Diff for /imach/src/imach.c between versions 1.50 and 1.212

version 1.50, 2002/06/26 23:25:02 version 1.212, 2015/11/21 12:47:24
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.212  2015/11/21 12:47:24  brouard
      Summary: minor typo
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.211  2015/11/21 12:41:11  brouard
   first survey ("cross") where individuals from different ages are    Summary: 0.98r3 with some graph of projected cross-sectional
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Author: Nicolas Brouard
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.210  2015/11/18 17:41:20  brouard
   computed from the time spent in each health state according to a    Summary: Start working on projected prevalences
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.209  2015/11/17 22:12:03  brouard
   simplest model is the multinomial logistic model where pij is the    Summary: Adding ftolpl parameter
   probability to be observed in state j at the second wave    Author: N Brouard
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    We had difficulties to get smoothed confidence intervals. It was due
   'age' is age and 'sex' is a covariate. If you want to have a more    to the period prevalence which wasn't computed accurately. The inner
   complex model than "constant and age", you should modify the program    parameter ftolpl is now an outer parameter of the .imach parameter
   where the markup *Covariates have to be included here again* invites    file after estepm. If ftolpl is small 1.e-4 and estepm too,
   you to do it.  More covariates you add, slower the    computation are long.
   convergence.  
     Revision 1.208  2015/11/17 14:31:57  brouard
   The advantage of this computer programme, compared to a simple    Summary: temporary
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.207  2015/10/27 17:36:57  brouard
   intermediate interview, the information is lost, but taken into    *** empty log message ***
   account using an interpolation or extrapolation.    
     Revision 1.206  2015/10/24 07:14:11  brouard
   hPijx is the probability to be observed in state i at age x+h    *** empty log message ***
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.205  2015/10/23 15:50:53  brouard
   states. This elementary transition (by month or quarter trimester,    Summary: 0.98r3 some clarification for graphs on likelihood contributions
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.204  2015/10/01 16:20:26  brouard
   and the contribution of each individual to the likelihood is simply    Summary: Some new graphs of contribution to likelihood
   hPijx.  
     Revision 1.203  2015/09/30 17:45:14  brouard
   Also this programme outputs the covariance matrix of the parameters but also    Summary: looking at better estimation of the hessian
   of the life expectancies. It also computes the prevalence limits.  
      Also a better criteria for convergence to the period prevalence And
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    therefore adding the number of years needed to converge. (The
            Institut national d'études démographiques, Paris.    prevalence in any alive state shold sum to one
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.202  2015/09/22 19:45:16  brouard
   It is copyrighted identically to a GNU software product, ie programme and    Summary: Adding some overall graph on contribution to likelihood. Might change
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.201  2015/09/15 17:34:58  brouard
   **********************************************************************/    Summary: 0.98r0
    
 #include <math.h>    - Some new graphs like suvival functions
 #include <stdio.h>    - Some bugs fixed like model=1+age+V2.
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.200  2015/09/09 16:53:55  brouard
     Summary: Big bug thanks to Flavia
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "gnuplot"    Even model=1+age+V2. did not work anymore
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.199  2015/09/07 14:09:23  brouard
 /*#define DEBUG*/    Summary: 0.98q6 changing default small png format for graph to vectorized svg.
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.198  2015/09/03 07:14:39  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Summary: 0.98q5 Flavia
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.197  2015/09/01 18:24:39  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    *** empty log message ***
   
 #define NINTERVMAX 8    Revision 1.196  2015/08/18 23:17:52  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Summary: 0.98q5
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.195  2015/08/18 16:28:39  brouard
 #define MAXN 20000    Summary: Adding a hack for testing purpose
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    After reading the title, ftol and model lines, if the comment line has
 #define AGEBASE 40    a q, starting with #q, the answer at the end of the run is quit. It
 #ifdef windows    permits to run test files in batch with ctest. The former workaround was
 #define DIRSEPARATOR '\\'    $ echo q | imach foo.imach
 #define ODIRSEPARATOR '/'  
 #else    Revision 1.194  2015/08/18 13:32:00  brouard
 #define DIRSEPARATOR '/'    Summary:  Adding error when the covariance matrix doesn't contain the exact number of lines required by the model line.
 #define ODIRSEPARATOR '\\'  
 #endif    Revision 1.193  2015/08/04 07:17:42  brouard
     Summary: 0.98q4
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";  
 int erreur; /* Error number */    Revision 1.192  2015/07/16 16:49:02  brouard
 int nvar;    Summary: Fixing some outputs
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.191  2015/07/14 10:00:33  brouard
 int nlstate=2; /* Number of live states */    Summary: Some fixes
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.190  2015/05/05 08:51:13  brouard
 int popbased=0;    Summary: Adding digits in output parameters (7 digits instead of 6)
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Fix 1+age+.
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.189  2015/04/30 14:45:16  brouard
 int mle, weightopt;    Summary: 0.98q2
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.188  2015/04/30 08:27:53  brouard
 double jmean; /* Mean space between 2 waves */    *** empty log message ***
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.187  2015/04/29 09:11:15  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    *** empty log message ***
 FILE *ficlog;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Revision 1.186  2015/04/23 12:01:52  brouard
 FILE *ficresprobmorprev;    Summary: V1*age is working now, version 0.98q1
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;    Some codes had been disabled in order to simplify and Vn*age was
 char filerese[FILENAMELENGTH];    working in the optimization phase, ie, giving correct MLE parameters,
 FILE  *ficresvij;    but, as usual, outputs were not correct and program core dumped.
 char fileresv[FILENAMELENGTH];  
 FILE  *ficresvpl;    Revision 1.185  2015/03/11 13:26:42  brouard
 char fileresvpl[FILENAMELENGTH];    Summary: Inclusion of compile and links command line for Intel Compiler
 char title[MAXLINE];  
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Revision 1.184  2015/03/11 11:52:39  brouard
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    Summary: Back from Windows 8. Intel Compiler
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Revision 1.183  2015/03/10 20:34:32  brouard
 char filelog[FILENAMELENGTH]; /* Log file */    Summary: 0.98q0, trying with directest, mnbrak fixed
 char filerest[FILENAMELENGTH];  
 char fileregp[FILENAMELENGTH];    We use directest instead of original Powell test; probably no
 char popfile[FILENAMELENGTH];    incidence on the results, but better justifications;
     We fixed Numerical Recipes mnbrak routine which was wrong and gave
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    wrong results.
   
 #define NR_END 1    Revision 1.182  2015/02/12 08:19:57  brouard
 #define FREE_ARG char*    Summary: Trying to keep directest which seems simpler and more general
 #define FTOL 1.0e-10    Author: Nicolas Brouard
   
 #define NRANSI    Revision 1.181  2015/02/11 23:22:24  brouard
 #define ITMAX 200    Summary: Comments on Powell added
   
 #define TOL 2.0e-4    Author:
   
 #define CGOLD 0.3819660    Revision 1.180  2015/02/11 17:33:45  brouard
 #define ZEPS 1.0e-10    Summary: Finishing move from main to function (hpijx and prevalence_limit)
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.179  2015/01/04 09:57:06  brouard
 #define GOLD 1.618034    Summary: back to OS/X
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.178  2015/01/04 09:35:48  brouard
     *** empty log message ***
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.177  2015/01/03 18:40:56  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Summary: Still testing ilc32 on OSX
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.176  2015/01/03 16:45:04  brouard
 #define rint(a) floor(a+0.5)    *** empty log message ***
   
 static double sqrarg;    Revision 1.175  2015/01/03 16:33:42  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    *** empty log message ***
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.174  2015/01/03 16:15:49  brouard
 int imx;    Summary: Still in cross-compilation
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.173  2015/01/03 12:06:26  brouard
     Summary: trying to detect cross-compilation
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Revision 1.172  2014/12/27 12:07:47  brouard
     Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.171  2014/12/23 13:26:59  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Summary: Back from Visual C
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Still problem with utsname.h on Windows
   
 double *weight;    Revision 1.170  2014/12/23 11:17:12  brouard
 int **s; /* Status */    Summary: Cleaning some \%% back to %%
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    The escape was mandatory for a specific compiler (which one?), but too many warnings.
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.169  2014/12/22 23:08:31  brouard
 double ftolhess; /* Tolerance for computing hessian */    Summary: 0.98p
   
 /**************** split *************************/    Outputs some informations on compiler used, OS etc. Testing on different platforms.
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {    Revision 1.168  2014/12/22 15:17:42  brouard
    char *s;                             /* pointer */    Summary: update
    int  l1, l2;                         /* length counters */  
     Revision 1.167  2014/12/22 13:50:56  brouard
    l1 = strlen( path );                 /* length of path */    Summary: Testing uname and compiler version and if compiled 32 or 64
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    Testing on Linux 64
    if ( s == NULL ) {                   /* no directory, so use current */  
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    Revision 1.166  2014/12/22 11:40:47  brouard
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    *** empty log message ***
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.165  2014/12/16 11:20:36  brouard
     Summary: After compiling on Visual C
       if ( getwd( dirc ) == NULL ) {  
 #else    * imach.c (Module): Merging 1.61 to 1.162
       extern char       *getcwd( );  
     Revision 1.164  2014/12/16 10:52:11  brouard
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
 #endif  
          return( GLOCK_ERROR_GETCWD );    * imach.c (Module): Merging 1.61 to 1.162
       }  
       strcpy( name, path );             /* we've got it */    Revision 1.163  2014/12/16 10:30:11  brouard
    } else {                             /* strip direcotry from path */    * imach.c (Module): Merging 1.61 to 1.162
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */    Revision 1.162  2014/09/25 11:43:39  brouard
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Summary: temporary backup 0.99!
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Revision 1.1  2014/09/16 11:06:58  brouard
       dirc[l1-l2] = 0;                  /* add zero */    Summary: With some code (wrong) for nlopt
    }  
    l1 = strlen( dirc );                 /* length of directory */    Author:
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Revision 1.161  2014/09/15 20:41:41  brouard
 #else    Summary: Problem with macro SQR on Intel compiler
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif    Revision 1.160  2014/09/02 09:24:05  brouard
    s = strrchr( name, '.' );            /* find last / */    *** empty log message ***
    s++;  
    strcpy(ext,s);                       /* save extension */    Revision 1.159  2014/09/01 10:34:10  brouard
    l1= strlen( name);    Summary: WIN32
    l2= strlen( s)+1;    Author: Brouard
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;    Revision 1.158  2014/08/27 17:11:51  brouard
    return( 0 );                         /* we're done */    *** empty log message ***
 }  
     Revision 1.157  2014/08/27 16:26:55  brouard
     Summary: Preparing windows Visual studio version
 /******************************************/    Author: Brouard
   
 void replace(char *s, char*t)    In order to compile on Visual studio, time.h is now correct and time_t
 {    and tm struct should be used. difftime should be used but sometimes I
   int i;    just make the differences in raw time format (time(&now).
   int lg=20;    Trying to suppress #ifdef LINUX
   i=0;    Add xdg-open for __linux in order to open default browser.
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Revision 1.156  2014/08/25 20:10:10  brouard
     (s[i] = t[i]);    *** empty log message ***
     if (t[i]== '\\') s[i]='/';  
   }    Revision 1.155  2014/08/25 18:32:34  brouard
 }    Summary: New compile, minor changes
     Author: Brouard
 int nbocc(char *s, char occ)  
 {    Revision 1.154  2014/06/20 17:32:08  brouard
   int i,j=0;    Summary: Outputs now all graphs of convergence to period prevalence
   int lg=20;  
   i=0;    Revision 1.153  2014/06/20 16:45:46  brouard
   lg=strlen(s);    Summary: If 3 live state, convergence to period prevalence on same graph
   for(i=0; i<= lg; i++) {    Author: Brouard
   if  (s[i] == occ ) j++;  
   }    Revision 1.152  2014/06/18 17:54:09  brouard
   return j;    Summary: open browser, use gnuplot on same dir than imach if not found in the path
 }  
     Revision 1.151  2014/06/18 16:43:30  brouard
 void cutv(char *u,char *v, char*t, char occ)    *** empty log message ***
 {  
   /* cuts string t into u and v where u is ended by char occ excluding it    Revision 1.150  2014/06/18 16:42:35  brouard
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
      gives u="abcedf" and v="ghi2j" */    Author: brouard
   int i,lg,j,p=0;  
   i=0;    Revision 1.149  2014/06/18 15:51:14  brouard
   for(j=0; j<=strlen(t)-1; j++) {    Summary: Some fixes in parameter files errors
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Author: Nicolas Brouard
   }  
     Revision 1.148  2014/06/17 17:38:48  brouard
   lg=strlen(t);    Summary: Nothing new
   for(j=0; j<p; j++) {    Author: Brouard
     (u[j] = t[j]);  
   }    Just a new packaging for OS/X version 0.98nS
      u[p]='\0';  
     Revision 1.147  2014/06/16 10:33:11  brouard
    for(j=0; j<= lg; j++) {    *** empty log message ***
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    Revision 1.146  2014/06/16 10:20:28  brouard
 }    Summary: Merge
     Author: Brouard
 /********************** nrerror ********************/  
     Merge, before building revised version.
 void nrerror(char error_text[])  
 {    Revision 1.145  2014/06/10 21:23:15  brouard
   fprintf(stderr,"ERREUR ...\n");    Summary: Debugging with valgrind
   fprintf(stderr,"%s\n",error_text);    Author: Nicolas Brouard
   exit(1);  
 }    Lot of changes in order to output the results with some covariates
 /*********************** vector *******************/    After the Edimburgh REVES conference 2014, it seems mandatory to
 double *vector(int nl, int nh)    improve the code.
 {    No more memory valgrind error but a lot has to be done in order to
   double *v;    continue the work of splitting the code into subroutines.
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    Also, decodemodel has been improved. Tricode is still not
   if (!v) nrerror("allocation failure in vector");    optimal. nbcode should be improved. Documentation has been added in
   return v-nl+NR_END;    the source code.
 }  
     Revision 1.143  2014/01/26 09:45:38  brouard
 /************************ free vector ******************/    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
 void free_vector(double*v, int nl, int nh)  
 {    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   free((FREE_ARG)(v+nl-NR_END));    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
 }  
     Revision 1.142  2014/01/26 03:57:36  brouard
 /************************ivector *******************************/    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
 int *ivector(long nl,long nh)  
 {    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Revision 1.141  2014/01/26 02:42:01  brouard
   if (!v) nrerror("allocation failure in ivector");    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   return v-nl+NR_END;  
 }    Revision 1.140  2011/09/02 10:37:54  brouard
     Summary: times.h is ok with mingw32 now.
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)    Revision 1.139  2010/06/14 07:50:17  brouard
 {    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
   free((FREE_ARG)(v+nl-NR_END));    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 }  
     Revision 1.138  2010/04/30 18:19:40  brouard
 /******************* imatrix *******************************/    *** empty log message ***
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    Revision 1.137  2010/04/29 18:11:38  brouard
 {    (Module): Checking covariates for more complex models
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    than V1+V2. A lot of change to be done. Unstable.
   int **m;  
      Revision 1.136  2010/04/26 20:30:53  brouard
   /* allocate pointers to rows */    (Module): merging some libgsl code. Fixing computation
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    of likelione (using inter/intrapolation if mle = 0) in order to
   if (!m) nrerror("allocation failure 1 in matrix()");    get same likelihood as if mle=1.
   m += NR_END;    Some cleaning of code and comments added.
   m -= nrl;  
      Revision 1.135  2009/10/29 15:33:14  brouard
      (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    Revision 1.134  2009/10/29 13:18:53  brouard
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.133  2009/07/06 10:21:25  brouard
      just nforces
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
      Revision 1.132  2009/07/06 08:22:05  brouard
   /* return pointer to array of pointers to rows */    Many tings
   return m;  
 }    Revision 1.131  2009/06/20 16:22:47  brouard
     Some dimensions resccaled
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)    Revision 1.130  2009/05/26 06:44:34  brouard
       int **m;    (Module): Max Covariate is now set to 20 instead of 8. A
       long nch,ncl,nrh,nrl;    lot of cleaning with variables initialized to 0. Trying to make
      /* free an int matrix allocated by imatrix() */    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    Revision 1.129  2007/08/31 13:49:27  lievre
   free((FREE_ARG) (m+nrl-NR_END));    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 }  
     Revision 1.128  2006/06/30 13:02:05  brouard
 /******************* matrix *******************************/    (Module): Clarifications on computing e.j
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {    Revision 1.127  2006/04/28 18:11:50  brouard
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    (Module): Yes the sum of survivors was wrong since
   double **m;    imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    (Module): In order to speed up (in case of numerous covariates) we
   if (!m) nrerror("allocation failure 1 in matrix()");    compute health expectancies (without variances) in a first step
   m += NR_END;    and then all the health expectancies with variances or standard
   m -= nrl;    deviation (needs data from the Hessian matrices) which slows the
     computation.
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    In the future we should be able to stop the program is only health
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    expectancies and graph are needed without standard deviations.
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    imach-114 because nhstepm was no more computed in the age
   return m;    loop. Now we define nhstepma in the age loop.
 }    Version 0.98h
   
 /*************************free matrix ************************/    Revision 1.125  2006/04/04 15:20:31  lievre
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    Errors in calculation of health expectancies. Age was not initialized.
 {    Forecasting file added.
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));    Revision 1.124  2006/03/22 17:13:53  lievre
 }    Parameters are printed with %lf instead of %f (more numbers after the comma).
     The log-likelihood is printed in the log file
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    Revision 1.123  2006/03/20 10:52:43  brouard
 {    * imach.c (Module): <title> changed, corresponds to .htm file
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    name. <head> headers where missing.
   double ***m;  
     * imach.c (Module): Weights can have a decimal point as for
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    English (a comma might work with a correct LC_NUMERIC environment,
   if (!m) nrerror("allocation failure 1 in matrix()");    otherwise the weight is truncated).
   m += NR_END;    Modification of warning when the covariates values are not 0 or
   m -= nrl;    1.
     Version 0.98g
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.122  2006/03/20 09:45:41  brouard
   m[nrl] += NR_END;    (Module): Weights can have a decimal point as for
   m[nrl] -= ncl;    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Modification of warning when the covariates values are not 0 or
     1.
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    Version 0.98g
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;    Revision 1.121  2006/03/16 17:45:01  lievre
   m[nrl][ncl] -= nll;    * imach.c (Module): Comments concerning covariates added
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;    * imach.c (Module): refinements in the computation of lli if
      status=-2 in order to have more reliable computation if stepm is
   for (i=nrl+1; i<=nrh; i++) {    not 1 month. Version 0.98f
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)    Revision 1.120  2006/03/16 15:10:38  lievre
       m[i][j]=m[i][j-1]+nlay;    (Module): refinements in the computation of lli if
   }    status=-2 in order to have more reliable computation if stepm is
   return m;    not 1 month. Version 0.98f
 }  
     Revision 1.119  2006/03/15 17:42:26  brouard
 /*************************free ma3x ************************/    (Module): Bug if status = -2, the loglikelihood was
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    computed as likelihood omitting the logarithm. Version O.98e
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    Revision 1.118  2006/03/14 18:20:07  brouard
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    (Module): varevsij Comments added explaining the second
   free((FREE_ARG)(m+nrl-NR_END));    table of variances if popbased=1 .
 }    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
 /***************** f1dim *************************/    (Module): Version 0.98d
 extern int ncom;  
 extern double *pcom,*xicom;    Revision 1.117  2006/03/14 17:16:22  brouard
 extern double (*nrfunc)(double []);    (Module): varevsij Comments added explaining the second
      table of variances if popbased=1 .
 double f1dim(double x)    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 {    (Module): Function pstamp added
   int j;    (Module): Version 0.98d
   double f;  
   double *xt;    Revision 1.116  2006/03/06 10:29:27  brouard
      (Module): Variance-covariance wrong links and
   xt=vector(1,ncom);    varian-covariance of ej. is needed (Saito).
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);    Revision 1.115  2006/02/27 12:17:45  brouard
   free_vector(xt,1,ncom);    (Module): One freematrix added in mlikeli! 0.98c
   return f;  
 }    Revision 1.114  2006/02/26 12:57:58  brouard
     (Module): Some improvements in processing parameter
 /*****************brent *************************/    filename with strsep.
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {    Revision 1.113  2006/02/24 14:20:24  brouard
   int iter;    (Module): Memory leaks checks with valgrind and:
   double a,b,d,etemp;    datafile was not closed, some imatrix were not freed and on matrix
   double fu,fv,fw,fx;    allocation too.
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;    Revision 1.112  2006/01/30 09:55:26  brouard
   double e=0.0;    (Module): Back to gnuplot.exe instead of wgnuplot.exe
    
   a=(ax < cx ? ax : cx);    Revision 1.111  2006/01/25 20:38:18  brouard
   b=(ax > cx ? ax : cx);    (Module): Lots of cleaning and bugs added (Gompertz)
   x=w=v=bx;    (Module): Comments can be added in data file. Missing date values
   fw=fv=fx=(*f)(x);    can be a simple dot '.'.
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);    Revision 1.110  2006/01/25 00:51:50  brouard
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    (Module): Lots of cleaning and bugs added (Gompertz)
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);    Revision 1.109  2006/01/24 19:37:15  brouard
     fprintf(ficlog,".");fflush(ficlog);    (Module): Comments (lines starting with a #) are allowed in data.
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    Revision 1.108  2006/01/19 18:05:42  lievre
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    Gnuplot problem appeared...
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    To be fixed
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    Revision 1.107  2006/01/19 16:20:37  brouard
       *xmin=x;    Test existence of gnuplot in imach path
       return fx;  
     }    Revision 1.106  2006/01/19 13:24:36  brouard
     ftemp=fu;    Some cleaning and links added in html output
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);    Revision 1.105  2006/01/05 20:23:19  lievre
       q=(x-v)*(fx-fw);    *** empty log message ***
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);    Revision 1.104  2005/09/30 16:11:43  lievre
       if (q > 0.0) p = -p;    (Module): sump fixed, loop imx fixed, and simplifications.
       q=fabs(q);    (Module): If the status is missing at the last wave but we know
       etemp=e;    that the person is alive, then we can code his/her status as -2
       e=d;    (instead of missing=-1 in earlier versions) and his/her
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    contributions to the likelihood is 1 - Prob of dying from last
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    health status (= 1-p13= p11+p12 in the easiest case of somebody in
       else {    the healthy state at last known wave). Version is 0.98
         d=p/q;  
         u=x+d;    Revision 1.103  2005/09/30 15:54:49  lievre
         if (u-a < tol2 || b-u < tol2)    (Module): sump fixed, loop imx fixed, and simplifications.
           d=SIGN(tol1,xm-x);  
       }    Revision 1.102  2004/09/15 17:31:30  brouard
     } else {    Add the possibility to read data file including tab characters.
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  
     }    Revision 1.101  2004/09/15 10:38:38  brouard
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    Fix on curr_time
     fu=(*f)(u);  
     if (fu <= fx) {    Revision 1.100  2004/07/12 18:29:06  brouard
       if (u >= x) a=x; else b=x;    Add version for Mac OS X. Just define UNIX in Makefile
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)    Revision 1.99  2004/06/05 08:57:40  brouard
         } else {    *** empty log message ***
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {    Revision 1.98  2004/05/16 15:05:56  brouard
             v=w;    New version 0.97 . First attempt to estimate force of mortality
             w=u;    directly from the data i.e. without the need of knowing the health
             fv=fw;    state at each age, but using a Gompertz model: log u =a + b*age .
             fw=fu;    This is the basic analysis of mortality and should be done before any
           } else if (fu <= fv || v == x || v == w) {    other analysis, in order to test if the mortality estimated from the
             v=u;    cross-longitudinal survey is different from the mortality estimated
             fv=fu;    from other sources like vital statistic data.
           }  
         }    The same imach parameter file can be used but the option for mle should be -3.
   }  
   nrerror("Too many iterations in brent");    Agnès, who wrote this part of the code, tried to keep most of the
   *xmin=x;    former routines in order to include the new code within the former code.
   return fx;  
 }    The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
 /****************** mnbrak ***********************/  
     Current limitations:
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    A) Even if you enter covariates, i.e. with the
             double (*func)(double))    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 {    B) There is no computation of Life Expectancy nor Life Table.
   double ulim,u,r,q, dum;  
   double fu;    Revision 1.97  2004/02/20 13:25:42  lievre
      Version 0.96d. Population forecasting command line is (temporarily)
   *fa=(*func)(*ax);    suppressed.
   *fb=(*func)(*bx);  
   if (*fb > *fa) {    Revision 1.96  2003/07/15 15:38:55  brouard
     SHFT(dum,*ax,*bx,dum)    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
       SHFT(dum,*fb,*fa,dum)    rewritten within the same printf. Workaround: many printfs.
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);    Revision 1.95  2003/07/08 07:54:34  brouard
   *fc=(*func)(*cx);    * imach.c (Repository):
   while (*fb > *fc) {    (Repository): Using imachwizard code to output a more meaningful covariance
     r=(*bx-*ax)*(*fb-*fc);    matrix (cov(a12,c31) instead of numbers.
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    Revision 1.94  2003/06/27 13:00:02  brouard
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    Just cleaning
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {    Revision 1.93  2003/06/25 16:33:55  brouard
       fu=(*func)(u);    (Module): On windows (cygwin) function asctime_r doesn't
     } else if ((*cx-u)*(u-ulim) > 0.0) {    exist so I changed back to asctime which exists.
       fu=(*func)(u);    (Module): Version 0.96b
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    Revision 1.92  2003/06/25 16:30:45  brouard
           SHFT(*fb,*fc,fu,(*func)(u))    (Module): On windows (cygwin) function asctime_r doesn't
           }    exist so I changed back to asctime which exists.
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  
       u=ulim;    Revision 1.91  2003/06/25 15:30:29  brouard
       fu=(*func)(u);    * imach.c (Repository): Duplicated warning errors corrected.
     } else {    (Repository): Elapsed time after each iteration is now output. It
       u=(*cx)+GOLD*(*cx-*bx);    helps to forecast when convergence will be reached. Elapsed time
       fu=(*func)(u);    is stamped in powell.  We created a new html file for the graphs
     }    concerning matrix of covariance. It has extension -cov.htm.
     SHFT(*ax,*bx,*cx,u)  
       SHFT(*fa,*fb,*fc,fu)    Revision 1.90  2003/06/24 12:34:15  brouard
       }    (Module): Some bugs corrected for windows. Also, when
 }    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 /*************** linmin ************************/  
     Revision 1.89  2003/06/24 12:30:52  brouard
 int ncom;    (Module): Some bugs corrected for windows. Also, when
 double *pcom,*xicom;    mle=-1 a template is output in file "or"mypar.txt with the design
 double (*nrfunc)(double []);    of the covariance matrix to be input.
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    Revision 1.88  2003/06/23 17:54:56  brouard
 {    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);    Revision 1.87  2003/06/18 12:26:01  brouard
   double f1dim(double x);    Version 0.96
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));    Revision 1.86  2003/06/17 20:04:08  brouard
   int j;    (Module): Change position of html and gnuplot routines and added
   double xx,xmin,bx,ax;    routine fileappend.
   double fx,fb,fa;  
      Revision 1.85  2003/06/17 13:12:43  brouard
   ncom=n;    * imach.c (Repository): Check when date of death was earlier that
   pcom=vector(1,n);    current date of interview. It may happen when the death was just
   xicom=vector(1,n);    prior to the death. In this case, dh was negative and likelihood
   nrfunc=func;    was wrong (infinity). We still send an "Error" but patch by
   for (j=1;j<=n;j++) {    assuming that the date of death was just one stepm after the
     pcom[j]=p[j];    interview.
     xicom[j]=xi[j];    (Repository): Because some people have very long ID (first column)
   }    we changed int to long in num[] and we added a new lvector for
   ax=0.0;    memory allocation. But we also truncated to 8 characters (left
   xx=1.0;    truncation)
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    (Repository): No more line truncation errors.
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG    Revision 1.84  2003/06/13 21:44:43  brouard
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    * imach.c (Repository): Replace "freqsummary" at a correct
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    place. It differs from routine "prevalence" which may be called
 #endif    many times. Probs is memory consuming and must be used with
   for (j=1;j<=n;j++) {    parcimony.
     xi[j] *= xmin;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
     p[j] += xi[j];  
   }    Revision 1.83  2003/06/10 13:39:11  lievre
   free_vector(xicom,1,n);    *** empty log message ***
   free_vector(pcom,1,n);  
 }    Revision 1.82  2003/06/05 15:57:20  brouard
     Add log in  imach.c and  fullversion number is now printed.
 /*************** powell ************************/  
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  */
             double (*func)(double []))  /*
 {     Interpolated Markov Chain
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));    Short summary of the programme:
   int i,ibig,j;    
   double del,t,*pt,*ptt,*xit;    This program computes Healthy Life Expectancies from
   double fp,fptt;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   double *xits;    first survey ("cross") where individuals from different ages are
   pt=vector(1,n);    interviewed on their health status or degree of disability (in the
   ptt=vector(1,n);    case of a health survey which is our main interest) -2- at least a
   xit=vector(1,n);    second wave of interviews ("longitudinal") which measure each change
   xits=vector(1,n);    (if any) in individual health status.  Health expectancies are
   *fret=(*func)(p);    computed from the time spent in each health state according to a
   for (j=1;j<=n;j++) pt[j]=p[j];    model. More health states you consider, more time is necessary to reach the
   for (*iter=1;;++(*iter)) {    Maximum Likelihood of the parameters involved in the model.  The
     fp=(*fret);    simplest model is the multinomial logistic model where pij is the
     ibig=0;    probability to be observed in state j at the second wave
     del=0.0;    conditional to be observed in state i at the first wave. Therefore
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    'age' is age and 'sex' is a covariate. If you want to have a more
     for (i=1;i<=n;i++)    complex model than "constant and age", you should modify the program
       printf(" %d %.12f",i, p[i]);    where the markup *Covariates have to be included here again* invites
     fprintf(ficlog," %d %.12f",i, p[i]);    you to do it.  More covariates you add, slower the
     printf("\n");    convergence.
     fprintf(ficlog,"\n");  
     for (i=1;i<=n;i++) {    The advantage of this computer programme, compared to a simple
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    multinomial logistic model, is clear when the delay between waves is not
       fptt=(*fret);    identical for each individual. Also, if a individual missed an
 #ifdef DEBUG    intermediate interview, the information is lost, but taken into
       printf("fret=%lf \n",*fret);    account using an interpolation or extrapolation.  
       fprintf(ficlog,"fret=%lf \n",*fret);  
 #endif    hPijx is the probability to be observed in state i at age x+h
       printf("%d",i);fflush(stdout);    conditional to the observed state i at age x. The delay 'h' can be
       fprintf(ficlog,"%d",i);fflush(ficlog);    split into an exact number (nh*stepm) of unobserved intermediate
       linmin(p,xit,n,fret,func);    states. This elementary transition (by month, quarter,
       if (fabs(fptt-(*fret)) > del) {    semester or year) is modelled as a multinomial logistic.  The hPx
         del=fabs(fptt-(*fret));    matrix is simply the matrix product of nh*stepm elementary matrices
         ibig=i;    and the contribution of each individual to the likelihood is simply
       }    hPijx.
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));    Also this programme outputs the covariance matrix of the parameters but also
       fprintf(ficlog,"%d %.12e",i,(*fret));    of the life expectancies. It also computes the period (stable) prevalence. 
       for (j=1;j<=n;j++) {    
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
         printf(" x(%d)=%.12e",j,xit[j]);             Institut national d'études démographiques, Paris.
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    This software have been partly granted by Euro-REVES, a concerted action
       }    from the European Union.
       for(j=1;j<=n;j++) {    It is copyrighted identically to a GNU software product, ie programme and
         printf(" p=%.12e",p[j]);    software can be distributed freely for non commercial use. Latest version
         fprintf(ficlog," p=%.12e",p[j]);    can be accessed at http://euroreves.ined.fr/imach .
       }  
       printf("\n");    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
       fprintf(ficlog,"\n");    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #endif    
     }    **********************************************************************/
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  /*
 #ifdef DEBUG    main
       int k[2],l;    read parameterfile
       k[0]=1;    read datafile
       k[1]=-1;    concatwav
       printf("Max: %.12e",(*func)(p));    freqsummary
       fprintf(ficlog,"Max: %.12e",(*func)(p));    if (mle >= 1)
       for (j=1;j<=n;j++) {      mlikeli
         printf(" %.12e",p[j]);    print results files
         fprintf(ficlog," %.12e",p[j]);    if mle==1 
       }       computes hessian
       printf("\n");    read end of parameter file: agemin, agemax, bage, fage, estepm
       fprintf(ficlog,"\n");        begin-prev-date,...
       for(l=0;l<=1;l++) {    open gnuplot file
         for (j=1;j<=n;j++) {    open html file
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
         }      freexexit2 possible for memory heap.
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    h Pij x                         | pij_nom  ficrestpij
       }     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
 #endif         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
          1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
   
       free_vector(xit,1,n);         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
       free_vector(xits,1,n);         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
       free_vector(ptt,1,n);    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
       free_vector(pt,1,n);     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
       return;     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
     }  
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    forecasting if prevfcast==1 prevforecast call prevalence()
     for (j=1;j<=n;j++) {    health expectancies
       ptt[j]=2.0*p[j]-pt[j];    Variance-covariance of DFLE
       xit[j]=p[j]-pt[j];    prevalence()
       pt[j]=p[j];     movingaverage()
     }    varevsij() 
     fptt=(*func)(ptt);    if popbased==1 varevsij(,popbased)
     if (fptt < fp) {    total life expectancies
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    Variance of period (stable) prevalence
       if (t < 0.0) {   end
         linmin(p,xit,n,fret,func);  */
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];  /* #define DEBUG */
           xi[j][n]=xit[j];  /* #define DEBUGBRENT */
         }  /* #define DEBUGLINMIN */
 #ifdef DEBUG  /* #define DEBUGHESS */
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  #define DEBUGHESSIJ
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  /* #define LINMINORIGINAL  /\* Don't use loop on scale in linmin (accepting nan)*\/ */
         for(j=1;j<=n;j++){  #define POWELL /* Instead of NLOPT */
           printf(" %.12e",xit[j]);  #define POWELLF1F3 /* Skip test */
           fprintf(ficlog," %.12e",xit[j]);  /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
         }  /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
         printf("\n");  
         fprintf(ficlog,"\n");  #include <math.h>
 #endif  #include <stdio.h>
       }  #include <stdlib.h>
     }  #include <string.h>
   }  
 }  #ifdef _WIN32
   #include <io.h>
 /**** Prevalence limit ****************/  #include <windows.h>
   #include <tchar.h>
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  #else
 {  #include <unistd.h>
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  #endif
      matrix by transitions matrix until convergence is reached */  
   #include <limits.h>
   int i, ii,j,k;  #include <sys/types.h>
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();  #if defined(__GNUC__)
   double **out, cov[NCOVMAX], **pmij();  #include <sys/utsname.h> /* Doesn't work on Windows */
   double **newm;  #endif
   double agefin, delaymax=50 ; /* Max number of years to converge */  
   #include <sys/stat.h>
   for (ii=1;ii<=nlstate+ndeath;ii++)  #include <errno.h>
     for (j=1;j<=nlstate+ndeath;j++){  /* extern int errno; */
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }  /* #ifdef LINUX */
   /* #include <time.h> */
    cov[1]=1.;  /* #include "timeval.h" */
    /* #else */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /* #include <sys/time.h> */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  /* #endif */
     newm=savm;  
     /* Covariates have to be included here again */  #include <time.h>
      cov[2]=agefin;  
    #ifdef GSL
       for (k=1; k<=cptcovn;k++) {  #include <gsl/gsl_errno.h>
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  #include <gsl/gsl_multimin.h>
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  #endif
       }  
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  #ifdef NLOPT
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  #include <nlopt.h>
   typedef struct {
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    double (* function)(double [] );
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  } myfunc_data ;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  #endif
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  
   /* #include <libintl.h> */
     savm=oldm;  /* #define _(String) gettext (String) */
     oldm=newm;  
     maxmax=0.;  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
     for(j=1;j<=nlstate;j++){  
       min=1.;  #define GNUPLOTPROGRAM "gnuplot"
       max=0.;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
       for(i=1; i<=nlstate; i++) {  #define FILENAMELENGTH 132
         sumnew=0;  
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
         prlim[i][j]= newm[i][j]/(1-sumnew);  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
         max=FMAX(max,prlim[i][j]);  
         min=FMIN(min,prlim[i][j]);  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
       }  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
       maxmin=max-min;  
       maxmax=FMAX(maxmax,maxmin);  #define NINTERVMAX 8
     }  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
     if(maxmax < ftolpl){  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
       return prlim;  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
     }  #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
   }  /*#define decodtabm(h,k,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (k-1)) & 1) +1 : -1)*/
 }  #define decodtabm(h,k,cptcoveff) (((h-1) >> (k-1)) & 1) +1 
   #define MAXN 20000
 /*************** transition probabilities ***************/  #define YEARM 12. /**< Number of months per year */
   #define AGESUP 130
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  #define AGEBASE 40
 {  #define AGEOVERFLOW 1.e20
   double s1, s2;  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
   /*double t34;*/  #ifdef _WIN32
   int i,j,j1, nc, ii, jj;  #define DIRSEPARATOR '\\'
   #define CHARSEPARATOR "\\"
     for(i=1; i<= nlstate; i++){  #define ODIRSEPARATOR '/'
     for(j=1; j<i;j++){  #else
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #define DIRSEPARATOR '/'
         /*s2 += param[i][j][nc]*cov[nc];*/  #define CHARSEPARATOR "/"
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  #define ODIRSEPARATOR '\\'
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  #endif
       }  
       ps[i][j]=s2;  /* $Id$ */
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  /* $State$ */
     }  #include "version.h"
     for(j=i+1; j<=nlstate+ndeath;j++){  char version[]=__IMACH_VERSION__;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  char copyright[]="October 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  char fullversion[]="$Revision$ $Date$"; 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  char strstart[80];
       }  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
       ps[i][j]=s2;  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
     }  int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
   }  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
     /*ps[3][2]=1;*/  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
   int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
   for(i=1; i<= nlstate; i++){  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
      s1=0;  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
     for(j=1; j<i; j++)  int cptcovprodnoage=0; /**< Number of covariate products without age */   
       s1+=exp(ps[i][j]);  int cptcoveff=0; /* Total number of covariates to vary for printing results */
     for(j=i+1; j<=nlstate+ndeath; j++)  int cptcov=0; /* Working variable */
       s1+=exp(ps[i][j]);  int npar=NPARMAX;
     ps[i][i]=1./(s1+1.);  int nlstate=2; /* Number of live states */
     for(j=1; j<i; j++)  int ndeath=1; /* Number of dead states */
       ps[i][j]= exp(ps[i][j])*ps[i][i];  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
     for(j=i+1; j<=nlstate+ndeath; j++)  int popbased=0;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  int *wav; /* Number of waves for this individuual 0 is possible */
   } /* end i */  int maxwav=0; /* Maxim number of waves */
   int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
     for(jj=1; jj<= nlstate+ndeath; jj++){  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
       ps[ii][jj]=0;                     to the likelihood and the sum of weights (done by funcone)*/
       ps[ii][ii]=1;  int mle=1, weightopt=0;
     }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  int countcallfunc=0;  /* Count the number of calls to func */
     for(jj=1; jj<= nlstate+ndeath; jj++){  double jmean=1; /* Mean space between 2 waves */
      printf("%lf ",ps[ii][jj]);  double **matprod2(); /* test */
    }  double **oldm, **newm, **savm; /* Working pointers to matrices */
     printf("\n ");  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     }  /*FILE *fic ; */ /* Used in readdata only */
     printf("\n ");printf("%lf ",cov[2]);*/  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 /*  FILE *ficlog, *ficrespow;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  int globpr=0; /* Global variable for printing or not */
   goto end;*/  double fretone; /* Only one call to likelihood */
     return ps;  long ipmx=0; /* Number of contributions */
 }  double sw; /* Sum of weights */
   char filerespow[FILENAMELENGTH];
 /**************** Product of 2 matrices ******************/  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   FILE *ficresilk;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 {  FILE *ficresprobmorprev;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  FILE *fichtm, *fichtmcov; /* Html File */
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  FILE *ficreseij;
   /* in, b, out are matrice of pointers which should have been initialized  char filerese[FILENAMELENGTH];
      before: only the contents of out is modified. The function returns  FILE *ficresstdeij;
      a pointer to pointers identical to out */  char fileresstde[FILENAMELENGTH];
   long i, j, k;  FILE *ficrescveij;
   for(i=nrl; i<= nrh; i++)  char filerescve[FILENAMELENGTH];
     for(k=ncolol; k<=ncoloh; k++)  FILE  *ficresvij;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  char fileresv[FILENAMELENGTH];
         out[i][k] +=in[i][j]*b[j][k];  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
   return out;  char title[MAXLINE];
 }  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 /************* Higher Matrix Product ***************/  char command[FILENAMELENGTH];
   int  outcmd=0;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  
 {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  char fileresu[FILENAMELENGTH]; /* fileres without r in front */
      duration (i.e. until  char filelog[FILENAMELENGTH]; /* Log file */
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  char filerest[FILENAMELENGTH];
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  char fileregp[FILENAMELENGTH];
      (typically every 2 years instead of every month which is too big).  char popfile[FILENAMELENGTH];
      Model is determined by parameters x and covariates have to be  
      included manually here.  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   
      */  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
   /* struct timezone tzp; */
   int i, j, d, h, k;  /* extern int gettimeofday(); */
   double **out, cov[NCOVMAX];  struct tm tml, *gmtime(), *localtime();
   double **newm;  
   extern time_t time();
   /* Hstepm could be zero and should return the unit matrix */  
   for (i=1;i<=nlstate+ndeath;i++)  struct tm start_time, end_time, curr_time, last_time, forecast_time;
     for (j=1;j<=nlstate+ndeath;j++){  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
       oldm[i][j]=(i==j ? 1.0 : 0.0);  struct tm tm;
       po[i][j][0]=(i==j ? 1.0 : 0.0);  
     }  char strcurr[80], strfor[80];
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(h=1; h <=nhstepm; h++){  char *endptr;
     for(d=1; d <=hstepm; d++){  long lval;
       newm=savm;  double dval;
       /* Covariates have to be included here again */  
       cov[1]=1.;  #define NR_END 1
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  #define FREE_ARG char*
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  #define FTOL 1.0e-10
       for (k=1; k<=cptcovage;k++)  
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  #define NRANSI 
       for (k=1; k<=cptcovprod;k++)  #define ITMAX 200 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   #define TOL 2.0e-4 
   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  #define CGOLD 0.3819660 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  #define ZEPS 1.0e-10 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;  #define GOLD 1.618034 
       oldm=newm;  #define GLIMIT 100.0 
     }  #define TINY 1.0e-20 
     for(i=1; i<=nlstate+ndeath; i++)  
       for(j=1;j<=nlstate+ndeath;j++) {  static double maxarg1,maxarg2;
         po[i][j][h]=newm[i][j];  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
          */    
       }  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   } /* end h */  #define rint(a) floor(a+0.5)
   return po;  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
 }  #define mytinydouble 1.0e-16
   /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
   /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
 /*************** log-likelihood *************/  /* static double dsqrarg; */
 double func( double *x)  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
 {  static double sqrarg;
   int i, ii, j, k, mi, d, kk;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   double **out;  int agegomp= AGEGOMP;
   double sw; /* Sum of weights */  
   double lli; /* Individual log likelihood */  int imx; 
   long ipmx;  int stepm=1;
   /*extern weight */  /* Stepm, step in month: minimum step interpolation*/
   /* We are differentiating ll according to initial status */  
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  int estepm;
   /*for(i=1;i<imx;i++)  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     printf(" %d\n",s[4][i]);  
   */  int m,nb;
   cov[1]=1.;  long *num;
   int firstpass=0, lastpass=4,*cod, *cens;
   for(k=1; k<=nlstate; k++) ll[k]=0.;  int *ncodemax;  /* ncodemax[j]= Number of modalities of the j th
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){                     covariate for which somebody answered excluding 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];                     undefined. Usually 2: 0 and 1. */
     for(mi=1; mi<= wav[i]-1; mi++){  int *ncodemaxwundef;  /* ncodemax[j]= Number of modalities of the j th
       for (ii=1;ii<=nlstate+ndeath;ii++)                               covariate for which somebody answered including 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);                               undefined. Usually 3: -1, 0 and 1. */
       for(d=0; d<dh[mi][i]; d++){  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
         newm=savm;  double **pmmij, ***probs;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  double *ageexmed,*agecens;
         for (kk=1; kk<=cptcovage;kk++) {  double dateintmean=0;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
         }  double *weight;
          int **s; /* Status */
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  double *agedc;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
         savm=oldm;                    * covar=matrix(0,NCOVMAX,1,n); 
         oldm=newm;                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
          double  idx; 
          int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
       } /* end mult */  int *Tage;
        int *Ndum; /** Freq of modality (tricode */
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  /* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
       ipmx +=1;  double *lsurv, *lpop, *tpop;
       sw += weight[i];  
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
     } /* end of wave */  double ftolhess; /**< Tolerance for computing hessian */
   } /* end of individual */  
   /**************** split *************************/
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  {
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   return -l;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 }    */ 
     char  *ss;                            /* pointer */
     int   l1=0, l2=0;                             /* length counters */
 /*********** Maximum Likelihood Estimation ***************/  
     l1 = strlen(path );                   /* length of path */
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 {    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   int i,j, iter;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
   double **xi,*delti;      strcpy( name, path );               /* we got the fullname name because no directory */
   double fret;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   xi=matrix(1,npar,1,npar);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   for (i=1;i<=npar;i++)      /* get current working directory */
     for (j=1;j<=npar;j++)      /*    extern  char* getcwd ( char *buf , int len);*/
       xi[i][j]=(i==j ? 1.0 : 0.0);  #ifdef WIN32
   printf("Powell\n");  fprintf(ficlog,"Powell\n");      if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
   powell(p,xi,npar,ftol,&iter,&fret,func);  #else
           if (getcwd(dirc, FILENAME_MAX) == NULL) {
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  #endif
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        return( GLOCK_ERROR_GETCWD );
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      }
       /* got dirc from getcwd*/
 }      printf(" DIRC = %s \n",dirc);
     } else {                              /* strip directory from path */
 /**** Computes Hessian and covariance matrix ***/      ss++;                               /* after this, the filename */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      l2 = strlen( ss );                  /* length of filename */
 {      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   double  **a,**y,*x,pd;      strcpy( name, ss );         /* save file name */
   double **hess;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   int i, j,jk;      dirc[l1-l2] = '\0';                 /* add zero */
   int *indx;      printf(" DIRC2 = %s \n",dirc);
     }
   double hessii(double p[], double delta, int theta, double delti[]);    /* We add a separator at the end of dirc if not exists */
   double hessij(double p[], double delti[], int i, int j);    l1 = strlen( dirc );                  /* length of directory */
   void lubksb(double **a, int npar, int *indx, double b[]) ;    if( dirc[l1-1] != DIRSEPARATOR ){
   void ludcmp(double **a, int npar, int *indx, double *d) ;      dirc[l1] =  DIRSEPARATOR;
       dirc[l1+1] = 0; 
   hess=matrix(1,npar,1,npar);      printf(" DIRC3 = %s \n",dirc);
     }
   printf("\nCalculation of the hessian matrix. Wait...\n");    ss = strrchr( name, '.' );            /* find last / */
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    if (ss >0){
   for (i=1;i<=npar;i++){      ss++;
     printf("%d",i);fflush(stdout);      strcpy(ext,ss);                     /* save extension */
     fprintf(ficlog,"%d",i);fflush(ficlog);      l1= strlen( name);
     hess[i][i]=hessii(p,ftolhess,i,delti);      l2= strlen(ss)+1;
     /*printf(" %f ",p[i]);*/      strncpy( finame, name, l1-l2);
     /*printf(" %lf ",hess[i][i]);*/      finame[l1-l2]= 0;
   }    }
    
   for (i=1;i<=npar;i++) {    return( 0 );                          /* we're done */
     for (j=1;j<=npar;j++)  {  }
       if (j>i) {  
         printf(".%d%d",i,j);fflush(stdout);  
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);  /******************************************/
         hess[i][j]=hessij(p,delti,i,j);  
         hess[j][i]=hess[i][j];      void replace_back_to_slash(char *s, char*t)
         /*printf(" %lf ",hess[i][j]);*/  {
       }    int i;
     }    int lg=0;
   }    i=0;
   printf("\n");    lg=strlen(t);
   fprintf(ficlog,"\n");    for(i=0; i<= lg; i++) {
       (s[i] = t[i]);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      if (t[i]== '\\') s[i]='/';
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");    }
    }
   a=matrix(1,npar,1,npar);  
   y=matrix(1,npar,1,npar);  char *trimbb(char *out, char *in)
   x=vector(1,npar);  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
   indx=ivector(1,npar);    char *s;
   for (i=1;i<=npar;i++)    s=out;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    while (*in != '\0'){
   ludcmp(a,npar,indx,&pd);      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
         in++;
   for (j=1;j<=npar;j++) {      }
     for (i=1;i<=npar;i++) x[i]=0;      *out++ = *in++;
     x[j]=1;    }
     lubksb(a,npar,indx,x);    *out='\0';
     for (i=1;i<=npar;i++){    return s;
       matcov[i][j]=x[i];  }
     }  
   }  /* char *substrchaine(char *out, char *in, char *chain) */
   /* { */
   printf("\n#Hessian matrix#\n");  /*   /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */
   fprintf(ficlog,"\n#Hessian matrix#\n");  /*   char *s, *t; */
   for (i=1;i<=npar;i++) {  /*   t=in;s=out; */
     for (j=1;j<=npar;j++) {  /*   while ((*in != *chain) && (*in != '\0')){ */
       printf("%.3e ",hess[i][j]);  /*     *out++ = *in++; */
       fprintf(ficlog,"%.3e ",hess[i][j]);  /*   } */
     }  
     printf("\n");  /*   /\* *in matches *chain *\/ */
     fprintf(ficlog,"\n");  /*   while ((*in++ == *chain++) && (*in != '\0')){ */
   }  /*     printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   /*   } */
   /* Recompute Inverse */  /*   in--; chain--; */
   for (i=1;i<=npar;i++)  /*   while ( (*in != '\0')){ */
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  /*     printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   ludcmp(a,npar,indx,&pd);  /*     *out++ = *in++; */
   /*     printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   /*  printf("\n#Hessian matrix recomputed#\n");  /*   } */
   /*   *out='\0'; */
   for (j=1;j<=npar;j++) {  /*   out=s; */
     for (i=1;i<=npar;i++) x[i]=0;  /*   return out; */
     x[j]=1;  /* } */
     lubksb(a,npar,indx,x);  char *substrchaine(char *out, char *in, char *chain)
     for (i=1;i<=npar;i++){  {
       y[i][j]=x[i];    /* Substract chain 'chain' from 'in', return and output 'out' */
       printf("%.3e ",y[i][j]);    /* in="V1+V1*age+age*age+V2", chain="age*age" */
       fprintf(ficlog,"%.3e ",y[i][j]);  
     }    char *strloc;
     printf("\n");  
     fprintf(ficlog,"\n");    strcpy (out, in); 
   }    strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */
   */    printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out);
     if(strloc != NULL){ 
   free_matrix(a,1,npar,1,npar);      /* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */
   free_matrix(y,1,npar,1,npar);      memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1);
   free_vector(x,1,npar);      /* strcpy (strloc, strloc +strlen(chain));*/
   free_ivector(indx,1,npar);    }
   free_matrix(hess,1,npar,1,npar);    printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out);
     return out;
   }
 }  
   
 /*************** hessian matrix ****************/  char *cutl(char *blocc, char *alocc, char *in, char occ)
 double hessii( double x[], double delta, int theta, double delti[])  {
 {    /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
   int i;       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   int l=1, lmax=20;       gives blocc="abcdef" and alocc="ghi2j".
   double k1,k2;       If occ is not found blocc is null and alocc is equal to in. Returns blocc
   double p2[NPARMAX+1];    */
   double res;    char *s, *t;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    t=in;s=in;
   double fx;    while ((*in != occ) && (*in != '\0')){
   int k=0,kmax=10;      *alocc++ = *in++;
   double l1;    }
     if( *in == occ){
   fx=func(x);      *(alocc)='\0';
   for (i=1;i<=npar;i++) p2[i]=x[i];      s=++in;
   for(l=0 ; l <=lmax; l++){    }
     l1=pow(10,l);   
     delts=delt;    if (s == t) {/* occ not found */
     for(k=1 ; k <kmax; k=k+1){      *(alocc-(in-s))='\0';
       delt = delta*(l1*k);      in=s;
       p2[theta]=x[theta] +delt;    }
       k1=func(p2)-fx;    while ( *in != '\0'){
       p2[theta]=x[theta]-delt;      *blocc++ = *in++;
       k2=func(p2)-fx;    }
       /*res= (k1-2.0*fx+k2)/delt/delt; */  
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    *blocc='\0';
          return t;
 #ifdef DEBUG  }
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  char *cutv(char *blocc, char *alocc, char *in, char occ)
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  {
 #endif    /* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){       gives blocc="abcdef2ghi" and alocc="j".
         k=kmax;       If occ is not found blocc is null and alocc is equal to in. Returns alocc
       }    */
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    char *s, *t;
         k=kmax; l=lmax*10.;    t=in;s=in;
       }    while (*in != '\0'){
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      while( *in == occ){
         delts=delt;        *blocc++ = *in++;
       }        s=in;
     }      }
   }      *blocc++ = *in++;
   delti[theta]=delts;    }
   return res;    if (s == t) /* occ not found */
        *(blocc-(in-s))='\0';
 }    else
       *(blocc-(in-s)-1)='\0';
 double hessij( double x[], double delti[], int thetai,int thetaj)    in=s;
 {    while ( *in != '\0'){
   int i;      *alocc++ = *in++;
   int l=1, l1, lmax=20;    }
   double k1,k2,k3,k4,res,fx;  
   double p2[NPARMAX+1];    *alocc='\0';
   int k;    return s;
   }
   fx=func(x);  
   for (k=1; k<=2; k++) {  int nbocc(char *s, char occ)
     for (i=1;i<=npar;i++) p2[i]=x[i];  {
     p2[thetai]=x[thetai]+delti[thetai]/k;    int i,j=0;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    int lg=20;
     k1=func(p2)-fx;    i=0;
      lg=strlen(s);
     p2[thetai]=x[thetai]+delti[thetai]/k;    for(i=0; i<= lg; i++) {
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    if  (s[i] == occ ) j++;
     k2=func(p2)-fx;    }
      return j;
     p2[thetai]=x[thetai]-delti[thetai]/k;  }
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k3=func(p2)-fx;  /* void cutv(char *u,char *v, char*t, char occ) */
    /* { */
     p2[thetai]=x[thetai]-delti[thetai]/k;  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
     k4=func(p2)-fx;  /*      gives u="abcdef2ghi" and v="j" *\/ */
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  /*   int i,lg,j,p=0; */
 #ifdef DEBUG  /*   i=0; */
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  /*   lg=strlen(t); */
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  /*   for(j=0; j<=lg-1; j++) { */
 #endif  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   }  /*   } */
   return res;  
 }  /*   for(j=0; j<p; j++) { */
   /*     (u[j] = t[j]); */
 /************** Inverse of matrix **************/  /*   } */
 void ludcmp(double **a, int n, int *indx, double *d)  /*      u[p]='\0'; */
 {  
   int i,imax,j,k;  /*    for(j=0; j<= lg; j++) { */
   double big,dum,sum,temp;  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   double *vv;  /*   } */
    /* } */
   vv=vector(1,n);  
   *d=1.0;  #ifdef _WIN32
   for (i=1;i<=n;i++) {  char * strsep(char **pp, const char *delim)
     big=0.0;  {
     for (j=1;j<=n;j++)    char *p, *q;
       if ((temp=fabs(a[i][j])) > big) big=temp;           
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    if ((p = *pp) == NULL)
     vv[i]=1.0/big;      return 0;
   }    if ((q = strpbrk (p, delim)) != NULL)
   for (j=1;j<=n;j++) {    {
     for (i=1;i<j;i++) {      *pp = q + 1;
       sum=a[i][j];      *q = '\0';
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    }
       a[i][j]=sum;    else
     }      *pp = 0;
     big=0.0;    return p;
     for (i=j;i<=n;i++) {  }
       sum=a[i][j];  #endif
       for (k=1;k<j;k++)  
         sum -= a[i][k]*a[k][j];  /********************** nrerror ********************/
       a[i][j]=sum;  
       if ( (dum=vv[i]*fabs(sum)) >= big) {  void nrerror(char error_text[])
         big=dum;  {
         imax=i;    fprintf(stderr,"ERREUR ...\n");
       }    fprintf(stderr,"%s\n",error_text);
     }    exit(EXIT_FAILURE);
     if (j != imax) {  }
       for (k=1;k<=n;k++) {  /*********************** vector *******************/
         dum=a[imax][k];  double *vector(int nl, int nh)
         a[imax][k]=a[j][k];  {
         a[j][k]=dum;    double *v;
       }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       *d = -(*d);    if (!v) nrerror("allocation failure in vector");
       vv[imax]=vv[j];    return v-nl+NR_END;
     }  }
     indx[j]=imax;  
     if (a[j][j] == 0.0) a[j][j]=TINY;  /************************ free vector ******************/
     if (j != n) {  void free_vector(double*v, int nl, int nh)
       dum=1.0/(a[j][j]);  {
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    free((FREE_ARG)(v+nl-NR_END));
     }  }
   }  
   free_vector(vv,1,n);  /* Doesn't work */  /************************ivector *******************************/
 ;  int *ivector(long nl,long nh)
 }  {
     int *v;
 void lubksb(double **a, int n, int *indx, double b[])    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 {    if (!v) nrerror("allocation failure in ivector");
   int i,ii=0,ip,j;    return v-nl+NR_END;
   double sum;  }
    
   for (i=1;i<=n;i++) {  /******************free ivector **************************/
     ip=indx[i];  void free_ivector(int *v, long nl, long nh)
     sum=b[ip];  {
     b[ip]=b[i];    free((FREE_ARG)(v+nl-NR_END));
     if (ii)  }
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  
     else if (sum) ii=i;  /************************lvector *******************************/
     b[i]=sum;  long *lvector(long nl,long nh)
   }  {
   for (i=n;i>=1;i--) {    long *v;
     sum=b[i];    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    if (!v) nrerror("allocation failure in ivector");
     b[i]=sum/a[i][i];    return v-nl+NR_END;
   }  }
 }  
   /******************free lvector **************************/
 /************ Frequencies ********************/  void free_lvector(long *v, long nl, long nh)
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  {
 {  /* Some frequencies */    free((FREE_ARG)(v+nl-NR_END));
    }
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  
   int first;  /******************* imatrix *******************************/
   double ***freq; /* Frequencies */  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   double *pp;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   double pos, k2, dateintsum=0,k2cpt=0;  { 
   FILE *ficresp;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   char fileresp[FILENAMELENGTH];    int **m; 
      
   pp=vector(1,nlstate);    /* allocate pointers to rows */ 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   strcpy(fileresp,"p");    if (!m) nrerror("allocation failure 1 in matrix()"); 
   strcat(fileresp,fileres);    m += NR_END; 
   if((ficresp=fopen(fileresp,"w"))==NULL) {    m -= nrl; 
     printf("Problem with prevalence resultfile: %s\n", fileresp);    
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    
     exit(0);    /* allocate rows and set pointers to them */ 
   }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   j1=0;    m[nrl] += NR_END; 
      m[nrl] -= ncl; 
   j=cptcoveff;    
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     
   first=1;    /* return pointer to array of pointers to rows */ 
     return m; 
   for(k1=1; k1<=j;k1++){  } 
     for(i1=1; i1<=ncodemax[k1];i1++){  
       j1++;  /****************** free_imatrix *************************/
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  void free_imatrix(m,nrl,nrh,ncl,nch)
         scanf("%d", i);*/        int **m;
       for (i=-1; i<=nlstate+ndeath; i++)          long nch,ncl,nrh,nrl; 
         for (jk=-1; jk<=nlstate+ndeath; jk++)         /* free an int matrix allocated by imatrix() */ 
           for(m=agemin; m <= agemax+3; m++)  { 
             freq[i][jk][m]=0;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
          free((FREE_ARG) (m+nrl-NR_END)); 
       dateintsum=0;  } 
       k2cpt=0;  
       for (i=1; i<=imx; i++) {  /******************* matrix *******************************/
         bool=1;  double **matrix(long nrl, long nrh, long ncl, long nch)
         if  (cptcovn>0) {  {
           for (z1=1; z1<=cptcoveff; z1++)    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    double **m;
               bool=0;  
         }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         if (bool==1) {    if (!m) nrerror("allocation failure 1 in matrix()");
           for(m=firstpass; m<=lastpass; m++){    m += NR_END;
             k2=anint[m][i]+(mint[m][i]/12.);    m -= nrl;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  
               if(agev[m][i]==0) agev[m][i]=agemax+1;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
               if(agev[m][i]==1) agev[m][i]=agemax+2;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
               if (m<lastpass) {    m[nrl] += NR_END;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    m[nrl] -= ncl;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  
               }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
                  return m;
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
                 dateintsum=dateintsum+k2;  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
                 k2cpt++;  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
               }     */
             }  }
           }  
         }  /*************************free matrix ************************/
       }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
          {
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
       if  (cptcovn>0) {  }
         fprintf(ficresp, "\n#********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  /******************* ma3x *******************************/
         fprintf(ficresp, "**********\n#");  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       }  {
       for(i=1; i<=nlstate;i++)    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    double ***m;
       fprintf(ficresp, "\n");  
          m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       for(i=(int)agemin; i <= (int)agemax+3; i++){    if (!m) nrerror("allocation failure 1 in matrix()");
         if(i==(int)agemax+3){    m += NR_END;
           fprintf(ficlog,"Total");    m -= nrl;
         }else{  
           if(first==1){    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
             first=0;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
             printf("See log file for details...\n");    m[nrl] += NR_END;
           }    m[nrl] -= ncl;
           fprintf(ficlog,"Age %d", i);  
         }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
             pp[jk] += freq[jk][m][i];    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         }    m[nrl][ncl] += NR_END;
         for(jk=1; jk <=nlstate ; jk++){    m[nrl][ncl] -= nll;
           for(m=-1, pos=0; m <=0 ; m++)    for (j=ncl+1; j<=nch; j++) 
             pos += freq[jk][m][i];      m[nrl][j]=m[nrl][j-1]+nlay;
           if(pp[jk]>=1.e-10){    
             if(first==1){    for (i=nrl+1; i<=nrh; i++) {
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
             }      for (j=ncl+1; j<=nch; j++) 
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        m[i][j]=m[i][j-1]+nlay;
           }else{    }
             if(first==1)    return m; 
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
           }    */
         }  }
   
         for(jk=1; jk <=nlstate ; jk++){  /*************************free ma3x ************************/
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
             pp[jk] += freq[jk][m][i];  {
         }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
         for(jk=1,pos=0; jk <=nlstate ; jk++)    free((FREE_ARG)(m+nrl-NR_END));
           pos += pp[jk];  }
         for(jk=1; jk <=nlstate ; jk++){  
           if(pos>=1.e-5){  /*************** function subdirf ***********/
             if(first==1)  char *subdirf(char fileres[])
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  {
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    /* Caution optionfilefiname is hidden */
           }else{    strcpy(tmpout,optionfilefiname);
             if(first==1)    strcat(tmpout,"/"); /* Add to the right */
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    strcat(tmpout,fileres);
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    return tmpout;
           }  }
           if( i <= (int) agemax){  
             if(pos>=1.e-5){  /*************** function subdirf2 ***********/
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  char *subdirf2(char fileres[], char *preop)
               probs[i][jk][j1]= pp[jk]/pos;  {
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    
             }    /* Caution optionfilefiname is hidden */
             else    strcpy(tmpout,optionfilefiname);
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    strcat(tmpout,"/");
           }    strcat(tmpout,preop);
         }    strcat(tmpout,fileres);
            return tmpout;
         for(jk=-1; jk <=nlstate+ndeath; jk++)  }
           for(m=-1; m <=nlstate+ndeath; m++)  
             if(freq[jk][m][i] !=0 ) {  /*************** function subdirf3 ***********/
             if(first==1)  char *subdirf3(char fileres[], char *preop, char *preop2)
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  {
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);    
             }    /* Caution optionfilefiname is hidden */
         if(i <= (int) agemax)    strcpy(tmpout,optionfilefiname);
           fprintf(ficresp,"\n");    strcat(tmpout,"/");
         if(first==1)    strcat(tmpout,preop);
           printf("Others in log...\n");    strcat(tmpout,preop2);
         fprintf(ficlog,"\n");    strcat(tmpout,fileres);
       }    return tmpout;
     }  }
   }  
   dateintmean=dateintsum/k2cpt;  char *asc_diff_time(long time_sec, char ascdiff[])
    {
   fclose(ficresp);    long sec_left, days, hours, minutes;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    days = (time_sec) / (60*60*24);
   free_vector(pp,1,nlstate);    sec_left = (time_sec) % (60*60*24);
      hours = (sec_left) / (60*60) ;
   /* End of Freq */    sec_left = (sec_left) %(60*60);
 }    minutes = (sec_left) /60;
     sec_left = (sec_left) % (60);
 /************ Prevalence ********************/    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    return ascdiff;
 {  /* Some frequencies */  }
    
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  /***************** f1dim *************************/
   double ***freq; /* Frequencies */  extern int ncom; 
   double *pp;  extern double *pcom,*xicom;
   double pos, k2;  extern double (*nrfunc)(double []); 
    
   pp=vector(1,nlstate);  double f1dim(double x) 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  { 
      int j; 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    double f;
   j1=0;    double *xt; 
     
   j=cptcoveff;    xt=vector(1,ncom); 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
      f=(*nrfunc)(xt); 
   for(k1=1; k1<=j;k1++){    free_vector(xt,1,ncom); 
     for(i1=1; i1<=ncodemax[k1];i1++){    return f; 
       j1++;  } 
        
       for (i=-1; i<=nlstate+ndeath; i++)    /*****************brent *************************/
         for (jk=-1; jk<=nlstate+ndeath; jk++)    double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
           for(m=agemin; m <= agemax+3; m++)  {
             freq[i][jk][m]=0;    /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
           * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
       for (i=1; i<=imx; i++) {     * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
         bool=1;     * the minimum is returned as xmin, and the minimum function value is returned as brent , the
         if  (cptcovn>0) {     * returned function value. 
           for (z1=1; z1<=cptcoveff; z1++)    */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    int iter; 
               bool=0;    double a,b,d,etemp;
         }    double fu=0,fv,fw,fx;
         if (bool==1) {    double ftemp=0.;
           for(m=firstpass; m<=lastpass; m++){    double p,q,r,tol1,tol2,u,v,w,x,xm; 
             k2=anint[m][i]+(mint[m][i]/12.);    double e=0.0; 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {   
               if(agev[m][i]==0) agev[m][i]=agemax+1;    a=(ax < cx ? ax : cx); 
               if(agev[m][i]==1) agev[m][i]=agemax+2;    b=(ax > cx ? ax : cx); 
               if (m<lastpass) {    x=w=v=bx; 
                 if (calagedate>0)    fw=fv=fx=(*f)(x); 
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    for (iter=1;iter<=ITMAX;iter++) { 
                 else      xm=0.5*(a+b); 
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
               }      printf(".");fflush(stdout);
             }      fprintf(ficlog,".");fflush(ficlog);
           }  #ifdef DEBUGBRENT
         }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       for(i=(int)agemin; i <= (int)agemax+3; i++){      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         for(jk=1; jk <=nlstate ; jk++){  #endif
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
             pp[jk] += freq[jk][m][i];        *xmin=x; 
         }        return fx; 
         for(jk=1; jk <=nlstate ; jk++){      } 
           for(m=-1, pos=0; m <=0 ; m++)      ftemp=fu;
             pos += freq[jk][m][i];      if (fabs(e) > tol1) { 
         }        r=(x-w)*(fx-fv); 
                q=(x-v)*(fx-fw); 
         for(jk=1; jk <=nlstate ; jk++){        p=(x-v)*q-(x-w)*r; 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        q=2.0*(q-r); 
             pp[jk] += freq[jk][m][i];        if (q > 0.0) p = -p; 
         }        q=fabs(q); 
                etemp=e; 
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        e=d; 
                if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         for(jk=1; jk <=nlstate ; jk++){              d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
           if( i <= (int) agemax){        else { 
             if(pos>=1.e-5){          d=p/q; 
               probs[i][jk][j1]= pp[jk]/pos;          u=x+d; 
             }          if (u-a < tol2 || b-u < tol2) 
           }            d=SIGN(tol1,xm-x); 
         }/* end jk */        } 
       }/* end i */      } else { 
     } /* end i1 */        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   } /* end k1 */      } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
        fu=(*f)(u); 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      if (fu <= fx) { 
   free_vector(pp,1,nlstate);        if (u >= x) a=x; else b=x; 
          SHFT(v,w,x,u) 
 }  /* End of Freq */        SHFT(fv,fw,fx,fu) 
       } else { 
 /************* Waves Concatenation ***************/        if (u < x) a=u; else b=u; 
         if (fu <= fw || w == x) { 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          v=w; 
 {          w=u; 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          fv=fw; 
      Death is a valid wave (if date is known).          fw=fu; 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        } else if (fu <= fv || v == x || v == w) { 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          v=u; 
      and mw[mi+1][i]. dh depends on stepm.          fv=fu; 
      */        } 
       } 
   int i, mi, m;    } 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    nrerror("Too many iterations in brent"); 
      double sum=0., jmean=0.;*/    *xmin=x; 
   int first;    return fx; 
   int j, k=0,jk, ju, jl;  } 
   double sum=0.;  
   first=0;  /****************** mnbrak ***********************/
   jmin=1e+5;  
   jmax=-1;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   jmean=0.;              double (*func)(double)) 
   for(i=1; i<=imx; i++){  { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
     mi=0;  the downhill direction (defined by the function as evaluated at the initial points) and returns
     m=firstpass;  new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
     while(s[m][i] <= nlstate){  values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
       if(s[m][i]>=1)     */
         mw[++mi][i]=m;    double ulim,u,r,q, dum;
       if(m >=lastpass)    double fu; 
         break;  
       else    double scale=10.;
         m++;    int iterscale=0;
     }/* end while */  
     if (s[m][i] > nlstate){    *fa=(*func)(*ax); /*  xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
       mi++;     /* Death is another wave */    *fb=(*func)(*bx); /*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
       /* if(mi==0)  never been interviewed correctly before death */  
          /* Only death is a correct wave */  
       mw[mi][i]=m;    /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
     }    /*   printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
     /*   *bx = *ax - (*ax - *bx)/scale; */
     wav[i]=mi;    /*   *fb=(*func)(*bx);  /\*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
     if(mi==0){    /* } */
       if(first==0){  
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);    if (*fb > *fa) { 
         first=1;      SHFT(dum,*ax,*bx,dum) 
       }      SHFT(dum,*fb,*fa,dum) 
       if(first==1){    } 
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);    *cx=(*bx)+GOLD*(*bx-*ax); 
       }    *fc=(*func)(*cx); 
     } /* end mi==0 */  #ifdef DEBUG
   }    printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
     fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
   for(i=1; i<=imx; i++){  #endif
     for(mi=1; mi<wav[i];mi++){    while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */
       if (stepm <=0)      r=(*bx-*ax)*(*fb-*fc); 
         dh[mi][i]=1;      q=(*bx-*cx)*(*fb-*fa); 
       else{      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         if (s[mw[mi+1][i]][i] > nlstate) {        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
           if (agedc[i] < 2*AGESUP) {      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
           if(j==0) j=1;  /* Survives at least one month after exam */        fu=(*func)(u); 
           k=k+1;  #ifdef DEBUG
           if (j >= jmax) jmax=j;        /* f(x)=A(x-u)**2+f(u) */
           if (j <= jmin) jmin=j;        double A, fparabu; 
           sum=sum+j;        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        fparabu= *fa - A*(*ax-u)*(*ax-u);
           }        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
         }        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
         else{        /* And thus,it can be that fu > *fc even if fparabu < *fc */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
           k=k+1;          (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
           if (j >= jmax) jmax=j;        /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
           else if (j <= jmin)jmin=j;  #endif 
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */  #ifdef MNBRAKORIGINAL
           sum=sum+j;  #else
         }  /*       if (fu > *fc) { */
         jk= j/stepm;  /* #ifdef DEBUG */
         jl= j -jk*stepm;  /*       printf("mnbrak4  fu > fc \n"); */
         ju= j -(jk+1)*stepm;  /*       fprintf(ficlog, "mnbrak4 fu > fc\n"); */
         if(jl <= -ju)  /* #endif */
           dh[mi][i]=jk;  /*      /\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/  *\/ */
         else  /*      /\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\\/ *\/ */
           dh[mi][i]=jk+1;  /*      dum=u; /\* Shifting c and u *\/ */
         if(dh[mi][i]==0)  /*      u = *cx; */
           dh[mi][i]=1; /* At least one step */  /*      *cx = dum; */
       }  /*      dum = fu; */
     }  /*      fu = *fc; */
   }  /*      *fc =dum; */
   jmean=sum/k;  /*       } else { /\* end *\/ */
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  /* #ifdef DEBUG */
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  /*       printf("mnbrak3  fu < fc \n"); */
  }  /*       fprintf(ficlog, "mnbrak3 fu < fc\n"); */
   /* #endif */
 /*********** Tricode ****************************/  /*      dum=u; /\* Shifting c and u *\/ */
 void tricode(int *Tvar, int **nbcode, int imx)  /*      u = *cx; */
 {  /*      *cx = dum; */
   int Ndum[20],ij=1, k, j, i;  /*      dum = fu; */
   int cptcode=0;  /*      fu = *fc; */
   cptcoveff=0;  /*      *fc =dum; */
    /*       } */
   for (k=0; k<19; k++) Ndum[k]=0;  #ifdef DEBUG
   for (k=1; k<=7; k++) ncodemax[k]=0;        printf("mnbrak34  fu < or >= fc \n");
         fprintf(ficlog, "mnbrak34 fu < fc\n");
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  #endif
     for (i=1; i<=imx; i++) {        dum=u; /* Shifting c and u */
       ij=(int)(covar[Tvar[j]][i]);        u = *cx;
       Ndum[ij]++;        *cx = dum;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        dum = fu;
       if (ij > cptcode) cptcode=ij;        fu = *fc;
     }        *fc =dum;
   #endif
     for (i=0; i<=cptcode; i++) {      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
       if(Ndum[i]!=0) ncodemax[j]++;  #ifdef DEBUG
     }        printf("mnbrak2  u after c but before ulim\n");
     ij=1;        fprintf(ficlog, "mnbrak2 u after c but before ulim\n");
   #endif
         fu=(*func)(u); 
     for (i=1; i<=ncodemax[j]; i++) {        if (fu < *fc) { 
       for (k=0; k<=19; k++) {  #ifdef DEBUG
         if (Ndum[k] != 0) {        printf("mnbrak2  u after c but before ulim AND fu < fc\n");
           nbcode[Tvar[j]][ij]=k;        fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n");
            #endif
           ij++;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
         }          SHFT(*fb,*fc,fu,(*func)(u)) 
         if (ij > ncodemax[j]) break;        } 
       }        } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
     }  #ifdef DEBUG
   }          printf("mnbrak2  u outside ulim (verifying that ulim is beyond c)\n");
         fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n");
  for (k=0; k<19; k++) Ndum[k]=0;  #endif
         u=ulim; 
  for (i=1; i<=ncovmodel-2; i++) {        fu=(*func)(u); 
    ij=Tvar[i];      } else { /* u could be left to b (if r > q parabola has a maximum) */
    Ndum[ij]++;  #ifdef DEBUG
  }        printf("mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
         fprintf(ficlog, "mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
  ij=1;  #endif
  for (i=1; i<=10; i++) {        u=(*cx)+GOLD*(*cx-*bx); 
    if((Ndum[i]!=0) && (i<=ncovcol)){        fu=(*func)(u); 
      Tvaraff[ij]=i;      } /* end tests */
      ij++;      SHFT(*ax,*bx,*cx,u) 
    }      SHFT(*fa,*fb,*fc,fu) 
  }  #ifdef DEBUG
          printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
  cptcoveff=ij-1;        fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
 }  #endif
     } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
 /*********** Health Expectancies ****************/  } 
   
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  /*************** linmin ************************/
   /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
 {  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
   /* Health expectancies */  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;  the value of func at the returned location p . This is actually all accomplished by calling the
   double age, agelim, hf;  routines mnbrak and brent .*/
   double ***p3mat,***varhe;  int ncom; 
   double **dnewm,**doldm;  double *pcom,*xicom;
   double *xp;  double (*nrfunc)(double []); 
   double **gp, **gm;   
   double ***gradg, ***trgradg;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   int theta;  { 
     double brent(double ax, double bx, double cx, 
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);                 double (*f)(double), double tol, double *xmin); 
   xp=vector(1,npar);    double f1dim(double x); 
   dnewm=matrix(1,nlstate*2,1,npar);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   doldm=matrix(1,nlstate*2,1,nlstate*2);                double *fc, double (*func)(double)); 
      int j; 
   fprintf(ficreseij,"# Health expectancies\n");    double xx,xmin,bx,ax; 
   fprintf(ficreseij,"# Age");    double fx,fb,fa;
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)  #ifdef LINMINORIGINAL
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  #else
   fprintf(ficreseij,"\n");    double scale=10., axs, xxs; /* Scale added for infinity */
   #endif
   if(estepm < stepm){    
     printf ("Problem %d lower than %d\n",estepm, stepm);    ncom=n; 
   }    pcom=vector(1,n); 
   else  hstepm=estepm;      xicom=vector(1,n); 
   /* We compute the life expectancy from trapezoids spaced every estepm months    nrfunc=func; 
    * This is mainly to measure the difference between two models: for example    for (j=1;j<=n;j++) { 
    * if stepm=24 months pijx are given only every 2 years and by summing them      pcom[j]=p[j]; 
    * we are calculating an estimate of the Life Expectancy assuming a linear      xicom[j]=xi[j]; /* Former scale xi[j] of currrent direction i */
    * progression inbetween and thus overestimating or underestimating according    } 
    * to the curvature of the survival function. If, for the same date, we  
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  #ifdef LINMINORIGINAL
    * to compare the new estimate of Life expectancy with the same linear    xx=1.;
    * hypothesis. A more precise result, taking into account a more precise  #else
    * curvature will be obtained if estepm is as small as stepm. */    axs=0.0;
     xxs=1.;
   /* For example we decided to compute the life expectancy with the smallest unit */    do{
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      xx= xxs;
      nhstepm is the number of hstepm from age to agelim  #endif
      nstepm is the number of stepm from age to agelin.      ax=0.;
      Look at hpijx to understand the reason of that which relies in memory size      mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
      and note for a fixed period like estepm months */      /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */
      survival function given by stepm (the optimization length). Unfortunately it      /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
      means that if the survival funtion is printed only each two years of age and if      /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
      results. So we changed our mind and took the option of the best precision.      /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/
   */  #ifdef LINMINORIGINAL
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  #else
       if (fx != fx){
   agelim=AGESUP;          xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          printf("|");
     /* nhstepm age range expressed in number of stepm */          fprintf(ficlog,"|");
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  #ifdef DEBUGLINMIN
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx);
     /* if (stepm >= YEARM) hstepm=1;*/  #endif
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }while(fx != fx);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);  #endif
     gp=matrix(0,nhstepm,1,nlstate*2);    
     gm=matrix(0,nhstepm,1,nlstate*2);  #ifdef DEBUGLINMIN
     printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    fprintf(ficlog,"\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  #endif
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
      /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
     /* fmin = f(p[j] + xmin * xi[j]) */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
     /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
     /* Computing Variances of health expectancies */  #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
      for(theta=1; theta <=npar; theta++){    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       for(i=1; i<=npar; i++){  #endif
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  #ifdef DEBUGLINMIN
       }    printf("linmin end ");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      fprintf(ficlog,"linmin end ");
    #endif
       cptj=0;    for (j=1;j<=n;j++) { 
       for(j=1; j<= nlstate; j++){  #ifdef LINMINORIGINAL
         for(i=1; i<=nlstate; i++){      xi[j] *= xmin; 
           cptj=cptj+1;  #else
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){  #ifdef DEBUGLINMIN
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      if(xxs <1.0)
           }        printf(" before xi[%d]=%12.8f", j,xi[j]);
         }  #endif
       }      xi[j] *= xmin*xxs; /* xi rescaled by xmin and number of loops: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
        #ifdef DEBUGLINMIN
            if(xxs <1.0)
       for(i=1; i<=npar; i++)        printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs );
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  #endif
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    #endif
            p[j] += xi[j]; /* Parameters values are updated accordingly */
       cptj=0;    } 
       for(j=1; j<= nlstate; j++){  #ifdef DEBUGLINMIN
         for(i=1;i<=nlstate;i++){    printf("\n");
           cptj=cptj+1;    printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    fprintf(ficlog,"Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    for (j=1;j<=n;j++) { 
           }      printf(" xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
         }      fprintf(ficlog," xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
       }      if(j % ncovmodel == 0){
       for(j=1; j<= nlstate*2; j++)        printf("\n");
         for(h=0; h<=nhstepm-1; h++){        fprintf(ficlog,"\n");
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      }
         }    }
      }  #else
      #endif
 /* End theta */    free_vector(xicom,1,n); 
     free_vector(pcom,1,n); 
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);  } 
   
      for(h=0; h<=nhstepm-1; h++)  
       for(j=1; j<=nlstate*2;j++)  /*************** powell ************************/
         for(theta=1; theta <=npar; theta++)  /*
           trgradg[h][j][theta]=gradg[h][theta][j];  Minimization of a function func of n variables. Input consists of an initial starting point
        p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
   rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
      for(i=1;i<=nlstate*2;i++)  such that failure to decrease by more than this amount on one iteration signals doneness. On
       for(j=1;j<=nlstate*2;j++)  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
         varhe[i][j][(int)age] =0.;  function value at p , and iter is the number of iterations taken. The routine linmin is used.
    */
      printf("%d|",(int)age);fflush(stdout);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);              double (*func)(double [])) 
      for(h=0;h<=nhstepm-1;h++){  { 
       for(k=0;k<=nhstepm-1;k++){    void linmin(double p[], double xi[], int n, double *fret, 
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);                double (*func)(double [])); 
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    int i,ibig,j; 
         for(i=1;i<=nlstate*2;i++)    double del,t,*pt,*ptt,*xit;
           for(j=1;j<=nlstate*2;j++)    double directest;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;    double fp,fptt;
       }    double *xits;
     }    int niterf, itmp;
     /* Computing expectancies */  
     for(i=1; i<=nlstate;i++)    pt=vector(1,n); 
       for(j=1; j<=nlstate;j++)    ptt=vector(1,n); 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    xit=vector(1,n); 
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    xits=vector(1,n); 
              *fret=(*func)(p); 
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    for (j=1;j<=n;j++) pt[j]=p[j]; 
     rcurr_time = time(NULL);  
         }    for (*iter=1;;++(*iter)) { 
       fp=(*fret); /* From former iteration or initial value */
     fprintf(ficreseij,"%3.0f",age );      ibig=0; 
     cptj=0;      del=0.0; 
     for(i=1; i<=nlstate;i++)      rlast_time=rcurr_time;
       for(j=1; j<=nlstate;j++){      /* (void) gettimeofday(&curr_time,&tzp); */
         cptj++;      rcurr_time = time(NULL);  
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      curr_time = *localtime(&rcurr_time);
       }      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
     fprintf(ficreseij,"\n");      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
      /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
     free_matrix(gm,0,nhstepm,1,nlstate*2);      for (i=1;i<=n;i++) {
     free_matrix(gp,0,nhstepm,1,nlstate*2);        printf(" %d %.12f",i, p[i]);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);        fprintf(ficlog," %d %.12lf",i, p[i]);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);        fprintf(ficrespow," %.12lf", p[i]);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
   }      printf("\n");
   printf("\n");      fprintf(ficlog,"\n");
   fprintf(ficlog,"\n");      fprintf(ficrespow,"\n");fflush(ficrespow);
       if(*iter <=3){
   free_vector(xp,1,npar);        tml = *localtime(&rcurr_time);
   free_matrix(dnewm,1,nlstate*2,1,npar);        strcpy(strcurr,asctime(&tml));
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        rforecast_time=rcurr_time; 
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);        itmp = strlen(strcurr);
 }        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
           strcurr[itmp-1]='\0';
 /************ Variance ******************/        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
 {        for(niterf=10;niterf<=30;niterf+=10){
   /* Variance of health expectancies */          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          forecast_time = *localtime(&rforecast_time);
   /* double **newm;*/          strcpy(strfor,asctime(&forecast_time));
   double **dnewm,**doldm;          itmp = strlen(strfor);
   double **dnewmp,**doldmp;          if(strfor[itmp-1]=='\n')
   int i, j, nhstepm, hstepm, h, nstepm ;          strfor[itmp-1]='\0';
   int k, cptcode;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
   double *xp;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
   double **gp, **gm;  /* for var eij */        }
   double ***gradg, ***trgradg; /*for var eij */      }
   double **gradgp, **trgradgp; /* for var p point j */      for (i=1;i<=n;i++) { /* For each direction i */
   double *gpp, *gmp; /* for var p point j */        for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */        fptt=(*fret); 
   double ***p3mat;  #ifdef DEBUG
   double age,agelim, hf;        printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
   int theta;        fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
   char digit[4];  #endif
   char digitp[16];        printf("%d",i);fflush(stdout); /* print direction (parameter) i */
         fprintf(ficlog,"%d",i);fflush(ficlog);
   char fileresprobmorprev[FILENAMELENGTH];        linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
                                       /* Outputs are fret(new point p) p is updated and xit rescaled */
   if(popbased==1)        if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
     strcpy(digitp,"-populbased-");          /* because that direction will be replaced unless the gain del is small */
   else          /* in comparison with the 'probable' gain, mu^2, with the last average direction. */
     strcpy(digitp,"-stablbased-");          /* Unless the n directions are conjugate some gain in the determinant may be obtained */
           /* with the new direction. */
   strcpy(fileresprobmorprev,"prmorprev");          del=fabs(fptt-(*fret)); 
   sprintf(digit,"%-d",ij);          ibig=i; 
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/        } 
   strcat(fileresprobmorprev,digit); /* Tvar to be done */  #ifdef DEBUG
   strcat(fileresprobmorprev,digitp); /* Popbased or not */        printf("%d %.12e",i,(*fret));
   strcat(fileresprobmorprev,fileres);        fprintf(ficlog,"%d %.12e",i,(*fret));
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {        for (j=1;j<=n;j++) {
     printf("Problem with resultfile: %s\n", fileresprobmorprev);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);          printf(" x(%d)=%.12e",j,xit[j]);
   }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);        }
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);        for(j=1;j<=n;j++) {
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");          printf(" p(%d)=%.12e",j,p[j]);
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){        }
     fprintf(ficresprobmorprev," p.%-d SE",j);        printf("\n");
     for(i=1; i<=nlstate;i++)        fprintf(ficlog,"\n");
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);  #endif
   }        } /* end loop on each direction i */
   fprintf(ficresprobmorprev,"\n");      /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);      /* New value of last point Pn is not computed, P(n-1) */
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
     exit(0);        /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
   }        /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
   else{        /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
     fprintf(ficgp,"\n# Routine varevsij");        /* decreased of more than 3.84  */
   }        /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {        /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */
     printf("Problem with html file: %s\n", optionfilehtm);        /* By adding 10 parameters more the gain should be 18.31 */
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);  
     exit(0);        /* Starting the program with initial values given by a former maximization will simply change */
   }        /* the scales of the directions and the directions, because the are reset to canonical directions */
   else{        /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");        /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long.  */
   }  #ifdef DEBUG
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        int k[2],l;
         k[0]=1;
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");        k[1]=-1;
   fprintf(ficresvij,"# Age");        printf("Max: %.12e",(*func)(p));
   for(i=1; i<=nlstate;i++)        fprintf(ficlog,"Max: %.12e",(*func)(p));
     for(j=1; j<=nlstate;j++)        for (j=1;j<=n;j++) {
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          printf(" %.12e",p[j]);
   fprintf(ficresvij,"\n");          fprintf(ficlog," %.12e",p[j]);
         }
   xp=vector(1,npar);        printf("\n");
   dnewm=matrix(1,nlstate,1,npar);        fprintf(ficlog,"\n");
   doldm=matrix(1,nlstate,1,nlstate);        for(l=0;l<=1;l++) {
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);          for (j=1;j<=n;j++) {
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   gpp=vector(nlstate+1,nlstate+ndeath);          }
   gmp=vector(nlstate+1,nlstate+ndeath);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
          }
   if(estepm < stepm){  #endif
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }  
   else  hstepm=estepm;          free_vector(xit,1,n); 
   /* For example we decided to compute the life expectancy with the smallest unit */        free_vector(xits,1,n); 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        free_vector(ptt,1,n); 
      nhstepm is the number of hstepm from age to agelim        free_vector(pt,1,n); 
      nstepm is the number of stepm from age to agelin.        return; 
      Look at hpijx to understand the reason of that which relies in memory size      } /* enough precision */ 
      and note for a fixed period like k years */      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
      survival function given by stepm (the optimization length). Unfortunately it        ptt[j]=2.0*p[j]-pt[j]; 
      means that if the survival funtion is printed only each two years of age and if        xit[j]=p[j]-pt[j]; 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        pt[j]=p[j]; 
      results. So we changed our mind and took the option of the best precision.      } 
   */      fptt=(*func)(ptt); /* f_3 */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  #ifdef POWELLF1F3
   agelim = AGESUP;  #else
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  #endif
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
     gp=matrix(0,nhstepm,1,nlstate);        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
     gm=matrix(0,nhstepm,1,nlstate);        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
         /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
         /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
     for(theta=1; theta <=npar; theta++){  #ifdef NRCORIGINAL
       for(i=1; i<=npar; i++){ /* Computes gradient */        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  #else
       }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          t= t- del*SQR(fp-fptt);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  #endif
         directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If delta was big enough we change it for a new direction */
       if (popbased==1) {  #ifdef DEBUG
         for(i=1; i<=nlstate;i++)        printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
           prlim[i][i]=probs[(int)age][i][ij];        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
       }        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
                 (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
       for(j=1; j<= nlstate; j++){        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
         for(h=0; h<=nhstepm; h++){               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
         }  #endif
       }  #ifdef POWELLORIGINAL
       /* This for computing forces of mortality (h=1)as a weighted average */        if (t < 0.0) { /* Then we use it for new direction */
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){  #else
         for(i=1; i<= nlstate; i++)        if (directest*t < 0.0) { /* Contradiction between both tests */
           gpp[j] += prlim[i][i]*p3mat[i][j][1];          printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
       }              printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
       /* end force of mortality */          fprintf(ficlog,"directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
           fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
       for(i=1; i<=npar; i++) /* Computes gradient */        } 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        if (directest < 0.0) { /* Then we use it for new direction */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    #endif
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  #ifdef DEBUGLINMIN
            printf("Before linmin in direction P%d-P0\n",n);
       if (popbased==1) {          for (j=1;j<=n;j++) { 
         for(i=1; i<=nlstate;i++)            printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
           prlim[i][i]=probs[(int)age][i][ij];            fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
       }            if(j % ncovmodel == 0){
               printf("\n");
       for(j=1; j<= nlstate; j++){              fprintf(ficlog,"\n");
         for(h=0; h<=nhstepm; h++){            }
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  #endif
         }          linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
       }  #ifdef DEBUGLINMIN
       /* This for computing force of mortality (h=1)as a weighted average */          for (j=1;j<=n;j++) { 
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){            printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
         for(i=1; i<= nlstate; i++)            fprintf(ficlog,"After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
           gmp[j] += prlim[i][i]*p3mat[i][j][1];            if(j % ncovmodel == 0){
       }                  printf("\n");
       /* end force of mortality */              fprintf(ficlog,"\n");
             }
       for(j=1; j<= nlstate; j++) /* vareij */          }
         for(h=0; h<=nhstepm; h++){  #endif
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          for (j=1;j<=n;j++) { 
         }            xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];          }
       }          printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
           fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
     } /* End theta */  
   #ifdef DEBUG
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for(h=0; h<=nhstepm; h++) /* veij */          for(j=1;j<=n;j++){
       for(j=1; j<=nlstate;j++)            printf(" %.12e",xit[j]);
         for(theta=1; theta <=npar; theta++)            fprintf(ficlog," %.12e",xit[j]);
           trgradg[h][j][theta]=gradg[h][theta][j];          }
           printf("\n");
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */          fprintf(ficlog,"\n");
       for(theta=1; theta <=npar; theta++)  #endif
         trgradgp[j][theta]=gradgp[theta][j];        } /* end of t or directest negative */
   #ifdef POWELLF1F3
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  #else
     for(i=1;i<=nlstate;i++)      } /* end if (fptt < fp)  */
       for(j=1;j<=nlstate;j++)  #endif
         vareij[i][j][(int)age] =0.;    } /* loop iteration */ 
   } 
     for(h=0;h<=nhstepm;h++){  
       for(k=0;k<=nhstepm;k++){  /**** Prevalence limit (stable or period prevalence)  ****************/
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij)
         for(i=1;i<=nlstate;i++)  {
           for(j=1;j<=nlstate;j++)    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;       matrix by transitions matrix until convergence is reached with precision ftolpl */
       }    /* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I */
     }    /* Wx is row vector: population in state 1, population in state 2, population dead */
     /* or prevalence in state 1, prevalence in state 2, 0 */
     /* pptj */    /* newm is the matrix after multiplications, its rows are identical at a factor */
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);    /* Initial matrix pimij */
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);    /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */
     for(j=nlstate+1;j<=nlstate+ndeath;j++)    /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */
       for(i=nlstate+1;i<=nlstate+ndeath;i++)    /*  0,                   0                  , 1} */
         varppt[j][i]=doldmp[j][i];    /*
     /* end ppptj */     * and after some iteration: */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);      /* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);    /*  0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */
      /*  0,                   0                  , 1} */
     if (popbased==1) {    /* And prevalence by suppressing the deaths are close to identical rows in prlim: */
       for(i=1; i<=nlstate;i++)    /* {0.51571254859325999, 0.4842874514067399, */
         prlim[i][i]=probs[(int)age][i][ij];    /*  0.51326036147820708, 0.48673963852179264} */
     }    /* If we start from prlim again, prlim tends to a constant matrix */
      
     /* This for computing force of mortality (h=1)as a weighted average */    int i, ii,j,k;
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){    double *min, *max, *meandiff, maxmax,sumnew=0.;
       for(i=1; i<= nlstate; i++)    /* double **matprod2(); */ /* test */
         gmp[j] += prlim[i][i]*p3mat[i][j][1];    double **out, cov[NCOVMAX+1], **pmij();
     }        double **newm;
     /* end force of mortality */    double agefin, delaymax=200. ; /* 100 Max number of years to converge */
     int ncvloop=0;
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);    
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){    min=vector(1,nlstate);
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));    max=vector(1,nlstate);
       for(i=1; i<=nlstate;i++){    meandiff=vector(1,nlstate);
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);  
       }    for (ii=1;ii<=nlstate+ndeath;ii++)
     }      for (j=1;j<=nlstate+ndeath;j++){
     fprintf(ficresprobmorprev,"\n");        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }
     fprintf(ficresvij,"%.0f ",age );    
     for(i=1; i<=nlstate;i++)    cov[1]=1.;
       for(j=1; j<=nlstate;j++){    
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       }    /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
     fprintf(ficresvij,"\n");    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     free_matrix(gp,0,nhstepm,1,nlstate);      ncvloop++;
     free_matrix(gm,0,nhstepm,1,nlstate);      newm=savm;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      /* Covariates have to be included here again */
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      cov[2]=agefin;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      if(nagesqr==1)
   } /* End age */        cov[3]= agefin*agefin;;
   free_vector(gpp,nlstate+1,nlstate+ndeath);      for (k=1; k<=cptcovn;k++) {
   free_vector(gmp,nlstate+1,nlstate+ndeath);        /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/        /* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");      }
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */      /*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");      /* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]*cov[2]; */
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);      for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2];
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);      for (k=1; k<=cptcovprod;k++) /* Useless */
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);        /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);        cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);      
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   free_vector(xp,1,npar);      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   free_matrix(doldm,1,nlstate,1,nlstate);      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   free_matrix(dnewm,1,nlstate,1,npar);      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);      
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      savm=oldm;
   fclose(ficresprobmorprev);      oldm=newm;
   fclose(ficgp);  
   fclose(fichtm);      for(j=1; j<=nlstate; j++){
         max[j]=0.;
 }        min[j]=1.;
       }
 /************ Variance of prevlim ******************/      for(i=1;i<=nlstate;i++){
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        sumnew=0;
 {        for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   /* Variance of prevalence limit */        for(j=1; j<=nlstate; j++){ 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          prlim[i][j]= newm[i][j]/(1-sumnew);
   double **newm;          max[j]=FMAX(max[j],prlim[i][j]);
   double **dnewm,**doldm;          min[j]=FMIN(min[j],prlim[i][j]);
   int i, j, nhstepm, hstepm;        }
   int k, cptcode;      }
   double *xp;  
   double *gp, *gm;      maxmax=0.;
   double **gradg, **trgradg;      for(j=1; j<=nlstate; j++){
   double age,agelim;        meandiff[j]=(max[j]-min[j])/(max[j]+min[j])*2.; /* mean difference for each column */
   int theta;        maxmax=FMAX(maxmax,meandiff[j]);
            /* printf(" age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, j, meandiff[j],(int)agefin, j, max[j], j, min[j],maxmax); */
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");      } /* j loop */
   fprintf(ficresvpl,"# Age");      *ncvyear= (int)age- (int)agefin;
   for(i=1; i<=nlstate;i++)      /* printf("maxmax=%lf maxmin=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, maxmin, ncvloop, (int)age, (int)agefin, *ncvyear); */
       fprintf(ficresvpl," %1d-%1d",i,i);      if(maxmax < ftolpl){
   fprintf(ficresvpl,"\n");        /* printf("maxmax=%lf ncvloop=%ld, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
         free_vector(min,1,nlstate);
   xp=vector(1,npar);        free_vector(max,1,nlstate);
   dnewm=matrix(1,nlstate,1,npar);        free_vector(meandiff,1,nlstate);
   doldm=matrix(1,nlstate,1,nlstate);        return prlim;
        }
   hstepm=1*YEARM; /* Every year of age */    } /* age loop */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      /* After some age loop it doesn't converge */
   agelim = AGESUP;    printf("Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  Earliest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
     if (stepm >= YEARM) hstepm=1;    free_vector(min,1,nlstate);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    free_vector(max,1,nlstate);
     gradg=matrix(1,npar,1,nlstate);    free_vector(meandiff,1,nlstate);
     gp=vector(1,nlstate);    
     gm=vector(1,nlstate);    return prlim; /* should not reach here */
   }
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */  /*************** transition probabilities ***************/ 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  {
       for(i=1;i<=nlstate;i++)    /* According to parameters values stored in x and the covariate's values stored in cov,
         gp[i] = prlim[i][i];       computes the probability to be observed in state j being in state i by appying the
           model to the ncovmodel covariates (including constant and age).
       for(i=1; i<=npar; i++) /* Computes gradient */       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
         xp[i] = x[i] - (i==theta ?delti[theta]:0);       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       ncth covariate in the global vector x is given by the formula:
       for(i=1;i<=nlstate;i++)       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
         gm[i] = prlim[i][i];       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
        Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
       for(i=1;i<=nlstate;i++)       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];       Outputs ps[i][j] the probability to be observed in j being in j according to
     } /* End theta */       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
     */
     trgradg =matrix(1,nlstate,1,npar);    double s1, lnpijopii;
     /*double t34;*/
     for(j=1; j<=nlstate;j++)    int i,j, nc, ii, jj;
       for(theta=1; theta <=npar; theta++)  
         trgradg[j][theta]=gradg[theta][j];      for(i=1; i<= nlstate; i++){
         for(j=1; j<i;j++){
     for(i=1;i<=nlstate;i++)          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
       varpl[i][(int)age] =0.;            /*lnpijopii += param[i][j][nc]*cov[nc];*/
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
     for(i=1;i<=nlstate;i++)          }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
     fprintf(ficresvpl,"%.0f ",age );        }
     for(i=1; i<=nlstate;i++)        for(j=i+1; j<=nlstate+ndeath;j++){
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
     fprintf(ficresvpl,"\n");            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
     free_vector(gp,1,nlstate);            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
     free_vector(gm,1,nlstate);  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
     free_matrix(gradg,1,npar,1,nlstate);          }
     free_matrix(trgradg,1,nlstate,1,npar);          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   } /* End age */        }
       }
   free_vector(xp,1,npar);      
   free_matrix(doldm,1,nlstate,1,npar);      for(i=1; i<= nlstate; i++){
   free_matrix(dnewm,1,nlstate,1,nlstate);        s1=0;
         for(j=1; j<i; j++){
 }          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
 /************ Variance of one-step probabilities  ******************/        }
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        for(j=i+1; j<=nlstate+ndeath; j++){
 {          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   int i, j=0,  i1, k1, l1, t, tj;          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   int k2, l2, j1,  z1;        }
   int k=0,l, cptcode;        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
   int first=1, first1;        ps[i][i]=1./(s1+1.);
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;        /* Computing other pijs */
   double **dnewm,**doldm;        for(j=1; j<i; j++)
   double *xp;          ps[i][j]= exp(ps[i][j])*ps[i][i];
   double *gp, *gm;        for(j=i+1; j<=nlstate+ndeath; j++)
   double **gradg, **trgradg;          ps[i][j]= exp(ps[i][j])*ps[i][i];
   double **mu;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   double age,agelim, cov[NCOVMAX];      } /* end i */
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */      
   int theta;      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   char fileresprob[FILENAMELENGTH];        for(jj=1; jj<= nlstate+ndeath; jj++){
   char fileresprobcov[FILENAMELENGTH];          ps[ii][jj]=0;
   char fileresprobcor[FILENAMELENGTH];          ps[ii][ii]=1;
         }
   double ***varpij;      }
       
   strcpy(fileresprob,"prob");      
   strcat(fileresprob,fileres);      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
     printf("Problem with resultfile: %s\n", fileresprob);      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);      /*   } */
   }      /*   printf("\n "); */
   strcpy(fileresprobcov,"probcov");      /* } */
   strcat(fileresprobcov,fileres);      /* printf("\n ");printf("%lf ",cov[2]);*/
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {      /*
     printf("Problem with resultfile: %s\n", fileresprobcov);        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);        goto end;*/
   }      return ps;
   strcpy(fileresprobcor,"probcor");  }
   strcat(fileresprobcor,fileres);  
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {  /**************** Product of 2 matrices ******************/
     printf("Problem with resultfile: %s\n", fileresprobcor);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
   }  {
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    /* in, b, out are matrice of pointers which should have been initialized 
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);       before: only the contents of out is modified. The function returns
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);       a pointer to pointers identical to out */
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    int i, j, k;
      for(i=nrl; i<= nrh; i++)
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");      for(k=ncolol; k<=ncoloh; k++){
   fprintf(ficresprob,"# Age");        out[i][k]=0.;
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");        for(j=ncl; j<=nch; j++)
   fprintf(ficresprobcov,"# Age");          out[i][k] +=in[i][j]*b[j][k];
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");      }
   fprintf(ficresprobcov,"# Age");    return out;
   }
   
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=(nlstate+ndeath);j++){  /************* Higher Matrix Product ***************/
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);  
       fprintf(ficresprobcov," p%1d-%1d ",i,j);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       fprintf(ficresprobcor," p%1d-%1d ",i,j);  {
     }      /* Computes the transition matrix starting at age 'age' over 
   fprintf(ficresprob,"\n");       'nhstepm*hstepm*stepm' months (i.e. until
   fprintf(ficresprobcov,"\n");       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   fprintf(ficresprobcor,"\n");       nhstepm*hstepm matrices. 
   xp=vector(1,npar);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);       (typically every 2 years instead of every month which is too big 
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));       for the memory).
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);       Model is determined by parameters x and covariates have to be 
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);       included manually here. 
   first=1;  
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {       */
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);  
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);    int i, j, d, h, k;
     exit(0);    double **out, cov[NCOVMAX+1];
   }    double **newm;
   else{    double agexact;
     fprintf(ficgp,"\n# Routine varprob");  
   }    /* Hstepm could be zero and should return the unit matrix */
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    for (i=1;i<=nlstate+ndeath;i++)
     printf("Problem with html file: %s\n", optionfilehtm);      for (j=1;j<=nlstate+ndeath;j++){
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);        oldm[i][j]=(i==j ? 1.0 : 0.0);
     exit(0);        po[i][j][0]=(i==j ? 1.0 : 0.0);
   }      }
   else{    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    for(h=1; h <=nhstepm; h++){
     fprintf(fichtm,"\n");      for(d=1; d <=hstepm; d++){
         newm=savm;
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");        /* Covariates have to be included here again */
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");        cov[1]=1.;
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");        agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         cov[2]=agexact;
   }        if(nagesqr==1)
           cov[3]= agexact*agexact;
          for (k=1; k<=cptcovn;k++) 
   cov[1]=1;          cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
   tj=cptcoveff;          /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}        for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
   j1=0;          /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
   for(t=1; t<=tj;t++){          cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
     for(i1=1; i1<=ncodemax[t];i1++){          /* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
       j1++;        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
                cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
       if  (cptcovn>0) {          /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
         fprintf(ficresprob, "\n#********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficresprob, "**********\n#");        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         fprintf(ficresprobcov, "\n#********** Variable ");        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         fprintf(ficresprobcov, "**********\n#");                     pmij(pmmij,cov,ncovmodel,x,nlstate));
                savm=oldm;
         fprintf(ficgp, "\n#********** Variable ");        oldm=newm;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      }
         fprintf(ficgp, "**********\n#");      for(i=1; i<=nlstate+ndeath; i++)
                for(j=1;j<=nlstate+ndeath;j++) {
                  po[i][j][h]=newm[i][j];
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        }
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");      /*printf("h=%d ",h);*/
            } /* end h */
         fprintf(ficresprobcor, "\n#********** Variable ");      /*     printf("\n H=%d \n",h); */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    return po;
         fprintf(ficgp, "**********\n#");      }
       }  
        #ifdef NLOPT
       for (age=bage; age<=fage; age ++){    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
         cov[2]=age;    double fret;
         for (k=1; k<=cptcovn;k++) {    double *xt;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    int j;
         }    myfunc_data *d2 = (myfunc_data *) pd;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /* xt = (p1-1); */
         for (k=1; k<=cptcovprod;k++)    xt=vector(1,n); 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
          
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
         gp=vector(1,(nlstate)*(nlstate+ndeath));    printf("Function = %.12lf ",fret);
         gm=vector(1,(nlstate)*(nlstate+ndeath));    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
        printf("\n");
         for(theta=1; theta <=npar; theta++){   free_vector(xt,1,n);
           for(i=1; i<=npar; i++)    return fret;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);  }
            #endif
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  
            /*************** log-likelihood *************/
           k=0;  double func( double *x)
           for(i=1; i<= (nlstate); i++){  {
             for(j=1; j<=(nlstate+ndeath);j++){    int i, ii, j, k, mi, d, kk;
               k=k+1;    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
               gp[k]=pmmij[i][j];    double **out;
             }    double sw; /* Sum of weights */
           }    double lli; /* Individual log likelihood */
              int s1, s2;
           for(i=1; i<=npar; i++)    double bbh, survp;
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    long ipmx;
        double agexact;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    /*extern weight */
           k=0;    /* We are differentiating ll according to initial status */
           for(i=1; i<=(nlstate); i++){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
             for(j=1; j<=(nlstate+ndeath);j++){    /*for(i=1;i<imx;i++) 
               k=k+1;      printf(" %d\n",s[4][i]);
               gm[k]=pmmij[i][j];    */
             }  
           }    ++countcallfunc;
        
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)    cov[1]=1.;
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    
         }    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    if(mle==1){
           for(theta=1; theta <=npar; theta++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             trgradg[j][theta]=gradg[theta][j];        /* Computes the values of the ncovmodel covariates of the model
                   depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);           to be observed in j being in i according to the model.
                 */
         pmij(pmmij,cov,ncovmodel,x,nlstate);        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
                    cov[2+nagesqr+k]=covar[Tvar[k]][i];
         k=0;        }
         for(i=1; i<=(nlstate); i++){        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
           for(j=1; j<=(nlstate+ndeath);j++){           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
             k=k+1;           has been calculated etc */
             mu[k][(int) age]=pmmij[i][j];        for(mi=1; mi<= wav[i]-1; mi++){
           }          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             varpij[i][j][(int)age] = doldm[i][j];            }
           for(d=0; d<dh[mi][i]; d++){
         /*printf("\n%d ",(int)age);            newm=savm;
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            cov[2]=agexact;
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            if(nagesqr==1)
      }*/              cov[3]= agexact*agexact;
             for (kk=1; kk<=cptcovage;kk++) {
         fprintf(ficresprob,"\n%d ",(int)age);              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
         fprintf(ficresprobcov,"\n%d ",(int)age);            }
         fprintf(ficresprobcor,"\n%d ",(int)age);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)            savm=oldm;
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));            oldm=newm;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          } /* end mult */
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);        
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         }          /* But now since version 0.9 we anticipate for bias at large stepm.
         i=0;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         for (k=1; k<=(nlstate);k++){           * (in months) between two waves is not a multiple of stepm, we rounded to 
           for (l=1; l<=(nlstate+ndeath);l++){           * the nearest (and in case of equal distance, to the lowest) interval but now
             i=i++;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);           * probability in order to take into account the bias as a fraction of the way
             for (j=1; j<=i;j++){           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);           * -stepm/2 to stepm/2 .
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));           * For stepm=1 the results are the same as for previous versions of Imach.
             }           * For stepm > 1 the results are less biased than in previous versions. 
           }           */
         }/* end of loop for state */          s1=s[mw[mi][i]][i];
       } /* end of loop for age */          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
       /* Confidence intervalle of pij  */          /* bias bh is positive if real duration
       /*           * is higher than the multiple of stepm and negative otherwise.
       fprintf(ficgp,"\nset noparametric;unset label");           */
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          if( s2 > nlstate){ 
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);            /* i.e. if s2 is a death state and if the date of death is known 
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);               then the contribution to the likelihood is the probability to 
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);               die between last step unit time and current  step unit time, 
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);               which is also equal to probability to die before dh 
       */               minus probability to die before dh-stepm . 
                In version up to 0.92 likelihood was computed
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/          as if date of death was unknown. Death was treated as any other
       first1=1;          health state: the date of the interview describes the actual state
       for (k1=1; k1<=(nlstate);k1++){          and not the date of a change in health state. The former idea was
         for (l1=1; l1<=(nlstate+ndeath);l1++){          to consider that at each interview the state was recorded
           if(l1==k1) continue;          (healthy, disable or death) and IMaCh was corrected; but when we
           i=(k1-1)*(nlstate+ndeath)+l1;          introduced the exact date of death then we should have modified
           for (k2=1; k2<=(nlstate);k2++){          the contribution of an exact death to the likelihood. This new
             for (l2=1; l2<=(nlstate+ndeath);l2++){          contribution is smaller and very dependent of the step unit
               if(l2==k2) continue;          stepm. It is no more the probability to die between last interview
               j=(k2-1)*(nlstate+ndeath)+l2;          and month of death but the probability to survive from last
               if(j<=i) continue;          interview up to one month before death multiplied by the
               for (age=bage; age<=fage; age ++){          probability to die within a month. Thanks to Chris
                 if ((int)age %5==0){          Jackson for correcting this bug.  Former versions increased
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;          mortality artificially. The bad side is that we add another loop
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;          which slows down the processing. The difference can be up to 10%
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;          lower mortality.
                   mu1=mu[i][(int) age]/stepm*YEARM ;            */
                   mu2=mu[j][(int) age]/stepm*YEARM;          /* If, at the beginning of the maximization mostly, the
                   /* Computing eigen value of matrix of covariance */             cumulative probability or probability to be dead is
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));             constant (ie = 1) over time d, the difference is equal to
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));             0.  out[s1][3] = savm[s1][3]: probability, being at state
                   if(first1==1){             s1 at precedent wave, to be dead a month before current
                     first1=0;             wave is equal to probability, being at state s1 at
                     printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\nOthers in log...\n",v1,v2,cv12,lc1,lc2);             precedent wave, to be dead at mont of the current
                   }             wave. Then the observed probability (that this person died)
                   fprintf(ficlog,"Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);             is null according to current estimated parameter. In fact,
                   /* Eigen vectors */             it should be very low but not zero otherwise the log go to
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));             infinity.
                   v21=sqrt(1.-v11*v11);          */
                   v12=-v21;  /* #ifdef INFINITYORIGINAL */
                   v22=v11;  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
                   /*printf(fignu*/  /* #else */
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */  /*        if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */  /*          lli=log(mytinydouble); */
                   if(first==1){  /*        else */
                     first=0;  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
                     fprintf(ficgp,"\nset parametric;set nolabel");  /* #endif */
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);              lli=log(out[s1][s2] - savm[s1][s2]);
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");  
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1);          } else if  (s2==-2) {
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k2,l2,k1,l1);            for (j=1,survp=0. ; j<=nlstate; j++) 
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k2,l2,k1,l1);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);            /*survp += out[s1][j]; */
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);            lli= log(survp);
                     /*              fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\          }
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \          
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);          else if  (s2==-4) { 
                     */            for (j=3,survp=0. ; j<=nlstate; j++)  
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \            lli= log(survp); 
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));          } 
                   }else{  
                     first=0;          else if  (s2==-5) { 
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);            for (j=1,survp=0. ; j<=2; j++)  
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                     /*            lli= log(survp); 
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\          } 
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \          
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);          else{
                     */            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \          } 
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
                   }/* if first */          /*if(lli ==000.0)*/
                 } /* age mod 5 */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
               } /* end loop age */          ipmx +=1;
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k2,l2,k1,l1);          sw += weight[i];
               first=1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             } /*l12 */          /* if (lli < log(mytinydouble)){ */
           } /* k12 */          /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
         } /*l1 */          /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
       }/* k1 */          /* } */
     } /* loop covariates */        } /* end of wave */
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);      } /* end of individual */
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    }  else if(mle==2){
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        for(mi=1; mi<= wav[i]-1; mi++){
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          for (ii=1;ii<=nlstate+ndeath;ii++)
   }            for (j=1;j<=nlstate+ndeath;j++){
   free_vector(xp,1,npar);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fclose(ficresprob);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   fclose(ficresprobcov);            }
   fclose(ficresprobcor);          for(d=0; d<=dh[mi][i]; d++){
   fclose(ficgp);            newm=savm;
   fclose(fichtm);            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }            cov[2]=agexact;
             if(nagesqr==1)
               cov[3]= agexact*agexact;
 /******************* Printing html file ***********/            for (kk=1; kk<=cptcovage;kk++) {
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
                   int lastpass, int stepm, int weightopt, char model[],\            }
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   int popforecast, int estepm ,\                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   double jprev1, double mprev1,double anprev1, \            savm=oldm;
                   double jprev2, double mprev2,double anprev2){            oldm=newm;
   int jj1, k1, i1, cpt;          } /* end mult */
   /*char optionfilehtm[FILENAMELENGTH];*/        
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {          s1=s[mw[mi][i]][i];
     printf("Problem with %s \n",optionfilehtm), exit(0);          s2=s[mw[mi+1][i]][i];
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);          bbh=(double)bh[mi][i]/(double)stepm; 
   }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           ipmx +=1;
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n          sw += weight[i];
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n        } /* end of wave */
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n      } /* end of individual */
  - Life expectancies by age and initial health status (estepm=%2d months):    }  else if(mle==3){  /* exponential inter-extrapolation */
    <a href=\"e%s\">e%s</a> <br>\n</li>", \      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
  m=cptcoveff;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
  jj1=0;          for(d=0; d<dh[mi][i]; d++){
  for(k1=1; k1<=m;k1++){            newm=savm;
    for(i1=1; i1<=ncodemax[k1];i1++){            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
      jj1++;            cov[2]=agexact;
      if (cptcovn > 0) {            if(nagesqr==1)
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");              cov[3]= agexact*agexact;
        for (cpt=1; cpt<=cptcoveff;cpt++)            for (kk=1; kk<=cptcovage;kk++) {
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            }
      }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      /* Pij */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>            savm=oldm;
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                oldm=newm;
      /* Quasi-incidences */          } /* end mult */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>        
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          s1=s[mw[mi][i]][i];
        /* Stable prevalence in each health state */          s2=s[mw[mi+1][i]][i];
        for(cpt=1; cpt<nlstate;cpt++){          bbh=(double)bh[mi][i]/(double)stepm; 
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          ipmx +=1;
        }          sw += weight[i];
      for(cpt=1; cpt<=nlstate;cpt++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>        } /* end of wave */
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      } /* end of individual */
      }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 health expectancies in states (1) and (2): e%s%d.png<br>        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        for(mi=1; mi<= wav[i]-1; mi++){
    } /* end i1 */          for (ii=1;ii<=nlstate+ndeath;ii++)
  }/* End k1 */            for (j=1;j<=nlstate+ndeath;j++){
  fprintf(fichtm,"</ul>");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n          for(d=0; d<dh[mi][i]; d++){
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n            newm=savm;
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n            cov[2]=agexact;
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n            if(nagesqr==1)
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n              cov[3]= agexact*agexact;
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n            for (kk=1; kk<=cptcovage;kk++) {
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
             }
  if(popforecast==1) fprintf(fichtm,"\n          
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         <br>",fileres,fileres,fileres,fileres);            savm=oldm;
  else            oldm=newm;
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);          } /* end mult */
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");        
           s1=s[mw[mi][i]][i];
  m=cptcoveff;          s2=s[mw[mi+1][i]][i];
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          if( s2 > nlstate){ 
             lli=log(out[s1][s2] - savm[s1][s2]);
  jj1=0;          }else{
  for(k1=1; k1<=m;k1++){            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
    for(i1=1; i1<=ncodemax[k1];i1++){          }
      jj1++;          ipmx +=1;
      if (cptcovn > 0) {          sw += weight[i];
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
        for (cpt=1; cpt<=cptcoveff;cpt++)  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        } /* end of wave */
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      } /* end of individual */
      }    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
      for(cpt=1; cpt<=nlstate;cpt++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
 interval) in state (%d): v%s%d%d.png <br>        for(mi=1; mi<= wav[i]-1; mi++){
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            for (ii=1;ii<=nlstate+ndeath;ii++)
      }            for (j=1;j<=nlstate+ndeath;j++){
    } /* end i1 */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
  }/* End k1 */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
  fprintf(fichtm,"</ul>");            }
 fclose(fichtm);          for(d=0; d<dh[mi][i]; d++){
 }            newm=savm;
             agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
 /******************* Gnuplot file **************/            cov[2]=agexact;
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){            if(nagesqr==1)
               cov[3]= agexact*agexact;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;            for (kk=1; kk<=cptcovage;kk++) {
   int ng;              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {            }
     printf("Problem with file %s",optionfilegnuplot);          
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 #ifdef windows            oldm=newm;
     fprintf(ficgp,"cd \"%s\" \n",pathc);          } /* end mult */
 #endif        
 m=pow(2,cptcoveff);          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
  /* 1eme*/          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   for (cpt=1; cpt<= nlstate ; cpt ++) {          ipmx +=1;
    for (k1=1; k1<= m ; k1 ++) {          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 #ifdef windows          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        } /* end of wave */
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);      } /* end of individual */
 #endif    } /* End of if */
 #ifdef unix    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 #endif    return -l;
   }
 for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  /*************** log-likelihood *************/
   else fprintf(ficgp," \%%*lf (\%%*lf)");  double funcone( double *x)
 }  {
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    /* Same as likeli but slower because of a lot of printf and if */
     for (i=1; i<= nlstate ; i ++) {    int i, ii, j, k, mi, d, kk;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double **out;
 }    double lli; /* Individual log likelihood */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    double llt;
      for (i=1; i<= nlstate ; i ++) {    int s1, s2;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double bbh, survp;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double agexact;
 }      /*extern weight */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    /* We are differentiating ll according to initial status */
 #ifdef unix    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    /*for(i=1;i<imx;i++) 
 #endif      printf(" %d\n",s[4][i]);
    }    */
   }    cov[1]=1.;
   /*2 eme*/  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
   for (k1=1; k1<= m ; k1 ++) {  
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);      for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
     for (i=1; i<= nlstate+1 ; i ++) {        for (ii=1;ii<=nlstate+ndeath;ii++)
       k=2*i;          for (j=1;j<=nlstate+ndeath;j++){
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (j=1; j<= nlstate+1 ; j ++) {            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          }
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(d=0; d<dh[mi][i]; d++){
 }            newm=savm;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          cov[2]=agexact;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);          if(nagesqr==1)
       for (j=1; j<= nlstate+1 ; j ++) {            cov[3]= agexact*agexact;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          for (kk=1; kk<=cptcovage;kk++) {
         else fprintf(ficgp," \%%*lf (\%%*lf)");            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
 }            }
       fprintf(ficgp,"\" t\"\" w l 0,");  
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
       for (j=1; j<= nlstate+1 ; j ++) {          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   else fprintf(ficgp," \%%*lf (\%%*lf)");          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
 }            /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          savm=oldm;
       else fprintf(ficgp,"\" t\"\" w l 0,");          oldm=newm;
     }        } /* end mult */
   }        
          s1=s[mw[mi][i]][i];
   /*3eme*/        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
   for (k1=1; k1<= m ; k1 ++) {        /* bias is positive if real duration
     for (cpt=1; cpt<= nlstate ; cpt ++) {         * is higher than the multiple of stepm and negative otherwise.
       k=2+nlstate*(2*cpt-2);         */
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);          lli=log(out[s1][s2] - savm[s1][s2]);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        } else if  (s2==-2) {
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          for (j=1,survp=0. ; j<=nlstate; j++) 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          lli= log(survp);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        }else if (mle==1){
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         } else if(mle==2){
 */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       for (i=1; i< nlstate ; i ++) {        } else if(mle==3){  /* exponential inter-extrapolation */
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         } else if (mle==4){  /* mle=4 no inter-extrapolation */
       }          lli=log(out[s1][s2]); /* Original formula */
     }        } else{  /* mle=0 back to 1 */
   }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
            /*lli=log(out[s1][s2]); */ /* Original formula */
   /* CV preval stat */        } /* End of if */
     for (k1=1; k1<= m ; k1 ++) {        ipmx +=1;
     for (cpt=1; cpt<nlstate ; cpt ++) {        sw += weight[i];
       k=3;        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);        if(globpr){
           fprintf(ficresilk,"%9ld %6.1f %6d %2d %2d %2d %2d %3d %11.6f %8.4f %8.3f\
       for (i=1; i< nlstate ; i ++)   %11.6f %11.6f %11.6f ", \
         fprintf(ficgp,"+$%d",k+i+1);                  num[i], agexact, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw,
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
                for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       l=3+(nlstate+ndeath)*cpt;            llt +=ll[k]*gipmx/gsw;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       for (i=1; i< nlstate ; i ++) {          }
         l=3+(nlstate+ndeath)*cpt;          fprintf(ficresilk," %10.6f\n", -llt);
         fprintf(ficgp,"+$%d",l+i+1);        }
       }      } /* end of wave */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      } /* end of individual */
     }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   }      /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   /* proba elementaires */    if(globpr==0){ /* First time we count the contributions and weights */
    for(i=1,jk=1; i <=nlstate; i++){      gipmx=ipmx;
     for(k=1; k <=(nlstate+ndeath); k++){      gsw=sw;
       if (k != i) {    }
         for(j=1; j <=ncovmodel; j++){    return -l;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  }
           jk++;  
           fprintf(ficgp,"\n");  
         }  /*************** function likelione ***********/
       }  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     }  {
    }    /* This routine should help understanding what is done with 
        the selection of individuals/waves and
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/       to check the exact contribution to the likelihood.
      for(jk=1; jk <=m; jk++) {       Plotting could be done.
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);     */
        if (ng==2)    int k;
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");  
        else    if(*globpri !=0){ /* Just counts and sums, no printings */
          fprintf(ficgp,"\nset title \"Probability\"\n");      strcpy(fileresilk,"ILK_"); 
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);      strcat(fileresilk,fileresu);
        i=1;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
        for(k2=1; k2<=nlstate; k2++) {        printf("Problem with resultfile: %s\n", fileresilk);
          k3=i;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
          for(k=1; k<=(nlstate+ndeath); k++) {      }
            if (k != k2){      fprintf(ficresilk, "#individual(line's_record) count age s1 s2 wave# effective_wave# number_of_matrices_product pij weight weight/gpw -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
              if(ng==2)      fprintf(ficresilk, "#num_i age i s1 s2 mi mw dh likeli weight %%weight 2wlli out sav ");
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
              else      for(k=1; k<=nlstate; k++) 
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
              ij=1;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
              for(j=3; j <=ncovmodel; j++) {    }
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    *fretone=(*funcone)(p);
                  ij++;    if(*globpri !=0){
                }      fclose(ficresilk);
                else      if (mle ==0)
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with initial parameters and mle = %d.",mle);
              }      else if(mle >=1)
              fprintf(ficgp,")/(1");        fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with optimized parameters mle = %d.",mle);
                    fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
              for(k1=1; k1 <=nlstate; k1++){        
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        
                ij=1;      for (k=1; k<= nlstate ; k++) {
                for(j=3; j <=ncovmodel; j++){        fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Dot's sizes are related to corresponding weight: <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  <img src=\"%s-p%dj.png\">",k,k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k);
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      }
                    ij++;      fprintf(fichtm,"<br>- The function drawn is -2Log(L) in Log scale: by state of origin <a href=\"%s-ori.png\">%s-ori.png</a><br> \
                  }  <img src=\"%s-ori.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
                  else      fprintf(fichtm,"<br>- and by state of destination <a href=\"%s-dest.png\">%s-dest.png</a><br> \
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  <img src=\"%s-dest.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
                }      fflush(fichtm);
                fprintf(ficgp,")");    }
              }    return;
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);  }
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
              i=i+ncovmodel;  
            }  /*********** Maximum Likelihood Estimation ***************/
          } /* end k */  
        } /* end k2 */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
      } /* end jk */  {
    } /* end ng */    int i,j, iter=0;
    fclose(ficgp);    double **xi;
 }  /* end gnuplot */    double fret;
     double fretone; /* Only one call to likelihood */
     /*  char filerespow[FILENAMELENGTH];*/
 /*************** Moving average **************/  
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){  #ifdef NLOPT
     int creturn;
   int i, cpt, cptcod;    nlopt_opt opt;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
       for (i=1; i<=nlstate;i++)    double *lb;
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    double minf; /* the minimum objective value, upon return */
           mobaverage[(int)agedeb][i][cptcod]=0.;    double * p1; /* Shifted parameters from 0 instead of 1 */
        myfunc_data dinst, *d = &dinst;
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){  #endif
       for (i=1; i<=nlstate;i++){  
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
           for (cpt=0;cpt<=4;cpt++){    xi=matrix(1,npar,1,npar);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    for (i=1;i<=npar;i++)
           }      for (j=1;j<=npar;j++)
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        xi[i][j]=(i==j ? 1.0 : 0.0);
         }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       }    strcpy(filerespow,"POW_"); 
     }    strcat(filerespow,fileres);
        if((ficrespow=fopen(filerespow,"w"))==NULL) {
 }      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
 /************** Forecasting ******************/    fprintf(ficrespow,"# Powell\n# iter -2*LL");
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    for (i=1;i<=nlstate;i++)
        for(j=1;j<=nlstate+ndeath;j++)
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   int *popage;    fprintf(ficrespow,"\n");
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  #ifdef POWELL
   double *popeffectif,*popcount;    powell(p,xi,npar,ftol,&iter,&fret,func);
   double ***p3mat;  #endif
   char fileresf[FILENAMELENGTH];  
   #ifdef NLOPT
  agelim=AGESUP;  #ifdef NEWUOA
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
   #else
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
    #endif
      lb=vector(0,npar-1);
   strcpy(fileresf,"f");    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
   strcat(fileresf,fileres);    nlopt_set_lower_bounds(opt, lb);
   if((ficresf=fopen(fileresf,"w"))==NULL) {    nlopt_set_initial_step1(opt, 0.1);
     printf("Problem with forecast resultfile: %s\n", fileresf);    
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
   }    d->function = func;
   printf("Computing forecasting: result on file '%s' \n", fileresf);    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);    nlopt_set_min_objective(opt, myfunc, d);
     nlopt_set_xtol_rel(opt, ftol);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
       printf("nlopt failed! %d\n",creturn); 
   if (mobilav==1) {    }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    else {
     movingaverage(agedeb, fage, ageminpar, mobaverage);      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
   }      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
       iter=1; /* not equal */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    }
   if (stepm<=12) stepsize=1;    nlopt_destroy(opt);
    #endif
   agelim=AGESUP;    free_matrix(xi,1,npar,1,npar);
      fclose(ficrespow);
   hstepm=1;    printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   hstepm=hstepm/stepm;    fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   yp1=modf(dateintmean,&yp);    fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
   anprojmean=yp;  
   yp2=modf((yp1*12),&yp);  }
   mprojmean=yp;  
   yp1=modf((yp2*30.5),&yp);  /**** Computes Hessian and covariance matrix ***/
   jprojmean=yp;  void hesscov(double **matcov, double **hess, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   if(jprojmean==0) jprojmean=1;  {
   if(mprojmean==0) jprojmean=1;    double  **a,**y,*x,pd;
      /* double **hess; */
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    int i, j;
      int *indx;
   for(cptcov=1;cptcov<=i2;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       k=k+1;    double hessij(double p[], double **hess, double delti[], int i, int j,double (*func)(double []),int npar);
       fprintf(ficresf,"\n#******");    void lubksb(double **a, int npar, int *indx, double b[]) ;
       for(j=1;j<=cptcoveff;j++) {    void ludcmp(double **a, int npar, int *indx, double *d) ;
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double gompertz(double p[]);
       }    /* hess=matrix(1,npar,1,npar); */
       fprintf(ficresf,"******\n");  
       fprintf(ficresf,"# StartingAge FinalAge");    printf("\nCalculation of the hessian matrix. Wait...\n");
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
          for (i=1;i<=npar;i++){
            printf("%d-",i);fflush(stdout);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      fprintf(ficlog,"%d-",i);fflush(ficlog);
         fprintf(ficresf,"\n");     
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);         hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      /*  printf(" %f ",p[i]);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
           nhstepm = nhstepm/hstepm;    }
              
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (i=1;i<=npar;i++) {
           oldm=oldms;savm=savms;      for (j=1;j<=npar;j++)  {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          if (j>i) { 
                  printf(".%d-%d",i,j);fflush(stdout);
           for (h=0; h<=nhstepm; h++){          fprintf(ficlog,".%d-%d",i,j);fflush(ficlog);
             if (h==(int) (calagedate+YEARM*cpt)) {          hess[i][j]=hessij(p,hess, delti,i,j,func,npar);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);          
             }          hess[j][i]=hess[i][j];    
             for(j=1; j<=nlstate+ndeath;j++) {          /*printf(" %lf ",hess[i][j]);*/
               kk1=0.;kk2=0;        }
               for(i=1; i<=nlstate;i++) {                    }
                 if (mobilav==1)    }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    printf("\n");
                 else {    fprintf(ficlog,"\n");
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
                    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
               }    
               if (h==(int)(calagedate+12*cpt)){    a=matrix(1,npar,1,npar);
                 fprintf(ficresf," %.3f", kk1);    y=matrix(1,npar,1,npar);
                            x=vector(1,npar);
               }    indx=ivector(1,npar);
             }    for (i=1;i<=npar;i++)
           }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    ludcmp(a,npar,indx,&pd);
         }  
       }    for (j=1;j<=npar;j++) {
     }      for (i=1;i<=npar;i++) x[i]=0;
   }      x[j]=1;
              lubksb(a,npar,indx,x);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
   fclose(ficresf);      }
 }    }
 /************** Forecasting ******************/  
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    printf("\n#Hessian matrix#\n");
      fprintf(ficlog,"\n#Hessian matrix#\n");
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    for (i=1;i<=npar;i++) { 
   int *popage;      for (j=1;j<=npar;j++) { 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        printf("%.6e ",hess[i][j]);
   double *popeffectif,*popcount;        fprintf(ficlog,"%.6e ",hess[i][j]);
   double ***p3mat,***tabpop,***tabpopprev;      }
   char filerespop[FILENAMELENGTH];      printf("\n");
       fprintf(ficlog,"\n");
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   agelim=AGESUP;    /* printf("\n#Covariance matrix#\n"); */
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    /* fprintf(ficlog,"\n#Covariance matrix#\n"); */
      /* for (i=1;i<=npar;i++) {  */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    /*   for (j=1;j<=npar;j++) {  */
      /*     printf("%.6e ",matcov[i][j]); */
      /*     fprintf(ficlog,"%.6e ",matcov[i][j]); */
   strcpy(filerespop,"pop");    /*   } */
   strcat(filerespop,fileres);    /*   printf("\n"); */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    /*   fprintf(ficlog,"\n"); */
     printf("Problem with forecast resultfile: %s\n", filerespop);    /* } */
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);  
   }    /* Recompute Inverse */
   printf("Computing forecasting: result on file '%s' \n", filerespop);    /* for (i=1;i<=npar;i++) */
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);    /*   for (j=1;j<=npar;j++) a[i][j]=matcov[i][j]; */
     /* ludcmp(a,npar,indx,&pd); */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
     /*  printf("\n#Hessian matrix recomputed#\n"); */
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* for (j=1;j<=npar;j++) { */
     movingaverage(agedeb, fage, ageminpar, mobaverage);    /*   for (i=1;i<=npar;i++) x[i]=0; */
   }    /*   x[j]=1; */
     /*   lubksb(a,npar,indx,x); */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    /*   for (i=1;i<=npar;i++){  */
   if (stepm<=12) stepsize=1;    /*     y[i][j]=x[i]; */
      /*     printf("%.3e ",y[i][j]); */
   agelim=AGESUP;    /*     fprintf(ficlog,"%.3e ",y[i][j]); */
      /*   } */
   hstepm=1;    /*   printf("\n"); */
   hstepm=hstepm/stepm;    /*   fprintf(ficlog,"\n"); */
      /* } */
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL) {    /* Verifying the inverse matrix */
       printf("Problem with population file : %s\n",popfile);exit(0);  #ifdef DEBUGHESS
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);    y=matprod2(y,hess,1,npar,1,npar,1,npar,matcov);
     }  
     popage=ivector(0,AGESUP);     printf("\n#Verification: multiplying the matrix of covariance by the Hessian matrix, should be unity:#\n");
     popeffectif=vector(0,AGESUP);     fprintf(ficlog,"\n#Verification: multiplying the matrix of covariance by the Hessian matrix. Should be unity:#\n");
     popcount=vector(0,AGESUP);  
        for (j=1;j<=npar;j++) {
     i=1;        for (i=1;i<=npar;i++){ 
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;        printf("%.2f ",y[i][j]);
            fprintf(ficlog,"%.2f ",y[i][j]);
     imx=i;      }
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      printf("\n");
   }      fprintf(ficlog,"\n");
     }
   for(cptcov=1;cptcov<=i2;cptcov++){  #endif
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;    free_matrix(a,1,npar,1,npar);
       fprintf(ficrespop,"\n#******");    free_matrix(y,1,npar,1,npar);
       for(j=1;j<=cptcoveff;j++) {    free_vector(x,1,npar);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_ivector(indx,1,npar);
       }    /* free_matrix(hess,1,npar,1,npar); */
       fprintf(ficrespop,"******\n");  
       fprintf(ficrespop,"# Age");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  }
       if (popforecast==1)  fprintf(ficrespop," [Population]");  
        /*************** hessian matrix ****************/
       for (cpt=0; cpt<=0;cpt++) {  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    { /* Around values of x, computes the function func and returns the scales delti and hessian */
            int i;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    int l=1, lmax=20;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    double k1,k2, res, fx;
           nhstepm = nhstepm/hstepm;    double p2[MAXPARM+1]; /* identical to x */
              double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int k=0,kmax=10;
           oldm=oldms;savm=savms;    double l1;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
            fx=func(x);
           for (h=0; h<=nhstepm; h++){    for (i=1;i<=npar;i++) p2[i]=x[i];
             if (h==(int) (calagedate+YEARM*cpt)) {    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      l1=pow(10,l);
             }      delts=delt;
             for(j=1; j<=nlstate+ndeath;j++) {      for(k=1 ; k <kmax; k=k+1){
               kk1=0.;kk2=0;        delt = delta*(l1*k);
               for(i=1; i<=nlstate;i++) {                      p2[theta]=x[theta] +delt;
                 if (mobilav==1)        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        p2[theta]=x[theta]-delt;
                 else {        k2=func(p2)-fx;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        /*res= (k1-2.0*fx+k2)/delt/delt; */
                 }        res= (k1+k2)/delt/delt/2.; /* Divided by 2 because L and not 2*L */
               }        
               if (h==(int)(calagedate+12*cpt)){  #ifdef DEBUGHESSII
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                   /*fprintf(ficrespop," %.3f", kk1);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/  #endif
               }        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
             }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
             for(i=1; i<=nlstate;i++){          k=kmax;
               kk1=0.;        }
                 for(j=1; j<=nlstate;j++){        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];          k=kmax; l=lmax*10;
                 }        }
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
             }          delts=delt;
         }
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      } /* End loop k */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    }
           }    delti[theta]=delts;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    return res; 
         }    
       }  }
    
   /******/  double hessij( double x[], double **hess, double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   {
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    int i;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      int l=1, lmax=20;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    double k1,k2,k3,k4,res,fx;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    double p2[MAXPARM+1];
           nhstepm = nhstepm/hstepm;    int k, kmax=1;
              double v1, v2, cv12, lc1, lc2;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    int firstime=0;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      
           for (h=0; h<=nhstepm; h++){    fx=func(x);
             if (h==(int) (calagedate+YEARM*cpt)) {    for (k=1; k<=kmax; k=k+10) {
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      for (i=1;i<=npar;i++) p2[i]=x[i];
             }      p2[thetai]=x[thetai]+delti[thetai]*k;
             for(j=1; j<=nlstate+ndeath;j++) {      p2[thetaj]=x[thetaj]+delti[thetaj]*k;
               kk1=0.;kk2=0;      k1=func(p2)-fx;
               for(i=1; i<=nlstate;i++) {                  
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          p2[thetai]=x[thetai]+delti[thetai]*k;
               }      p2[thetaj]=x[thetaj]-delti[thetaj]*k;
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      k2=func(p2)-fx;
             }    
           }      p2[thetai]=x[thetai]-delti[thetai]*k;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      p2[thetaj]=x[thetaj]+delti[thetaj]*k;
         }      k3=func(p2)-fx;
       }    
    }      p2[thetai]=x[thetai]-delti[thetai]*k;
   }      p2[thetaj]=x[thetaj]-delti[thetaj]*k;
        k4=func(p2)-fx;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      res=(k1-k2-k3+k4)/4.0/delti[thetai]/k/delti[thetaj]/k/2.; /* Because of L not 2*L */
       if(k1*k2*k3*k4 <0.){
   if (popforecast==1) {        firstime=1;
     free_ivector(popage,0,AGESUP);        kmax=kmax+10;
     free_vector(popeffectif,0,AGESUP);      }
     free_vector(popcount,0,AGESUP);      if(kmax >=10 || firstime ==1){
   }        printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; increase ftol=%.2e\n",thetai,thetaj, ftol);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; increase ftol=%.2e\n",thetai,thetaj, ftol);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   fclose(ficrespop);        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 }      }
   #ifdef DEBUGHESSIJ
 /***********************************************/      v1=hess[thetai][thetai];
 /**************** Main Program *****************/      v2=hess[thetaj][thetaj];
 /***********************************************/      cv12=res;
       /* Computing eigen value of Hessian matrix */
 int main(int argc, char *argv[])      lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 {      lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       if ((lc2 <0) || (lc1 <0) ){
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        printf("Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
   double agedeb, agefin,hf;        fprintf(ficlog, "Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;        printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   double fret;      }
   double **xi,tmp,delta;  #endif
     }
   double dum; /* Dummy variable */    return res;
   double ***p3mat;  }
   int *indx;  
   char line[MAXLINE], linepar[MAXLINE];      /* Not done yet: Was supposed to fix if not exactly at the maximum */
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];  /* double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar) */
   int firstobs=1, lastobs=10;  /* { */
   int sdeb, sfin; /* Status at beginning and end */  /*   int i; */
   int c,  h , cpt,l;  /*   int l=1, lmax=20; */
   int ju,jl, mi;  /*   double k1,k2,k3,k4,res,fx; */
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  /*   double p2[MAXPARM+1]; */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;  /*   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4; */
   int mobilav=0,popforecast=0;  /*   int k=0,kmax=10; */
   int hstepm, nhstepm;  /*   double l1; */
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    
   /*   fx=func(x); */
   double bage, fage, age, agelim, agebase;  /*   for(l=0 ; l <=lmax; l++){  /\* Enlarging the zone around the Maximum *\/ */
   double ftolpl=FTOL;  /*     l1=pow(10,l); */
   double **prlim;  /*     delts=delt; */
   double *severity;  /*     for(k=1 ; k <kmax; k=k+1){ */
   double ***param; /* Matrix of parameters */  /*       delt = delti*(l1*k); */
   double  *p;  /*       for (i=1;i<=npar;i++) p2[i]=x[i]; */
   double **matcov; /* Matrix of covariance */  /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
   double ***delti3; /* Scale */  /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
   double *delti; /* Scale */  /*       k1=func(p2)-fx; */
   double ***eij, ***vareij;        
   double **varpl; /* Variances of prevalence limits by age */  /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
   double *epj, vepp;  /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
   double kk1, kk2;  /*       k2=func(p2)-fx; */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;        
    /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
   /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
   char *alph[]={"a","a","b","c","d","e"}, str[4];  /*       k3=func(p2)-fx; */
         
   /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
   char z[1]="c", occ;  /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
 #include <sys/time.h>  /*       k4=func(p2)-fx; */
 #include <time.h>  /*       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /\* Because of L not 2*L *\/ */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  /* #ifdef DEBUGHESSIJ */
    /*       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
   /* long total_usecs;  /*       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
   struct timeval start_time, end_time;  /* #endif */
    /*       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)){ */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  /*      k=kmax; */
   getcwd(pathcd, size);  /*       } */
   /*       else if((k1 >khi/nkhif) || (k2 >khi/nkhif) || (k4 >khi/nkhif) || (k4 >khi/nkhif)){ /\* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. *\/ */
   printf("\n%s",version);  /*      k=kmax; l=lmax*10; */
   if(argc <=1){  /*       } */
     printf("\nEnter the parameter file name: ");  /*       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  */
     scanf("%s",pathtot);  /*      delts=delt; */
   }  /*       } */
   else{  /*     } /\* End loop k *\/ */
     strcpy(pathtot,argv[1]);  /*   } */
   }  /*   delti[theta]=delts; */
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/  /*   return res;  */
   /*cygwin_split_path(pathtot,path,optionfile);  /* } */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  
   /* cutv(path,optionfile,pathtot,'\\');*/  
   /************** Inverse of matrix **************/
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  void ludcmp(double **a, int n, int *indx, double *d) 
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  { 
   chdir(path);    int i,imax,j,k; 
   replace(pathc,path);    double big,dum,sum,temp; 
     double *vv; 
 /*-------- arguments in the command line --------*/   
     vv=vector(1,n); 
   /* Log file */    *d=1.0; 
   strcat(filelog, optionfilefiname);    for (i=1;i<=n;i++) { 
   strcat(filelog,".log");    /* */      big=0.0; 
   if((ficlog=fopen(filelog,"w"))==NULL)    {      for (j=1;j<=n;j++) 
     printf("Problem with logfile %s\n",filelog);        if ((temp=fabs(a[i][j])) > big) big=temp; 
     goto end;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   }      vv[i]=1.0/big; 
   fprintf(ficlog,"Log filename:%s\n",filelog);    } 
   fprintf(ficlog,"\n%s",version);    for (j=1;j<=n;j++) { 
   fprintf(ficlog,"\nEnter the parameter file name: ");      for (i=1;i<j;i++) { 
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        sum=a[i][j]; 
   fflush(ficlog);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
   /* */      } 
   strcpy(fileres,"r");      big=0.0; 
   strcat(fileres, optionfilefiname);      for (i=j;i<=n;i++) { 
   strcat(fileres,".txt");    /* Other files have txt extension */        sum=a[i][j]; 
         for (k=1;k<j;k++) 
   /*---------arguments file --------*/          sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     printf("Problem with optionfile %s\n",optionfile);          big=dum; 
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);          imax=i; 
     goto end;        } 
   }      } 
       if (j != imax) { 
   strcpy(filereso,"o");        for (k=1;k<=n;k++) { 
   strcat(filereso,fileres);          dum=a[imax][k]; 
   if((ficparo=fopen(filereso,"w"))==NULL) {          a[imax][k]=a[j][k]; 
     printf("Problem with Output resultfile: %s\n", filereso);          a[j][k]=dum; 
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);        } 
     goto end;        *d = -(*d); 
   }        vv[imax]=vv[j]; 
       } 
   /* Reads comments: lines beginning with '#' */      indx[j]=imax; 
   while((c=getc(ficpar))=='#' && c!= EOF){      if (a[j][j] == 0.0) a[j][j]=TINY; 
     ungetc(c,ficpar);      if (j != n) { 
     fgets(line, MAXLINE, ficpar);        dum=1.0/(a[j][j]); 
     puts(line);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     fputs(line,ficparo);      } 
   }    } 
   ungetc(c,ficpar);    free_vector(vv,1,n);  /* Doesn't work */
   ;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  } 
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);  
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  void lubksb(double **a, int n, int *indx, double b[]) 
 while((c=getc(ficpar))=='#' && c!= EOF){  { 
     ungetc(c,ficpar);    int i,ii=0,ip,j; 
     fgets(line, MAXLINE, ficpar);    double sum; 
     puts(line);   
     fputs(line,ficparo);    for (i=1;i<=n;i++) { 
   }      ip=indx[i]; 
   ungetc(c,ficpar);      sum=b[ip]; 
        b[ip]=b[i]; 
          if (ii) 
   covar=matrix(0,NCOVMAX,1,n);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   cptcovn=0;      else if (sum) ii=i; 
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      b[i]=sum; 
     } 
   ncovmodel=2+cptcovn;    for (i=n;i>=1;i--) { 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */      sum=b[i]; 
        for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   /* Read guess parameters */      b[i]=sum/a[i][i]; 
   /* Reads comments: lines beginning with '#' */    } 
   while((c=getc(ficpar))=='#' && c!= EOF){  } 
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  void pstamp(FILE *fichier)
     puts(line);  {
     fputs(line,ficparo);    fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart);
   }  }
   ungetc(c,ficpar);  
    /************ Frequencies ********************/
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     for(i=1; i <=nlstate; i++)  {  /* Some frequencies */
     for(j=1; j <=nlstate+ndeath-1; j++){    
       fscanf(ficpar,"%1d%1d",&i1,&j1);    int i, m, jk, j1, bool, z1,j;
       fprintf(ficparo,"%1d%1d",i1,j1);    int first;
       if(mle==1)    double ***freq; /* Frequencies */
         printf("%1d%1d",i,j);    double *pp, **prop;
       fprintf(ficlog,"%1d%1d",i,j);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       for(k=1; k<=ncovmodel;k++){    char fileresp[FILENAMELENGTH];
         fscanf(ficpar," %lf",&param[i][j][k]);    
         if(mle==1){    pp=vector(1,nlstate);
           printf(" %lf",param[i][j][k]);    prop=matrix(1,nlstate,iagemin,iagemax+3);
           fprintf(ficlog," %lf",param[i][j][k]);    strcpy(fileresp,"P_");
         }    strcat(fileresp,fileresu);
         else    if((ficresp=fopen(fileresp,"w"))==NULL) {
           fprintf(ficlog," %lf",param[i][j][k]);      printf("Problem with prevalence resultfile: %s\n", fileresp);
         fprintf(ficparo," %lf",param[i][j][k]);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       }      exit(0);
       fscanf(ficpar,"\n");    }
       if(mle==1)    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
         printf("\n");    j1=0;
       fprintf(ficlog,"\n");    
       fprintf(ficparo,"\n");    j=cptcoveff;
     }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
    
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    first=1;
   
   p=param[1][1];    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
      /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
   /* Reads comments: lines beginning with '#' */    /*    j1++; */
   while((c=getc(ficpar))=='#' && c!= EOF){    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
     ungetc(c,ficpar);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     fgets(line, MAXLINE, ficpar);          scanf("%d", i);*/
     puts(line);        for (i=-5; i<=nlstate+ndeath; i++)  
     fputs(line,ficparo);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   }            for(m=iagemin; m <= iagemax+3; m++)
   ungetc(c,ficpar);              freq[i][jk][m]=0;
         
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        for (i=1; i<=nlstate; i++)  
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          for(m=iagemin; m <= iagemax+3; m++)
   for(i=1; i <=nlstate; i++){            prop[i][m]=0;
     for(j=1; j <=nlstate+ndeath-1; j++){        
       fscanf(ficpar,"%1d%1d",&i1,&j1);        dateintsum=0;
       printf("%1d%1d",i,j);        k2cpt=0;
       fprintf(ficparo,"%1d%1d",i1,j1);        for (i=1; i<=imx; i++) {
       for(k=1; k<=ncovmodel;k++){          bool=1;
         fscanf(ficpar,"%le",&delti3[i][j][k]);          if (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
         printf(" %le",delti3[i][j][k]);            for (z1=1; z1<=cptcoveff; z1++)       
         fprintf(ficparo," %le",delti3[i][j][k]);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){
       }                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
       fscanf(ficpar,"\n");                bool=0;
       printf("\n");                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", 
       fprintf(ficparo,"\n");                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),
     }                  j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/
   }                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/
   delti=delti3[1][1];              } 
            } /* cptcovn > 0 */
   /* Reads comments: lines beginning with '#' */   
   while((c=getc(ficpar))=='#' && c!= EOF){          if (bool==1){
     ungetc(c,ficpar);            for(m=firstpass; m<=lastpass; m++){
     fgets(line, MAXLINE, ficpar);              k2=anint[m][i]+(mint[m][i]/12.);
     puts(line);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     fputs(line,ficparo);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   ungetc(c,ficpar);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                  if (m<lastpass) {
   matcov=matrix(1,npar,1,npar);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   for(i=1; i <=npar; i++){                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     fscanf(ficpar,"%s",&str);                }
     if(mle==1)                
       printf("%s",str);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3)) && (anint[m][i]!=9999) && (mint[m][i]!=99)) {
     fprintf(ficlog,"%s",str);                  dateintsum=dateintsum+k2;
     fprintf(ficparo,"%s",str);                  k2cpt++;
     for(j=1; j <=i; j++){                  /* printf("i=%ld dateintmean = %lf dateintsum=%lf k2cpt=%lf k2=%lf\n",i, dateintsum/k2cpt, dateintsum,k2cpt, k2); */
       fscanf(ficpar," %le",&matcov[i][j]);                }
       if(mle==1){                /*}*/
         printf(" %.5le",matcov[i][j]);            } /* end m */
         fprintf(ficlog," %.5le",matcov[i][j]);          } /* end bool */
       }        } /* end i = 1 to imx */
       else         
         fprintf(ficlog," %.5le",matcov[i][j]);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       fprintf(ficparo," %.5le",matcov[i][j]);        pstamp(ficresp);
     }        if  (cptcovn>0) {
     fscanf(ficpar,"\n");          fprintf(ficresp, "\n#********** Variable "); 
     if(mle==1)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
       printf("\n");          fprintf(ficresp, "**********\n#");
     fprintf(ficlog,"\n");          fprintf(ficlog, "\n#********** Variable "); 
     fprintf(ficparo,"\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
   }          fprintf(ficlog, "**********\n#");
   for(i=1; i <=npar; i++)        }
     for(j=i+1;j<=npar;j++)        for(i=1; i<=nlstate;i++) 
       matcov[i][j]=matcov[j][i];          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
            fprintf(ficresp, "\n");
   if(mle==1)        
     printf("\n");        for(i=iagemin; i <= iagemax+3; i++){
   fprintf(ficlog,"\n");          if(i==iagemax+3){
             fprintf(ficlog,"Total");
           }else{
     /*-------- Rewriting paramater file ----------*/            if(first==1){
      strcpy(rfileres,"r");    /* "Rparameterfile */              first=0;
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/              printf("See log file for details...\n");
      strcat(rfileres,".");    /* */            }
      strcat(rfileres,optionfilext);    /* Other files have txt extension */            fprintf(ficlog,"Age %d", i);
     if((ficres =fopen(rfileres,"w"))==NULL) {          }
       printf("Problem writing new parameter file: %s\n", fileres);goto end;          for(jk=1; jk <=nlstate ; jk++){
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     }              pp[jk] += freq[jk][m][i]; 
     fprintf(ficres,"#%s\n",version);          }
              for(jk=1; jk <=nlstate ; jk++){
     /*-------- data file ----------*/            for(m=-1, pos=0; m <=0 ; m++)
     if((fic=fopen(datafile,"r"))==NULL)    {              pos += freq[jk][m][i];
       printf("Problem with datafile: %s\n", datafile);goto end;            if(pp[jk]>=1.e-10){
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;              if(first==1){
     }                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }
     n= lastobs;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     severity = vector(1,maxwav);            }else{
     outcome=imatrix(1,maxwav+1,1,n);              if(first==1)
     num=ivector(1,n);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     moisnais=vector(1,n);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     annais=vector(1,n);            }
     moisdc=vector(1,n);          }
     andc=vector(1,n);  
     agedc=vector(1,n);          for(jk=1; jk <=nlstate ; jk++){
     cod=ivector(1,n);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     weight=vector(1,n);              pp[jk] += freq[jk][m][i];
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          }       
     mint=matrix(1,maxwav,1,n);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     anint=matrix(1,maxwav,1,n);            pos += pp[jk];
     s=imatrix(1,maxwav+1,1,n);            posprop += prop[jk][i];
     adl=imatrix(1,maxwav+1,1,n);              }
     tab=ivector(1,NCOVMAX);          for(jk=1; jk <=nlstate ; jk++){
     ncodemax=ivector(1,8);            if(pos>=1.e-5){
               if(first==1)
     i=1;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     while (fgets(line, MAXLINE, fic) != NULL)    {              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       if ((i >= firstobs) && (i <=lastobs)) {            }else{
                      if(first==1)
         for (j=maxwav;j>=1;j--){                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           strcpy(line,stra);            }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            if( i <= iagemax){
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              if(pos>=1.e-5){
         }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                        /*probs[i][jk][j1]= pp[jk]/pos;*/
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);              }
               else
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);            }
           }
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          
         for (j=ncovcol;j>=1;j--){          for(jk=-1; jk <=nlstate+ndeath; jk++)
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);            for(m=-1; m <=nlstate+ndeath; m++)
         }              if(freq[jk][m][i] !=0 ) {
         num[i]=atol(stra);              if(first==1)
                        printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/              }
           if(i <= iagemax)
         i=i+1;            fprintf(ficresp,"\n");
       }          if(first==1)
     }            printf("Others in log...\n");
     /* printf("ii=%d", ij);          fprintf(ficlog,"\n");
        scanf("%d",i);*/        } /* end loop i */
   imx=i-1; /* Number of individuals */        /*}*/
     } /* end j1 */
   /* for (i=1; i<=imx; i++){    dateintmean=dateintsum/k2cpt; 
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;   
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    fclose(ficresp);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     }*/    free_vector(pp,1,nlstate);
    /*  for (i=1; i<=imx; i++){    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
      if (s[4][i]==9)  s[4][i]=-1;    /* End of Freq */
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/  }
    
    /************ Prevalence ********************/
   /* Calculation of the number of parameter from char model*/  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */  {  
   Tprod=ivector(1,15);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   Tvaraff=ivector(1,15);       in each health status at the date of interview (if between dateprev1 and dateprev2).
   Tvard=imatrix(1,15,1,2);       We still use firstpass and lastpass as another selection.
   Tage=ivector(1,15);          */
       
   if (strlen(model) >1){    int i, m, jk, j1, bool, z1,j;
     j=0, j1=0, k1=1, k2=1;  
     j=nbocc(model,'+');    double **prop;
     j1=nbocc(model,'*');    double posprop; 
     cptcovn=j+1;    double  y2; /* in fractional years */
     cptcovprod=j1;    int iagemin, iagemax;
        int first; /** to stop verbosity which is redirected to log file */
     strcpy(modelsav,model);  
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    iagemin= (int) agemin;
       printf("Error. Non available option model=%s ",model);    iagemax= (int) agemax;
       fprintf(ficlog,"Error. Non available option model=%s ",model);    /*pp=vector(1,nlstate);*/
       goto end;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
        j1=0;
     for(i=(j+1); i>=1;i--){    
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */    /*j=cptcoveff;*/
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    
       /*scanf("%d",i);*/    first=1;
       if (strchr(strb,'*')) {  /* Model includes a product */    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/      /*for(i1=1; i1<=ncodemax[k1];i1++){
         if (strcmp(strc,"age")==0) { /* Vn*age */        j1++;*/
           cptcovprod--;        
           cutv(strb,stre,strd,'V');        for (i=1; i<=nlstate; i++)  
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/          for(m=iagemin; m <= iagemax+3; m++)
           cptcovage++;            prop[i][m]=0.0;
             Tage[cptcovage]=i;       
             /*printf("stre=%s ", stre);*/        for (i=1; i<=imx; i++) { /* Each individual */
         }          bool=1;
         else if (strcmp(strd,"age")==0) { /* or age*Vn */          if  (cptcovn>0) {
           cptcovprod--;            for (z1=1; z1<=cptcoveff; z1++) 
           cutv(strb,stre,strc,'V');              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) 
           Tvar[i]=atoi(stre);                bool=0;
           cptcovage++;          } 
           Tage[cptcovage]=i;          if (bool==1) { 
         }            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
         else {  /* Age is not in the model */              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           Tvar[i]=ncovcol+k1;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           Tprod[k1]=i;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
           Tvard[k1][1]=atoi(strc); /* m*/                if (s[m][i]>0 && s[m][i]<=nlstate) { 
           Tvard[k1][2]=atoi(stre); /* n */                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
           Tvar[cptcovn+k2]=Tvard[k1][1];                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                  prop[s[m][i]][iagemax+3] += weight[i]; 
           for (k=1; k<=lastobs;k++)                } 
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];              }
           k1++;            } /* end selection of waves */
           k2=k2+2;          }
         }        }
       }        for(i=iagemin; i <= iagemax+3; i++){  
       else { /* no more sum */          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/            posprop += prop[jk][i]; 
        /*  scanf("%d",i);*/          } 
       cutv(strd,strc,strb,'V');          
       Tvar[i]=atoi(strc);          for(jk=1; jk <=nlstate ; jk++){     
       }            if( i <=  iagemax){ 
       strcpy(modelsav,stra);                if(posprop>=1.e-5){ 
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                probs[i][jk][j1]= prop[jk][i]/posprop;
         scanf("%d",i);*/              } else{
     } /* end of loop + */                if(first==1){
   } /* end model */                  first=0;
                    printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);                }
   printf("cptcovprod=%d ", cptcovprod);              }
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);            } 
   scanf("%d ",i);*/          }/* end jk */ 
     fclose(fic);        }/* end i */ 
       /*} *//* end i1 */
     /*  if(mle==1){*/    } /* end j1 */
     if (weightopt != 1) { /* Maximisation without weights*/    
       for(i=1;i<=n;i++) weight[i]=1.0;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     }    /*free_vector(pp,1,nlstate);*/
     /*-calculation of age at interview from date of interview and age at death -*/    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
     agev=matrix(1,maxwav,1,imx);  }  /* End of prevalence */
   
     for (i=1; i<=imx; i++) {  /************* Waves Concatenation ***************/
       for(m=2; (m<= maxwav); m++) {  
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
          anint[m][i]=9999;  {
          s[m][i]=-1;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        }       Death is a valid wave (if date is known).
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       }       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     }       and mw[mi+1][i]. dh depends on stepm.
        */
     for (i=1; i<=imx; i++)  {  
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    int i, mi, m;
       for(m=1; (m<= maxwav); m++){    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         if(s[m][i] >0){       double sum=0., jmean=0.;*/
           if (s[m][i] >= nlstate+1) {    int first;
             if(agedc[i]>0)    int j, k=0,jk, ju, jl;
               if(moisdc[i]!=99 && andc[i]!=9999)    double sum=0.;
                 agev[m][i]=agedc[i];    first=0;
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    jmin=100000;
            else {    jmax=-1;
               if (andc[i]!=9999){    jmean=0.;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    for(i=1; i<=imx; i++){
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);      mi=0;
               agev[m][i]=-1;      m=firstpass;
               }      while(s[m][i] <= nlstate){
             }        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           }          mw[++mi][i]=m;
           else if(s[m][i] !=9){ /* Should no more exist */        if(m >=lastpass)
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);          break;
             if(mint[m][i]==99 || anint[m][i]==9999)        else
               agev[m][i]=1;          m++;
             else if(agev[m][i] <agemin){      }/* end while */
               agemin=agev[m][i];      if (s[m][i] > nlstate){
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        mi++;     /* Death is another wave */
             }        /* if(mi==0)  never been interviewed correctly before death */
             else if(agev[m][i] >agemax){           /* Only death is a correct wave */
               agemax=agev[m][i];        mw[mi][i]=m;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      }
             }  
             /*agev[m][i]=anint[m][i]-annais[i];*/      wav[i]=mi;
             /*   agev[m][i] = age[i]+2*m;*/      if(mi==0){
           }        nbwarn++;
           else { /* =9 */        if(first==0){
             agev[m][i]=1;          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
             s[m][i]=-1;          first=1;
           }        }
         }        if(first==1){
         else /*= 0 Unknown */          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
           agev[m][i]=1;        }
       }      } /* end mi==0 */
        } /* End individuals */
     }  
     for (i=1; i<=imx; i++)  {    for(i=1; i<=imx; i++){
       for(m=1; (m<= maxwav); m++){      for(mi=1; mi<wav[i];mi++){
         if (s[m][i] > (nlstate+ndeath)) {        if (stepm <=0)
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);            dh[mi][i]=1;
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);          else{
           goto end;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         }            if (agedc[i] < 2*AGESUP) {
       }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     }              if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                nberr++;
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 j=1; /* Temporary Dangerous patch */
     free_vector(severity,1,maxwav);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     free_imatrix(outcome,1,maxwav+1,1,n);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     free_vector(moisnais,1,n);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     free_vector(annais,1,n);              }
     /* free_matrix(mint,1,maxwav,1,n);              k=k+1;
        free_matrix(anint,1,maxwav,1,n);*/              if (j >= jmax){
     free_vector(moisdc,1,n);                jmax=j;
     free_vector(andc,1,n);                ijmax=i;
               }
                  if (j <= jmin){
     wav=ivector(1,imx);                jmin=j;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);                ijmin=i;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);              }
                  sum=sum+j;
     /* Concatenates waves */              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
           }
       Tcode=ivector(1,100);          else{
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       ncodemax[1]=1;  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  
                  k=k+1;
    codtab=imatrix(1,100,1,10);            if (j >= jmax) {
    h=0;              jmax=j;
    m=pow(2,cptcoveff);              ijmax=i;
              }
    for(k=1;k<=cptcoveff; k++){            else if (j <= jmin){
      for(i=1; i <=(m/pow(2,k));i++){              jmin=j;
        for(j=1; j <= ncodemax[k]; j++){              ijmin=i;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){            }
            h++;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/            if(j<0){
          }              nberr++;
        }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    }            }
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);            sum=sum+j;
       codtab[1][2]=1;codtab[2][2]=2; */          }
    /* for(i=1; i <=m ;i++){          jk= j/stepm;
       for(k=1; k <=cptcovn; k++){          jl= j -jk*stepm;
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);          ju= j -(jk+1)*stepm;
       }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       printf("\n");            if(jl==0){
       }              dh[mi][i]=jk;
       scanf("%d",i);*/              bh[mi][i]=0;
                }else{ /* We want a negative bias in order to only have interpolation ie
    /* Calculates basic frequencies. Computes observed prevalence at single age                    * to avoid the price of an extra matrix product in likelihood */
        and prints on file fileres'p'. */              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
                }
              }else{
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            if(jl <= -ju){
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              dh[mi][i]=jk;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              bh[mi][i]=jl;       /* bias is positive if real duration
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                                   * is higher than the multiple of stepm and negative otherwise.
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                                   */
                  }
     /* For Powell, parameters are in a vector p[] starting at p[1]            else{
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */              dh[mi][i]=jk+1;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */              bh[mi][i]=ju;
             }
     if(mle==1){            if(dh[mi][i]==0){
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);              dh[mi][i]=1; /* At least one step */
     }              bh[mi][i]=ju; /* At least one step */
                  /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     /*--------- results files --------------*/            }
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);          } /* end if mle */
          }
       } /* end wave */
    jk=1;    }
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    jmean=sum/k;
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
    for(i=1,jk=1; i <=nlstate; i++){   }
      for(k=1; k <=(nlstate+ndeath); k++){  
        if (k != i)  /*********** Tricode ****************************/
          {  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
            printf("%d%d ",i,k);  {
            fprintf(ficlog,"%d%d ",i,k);    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
            fprintf(ficres,"%1d%1d ",i,k);    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
            for(j=1; j <=ncovmodel; j++){     * Boring subroutine which should only output nbcode[Tvar[j]][k]
              printf("%f ",p[jk]);     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
              fprintf(ficlog,"%f ",p[jk]);     * nbcode[Tvar[j]][1]= 
              fprintf(ficres,"%f ",p[jk]);    */
              jk++;  
            }    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
            printf("\n");    int modmaxcovj=0; /* Modality max of covariates j */
            fprintf(ficlog,"\n");    int cptcode=0; /* Modality max of covariates j */
            fprintf(ficres,"\n");    int modmincovj=0; /* Modality min of covariates j */
          }  
      }  
    }    cptcoveff=0; 
    if(mle==1){   
      /* Computing hessian and covariance matrix */    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
      ftolhess=ftol; /* Usually correct */  
      hesscov(matcov, p, npar, delti, ftolhess, func);    /* Loop on covariates without age and products */
    }    for (j=1; j<=(cptcovs); j++) { /* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only */
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      for (k=-1; k < maxncov; k++) Ndum[k]=0;
    printf("# Scales (for hessian or gradient estimation)\n");      for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the 
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");                                 modality of this covariate Vj*/ 
    for(i=1,jk=1; i <=nlstate; i++){        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
      for(j=1; j <=nlstate+ndeath; j++){                                      * If product of Vn*Vm, still boolean *:
        if (j!=i) {                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
          fprintf(ficres,"%1d%1d",i,j);                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
          printf("%1d%1d",i,j);        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
          fprintf(ficlog,"%1d%1d",i,j);                                        modality of the nth covariate of individual i. */
          for(k=1; k<=ncovmodel;k++){        if (ij > modmaxcovj)
            printf(" %.5e",delti[jk]);          modmaxcovj=ij; 
            fprintf(ficlog," %.5e",delti[jk]);        else if (ij < modmincovj) 
            fprintf(ficres," %.5e",delti[jk]);          modmincovj=ij; 
            jk++;        if ((ij < -1) && (ij > NCOVMAX)){
          }          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
          printf("\n");          exit(1);
          fprintf(ficlog,"\n");        }else
          fprintf(ficres,"\n");        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
        }        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
      }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
    }        /* getting the maximum value of the modality of the covariate
               (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
    k=1;           female is 1, then modmaxcovj=1.*/
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      } /* end for loop on individuals i */
    if(mle==1)      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      cptcode=modmaxcovj;
    for(i=1;i<=npar;i++){      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
      /*  if (k>nlstate) k=1;     /*for (i=0; i<=cptcode; i++) {*/
          i1=(i-1)/(ncovmodel*nlstate)+1;      for (k=modmincovj;  k<=modmaxcovj; k++) { /* k=-1 ? 0 and 1*//* For each value k of the modality of model-cov j */
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        printf("Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
          printf("%s%d%d",alph[k],i1,tab[i]);*/        fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
      fprintf(ficres,"%3d",i);        if( Ndum[k] != 0 ){ /* Counts if nobody answered modality k ie empty modality, we skip it and reorder */
      if(mle==1)          if( k != -1){
        printf("%3d",i);            ncodemax[j]++;  /* ncodemax[j]= Number of modalities of the j th
      fprintf(ficlog,"%3d",i);                               covariate for which somebody answered excluding 
      for(j=1; j<=i;j++){                               undefined. Usually 2: 0 and 1. */
        fprintf(ficres," %.5e",matcov[i][j]);          }
        if(mle==1)          ncodemaxwundef[j]++; /* ncodemax[j]= Number of modalities of the j th
          printf(" %.5e",matcov[i][j]);                               covariate for which somebody answered including 
        fprintf(ficlog," %.5e",matcov[i][j]);                               undefined. Usually 3: -1, 0 and 1. */
      }        }
      fprintf(ficres,"\n");        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
      if(mle==1)           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
        printf("\n");      } /* Ndum[-1] number of undefined modalities */
      fprintf(ficlog,"\n");  
      k++;      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
    }      /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. 
             If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125;
    while((c=getc(ficpar))=='#' && c!= EOF){         modmincovj=3; modmaxcovj = 7;
      ungetc(c,ficpar);         There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3;
      fgets(line, MAXLINE, ficpar);         which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10;
      puts(line);         defining two dummy variables: variables V1_1 and V1_2.
      fputs(line,ficparo);         nbcode[Tvar[j]][ij]=k;
    }         nbcode[Tvar[j]][1]=0;
    ungetc(c,ficpar);         nbcode[Tvar[j]][2]=1;
    estepm=0;         nbcode[Tvar[j]][3]=2;
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);         To be continued (not working yet).
    if (estepm==0 || estepm < stepm) estepm=stepm;      */
    if (fage <= 2) {      ij=0; /* ij is similar to i but can jump over null modalities */
      bage = ageminpar;      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
      fage = agemaxpar;          if (Ndum[i] == 0) { /* If nobody responded to this modality k */
    }            break;
              }
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          ij++;
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          nbcode[Tvar[j]][ij]=i;  /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality.*/
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          cptcode = ij; /* New max modality for covar j */
          } /* end of loop on modality i=-1 to 1 or more */
    while((c=getc(ficpar))=='#' && c!= EOF){        
      ungetc(c,ficpar);      /*   for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */
      fgets(line, MAXLINE, ficpar);      /*  /\*recode from 0 *\/ */
      puts(line);      /*                               k is a modality. If we have model=V1+V1*sex  */
      fputs(line,ficparo);      /*                               then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
    }      /*                            But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */
    ungetc(c,ficpar);      /*  } */
        /*  /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);      /*  if (ij > ncodemax[j]) { */
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      /*    printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]);  */
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      /*    fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */
          /*    break; */
    while((c=getc(ficpar))=='#' && c!= EOF){      /*  } */
      ungetc(c,ficpar);      /*   }  /\* end of loop on modality k *\/ */
      fgets(line, MAXLINE, ficpar);    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
      puts(line);    
      fputs(line,ficparo);   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
    }    
    ungetc(c,ficpar);    for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
       /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
      ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
    dateprev1=anprev1+mprev1/12.+jprev1/365.;     Ndum[ij]++; /* Might be supersed V1 + V1*age */
    dateprev2=anprev2+mprev2/12.+jprev2/365.;   } 
   
   fscanf(ficpar,"pop_based=%d\n",&popbased);   ij=0;
   fprintf(ficparo,"pop_based=%d\n",popbased);     for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
   fprintf(ficres,"pop_based=%d\n",popbased);       /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
       if((Ndum[i]!=0) && (i<=ncovcol)){
   while((c=getc(ficpar))=='#' && c!= EOF){       ij++;
     ungetc(c,ficpar);       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
     fgets(line, MAXLINE, ficpar);       Tvaraff[ij]=i; /*For printing (unclear) */
     puts(line);     }else{
     fputs(line,ficparo);         /* Tvaraff[ij]=0; */
   }     }
   ungetc(c,ficpar);   }
    /* ij--; */
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);   cptcoveff=ij; /*Number of total covariates*/
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  }
   
   
 while((c=getc(ficpar))=='#' && c!= EOF){  /*********** Health Expectancies ****************/
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
     puts(line);  
     fputs(line,ficparo);  {
   }    /* Health expectancies, no variances */
   ungetc(c,ficpar);    int i, j, nhstepm, hstepm, h, nstepm;
     int nhstepma, nstepma; /* Decreasing with age */
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    double age, agelim, hf;
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    double ***p3mat;
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    double eip;
   
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    pstamp(ficreseij);
     fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
 /*------------ gnuplot -------------*/    fprintf(ficreseij,"# Age");
   strcpy(optionfilegnuplot,optionfilefiname);    for(i=1; i<=nlstate;i++){
   strcat(optionfilegnuplot,".gp");      for(j=1; j<=nlstate;j++){
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {        fprintf(ficreseij," e%1d%1d ",i,j);
     printf("Problem with file %s",optionfilegnuplot);      }
   }      fprintf(ficreseij," e%1d. ",i);
   fclose(ficgp);    }
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);    fprintf(ficreseij,"\n");
 /*--------- index.htm --------*/  
     
   strcpy(optionfilehtm,optionfile);    if(estepm < stepm){
   strcat(optionfilehtm,".htm");      printf ("Problem %d lower than %d\n",estepm, stepm);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    }
     printf("Problem with %s \n",optionfilehtm), exit(0);    else  hstepm=estepm;   
   }    /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n     * if stepm=24 months pijx are given only every 2 years and by summing them
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n     * we are calculating an estimate of the Life Expectancy assuming a linear 
 \n     * progression in between and thus overestimating or underestimating according
 Total number of observations=%d <br>\n     * to the curvature of the survival function. If, for the same date, we 
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n     * estimate the model with stepm=1 month, we can keep estepm to 24 months
 <hr  size=\"2\" color=\"#EC5E5E\">     * to compare the new estimate of Life expectancy with the same linear 
  <ul><li><h4>Parameter files</h4>\n     * hypothesis. A more precise result, taking into account a more precise
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n     * curvature will be obtained if estepm is as small as stepm. */
  - Log file of the run: <a href=\"%s\">%s</a><br>\n  
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);    /* For example we decided to compute the life expectancy with the smallest unit */
   fclose(fichtm);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);       nstepm is the number of stepm from age to agelin. 
         Look at hpijx to understand the reason of that which relies in memory size
 /*------------ free_vector  -------------*/       and note for a fixed period like estepm months */
  chdir(path);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         survival function given by stepm (the optimization length). Unfortunately it
  free_ivector(wav,1,imx);       means that if the survival funtion is printed only each two years of age and if
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);         results. So we changed our mind and took the option of the best precision.
  free_ivector(num,1,n);    */
  free_vector(agedc,1,n);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
  /*free_matrix(covar,1,NCOVMAX,1,n);*/  
  fclose(ficparo);    agelim=AGESUP;
  fclose(ficres);    /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   /*--------------- Prevalence limit --------------*/      
    /* nhstepm age range expressed in number of stepm */
   strcpy(filerespl,"pl");    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   strcat(filerespl,fileres);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    /* if (stepm >= YEARM) hstepm=1;*/
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }  
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    for (age=bage; age<=fage; age ++){ 
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   fprintf(ficrespl,"#Prevalence limit\n");      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   fprintf(ficrespl,"#Age ");      /* if (stepm >= YEARM) hstepm=1;*/
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   fprintf(ficrespl,"\n");  
        /* If stepm=6 months */
   prlim=matrix(1,nlstate,1,nlstate);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   k=0;      
   agebase=ageminpar;      printf("%d|",(int)age);fflush(stdout);
   agelim=agemaxpar;      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   ftolpl=1.e-10;      
   i1=cptcoveff;      /* Computing expectancies */
   if (cptcovn < 1){i1=1;}      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
   for(cptcov=1;cptcov<=i1;cptcov++){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         k=k+1;            
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         fprintf(ficrespl,"\n#******");  
         printf("\n#******");          }
         fprintf(ficlog,"\n#******");  
         for(j=1;j<=cptcoveff;j++) {      fprintf(ficreseij,"%3.0f",age );
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(i=1; i<=nlstate;i++){
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        eip=0;
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(j=1; j<=nlstate;j++){
         }          eip +=eij[i][j][(int)age];
         fprintf(ficrespl,"******\n");          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         printf("******\n");        }
         fprintf(ficlog,"******\n");        fprintf(ficreseij,"%9.4f", eip );
              }
         for (age=agebase; age<=agelim; age++){      fprintf(ficreseij,"\n");
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      
           fprintf(ficrespl,"%.0f",age );    }
           for(i=1; i<=nlstate;i++)    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespl," %.5f", prlim[i][i]);    printf("\n");
           fprintf(ficrespl,"\n");    fprintf(ficlog,"\n");
         }    
       }  }
     }  
   fclose(ficrespl);  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
   /*------------- h Pij x at various ages ------------*/  {
      /* Covariances of health expectancies eij and of total life expectancies according
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);     to initial status i, ei. .
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;    int nhstepma, nstepma; /* Decreasing with age */
   }    double age, agelim, hf;
   printf("Computing pij: result on file '%s' \n", filerespij);    double ***p3matp, ***p3matm, ***varhe;
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);    double **dnewm,**doldm;
      double *xp, *xm;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double **gp, **gm;
   /*if (stepm<=24) stepsize=2;*/    double ***gradg, ***trgradg;
     int theta;
   agelim=AGESUP;  
   hstepm=stepsize*YEARM; /* Every year of age */    double eip, vip;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   /* hstepm=1;   aff par mois*/    xp=vector(1,npar);
     xm=vector(1,npar);
   k=0;    dnewm=matrix(1,nlstate*nlstate,1,npar);
   for(cptcov=1;cptcov<=i1;cptcov++){    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    
       k=k+1;    pstamp(ficresstdeij);
         fprintf(ficrespij,"\n#****** ");    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
         for(j=1;j<=cptcoveff;j++)    fprintf(ficresstdeij,"# Age");
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for(i=1; i<=nlstate;i++){
         fprintf(ficrespij,"******\n");      for(j=1; j<=nlstate;j++)
                fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      fprintf(ficresstdeij," e%1d. ",i);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    }
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    fprintf(ficresstdeij,"\n");
   
           /*      nhstepm=nhstepm*YEARM; aff par mois*/    pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficrescveij,"# Age");
           oldm=oldms;savm=savms;    for(i=1; i<=nlstate;i++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for(j=1; j<=nlstate;j++){
           fprintf(ficrespij,"# Age");        cptj= (j-1)*nlstate+i;
           for(i=1; i<=nlstate;i++)        for(i2=1; i2<=nlstate;i2++)
             for(j=1; j<=nlstate+ndeath;j++)          for(j2=1; j2<=nlstate;j2++){
               fprintf(ficrespij," %1d-%1d",i,j);            cptj2= (j2-1)*nlstate+i2;
           fprintf(ficrespij,"\n");            if(cptj2 <= cptj)
            for (h=0; h<=nhstepm; h++){              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          }
             for(i=1; i<=nlstate;i++)      }
               for(j=1; j<=nlstate+ndeath;j++)    fprintf(ficrescveij,"\n");
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    
             fprintf(ficrespij,"\n");    if(estepm < stepm){
              }      printf ("Problem %d lower than %d\n",estepm, stepm);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
           fprintf(ficrespij,"\n");    else  hstepm=estepm;   
         }    /* We compute the life expectancy from trapezoids spaced every estepm months
     }     * This is mainly to measure the difference between two models: for example
   }     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
   fclose(ficrespij);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
   /*---------- Forecasting ------------------*/     * curvature will be obtained if estepm is as small as stepm. */
   if((stepm == 1) && (strcmp(model,".")==0)){  
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    /* For example we decided to compute the life expectancy with the smallest unit */
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   }       nhstepm is the number of hstepm from age to agelim 
   else{       nstepm is the number of stepm from age to agelin. 
     erreur=108;       Look at hpijx to understand the reason of that which relies in memory size
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);       and note for a fixed period like estepm months */
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   }       survival function given by stepm (the optimization length). Unfortunately it
         means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   /*---------- Health expectancies and variances ------------*/       results. So we changed our mind and took the option of the best precision.
     */
   strcpy(filerest,"t");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   strcat(filerest,fileres);  
   if((ficrest=fopen(filerest,"w"))==NULL) {    /* If stepm=6 months */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    /* nhstepm age range expressed in number of stepm */
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;    agelim=AGESUP;
   }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
   strcpy(filerese,"e");    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcat(filerese,fileres);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((ficreseij=fopen(filerese,"w"))==NULL) {    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
   }    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);    for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   strcpy(fileresv,"v");      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   strcat(fileresv,fileres);      /* if (stepm >= YEARM) hstepm=1;*/
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);      /* If stepm=6 months */
   }      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      
   calagedate=-1;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
       /* Computing  Variances of health expectancies */
   k=0;      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   for(cptcov=1;cptcov<=i1;cptcov++){         decrease memory allocation */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for(theta=1; theta <=npar; theta++){
       k=k+1;        for(i=1; i<=npar; i++){ 
       fprintf(ficrest,"\n#****** ");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       for(j=1;j<=cptcoveff;j++)          xm[i] = x[i] - (i==theta ?delti[theta]:0);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        }
       fprintf(ficrest,"******\n");        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
       fprintf(ficreseij,"\n#****** ");    
       for(j=1;j<=cptcoveff;j++)        for(j=1; j<= nlstate; j++){
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for(i=1; i<=nlstate; i++){
       fprintf(ficreseij,"******\n");            for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
       fprintf(ficresvij,"\n#****** ");              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
       for(j=1;j<=cptcoveff;j++)            }
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          }
       fprintf(ficresvij,"******\n");        }
        
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        for(ij=1; ij<= nlstate*nlstate; ij++)
       oldm=oldms;savm=savms;          for(h=0; h<=nhstepm-1; h++){
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);              gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
            }
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      }/* End theta */
       oldm=oldms;savm=savms;      
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);      
       if(popbased==1){      for(h=0; h<=nhstepm-1; h++)
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);        for(j=1; j<=nlstate*nlstate;j++)
        }          for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
        
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);       for(ij=1;ij<=nlstate*nlstate;ij++)
       fprintf(ficrest,"\n");        for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
       epj=vector(1,nlstate+1);  
       for(age=bage; age <=fage ;age++){       printf("%d|",(int)age);fflush(stdout);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
         if (popbased==1) {       for(h=0;h<=nhstepm-1;h++){
           for(i=1; i<=nlstate;i++)        for(k=0;k<=nhstepm-1;k++){
             prlim[i][i]=probs[(int)age][i][k];          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
         }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
                  for(ij=1;ij<=nlstate*nlstate;ij++)
         fprintf(ficrest," %4.0f",age);            for(ji=1;ji<=nlstate*nlstate;ji++)
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        }
             epj[j] += prlim[i][i]*eij[i][j][(int)age];      }
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  
           }      /* Computing expectancies */
           epj[nlstate+1] +=epj[j];      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
         }      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
         for(i=1, vepp=0.;i <=nlstate;i++)          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           for(j=1;j <=nlstate;j++)            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             vepp += vareij[i][j][(int)age];            
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         for(j=1;j <=nlstate;j++){  
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));          }
         }  
         fprintf(ficrest,"\n");      fprintf(ficresstdeij,"%3.0f",age );
       }      for(i=1; i<=nlstate;i++){
     }        eip=0.;
   }        vip=0.;
 free_matrix(mint,1,maxwav,1,n);        for(j=1; j<=nlstate;j++){
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);          eip += eij[i][j][(int)age];
     free_vector(weight,1,n);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   fclose(ficreseij);            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   fclose(ficresvij);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   fclose(ficrest);        }
   fclose(ficpar);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   free_vector(epj,1,nlstate+1);      }
        fprintf(ficresstdeij,"\n");
   /*------- Variance limit prevalence------*/    
       fprintf(ficrescveij,"%3.0f",age );
   strcpy(fileresvpl,"vpl");      for(i=1; i<=nlstate;i++)
   strcat(fileresvpl,fileres);        for(j=1; j<=nlstate;j++){
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          cptj= (j-1)*nlstate+i;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);          for(i2=1; i2<=nlstate;i2++)
     exit(0);            for(j2=1; j2<=nlstate;j2++){
   }              cptj2= (j2-1)*nlstate+i2;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);              if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   k=0;            }
   for(cptcov=1;cptcov<=i1;cptcov++){        }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      fprintf(ficrescveij,"\n");
       k=k+1;     
       fprintf(ficresvpl,"\n#****** ");    }
       for(j=1;j<=cptcoveff;j++)    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       fprintf(ficresvpl,"******\n");    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
          free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       oldm=oldms;savm=savms;    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    printf("\n");
     }    fprintf(ficlog,"\n");
  }  
     free_vector(xm,1,npar);
   fclose(ficresvpl);    free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   /*---------- End : free ----------------*/    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
    }
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  /************ Variance ******************/
     void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
    {
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    /* Variance of health expectancies */
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    /* double **newm;*/
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
      
   free_matrix(matcov,1,npar,1,npar);    int movingaverage();
   free_vector(delti,1,npar);    double **dnewm,**doldm;
   free_matrix(agev,1,maxwav,1,imx);    double **dnewmp,**doldmp;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    int i, j, nhstepm, hstepm, h, nstepm ;
     int k;
   fprintf(fichtm,"\n</body>");    double *xp;
   fclose(fichtm);    double **gp, **gm;  /* for var eij */
   fclose(ficgp);    double ***gradg, ***trgradg; /*for var eij */
      double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
   if(erreur >0){    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     printf("End of Imach with error or warning %d\n",erreur);    double ***p3mat;
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);    double age,agelim, hf;
   }else{    double ***mobaverage;
    printf("End of Imach\n");    int theta;
    fprintf(ficlog,"End of Imach\n");    char digit[4];
   }    char digitp[25];
   printf("See log file on %s\n",filelog);  
   fclose(ficlog);    char fileresprobmorprev[FILENAMELENGTH];
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  
      if(popbased==1){
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      if(mobilav!=0)
   /*printf("Total time was %d uSec.\n", total_usecs);*/        strcpy(digitp,"-POPULBASED-MOBILAV_");
   /*------ End -----------*/      else strcpy(digitp,"-POPULBASED-NOMOBIL_");
     }
     else 
  end:      strcpy(digitp,"-STABLBASED_");
 #ifdef windows  
   /* chdir(pathcd);*/    if (mobilav!=0) {
 #endif      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  /*system("wgnuplot graph.plt");*/      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
  /*system("../gp37mgw/wgnuplot graph.plt");*/        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
  /*system("cd ../gp37mgw");*/        printf(" Error in movingaverage mobilav=%d\n",mobilav);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      }
  strcpy(plotcmd,GNUPLOTPROGRAM);    }
  strcat(plotcmd," ");  
  strcat(plotcmd,optionfilegnuplot);    strcpy(fileresprobmorprev,"PRMORPREV-"); 
  system(plotcmd);    sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
 #ifdef windows    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   while (z[0] != 'q') {    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     /* chdir(path); */    strcat(fileresprobmorprev,fileresu);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     scanf("%s",z);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     if (z[0] == 'c') system("./imach");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     else if (z[0] == 'e') system(optionfilehtm);    }
     else if (z[0] == 'g') system(plotcmd);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     else if (z[0] == 'q') exit(0);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   }    pstamp(ficresprobmorprev);
 #endif    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     
     fprintf(ficgp,"\n# Routine varevsij");
     fprintf(ficgp,"\nunset title \n");
   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelim. 
        Look at function hpijx to understand why because of memory size limitations, 
        we decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
   
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  /* Returns p3mat[i][j][h] for h=1 to nhstepm */
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* Next for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
   
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
   
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyearp,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     /* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */
     fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.svg\"> <br>\n", estepm,subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.svg\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
    void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, char strstart[])
   {
     /* Variance of prevalence limit  for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mgm, **mgp;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       mgp=matrix(1,npar,1,nlstate);
       mgm=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         if((int)age==79 ||(int)age== 80 ||(int)age== 81 )
           prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
         else
           prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
         for(i=1;i<=nlstate;i++){
           gp[i] = prlim[i][i];
           mgp[theta][i] = prlim[i][i];
         }
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         if((int)age==79 ||(int)age== 80 ||(int)age== 81 )
           prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
         else
           prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
         for(i=1;i<=nlstate;i++){
           gm[i] = prlim[i][i];
           mgm[theta][i] = prlim[i][i];
         }
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
         /* gradg[theta][2]= -gradg[theta][1]; */ /* For testing if nlstate=2 */
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
       /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
       /*   printf("\nmgm mgp %d ",(int)age); */
       /*   for(j=1; j<=nlstate;j++){ */
       /*  printf(" %d ",j); */
       /*  for(theta=1; theta <=npar; theta++) */
       /*    printf(" %d %lf %lf",theta,mgm[theta][j],mgp[theta][j]); */
       /*  printf("\n "); */
       /*   } */
       /* } */
       /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
       /*   printf("\n gradg %d ",(int)age); */
       /*   for(j=1; j<=nlstate;j++){ */
       /*  printf("%d ",j); */
       /*  for(theta=1; theta <=npar; theta++) */
       /*    printf("%d %lf ",theta,gradg[theta][j]); */
       /*  printf("\n "); */
       /*   } */
       /* } */
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       if((int)age==79 ||(int)age== 80  ||(int)age== 81){
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       }else{
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       }
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(mgm,1,npar,1,nlstate);
       free_matrix(mgp,1,npar,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"PROB_"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"PROBCOV_"); 
     strcat(fileresprobcov,fileresu);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"PROBCOR_"); 
     strcat(fileresprobcor,fileresu);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back.</li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           if(nagesqr==1)
             cov[3]= age*age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)];
             /*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n");
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter svg size 640, 480");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s_%d%1d%1d-%1d%1d.svg\">\
   %s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s_%d%1d%1d-%1d%1d.svg\"> ",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s_%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out;\nset out \"%s_%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int prevfcast, int estepm ,          \
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileresu,"PIJ_"),subdirf2(fileresu,"PIJ_"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, e<sub>i.</sub> (b) health expectancies by health status at initial age, e<sub>ij</sub> . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_"));
      if(prevfcast==1){
        fprintf(fichtm,"\
    - Prevalence projections by age and states:                            \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_"));
      }
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++){ 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
            printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout);
          }
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* aij, bij */
        fprintf(fichtm,"<br>- Logit model (yours is: 1+age+%s), for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: <a href=\"%s_%d-1.svg\">%s_%d-1.svg</a><br> \
   <img src=\"%s_%d-1.svg\">",model,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);
        /* Pij */
        fprintf(fichtm,"<br>\n- P<sub>ij</sub> or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2.svg\">%s_%d-2.svg</a><br> \
   <img src=\"%s_%d-2.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>\n- I<sub>ij</sub> or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too,\
    incidence (rates) are the limit when h tends to zero of the ratio of the probability  <sub>h</sub>P<sub>ij</sub> \
   divided by h: <sub>h</sub>P<sub>ij</sub>/h : <a href=\"%s_%d-3.svg\">%s_%d-3.svg</a><br> \
   <img src=\"%s_%d-3.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); 
        /* Survival functions (period) in state j */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Survival functions in state %d. Or probability to survive in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1);
        }
        /* State specific survival functions (period) */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Survival functions from state %d in each live state and total.\
    Or probability to survive in various states (1 to %d) being in state %d at different ages.\
    <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> <img src=\"%s_%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1);
        }
        /* Period (stable) prevalence in each health state */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1);
        }
       if(prevfcast==1){
         /* Projection of prevalence up to period (stable) prevalence in each health state */
         for(cpt=1; cpt<=nlstate;cpt++){
           fprintf(fichtm,"<br>\n- Projection of prevalece up to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1);
         }
       }
   
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d%d.svg\">%s_%d%d.svg</a> <br> \
   <img src=\"%s_%d%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1);
        }
      /* } /\* end i1 *\/ */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \
    - 95%% confidence intervals and Wald tests of the estimated parameters are in the log file if optimization has been done (mle != 0).<br> \
   But because parameters are usually highly correlated (a higher incidence of disability \
   and a higher incidence of recovery can give very close observed transition) it might \
   be very useful to look not only at linear confidence intervals estimated from the \
   variances but at the covariance matrix. And instead of looking at the estimated coefficients \
   (parameters) of the logistic regression, it might be more meaningful to visualize the \
   covariance matrix of the one-step probabilities. \
   See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres);
   
    fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PROB_"),subdirf2(fileresu,"PROB_"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PROBCOV_"),subdirf2(fileresu,"PROBCOV_"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PROBCOR_"),subdirf2(fileresu,"PROBCOR_"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileresu,"CVE_"),subdirf2(fileresu,"CVE_"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d%d.svg\"> %s_%d-%d.svg <br>\
   <img src=\"%s_%d-%d.svg\">",cpt,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences:  <a href=\"%s_%d.svg\">%s_%d.svg<br>\
   <img src=\"%s_%d.svg\">",subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1);
      /* } /\* end i1 *\/ */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
       void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , int prevfcast, char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int lv=0, vlv=0, kl=0;
     int ng=0;
     int vpopbased;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     /* Contribution to likelihood */
     /* Plot the probability implied in the likelihood */
       fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n");
       fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Likelihood (-2Log(L))\";");
       /* fprintf(ficgp,"\nset ter svg size 640, 480"); */ /* Too big for svg */
       fprintf(ficgp,"\nset ter pngcairo size 640, 480");
   /* nice for mle=4 plot by number of matrix products.
      replot  "rrtest1/toto.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with point lc 1 */
   /* replot exp(p1+p2*x)/(1+exp(p1+p2*x)+exp(p3+p4*x)+exp(p5+p6*x)) t "p12(x)"  */
       /* fprintf(ficgp,"\nset out \"%s.svg\";",subdirf2(optionfilefiname,"ILK_")); */
       fprintf(ficgp,"\nset out \"%s-dest.png\";",subdirf2(optionfilefiname,"ILK_"));
       fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$12):5 t \"All sample, transitions colored by destination\" with dots lc variable; set out;\n",subdirf(fileresilk));
       fprintf(ficgp,"\nset out \"%s-ori.png\";",subdirf2(optionfilefiname,"ILK_"));
       fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$12):4 t \"All sample, transitions colored by origin\" with dots lc variable; set out;\n\n",subdirf(fileresilk));
       for (i=1; i<= nlstate ; i ++) {
         fprintf(ficgp,"\nset out \"%s-p%dj.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i);
         fprintf(ficgp,"unset log;\n# plot weighted, mean weight should have point size of 0.5\n plot  \"%s\"",subdirf(fileresilk));
         fprintf(ficgp,"  u  2:($4 == %d && $5==%d ? $9 : 1/0):($11/4.):5 t \"p%d%d\" with points pointtype 7 ps variable lc variable \\\n",i,1,i,1);
         for (j=2; j<= nlstate+ndeath ; j ++) {
           fprintf(ficgp,",\\\n \"\" u  2:($4 == %d && $5==%d ? $9 : 1/0):($11/4.):5 t \"p%d%d\" with points pointtype 7 ps variable lc variable ",i,j,i,j);
         }
         fprintf(ficgp,";\nset out; unset ylabel;\n"); 
       }
       /* unset log; plot  "rrtest1_sorted_4/ILK_rrtest1_sorted_4.txt" u  2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with points lc variable */              
       /* fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk)); */
       /* fprintf(ficgp,"\nreplot  \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk)); */
       fprintf(ficgp,"\nset out;unset log\n");
       /* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) { /* For each live state */
       for (k1=1; k1<= m ; k1 ++) { /* For each combination of covariate */
         /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
         fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files ");
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[lv]][lv];
           fprintf(ficgp," V%d=%d ",k,vlv);
         }
         fprintf(ficgp,"\n#\n");
   
        fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1);
        fprintf(ficgp,"\n#set out \"V_%s_%d-%d.svg\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter svg size 640, 480\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1));
        fprintf(ficgp,"\nset out \n");
       } /* k1 */
     } /* cpt */
     /*2 eme*/
     for (k1=1; k1<= m ; k1 ++) { 
         fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files ");
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[lv]][lv];
           fprintf(ficgp," V%d=%d ",k,vlv);
         }
         fprintf(ficgp,"\n#\n");
   
       fprintf(ficgp,"\nset out \"%s_%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1);
       for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
         if(vpopbased==0)
           fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage);
         else
           fprintf(ficgp,"\nreplot ");
         for (i=1; i<= nlstate+1 ; i ++) {
           k=2*i;
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1, vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }   
           if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i);
           else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1);
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }   
           fprintf(ficgp,"\" t\"\" w l lt 0,");
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }   
           if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
           else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n");
         } /* state */
       } /* vpopbased */
       fprintf(ficgp,"\nset out;set out \"%s_%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1); /* Buggy gnuplot */
     } /* k1 */
   
   
     /*3eme*/
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         fprintf(ficgp,"\n# 3d: Life expectancy with EXP_ files:  cov=%d state=%d",k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[lv]][lv];
           fprintf(ficgp," V%d=%d ",k,vlv);
         }
         fprintf(ficgp,"\n#\n");
   
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s_%d%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1);
         fprintf(ficgp,"set ter svg size 640, 480\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* Survival functions (period) from state i in state j by initial state i */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'LIJ_' files, cov=%d state=%d",k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[lv]][lv];
           fprintf(ficgp," V%d=%d ",k,vlv);
         }
         fprintf(ficgp,"\n#\n");
   
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         k=3;
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=2; j<= nlstate+ndeath ; j ++)
             fprintf(ficgp,"+$%d",k+l+j-1);
           fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
   
     /* Survival functions (period) from state i in state j by final state j */
     for (k1=1; k1<= m ; k1 ++) { /* For each covariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state  */
         fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[lv]][lv];
           fprintf(ficgp," V%d=%d ",k,vlv);
         }
         fprintf(ficgp,"\n#\n");
   
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         k=3;
         for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
           if(j==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(cpt-1) +j;
           fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l);
           /* for (i=2; i<= nlstate+ndeath ; i ++) */
           /*   fprintf(ficgp,"+$%d",k+l+i-1); */
           fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j);
         } /* nlstate */
         fprintf(ficgp,", '' ");
         fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1);
         for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
           l=(nlstate+ndeath)*(cpt-1) +j;
           if(j < nlstate)
             fprintf(ficgp,"$%d +",k+l);
           else
             fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt);
         }
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
   
     /* CV preval stable (period) for each covariate */
     for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[lv]][lv];
           fprintf(ficgp," V%d=%d ",k,vlv);
         }
         fprintf(ficgp,"\n#\n");
   
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         k=3; /* Offset */
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=2; j<= nlstate ; j ++)
             fprintf(ficgp,"+$%d",k+l+j-1);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
   
     if(prevfcast==1){
     /* Projection from cross-sectional to stable (period) for each covariate */
   
       for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */
         for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
           fprintf(ficgp,"\n#\n#\n#Projection of prevalence to stable (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt);
           for (k=1; k<=cptcoveff; k++){    /* For each correspondig covariate value  */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[lv]][lv];
             fprintf(ficgp," V%d=%d ",k,vlv);
           }
           fprintf(ficgp,"\n#\n");
           
           fprintf(ficgp,"# hpijx=probability over h years, hp.jx is weighted by observed prev\n ");
           fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJ_"),cpt,k1);
           fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
           for (i=1; i<= nlstate+1 ; i ++){  /* nlstate +1 p11 p21 p.1 */
             /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
             /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
             /*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
             /*#   1       2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
             if(i==1){
               fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"F_"));
             }else{
               fprintf(ficgp,",\\\n '' ");
             }
             if(cptcoveff ==0){ /* No covariate */
               fprintf(ficgp," u 2:("); /* Age is in 2 */
               /*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
               /*#   1       2   3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
               if(i==nlstate+1)
                 fprintf(ficgp," $%d/(1.-$%d)) t 'p.%d' with line ", \
                           2+(cpt-1)*(nlstate+1)+1+(i-1),  2+1+(i-1)+(nlstate+1)*nlstate,cpt );
               else
                 fprintf(ficgp," $%d/(1.-$%d)) t 'p%d%d' with line ", \
                         2+(cpt-1)*(nlstate+1)+1+(i-1),  2+1+(i-1)+(nlstate+1)*nlstate,i,cpt );
             }else{
               fprintf(ficgp,"u 6:(("); /* Age is in 6 */
               /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
               /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
               kl=0;
               for (k=1; k<=cptcoveff; k++){    /* For each covariate  */
                 lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
                 /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                 /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                 /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                 vlv= nbcode[Tvaraff[lv]][lv];
                 kl++;
                 /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
                 /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
                 /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
                 /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
                 if(k==cptcoveff)
                   if(i==nlstate+1)
                     fprintf(ficgp,"$%d==%d && $%d==%d)? $%d/(1.-$%d) : 1/0) t 'p.%d' with line ",kl, k,kl+1,nbcode[Tvaraff[lv]][lv], \
                             6+(cpt-1)*(nlstate+1)+1+(i-1),  6+1+(i-1)+(nlstate+1)*nlstate,cpt );
                   else
                     fprintf(ficgp,"$%d==%d && $%d==%d)? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ",kl, k,kl+1,nbcode[Tvaraff[lv]][lv], \
                             6+(cpt-1)*(nlstate+1)+1+(i-1),  6+1+(i-1)+(nlstate+1)*nlstate,i,cpt );
                 else{
                   fprintf(ficgp,"$%d==%d && $%d==%d && ",kl, k,kl+1,nbcode[Tvaraff[lv]][lv]);
                   kl++;
                 }
               } /* end covariate */
             } /* end if covariate */
           } /* nlstate */
           fprintf(ficgp,"\nset out\n");
         } /* end cpt state*/
       } /* end covariate */
     } /* End if prevfcast */
   
   
     /* proba elementaires */
     fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n");
     for(i=1,jk=1; i <=nlstate; i++){
       fprintf(ficgp,"# initial state %d\n",i);
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           fprintf(ficgp,"#   current state %d\n",k);
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f; ",jk,p[jk]);
             jk++; 
           }
           fprintf(ficgp,"\n");
         }
       }
      }
     fprintf(ficgp,"##############\n#\n");
   
     /*goto avoid;*/
     fprintf(ficgp,"\n##############\n#Graphics of probabilities or incidences\n#############\n");
     fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
     fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n");
     fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n");
     fprintf(ficgp,"#     (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
     fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
     fprintf(ficgp,"#\n");
      for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/
        fprintf(ficgp,"# ng=%d\n",ng);
        fprintf(ficgp,"#   jk=1 to 2^%d=%d\n",cptcoveff,m);
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"#    jk=%d\n",jk);
          fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),jk,ng);
          fprintf(ficgp,"\nset ter svg size 640, 480 ");
          if (ng==1){
            fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */
            fprintf(ficgp,"\nunset log y");
          }else if (ng==2){
            fprintf(ficgp,"\nset ylabel \"Probability\"\n");
            fprintf(ficgp,"\nset log y");
          }else if (ng==3){
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
            fprintf(ficgp,"\nset log y");
          }else
            fprintf(ficgp,"\nunset title ");
          fprintf(ficgp,"\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                switch( ng) {
                case 1:
                  if(nagesqr==0)
                    fprintf(ficgp," p%d+p%d*x",i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                  break;
                case 2: /* ng=2 */
                  if(nagesqr==0)
                    fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                  else /* nagesqr =1 */
                      fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                  break;
                case 3:
                  if(nagesqr==0)
                    fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
                  break;
                }
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel-nagesqr; j++) {
                  /* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */
                  if(ij <=cptcovage) { /* Bug valgrind */
                    if((j-2)==Tage[ij]) { /* Bug valgrind */
                      fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                      /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                      ij++;
                    }
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                }
                if(ng != 1){
                  fprintf(ficgp,")/(1");
                
                  for(k1=1; k1 <=nlstate; k1++){ 
                    if(nagesqr==0)
                      fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                    else /* nagesqr =1 */
                      fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr);
                    
                    ij=1;
                    for(j=3; j <=ncovmodel-nagesqr; j++){
                      if(ij <=cptcovage) { /* Bug valgrind */
                        if((j-2)==Tage[ij]) { /* Bug valgrind */
                          fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                          /* fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                          ij++;
                        }
                      }
                      else
                        fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                    }
                    fprintf(ficgp,")");
                  }
                  fprintf(ficgp,")");
                  if(ng ==2)
                    fprintf(ficgp," t \"p%d%d\" ", k2,k);
                  else /* ng= 3 */
                    fprintf(ficgp," t \"i%d%d\" ", k2,k);
                }else{ /* end ng <> 1 */
                  fprintf(ficgp," t \"logit(p%d%d)\" ", k2,k);
                }
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
          fprintf(ficgp,"\n set out\n");
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
     */
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"F_"); 
     strcat(fileresf,fileresu);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficresf," yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"POP_"); 
     strcat(filerespop,fileresu);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileresu[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.svg\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.svg\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter svg size 640, 480\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);fflush(stdout);
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);fflush(ficlog);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
      * - nagesqr = 1 if age*age in the model, otherwise 0.
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
      * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
     char *strpt;
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       strcpy(modelsav,model); 
       if ((strpt=strstr(model,"age*age")) !=0){
         printf(" strpt=%s, model=%s\n",strpt, model);
         if(strpt != model){
         printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model);
         fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model); fflush(ficlog);
         return 1;
       }
   
         nagesqr=1;
         if (strstr(model,"+age*age") !=0)
           substrchaine(modelsav, model, "+age*age");
         else if (strstr(model,"age*age+") !=0)
           substrchaine(modelsav, model, "age*age+");
         else 
           substrchaine(modelsav, model, "age*age");
       }else
         nagesqr=0;
       if (strlen(modelsav) >1){
         j=nbocc(modelsav,'+'); /**< j=Number of '+' */
         j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
         cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =2  */
         cptcovt= j+1; /* Number of total covariates in the model, not including
                      * cst, age and age*age 
                      * V1+V1*age+ V3 + V3*V4+age*age=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated 
                     * separately: ncovn=4- 2=2 (V1+V3). */
         cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
         cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
   
       
         /*   Design
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
          *  <          ncovcol=8                >
          * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
          *   k=  1    2      3       4     5       6      7        8
          *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
          *  covar[k,i], value of kth covariate if not including age for individual i:
          *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
          *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
          *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
          *  Tage[++cptcovage]=k
          *       if products, new covar are created after ncovcol with k1
          *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
          *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
          *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
          *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
          *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
          *  <          ncovcol=8                >
          *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
          *          k=  1    2      3       4     5       6      7        8    9   10   11  12
          *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
          * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          * p Tprod[1]@2={                         6, 5}
          *p Tvard[1][1]@4= {7, 8, 5, 6}
          * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
          *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          *How to reorganize?
          * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
          * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          *       {2,   1,     4,      8,    5,      6,     3,       7}
          * Struct []
          */
   
         /* This loop fills the array Tvar from the string 'model'.*/
         /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
         /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
         /*        k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
         /*        k=3 V4 Tvar[k=3]= 4 (from V4) */
         /*        k=2 V1 Tvar[k=2]= 1 (from V1) */
         /*        k=1 Tvar[1]=2 (from V2) */
         /*        k=5 Tvar[5] */
         /* for (k=1; k<=cptcovn;k++) { */
         /*        cov[2+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
         /*        } */
         /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */
         /*
          * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
         for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
         cptcovage=0;
         for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
           cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                            modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
           if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
           /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
           /*scanf("%d",i);*/
           if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
             cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
             if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
               /* covar is not filled and then is empty */
               cptcovprod--;
               cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
               Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
               cptcovage++; /* Sums the number of covariates which include age as a product */
               Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
               /*printf("stre=%s ", stre);*/
             } else if (strcmp(strd,"age")==0) { /* or age*Vn */
               cptcovprod--;
               cutl(stre,strb,strc,'V');
               Tvar[k]=atoi(stre);
               cptcovage++;
               Tage[cptcovage]=k;
             } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
               /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
               cptcovn++;
               cptcovprodnoage++;k1++;
               cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
               Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                      because this model-covariate is a construction we invent a new column
                                      ncovcol + k1
                                      If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                      Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
               cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
               Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
               Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
               Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
               k2=k2+2;
               Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
               Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
               for (i=1; i<=lastobs;i++){
                 /* Computes the new covariate which is a product of
                    covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
                 covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
               }
             } /* End age is not in the model */
           } /* End if model includes a product */
           else { /* no more sum */
             /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
             /*  scanf("%d",i);*/
             cutl(strd,strc,strb,'V');
             ks++; /**< Number of simple covariates */
             cptcovn++;
             Tvar[k]=atoi(strd);
           }
           strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
           /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
             scanf("%d",i);*/
         } /* end of loop + on total covariates */
       } /* end if strlen(modelsave == 0) age*age might exist */
     } /* end if strlen(model == 0) */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   
   void syscompilerinfo(int logged)
    {
      /* #include "syscompilerinfo.h"*/
      /* command line Intel compiler 32bit windows, XP compatible:*/
      /* /GS /W3 /Gy
         /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
         "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
         "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
         /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
      */ 
      /* 64 bits */
      /*
        /GS /W3 /Gy
        /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
        /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
        /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
        "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
      /* Optimization are useless and O3 is slower than O2 */
      /*
        /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
        /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
        /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
        /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
      */
      /* Link is */ /* /OUT:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
         /PDB:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
         "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
         "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
         "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
         /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
         /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
         uiAccess='false'"
         /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
         /NOLOGO /TLBID:1
      */
   #if defined __INTEL_COMPILER
   #if defined(__GNUC__)
           struct utsname sysInfo;  /* For Intel on Linux and OS/X */
   #endif
   #elif defined(__GNUC__) 
   #ifndef  __APPLE__
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
      struct utsname sysInfo;
      int cross = CROSS;
      if (cross){
              printf("Cross-");
              if(logged) fprintf(ficlog, "Cross-");
      }
   #endif
   
   #include <stdint.h>
   
      printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");       /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");if(logged)fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");if(logged)fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");if(logged)fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); if(logged) fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");if(logged)fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");if(logged) fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");if(logged)fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for "); if (logged) fprintf(ficlog, " for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");if(logged) fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");if(logged) fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");if(logged) fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");if(logged) fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); if(logged) fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); if(logged) fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); if(logged) fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      if(logged) fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
      if (uname(&sysInfo) != -1) {
        printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
            if(logged) fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
      //#ifndef __INTEL_COMPILER 
   #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      if(logged) fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
   #endif
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
              if (logged) fprintf(ficlog, "\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("\nThe program is not running under WOW64 (i.e probably on a 64bit Windows).\n");
              if (logged) fprintf(ficlog, "\nThe programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
    }
   
    int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp){
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     int i, j, k, i1 ;
     /* double ftolpl = 1.e-10; */
     double age, agebase, agelim;
     double tot;
   
     strcpy(filerespl,"PL_");
     strcat(filerespl,fileresu);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
     }
     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     pstamp(ficrespl);
     fprintf(ficrespl,"# Period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl);
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
       /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
       agebase=ageminpar;
       agelim=agemaxpar;
   
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
           fprintf(ficrespl,"#******");
           printf("#******");
           fprintf(ficlog,"#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
   
           fprintf(ficrespl,"#Age ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           for(i=1; i<=nlstate;i++) fprintf(ficrespl,"  %d-%d   ",i,i);
           fprintf(ficrespl,"Total Years_to_converge\n");
           
           for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
             prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             tot=0.;
             for(i=1; i<=nlstate;i++){
               tot +=  prlim[i][i];
               fprintf(ficrespl," %.5f", prlim[i][i]);
             }
             fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp);
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
           return 0;
   }
   
   int hPijx(double *p, int bage, int fage){
       /*------------- h Pij x at various ages ------------*/
   
     int stepsize;
     int agelim;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k;
   
     double agedeb;
     double ***p3mat;
   
       strcpy(filerespij,"PIJ_");  strcat(filerespij,fileresu);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       i1= pow(2,cptcoveff);
      /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
      /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
      /*   k=k+1;  */
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficrespij,"******\n");
         
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
         /*}*/
       }
           return 0;
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
     int ncvyear=0; /* Number of years needed for the period prevalence to converge */
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int num_filled;
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb=0.;
   
     double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW;
   
     double fret;
     double dum=0.; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE];
   
     char model[MAXLINE], modeltemp[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt, c2;
     int jl=0;
     int i1, j1, jk, stepsize=0;
     int count=0;
   
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm=0, nhstepm=0;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110., age, agelim=0., agebase=0.;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double **hess; /* Hessian matrix */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
   #ifdef WIN32
     _getcwd(pathcd, size);
   #else
     getcwd(pathcd, size);
   #endif
     syscompilerinfo(0);
     printf("\nIMaCh version %s, %s\n%s",version, copyright, fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       if(!fgets(pathr,FILENAMELENGTH,stdin)){
         printf("ERROR Empty parameter file name\n");
         goto end;
       }
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(i >= 1 && pathr[i-1]==' ') {/* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
       }
       i=strlen(pathr);
       if( i==0 ){
         printf("ERROR Empty parameter file name\n");
         goto end;
       }
       for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   #ifdef WIN32
     _chdir(path); /* Can be a relative path */
     if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   #else
     chdir(path); /* Can be a relative path */
     if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
   #endif
     printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Main Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"Version %s %s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo(1);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileresu, optionfilefiname); /* Without r in front */
     strcat(fileres,".txt");    /* Other files have txt extension */
     strcat(fileresu,".txt");    /* Other files have txt extension */
   
     /* Main ---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileresu);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
   
       /* First parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", \
                           title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){
       if (num_filled != 5) {
         printf("Should be 5 parameters\n");
       }
       numlinepar++;
       printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
     }
     /* Second parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \
                           &ftol, &stepm, &ncovcol, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){
       if (num_filled != 8) {
         printf("Not 8 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n");
         printf("but line=%s\n",line);
       }
       printf("ftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt);
     }
     /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
     /*ftolpl=6.e-4; *//* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
     /* Third parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){
       if (num_filled == 0)
               model[0]='\0';
       else if (num_filled != 1){
         printf("ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         model[0]='\0';
         goto end;
       }
       else{
         if (model[0]=='+'){
           for(i=1; i<=strlen(model);i++)
             modeltemp[i-1]=model[i];
           strcpy(model,modeltemp); 
         }
       }
       /* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */
       printf("model=1+age+%s\n",model);fflush(stdout);
     }
     /* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */
     /* numlinepar=numlinepar+3; /\* In general *\/ */
     /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     /* if(model[0]=='#'|| model[0]== '\0'){ */
     if(model[0]=='#'){
       printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \
    'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \
    'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n");          \
       if(mle != -1){
         printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n");
         exit(1);
       }
     }
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */
         z[0]=line[1];
       }
       /* printf("****line [1] = %c \n",line[1]); */
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/
     else
       ncovmodel=2; /* Constant and age */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) { /* Main Wizard */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
       hess=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) || (j1 != jj)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,jj);
           fprintf(ficlog,"%1d%1d",i,jj);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       hess=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       /* Scans npar lines */
       for(i=1; i <=npar; i++){
         count=fscanf(ficpar,"%1d%1d%1d",&i1,&j1,&jk);
         if(count != 3){
           printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           exit(1);
         }else
         if(mle==1)
           printf("%1d%1d%1d",i1,j1,jk);
         fprintf(ficlog,"%1d%1d%1d",i1,j1,jk);
         fprintf(ficparo,"%1d%1d%1d",i1,j1,jk);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       /* End of read covariance matrix npar lines */
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", rfileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*  Main data
      */
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
     ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
   /* Main decodemodel */
   
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel-nagesqr > 2 ) /* That is if covariate other than cst, age and age*age */
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
     /* Nbcode gives the value of the lth modality (currently 1 to 2) of jth covariate, in
        V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
     /* 1 to ncodemax[j] which is the maximum value of this jth covariate */
   
     /*  codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/
     /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
     /* nbcode[Tvaraff[j]][codtabm(h,j)]) : if there are only 2 modalities for a covariate j, 
      * codtabm(h,j) gives its value classified at position h and nbcode gives how it is coded 
      * (currently 0 or 1) in the data.
      * In a loop on h=1 to 2**k, and a loop on j (=1 to k), we get the value of 
      * corresponding modality (h,j).
      */
   
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              * For k=4 covariates, h goes from 1 to m=2**k
              * codtabm(h,k)=  (1 & (h-1) >> (k-1)) + 1;
              * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
              *     h\k   1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     2
              *    10     2     1     1     2
              *    11 i=6 1     2     1     2
              *    12     2     2     1     2
              *    13 i=7 1 i=4 1     2     2    
              *    14     2     1     2     2
              *    15 i=8 1     2     2     2
              *    16     2     2     2     2
              */
     /* How to do the opposite? From combination h (=1 to 2**k) how to get the value on the covariates? */
        /* from h=5 and m, we get then number of covariates k=log(m)/log(2)=4
        * and the value of each covariate?
        * V1=1, V2=1, V3=2, V4=1 ?
        * h-1=4 and 4 is 0100 or reverse 0010, and +1 is 1121 ok.
        * h=6, 6-1=5, 5 is 0101, 1010, 2121, V1=2nd, V2=1st, V3=2nd, V4=1st.
        * In order to get the real value in the data, we use nbcode
        * nbcode[Tvar[3][2nd]]=1 and nbcode[Tvar[4][1]]=0
        * We are keeping this crazy system in order to be able (in the future?) 
        * to have more than 2 values (0 or 1) for a covariate.
        * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
        * h=6, k=2? h-1=5=0101, reverse 1010, +1=2121, k=2nd position: value is 1: codtabm(6,2)=1
        *              bbbbbbbb
        *              76543210     
        *   h-1        00000101 (6-1=5)
        *(h-1)>>(k-1)= 00000001 >> (2-1) = 1 right shift
        *           &
        *     1        00000001 (1)
        *              00000001        = 1 & ((h-1) >> (k-1))
        *          +1= 00000010 =2 
        *
        * h=14, k=3 => h'=h-1=13, k'=k-1=2
        *          h'      1101 =2^3+2^2+0x2^1+2^0
        *    >>k'            11
        *          &   00000001
        *            = 00000001
        *      +1    = 00000010=2    =  codtabm(14,3)   
        * Reverse h=6 and m=16?
        * cptcoveff=log(16)/log(2)=4 covariate: 6-1=5=0101 reversed=1010 +1=2121 =>V1=2, V2=1, V3=2, V4=1.
        * for (j=1 to cptcoveff) Vj=decodtabm(j,h,cptcoveff)
        * decodtabm(h,j,cptcoveff)= (((h-1) >> (j-1)) & 1) +1 
        * decodtabm(h,j,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (j-1)) & 1) +1 : -1)
        * V3=decodtabm(14,3,2**4)=2
        *          h'=13   1101 =2^3+2^2+0x2^1+2^0
        *(h-1) >> (j-1)    0011 =13 >> 2
        *          &1 000000001
        *           = 000000001
        *         +1= 000000010 =2
        *                  2211
        *                  V1=1+1, V2=0+1, V3=1+1, V4=1+1
        *                  V3=2
        */
   
     /* /\* for(h=1; h <=100 ;h++){  *\/ */
     /*   /\* printf("h=%2d ", h); *\/ */
     /*    /\* for(k=1; k <=10; k++){ *\/ */
     /*      /\* printf("k=%d %d ",k,codtabm(h,k)); *\/ */
     /*    /\*   codtab[h][k]=codtabm(h,k); *\/ */
     /*    /\* } *\/ */
     /*    /\* printf("\n"); *\/ */
     /* } */
     /* for(k=1;k<=cptcoveff; k++){ /\* scans any effective covariate *\/ */
     /*   for(i=1; i <=pow(2,cptcoveff-k);i++){ /\* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 *\/  */
     /*     for(j=1; j <= ncodemax[k]; j++){ /\* For each modality of this covariate ncodemax=2*\/ */
     /*    for(cpt=1; cpt <=pow(2,k-1); cpt++){  /\* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 *\/  */
     /*      h++; */
     /*      if (h>m)  */
     /*        h=1; */
     /*      codtab[h][k]=j; */
     /*      /\* codtab[12][3]=1; *\/ */
     /*      /\*codtab[h][Tvar[k]]=j;*\/ */
     /*      /\* printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]); *\/ */
     /*    }  */
     /*     } */
     /*   } */
     /* }  */
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){  */
     /*    for(k=1; k <=cptcovn; k++){ */
     /*      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff); */
     /*    } */
     /*    printf("\n"); */
     /* } */
     /*   scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /* Initialisation of ----------- gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-MORT_");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# IMaCh-%s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
   
   
     /* Initialisation of --------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-MORT_");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<head>\n<meta charset=\"utf-8\"/><meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n<title>IMaCh %s</title></head>\n <body><font size=\"7\"><a href=http:/euroreves.ined.fr/imach>IMaCh for Interpolated Markov Chain</a> </font><br>\n<font size=\"3\">Sponsored by Copyright (C)  2002-2015 <a href=http://www.ined.fr>INED</a>-EUROREVES-Institut de longévité-Japan Society for the Promotion of Sciences 日本学術振興会 (<a href=https://www.jsps.go.jp/english/e-grants/>Grant-in-Aid for Scientific Research 25293121</a>) - <a href=https://software.intel.com/en-us>Intel Software 2015</a></font><br>  \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   <font size=\"2\">IMaCh-%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
   #ifdef WIN32
     _chdir(optionfilefiname); /* Move to directory named optionfile */
   #else
     chdir(optionfilefiname); /* Move to directory named optionfile */
   #endif
             
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     /* For mortality only */
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
       /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"POW-MORT_"); 
       strcat(filerespow,fileresu);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
       /*     gsl_vector_set(x, 0, 0.0268); */
       /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, hess, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       fprintf(ficlog,"\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
           fprintf(ficlog,"%f ",matcov[i][j]);
         }
         printf("\n ");  fprintf(ficlog,"\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) {
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
         fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       }
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else
         printinggnuplotmort(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       printinghtmlmort(fileresu,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 mortality only */
     /* Standard  */
     else{ /* For mle !=- 3, could be 0 or 1 or 4 etc. */
       globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
       /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2, Real Maximization */
         /* mlikeli uses func not funcone */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       if(mle==0) {/* No optimization, will print the likelihoods for the datafile */
         globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
         /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
         likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       }
       globpr=1; /* again, to print the individual contributions using computed gpimx and gsw */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%12.7f ",p[jk]);
               fprintf(ficlog,"%12.7f ",p[jk]);
               fprintf(ficres,"%12.7f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle != 0){
         /* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, hess, p, npar, delti, ftolhess, func);
         printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
         fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n  It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
         for(i=1,jk=1; i <=nlstate; i++){
           for(k=1; k <=(nlstate+ndeath); k++){
             if (k != i) {
               printf("%d%d ",i,k);
               fprintf(ficlog,"%d%d ",i,k);
               for(j=1; j <=ncovmodel; j++){
                 printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 jk++; 
               }
               printf("\n");
               fprintf(ficlog,"\n");
             }
           }
         }
       } /* end of hesscov and Wald tests */
   
       /*  */
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle >= 1) /* To big for the screen */
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.7e",matcov[jj][ll]); 
                           fprintf(ficlog," %.7e",matcov[jj][ll]); 
                           fprintf(ficres," %.7e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
         while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
   
       /* while((c=getc(ficpar))=='#' && c!= EOF){ */
       /*   ungetc(c,ficpar); */
       /*   fgets(line, MAXLINE, ficpar); */
       /*   fputs(line,stdout); */
       /*   fputs(line,ficparo); */
       /* } */
       /* ungetc(c,ficpar); */
       
       estepm=0;
       if((num_filled=sscanf(line,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm, &ftolpl)) !=EOF){
   
       if (num_filled != 6) {
         printf("Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n");
         printf("but line=%s\n",line);
         goto end;
       }
       printf("agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",ageminpar,agemaxpar, bage, fage, estepm, ftolpl);
     }
     /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
     /*ftolpl=6.e-4;*/ /* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
   
       /* fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); */
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d, ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
   
       /* Other stuffs, more or less useful */    
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficlog,"pop_based=%d\n",popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else
         printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, pathc,p);
       
       printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,prevfcast,estepm, \
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /* Other results (useful)*/
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar, ftolpl, &ncvyear);
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileresu, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
       /* ------ Other prevalence ratios------------ */
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"E_");
       strcat(filerese,fileresu);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' ...", filerese);fflush(stdout);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' ...", filerese);fflush(ficlog);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
       printf("done evsij\n");fflush(stdout);
       fprintf(ficlog,"done evsij\n");fflush(ficlog);
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"T_");
       strcat(filerest,fileresu);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(stdout);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(ficlog);
   
   
       strcpy(fileresstde,"STDE_");
       strcat(fileresstde,fileresu);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("  Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"  Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"CVE_");
       strcat(filerescve,fileresu);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("    Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"    Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"V_");
       strcat(fileresv,fileresu);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("      Computing Variance-covariance of DFLEs: file '%s' ... ", fileresv);fflush(stdout);
       fprintf(ficlog,"      Computing Variance-covariance of DFLEs: file '%s' ... ", fileresv);fflush(ficlog);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficrest,"******\n");
         
         fprintf(ficresstdeij,"\n#****** ");
         fprintf(ficrescveij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficresstdeij,"******\n");
         fprintf(ficrescveij,"******\n");
         
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficresvij,"******\n");
         
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         printf(" cvevsij %d, ",k);
         fprintf(ficlog, " cvevsij %d, ",k);
         cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);
         printf(" end cvevsij \n ");
         fprintf(ficlog, " end cvevsij \n ");
         
         /*
          */
         /* goto endfree; */
         
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         pstamp(ficrest);
         
         
         for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
           oldm=oldms;savm=savms; /* ZZ Segmentation fault */
           cptcod= 0; /* To be deleted */
           printf("varevsij %d \n",vpopbased);
           fprintf(ficlog, "varevsij %d \n",vpopbased);
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
           if(vpopbased==1)
             fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
           else
             fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
           fprintf(ficrest,"# Age popbased mobilav e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
           /* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */
           epj=vector(1,nlstate+1);
           printf("Computing age specific period (stable) prevalences in each health state \n");
           fprintf(ficlog,"Computing age specific period (stable) prevalences in each health state \n");
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, &ncvyear, k); /*ZZ Is it the correct prevalim */
             if (vpopbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
             
             fprintf(ficrest," %4.0f %d %d",age, vpopbased, mobilav);
             /* fprintf(ficrest," %4.0f %d %d %d %d",age, vpopbased, mobilav,Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ /* to be done */
             /* printf(" age %4.0f ",age); */
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*ZZZ  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 /* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */
               }
               epj[nlstate+1] +=epj[j];
             }
             /* printf(" age %4.0f \n",age); */
             
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
         } /* End vpopbased */
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
         printf("done \n");fflush(stdout);
         fprintf(ficlog,"done\n");fflush(ficlog);
         
         /*}*/
       } /* End k */
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       printf("done Health expectancies\n");fflush(stdout);
       fprintf(ficlog,"done Health expectancies\n");fflush(ficlog);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"VPL_");
       strcat(fileresvpl,fileresu);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout);
       fprintf(ficlog, "Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
       printf("done variance-covariance of period prevalence\n");fflush(stdout);
       fprintf(ficlog,"done variance-covariance of period prevalence\n");fflush(ficlog);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       free_matrix(hess,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(ncodemaxwundef,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       /* free_imatrix(codtab,1,100,1,10); */
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
   #ifdef WIN32
      if (_chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n",path);
      if(_getcwd(pathcd,MAXLINE) > 0)
   #else
      if(chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n", path);
      if (getcwd(pathcd, MAXLINE) > 0)
   #endif 
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: "); fflush(stdout);
       scanf("%s",z);
     }
   }

Removed from v.1.50  
changed lines
  Added in v.1.212


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>