hessian matrix ****************/
         }  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
         i=0;  {
         for (k=1; k<=(nlstate);k++){    int i;
           for (l=1; l<=(nlstate+ndeath);l++){    int l=1, lmax=20;
             i=i++;    double k1,k2;
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    double p2[MAXPARM+1]; /* identical to x */
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);    double res;
             for (j=1; j<=i;j++){    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);    double fx;
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));    int k=0,kmax=10;
             }    double l1;
           }  
         }/* end of loop for state */    fx=func(x);
       } /* end of loop for age */    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
       /* Confidence intervalle of pij  */      l1=pow(10,l);
       /*      delts=delt;
       fprintf(ficgp,"\nset noparametric;unset label");      for(k=1 ; k <kmax; k=k+1){
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");        delt = delta*(l1*k);
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");        p2[theta]=x[theta] +delt;
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);        p2[theta]=x[theta]-delt;
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);        k2=func(p2)-fx;
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);        /*res= (k1-2.0*fx+k2)/delt/delt; */
       */        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/  #ifdef DEBUGHESS
       first1=1;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       for (k1=1; k1<=(nlstate);k1++){        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         for (l1=1; l1<=(nlstate+ndeath);l1++){  #endif
           if(l1==k1) continue;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
           i=(k1-1)*(nlstate+ndeath)+l1;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           for (k2=1; k2<=(nlstate);k2++){          k=kmax;
             for (l2=1; l2<=(nlstate+ndeath);l2++){        }
               if(l2==k2) continue;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
               j=(k2-1)*(nlstate+ndeath)+l2;          k=kmax; l=lmax*10;
               if(j<=i) continue;        }
               for (age=bage; age<=fage; age ++){        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
                 if ((int)age %5==0){          delts=delt;
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;        }
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;      }
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    }
                   mu1=mu[i][(int) age]/stepm*YEARM ;    delti[theta]=delts;
                   mu2=mu[j][(int) age]/stepm*YEARM;    return res; 
                   /* Computing eigen value of matrix of covariance */    
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));  }
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));  
                   if(first1==1){  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
                     first1=0;  {
                     printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\nOthers in log...\n",v1,v2,cv12,lc1,lc2);    int i;
                   }    int l=1, lmax=20;
                   fprintf(ficlog,"Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);    double k1,k2,k3,k4,res,fx;
                   /* Eigen vectors */    double p2[MAXPARM+1];
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    int k;
                   v21=sqrt(1.-v11*v11);  
                   v12=-v21;    fx=func(x);
                   v22=v11;    for (k=1; k<=2; k++) {
                   /*printf(fignu*/      for (i=1;i<=npar;i++) p2[i]=x[i];
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */      p2[thetai]=x[thetai]+delti[thetai]/k;
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
                   if(first==1){      k1=func(p2)-fx;
                     first=0;    
                     fprintf(ficgp,"\nset parametric;set nolabel");      p2[thetai]=x[thetai]+delti[thetai]/k;
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");      k2=func(p2)-fx;
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1);    
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k2,l2,k1,l1);      p2[thetai]=x[thetai]-delti[thetai]/k;
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k2,l2,k1,l1);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);      k3=func(p2)-fx;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    
                     /*              fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\      p2[thetai]=x[thetai]-delti[thetai]/k;
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);      k4=func(p2)-fx;
                     */      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\  #ifdef DEBUG
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                   }else{  #endif
                     first=0;    }
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    return res;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);  }
                     /*  
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\  /************** Inverse of matrix **************/
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \  void ludcmp(double **a, int n, int *indx, double *d) 
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);  { 
                     */    int i,imax,j,k; 
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    double big,dum,sum,temp; 
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    double *vv; 
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));   
                   }/* if first */    vv=vector(1,n); 
                 } /* age mod 5 */    *d=1.0; 
               } /* end loop age */    for (i=1;i<=n;i++) { 
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k2,l2,k1,l1);      big=0.0; 
               first=1;      for (j=1;j<=n;j++) 
             } /*l12 */        if ((temp=fabs(a[i][j])) > big) big=temp; 
           } /* k12 */      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
         } /*l1 */      vv[i]=1.0/big; 
       }/* k1 */    } 
     } /* loop covariates */    for (j=1;j<=n;j++) { 
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);      for (i=1;i<j;i++) { 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        sum=a[i][j]; 
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);        a[i][j]=sum; 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      } 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      big=0.0; 
   }      for (i=j;i<=n;i++) { 
   free_vector(xp,1,npar);        sum=a[i][j]; 
   fclose(ficresprob);        for (k=1;k<j;k++) 
   fclose(ficresprobcov);          sum -= a[i][k]*a[k][j]; 
   fclose(ficresprobcor);        a[i][j]=sum; 
   fclose(ficgp);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   fclose(fichtm);          big=dum; 
 }          imax=i; 
         } 
       } 
 /******************* Printing html file ***********/      if (j != imax) { 
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \        for (k=1;k<=n;k++) { 
                   int lastpass, int stepm, int weightopt, char model[],\          dum=a[imax][k]; 
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\          a[imax][k]=a[j][k]; 
                   int popforecast, int estepm ,\          a[j][k]=dum; 
                   double jprev1, double mprev1,double anprev1, \        } 
                   double jprev2, double mprev2,double anprev2){        *d = -(*d); 
   int jj1, k1, i1, cpt;        vv[imax]=vv[j]; 
   /*char optionfilehtm[FILENAMELENGTH];*/      } 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {      indx[j]=imax; 
     printf("Problem with %s \n",optionfilehtm), exit(0);      if (a[j][j] == 0.0) a[j][j]=TINY; 
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);      if (j != n) { 
   }        dum=1.0/(a[j][j]); 
         for (i=j+1;i<=n;i++) a[i][j] *= dum; 
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n      } 
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n    } 
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    free_vector(vv,1,n);  /* Doesn't work */
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n  ;
  - Life expectancies by age and initial health status (estepm=%2d months):  } 
    <a href=\"e%s\">e%s</a> <br>\n</li>", \  
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    int i,ii=0,ip,j; 
     double sum; 
  m=cptcoveff;   
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    for (i=1;i<=n;i++) { 
       ip=indx[i]; 
  jj1=0;      sum=b[ip]; 
  for(k1=1; k1<=m;k1++){      b[ip]=b[i]; 
    for(i1=1; i1<=ncodemax[k1];i1++){      if (ii) 
      jj1++;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
      if (cptcovn > 0) {      else if (sum) ii=i; 
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      b[i]=sum; 
        for (cpt=1; cpt<=cptcoveff;cpt++)    } 
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    for (i=n;i>=1;i--) { 
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      sum=b[i]; 
      }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
      /* Pij */      b[i]=sum/a[i][i]; 
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>    } 
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      } 
      /* Quasi-incidences */  
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>  void pstamp(FILE *fichier)
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  {
        /* Stable prevalence in each health state */    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
        for(cpt=1; cpt<nlstate;cpt++){  }
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>  
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  /************ Frequencies ********************/
        }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
      for(cpt=1; cpt<=nlstate;cpt++) {  {  /* Some frequencies */
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    int i, m, jk, j1, bool, z1,j;
      }    int first;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    double ***freq; /* Frequencies */
 health expectancies in states (1) and (2): e%s%d.png<br>    double *pp, **prop;
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
    } /* end i1 */    char fileresp[FILENAMELENGTH];
  }/* End k1 */    
  fprintf(fichtm,"</ul>");    pp=vector(1,nlstate);
     prop=matrix(1,nlstate,iagemin,iagemax+3);
     strcpy(fileresp,"p");
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n    strcat(fileresp,fileres);
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    if((ficresp=fopen(fileresp,"w"))==NULL) {
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n      printf("Problem with prevalence resultfile: %s\n", fileresp);
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n      exit(0);
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    }
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    j1=0;
     
  if(popforecast==1) fprintf(fichtm,"\n    j=cptcoveff;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    if (cptcovn<1) {j=1;ncodemax[1]=1;}
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n  
         <br>",fileres,fileres,fileres,fileres);    first=1;
  else  
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
     /*    j1++; */
  m=cptcoveff;    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           scanf("%d", i);*/
  jj1=0;        for (i=-5; i<=nlstate+ndeath; i++)  
  for(k1=1; k1<=m;k1++){          for (jk=-5; jk<=nlstate+ndeath; jk++)  
    for(i1=1; i1<=ncodemax[k1];i1++){            for(m=iagemin; m <= iagemax+3; m++)
      jj1++;              freq[i][jk][m]=0;
      if (cptcovn > 0) {        
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        for (i=1; i<=nlstate; i++)  
        for (cpt=1; cpt<=cptcoveff;cpt++)          for(m=iagemin; m <= iagemax+3; m++)
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            prop[i][m]=0;
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        
      }        dateintsum=0;
      for(cpt=1; cpt<=nlstate;cpt++) {        k2cpt=0;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        for (i=1; i<=imx; i++) {
 interval) in state (%d): v%s%d%d.png <br>          bool=1;
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
      }            for (z1=1; z1<=cptcoveff; z1++)       
    } /* end i1 */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
  }/* End k1 */                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
  fprintf(fichtm,"</ul>");                bool=0;
 fclose(fichtm);                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
 }                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
                   j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
 /******************* Gnuplot file **************/                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){              } 
           }
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;   
   int ng;          if (bool==1){
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {            for(m=firstpass; m<=lastpass; m++){
     printf("Problem with file %s",optionfilegnuplot);              k2=anint[m][i]+(mint[m][i]/12.);
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
 #ifdef windows                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     fprintf(ficgp,"cd \"%s\" \n",pathc);                if (m<lastpass) {
 #endif                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 m=pow(2,cptcoveff);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                  }
  /* 1eme*/                
   for (cpt=1; cpt<= nlstate ; cpt ++) {                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
    for (k1=1; k1<= m ; k1 ++) {                  dateintsum=dateintsum+k2;
                   k2cpt++;
 #ifdef windows                }
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);                /*}*/
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);            }
 #endif          }
 #ifdef unix        } /* end i */
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);         
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 #endif        pstamp(ficresp);
         if  (cptcovn>0) {
 for (i=1; i<= nlstate ; i ++) {          fprintf(ficresp, "\n#********** Variable "); 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   else fprintf(ficgp," \%%*lf (\%%*lf)");          fprintf(ficresp, "**********\n#");
 }          fprintf(ficlog, "\n#********** Variable "); 
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     for (i=1; i<= nlstate ; i ++) {          fprintf(ficlog, "**********\n#");
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        }
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(i=1; i<=nlstate;i++) 
 }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        fprintf(ficresp, "\n");
      for (i=1; i<= nlstate ; i ++) {        
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        for(i=iagemin; i <= iagemax+3; i++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");          if(i==iagemax+3){
 }              fprintf(ficlog,"Total");
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          }else{
 #ifdef unix            if(first==1){
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");              first=0;
 #endif              printf("See log file for details...\n");
    }            }
   }            fprintf(ficlog,"Age %d", i);
   /*2 eme*/          }
           for(jk=1; jk <=nlstate ; jk++){
   for (k1=1; k1<= m ; k1 ++) {            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);              pp[jk] += freq[jk][m][i]; 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);          }
              for(jk=1; jk <=nlstate ; jk++){
     for (i=1; i<= nlstate+1 ; i ++) {            for(m=-1, pos=0; m <=0 ; m++)
       k=2*i;              pos += freq[jk][m][i];
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);            if(pp[jk]>=1.e-10){
       for (j=1; j<= nlstate+1 ; j ++) {              if(first==1){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   else fprintf(ficgp," \%%*lf (\%%*lf)");              }
 }                fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            }else{
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);              if(first==1)
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       for (j=1; j<= nlstate+1 ; j ++) {              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            }
         else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }    
       fprintf(ficgp,"\" t\"\" w l 0,");          for(jk=1; jk <=nlstate ; jk++){
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       for (j=1; j<= nlstate+1 ; j ++) {              pp[jk] += freq[jk][m][i];
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          }       
   else fprintf(ficgp," \%%*lf (\%%*lf)");          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
 }              pos += pp[jk];
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            posprop += prop[jk][i];
       else fprintf(ficgp,"\" t\"\" w l 0,");          }
     }          for(jk=1; jk <=nlstate ; jk++){
   }            if(pos>=1.e-5){
                if(first==1)
   /*3eme*/                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   for (k1=1; k1<= m ; k1 ++) {            }else{
     for (cpt=1; cpt<= nlstate ; cpt ++) {              if(first==1)
       k=2+nlstate*(2*cpt-2);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);            }
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            if( i <= iagemax){
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              if(pos>=1.e-5){
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                /*probs[i][jk][j1]= pp[jk]/pos;*/
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              }
               else
 */                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       for (i=1; i< nlstate ; i ++) {            }
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);          }
           
       }          for(jk=-1; jk <=nlstate+ndeath; jk++)
     }            for(m=-1; m <=nlstate+ndeath; m++)
   }              if(freq[jk][m][i] !=0 ) {
                if(first==1)
   /* CV preval stat */                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     for (k1=1; k1<= m ; k1 ++) {                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     for (cpt=1; cpt<nlstate ; cpt ++) {              }
       k=3;          if(i <= iagemax)
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            fprintf(ficresp,"\n");
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);          if(first==1)
             printf("Others in log...\n");
       for (i=1; i< nlstate ; i ++)          fprintf(ficlog,"\n");
         fprintf(ficgp,"+$%d",k+i+1);        }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        /*}*/
          }
       l=3+(nlstate+ndeath)*cpt;    dateintmean=dateintsum/k2cpt; 
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);   
       for (i=1; i< nlstate ; i ++) {    fclose(ficresp);
         l=3+(nlstate+ndeath)*cpt;    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
         fprintf(ficgp,"+$%d",l+i+1);    free_vector(pp,1,nlstate);
       }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      /* End of Freq */
     }  }
   }    
    /************ Prevalence ********************/
   /* proba elementaires */  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
    for(i=1,jk=1; i <=nlstate; i++){  {  
     for(k=1; k <=(nlstate+ndeath); k++){    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
       if (k != i) {       in each health status at the date of interview (if between dateprev1 and dateprev2).
         for(j=1; j <=ncovmodel; j++){       We still use firstpass and lastpass as another selection.
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    */
           jk++;   
           fprintf(ficgp,"\n");    int i, m, jk, j1, bool, z1,j;
         }  
       }    double **prop;
     }    double posprop; 
    }    double  y2; /* in fractional years */
     int iagemin, iagemax;
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    int first; /** to stop verbosity which is redirected to log file */
      for(jk=1; jk <=m; jk++) {  
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    iagemin= (int) agemin;
        if (ng==2)    iagemax= (int) agemax;
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");    /*pp=vector(1,nlstate);*/
        else    prop=matrix(1,nlstate,iagemin,iagemax+3); 
          fprintf(ficgp,"\nset title \"Probability\"\n");    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    j1=0;
        i=1;    
        for(k2=1; k2<=nlstate; k2++) {    /*j=cptcoveff;*/
          k3=i;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
          for(k=1; k<=(nlstate+ndeath); k++) {    
            if (k != k2){    first=1;
              if(ng==2)    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);      /*for(i1=1; i1<=ncodemax[k1];i1++){
              else        j1++;*/
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        
              ij=1;        for (i=1; i<=nlstate; i++)  
              for(j=3; j <=ncovmodel; j++) {          for(m=iagemin; m <= iagemax+3; m++)
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            prop[i][m]=0.0;
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);       
                  ij++;        for (i=1; i<=imx; i++) { /* Each individual */
                }          bool=1;
                else          if  (cptcovn>0) {
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            for (z1=1; z1<=cptcoveff; z1++) 
              }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
              fprintf(ficgp,")/(1");                bool=0;
                        } 
              for(k1=1; k1 <=nlstate; k1++){            if (bool==1) { 
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                ij=1;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                for(j=3; j <=ncovmodel; j++){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                    ij++;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                  }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                  else                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                }                  prop[s[m][i]][iagemax+3] += weight[i]; 
                fprintf(ficgp,")");                } 
              }              }
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);            } /* end selection of waves */
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          }
              i=i+ncovmodel;        }
            }        for(i=iagemin; i <= iagemax+3; i++){  
          } /* end k */          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
        } /* end k2 */            posprop += prop[jk][i]; 
      } /* end jk */          } 
    } /* end ng */          
    fclose(ficgp);          for(jk=1; jk <=nlstate ; jk++){     
 }  /* end gnuplot */            if( i <=  iagemax){ 
               if(posprop>=1.e-5){ 
                 probs[i][jk][j1]= prop[jk][i]/posprop;
 /*************** Moving average **************/              } else{
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){                if(first==1){
                   first=0;
   int i, cpt, cptcod;                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)                }
       for (i=1; i<=nlstate;i++)              }
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)            } 
           mobaverage[(int)agedeb][i][cptcod]=0.;          }/* end jk */ 
            }/* end i */ 
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){      /*} *//* end i1 */
       for (i=1; i<=nlstate;i++){    } /* end j1 */
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    
           for (cpt=0;cpt<=4;cpt++){    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    /*free_vector(pp,1,nlstate);*/
           }    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  }  /* End of prevalence */
         }  
       }  /************* Waves Concatenation ***************/
     }  
      void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 }  {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
 /************** Forecasting ******************/       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         and mw[mi+1][i]. dh depends on stepm.
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;       */
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    int i, mi, m;
   double *popeffectif,*popcount;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   double ***p3mat;       double sum=0., jmean=0.;*/
   char fileresf[FILENAMELENGTH];    int first;
     int j, k=0,jk, ju, jl;
  agelim=AGESUP;    double sum=0.;
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    first=0;
     jmin=100000;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    jmax=-1;
      jmean=0.;
      for(i=1; i<=imx; i++){
   strcpy(fileresf,"f");      mi=0;
   strcat(fileresf,fileres);      m=firstpass;
   if((ficresf=fopen(fileresf,"w"))==NULL) {      while(s[m][i] <= nlstate){
     printf("Problem with forecast resultfile: %s\n", fileresf);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);          mw[++mi][i]=m;
   }        if(m >=lastpass)
   printf("Computing forecasting: result on file '%s' \n", fileresf);          break;
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);        else
           m++;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      }/* end while */
       if (s[m][i] > nlstate){
   if (mobilav==1) {        mi++;     /* Death is another wave */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        /* if(mi==0)  never been interviewed correctly before death */
     movingaverage(agedeb, fage, ageminpar, mobaverage);           /* Only death is a correct wave */
   }        mw[mi][i]=m;
       }
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;      wav[i]=mi;
        if(mi==0){
   agelim=AGESUP;        nbwarn++;
          if(first==0){
   hstepm=1;          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   hstepm=hstepm/stepm;          first=1;
   yp1=modf(dateintmean,&yp);        }
   anprojmean=yp;        if(first==1){
   yp2=modf((yp1*12),&yp);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   mprojmean=yp;        }
   yp1=modf((yp2*30.5),&yp);      } /* end mi==0 */
   jprojmean=yp;    } /* End individuals */
   if(jprojmean==0) jprojmean=1;  
   if(mprojmean==0) jprojmean=1;    for(i=1; i<=imx; i++){
        for(mi=1; mi<wav[i];mi++){
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);        if (stepm <=0)
            dh[mi][i]=1;
   for(cptcov=1;cptcov<=i2;cptcov++){        else{
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       k=k+1;            if (agedc[i] < 2*AGESUP) {
       fprintf(ficresf,"\n#******");              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       for(j=1;j<=cptcoveff;j++) {              if(j==0) j=1;  /* Survives at least one month after exam */
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              else if(j<0){
       }                nberr++;
       fprintf(ficresf,"******\n");                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficresf,"# StartingAge FinalAge");                j=1; /* Temporary Dangerous patch */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                      fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                      fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {              }
         fprintf(ficresf,"\n");              k=k+1;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);                if (j >= jmax){
                 jmax=j;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){                ijmax=i;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);              }
           nhstepm = nhstepm/hstepm;              if (j <= jmin){
                          jmin=j;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                ijmin=i;
           oldm=oldms;savm=savms;              }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                sum=sum+j;
                      /*if (j<0) printf("j=%d num=%d \n",j,i);*/
           for (h=0; h<=nhstepm; h++){              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             if (h==(int) (calagedate+YEARM*cpt)) {            }
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);          }
             }          else{
             for(j=1; j<=nlstate+ndeath;j++) {            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
               kk1=0.;kk2=0;  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
               for(i=1; i<=nlstate;i++) {                
                 if (mobilav==1)            k=k+1;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            if (j >= jmax) {
                 else {              jmax=j;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];              ijmax=i;
                 }            }
                            else if (j <= jmin){
               }              jmin=j;
               if (h==(int)(calagedate+12*cpt)){              ijmin=i;
                 fprintf(ficresf," %.3f", kk1);            }
                                    /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
               }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             }            if(j<0){
           }              nberr++;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       }            }
     }            sum=sum+j;
   }          }
                  jk= j/stepm;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          jl= j -jk*stepm;
           ju= j -(jk+1)*stepm;
   fclose(ficresf);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 }            if(jl==0){
 /************** Forecasting ******************/              dh[mi][i]=jk;
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){              bh[mi][i]=0;
              }else{ /* We want a negative bias in order to only have interpolation ie
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;                    * to avoid the price of an extra matrix product in likelihood */
   int *popage;              dh[mi][i]=jk+1;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;              bh[mi][i]=ju;
   double *popeffectif,*popcount;            }
   double ***p3mat,***tabpop,***tabpopprev;          }else{
   char filerespop[FILENAMELENGTH];            if(jl <= -ju){
               dh[mi][i]=jk;
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              bh[mi][i]=jl;       /* bias is positive if real duration
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                                   * is higher than the multiple of stepm and negative otherwise.
   agelim=AGESUP;                                   */
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;            }
              else{
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);              dh[mi][i]=jk+1;
                bh[mi][i]=ju;
              }
   strcpy(filerespop,"pop");            if(dh[mi][i]==0){
   strcat(filerespop,fileres);              dh[mi][i]=1; /* At least one step */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {              bh[mi][i]=ju; /* At least one step */
     printf("Problem with forecast resultfile: %s\n", filerespop);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);            }
   }          } /* end if mle */
   printf("Computing forecasting: result on file '%s' \n", filerespop);        }
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);      } /* end wave */
     }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   if (mobilav==1) {    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   }
     movingaverage(agedeb, fage, ageminpar, mobaverage);  
   }  /*********** Tricode ****************************/
   void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
   stepsize=(int) (stepm+YEARM-1)/YEARM;  {
   if (stepm<=12) stepsize=1;    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
      /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
   agelim=AGESUP;     * Boring subroutine which should only output nbcode[Tvar[j]][k]
       * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
   hstepm=1;     * nbcode[Tvar[j]][1]= 
   hstepm=hstepm/stepm;    */
    
   if (popforecast==1) {    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     if((ficpop=fopen(popfile,"r"))==NULL) {    int modmaxcovj=0; /* Modality max of covariates j */
       printf("Problem with population file : %s\n",popfile);exit(0);    int cptcode=0; /* Modality max of covariates j */
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);    int modmincovj=0; /* Modality min of covariates j */
     }  
     popage=ivector(0,AGESUP);  
     popeffectif=vector(0,AGESUP);    cptcoveff=0; 
     popcount=vector(0,AGESUP);   
        for (k=-1; k < maxncov; k++) Ndum[k]=0;
     i=1;      for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;  
        /* Loop on covariates without age and products */
     imx=i;    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
   }                                 modality of this covariate Vj*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
   for(cptcov=1;cptcov<=i2;cptcov++){                                      * If product of Vn*Vm, still boolean *:
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
       k=k+1;                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
       fprintf(ficrespop,"\n#******");        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
       for(j=1;j<=cptcoveff;j++) {                                        modality of the nth covariate of individual i. */
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        if (ij > modmaxcovj)
       }          modmaxcovj=ij; 
       fprintf(ficrespop,"******\n");        else if (ij < modmincovj) 
       fprintf(ficrespop,"# Age");          modmincovj=ij; 
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);        if ((ij < -1) && (ij > NCOVMAX)){
       if (popforecast==1)  fprintf(ficrespop," [Population]");          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
                exit(1);
       for (cpt=0; cpt<=0;cpt++) {        }else
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
                /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        /* getting the maximum value of the modality of the covariate
           nhstepm = nhstepm/hstepm;           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
                     female is 1, then modmaxcovj=1.*/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
           oldm=oldms;savm=savms;      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        cptcode=modmaxcovj;
              /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
           for (h=0; h<=nhstepm; h++){     /*for (i=0; i<=cptcode; i++) {*/
             if (h==(int) (calagedate+YEARM*cpt)) {      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
             }        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
             for(j=1; j<=nlstate+ndeath;j++) {          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
               kk1=0.;kk2=0;        }
               for(i=1; i<=nlstate;i++) {                      /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
                 if (mobilav==1)           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      } /* Ndum[-1] number of undefined modalities */
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
                 }      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
               }      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
               if (h==(int)(calagedate+12*cpt)){         modmincovj=3; modmaxcovj = 7;
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
                   /*fprintf(ficrespop," %.3f", kk1);         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/         variables V1_1 and V1_2.
               }         nbcode[Tvar[j]][ij]=k;
             }         nbcode[Tvar[j]][1]=0;
             for(i=1; i<=nlstate;i++){         nbcode[Tvar[j]][2]=1;
               kk1=0.;         nbcode[Tvar[j]][3]=2;
                 for(j=1; j<=nlstate;j++){      */
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      ij=1; /* ij is similar to i but can jumps over null modalities */
                 }      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
             }          /*recode from 0 */
           if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);                                       k is a modality. If we have model=V1+V1*sex 
           }                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            ij++;
         }          }
       }          if (ij > ncodemax[j]) break; 
          }  /* end of loop on */
   /******/      } /* end of loop on modality */ 
     } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);     for (k=-1; k< maxncov; k++) Ndum[k]=0; 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
           nhstepm = nhstepm/hstepm;     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
               ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     Ndum[ij]++; 
           oldm=oldms;savm=savms;   } 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           for (h=0; h<=nhstepm; h++){   ij=1;
             if (h==(int) (calagedate+YEARM*cpt)) {   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
             }     if((Ndum[i]!=0) && (i<=ncovcol)){
             for(j=1; j<=nlstate+ndeath;j++) {       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
               kk1=0.;kk2=0;       Tvaraff[ij]=i; /*For printing (unclear) */
               for(i=1; i<=nlstate;i++) {                     ij++;
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];         }else
               }         Tvaraff[ij]=0;
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);   }
             }   ij--;
           }   cptcoveff=ij; /*Number of total covariates*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }  }
       }  
    }  
   }  /*********** Health Expectancies ****************/
    
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
   if (popforecast==1) {  {
     free_ivector(popage,0,AGESUP);    /* Health expectancies, no variances */
     free_vector(popeffectif,0,AGESUP);    int i, j, nhstepm, hstepm, h, nstepm;
     free_vector(popcount,0,AGESUP);    int nhstepma, nstepma; /* Decreasing with age */
   }    double age, agelim, hf;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double ***p3mat;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double eip;
   fclose(ficrespop);  
 }    pstamp(ficreseij);
     fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
 /***********************************************/    fprintf(ficreseij,"# Age");
 /**************** Main Program *****************/    for(i=1; i<=nlstate;i++){
 /***********************************************/      for(j=1; j<=nlstate;j++){
         fprintf(ficreseij," e%1d%1d ",i,j);
 int main(int argc, char *argv[])      }
 {      fprintf(ficreseij," e%1d. ",i);
     }
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    fprintf(ficreseij,"\n");
   double agedeb, agefin,hf;  
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    
     if(estepm < stepm){
   double fret;      printf ("Problem %d lower than %d\n",estepm, stepm);
   double **xi,tmp,delta;    }
     else  hstepm=estepm;   
   double dum; /* Dummy variable */    /* We compute the life expectancy from trapezoids spaced every estepm months
   double ***p3mat;     * This is mainly to measure the difference between two models: for example
   int *indx;     * if stepm=24 months pijx are given only every 2 years and by summing them
   char line[MAXLINE], linepar[MAXLINE];     * we are calculating an estimate of the Life Expectancy assuming a linear 
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];     * progression in between and thus overestimating or underestimating according
   int firstobs=1, lastobs=10;     * to the curvature of the survival function. If, for the same date, we 
   int sdeb, sfin; /* Status at beginning and end */     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   int c,  h , cpt,l;     * to compare the new estimate of Life expectancy with the same linear 
   int ju,jl, mi;     * hypothesis. A more precise result, taking into account a more precise
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;     * curvature will be obtained if estepm is as small as stepm. */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;  
   int mobilav=0,popforecast=0;    /* For example we decided to compute the life expectancy with the smallest unit */
   int hstepm, nhstepm;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
   double bage, fage, age, agelim, agebase;       Look at hpijx to understand the reason of that which relies in memory size
   double ftolpl=FTOL;       and note for a fixed period like estepm months */
   double **prlim;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   double *severity;       survival function given by stepm (the optimization length). Unfortunately it
   double ***param; /* Matrix of parameters */       means that if the survival funtion is printed only each two years of age and if
   double  *p;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   double **matcov; /* Matrix of covariance */       results. So we changed our mind and took the option of the best precision.
   double ***delti3; /* Scale */    */
   double *delti; /* Scale */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   double ***eij, ***vareij;  
   double **varpl; /* Variances of prevalence limits by age */    agelim=AGESUP;
   double *epj, vepp;    /* If stepm=6 months */
   double kk1, kk2;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
        
   /* nhstepm age range expressed in number of stepm */
   char *alph[]={"a","a","b","c","d","e"}, str[4];    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
   char z[1]="c", occ;    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 #include <sys/time.h>    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 #include <time.h>  
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    for (age=bage; age<=fage; age ++){ 
        nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   /* long total_usecs;      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   struct timeval start_time, end_time;      /* if (stepm >= YEARM) hstepm=1;*/
        nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  
   getcwd(pathcd, size);      /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
   printf("\n%s",version);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   if(argc <=1){      
     printf("\nEnter the parameter file name: ");      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     scanf("%s",pathtot);      
   }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   else{      
     strcpy(pathtot,argv[1]);      printf("%d|",(int)age);fflush(stdout);
   }      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/      
   /*cygwin_split_path(pathtot,path,optionfile);      /* Computing expectancies */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      for(i=1; i<=nlstate;i++)
   /* cutv(path,optionfile,pathtot,'\\');*/        for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);            
   chdir(path);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   replace(pathc,path);  
           }
 /*-------- arguments in the command line --------*/  
       fprintf(ficreseij,"%3.0f",age );
   /* Log file */      for(i=1; i<=nlstate;i++){
   strcat(filelog, optionfilefiname);        eip=0;
   strcat(filelog,".log");    /* */        for(j=1; j<=nlstate;j++){
   if((ficlog=fopen(filelog,"w"))==NULL)    {          eip +=eij[i][j][(int)age];
     printf("Problem with logfile %s\n",filelog);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
     goto end;        }
   }        fprintf(ficreseij,"%9.4f", eip );
   fprintf(ficlog,"Log filename:%s\n",filelog);      }
   fprintf(ficlog,"\n%s",version);      fprintf(ficreseij,"\n");
   fprintf(ficlog,"\nEnter the parameter file name: ");      
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    }
   fflush(ficlog);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
   /* */    fprintf(ficlog,"\n");
   strcpy(fileres,"r");    
   strcat(fileres, optionfilefiname);  }
   strcat(fileres,".txt");    /* Other files have txt extension */  
   void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   /*---------arguments file --------*/  
   {
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    /* Covariances of health expectancies eij and of total life expectancies according
     printf("Problem with optionfile %s\n",optionfile);     to initial status i, ei. .
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);    */
     goto end;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   }    int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
   strcpy(filereso,"o");    double ***p3matp, ***p3matm, ***varhe;
   strcat(filereso,fileres);    double **dnewm,**doldm;
   if((ficparo=fopen(filereso,"w"))==NULL) {    double *xp, *xm;
     printf("Problem with Output resultfile: %s\n", filereso);    double **gp, **gm;
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);    double ***gradg, ***trgradg;
     goto end;    int theta;
   }  
     double eip, vip;
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     ungetc(c,ficpar);    xp=vector(1,npar);
     fgets(line, MAXLINE, ficpar);    xm=vector(1,npar);
     puts(line);    dnewm=matrix(1,nlstate*nlstate,1,npar);
     fputs(line,ficparo);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   }    
   ungetc(c,ficpar);    pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    fprintf(ficresstdeij,"# Age");
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    for(i=1; i<=nlstate;i++){
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      for(j=1; j<=nlstate;j++)
 while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
     ungetc(c,ficpar);      fprintf(ficresstdeij," e%1d. ",i);
     fgets(line, MAXLINE, ficpar);    }
     puts(line);    fprintf(ficresstdeij,"\n");
     fputs(line,ficparo);  
   }    pstamp(ficrescveij);
   ungetc(c,ficpar);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
      fprintf(ficrescveij,"# Age");
        for(i=1; i<=nlstate;i++)
   covar=matrix(0,NCOVMAX,1,n);      for(j=1; j<=nlstate;j++){
   cptcovn=0;        cptj= (j-1)*nlstate+i;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
   ncovmodel=2+cptcovn;            cptj2= (j2-1)*nlstate+i2;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */            if(cptj2 <= cptj)
                fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   /* Read guess parameters */          }
   /* Reads comments: lines beginning with '#' */      }
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficrescveij,"\n");
     ungetc(c,ficpar);    
     fgets(line, MAXLINE, ficpar);    if(estepm < stepm){
     puts(line);      printf ("Problem %d lower than %d\n",estepm, stepm);
     fputs(line,ficparo);    }
   }    else  hstepm=estepm;   
   ungetc(c,ficpar);    /* We compute the life expectancy from trapezoids spaced every estepm months
       * This is mainly to measure the difference between two models: for example
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);     * if stepm=24 months pijx are given only every 2 years and by summing them
     for(i=1; i <=nlstate; i++)     * we are calculating an estimate of the Life Expectancy assuming a linear 
     for(j=1; j <=nlstate+ndeath-1; j++){     * progression in between and thus overestimating or underestimating according
       fscanf(ficpar,"%1d%1d",&i1,&j1);     * to the curvature of the survival function. If, for the same date, we 
       fprintf(ficparo,"%1d%1d",i1,j1);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       if(mle==1)     * to compare the new estimate of Life expectancy with the same linear 
         printf("%1d%1d",i,j);     * hypothesis. A more precise result, taking into account a more precise
       fprintf(ficlog,"%1d%1d",i,j);     * curvature will be obtained if estepm is as small as stepm. */
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar," %lf",&param[i][j][k]);    /* For example we decided to compute the life expectancy with the smallest unit */
         if(mle==1){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           printf(" %lf",param[i][j][k]);       nhstepm is the number of hstepm from age to agelim 
           fprintf(ficlog," %lf",param[i][j][k]);       nstepm is the number of stepm from age to agelin. 
         }       Look at hpijx to understand the reason of that which relies in memory size
         else       and note for a fixed period like estepm months */
           fprintf(ficlog," %lf",param[i][j][k]);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         fprintf(ficparo," %lf",param[i][j][k]);       survival function given by stepm (the optimization length). Unfortunately it
       }       means that if the survival funtion is printed only each two years of age and if
       fscanf(ficpar,"\n");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       if(mle==1)       results. So we changed our mind and took the option of the best precision.
         printf("\n");    */
       fprintf(ficlog,"\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       fprintf(ficparo,"\n");  
     }    /* If stepm=6 months */
      /* nhstepm age range expressed in number of stepm */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
   p=param[1][1];    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
      /* if (stepm >= YEARM) hstepm=1;*/
   /* Reads comments: lines beginning with '#' */    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fgets(line, MAXLINE, ficpar);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     puts(line);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     fputs(line,ficparo);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   }    gp=matrix(0,nhstepm,1,nlstate*nlstate);
   ungetc(c,ficpar);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    for (age=bage; age<=fage; age ++){ 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   for(i=1; i <=nlstate; i++){      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     for(j=1; j <=nlstate+ndeath-1; j++){      /* if (stepm >= YEARM) hstepm=1;*/
       fscanf(ficpar,"%1d%1d",&i1,&j1);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
       printf("%1d%1d",i,j);  
       fprintf(ficparo,"%1d%1d",i1,j1);      /* If stepm=6 months */
       for(k=1; k<=ncovmodel;k++){      /* Computed by stepm unit matrices, product of hstepma matrices, stored
         fscanf(ficpar,"%le",&delti3[i][j][k]);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
         printf(" %le",delti3[i][j][k]);      
         fprintf(ficparo," %le",delti3[i][j][k]);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       }  
       fscanf(ficpar,"\n");      /* Computing  Variances of health expectancies */
       printf("\n");      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
       fprintf(ficparo,"\n");         decrease memory allocation */
     }      for(theta=1; theta <=npar; theta++){
   }        for(i=1; i<=npar; i++){ 
   delti=delti3[1][1];          xp[i] = x[i] + (i==theta ?delti[theta]:0);
            xm[i] = x[i] - (i==theta ?delti[theta]:0);
   /* Reads comments: lines beginning with '#' */        }
   while((c=getc(ficpar))=='#' && c!= EOF){        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
     ungetc(c,ficpar);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     fgets(line, MAXLINE, ficpar);    
     puts(line);        for(j=1; j<= nlstate; j++){
     fputs(line,ficparo);          for(i=1; i<=nlstate; i++){
   }            for(h=0; h<=nhstepm-1; h++){
   ungetc(c,ficpar);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
                gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   matcov=matrix(1,npar,1,npar);            }
   for(i=1; i <=npar; i++){          }
     fscanf(ficpar,"%s",&str);        }
     if(mle==1)       
       printf("%s",str);        for(ij=1; ij<= nlstate*nlstate; ij++)
     fprintf(ficlog,"%s",str);          for(h=0; h<=nhstepm-1; h++){
     fprintf(ficparo,"%s",str);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
     for(j=1; j <=i; j++){          }
       fscanf(ficpar," %le",&matcov[i][j]);      }/* End theta */
       if(mle==1){      
         printf(" %.5le",matcov[i][j]);      
         fprintf(ficlog," %.5le",matcov[i][j]);      for(h=0; h<=nhstepm-1; h++)
       }        for(j=1; j<=nlstate*nlstate;j++)
       else          for(theta=1; theta <=npar; theta++)
         fprintf(ficlog," %.5le",matcov[i][j]);            trgradg[h][j][theta]=gradg[h][theta][j];
       fprintf(ficparo," %.5le",matcov[i][j]);      
     }  
     fscanf(ficpar,"\n");       for(ij=1;ij<=nlstate*nlstate;ij++)
     if(mle==1)        for(ji=1;ji<=nlstate*nlstate;ji++)
       printf("\n");          varhe[ij][ji][(int)age] =0.;
     fprintf(ficlog,"\n");  
     fprintf(ficparo,"\n");       printf("%d|",(int)age);fflush(stdout);
   }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   for(i=1; i <=npar; i++)       for(h=0;h<=nhstepm-1;h++){
     for(j=i+1;j<=npar;j++)        for(k=0;k<=nhstepm-1;k++){
       matcov[i][j]=matcov[j][i];          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
              matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   if(mle==1)          for(ij=1;ij<=nlstate*nlstate;ij++)
     printf("\n");            for(ji=1;ji<=nlstate*nlstate;ji++)
   fprintf(ficlog,"\n");              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
     /*-------- Rewriting paramater file ----------*/  
      strcpy(rfileres,"r");    /* "Rparameterfile */      /* Computing expectancies */
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
      strcat(rfileres,".");    /* */      for(i=1; i<=nlstate;i++)
      strcat(rfileres,optionfilext);    /* Other files have txt extension */        for(j=1; j<=nlstate;j++)
     if((ficres =fopen(rfileres,"w"))==NULL) {          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       printf("Problem writing new parameter file: %s\n", fileres);goto end;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;            
     }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     fprintf(ficres,"#%s\n",version);  
              }
     /*-------- data file ----------*/  
     if((fic=fopen(datafile,"r"))==NULL)    {      fprintf(ficresstdeij,"%3.0f",age );
       printf("Problem with datafile: %s\n", datafile);goto end;      for(i=1; i<=nlstate;i++){
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;        eip=0.;
     }        vip=0.;
         for(j=1; j<=nlstate;j++){
     n= lastobs;          eip += eij[i][j][(int)age];
     severity = vector(1,maxwav);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
     outcome=imatrix(1,maxwav+1,1,n);            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
     num=ivector(1,n);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
     moisnais=vector(1,n);        }
     annais=vector(1,n);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
     moisdc=vector(1,n);      }
     andc=vector(1,n);      fprintf(ficresstdeij,"\n");
     agedc=vector(1,n);  
     cod=ivector(1,n);      fprintf(ficrescveij,"%3.0f",age );
     weight=vector(1,n);      for(i=1; i<=nlstate;i++)
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        for(j=1; j<=nlstate;j++){
     mint=matrix(1,maxwav,1,n);          cptj= (j-1)*nlstate+i;
     anint=matrix(1,maxwav,1,n);          for(i2=1; i2<=nlstate;i2++)
     s=imatrix(1,maxwav+1,1,n);            for(j2=1; j2<=nlstate;j2++){
     adl=imatrix(1,maxwav+1,1,n);                  cptj2= (j2-1)*nlstate+i2;
     tab=ivector(1,NCOVMAX);              if(cptj2 <= cptj)
     ncodemax=ivector(1,8);                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
     i=1;        }
     while (fgets(line, MAXLINE, fic) != NULL)    {      fprintf(ficrescveij,"\n");
       if ((i >= firstobs) && (i <=lastobs)) {     
            }
         for (j=maxwav;j>=1;j--){    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
           strcpy(line,stra);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            printf("\n");
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficlog,"\n");
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  
     free_vector(xm,1,npar);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    free_vector(xp,1,npar);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
         for (j=ncovcol;j>=1;j--){  }
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }  /************ Variance ******************/
         num[i]=atol(stra);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
          {
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    /* Variance of health expectancies */
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
         i=i+1;    /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
       }    
     }    int movingaverage();
     /* printf("ii=%d", ij);    double **dnewm,**doldm;
        scanf("%d",i);*/    double **dnewmp,**doldmp;
   imx=i-1; /* Number of individuals */    int i, j, nhstepm, hstepm, h, nstepm ;
     int k;
   /* for (i=1; i<=imx; i++){    double *xp;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    double **gp, **gm;  /* for var eij */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    double ***gradg, ***trgradg; /*for var eij */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    double **gradgp, **trgradgp; /* for var p point j */
     }*/    double *gpp, *gmp; /* for var p point j */
    /*  for (i=1; i<=imx; i++){    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
      if (s[4][i]==9)  s[4][i]=-1;    double ***p3mat;
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    double age,agelim, hf;
      double ***mobaverage;
      int theta;
   /* Calculation of the number of parameter from char model*/    char digit[4];
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */    char digitp[25];
   Tprod=ivector(1,15);  
   Tvaraff=ivector(1,15);    char fileresprobmorprev[FILENAMELENGTH];
   Tvard=imatrix(1,15,1,2);  
   Tage=ivector(1,15);          if(popbased==1){
          if(mobilav!=0)
   if (strlen(model) >1){        strcpy(digitp,"-populbased-mobilav-");
     j=0, j1=0, k1=1, k2=1;      else strcpy(digitp,"-populbased-nomobil-");
     j=nbocc(model,'+');    }
     j1=nbocc(model,'*');    else 
     cptcovn=j+1;      strcpy(digitp,"-stablbased-");
     cptcovprod=j1;  
        if (mobilav!=0) {
     strcpy(modelsav,model);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
       printf("Error. Non available option model=%s ",model);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       fprintf(ficlog,"Error. Non available option model=%s ",model);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       goto end;      }
     }    }
      
     for(i=(j+1); i>=1;i--){    strcpy(fileresprobmorprev,"prmorprev"); 
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */    sprintf(digit,"%-d",ij);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       /*scanf("%d",i);*/    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
       if (strchr(strb,'*')) {  /* Model includes a product */    strcat(fileresprobmorprev,fileres);
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
         if (strcmp(strc,"age")==0) { /* Vn*age */      printf("Problem with resultfile: %s\n", fileresprobmorprev);
           cptcovprod--;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
           cutv(strb,stre,strd,'V');    }
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           cptcovage++;   
             Tage[cptcovage]=i;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
             /*printf("stre=%s ", stre);*/    pstamp(ficresprobmorprev);
         }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
         else if (strcmp(strd,"age")==0) { /* or age*Vn */    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
           cptcovprod--;    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           cutv(strb,stre,strc,'V');      fprintf(ficresprobmorprev," p.%-d SE",j);
           Tvar[i]=atoi(stre);      for(i=1; i<=nlstate;i++)
           cptcovage++;        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
           Tage[cptcovage]=i;    }  
         }    fprintf(ficresprobmorprev,"\n");
         else {  /* Age is not in the model */    fprintf(ficgp,"\n# Routine varevsij");
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
           Tvar[i]=ncovcol+k1;    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
           Tprod[k1]=i;  /*   } */
           Tvard[k1][1]=atoi(strc); /* m*/    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           Tvard[k1][2]=atoi(stre); /* n */    pstamp(ficresvij);
           Tvar[cptcovn+k2]=Tvard[k1][1];    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    if(popbased==1)
           for (k=1; k<=lastobs;k++)      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    else
           k1++;      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
           k2=k2+2;    fprintf(ficresvij,"# Age");
         }    for(i=1; i<=nlstate;i++)
       }      for(j=1; j<=nlstate;j++)
       else { /* no more sum */        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    fprintf(ficresvij,"\n");
        /*  scanf("%d",i);*/  
       cutv(strd,strc,strb,'V');    xp=vector(1,npar);
       Tvar[i]=atoi(strc);    dnewm=matrix(1,nlstate,1,npar);
       }    doldm=matrix(1,nlstate,1,nlstate);
       strcpy(modelsav,stra);      dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         scanf("%d",i);*/  
     } /* end of loop + */    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   } /* end model */    gpp=vector(nlstate+1,nlstate+ndeath);
      gmp=vector(nlstate+1,nlstate+ndeath);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   printf("cptcovprod=%d ", cptcovprod);    
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    if(estepm < stepm){
   scanf("%d ",i);*/      printf ("Problem %d lower than %d\n",estepm, stepm);
     fclose(fic);    }
     else  hstepm=estepm;   
     /*  if(mle==1){*/    /* For example we decided to compute the life expectancy with the smallest unit */
     if (weightopt != 1) { /* Maximisation without weights*/    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       for(i=1;i<=n;i++) weight[i]=1.0;       nhstepm is the number of hstepm from age to agelim 
     }       nstepm is the number of stepm from age to agelin. 
     /*-calculation of age at interview from date of interview and age at death -*/       Look at function hpijx to understand why (it is linked to memory size questions) */
     agev=matrix(1,maxwav,1,imx);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
     for (i=1; i<=imx; i++) {       means that if the survival funtion is printed every two years of age and if
       for(m=2; (m<= maxwav); m++) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){       results. So we changed our mind and took the option of the best precision.
          anint[m][i]=9999;    */
          s[m][i]=-1;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
        }    agelim = AGESUP;
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       }      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for (i=1; i<=imx; i++)  {      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      gp=matrix(0,nhstepm,1,nlstate);
       for(m=1; (m<= maxwav); m++){      gm=matrix(0,nhstepm,1,nlstate);
         if(s[m][i] >0){  
           if (s[m][i] >= nlstate+1) {  
             if(agedc[i]>0)      for(theta=1; theta <=npar; theta++){
               if(moisdc[i]!=99 && andc[i]!=9999)        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
                 agev[m][i]=agedc[i];          xp[i] = x[i] + (i==theta ?delti[theta]:0);
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/        }
            else {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
               if (andc[i]!=9999){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);        if (popbased==1) {
               agev[m][i]=-1;          if(mobilav ==0){
               }            for(i=1; i<=nlstate;i++)
             }              prlim[i][i]=probs[(int)age][i][ij];
           }          }else{ /* mobilav */ 
           else if(s[m][i] !=9){ /* Should no more exist */            for(i=1; i<=nlstate;i++)
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);              prlim[i][i]=mobaverage[(int)age][i][ij];
             if(mint[m][i]==99 || anint[m][i]==9999)          }
               agev[m][i]=1;        }
             else if(agev[m][i] <agemin){    
               agemin=agev[m][i];        for(j=1; j<= nlstate; j++){
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          for(h=0; h<=nhstepm; h++){
             }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
             else if(agev[m][i] >agemax){              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
               agemax=agev[m][i];          }
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        }
             }        /* This for computing probability of death (h=1 means
             /*agev[m][i]=anint[m][i]-annais[i];*/           computed over hstepm matrices product = hstepm*stepm months) 
             /*   agev[m][i] = age[i]+2*m;*/           as a weighted average of prlim.
           }        */
           else { /* =9 */        for(j=nlstate+1;j<=nlstate+ndeath;j++){
             agev[m][i]=1;          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             s[m][i]=-1;            gpp[j] += prlim[i][i]*p3mat[i][j][1];
           }        }    
         }        /* end probability of death */
         else /*= 0 Unknown */  
           agev[m][i]=1;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
       }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
            hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     for (i=1; i<=imx; i++)  {   
       for(m=1; (m<= maxwav); m++){        if (popbased==1) {
         if (s[m][i] > (nlstate+ndeath)) {          if(mobilav ==0){
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);              for(i=1; i<=nlstate;i++)
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);                prlim[i][i]=probs[(int)age][i][ij];
           goto end;          }else{ /* mobilav */ 
         }            for(i=1; i<=nlstate;i++)
       }              prlim[i][i]=mobaverage[(int)age][i][ij];
     }          }
         }
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
     free_vector(severity,1,maxwav);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     free_imatrix(outcome,1,maxwav+1,1,n);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     free_vector(moisnais,1,n);          }
     free_vector(annais,1,n);        }
     /* free_matrix(mint,1,maxwav,1,n);        /* This for computing probability of death (h=1 means
        free_matrix(anint,1,maxwav,1,n);*/           computed over hstepm matrices product = hstepm*stepm months) 
     free_vector(moisdc,1,n);           as a weighted average of prlim.
     free_vector(andc,1,n);        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
              for(i=1,gmp[j]=0.; i<= nlstate; i++)
     wav=ivector(1,imx);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        }    
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        /* end probability of death */
      
     /* Concatenates waves */        for(j=1; j<= nlstate; j++) /* vareij */
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
       Tcode=ivector(1,100);  
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
       ncodemax[1]=1;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        }
        
    codtab=imatrix(1,100,1,10);      } /* End theta */
    h=0;  
    m=pow(2,cptcoveff);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
    
    for(k=1;k<=cptcoveff; k++){      for(h=0; h<=nhstepm; h++) /* veij */
      for(i=1; i <=(m/pow(2,k));i++){        for(j=1; j<=nlstate;j++)
        for(j=1; j <= ncodemax[k]; j++){          for(theta=1; theta <=npar; theta++)
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){            trgradg[h][j][theta]=gradg[h][theta][j];
            h++;  
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/        for(theta=1; theta <=npar; theta++)
          }          trgradgp[j][theta]=gradgp[theta][j];
        }    
      }  
    }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);      for(i=1;i<=nlstate;i++)
       codtab[1][2]=1;codtab[2][2]=2; */        for(j=1;j<=nlstate;j++)
    /* for(i=1; i <=m ;i++){          vareij[i][j][(int)age] =0.;
       for(k=1; k <=cptcovn; k++){  
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);      for(h=0;h<=nhstepm;h++){
       }        for(k=0;k<=nhstepm;k++){
       printf("\n");          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       scanf("%d",i);*/          for(i=1;i<=nlstate;i++)
                for(j=1;j<=nlstate;j++)
    /* Calculates basic frequencies. Computes observed prevalence at single age              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
        and prints on file fileres'p'. */        }
       }
        
          /* pptj */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for(j=nlstate+1;j<=nlstate+ndeath;j++)
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          varppt[j][i]=doldmp[j][i];
            /* end ppptj */
     /* For Powell, parameters are in a vector p[] starting at p[1]      /*  x centered again */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
     if(mle==1){      if (popbased==1) {
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        if(mobilav ==0){
     }          for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
     /*--------- results files --------------*/        }else{ /* mobilav */ 
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);          for(i=1; i<=nlstate;i++)
              prlim[i][i]=mobaverage[(int)age][i][ij];
         }
    jk=1;      }
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");               
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      /* This for computing probability of death (h=1 means
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
    for(i=1,jk=1; i <=nlstate; i++){         as a weighted average of prlim.
      for(k=1; k <=(nlstate+ndeath); k++){      */
        if (k != i)      for(j=nlstate+1;j<=nlstate+ndeath;j++){
          {        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
            printf("%d%d ",i,k);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
            fprintf(ficlog,"%d%d ",i,k);      }    
            fprintf(ficres,"%1d%1d ",i,k);      /* end probability of death */
            for(j=1; j <=ncovmodel; j++){  
              printf("%f ",p[jk]);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
              fprintf(ficlog,"%f ",p[jk]);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
              fprintf(ficres,"%f ",p[jk]);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
              jk++;        for(i=1; i<=nlstate;i++){
            }          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
            printf("\n");        }
            fprintf(ficlog,"\n");      } 
            fprintf(ficres,"\n");      fprintf(ficresprobmorprev,"\n");
          }  
      }      fprintf(ficresvij,"%.0f ",age );
    }      for(i=1; i<=nlstate;i++)
    if(mle==1){        for(j=1; j<=nlstate;j++){
      /* Computing hessian and covariance matrix */          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
      ftolhess=ftol; /* Usually correct */        }
      hesscov(matcov, p, npar, delti, ftolhess, func);      fprintf(ficresvij,"\n");
    }      free_matrix(gp,0,nhstepm,1,nlstate);
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      free_matrix(gm,0,nhstepm,1,nlstate);
    printf("# Scales (for hessian or gradient estimation)\n");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
    for(i=1,jk=1; i <=nlstate; i++){      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      for(j=1; j <=nlstate+ndeath; j++){    } /* End age */
        if (j!=i) {    free_vector(gpp,nlstate+1,nlstate+ndeath);
          fprintf(ficres,"%1d%1d",i,j);    free_vector(gmp,nlstate+1,nlstate+ndeath);
          printf("%1d%1d",i,j);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
          fprintf(ficlog,"%1d%1d",i,j);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
          for(k=1; k<=ncovmodel;k++){    fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
            printf(" %.5e",delti[jk]);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
            fprintf(ficlog," %.5e",delti[jk]);    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
            fprintf(ficres," %.5e",delti[jk]);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
            jk++;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
          }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
          printf("\n");    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
          fprintf(ficlog,"\n");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
          fprintf(ficres,"\n");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
        }    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
      }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
    }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
      */
    k=1;  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
    if(mle==1)  
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    free_vector(xp,1,npar);
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    free_matrix(doldm,1,nlstate,1,nlstate);
    for(i=1;i<=npar;i++){    free_matrix(dnewm,1,nlstate,1,npar);
      /*  if (k>nlstate) k=1;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
          i1=(i-1)/(ncovmodel*nlstate)+1;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
          printf("%s%d%d",alph[k],i1,tab[i]);*/    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      fprintf(ficres,"%3d",i);    fclose(ficresprobmorprev);
      if(mle==1)    fflush(ficgp);
        printf("%3d",i);    fflush(fichtm); 
      fprintf(ficlog,"%3d",i);  }  /* end varevsij */
      for(j=1; j<=i;j++){  
        fprintf(ficres," %.5e",matcov[i][j]);  /************ Variance of prevlim ******************/
        if(mle==1)  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
          printf(" %.5e",matcov[i][j]);  {
        fprintf(ficlog," %.5e",matcov[i][j]);    /* Variance of prevalence limit */
      }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
      fprintf(ficres,"\n");  
      if(mle==1)    double **dnewm,**doldm;
        printf("\n");    int i, j, nhstepm, hstepm;
      fprintf(ficlog,"\n");    double *xp;
      k++;    double *gp, *gm;
    }    double **gradg, **trgradg;
        double age,agelim;
    while((c=getc(ficpar))=='#' && c!= EOF){    int theta;
      ungetc(c,ficpar);    
      fgets(line, MAXLINE, ficpar);    pstamp(ficresvpl);
      puts(line);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
      fputs(line,ficparo);    fprintf(ficresvpl,"# Age");
    }    for(i=1; i<=nlstate;i++)
    ungetc(c,ficpar);        fprintf(ficresvpl," %1d-%1d",i,i);
    estepm=0;    fprintf(ficresvpl,"\n");
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  
    if (estepm==0 || estepm < stepm) estepm=stepm;    xp=vector(1,npar);
    if (fage <= 2) {    dnewm=matrix(1,nlstate,1,npar);
      bage = ageminpar;    doldm=matrix(1,nlstate,1,nlstate);
      fage = agemaxpar;    
    }    hstepm=1*YEARM; /* Every year of age */
        hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    agelim = AGESUP;
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
          if (stepm >= YEARM) hstepm=1;
    while((c=getc(ficpar))=='#' && c!= EOF){      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
      ungetc(c,ficpar);      gradg=matrix(1,npar,1,nlstate);
      fgets(line, MAXLINE, ficpar);      gp=vector(1,nlstate);
      puts(line);      gm=vector(1,nlstate);
      fputs(line,ficparo);  
    }      for(theta=1; theta <=npar; theta++){
    ungetc(c,ficpar);        for(i=1; i<=npar; i++){ /* Computes gradient */
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);        }
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        for(i=1;i<=nlstate;i++)
              gp[i] = prlim[i][i];
    while((c=getc(ficpar))=='#' && c!= EOF){      
      ungetc(c,ficpar);        for(i=1; i<=npar; i++) /* Computes gradient */
      fgets(line, MAXLINE, ficpar);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
      puts(line);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      fputs(line,ficparo);        for(i=1;i<=nlstate;i++)
    }          gm[i] = prlim[i][i];
    ungetc(c,ficpar);  
          for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
    dateprev1=anprev1+mprev1/12.+jprev1/365.;      } /* End theta */
    dateprev2=anprev2+mprev2/12.+jprev2/365.;  
       trgradg =matrix(1,nlstate,1,npar);
   fscanf(ficpar,"pop_based=%d\n",&popbased);  
   fprintf(ficparo,"pop_based=%d\n",popbased);        for(j=1; j<=nlstate;j++)
   fprintf(ficres,"pop_based=%d\n",popbased);          for(theta=1; theta <=npar; theta++)
            trgradg[j][theta]=gradg[theta][j];
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);      for(i=1;i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);        varpl[i][(int)age] =0.;
     puts(line);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     fputs(line,ficparo);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   }      for(i=1;i<=nlstate;i++)
   ungetc(c,ficpar);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);      fprintf(ficresvpl,"%.0f ",age );
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      for(i=1; i<=nlstate;i++)
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
 while((c=getc(ficpar))=='#' && c!= EOF){      free_vector(gm,1,nlstate);
     ungetc(c,ficpar);      free_matrix(gradg,1,npar,1,nlstate);
     fgets(line, MAXLINE, ficpar);      free_matrix(trgradg,1,nlstate,1,npar);
     puts(line);    } /* End age */
     fputs(line,ficparo);  
   }    free_vector(xp,1,npar);
   ungetc(c,ficpar);    free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  }
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
   /************ Variance of one-step probabilities  ******************/
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
 /*------------ gnuplot -------------*/    int i, j=0,  k1, l1, tj;
   strcpy(optionfilegnuplot,optionfilefiname);    int k2, l2, j1,  z1;
   strcat(optionfilegnuplot,".gp");    int k=0, l;
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    int first=1, first1, first2;
     printf("Problem with file %s",optionfilegnuplot);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   }    double **dnewm,**doldm;
   fclose(ficgp);    double *xp;
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);    double *gp, *gm;
 /*--------- index.htm --------*/    double **gradg, **trgradg;
     double **mu;
   strcpy(optionfilehtm,optionfile);    double age, cov[NCOVMAX+1];
   strcat(optionfilehtm,".htm");    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    int theta;
     printf("Problem with %s \n",optionfilehtm), exit(0);    char fileresprob[FILENAMELENGTH];
   }    char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    double ***varpij;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n  
 \n    strcpy(fileresprob,"prob"); 
 Total number of observations=%d <br>\n    strcat(fileresprob,fileres);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
 <hr  size=\"2\" color=\"#EC5E5E\">      printf("Problem with resultfile: %s\n", fileresprob);
  <ul><li><h4>Parameter files</h4>\n      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    }
  - Log file of the run: <a href=\"%s\">%s</a><br>\n    strcpy(fileresprobcov,"probcov"); 
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);    strcat(fileresprobcov,fileres);
   fclose(fichtm);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
      }
 /*------------ free_vector  -------------*/    strcpy(fileresprobcor,"probcor"); 
  chdir(path);    strcat(fileresprobcor,fileres);
      if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
  free_ivector(wav,1,imx);      printf("Problem with resultfile: %s\n", fileresprobcor);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      }
  free_ivector(num,1,n);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
  free_vector(agedc,1,n);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
  fclose(ficparo);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
  fclose(ficres);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
   /*--------------- Prevalence limit --------------*/    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
      fprintf(ficresprob,"# Age");
   strcpy(filerespl,"pl");    pstamp(ficresprobcov);
   strcat(filerespl,fileres);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    fprintf(ficresprobcov,"# Age");
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    pstamp(ficresprobcor);
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   }    fprintf(ficresprobcor,"# Age");
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);  
   fprintf(ficrespl,"#Prevalence limit\n");    for(i=1; i<=nlstate;i++)
   fprintf(ficrespl,"#Age ");      for(j=1; j<=(nlstate+ndeath);j++){
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   fprintf(ficrespl,"\n");        fprintf(ficresprobcov," p%1d-%1d ",i,j);
          fprintf(ficresprobcor," p%1d-%1d ",i,j);
   prlim=matrix(1,nlstate,1,nlstate);      }  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   /* fprintf(ficresprob,"\n");
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficresprobcov,"\n");
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficresprobcor,"\n");
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    xp=vector(1,npar);
   k=0;    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   agebase=ageminpar;    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   agelim=agemaxpar;    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   ftolpl=1.e-10;    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   i1=cptcoveff;    first=1;
   if (cptcovn < 1){i1=1;}    fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(fichtm,"\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
         k=k+1;    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
         fprintf(ficrespl,"\n#******");    file %s<br>\n",optionfilehtmcov);
         printf("\n#******");    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
         fprintf(ficlog,"\n#******");  and drawn. It helps understanding how is the covariance between two incidences.\
         for(j=1;j<=cptcoveff;j++) {   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
         }  standard deviations wide on each axis. <br>\
         fprintf(ficrespl,"******\n");   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
         printf("******\n");   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
         fprintf(ficlog,"******\n");  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
          
         for (age=agebase; age<=agelim; age++){    cov[1]=1;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    /* tj=cptcoveff; */
           fprintf(ficrespl,"%.0f",age );    tj = (int) pow(2,cptcoveff);
           for(i=1; i<=nlstate;i++)    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
           fprintf(ficrespl," %.5f", prlim[i][i]);    j1=0;
           fprintf(ficrespl,"\n");    for(j1=1; j1<=tj;j1++){
         }      /*for(i1=1; i1<=ncodemax[t];i1++){ */
       }      /*j1++;*/
     }        if  (cptcovn>0) {
   fclose(ficrespl);          fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /*------------- h Pij x at various ages ------------*/          fprintf(ficresprob, "**********\n#\n");
            fprintf(ficresprobcov, "\n#********** Variable "); 
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {          fprintf(ficresprobcov, "**********\n#\n");
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;          fprintf(ficgp, "\n#********** Variable "); 
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   printf("Computing pij: result on file '%s' \n", filerespij);          fprintf(ficgp, "**********\n#\n");
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);          
            
   stepsize=(int) (stepm+YEARM-1)/YEARM;          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   /*if (stepm<=24) stepsize=2;*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   agelim=AGESUP;          
   hstepm=stepsize*YEARM; /* Every year of age */          fprintf(ficresprobcor, "\n#********** Variable ");    
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
   /* hstepm=1;   aff par mois*/        }
         
   k=0;        gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   for(cptcov=1;cptcov<=i1;cptcov++){        trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        gp=vector(1,(nlstate)*(nlstate+ndeath));
       k=k+1;        gm=vector(1,(nlstate)*(nlstate+ndeath));
         fprintf(ficrespij,"\n#****** ");        for (age=bage; age<=fage; age ++){ 
         for(j=1;j<=cptcoveff;j++)          cov[2]=age;
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for (k=1; k<=cptcovn;k++) {
         fprintf(ficrespij,"******\n");            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                                   * 1  1 1 1 1
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                                                           * 2  2 1 1 1
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                                                           * 3  1 2 1 1
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                                                           */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           /*      nhstepm=nhstepm*YEARM; aff par mois*/          }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (k=1; k<=cptcovprod;k++)
           oldm=oldms;savm=savms;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            
           fprintf(ficrespij,"# Age");      
           for(i=1; i<=nlstate;i++)          for(theta=1; theta <=npar; theta++){
             for(j=1; j<=nlstate+ndeath;j++)            for(i=1; i<=npar; i++)
               fprintf(ficrespij," %1d-%1d",i,j);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
           fprintf(ficrespij,"\n");            
            for (h=0; h<=nhstepm; h++){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );            
             for(i=1; i<=nlstate;i++)            k=0;
               for(j=1; j<=nlstate+ndeath;j++)            for(i=1; i<= (nlstate); i++){
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);              for(j=1; j<=(nlstate+ndeath);j++){
             fprintf(ficrespij,"\n");                k=k+1;
              }                gp[k]=pmmij[i][j];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              }
           fprintf(ficrespij,"\n");            }
         }            
     }            for(i=1; i<=npar; i++)
   }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
   fclose(ficrespij);            for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
   /*---------- Forecasting ------------------*/                gm[k]=pmmij[i][j];
   if((stepm == 1) && (strcmp(model,".")==0)){              }
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);            }
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);       
   }            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   else{              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     erreur=108;          }
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);  
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   }            for(theta=1; theta <=npar; theta++)
                trgradg[j][theta]=gradg[theta][j];
           
   /*---------- Health expectancies and variances ------------*/          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   strcpy(filerest,"t");  
   strcat(filerest,fileres);          pmij(pmmij,cov,ncovmodel,x,nlstate);
   if((ficrest=fopen(filerest,"w"))==NULL) {          
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;          k=0;
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;          for(i=1; i<=(nlstate); i++){
   }            for(j=1; j<=(nlstate+ndeath);j++){
   printf("Computing Total LEs with variances: file '%s' \n", filerest);              k=k+1;
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);              mu[k][(int) age]=pmmij[i][j];
             }
           }
   strcpy(filerese,"e");          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   strcat(filerese,fileres);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   if((ficreseij=fopen(filerese,"w"))==NULL) {              varpij[i][j][(int)age] = doldm[i][j];
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          /*printf("\n%d ",(int)age);
   }            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   strcpy(fileresv,"v");  
   strcat(fileresv,fileres);          fprintf(ficresprob,"\n%d ",(int)age);
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          fprintf(ficresprobcov,"\n%d ",(int)age);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          fprintf(ficresprobcor,"\n%d ",(int)age);
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);  
   }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   calagedate=-1;            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
   k=0;          i=0;
   for(cptcov=1;cptcov<=i1;cptcov++){          for (k=1; k<=(nlstate);k++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            for (l=1; l<=(nlstate+ndeath);l++){ 
       k=k+1;              i++;
       fprintf(ficrest,"\n#****** ");              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
       for(j=1;j<=cptcoveff;j++)              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              for (j=1; j<=i;j++){
       fprintf(ficrest,"******\n");                /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
       fprintf(ficreseij,"\n#****** ");                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
       for(j=1;j<=cptcoveff;j++)              }
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            }
       fprintf(ficreseij,"******\n");          }/* end of loop for state */
         } /* end of loop for age */
       fprintf(ficresvij,"\n#****** ");        free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
       for(j=1;j<=cptcoveff;j++)        free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       fprintf(ficresvij,"******\n");        free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        /* Confidence intervalle of pij  */
       oldm=oldms;savm=savms;        /*
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);            fprintf(ficgp,"\nunset parametric;unset label");
            fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
       oldm=oldms;savm=savms;          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
       if(popbased==1){          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
        }        */
   
          /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        first1=1;first2=2;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);        for (k2=1; k2<=(nlstate);k2++){
       fprintf(ficrest,"\n");          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
       epj=vector(1,nlstate+1);            j=(k2-1)*(nlstate+ndeath)+l2;
       for(age=bage; age <=fage ;age++){            for (k1=1; k1<=(nlstate);k1++){
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
         if (popbased==1) {                if(l1==k1) continue;
           for(i=1; i<=nlstate;i++)                i=(k1-1)*(nlstate+ndeath)+l1;
             prlim[i][i]=probs[(int)age][i][k];                if(i<=j) continue;
         }                for (age=bage; age<=fage; age ++){ 
                          if ((int)age %5==0){
         fprintf(ficrest," %4.0f",age);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
             epj[j] += prlim[i][i]*eij[i][j][(int)age];                    mu1=mu[i][(int) age]/stepm*YEARM ;
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/                    mu2=mu[j][(int) age]/stepm*YEARM;
           }                    c12=cv12/sqrt(v1*v2);
           epj[nlstate+1] +=epj[j];                    /* Computing eigen value of matrix of covariance */
         }                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         for(i=1, vepp=0.;i <=nlstate;i++)                    if ((lc2 <0) || (lc1 <0) ){
           for(j=1;j <=nlstate;j++)                      if(first2==1){
             vepp += vareij[i][j][(int)age];                        first1=0;
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));                      printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
         for(j=1;j <=nlstate;j++){                      }
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));                      fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
         }                      /* lc1=fabs(lc1); */ /* If we want to have them positive */
         fprintf(ficrest,"\n");                      /* lc2=fabs(lc2); */
       }                    }
     }  
   }                    /* Eigen vectors */
 free_matrix(mint,1,maxwav,1,n);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);                    /*v21=sqrt(1.-v11*v11); *//* error */
     free_vector(weight,1,n);                    v21=(lc1-v1)/cv12*v11;
   fclose(ficreseij);                    v12=-v21;
   fclose(ficresvij);                    v22=v11;
   fclose(ficrest);                    tnalp=v21/v11;
   fclose(ficpar);                    if(first1==1){
   free_vector(epj,1,nlstate+1);                      first1=0;
                        printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   /*------- Variance limit prevalence------*/                      }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   strcpy(fileresvpl,"vpl");                    /*printf(fignu*/
   strcat(fileresvpl,fileres);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);                    if(first==1){
     exit(0);                      first=0;
   }                      fprintf(ficgp,"\nset parametric;unset label");
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
   k=0;                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   for(cptcov=1;cptcov<=i1;cptcov++){   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
       k=k+1;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
       fprintf(ficresvpl,"\n#****** ");                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       for(j=1;j<=cptcoveff;j++)                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
       fprintf(ficresvpl,"******\n");                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                            fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       oldm=oldms;savm=savms;                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
  }                    }else{
                       first=0;
   fclose(ficresvpl);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   /*---------- End : free ----------------*/                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                                mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);                    }/* if first */
                    } /* age mod 5 */
                  } /* end loop age */
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);                first=1;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);              } /*l12 */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);            } /* k12 */
            } /*l1 */
   free_matrix(matcov,1,npar,1,npar);        }/* k1 */
   free_vector(delti,1,npar);        /* } */ /* loop covariates */
   free_matrix(agev,1,maxwav,1,imx);    }
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   fprintf(fichtm,"\n</body>");    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   fclose(fichtm);    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
   fclose(ficgp);    free_vector(xp,1,npar);
      fclose(ficresprob);
     fclose(ficresprobcov);
   if(erreur >0){    fclose(ficresprobcor);
     printf("End of Imach with error or warning %d\n",erreur);    fflush(ficgp);
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);    fflush(fichtmcov);
   }else{  }
    printf("End of Imach\n");  
    fprintf(ficlog,"End of Imach\n");  
   }  /******************* Printing html file ***********/
   printf("See log file on %s\n",filelog);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   fclose(ficlog);                    int lastpass, int stepm, int weightopt, char model[],\
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                      int popforecast, int estepm ,\
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/                    double jprev1, double mprev1,double anprev1, \
   /*printf("Total time was %d uSec.\n", total_usecs);*/                    double jprev2, double mprev2,double anprev2){
   /*------ End -----------*/    int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
  end:     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
 #ifdef windows  </ul>");
   /* chdir(pathcd);*/     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
 #endif   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
  /*system("wgnuplot graph.plt");*/             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
  /*system("../gp37mgw/wgnuplot graph.plt");*/     fprintf(fichtm,"\
  /*system("cd ../gp37mgw");*/   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
  strcpy(plotcmd,GNUPLOTPROGRAM);     fprintf(fichtm,"\
  strcat(plotcmd," ");   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
  strcat(plotcmd,optionfilegnuplot);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
  system(plotcmd);     fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
 #ifdef windows     <a href=\"%s\">%s</a> <br>\n",
   while (z[0] != 'q') {             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
     /* chdir(path); */     fprintf(fichtm,"\
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");   - Population projections by age and states: \
     scanf("%s",z);     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
     if (z[0] == 'c') system("./imach");  
     else if (z[0] == 'e') system(optionfilehtm);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
     else if (z[0] == 'g') system(plotcmd);  
     else if (z[0] == 'q') exit(0);   m=pow(2,cptcoveff);
   }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
 #endif  
 }   jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   void syscompilerinfo()
    {
      /* #include "syscompilerinfo.h"*/
      /* #include <gnu/libc-version.h> */ /* Only on gnu */
   
      printf("Compiled with:");fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(". ");fprintf(ficlog,". ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
   #elif __unix__ // all unices, not all compilers
       // Unix
   #elif __linux__
       // linux
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though...
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   #include <stdint.h>
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit."); /* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
     printf(" 64-bit.");/* 64-bit */
   #else
    printf(" wtf-bit."); /* wtf */
   #endif
   
   struct utsname sysInfo;
   
      if (uname(&sysInfo) != -1) {
        printf(" %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
        fprintf(ficlog," %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf("GNU C version %d.\n", __GNUC_VERSION__);
      fprintf(ficlog, "GNU C version %d.\n", __GNUC_VERSION__);
   #endif
   #if defined(_MSC_VER)
      printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);
      fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);
   #endif
      
     /* printf("GNU libc version: %s\n", gnu_get_libc_version()); */
   
    }
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt;
     int jl;
     int i1, j1, jk, stepsize;
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo();
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.50  
changed lines
  Added in v.1.169


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>