Diff for /imach/src/imach.c between versions 1.50 and 1.218

version 1.50, 2002/06/26 23:25:02 version 1.218, 2016/02/12 11:29:23
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.218  2016/02/12 11:29:23  brouard
      Summary: 0.99 Back projections
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.217  2015/12/23 17:18:31  brouard
   first survey ("cross") where individuals from different ages are    Summary: Experimental backcast
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.216  2015/12/18 17:32:11  brouard
   second wave of interviews ("longitudinal") which measure each change    Summary: 0.98r4 Warning and status=-2
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Version 0.98r4 is now:
   model. More health states you consider, more time is necessary to reach the     - displaying an error when status is -1, date of interview unknown and date of death known;
   Maximum Likelihood of the parameters involved in the model.  The     - permitting a status -2 when the vital status is unknown at a known date of right truncation.
   simplest model is the multinomial logistic model where pij is the    Older changes concerning s=-2, dating from 2005 have been supersed.
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.215  2015/12/16 08:52:24  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Summary: 0.98r4 working
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.214  2015/12/16 06:57:54  brouard
   where the markup *Covariates have to be included here again* invites    Summary: temporary not working
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.213  2015/12/11 18:22:17  brouard
     Summary: 0.98r4
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.212  2015/11/21 12:47:24  brouard
   identical for each individual. Also, if a individual missed an    Summary: minor typo
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.211  2015/11/21 12:41:11  brouard
     Summary: 0.98r3 with some graph of projected cross-sectional
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Author: Nicolas Brouard
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.210  2015/11/18 17:41:20  brouard
   semester or year) is model as a multinomial logistic.  The hPx    Summary: Start working on projected prevalences
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.209  2015/11/17 22:12:03  brouard
   hPijx.    Summary: Adding ftolpl parameter
     Author: N Brouard
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    We had difficulties to get smoothed confidence intervals. It was due
      to the period prevalence which wasn't computed accurately. The inner
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    parameter ftolpl is now an outer parameter of the .imach parameter
            Institut national d'études démographiques, Paris.    file after estepm. If ftolpl is small 1.e-4 and estepm too,
   This software have been partly granted by Euro-REVES, a concerted action    computation are long.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.208  2015/11/17 14:31:57  brouard
   software can be distributed freely for non commercial use. Latest version    Summary: temporary
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.207  2015/10/27 17:36:57  brouard
      *** empty log message ***
 #include <math.h>  
 #include <stdio.h>    Revision 1.206  2015/10/24 07:14:11  brouard
 #include <stdlib.h>    *** empty log message ***
 #include <unistd.h>  
     Revision 1.205  2015/10/23 15:50:53  brouard
 #define MAXLINE 256    Summary: 0.98r3 some clarification for graphs on likelihood contributions
 #define GNUPLOTPROGRAM "gnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.204  2015/10/01 16:20:26  brouard
 #define FILENAMELENGTH 80    Summary: Some new graphs of contribution to likelihood
 /*#define DEBUG*/  
 #define windows    Revision 1.203  2015/09/30 17:45:14  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Summary: looking at better estimation of the hessian
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Also a better criteria for convergence to the period prevalence And
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    therefore adding the number of years needed to converge. (The
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    prevalence in any alive state shold sum to one
   
 #define NINTERVMAX 8    Revision 1.202  2015/09/22 19:45:16  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Summary: Adding some overall graph on contribution to likelihood. Might change
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.201  2015/09/15 17:34:58  brouard
 #define MAXN 20000    Summary: 0.98r0
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    - Some new graphs like suvival functions
 #define AGEBASE 40    - Some bugs fixed like model=1+age+V2.
 #ifdef windows  
 #define DIRSEPARATOR '\\'    Revision 1.200  2015/09/09 16:53:55  brouard
 #define ODIRSEPARATOR '/'    Summary: Big bug thanks to Flavia
 #else  
 #define DIRSEPARATOR '/'    Even model=1+age+V2. did not work anymore
 #define ODIRSEPARATOR '\\'  
 #endif    Revision 1.199  2015/09/07 14:09:23  brouard
     Summary: 0.98q6 changing default small png format for graph to vectorized svg.
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";  
 int erreur; /* Error number */    Revision 1.198  2015/09/03 07:14:39  brouard
 int nvar;    Summary: 0.98q5 Flavia
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.197  2015/09/01 18:24:39  brouard
 int nlstate=2; /* Number of live states */    *** empty log message ***
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.196  2015/08/18 23:17:52  brouard
 int popbased=0;    Summary: 0.98q5
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.195  2015/08/18 16:28:39  brouard
 int maxwav; /* Maxim number of waves */    Summary: Adding a hack for testing purpose
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    After reading the title, ftol and model lines, if the comment line has
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    a q, starting with #q, the answer at the end of the run is quit. It
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    permits to run test files in batch with ctest. The former workaround was
 double jmean; /* Mean space between 2 waves */    $ echo q | imach foo.imach
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.194  2015/08/18 13:32:00  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Summary:  Adding error when the covariance matrix doesn't contain the exact number of lines required by the model line.
 FILE *ficlog;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Revision 1.193  2015/08/04 07:17:42  brouard
 FILE *ficresprobmorprev;    Summary: 0.98q4
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;    Revision 1.192  2015/07/16 16:49:02  brouard
 char filerese[FILENAMELENGTH];    Summary: Fixing some outputs
 FILE  *ficresvij;  
 char fileresv[FILENAMELENGTH];    Revision 1.191  2015/07/14 10:00:33  brouard
 FILE  *ficresvpl;    Summary: Some fixes
 char fileresvpl[FILENAMELENGTH];  
 char title[MAXLINE];    Revision 1.190  2015/05/05 08:51:13  brouard
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Summary: Adding digits in output parameters (7 digits instead of 6)
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
     Fix 1+age+.
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  
 char filelog[FILENAMELENGTH]; /* Log file */    Revision 1.189  2015/04/30 14:45:16  brouard
 char filerest[FILENAMELENGTH];    Summary: 0.98q2
 char fileregp[FILENAMELENGTH];  
 char popfile[FILENAMELENGTH];    Revision 1.188  2015/04/30 08:27:53  brouard
     *** empty log message ***
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  
     Revision 1.187  2015/04/29 09:11:15  brouard
 #define NR_END 1    *** empty log message ***
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.186  2015/04/23 12:01:52  brouard
     Summary: V1*age is working now, version 0.98q1
 #define NRANSI  
 #define ITMAX 200    Some codes had been disabled in order to simplify and Vn*age was
     working in the optimization phase, ie, giving correct MLE parameters,
 #define TOL 2.0e-4    but, as usual, outputs were not correct and program core dumped.
   
 #define CGOLD 0.3819660    Revision 1.185  2015/03/11 13:26:42  brouard
 #define ZEPS 1.0e-10    Summary: Inclusion of compile and links command line for Intel Compiler
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.184  2015/03/11 11:52:39  brouard
 #define GOLD 1.618034    Summary: Back from Windows 8. Intel Compiler
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.183  2015/03/10 20:34:32  brouard
     Summary: 0.98q0, trying with directest, mnbrak fixed
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    We use directest instead of original Powell test; probably no
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    incidence on the results, but better justifications;
      We fixed Numerical Recipes mnbrak routine which was wrong and gave
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    wrong results.
 #define rint(a) floor(a+0.5)  
     Revision 1.182  2015/02/12 08:19:57  brouard
 static double sqrarg;    Summary: Trying to keep directest which seems simpler and more general
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Author: Nicolas Brouard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.181  2015/02/11 23:22:24  brouard
 int imx;    Summary: Comments on Powell added
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Author:
   
 int estepm;    Revision 1.180  2015/02/11 17:33:45  brouard
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Summary: Finishing move from main to function (hpijx and prevalence_limit)
   
 int m,nb;    Revision 1.179  2015/01/04 09:57:06  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Summary: back to OS/X
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;    Revision 1.178  2015/01/04 09:35:48  brouard
 double dateintmean=0;    *** empty log message ***
   
 double *weight;    Revision 1.177  2015/01/03 18:40:56  brouard
 int **s; /* Status */    Summary: Still testing ilc32 on OSX
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.176  2015/01/03 16:45:04  brouard
     *** empty log message ***
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.175  2015/01/03 16:33:42  brouard
     *** empty log message ***
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Revision 1.174  2015/01/03 16:15:49  brouard
 {    Summary: Still in cross-compilation
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Revision 1.173  2015/01/03 12:06:26  brouard
     Summary: trying to detect cross-compilation
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.172  2014/12/27 12:07:47  brouard
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
    if ( s == NULL ) {                   /* no directory, so use current */  
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    Revision 1.171  2014/12/23 13:26:59  brouard
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    Summary: Back from Visual C
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Still problem with utsname.h on Windows
   
       if ( getwd( dirc ) == NULL ) {    Revision 1.170  2014/12/23 11:17:12  brouard
 #else    Summary: Cleaning some \%% back to %%
       extern char       *getcwd( );  
     The escape was mandatory for a specific compiler (which one?), but too many warnings.
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    Revision 1.169  2014/12/22 23:08:31  brouard
          return( GLOCK_ERROR_GETCWD );    Summary: 0.98p
       }  
       strcpy( name, path );             /* we've got it */    Outputs some informations on compiler used, OS etc. Testing on different platforms.
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Revision 1.168  2014/12/22 15:17:42  brouard
       l2 = strlen( s );                 /* length of filename */    Summary: update
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    Revision 1.167  2014/12/22 13:50:56  brouard
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Summary: Testing uname and compiler version and if compiled 32 or 64
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Testing on Linux 64
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    Revision 1.166  2014/12/22 11:40:47  brouard
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    *** empty log message ***
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Revision 1.165  2014/12/16 11:20:36  brouard
 #endif    Summary: After compiling on Visual C
    s = strrchr( name, '.' );            /* find last / */  
    s++;    * imach.c (Module): Merging 1.61 to 1.162
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);    Revision 1.164  2014/12/16 10:52:11  brouard
    l2= strlen( s)+1;    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;    * imach.c (Module): Merging 1.61 to 1.162
    return( 0 );                         /* we're done */  
 }    Revision 1.163  2014/12/16 10:30:11  brouard
     * imach.c (Module): Merging 1.61 to 1.162
   
 /******************************************/    Revision 1.162  2014/09/25 11:43:39  brouard
     Summary: temporary backup 0.99!
 void replace(char *s, char*t)  
 {    Revision 1.1  2014/09/16 11:06:58  brouard
   int i;    Summary: With some code (wrong) for nlopt
   int lg=20;  
   i=0;    Author:
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Revision 1.161  2014/09/15 20:41:41  brouard
     (s[i] = t[i]);    Summary: Problem with macro SQR on Intel compiler
     if (t[i]== '\\') s[i]='/';  
   }    Revision 1.160  2014/09/02 09:24:05  brouard
 }    *** empty log message ***
   
 int nbocc(char *s, char occ)    Revision 1.159  2014/09/01 10:34:10  brouard
 {    Summary: WIN32
   int i,j=0;    Author: Brouard
   int lg=20;  
   i=0;    Revision 1.158  2014/08/27 17:11:51  brouard
   lg=strlen(s);    *** empty log message ***
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Revision 1.157  2014/08/27 16:26:55  brouard
   }    Summary: Preparing windows Visual studio version
   return j;    Author: Brouard
 }  
     In order to compile on Visual studio, time.h is now correct and time_t
 void cutv(char *u,char *v, char*t, char occ)    and tm struct should be used. difftime should be used but sometimes I
 {    just make the differences in raw time format (time(&now).
   /* cuts string t into u and v where u is ended by char occ excluding it    Trying to suppress #ifdef LINUX
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)    Add xdg-open for __linux in order to open default browser.
      gives u="abcedf" and v="ghi2j" */  
   int i,lg,j,p=0;    Revision 1.156  2014/08/25 20:10:10  brouard
   i=0;    *** empty log message ***
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Revision 1.155  2014/08/25 18:32:34  brouard
   }    Summary: New compile, minor changes
     Author: Brouard
   lg=strlen(t);  
   for(j=0; j<p; j++) {    Revision 1.154  2014/06/20 17:32:08  brouard
     (u[j] = t[j]);    Summary: Outputs now all graphs of convergence to period prevalence
   }  
      u[p]='\0';    Revision 1.153  2014/06/20 16:45:46  brouard
     Summary: If 3 live state, convergence to period prevalence on same graph
    for(j=0; j<= lg; j++) {    Author: Brouard
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    Revision 1.152  2014/06/18 17:54:09  brouard
 }    Summary: open browser, use gnuplot on same dir than imach if not found in the path
   
 /********************** nrerror ********************/    Revision 1.151  2014/06/18 16:43:30  brouard
     *** empty log message ***
 void nrerror(char error_text[])  
 {    Revision 1.150  2014/06/18 16:42:35  brouard
   fprintf(stderr,"ERREUR ...\n");    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
   fprintf(stderr,"%s\n",error_text);    Author: brouard
   exit(1);  
 }    Revision 1.149  2014/06/18 15:51:14  brouard
 /*********************** vector *******************/    Summary: Some fixes in parameter files errors
 double *vector(int nl, int nh)    Author: Nicolas Brouard
 {  
   double *v;    Revision 1.148  2014/06/17 17:38:48  brouard
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    Summary: Nothing new
   if (!v) nrerror("allocation failure in vector");    Author: Brouard
   return v-nl+NR_END;  
 }    Just a new packaging for OS/X version 0.98nS
   
 /************************ free vector ******************/    Revision 1.147  2014/06/16 10:33:11  brouard
 void free_vector(double*v, int nl, int nh)    *** empty log message ***
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.146  2014/06/16 10:20:28  brouard
 }    Summary: Merge
     Author: Brouard
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)    Merge, before building revised version.
 {  
   int *v;    Revision 1.145  2014/06/10 21:23:15  brouard
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Summary: Debugging with valgrind
   if (!v) nrerror("allocation failure in ivector");    Author: Nicolas Brouard
   return v-nl+NR_END;  
 }    Lot of changes in order to output the results with some covariates
     After the Edimburgh REVES conference 2014, it seems mandatory to
 /******************free ivector **************************/    improve the code.
 void free_ivector(int *v, long nl, long nh)    No more memory valgrind error but a lot has to be done in order to
 {    continue the work of splitting the code into subroutines.
   free((FREE_ARG)(v+nl-NR_END));    Also, decodemodel has been improved. Tricode is still not
 }    optimal. nbcode should be improved. Documentation has been added in
     the source code.
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Revision 1.143  2014/01/26 09:45:38  brouard
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   int **m;    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
    
   /* allocate pointers to rows */    Revision 1.142  2014/01/26 03:57:36  brouard
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   m -= nrl;  
      Revision 1.141  2014/01/26 02:42:01  brouard
      * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    Revision 1.140  2011/09/02 10:37:54  brouard
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Summary: times.h is ok with mingw32 now.
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.139  2010/06/14 07:50:17  brouard
      After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
    
   /* return pointer to array of pointers to rows */    Revision 1.138  2010/04/30 18:19:40  brouard
   return m;    *** empty log message ***
 }  
     Revision 1.137  2010/04/29 18:11:38  brouard
 /****************** free_imatrix *************************/    (Module): Checking covariates for more complex models
 void free_imatrix(m,nrl,nrh,ncl,nch)    than V1+V2. A lot of change to be done. Unstable.
       int **m;  
       long nch,ncl,nrh,nrl;    Revision 1.136  2010/04/26 20:30:53  brouard
      /* free an int matrix allocated by imatrix() */    (Module): merging some libgsl code. Fixing computation
 {    of likelione (using inter/intrapolation if mle = 0) in order to
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    get same likelihood as if mle=1.
   free((FREE_ARG) (m+nrl-NR_END));    Some cleaning of code and comments added.
 }  
     Revision 1.135  2009/10/29 15:33:14  brouard
 /******************* matrix *******************************/    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {    Revision 1.134  2009/10/29 13:18:53  brouard
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   double **m;  
     Revision 1.133  2009/07/06 10:21:25  brouard
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    just nforces
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.132  2009/07/06 08:22:05  brouard
   m -= nrl;    Many tings
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Revision 1.131  2009/06/20 16:22:47  brouard
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Some dimensions resccaled
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.130  2009/05/26 06:44:34  brouard
     (Module): Max Covariate is now set to 20 instead of 8. A
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    lot of cleaning with variables initialized to 0. Trying to make
   return m;    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 }  
     Revision 1.129  2007/08/31 13:49:27  lievre
 /*************************free matrix ************************/    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {    Revision 1.128  2006/06/30 13:02:05  brouard
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    (Module): Clarifications on computing e.j
   free((FREE_ARG)(m+nrl-NR_END));  
 }    Revision 1.127  2006/04/28 18:11:50  brouard
     (Module): Yes the sum of survivors was wrong since
 /******************* ma3x *******************************/    imach-114 because nhstepm was no more computed in the age
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    loop. Now we define nhstepma in the age loop.
 {    (Module): In order to speed up (in case of numerous covariates) we
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    compute health expectancies (without variances) in a first step
   double ***m;    and then all the health expectancies with variances or standard
     deviation (needs data from the Hessian matrices) which slows the
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    computation.
   if (!m) nrerror("allocation failure 1 in matrix()");    In the future we should be able to stop the program is only health
   m += NR_END;    expectancies and graph are needed without standard deviations.
   m -= nrl;  
     Revision 1.126  2006/04/28 17:23:28  brouard
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    (Module): Yes the sum of survivors was wrong since
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    imach-114 because nhstepm was no more computed in the age
   m[nrl] += NR_END;    loop. Now we define nhstepma in the age loop.
   m[nrl] -= ncl;    Version 0.98h
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Revision 1.125  2006/04/04 15:20:31  lievre
     Errors in calculation of health expectancies. Age was not initialized.
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    Forecasting file added.
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;    Revision 1.124  2006/03/22 17:13:53  lievre
   m[nrl][ncl] -= nll;    Parameters are printed with %lf instead of %f (more numbers after the comma).
   for (j=ncl+1; j<=nch; j++)    The log-likelihood is printed in the log file
     m[nrl][j]=m[nrl][j-1]+nlay;  
      Revision 1.123  2006/03/20 10:52:43  brouard
   for (i=nrl+1; i<=nrh; i++) {    * imach.c (Module): <title> changed, corresponds to .htm file
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    name. <head> headers where missing.
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;    * imach.c (Module): Weights can have a decimal point as for
   }    English (a comma might work with a correct LC_NUMERIC environment,
   return m;    otherwise the weight is truncated).
 }    Modification of warning when the covariates values are not 0 or
     1.
 /*************************free ma3x ************************/    Version 0.98g
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {    Revision 1.122  2006/03/20 09:45:41  brouard
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    (Module): Weights can have a decimal point as for
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    English (a comma might work with a correct LC_NUMERIC environment,
   free((FREE_ARG)(m+nrl-NR_END));    otherwise the weight is truncated).
 }    Modification of warning when the covariates values are not 0 or
     1.
 /***************** f1dim *************************/    Version 0.98g
 extern int ncom;  
 extern double *pcom,*xicom;    Revision 1.121  2006/03/16 17:45:01  lievre
 extern double (*nrfunc)(double []);    * imach.c (Module): Comments concerning covariates added
    
 double f1dim(double x)    * imach.c (Module): refinements in the computation of lli if
 {    status=-2 in order to have more reliable computation if stepm is
   int j;    not 1 month. Version 0.98f
   double f;  
   double *xt;    Revision 1.120  2006/03/16 15:10:38  lievre
      (Module): refinements in the computation of lli if
   xt=vector(1,ncom);    status=-2 in order to have more reliable computation if stepm is
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    not 1 month. Version 0.98f
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);    Revision 1.119  2006/03/15 17:42:26  brouard
   return f;    (Module): Bug if status = -2, the loglikelihood was
 }    computed as likelihood omitting the logarithm. Version O.98e
   
 /*****************brent *************************/    Revision 1.118  2006/03/14 18:20:07  brouard
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    (Module): varevsij Comments added explaining the second
 {    table of variances if popbased=1 .
   int iter;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   double a,b,d,etemp;    (Module): Function pstamp added
   double fu,fv,fw,fx;    (Module): Version 0.98d
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;    Revision 1.117  2006/03/14 17:16:22  brouard
   double e=0.0;    (Module): varevsij Comments added explaining the second
      table of variances if popbased=1 .
   a=(ax < cx ? ax : cx);    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   b=(ax > cx ? ax : cx);    (Module): Function pstamp added
   x=w=v=bx;    (Module): Version 0.98d
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {    Revision 1.116  2006/03/06 10:29:27  brouard
     xm=0.5*(a+b);    (Module): Variance-covariance wrong links and
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    varian-covariance of ej. is needed (Saito).
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);    Revision 1.115  2006/02/27 12:17:45  brouard
     fprintf(ficlog,".");fflush(ficlog);    (Module): One freematrix added in mlikeli! 0.98c
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    Revision 1.114  2006/02/26 12:57:58  brouard
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    (Module): Some improvements in processing parameter
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    filename with strsep.
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    Revision 1.113  2006/02/24 14:20:24  brouard
       *xmin=x;    (Module): Memory leaks checks with valgrind and:
       return fx;    datafile was not closed, some imatrix were not freed and on matrix
     }    allocation too.
     ftemp=fu;  
     if (fabs(e) > tol1) {    Revision 1.112  2006/01/30 09:55:26  brouard
       r=(x-w)*(fx-fv);    (Module): Back to gnuplot.exe instead of wgnuplot.exe
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;    Revision 1.111  2006/01/25 20:38:18  brouard
       q=2.0*(q-r);    (Module): Lots of cleaning and bugs added (Gompertz)
       if (q > 0.0) p = -p;    (Module): Comments can be added in data file. Missing date values
       q=fabs(q);    can be a simple dot '.'.
       etemp=e;  
       e=d;    Revision 1.110  2006/01/25 00:51:50  brouard
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    (Module): Lots of cleaning and bugs added (Gompertz)
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {    Revision 1.109  2006/01/24 19:37:15  brouard
         d=p/q;    (Module): Comments (lines starting with a #) are allowed in data.
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)    Revision 1.108  2006/01/19 18:05:42  lievre
           d=SIGN(tol1,xm-x);    Gnuplot problem appeared...
       }    To be fixed
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    Revision 1.107  2006/01/19 16:20:37  brouard
     }    Test existence of gnuplot in imach path
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);    Revision 1.106  2006/01/19 13:24:36  brouard
     if (fu <= fx) {    Some cleaning and links added in html output
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)    Revision 1.105  2006/01/05 20:23:19  lievre
         SHFT(fv,fw,fx,fu)    *** empty log message ***
         } else {  
           if (u < x) a=u; else b=u;    Revision 1.104  2005/09/30 16:11:43  lievre
           if (fu <= fw || w == x) {    (Module): sump fixed, loop imx fixed, and simplifications.
             v=w;    (Module): If the status is missing at the last wave but we know
             w=u;    that the person is alive, then we can code his/her status as -2
             fv=fw;    (instead of missing=-1 in earlier versions) and his/her
             fw=fu;    contributions to the likelihood is 1 - Prob of dying from last
           } else if (fu <= fv || v == x || v == w) {    health status (= 1-p13= p11+p12 in the easiest case of somebody in
             v=u;    the healthy state at last known wave). Version is 0.98
             fv=fu;  
           }    Revision 1.103  2005/09/30 15:54:49  lievre
         }    (Module): sump fixed, loop imx fixed, and simplifications.
   }  
   nrerror("Too many iterations in brent");    Revision 1.102  2004/09/15 17:31:30  brouard
   *xmin=x;    Add the possibility to read data file including tab characters.
   return fx;  
 }    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
 /****************** mnbrak ***********************/  
     Revision 1.100  2004/07/12 18:29:06  brouard
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    Add version for Mac OS X. Just define UNIX in Makefile
             double (*func)(double))  
 {    Revision 1.99  2004/06/05 08:57:40  brouard
   double ulim,u,r,q, dum;    *** empty log message ***
   double fu;  
      Revision 1.98  2004/05/16 15:05:56  brouard
   *fa=(*func)(*ax);    New version 0.97 . First attempt to estimate force of mortality
   *fb=(*func)(*bx);    directly from the data i.e. without the need of knowing the health
   if (*fb > *fa) {    state at each age, but using a Gompertz model: log u =a + b*age .
     SHFT(dum,*ax,*bx,dum)    This is the basic analysis of mortality and should be done before any
       SHFT(dum,*fb,*fa,dum)    other analysis, in order to test if the mortality estimated from the
       }    cross-longitudinal survey is different from the mortality estimated
   *cx=(*bx)+GOLD*(*bx-*ax);    from other sources like vital statistic data.
   *fc=(*func)(*cx);  
   while (*fb > *fc) {    The same imach parameter file can be used but the option for mle should be -3.
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);    Agnès, who wrote this part of the code, tried to keep most of the
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    former routines in order to include the new code within the former code.
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);    The output is very simple: only an estimate of the intercept and of
     if ((*bx-u)*(u-*cx) > 0.0) {    the slope with 95% confident intervals.
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {    Current limitations:
       fu=(*func)(u);    A) Even if you enter covariates, i.e. with the
       if (fu < *fc) {    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    B) There is no computation of Life Expectancy nor Life Table.
           SHFT(*fb,*fc,fu,(*func)(u))  
           }    Revision 1.97  2004/02/20 13:25:42  lievre
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    Version 0.96d. Population forecasting command line is (temporarily)
       u=ulim;    suppressed.
       fu=(*func)(u);  
     } else {    Revision 1.96  2003/07/15 15:38:55  brouard
       u=(*cx)+GOLD*(*cx-*bx);    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
       fu=(*func)(u);    rewritten within the same printf. Workaround: many printfs.
     }  
     SHFT(*ax,*bx,*cx,u)    Revision 1.95  2003/07/08 07:54:34  brouard
       SHFT(*fa,*fb,*fc,fu)    * imach.c (Repository):
       }    (Repository): Using imachwizard code to output a more meaningful covariance
 }    matrix (cov(a12,c31) instead of numbers.
   
 /*************** linmin ************************/    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
 int ncom;  
 double *pcom,*xicom;    Revision 1.93  2003/06/25 16:33:55  brouard
 double (*nrfunc)(double []);    (Module): On windows (cygwin) function asctime_r doesn't
      exist so I changed back to asctime which exists.
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    (Module): Version 0.96b
 {  
   double brent(double ax, double bx, double cx,    Revision 1.92  2003/06/25 16:30:45  brouard
                double (*f)(double), double tol, double *xmin);    (Module): On windows (cygwin) function asctime_r doesn't
   double f1dim(double x);    exist so I changed back to asctime which exists.
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));    Revision 1.91  2003/06/25 15:30:29  brouard
   int j;    * imach.c (Repository): Duplicated warning errors corrected.
   double xx,xmin,bx,ax;    (Repository): Elapsed time after each iteration is now output. It
   double fx,fb,fa;    helps to forecast when convergence will be reached. Elapsed time
      is stamped in powell.  We created a new html file for the graphs
   ncom=n;    concerning matrix of covariance. It has extension -cov.htm.
   pcom=vector(1,n);  
   xicom=vector(1,n);    Revision 1.90  2003/06/24 12:34:15  brouard
   nrfunc=func;    (Module): Some bugs corrected for windows. Also, when
   for (j=1;j<=n;j++) {    mle=-1 a template is output in file "or"mypar.txt with the design
     pcom[j]=p[j];    of the covariance matrix to be input.
     xicom[j]=xi[j];  
   }    Revision 1.89  2003/06/24 12:30:52  brouard
   ax=0.0;    (Module): Some bugs corrected for windows. Also, when
   xx=1.0;    mle=-1 a template is output in file "or"mypar.txt with the design
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    of the covariance matrix to be input.
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG    Revision 1.88  2003/06/23 17:54:56  brouard
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif    Revision 1.87  2003/06/18 12:26:01  brouard
   for (j=1;j<=n;j++) {    Version 0.96
     xi[j] *= xmin;  
     p[j] += xi[j];    Revision 1.86  2003/06/17 20:04:08  brouard
   }    (Module): Change position of html and gnuplot routines and added
   free_vector(xicom,1,n);    routine fileappend.
   free_vector(pcom,1,n);  
 }    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
 /*************** powell ************************/    current date of interview. It may happen when the death was just
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    prior to the death. In this case, dh was negative and likelihood
             double (*func)(double []))    was wrong (infinity). We still send an "Error" but patch by
 {    assuming that the date of death was just one stepm after the
   void linmin(double p[], double xi[], int n, double *fret,    interview.
               double (*func)(double []));    (Repository): Because some people have very long ID (first column)
   int i,ibig,j;    we changed int to long in num[] and we added a new lvector for
   double del,t,*pt,*ptt,*xit;    memory allocation. But we also truncated to 8 characters (left
   double fp,fptt;    truncation)
   double *xits;    (Repository): No more line truncation errors.
   pt=vector(1,n);  
   ptt=vector(1,n);    Revision 1.84  2003/06/13 21:44:43  brouard
   xit=vector(1,n);    * imach.c (Repository): Replace "freqsummary" at a correct
   xits=vector(1,n);    place. It differs from routine "prevalence" which may be called
   *fret=(*func)(p);    many times. Probs is memory consuming and must be used with
   for (j=1;j<=n;j++) pt[j]=p[j];    parcimony.
   for (*iter=1;;++(*iter)) {    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
     fp=(*fret);  
     ibig=0;    Revision 1.83  2003/06/10 13:39:11  lievre
     del=0.0;    *** empty log message ***
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    Revision 1.82  2003/06/05 15:57:20  brouard
     for (i=1;i<=n;i++)    Add log in  imach.c and  fullversion number is now printed.
       printf(" %d %.12f",i, p[i]);  
     fprintf(ficlog," %d %.12f",i, p[i]);  */
     printf("\n");  /*
     fprintf(ficlog,"\n");     Interpolated Markov Chain
     for (i=1;i<=n;i++) {  
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    Short summary of the programme:
       fptt=(*fret);    
 #ifdef DEBUG    This program computes Healthy Life Expectancies from
       printf("fret=%lf \n",*fret);    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
       fprintf(ficlog,"fret=%lf \n",*fret);    first survey ("cross") where individuals from different ages are
 #endif    interviewed on their health status or degree of disability (in the
       printf("%d",i);fflush(stdout);    case of a health survey which is our main interest) -2- at least a
       fprintf(ficlog,"%d",i);fflush(ficlog);    second wave of interviews ("longitudinal") which measure each change
       linmin(p,xit,n,fret,func);    (if any) in individual health status.  Health expectancies are
       if (fabs(fptt-(*fret)) > del) {    computed from the time spent in each health state according to a
         del=fabs(fptt-(*fret));    model. More health states you consider, more time is necessary to reach the
         ibig=i;    Maximum Likelihood of the parameters involved in the model.  The
       }    simplest model is the multinomial logistic model where pij is the
 #ifdef DEBUG    probability to be observed in state j at the second wave
       printf("%d %.12e",i,(*fret));    conditional to be observed in state i at the first wave. Therefore
       fprintf(ficlog,"%d %.12e",i,(*fret));    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
       for (j=1;j<=n;j++) {    'age' is age and 'sex' is a covariate. If you want to have a more
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    complex model than "constant and age", you should modify the program
         printf(" x(%d)=%.12e",j,xit[j]);    where the markup *Covariates have to be included here again* invites
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    you to do it.  More covariates you add, slower the
       }    convergence.
       for(j=1;j<=n;j++) {  
         printf(" p=%.12e",p[j]);    The advantage of this computer programme, compared to a simple
         fprintf(ficlog," p=%.12e",p[j]);    multinomial logistic model, is clear when the delay between waves is not
       }    identical for each individual. Also, if a individual missed an
       printf("\n");    intermediate interview, the information is lost, but taken into
       fprintf(ficlog,"\n");    account using an interpolation or extrapolation.  
 #endif  
     }    hPijx is the probability to be observed in state i at age x+h
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    conditional to the observed state i at age x. The delay 'h' can be
 #ifdef DEBUG    split into an exact number (nh*stepm) of unobserved intermediate
       int k[2],l;    states. This elementary transition (by month, quarter,
       k[0]=1;    semester or year) is modelled as a multinomial logistic.  The hPx
       k[1]=-1;    matrix is simply the matrix product of nh*stepm elementary matrices
       printf("Max: %.12e",(*func)(p));    and the contribution of each individual to the likelihood is simply
       fprintf(ficlog,"Max: %.12e",(*func)(p));    hPijx.
       for (j=1;j<=n;j++) {  
         printf(" %.12e",p[j]);    Also this programme outputs the covariance matrix of the parameters but also
         fprintf(ficlog," %.12e",p[j]);    of the life expectancies. It also computes the period (stable) prevalence.
       }  
       printf("\n");  Back prevalence and projections:
       fprintf(ficlog,"\n");   - back_prevalence_limit(double *p, double **bprlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp, double dateprev1,double dateprev2, int firstpass, int lastpass, int mobilavproj)
       for(l=0;l<=1;l++) {      Computes the back prevalence limit  for any combination     of covariate values k
         for (j=1;j<=n;j++) {      at any age between ageminpar and agemaxpar and returns it in **bprlim. In the loops,
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];     - **bprevalim(**bprlim, ***mobaverage, nlstate, *p, age, **oldm, **savm, **dnewm, **doldm, **dsavm, ftolpl, ncvyearp, k);
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);   - hBijx Back Probability to be in state i at age x-h being in j at x
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);     Computes for any combination of covariates k and any age between bage and fage 
         }     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));                          oldm=oldms;savm=savms;
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));           - hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);
       }       Computes the transition matrix starting at age 'age' over
 #endif       'nhstepm*hstepm*stepm' months (i.e. until
        age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
        nhstepm*hstepm matrices. Returns p3mat[i][j][h] after calling 
       free_vector(xit,1,n);       p3mat[i][j][h]=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij),\
       free_vector(xits,1,n);                                                                           1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
       return;             Institut national d'études démographiques, Paris.
     }    This software have been partly granted by Euro-REVES, a concerted action
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    from the European Union.
     for (j=1;j<=n;j++) {    It is copyrighted identically to a GNU software product, ie programme and
       ptt[j]=2.0*p[j]-pt[j];    software can be distributed freely for non commercial use. Latest version
       xit[j]=p[j]-pt[j];    can be accessed at http://euroreves.ined.fr/imach .
       pt[j]=p[j];  
     }    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     fptt=(*func)(ptt);    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     if (fptt < fp) {    
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    **********************************************************************/
       if (t < 0.0) {  /*
         linmin(p,xit,n,fret,func);    main
         for (j=1;j<=n;j++) {    read parameterfile
           xi[j][ibig]=xi[j][n];    read datafile
           xi[j][n]=xit[j];    concatwav
         }    freqsummary
 #ifdef DEBUG    if (mle >= 1)
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      mlikeli
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    print results files
         for(j=1;j<=n;j++){    if mle==1 
           printf(" %.12e",xit[j]);       computes hessian
           fprintf(ficlog," %.12e",xit[j]);    read end of parameter file: agemin, agemax, bage, fage, estepm
         }        begin-prev-date,...
         printf("\n");    open gnuplot file
         fprintf(ficlog,"\n");    open html file
 #endif    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
       }     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
     }                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
   }      freexexit2 possible for memory heap.
 }  
     h Pij x                         | pij_nom  ficrestpij
 /**** Prevalence limit ****************/     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
          1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
      matrix by transitions matrix until convergence is reached */         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
     variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
   int i, ii,j,k;     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
   double min, max, maxmin, maxmax,sumnew=0.;     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
   double **matprod2();  
   double **out, cov[NCOVMAX], **pmij();    forecasting if prevfcast==1 prevforecast call prevalence()
   double **newm;    health expectancies
   double agefin, delaymax=50 ; /* Max number of years to converge */    Variance-covariance of DFLE
     prevalence()
   for (ii=1;ii<=nlstate+ndeath;ii++)     movingaverage()
     for (j=1;j<=nlstate+ndeath;j++){    varevsij() 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    if popbased==1 varevsij(,popbased)
     }    total life expectancies
     Variance of period (stable) prevalence
    cov[1]=1.;   end
    */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  /* #define DEBUG */
     newm=savm;  /* #define DEBUGBRENT */
     /* Covariates have to be included here again */  /* #define DEBUGLINMIN */
      cov[2]=agefin;  /* #define DEBUGHESS */
    #define DEBUGHESSIJ
       for (k=1; k<=cptcovn;k++) {  /* #define LINMINORIGINAL  /\* Don't use loop on scale in linmin (accepting nan)*\/ */
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  #define POWELL /* Instead of NLOPT */
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  #define POWELLF1F3 /* Skip test */
       }  /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  #include <math.h>
   #include <stdio.h>
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  #include <stdlib.h>
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  #include <string.h>
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  #ifdef _WIN32
   #include <io.h>
     savm=oldm;  #include <windows.h>
     oldm=newm;  #include <tchar.h>
     maxmax=0.;  #else
     for(j=1;j<=nlstate;j++){  #include <unistd.h>
       min=1.;  #endif
       max=0.;  
       for(i=1; i<=nlstate; i++) {  #include <limits.h>
         sumnew=0;  #include <sys/types.h>
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  
         prlim[i][j]= newm[i][j]/(1-sumnew);  #if defined(__GNUC__)
         max=FMAX(max,prlim[i][j]);  #include <sys/utsname.h> /* Doesn't work on Windows */
         min=FMIN(min,prlim[i][j]);  #endif
       }  
       maxmin=max-min;  #include <sys/stat.h>
       maxmax=FMAX(maxmax,maxmin);  #include <errno.h>
     }  /* extern int errno; */
     if(maxmax < ftolpl){  
       return prlim;  /* #ifdef LINUX */
     }  /* #include <time.h> */
   }  /* #include "timeval.h" */
 }  /* #else */
   /* #include <sys/time.h> */
 /*************** transition probabilities ***************/  /* #endif */
   
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  #include <time.h>
 {  
   double s1, s2;  #ifdef GSL
   /*double t34;*/  #include <gsl/gsl_errno.h>
   int i,j,j1, nc, ii, jj;  #include <gsl/gsl_multimin.h>
   #endif
     for(i=1; i<= nlstate; i++){  
     for(j=1; j<i;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #ifdef NLOPT
         /*s2 += param[i][j][nc]*cov[nc];*/  #include <nlopt.h>
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  typedef struct {
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    double (* function)(double [] );
       }  } myfunc_data ;
       ps[i][j]=s2;  #endif
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  
     }  /* #include <libintl.h> */
     for(j=i+1; j<=nlstate+ndeath;j++){  /* #define _(String) gettext (String) */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  
       }  #define GNUPLOTPROGRAM "gnuplot"
       ps[i][j]=s2;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
     }  #define FILENAMELENGTH 132
   }  
     /*ps[3][2]=1;*/  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   for(i=1; i<= nlstate; i++){  
      s1=0;  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
     for(j=1; j<i; j++)  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
       s1+=exp(ps[i][j]);  
     for(j=i+1; j<=nlstate+ndeath; j++)  #define NINTERVMAX 8
       s1+=exp(ps[i][j]);  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
     ps[i][i]=1./(s1+1.);  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
     for(j=1; j<i; j++)  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
       ps[i][j]= exp(ps[i][j])*ps[i][i];  #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
     for(j=i+1; j<=nlstate+ndeath; j++)  /*#define decodtabm(h,k,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (k-1)) & 1) +1 : -1)*/
       ps[i][j]= exp(ps[i][j])*ps[i][i];  #define decodtabm(h,k,cptcoveff) (((h-1) >> (k-1)) & 1) +1 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  #define MAXN 20000
   } /* end i */  #define YEARM 12. /**< Number of months per year */
   /* #define AGESUP 130 */
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  #define AGESUP 150
     for(jj=1; jj<= nlstate+ndeath; jj++){  #define AGEMARGE 25 /* Marge for agemin and agemax for(iage=agemin-AGEMARGE; iage <= agemax+3+AGEMARGE; iage++) */
       ps[ii][jj]=0;  #define AGEBASE 40
       ps[ii][ii]=1;  #define AGEOVERFLOW 1.e20
     }  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
   }  #ifdef _WIN32
   #define DIRSEPARATOR '\\'
   #define CHARSEPARATOR "\\"
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  #define ODIRSEPARATOR '/'
     for(jj=1; jj<= nlstate+ndeath; jj++){  #else
      printf("%lf ",ps[ii][jj]);  #define DIRSEPARATOR '/'
    }  #define CHARSEPARATOR "/"
     printf("\n ");  #define ODIRSEPARATOR '\\'
     }  #endif
     printf("\n ");printf("%lf ",cov[2]);*/  
 /*  /* $Id$ */
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  /* $State$ */
   goto end;*/  #include "version.h"
     return ps;  char version[]=__IMACH_VERSION__;
 }  char copyright[]="October 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
   char fullversion[]="$Revision$ $Date$"; 
 /**************** Product of 2 matrices ******************/  char strstart[80];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 {  int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
   /* in, b, out are matrice of pointers which should have been initialized  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
      before: only the contents of out is modified. The function returns  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
      a pointer to pointers identical to out */  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
   long i, j, k;  int cptcovprodnoage=0; /**< Number of covariate products without age */   
   for(i=nrl; i<= nrh; i++)  int cptcoveff=0; /* Total number of covariates to vary for printing results */
     for(k=ncolol; k<=ncoloh; k++)  int cptcov=0; /* Working variable */
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  int ncovcombmax=NCOVMAX; /* Maximum calculated number of covariate combination = pow(2, cptcoveff) */
         out[i][k] +=in[i][j]*b[j][k];  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
   return out;  int ndeath=1; /* Number of dead states */
 }  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
   
 /************* Higher Matrix Product ***************/  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav=0; /* Maxim number of waves */
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
 {  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
      duration (i.e. until                     to the likelihood and the sum of weights (done by funcone)*/
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  int mle=1, weightopt=0;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
      (typically every 2 years instead of every month which is too big).  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
      Model is determined by parameters x and covariates have to be  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
      included manually here.             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   int countcallfunc=0;  /* Count the number of calls to func */
      */  double jmean=1; /* Mean space between 2 waves */
   double **matprod2(); /* test */
   int i, j, d, h, k;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double **out, cov[NCOVMAX];  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   double **newm;  double   **ddnewms, **ddoldms, **ddsavms; /* for freeing later */
   
   /* Hstepm could be zero and should return the unit matrix */  /*FILE *fic ; */ /* Used in readdata only */
   for (i=1;i<=nlstate+ndeath;i++)  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficresphtm, *ficresphtmfr, *ficrespl, *ficresplb,*ficrespij, *ficrespijb, *ficrest,*ficresf, *ficresfb,*ficrespop;
     for (j=1;j<=nlstate+ndeath;j++){  FILE *ficlog, *ficrespow;
       oldm[i][j]=(i==j ? 1.0 : 0.0);  int globpr=0; /* Global variable for printing or not */
       po[i][j][0]=(i==j ? 1.0 : 0.0);  double fretone; /* Only one call to likelihood */
     }  long ipmx=0; /* Number of contributions */
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  double sw; /* Sum of weights */
   for(h=1; h <=nhstepm; h++){  char filerespow[FILENAMELENGTH];
     for(d=1; d <=hstepm; d++){  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
       newm=savm;  FILE *ficresilk;
       /* Covariates have to be included here again */  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
       cov[1]=1.;  FILE *ficresprobmorprev;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  FILE *fichtm, *fichtmcov; /* Html File */
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  FILE *ficreseij;
       for (k=1; k<=cptcovage;k++)  char filerese[FILENAMELENGTH];
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  FILE *ficresstdeij;
       for (k=1; k<=cptcovprod;k++)  char fileresstde[FILENAMELENGTH];
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  FILE *ficrescveij;
   char filerescve[FILENAMELENGTH];
   FILE  *ficresvij;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  char fileresv[FILENAMELENGTH];
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  FILE  *ficresvpl;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  char fileresvpl[FILENAMELENGTH];
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  char title[MAXLINE];
       savm=oldm;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH],  fileresplb[FILENAMELENGTH];
       oldm=newm;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     }  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
     for(i=1; i<=nlstate+ndeath; i++)  char command[FILENAMELENGTH];
       for(j=1;j<=nlstate+ndeath;j++) {  int  outcmd=0;
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filerespijb[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
          */  char fileresu[FILENAMELENGTH]; /* fileres without r in front */
       }  char filelog[FILENAMELENGTH]; /* Log file */
   } /* end h */  char filerest[FILENAMELENGTH];
   return po;  char fileregp[FILENAMELENGTH];
 }  char popfile[FILENAMELENGTH];
   
   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 /*************** log-likelihood *************/  
 double func( double *x)  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
 {  /* struct timezone tzp; */
   int i, ii, j, k, mi, d, kk;  /* extern int gettimeofday(); */
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  struct tm tml, *gmtime(), *localtime();
   double **out;  
   double sw; /* Sum of weights */  extern time_t time();
   double lli; /* Individual log likelihood */  
   long ipmx;  struct tm start_time, end_time, curr_time, last_time, forecast_time;
   /*extern weight */  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
   /* We are differentiating ll according to initial status */  struct tm tm;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  
   /*for(i=1;i<imx;i++)  char strcurr[80], strfor[80];
     printf(" %d\n",s[4][i]);  
   */  char *endptr;
   cov[1]=1.;  long lval;
   double dval;
   for(k=1; k<=nlstate; k++) ll[k]=0.;  
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  #define NR_END 1
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  #define FREE_ARG char*
     for(mi=1; mi<= wav[i]-1; mi++){  #define FTOL 1.0e-10
       for (ii=1;ii<=nlstate+ndeath;ii++)  
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  #define NRANSI 
       for(d=0; d<dh[mi][i]; d++){  #define ITMAX 200 
         newm=savm;  
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  #define TOL 2.0e-4 
         for (kk=1; kk<=cptcovage;kk++) {  
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  #define CGOLD 0.3819660 
         }  #define ZEPS 1.0e-10 
          #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  #define GOLD 1.618034 
         savm=oldm;  #define GLIMIT 100.0 
         oldm=newm;  #define TINY 1.0e-20 
          
          static double maxarg1,maxarg2;
       } /* end mult */  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
        #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       ipmx +=1;  #define rint(a) floor(a+0.5)
       sw += weight[i];  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  #define mytinydouble 1.0e-16
     } /* end of wave */  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
   } /* end of individual */  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
   /* static double dsqrarg; */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  static double sqrarg;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   return -l;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 }  int agegomp= AGEGOMP;
   
   int imx; 
 /*********** Maximum Likelihood Estimation ***************/  int stepm=1;
   /* Stepm, step in month: minimum step interpolation*/
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  
 {  int estepm;
   int i,j, iter;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   double **xi,*delti;  
   double fret;  int m,nb;
   xi=matrix(1,npar,1,npar);  long *num;
   for (i=1;i<=npar;i++)  int firstpass=0, lastpass=4,*cod, *cens;
     for (j=1;j<=npar;j++)  int *ncodemax;  /* ncodemax[j]= Number of modalities of the j th
       xi[i][j]=(i==j ? 1.0 : 0.0);                     covariate for which somebody answered excluding 
   printf("Powell\n");  fprintf(ficlog,"Powell\n");                     undefined. Usually 2: 0 and 1. */
   powell(p,xi,npar,ftol,&iter,&fret,func);  int *ncodemaxwundef;  /* ncodemax[j]= Number of modalities of the j th
                                covariate for which somebody answered including 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));                               undefined. Usually 3: -1, 0 and 1. */
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  double **pmmij, ***probs; /* Global pointer */
   double ***mobaverage; /* New global variable */
 }  double *ageexmed,*agecens;
   double dateintmean=0;
 /**** Computes Hessian and covariance matrix ***/  
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  double *weight;
 {  int **s; /* Status */
   double  **a,**y,*x,pd;  double *agedc;
   double **hess;  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
   int i, j,jk;                    * covar=matrix(0,NCOVMAX,1,n); 
   int *indx;                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
   double  idx; 
   double hessii(double p[], double delta, int theta, double delti[]);  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
   double hessij(double p[], double delti[], int i, int j);  int *Tage;
   void lubksb(double **a, int npar, int *indx, double b[]) ;  int *Ndum; /** Freq of modality (tricode */
   void ludcmp(double **a, int npar, int *indx, double *d) ;  /* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */
   int **Tvard, *Tprod, cptcovprod, *Tvaraff;
   hess=matrix(1,npar,1,npar);  double *lsurv, *lpop, *tpop;
   
   printf("\nCalculation of the hessian matrix. Wait...\n");  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");  double ftolhess; /**< Tolerance for computing hessian */
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);  /**************** split *************************/
     fprintf(ficlog,"%d",i);fflush(ficlog);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     hess[i][i]=hessii(p,ftolhess,i,delti);  {
     /*printf(" %f ",p[i]);*/    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     /*printf(" %lf ",hess[i][i]);*/       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   }    */ 
      char  *ss;                            /* pointer */
   for (i=1;i<=npar;i++) {    int   l1=0, l2=0;                             /* length counters */
     for (j=1;j<=npar;j++)  {  
       if (j>i) {    l1 = strlen(path );                   /* length of path */
         printf(".%d%d",i,j);fflush(stdout);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
         hess[i][j]=hessij(p,delti,i,j);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
         hess[j][i]=hess[i][j];          strcpy( name, path );               /* we got the fullname name because no directory */
         /*printf(" %lf ",hess[i][j]);*/      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     }      /* get current working directory */
   }      /*    extern  char* getcwd ( char *buf , int len);*/
   printf("\n");  #ifdef WIN32
   fprintf(ficlog,"\n");      if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
   #else
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          if (getcwd(dirc, FILENAME_MAX) == NULL) {
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");  #endif
          return( GLOCK_ERROR_GETCWD );
   a=matrix(1,npar,1,npar);      }
   y=matrix(1,npar,1,npar);      /* got dirc from getcwd*/
   x=vector(1,npar);      printf(" DIRC = %s \n",dirc);
   indx=ivector(1,npar);    } else {                              /* strip directory from path */
   for (i=1;i<=npar;i++)      ss++;                               /* after this, the filename */
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];      l2 = strlen( ss );                  /* length of filename */
   ludcmp(a,npar,indx,&pd);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
   for (j=1;j<=npar;j++) {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     for (i=1;i<=npar;i++) x[i]=0;      dirc[l1-l2] = '\0';                 /* add zero */
     x[j]=1;      printf(" DIRC2 = %s \n",dirc);
     lubksb(a,npar,indx,x);    }
     for (i=1;i<=npar;i++){    /* We add a separator at the end of dirc if not exists */
       matcov[i][j]=x[i];    l1 = strlen( dirc );                  /* length of directory */
     }    if( dirc[l1-1] != DIRSEPARATOR ){
   }      dirc[l1] =  DIRSEPARATOR;
       dirc[l1+1] = 0; 
   printf("\n#Hessian matrix#\n");      printf(" DIRC3 = %s \n",dirc);
   fprintf(ficlog,"\n#Hessian matrix#\n");    }
   for (i=1;i<=npar;i++) {    ss = strrchr( name, '.' );            /* find last / */
     for (j=1;j<=npar;j++) {    if (ss >0){
       printf("%.3e ",hess[i][j]);      ss++;
       fprintf(ficlog,"%.3e ",hess[i][j]);      strcpy(ext,ss);                     /* save extension */
     }      l1= strlen( name);
     printf("\n");      l2= strlen(ss)+1;
     fprintf(ficlog,"\n");      strncpy( finame, name, l1-l2);
   }      finame[l1-l2]= 0;
     }
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)    return( 0 );                          /* we're done */
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  }
   ludcmp(a,npar,indx,&pd);  
   
   /*  printf("\n#Hessian matrix recomputed#\n");  /******************************************/
   
   for (j=1;j<=npar;j++) {  void replace_back_to_slash(char *s, char*t)
     for (i=1;i<=npar;i++) x[i]=0;  {
     x[j]=1;    int i;
     lubksb(a,npar,indx,x);    int lg=0;
     for (i=1;i<=npar;i++){    i=0;
       y[i][j]=x[i];    lg=strlen(t);
       printf("%.3e ",y[i][j]);    for(i=0; i<= lg; i++) {
       fprintf(ficlog,"%.3e ",y[i][j]);      (s[i] = t[i]);
     }      if (t[i]== '\\') s[i]='/';
     printf("\n");    }
     fprintf(ficlog,"\n");  }
   }  
   */  char *trimbb(char *out, char *in)
   { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
   free_matrix(a,1,npar,1,npar);    char *s;
   free_matrix(y,1,npar,1,npar);    s=out;
   free_vector(x,1,npar);    while (*in != '\0'){
   free_ivector(indx,1,npar);      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
   free_matrix(hess,1,npar,1,npar);        in++;
       }
       *out++ = *in++;
 }    }
     *out='\0';
 /*************** hessian matrix ****************/    return s;
 double hessii( double x[], double delta, int theta, double delti[])  }
 {  
   int i;  /* char *substrchaine(char *out, char *in, char *chain) */
   int l=1, lmax=20;  /* { */
   double k1,k2;  /*   /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */
   double p2[NPARMAX+1];  /*   char *s, *t; */
   double res;  /*   t=in;s=out; */
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  /*   while ((*in != *chain) && (*in != '\0')){ */
   double fx;  /*     *out++ = *in++; */
   int k=0,kmax=10;  /*   } */
   double l1;  
   /*   /\* *in matches *chain *\/ */
   fx=func(x);  /*   while ((*in++ == *chain++) && (*in != '\0')){ */
   for (i=1;i<=npar;i++) p2[i]=x[i];  /*     printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
   for(l=0 ; l <=lmax; l++){  /*   } */
     l1=pow(10,l);  /*   in--; chain--; */
     delts=delt;  /*   while ( (*in != '\0')){ */
     for(k=1 ; k <kmax; k=k+1){  /*     printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
       delt = delta*(l1*k);  /*     *out++ = *in++; */
       p2[theta]=x[theta] +delt;  /*     printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
       k1=func(p2)-fx;  /*   } */
       p2[theta]=x[theta]-delt;  /*   *out='\0'; */
       k2=func(p2)-fx;  /*   out=s; */
       /*res= (k1-2.0*fx+k2)/delt/delt; */  /*   return out; */
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  /* } */
        char *substrchaine(char *out, char *in, char *chain)
 #ifdef DEBUG  {
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    /* Substract chain 'chain' from 'in', return and output 'out' */
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    /* in="V1+V1*age+age*age+V2", chain="age*age" */
 #endif  
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    char *strloc;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;    strcpy (out, in); 
       }    strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out);
         k=kmax; l=lmax*10.;    if(strloc != NULL){ 
       }      /* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1);
         delts=delt;      /* strcpy (strloc, strloc +strlen(chain));*/
       }    }
     }    printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out);
   }    return out;
   delti[theta]=delts;  }
   return res;  
    
 }  char *cutl(char *blocc, char *alocc, char *in, char occ)
   {
 double hessij( double x[], double delti[], int thetai,int thetaj)    /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
 {       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   int i;       gives blocc="abcdef" and alocc="ghi2j".
   int l=1, l1, lmax=20;       If occ is not found blocc is null and alocc is equal to in. Returns blocc
   double k1,k2,k3,k4,res,fx;    */
   double p2[NPARMAX+1];    char *s, *t;
   int k;    t=in;s=in;
     while ((*in != occ) && (*in != '\0')){
   fx=func(x);      *alocc++ = *in++;
   for (k=1; k<=2; k++) {    }
     for (i=1;i<=npar;i++) p2[i]=x[i];    if( *in == occ){
     p2[thetai]=x[thetai]+delti[thetai]/k;      *(alocc)='\0';
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      s=++in;
     k1=func(p2)-fx;    }
     
     p2[thetai]=x[thetai]+delti[thetai]/k;    if (s == t) {/* occ not found */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      *(alocc-(in-s))='\0';
     k2=func(p2)-fx;      in=s;
      }
     p2[thetai]=x[thetai]-delti[thetai]/k;    while ( *in != '\0'){
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      *blocc++ = *in++;
     k3=func(p2)-fx;    }
    
     p2[thetai]=x[thetai]-delti[thetai]/k;    *blocc='\0';
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    return t;
     k4=func(p2)-fx;  }
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  char *cutv(char *blocc, char *alocc, char *in, char occ)
 #ifdef DEBUG  {
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    /* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' 
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
 #endif       gives blocc="abcdef2ghi" and alocc="j".
   }       If occ is not found blocc is null and alocc is equal to in. Returns alocc
   return res;    */
 }    char *s, *t;
     t=in;s=in;
 /************** Inverse of matrix **************/    while (*in != '\0'){
 void ludcmp(double **a, int n, int *indx, double *d)      while( *in == occ){
 {        *blocc++ = *in++;
   int i,imax,j,k;        s=in;
   double big,dum,sum,temp;      }
   double *vv;      *blocc++ = *in++;
      }
   vv=vector(1,n);    if (s == t) /* occ not found */
   *d=1.0;      *(blocc-(in-s))='\0';
   for (i=1;i<=n;i++) {    else
     big=0.0;      *(blocc-(in-s)-1)='\0';
     for (j=1;j<=n;j++)    in=s;
       if ((temp=fabs(a[i][j])) > big) big=temp;    while ( *in != '\0'){
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      *alocc++ = *in++;
     vv[i]=1.0/big;    }
   }  
   for (j=1;j<=n;j++) {    *alocc='\0';
     for (i=1;i<j;i++) {    return s;
       sum=a[i][j];  }
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;  int nbocc(char *s, char occ)
     }  {
     big=0.0;    int i,j=0;
     for (i=j;i<=n;i++) {    int lg=20;
       sum=a[i][j];    i=0;
       for (k=1;k<j;k++)    lg=strlen(s);
         sum -= a[i][k]*a[k][j];    for(i=0; i<= lg; i++) {
       a[i][j]=sum;    if  (s[i] == occ ) j++;
       if ( (dum=vv[i]*fabs(sum)) >= big) {    }
         big=dum;    return j;
         imax=i;  }
       }  
     }  /* void cutv(char *u,char *v, char*t, char occ) */
     if (j != imax) {  /* { */
       for (k=1;k<=n;k++) {  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
         dum=a[imax][k];  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
         a[imax][k]=a[j][k];  /*      gives u="abcdef2ghi" and v="j" *\/ */
         a[j][k]=dum;  /*   int i,lg,j,p=0; */
       }  /*   i=0; */
       *d = -(*d);  /*   lg=strlen(t); */
       vv[imax]=vv[j];  /*   for(j=0; j<=lg-1; j++) { */
     }  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
     indx[j]=imax;  /*   } */
     if (a[j][j] == 0.0) a[j][j]=TINY;  
     if (j != n) {  /*   for(j=0; j<p; j++) { */
       dum=1.0/(a[j][j]);  /*     (u[j] = t[j]); */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  /*   } */
     }  /*      u[p]='\0'; */
   }  
   free_vector(vv,1,n);  /* Doesn't work */  /*    for(j=0; j<= lg; j++) { */
 ;  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
 }  /*   } */
   /* } */
 void lubksb(double **a, int n, int *indx, double b[])  
 {  #ifdef _WIN32
   int i,ii=0,ip,j;  char * strsep(char **pp, const char *delim)
   double sum;  {
      char *p, *q;
   for (i=1;i<=n;i++) {           
     ip=indx[i];    if ((p = *pp) == NULL)
     sum=b[ip];      return 0;
     b[ip]=b[i];    if ((q = strpbrk (p, delim)) != NULL)
     if (ii)    {
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      *pp = q + 1;
     else if (sum) ii=i;      *q = '\0';
     b[i]=sum;    }
   }    else
   for (i=n;i>=1;i--) {      *pp = 0;
     sum=b[i];    return p;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  }
     b[i]=sum/a[i][i];  #endif
   }  
 }  /********************** nrerror ********************/
   
 /************ Frequencies ********************/  void nrerror(char error_text[])
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  {
 {  /* Some frequencies */    fprintf(stderr,"ERREUR ...\n");
      fprintf(stderr,"%s\n",error_text);
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    exit(EXIT_FAILURE);
   int first;  }
   double ***freq; /* Frequencies */  /*********************** vector *******************/
   double *pp;  double *vector(int nl, int nh)
   double pos, k2, dateintsum=0,k2cpt=0;  {
   FILE *ficresp;    double *v;
   char fileresp[FILENAMELENGTH];    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
      if (!v) nrerror("allocation failure in vector");
   pp=vector(1,nlstate);    return v-nl+NR_END;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  }
   strcpy(fileresp,"p");  
   strcat(fileresp,fileres);  /************************ free vector ******************/
   if((ficresp=fopen(fileresp,"w"))==NULL) {  void free_vector(double*v, int nl, int nh)
     printf("Problem with prevalence resultfile: %s\n", fileresp);  {
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    free((FREE_ARG)(v+nl-NR_END));
     exit(0);  }
   }  
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  /************************ivector *******************************/
   j1=0;  int *ivector(long nl,long nh)
    {
   j=cptcoveff;    int *v;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (!v) nrerror("allocation failure in ivector");
   first=1;    return v-nl+NR_END;
   }
   for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){  /******************free ivector **************************/
       j1++;  void free_ivector(int *v, long nl, long nh)
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  {
         scanf("%d", i);*/    free((FREE_ARG)(v+nl-NR_END));
       for (i=-1; i<=nlstate+ndeath; i++)    }
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)  /************************lvector *******************************/
             freq[i][jk][m]=0;  long *lvector(long nl,long nh)
        {
       dateintsum=0;    long *v;
       k2cpt=0;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       for (i=1; i<=imx; i++) {    if (!v) nrerror("allocation failure in ivector");
         bool=1;    return v-nl+NR_END;
         if  (cptcovn>0) {  }
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  /******************free lvector **************************/
               bool=0;  void free_lvector(long *v, long nl, long nh)
         }  {
         if (bool==1) {    free((FREE_ARG)(v+nl-NR_END));
           for(m=firstpass; m<=lastpass; m++){  }
             k2=anint[m][i]+(mint[m][i]/12.);  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  /******************* imatrix *******************************/
               if(agev[m][i]==0) agev[m][i]=agemax+1;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
               if(agev[m][i]==1) agev[m][i]=agemax+2;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
               if (m<lastpass) {  { 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    int **m; 
               }    
                  /* allocate pointers to rows */ 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
                 dateintsum=dateintsum+k2;    if (!m) nrerror("allocation failure 1 in matrix()"); 
                 k2cpt++;    m += NR_END; 
               }    m -= nrl; 
             }    
           }    
         }    /* allocate rows and set pointers to them */ 
       }    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
            if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    m[nrl] += NR_END; 
     m[nrl] -= ncl; 
       if  (cptcovn>0) {    
         fprintf(ficresp, "\n#********** Variable ");    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    
         fprintf(ficresp, "**********\n#");    /* return pointer to array of pointers to rows */ 
       }    return m; 
       for(i=1; i<=nlstate;i++)  } 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  
       fprintf(ficresp, "\n");  /****************** free_imatrix *************************/
        void free_imatrix(m,nrl,nrh,ncl,nch)
       for(i=(int)agemin; i <= (int)agemax+3; i++){        int **m;
         if(i==(int)agemax+3){        long nch,ncl,nrh,nrl; 
           fprintf(ficlog,"Total");       /* free an int matrix allocated by imatrix() */ 
         }else{  { 
           if(first==1){    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
             first=0;    free((FREE_ARG) (m+nrl-NR_END)); 
             printf("See log file for details...\n");  } 
           }  
           fprintf(ficlog,"Age %d", i);  /******************* matrix *******************************/
         }  double **matrix(long nrl, long nrh, long ncl, long nch)
         for(jk=1; jk <=nlstate ; jk++){  {
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
             pp[jk] += freq[jk][m][i];    double **m;
         }  
         for(jk=1; jk <=nlstate ; jk++){    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
           for(m=-1, pos=0; m <=0 ; m++)    if (!m) nrerror("allocation failure 1 in matrix()");
             pos += freq[jk][m][i];    m += NR_END;
           if(pp[jk]>=1.e-10){    m -= nrl;
             if(first==1){  
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
             }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    m[nrl] += NR_END;
           }else{    m[nrl] -= ncl;
             if(first==1)  
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    return m;
           }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
         }  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
   that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
         for(jk=1; jk <=nlstate ; jk++){     */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  }
             pp[jk] += freq[jk][m][i];  
         }  /*************************free matrix ************************/
   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
         for(jk=1,pos=0; jk <=nlstate ; jk++)  {
           pos += pp[jk];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         for(jk=1; jk <=nlstate ; jk++){    free((FREE_ARG)(m+nrl-NR_END));
           if(pos>=1.e-5){  }
             if(first==1)  
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  /******************* ma3x *******************************/
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
           }else{  {
             if(first==1)    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    double ***m;
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
           }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
           if( i <= (int) agemax){    if (!m) nrerror("allocation failure 1 in matrix()");
             if(pos>=1.e-5){    m += NR_END;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    m -= nrl;
               probs[i][jk][j1]= pp[jk]/pos;  
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
             }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
             else    m[nrl] += NR_END;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    m[nrl] -= ncl;
           }  
         }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
          
         for(jk=-1; jk <=nlstate+ndeath; jk++)    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
           for(m=-1; m <=nlstate+ndeath; m++)    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
             if(freq[jk][m][i] !=0 ) {    m[nrl][ncl] += NR_END;
             if(first==1)    m[nrl][ncl] -= nll;
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    for (j=ncl+1; j<=nch; j++) 
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);      m[nrl][j]=m[nrl][j-1]+nlay;
             }    
         if(i <= (int) agemax)    for (i=nrl+1; i<=nrh; i++) {
           fprintf(ficresp,"\n");      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
         if(first==1)      for (j=ncl+1; j<=nch; j++) 
           printf("Others in log...\n");        m[i][j]=m[i][j-1]+nlay;
         fprintf(ficlog,"\n");    }
       }    return m; 
     }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   dateintmean=dateintsum/k2cpt;    */
    }
   fclose(ficresp);  
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  /*************************free ma3x ************************/
   free_vector(pp,1,nlstate);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
    {
   /* End of Freq */    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
 /************ Prevalence ********************/  }
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  
 {  /* Some frequencies */  /*************** function subdirf ***********/
    char *subdirf(char fileres[])
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  {
   double ***freq; /* Frequencies */    /* Caution optionfilefiname is hidden */
   double *pp;    strcpy(tmpout,optionfilefiname);
   double pos, k2;    strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
   pp=vector(1,nlstate);    return tmpout;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  }
    
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  /*************** function subdirf2 ***********/
   j1=0;  char *subdirf2(char fileres[], char *preop)
    {
   j=cptcoveff;    
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /* Caution optionfilefiname is hidden */
      strcpy(tmpout,optionfilefiname);
   for(k1=1; k1<=j;k1++){    strcat(tmpout,"/");
     for(i1=1; i1<=ncodemax[k1];i1++){    strcat(tmpout,preop);
       j1++;    strcat(tmpout,fileres);
          return tmpout;
       for (i=-1; i<=nlstate+ndeath; i++)    }
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)  /*************** function subdirf3 ***********/
             freq[i][jk][m]=0;  char *subdirf3(char fileres[], char *preop, char *preop2)
        {
       for (i=1; i<=imx; i++) {    
         bool=1;    /* Caution optionfilefiname is hidden */
         if  (cptcovn>0) {    strcpy(tmpout,optionfilefiname);
           for (z1=1; z1<=cptcoveff; z1++)    strcat(tmpout,"/");
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    strcat(tmpout,preop);
               bool=0;    strcat(tmpout,preop2);
         }    strcat(tmpout,fileres);
         if (bool==1) {    return tmpout;
           for(m=firstpass; m<=lastpass; m++){  }
             k2=anint[m][i]+(mint[m][i]/12.);   
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  /*************** function subdirfext ***********/
               if(agev[m][i]==0) agev[m][i]=agemax+1;  char *subdirfext(char fileres[], char *preop, char *postop)
               if(agev[m][i]==1) agev[m][i]=agemax+2;  {
               if (m<lastpass) {    
                 if (calagedate>0)    strcpy(tmpout,preop);
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    strcat(tmpout,fileres);
                 else    strcat(tmpout,postop);
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    return tmpout;
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];  }
               }  
             }  /*************** function subdirfext3 ***********/
           }  char *subdirfext3(char fileres[], char *preop, char *postop)
         }  {
       }    
       for(i=(int)agemin; i <= (int)agemax+3; i++){    /* Caution optionfilefiname is hidden */
         for(jk=1; jk <=nlstate ; jk++){    strcpy(tmpout,optionfilefiname);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    strcat(tmpout,"/");
             pp[jk] += freq[jk][m][i];    strcat(tmpout,preop);
         }    strcat(tmpout,fileres);
         for(jk=1; jk <=nlstate ; jk++){    strcat(tmpout,postop);
           for(m=-1, pos=0; m <=0 ; m++)    return tmpout;
             pos += freq[jk][m][i];  }
         }   
          char *asc_diff_time(long time_sec, char ascdiff[])
         for(jk=1; jk <=nlstate ; jk++){  {
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    long sec_left, days, hours, minutes;
             pp[jk] += freq[jk][m][i];    days = (time_sec) / (60*60*24);
         }    sec_left = (time_sec) % (60*60*24);
            hours = (sec_left) / (60*60) ;
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    sec_left = (sec_left) %(60*60);
            minutes = (sec_left) /60;
         for(jk=1; jk <=nlstate ; jk++){        sec_left = (sec_left) % (60);
           if( i <= (int) agemax){    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
             if(pos>=1.e-5){    return ascdiff;
               probs[i][jk][j1]= pp[jk]/pos;  }
             }  
           }  /***************** f1dim *************************/
         }/* end jk */  extern int ncom; 
       }/* end i */  extern double *pcom,*xicom;
     } /* end i1 */  extern double (*nrfunc)(double []); 
   } /* end k1 */   
   double f1dim(double x) 
    { 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    int j; 
   free_vector(pp,1,nlstate);    double f;
      double *xt; 
 }  /* End of Freq */   
     xt=vector(1,ncom); 
 /************* Waves Concatenation ***************/    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     f=(*nrfunc)(xt); 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    free_vector(xt,1,ncom); 
 {    return f; 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  } 
      Death is a valid wave (if date is known).  
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  /*****************brent *************************/
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
      and mw[mi+1][i]. dh depends on stepm.  {
      */    /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
      * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
   int i, mi, m;     * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;     * the minimum is returned as xmin, and the minimum function value is returned as brent , the
      double sum=0., jmean=0.;*/     * returned function value. 
   int first;    */
   int j, k=0,jk, ju, jl;    int iter; 
   double sum=0.;    double a,b,d,etemp;
   first=0;    double fu=0,fv,fw,fx;
   jmin=1e+5;    double ftemp=0.;
   jmax=-1;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   jmean=0.;    double e=0.0; 
   for(i=1; i<=imx; i++){   
     mi=0;    a=(ax < cx ? ax : cx); 
     m=firstpass;    b=(ax > cx ? ax : cx); 
     while(s[m][i] <= nlstate){    x=w=v=bx; 
       if(s[m][i]>=1)    fw=fv=fx=(*f)(x); 
         mw[++mi][i]=m;    for (iter=1;iter<=ITMAX;iter++) { 
       if(m >=lastpass)      xm=0.5*(a+b); 
         break;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       else      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         m++;      printf(".");fflush(stdout);
     }/* end while */      fprintf(ficlog,".");fflush(ficlog);
     if (s[m][i] > nlstate){  #ifdef DEBUGBRENT
       mi++;     /* Death is another wave */      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /* if(mi==0)  never been interviewed correctly before death */      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
          /* Only death is a correct wave */      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       mw[mi][i]=m;  #endif
     }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         *xmin=x; 
     wav[i]=mi;        return fx; 
     if(mi==0){      } 
       if(first==0){      ftemp=fu;
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);      if (fabs(e) > tol1) { 
         first=1;        r=(x-w)*(fx-fv); 
       }        q=(x-v)*(fx-fw); 
       if(first==1){        p=(x-v)*q-(x-w)*r; 
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);        q=2.0*(q-r); 
       }        if (q > 0.0) p = -p; 
     } /* end mi==0 */        q=fabs(q); 
   }        etemp=e; 
         e=d; 
   for(i=1; i<=imx; i++){        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     for(mi=1; mi<wav[i];mi++){          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       if (stepm <=0)        else { 
         dh[mi][i]=1;          d=p/q; 
       else{          u=x+d; 
         if (s[mw[mi+1][i]][i] > nlstate) {          if (u-a < tol2 || b-u < tol2) 
           if (agedc[i] < 2*AGESUP) {            d=SIGN(tol1,xm-x); 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        } 
           if(j==0) j=1;  /* Survives at least one month after exam */      } else { 
           k=k+1;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
           if (j >= jmax) jmax=j;      } 
           if (j <= jmin) jmin=j;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
           sum=sum+j;      fu=(*f)(u); 
           /*if (j<0) printf("j=%d num=%d \n",j,i); */      if (fu <= fx) { 
           }        if (u >= x) a=x; else b=x; 
         }        SHFT(v,w,x,u) 
         else{        SHFT(fv,fw,fx,fu) 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      } else { 
           k=k+1;        if (u < x) a=u; else b=u; 
           if (j >= jmax) jmax=j;        if (fu <= fw || w == x) { 
           else if (j <= jmin)jmin=j;          v=w; 
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          w=u; 
           sum=sum+j;          fv=fw; 
         }          fw=fu; 
         jk= j/stepm;        } else if (fu <= fv || v == x || v == w) { 
         jl= j -jk*stepm;          v=u; 
         ju= j -(jk+1)*stepm;          fv=fu; 
         if(jl <= -ju)        } 
           dh[mi][i]=jk;      } 
         else    } 
           dh[mi][i]=jk+1;    nrerror("Too many iterations in brent"); 
         if(dh[mi][i]==0)    *xmin=x; 
           dh[mi][i]=1; /* At least one step */    return fx; 
       }  } 
     }  
   }  /****************** mnbrak ***********************/
   jmean=sum/k;  
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);              double (*func)(double)) 
  }  { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
   the downhill direction (defined by the function as evaluated at the initial points) and returns
 /*********** Tricode ****************************/  new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
 void tricode(int *Tvar, int **nbcode, int imx)  values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
 {     */
   int Ndum[20],ij=1, k, j, i;    double ulim,u,r,q, dum;
   int cptcode=0;    double fu; 
   cptcoveff=0;  
      double scale=10.;
   for (k=0; k<19; k++) Ndum[k]=0;    int iterscale=0;
   for (k=1; k<=7; k++) ncodemax[k]=0;  
     *fa=(*func)(*ax); /*  xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    *fb=(*func)(*bx); /*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
     for (i=1; i<=imx; i++) {  
       ij=(int)(covar[Tvar[j]][i]);  
       Ndum[ij]++;    /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    /*   printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
       if (ij > cptcode) cptcode=ij;    /*   *bx = *ax - (*ax - *bx)/scale; */
     }    /*   *fb=(*func)(*bx);  /\*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
     /* } */
     for (i=0; i<=cptcode; i++) {  
       if(Ndum[i]!=0) ncodemax[j]++;    if (*fb > *fa) { 
     }      SHFT(dum,*ax,*bx,dum) 
     ij=1;      SHFT(dum,*fb,*fa,dum) 
     } 
     *cx=(*bx)+GOLD*(*bx-*ax); 
     for (i=1; i<=ncodemax[j]; i++) {    *fc=(*func)(*cx); 
       for (k=0; k<=19; k++) {  #ifdef DEBUG
         if (Ndum[k] != 0) {    printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
           nbcode[Tvar[j]][ij]=k;    fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
            #endif
           ij++;    while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */
         }      r=(*bx-*ax)*(*fb-*fc); 
         if (ij > ncodemax[j]) break;      q=(*bx-*cx)*(*fb-*fa); 
       }        u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
   }        ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
       if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
  for (k=0; k<19; k++) Ndum[k]=0;        fu=(*func)(u); 
   #ifdef DEBUG
  for (i=1; i<=ncovmodel-2; i++) {        /* f(x)=A(x-u)**2+f(u) */
    ij=Tvar[i];        double A, fparabu; 
    Ndum[ij]++;        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
  }        fparabu= *fa - A*(*ax-u)*(*ax-u);
         printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
  ij=1;        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
  for (i=1; i<=10; i++) {        /* And thus,it can be that fu > *fc even if fparabu < *fc */
    if((Ndum[i]!=0) && (i<=ncovcol)){        /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
      Tvaraff[ij]=i;          (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
      ij++;        /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
    }  #endif 
  }  #ifdef MNBRAKORIGINAL
    #else
  cptcoveff=ij-1;  /*       if (fu > *fc) { */
 }  /* #ifdef DEBUG */
   /*       printf("mnbrak4  fu > fc \n"); */
 /*********** Health Expectancies ****************/  /*       fprintf(ficlog, "mnbrak4 fu > fc\n"); */
   /* #endif */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  /*      /\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/  *\/ */
   /*      /\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\\/ *\/ */
 {  /*      dum=u; /\* Shifting c and u *\/ */
   /* Health expectancies */  /*      u = *cx; */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;  /*      *cx = dum; */
   double age, agelim, hf;  /*      dum = fu; */
   double ***p3mat,***varhe;  /*      fu = *fc; */
   double **dnewm,**doldm;  /*      *fc =dum; */
   double *xp;  /*       } else { /\* end *\/ */
   double **gp, **gm;  /* #ifdef DEBUG */
   double ***gradg, ***trgradg;  /*       printf("mnbrak3  fu < fc \n"); */
   int theta;  /*       fprintf(ficlog, "mnbrak3 fu < fc\n"); */
   /* #endif */
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  /*      dum=u; /\* Shifting c and u *\/ */
   xp=vector(1,npar);  /*      u = *cx; */
   dnewm=matrix(1,nlstate*2,1,npar);  /*      *cx = dum; */
   doldm=matrix(1,nlstate*2,1,nlstate*2);  /*      dum = fu; */
    /*      fu = *fc; */
   fprintf(ficreseij,"# Health expectancies\n");  /*      *fc =dum; */
   fprintf(ficreseij,"# Age");  /*       } */
   for(i=1; i<=nlstate;i++)  #ifdef DEBUG
     for(j=1; j<=nlstate;j++)        printf("mnbrak34  fu < or >= fc \n");
       fprintf(ficreseij," %1d-%1d (SE)",i,j);        fprintf(ficlog, "mnbrak34 fu < fc\n");
   fprintf(ficreseij,"\n");  #endif
         dum=u; /* Shifting c and u */
   if(estepm < stepm){        u = *cx;
     printf ("Problem %d lower than %d\n",estepm, stepm);        *cx = dum;
   }        dum = fu;
   else  hstepm=estepm;          fu = *fc;
   /* We compute the life expectancy from trapezoids spaced every estepm months        *fc =dum;
    * This is mainly to measure the difference between two models: for example  #endif
    * if stepm=24 months pijx are given only every 2 years and by summing them      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
    * we are calculating an estimate of the Life Expectancy assuming a linear  #ifdef DEBUG
    * progression inbetween and thus overestimating or underestimating according        printf("mnbrak2  u after c but before ulim\n");
    * to the curvature of the survival function. If, for the same date, we        fprintf(ficlog, "mnbrak2 u after c but before ulim\n");
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  #endif
    * to compare the new estimate of Life expectancy with the same linear        fu=(*func)(u); 
    * hypothesis. A more precise result, taking into account a more precise        if (fu < *fc) { 
    * curvature will be obtained if estepm is as small as stepm. */  #ifdef DEBUG
         printf("mnbrak2  u after c but before ulim AND fu < fc\n");
   /* For example we decided to compute the life expectancy with the smallest unit */        fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n");
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  #endif
      nhstepm is the number of hstepm from age to agelim          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
      nstepm is the number of stepm from age to agelin.          SHFT(*fb,*fc,fu,(*func)(u)) 
      Look at hpijx to understand the reason of that which relies in memory size        } 
      and note for a fixed period like estepm months */      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  #ifdef DEBUG
      survival function given by stepm (the optimization length). Unfortunately it        printf("mnbrak2  u outside ulim (verifying that ulim is beyond c)\n");
      means that if the survival funtion is printed only each two years of age and if        fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n");
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  #endif
      results. So we changed our mind and took the option of the best precision.        u=ulim; 
   */        fu=(*func)(u); 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      } else { /* u could be left to b (if r > q parabola has a maximum) */
   #ifdef DEBUG
   agelim=AGESUP;        printf("mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        fprintf(ficlog, "mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
     /* nhstepm age range expressed in number of stepm */  #endif
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        u=(*cx)+GOLD*(*cx-*bx); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        fu=(*func)(u); 
     /* if (stepm >= YEARM) hstepm=1;*/      } /* end tests */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      SHFT(*ax,*bx,*cx,u) 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      SHFT(*fa,*fb,*fc,fu) 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);  #ifdef DEBUG
     gp=matrix(0,nhstepm,1,nlstate*2);        printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
     gm=matrix(0,nhstepm,1,nlstate*2);        fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
   #endif
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  } 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    
    /*************** linmin ************************/
   /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
   and replaces xi by the actual vector displacement that p was moved. Also returns as fret
     /* Computing Variances of health expectancies */  the value of func at the returned location p . This is actually all accomplished by calling the
   routines mnbrak and brent .*/
      for(theta=1; theta <=npar; theta++){  int ncom; 
       for(i=1; i<=npar; i++){  double *pcom,*xicom;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  double (*nrfunc)(double []); 
       }   
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
    { 
       cptj=0;    double brent(double ax, double bx, double cx, 
       for(j=1; j<= nlstate; j++){                 double (*f)(double), double tol, double *xmin); 
         for(i=1; i<=nlstate; i++){    double f1dim(double x); 
           cptj=cptj+1;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){                double *fc, double (*func)(double)); 
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    int j; 
           }    double xx,xmin,bx,ax; 
         }    double fx,fb,fa;
       }  
        #ifdef LINMINORIGINAL
        #else
       for(i=1; i<=npar; i++)    double scale=10., axs, xxs; /* Scale added for infinity */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  #endif
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      
          ncom=n; 
       cptj=0;    pcom=vector(1,n); 
       for(j=1; j<= nlstate; j++){    xicom=vector(1,n); 
         for(i=1;i<=nlstate;i++){    nrfunc=func; 
           cptj=cptj+1;    for (j=1;j<=n;j++) { 
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){      pcom[j]=p[j]; 
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      xicom[j]=xi[j]; /* Former scale xi[j] of currrent direction i */
           }    } 
         }  
       }  #ifdef LINMINORIGINAL
       for(j=1; j<= nlstate*2; j++)    xx=1.;
         for(h=0; h<=nhstepm-1; h++){  #else
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    axs=0.0;
         }    xxs=1.;
      }    do{
          xx= xxs;
 /* End theta */  #endif
       ax=0.;
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
       /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
      for(h=0; h<=nhstepm-1; h++)      /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */
       for(j=1; j<=nlstate*2;j++)      /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
         for(theta=1; theta <=npar; theta++)      /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
           trgradg[h][j][theta]=gradg[h][theta][j];      /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
            /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/
   #ifdef LINMINORIGINAL
      for(i=1;i<=nlstate*2;i++)  #else
       for(j=1;j<=nlstate*2;j++)      if (fx != fx){
         varhe[i][j][(int)age] =0.;          xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */
           printf("|");
      printf("%d|",(int)age);fflush(stdout);          fprintf(ficlog,"|");
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);  #ifdef DEBUGLINMIN
      for(h=0;h<=nhstepm-1;h++){          printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx);
       for(k=0;k<=nhstepm-1;k++){  #endif
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      }
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    }while(fx != fx);
         for(i=1;i<=nlstate*2;i++)  #endif
           for(j=1;j<=nlstate*2;j++)    
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;  #ifdef DEBUGLINMIN
       }    printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
     }    fprintf(ficlog,"\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
     /* Computing expectancies */  #endif
     for(i=1; i<=nlstate;i++)    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
       for(j=1; j<=nlstate;j++)    /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    /* fmin = f(p[j] + xmin * xi[j]) */
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
              /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
     fprintf(ficreseij,"%3.0f",age );  #ifdef DEBUGLINMIN
     cptj=0;    printf("linmin end ");
     for(i=1; i<=nlstate;i++)    fprintf(ficlog,"linmin end ");
       for(j=1; j<=nlstate;j++){  #endif
         cptj++;    for (j=1;j<=n;j++) { 
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );  #ifdef LINMINORIGINAL
       }      xi[j] *= xmin; 
     fprintf(ficreseij,"\n");  #else
      #ifdef DEBUGLINMIN
     free_matrix(gm,0,nhstepm,1,nlstate*2);      if(xxs <1.0)
     free_matrix(gp,0,nhstepm,1,nlstate*2);        printf(" before xi[%d]=%12.8f", j,xi[j]);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  #endif
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      xi[j] *= xmin*xxs; /* xi rescaled by xmin and number of loops: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  #ifdef DEBUGLINMIN
   }      if(xxs <1.0)
   printf("\n");        printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs );
   fprintf(ficlog,"\n");  #endif
   #endif
   free_vector(xp,1,npar);      p[j] += xi[j]; /* Parameters values are updated accordingly */
   free_matrix(dnewm,1,nlstate*2,1,npar);    } 
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);  #ifdef DEBUGLINMIN
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    printf("\n");
 }    printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
     fprintf(ficlog,"Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
 /************ Variance ******************/    for (j=1;j<=n;j++) { 
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)      printf(" xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
 {      fprintf(ficlog," xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
   /* Variance of health expectancies */      if(j % ncovmodel == 0){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        printf("\n");
   /* double **newm;*/        fprintf(ficlog,"\n");
   double **dnewm,**doldm;      }
   double **dnewmp,**doldmp;    }
   int i, j, nhstepm, hstepm, h, nstepm ;  #else
   int k, cptcode;  #endif
   double *xp;    free_vector(xicom,1,n); 
   double **gp, **gm;  /* for var eij */    free_vector(pcom,1,n); 
   double ***gradg, ***trgradg; /*for var eij */  } 
   double **gradgp, **trgradgp; /* for var p point j */  
   double *gpp, *gmp; /* for var p point j */  
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */  /*************** powell ************************/
   double ***p3mat;  /*
   double age,agelim, hf;  Minimization of a function func of n variables. Input consists of an initial starting point
   int theta;  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
   char digit[4];  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
   char digitp[16];  such that failure to decrease by more than this amount on one iteration signals doneness. On
   output, p is set to the best point found, xi is the then-current direction set, fret is the returned
   char fileresprobmorprev[FILENAMELENGTH];  function value at p , and iter is the number of iterations taken. The routine linmin is used.
    */
   if(popbased==1)  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     strcpy(digitp,"-populbased-");              double (*func)(double [])) 
   else  { 
     strcpy(digitp,"-stablbased-");    void linmin(double p[], double xi[], int n, double *fret, 
                 double (*func)(double [])); 
   strcpy(fileresprobmorprev,"prmorprev");    int i,ibig,j; 
   sprintf(digit,"%-d",ij);    double del,t,*pt,*ptt,*xit;
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/    double directest;
   strcat(fileresprobmorprev,digit); /* Tvar to be done */    double fp,fptt;
   strcat(fileresprobmorprev,digitp); /* Popbased or not */    double *xits;
   strcat(fileresprobmorprev,fileres);    int niterf, itmp;
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    pt=vector(1,n); 
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);    ptt=vector(1,n); 
   }    xit=vector(1,n); 
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    xits=vector(1,n); 
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    *fret=(*func)(p); 
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");    for (j=1;j<=n;j++) pt[j]=p[j]; 
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);    rcurr_time = time(NULL);  
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){    for (*iter=1;;++(*iter)) { 
     fprintf(ficresprobmorprev," p.%-d SE",j);      fp=(*fret); /* From former iteration or initial value */
     for(i=1; i<=nlstate;i++)      ibig=0; 
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);      del=0.0; 
   }        rlast_time=rcurr_time;
   fprintf(ficresprobmorprev,"\n");      /* (void) gettimeofday(&curr_time,&tzp); */
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      rcurr_time = time(NULL);  
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);      curr_time = *localtime(&rcurr_time);
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
     exit(0);      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
   }  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
   else{      for (i=1;i<=n;i++) {
     fprintf(ficgp,"\n# Routine varevsij");        printf(" %d %.12f",i, p[i]);
   }        fprintf(ficlog," %d %.12lf",i, p[i]);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {        fprintf(ficrespow," %.12lf", p[i]);
     printf("Problem with html file: %s\n", optionfilehtm);      }
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);      printf("\n");
     exit(0);      fprintf(ficlog,"\n");
   }      fprintf(ficrespow,"\n");fflush(ficrespow);
   else{      if(*iter <=3){
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");        tml = *localtime(&rcurr_time);
   }        strcpy(strcurr,asctime(&tml));
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        rforecast_time=rcurr_time; 
         itmp = strlen(strcurr);
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   fprintf(ficresvij,"# Age");          strcurr[itmp-1]='\0';
   for(i=1; i<=nlstate;i++)        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
     for(j=1; j<=nlstate;j++)        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        for(niterf=10;niterf<=30;niterf+=10){
   fprintf(ficresvij,"\n");          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
           forecast_time = *localtime(&rforecast_time);
   xp=vector(1,npar);          strcpy(strfor,asctime(&forecast_time));
   dnewm=matrix(1,nlstate,1,npar);          itmp = strlen(strfor);
   doldm=matrix(1,nlstate,1,nlstate);          if(strfor[itmp-1]=='\n')
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);          strfor[itmp-1]='\0';
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);        }
   gpp=vector(nlstate+1,nlstate+ndeath);      }
   gmp=vector(nlstate+1,nlstate+ndeath);      for (i=1;i<=n;i++) { /* For each direction i */
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/        for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
          fptt=(*fret); 
   if(estepm < stepm){  #ifdef DEBUG
     printf ("Problem %d lower than %d\n",estepm, stepm);        printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
   }        fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
   else  hstepm=estepm;    #endif
   /* For example we decided to compute the life expectancy with the smallest unit */        printf("%d",i);fflush(stdout); /* print direction (parameter) i */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        fprintf(ficlog,"%d",i);fflush(ficlog);
      nhstepm is the number of hstepm from age to agelim        linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
      nstepm is the number of stepm from age to agelin.                                      /* Outputs are fret(new point p) p is updated and xit rescaled */
      Look at hpijx to understand the reason of that which relies in memory size        if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
      and note for a fixed period like k years */          /* because that direction will be replaced unless the gain del is small */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          /* in comparison with the 'probable' gain, mu^2, with the last average direction. */
      survival function given by stepm (the optimization length). Unfortunately it          /* Unless the n directions are conjugate some gain in the determinant may be obtained */
      means that if the survival funtion is printed only each two years of age and if          /* with the new direction. */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          del=fabs(fptt-(*fret)); 
      results. So we changed our mind and took the option of the best precision.          ibig=i; 
   */        } 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  #ifdef DEBUG
   agelim = AGESUP;        printf("%d %.12e",i,(*fret));
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        fprintf(ficlog,"%d %.12e",i,(*fret));
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        for (j=1;j<=n;j++) {
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          printf(" x(%d)=%.12e",j,xit[j]);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     gp=matrix(0,nhstepm,1,nlstate);        }
     gm=matrix(0,nhstepm,1,nlstate);        for(j=1;j<=n;j++) {
           printf(" p(%d)=%.12e",j,p[j]);
           fprintf(ficlog," p(%d)=%.12e",j,p[j]);
     for(theta=1; theta <=npar; theta++){        }
       for(i=1; i<=npar; i++){ /* Computes gradient */        printf("\n");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        fprintf(ficlog,"\n");
       }  #endif
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        } /* end loop on each direction i */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
       /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
       if (popbased==1) {      /* New value of last point Pn is not computed, P(n-1) */
         for(i=1; i<=nlstate;i++)      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
           prlim[i][i]=probs[(int)age][i][ij];        /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
       }        /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
          /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
       for(j=1; j<= nlstate; j++){        /* decreased of more than 3.84  */
         for(h=0; h<=nhstepm; h++){        /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)        /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        /* By adding 10 parameters more the gain should be 18.31 */
         }  
       }        /* Starting the program with initial values given by a former maximization will simply change */
       /* This for computing forces of mortality (h=1)as a weighted average */        /* the scales of the directions and the directions, because the are reset to canonical directions */
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){        /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
         for(i=1; i<= nlstate; i++)        /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long.  */
           gpp[j] += prlim[i][i]*p3mat[i][j][1];  #ifdef DEBUG
       }            int k[2],l;
       /* end force of mortality */        k[0]=1;
         k[1]=-1;
       for(i=1; i<=npar; i++) /* Computes gradient */        printf("Max: %.12e",(*func)(p));
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        fprintf(ficlog,"Max: %.12e",(*func)(p));
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for (j=1;j<=n;j++) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          printf(" %.12e",p[j]);
            fprintf(ficlog," %.12e",p[j]);
       if (popbased==1) {        }
         for(i=1; i<=nlstate;i++)        printf("\n");
           prlim[i][i]=probs[(int)age][i][ij];        fprintf(ficlog,"\n");
       }        for(l=0;l<=1;l++) {
           for (j=1;j<=n;j++) {
       for(j=1; j<= nlstate; j++){            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         for(h=0; h<=nhstepm; h++){            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          }
         }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       /* This for computing force of mortality (h=1)as a weighted average */        }
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){  #endif
         for(i=1; i<= nlstate; i++)  
           gmp[j] += prlim[i][i]*p3mat[i][j][1];  
       }            free_vector(xit,1,n); 
       /* end force of mortality */        free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
       for(j=1; j<= nlstate; j++) /* vareij */        free_vector(pt,1,n); 
         for(h=0; h<=nhstepm; h++){        return; 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      } /* enough precision */ 
         }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */      for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];        ptt[j]=2.0*p[j]-pt[j]; 
       }        xit[j]=p[j]-pt[j]; 
         pt[j]=p[j]; 
     } /* End theta */      } 
       fptt=(*func)(ptt); /* f_3 */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */  #ifdef POWELLF1F3
   #else
     for(h=0; h<=nhstepm; h++) /* veij */      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
       for(j=1; j<=nlstate;j++)  #endif
         for(theta=1; theta <=npar; theta++)        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
           trgradg[h][j][theta]=gradg[h][theta][j];        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
         /* Let f"(x2) be the 2nd derivative equal everywhere.  */
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
       for(theta=1; theta <=npar; theta++)        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
         trgradgp[j][theta]=gradgp[theta][j];        /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
         /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  #ifdef NRCORIGINAL
     for(i=1;i<=nlstate;i++)        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
       for(j=1;j<=nlstate;j++)  #else
         vareij[i][j][(int)age] =0.;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
         t= t- del*SQR(fp-fptt);
     for(h=0;h<=nhstepm;h++){  #endif
       for(k=0;k<=nhstepm;k++){        directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If delta was big enough we change it for a new direction */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  #ifdef DEBUG
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
         for(i=1;i<=nlstate;i++)        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
           for(j=1;j<=nlstate;j++)        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
       }        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
     }               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
         printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
     /* pptj */        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);  #endif
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);  #ifdef POWELLORIGINAL
     for(j=nlstate+1;j<=nlstate+ndeath;j++)        if (t < 0.0) { /* Then we use it for new direction */
       for(i=nlstate+1;i<=nlstate+ndeath;i++)  #else
         varppt[j][i]=doldmp[j][i];        if (directest*t < 0.0) { /* Contradiction between both tests */
     /* end ppptj */          printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);            printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);          fprintf(ficlog,"directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
            fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
     if (popbased==1) {        } 
       for(i=1; i<=nlstate;i++)        if (directest < 0.0) { /* Then we use it for new direction */
         prlim[i][i]=probs[(int)age][i][ij];  #endif
     }  #ifdef DEBUGLINMIN
              printf("Before linmin in direction P%d-P0\n",n);
     /* This for computing force of mortality (h=1)as a weighted average */          for (j=1;j<=n;j++) { 
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){            printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
       for(i=1; i<= nlstate; i++)            fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
         gmp[j] += prlim[i][i]*p3mat[i][j][1];            if(j % ncovmodel == 0){
     }                  printf("\n");
     /* end force of mortality */              fprintf(ficlog,"\n");
             }
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);          }
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){  #endif
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));          linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
       for(i=1; i<=nlstate;i++){  #ifdef DEBUGLINMIN
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);          for (j=1;j<=n;j++) { 
       }            printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
     }            fprintf(ficlog,"After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
     fprintf(ficresprobmorprev,"\n");            if(j % ncovmodel == 0){
               printf("\n");
     fprintf(ficresvij,"%.0f ",age );              fprintf(ficlog,"\n");
     for(i=1; i<=nlstate;i++)            }
       for(j=1; j<=nlstate;j++){          }
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);  #endif
       }          for (j=1;j<=n;j++) { 
     fprintf(ficresvij,"\n");            xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
     free_matrix(gp,0,nhstepm,1,nlstate);            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
     free_matrix(gm,0,nhstepm,1,nlstate);          }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   } /* End age */  #ifdef DEBUG
   free_vector(gpp,nlstate+1,nlstate+ndeath);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   free_vector(gmp,nlstate+1,nlstate+ndeath);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);          for(j=1;j<=n;j++){
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/            printf(" %.12e",xit[j]);
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");            fprintf(ficlog," %.12e",xit[j]);
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */          }
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");          printf("\n");
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);          fprintf(ficlog,"\n");
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);  #endif
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);        } /* end of t or directest negative */
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);  #ifdef POWELLF1F3
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);  #else
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);      } /* end if (fptt < fp)  */
   #endif
   free_vector(xp,1,npar);    } /* loop iteration */ 
   free_matrix(doldm,1,nlstate,1,nlstate);  } 
   free_matrix(dnewm,1,nlstate,1,npar);  
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  /**** Prevalence limit (stable or period prevalence)  ****************/
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);  
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij)
   fclose(ficresprobmorprev);  {
   fclose(ficgp);    /* Computes the prevalence limit in each live state at age x and for covariate ij by left multiplying the unit
   fclose(fichtm);       matrix by transitions matrix until convergence is reached with precision ftolpl */
     /* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I */
 }    /* Wx is row vector: population in state 1, population in state 2, population dead */
     /* or prevalence in state 1, prevalence in state 2, 0 */
 /************ Variance of prevlim ******************/    /* newm is the matrix after multiplications, its rows are identical at a factor */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    /* Initial matrix pimij */
 {    /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */
   /* Variance of prevalence limit */    /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    /*  0,                   0                  , 1} */
   double **newm;    /*
   double **dnewm,**doldm;     * and after some iteration: */
   int i, j, nhstepm, hstepm;    /* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */
   int k, cptcode;    /*  0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */
   double *xp;    /*  0,                   0                  , 1} */
   double *gp, *gm;    /* And prevalence by suppressing the deaths are close to identical rows in prlim: */
   double **gradg, **trgradg;    /* {0.51571254859325999, 0.4842874514067399, */
   double age,agelim;    /*  0.51326036147820708, 0.48673963852179264} */
   int theta;    /* If we start from prlim again, prlim tends to a constant matrix */
      
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    int i, ii,j,k;
   fprintf(ficresvpl,"# Age");    double *min, *max, *meandiff, maxmax,sumnew=0.;
   for(i=1; i<=nlstate;i++)    /* double **matprod2(); */ /* test */
       fprintf(ficresvpl," %1d-%1d",i,i);    double **out, cov[NCOVMAX+1], **pmij(); /* **pmmij is a global variable feeded with oldms etc */
   fprintf(ficresvpl,"\n");    double **newm;
     double agefin, delaymax=200. ; /* 100 Max number of years to converge */
   xp=vector(1,npar);    int ncvloop=0;
   dnewm=matrix(1,nlstate,1,npar);    
   doldm=matrix(1,nlstate,1,nlstate);    min=vector(1,nlstate);
      max=vector(1,nlstate);
   hstepm=1*YEARM; /* Every year of age */    meandiff=vector(1,nlstate);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;          /* Starting with matrix unity */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    for (ii=1;ii<=nlstate+ndeath;ii++)
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      for (j=1;j<=nlstate+ndeath;j++){
     if (stepm >= YEARM) hstepm=1;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      }
     gradg=matrix(1,npar,1,nlstate);    
     gp=vector(1,nlstate);    cov[1]=1.;
     gm=vector(1,nlstate);    
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(theta=1; theta <=npar; theta++){    /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
       for(i=1; i<=npar; i++){ /* Computes gradient */    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      ncvloop++;
       }      newm=savm;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      /* Covariates have to be included here again */
       for(i=1;i<=nlstate;i++)      cov[2]=agefin;
         gp[i] = prlim[i][i];      if(nagesqr==1)
            cov[3]= agefin*agefin;;
       for(i=1; i<=npar; i++) /* Computes gradient */      for (k=1; k<=cptcovn;k++) {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                          /* Here comes the value of the covariate 'ij' */
       for(i=1;i<=nlstate;i++)        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
         gm[i] = prlim[i][i];        /* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */
       }
       for(i=1;i<=nlstate;i++)      /*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      /* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]*cov[2]; */
     } /* End theta */      for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2];
       for (k=1; k<=cptcovprod;k++) /* Useless */
     trgradg =matrix(1,nlstate,1,npar);        /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
         cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
     for(j=1; j<=nlstate;j++)      
       for(theta=1; theta <=npar; theta++)      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         trgradg[j][theta]=gradg[theta][j];      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     for(i=1;i<=nlstate;i++)      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
       varpl[i][(int)age] =0.;      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);                  /* age and covariate values of ij are in 'cov' */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
     for(i=1;i<=nlstate;i++)      
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      savm=oldm;
       oldm=newm;
     fprintf(ficresvpl,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)      for(j=1; j<=nlstate; j++){
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        max[j]=0.;
     fprintf(ficresvpl,"\n");        min[j]=1.;
     free_vector(gp,1,nlstate);      }
     free_vector(gm,1,nlstate);      for(i=1;i<=nlstate;i++){
     free_matrix(gradg,1,npar,1,nlstate);        sumnew=0;
     free_matrix(trgradg,1,nlstate,1,npar);        for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   } /* End age */        for(j=1; j<=nlstate; j++){ 
           prlim[i][j]= newm[i][j]/(1-sumnew);
   free_vector(xp,1,npar);          max[j]=FMAX(max[j],prlim[i][j]);
   free_matrix(doldm,1,nlstate,1,npar);          min[j]=FMIN(min[j],prlim[i][j]);
   free_matrix(dnewm,1,nlstate,1,nlstate);        }
       }
 }  
       maxmax=0.;
 /************ Variance of one-step probabilities  ******************/      for(j=1; j<=nlstate; j++){
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        meandiff[j]=(max[j]-min[j])/(max[j]+min[j])*2.; /* mean difference for each column */
 {        maxmax=FMAX(maxmax,meandiff[j]);
   int i, j=0,  i1, k1, l1, t, tj;        /* printf(" age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, j, meandiff[j],(int)agefin, j, max[j], j, min[j],maxmax); */
   int k2, l2, j1,  z1;      } /* j loop */
   int k=0,l, cptcode;      *ncvyear= (int)age- (int)agefin;
   int first=1, first1;      /* printf("maxmax=%lf maxmin=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, maxmin, ncvloop, (int)age, (int)agefin, *ncvyear); */
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;      if(maxmax < ftolpl){
   double **dnewm,**doldm;        /* printf("maxmax=%lf ncvloop=%ld, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
   double *xp;        free_vector(min,1,nlstate);
   double *gp, *gm;        free_vector(max,1,nlstate);
   double **gradg, **trgradg;        free_vector(meandiff,1,nlstate);
   double **mu;        return prlim;
   double age,agelim, cov[NCOVMAX];      }
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    } /* age loop */
   int theta;      /* After some age loop it doesn't converge */
   char fileresprob[FILENAMELENGTH];    printf("Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\
   char fileresprobcov[FILENAMELENGTH];  Earliest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
   char fileresprobcor[FILENAMELENGTH];    /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
     free_vector(min,1,nlstate);
   double ***varpij;    free_vector(max,1,nlstate);
     free_vector(meandiff,1,nlstate);
   strcpy(fileresprob,"prob");    
   strcat(fileresprob,fileres);    return prlim; /* should not reach here */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  }
     printf("Problem with resultfile: %s\n", fileresprob);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);  
   }   /**** Back Prevalence limit (stable or period prevalence)  ****************/
   strcpy(fileresprobcov,"probcov");  
   strcat(fileresprobcov,fileres);   /* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ageminpar, double agemaxpar, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {   /* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */
     printf("Problem with resultfile: %s\n", fileresprobcov);   double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ftolpl, int *ncvyear, int ij)
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);  {
   }    /* Computes the prevalence limit in each live state at age x and covariate ij by left multiplying the unit
   strcpy(fileresprobcor,"probcor");       matrix by transitions matrix until convergence is reached with precision ftolpl */
   strcat(fileresprobcor,fileres);    /* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I */
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    /* Wx is row vector: population in state 1, population in state 2, population dead */
     printf("Problem with resultfile: %s\n", fileresprobcor);    /* or prevalence in state 1, prevalence in state 2, 0 */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    /* newm is the matrix after multiplications, its rows are identical at a factor */
   }    /* Initial matrix pimij */
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    /*  0,                   0                  , 1} */
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    /*
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);     * and after some iteration: */
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    /* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */
      /*  0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    /*  0,                   0                  , 1} */
   fprintf(ficresprob,"# Age");    /* And prevalence by suppressing the deaths are close to identical rows in prlim: */
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    /* {0.51571254859325999, 0.4842874514067399, */
   fprintf(ficresprobcov,"# Age");    /*  0.51326036147820708, 0.48673963852179264} */
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    /* If we start from prlim again, prlim tends to a constant matrix */
   fprintf(ficresprobcov,"# Age");  
     int i, ii,j,k;
     double *min, *max, *meandiff, maxmax,sumnew=0.;
   for(i=1; i<=nlstate;i++)    /* double **matprod2(); */ /* test */
     for(j=1; j<=(nlstate+ndeath);j++){    double **out, cov[NCOVMAX+1], **bmij();
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    double **newm;
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    double         **dnewm, **doldm, **dsavm;  /* for use */
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    double         **oldm, **savm;  /* for use */
     }    
   fprintf(ficresprob,"\n");    double agefin, delaymax=200. ; /* 100 Max number of years to converge */
   fprintf(ficresprobcov,"\n");    int ncvloop=0;
   fprintf(ficresprobcor,"\n");    
   xp=vector(1,npar);    min=vector(1,nlstate);
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    max=vector(1,nlstate);
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    meandiff=vector(1,nlstate);
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);  
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);          dnewm=ddnewms; doldm=ddoldms; dsavm=ddsavms;
   first=1;          oldm=oldms; savm=savms;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);          /* Starting with matrix unity */
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);          for (ii=1;ii<=nlstate+ndeath;ii++)
     exit(0);                  for (j=1;j<=nlstate+ndeath;j++){
   }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   else{      }
     fprintf(ficgp,"\n# Routine varprob");    
   }    cov[1]=1.;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    
     printf("Problem with html file: %s\n", optionfilehtm);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
     exit(0);    /* for(agefin=age+stepm/YEARM; agefin<=age+delaymax; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */
   }    for(agefin=age; agefin<AGESUP; agefin=agefin+stepm/YEARM){ /* A changer en age */
   else{      ncvloop++;
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");      newm=savm; /* oldm should be kept from previous iteration or unity at start */
     fprintf(fichtm,"\n");                  /* newm points to the allocated table savm passed by the function it can be written, savm could be reallocated */
       /* Covariates have to be included here again */
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");      cov[2]=agefin;
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");      if(nagesqr==1)
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");        cov[3]= agefin*agefin;;
       for (k=1; k<=cptcovn;k++) {
   }        /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
         cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
          /* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */
   cov[1]=1;      }
   tj=cptcoveff;      /*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}      /* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]*cov[2]; */
   j1=0;      for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2];
   for(t=1; t<=tj;t++){      for (k=1; k<=cptcovprod;k++) /* Useless */
     for(i1=1; i1<=ncodemax[t];i1++){        /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
       j1++;        cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
            
       if  (cptcovn>0) {      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         fprintf(ficresprob, "\n#********** Variable ");      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         fprintf(ficresprob, "**********\n#");      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
         fprintf(ficresprobcov, "\n#********** Variable ");      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                  /* ij should be linked to the correct index of cov */
         fprintf(ficresprobcov, "**********\n#");                  /* age and covariate values ij are in 'cov', but we need to pass
                           * ij for the observed prevalence at age and status and covariate
         fprintf(ficgp, "\n#********** Variable ");                   * number:  prevacurrent[(int)agefin][ii][ij]
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);                   */
         fprintf(ficgp, "**********\n#");      /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, ageminpar, agemaxpar, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */
              /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij)); /* Bug Valgrind */
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");      savm=oldm;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      oldm=newm;
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");      for(j=1; j<=nlstate; j++){
                max[j]=0.;
         fprintf(ficresprobcor, "\n#********** Variable ");            min[j]=1.;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      }
         fprintf(ficgp, "**********\n#");          for(j=1; j<=nlstate; j++){ 
       }        for(i=1;i<=nlstate;i++){
                                        /* bprlim[i][j]= newm[i][j]/(1-sumnew); */
       for (age=bage; age<=fage; age ++){                                  bprlim[i][j]= newm[i][j];
         cov[2]=age;                                  max[i]=FMAX(max[i],bprlim[i][j]); /* Max in line */
         for (k=1; k<=cptcovn;k++) {                                  min[i]=FMIN(min[i],bprlim[i][j]);
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];        }
         }      }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];                  
         for (k=1; k<=cptcovprod;k++)      maxmax=0.;
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      for(i=1; i<=nlstate; i++){
                meandiff[i]=(max[i]-min[i])/(max[i]+min[i])*2.; /* mean difference for each column */
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));        maxmax=FMAX(maxmax,meandiff[i]);
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        /* printf("Back age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, i, meandiff[i],(int)agefin, i, max[i], i, min[i],maxmax); */
         gp=vector(1,(nlstate)*(nlstate+ndeath));      } /* j loop */
         gm=vector(1,(nlstate)*(nlstate+ndeath));      *ncvyear= -( (int)age- (int)agefin);
          /* printf("Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear);*/
         for(theta=1; theta <=npar; theta++){      if(maxmax < ftolpl){
           for(i=1; i<=npar; i++)        printf("OK Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear);
             xp[i] = x[i] + (i==theta ?delti[theta]:0);        free_vector(min,1,nlstate);
                  free_vector(max,1,nlstate);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        free_vector(meandiff,1,nlstate);
                  return bprlim;
           k=0;      }
           for(i=1; i<= (nlstate); i++){    } /* age loop */
             for(j=1; j<=(nlstate+ndeath);j++){      /* After some age loop it doesn't converge */
               k=k+1;    printf("Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\
               gp[k]=pmmij[i][j];  Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
             }    /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
           }    free_vector(min,1,nlstate);
              free_vector(max,1,nlstate);
           for(i=1; i<=npar; i++)    free_vector(meandiff,1,nlstate);
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    
        return bprlim; /* should not reach here */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  }
           k=0;  
           for(i=1; i<=(nlstate); i++){  /*************** transition probabilities ***************/ 
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
               gm[k]=pmmij[i][j];  {
             }    /* According to parameters values stored in x and the covariate's values stored in cov,
           }       computes the probability to be observed in state j being in state i by appying the
             model to the ncovmodel covariates (including constant and age).
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];         and, according on how parameters are entered, the position of the coefficient xij(nc) of the
         }       ncth covariate in the global vector x is given by the formula:
        j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
           for(theta=1; theta <=npar; theta++)       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
             trgradg[j][theta]=gradg[theta][j];       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
               Outputs ps[i][j] the probability to be observed in j being in j according to
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    */
            double s1, lnpijopii;
         pmij(pmmij,cov,ncovmodel,x,nlstate);    /*double t34;*/
            int i,j, nc, ii, jj;
         k=0;  
         for(i=1; i<=(nlstate); i++){          for(i=1; i<= nlstate; i++){
           for(j=1; j<=(nlstate+ndeath);j++){                  for(j=1; j<i;j++){
             k=k+1;                          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
             mu[k][(int) age]=pmmij[i][j];                                  /*lnpijopii += param[i][j][nc]*cov[nc];*/
           }                                  lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
         }                                  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)                          }
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)                          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
             varpij[i][j][(int)age] = doldm[i][j];                          /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
                   }
         /*printf("\n%d ",(int)age);                  for(j=i+1; j<=nlstate+ndeath;j++){
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){                          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));                                  /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));                                  lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
      }*/                                  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
                           }
         fprintf(ficresprob,"\n%d ",(int)age);                          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         fprintf(ficresprobcov,"\n%d ",(int)age);                  }
         fprintf(ficresprobcor,"\n%d ",(int)age);          }
     
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)          for(i=1; i<= nlstate; i++){
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));                  s1=0;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){                  for(j=1; j<i; j++){
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);                          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);                          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         }                  }
         i=0;                  for(j=i+1; j<=nlstate+ndeath; j++){
         for (k=1; k<=(nlstate);k++){                          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           for (l=1; l<=(nlstate+ndeath);l++){                          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
             i=i++;                  }
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);                  /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);                  ps[i][i]=1./(s1+1.);
             for (j=1; j<=i;j++){                  /* Computing other pijs */
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);                  for(j=1; j<i; j++)
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));                          ps[i][j]= exp(ps[i][j])*ps[i][i];
             }                  for(j=i+1; j<=nlstate+ndeath; j++)
           }                          ps[i][j]= exp(ps[i][j])*ps[i][i];
         }/* end of loop for state */                  /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       } /* end of loop for age */          } /* end i */
     
       /* Confidence intervalle of pij  */          for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       /*                  for(jj=1; jj<= nlstate+ndeath; jj++){
       fprintf(ficgp,"\nset noparametric;unset label");                          ps[ii][jj]=0;
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");                          ps[ii][ii]=1;
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");                  }
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);          }
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);    
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);    
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);          /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
       */          /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
           /*      printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/          /*   } */
       first1=1;          /*   printf("\n "); */
       for (k1=1; k1<=(nlstate);k1++){          /* } */
         for (l1=1; l1<=(nlstate+ndeath);l1++){          /* printf("\n ");printf("%lf ",cov[2]);*/
           if(l1==k1) continue;          /*
           i=(k1-1)*(nlstate+ndeath)+l1;                  for(i=1; i<= npar; i++) printf("%f ",x[i]);
           for (k2=1; k2<=(nlstate);k2++){                  goto end;*/
             for (l2=1; l2<=(nlstate+ndeath);l2++){          return ps;
               if(l2==k2) continue;  }
               j=(k2-1)*(nlstate+ndeath)+l2;  
               if(j<=i) continue;  /*************** backward transition probabilities ***************/ 
               for (age=bage; age<=fage; age ++){  
                 if ((int)age %5==0){   /* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, double ageminpar, double agemaxpar, double ***dnewm, double **doldm, double **dsavm, int ij ) */
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;  /* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, double ***dnewm, double **doldm, double **dsavm, int ij ) */
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;   double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, int ij )
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;  {
                   mu1=mu[i][(int) age]/stepm*YEARM ;          /* Computes the backward probability at age agefin and covariate ij
                   mu2=mu[j][(int) age]/stepm*YEARM;           * and returns in **ps as well as **bmij.
                   /* Computing eigen value of matrix of covariance */           */
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    int i, ii, j,k;
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));  
                   if(first1==1){          double **out, **pmij();
                     first1=0;          double sumnew=0.;
                     printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\nOthers in log...\n",v1,v2,cv12,lc1,lc2);    double agefin;
                   }  
                   fprintf(ficlog,"Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);          double **dnewm, **dsavm, **doldm;
                   /* Eigen vectors */          double **bbmij;
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));  
                   v21=sqrt(1.-v11*v11);    doldm=ddoldms; /* global pointers */
                   v12=-v21;          dnewm=ddnewms;
                   v22=v11;          dsavm=ddsavms;
                   /*printf(fignu*/  
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */          agefin=cov[2];
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */          /* bmij *//* age is cov[2], ij is included in cov, but we need for
                   if(first==1){                   the observed prevalence (with this covariate ij) */
                     first=0;          dsavm=pmij(pmmij,cov,ncovmodel,x,nlstate);
                     fprintf(ficgp,"\nset parametric;set nolabel");          /* We do have the matrix Px in savm  and we need pij */
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);          for (j=1;j<=nlstate+ndeath;j++){
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");                  sumnew=0.; /* w1 p11 + w2 p21 only on live states */
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1);                  for (ii=1;ii<=nlstate;ii++){
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k2,l2,k1,l1);                          sumnew+=dsavm[ii][j]*prevacurrent[(int)agefin][ii][ij];
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k2,l2,k1,l1);                  } /* sumnew is (N11+N21)/N..= N.1/N.. = sum on i of w_i pij */
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);                  for (ii=1;ii<=nlstate+ndeath;ii++){
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);                          if(sumnew >= 1.e-10){
                     /*              fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\                                  /* if(agefin >= agemaxpar && agefin <= agemaxpar+stepm/YEARM){ */
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \                                  /*      doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);                                  /* }else if(agefin >= agemaxpar+stepm/YEARM){ */
                     */                                  /*      doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); */
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\                                  /* }else */
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \                                          doldm[ii][j]=(ii==j ? 1./sumnew : 0.0);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));                          }else{
                   }else{                                  printf("ii=%d, i=%d, doldm=%lf dsavm=%lf, probs=%lf, sumnew=%lf,agefin=%d\n",ii,j,doldm[ii][j],dsavm[ii][j],prevacurrent[(int)agefin][ii][ij],sumnew, (int)agefin);
                     first=0;                          }
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);                  } /*End ii */
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);          } /* End j, At the end doldm is diag[1/(w_1p1i+w_2 p2i)] */
                     /*                  /* left Product of this diag matrix by dsavm=Px (newm=dsavm*doldm) */
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\          bbmij=matprod2(dnewm, dsavm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, doldm); /* Bug Valgrind */
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \          /* dsavm=doldm; /\* dsavm is now diag [1/(w_1p1i+w_2 p2i)] but can be overwritten*\/ */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);          /* doldm=dnewm; /\* doldm is now Px * diag [1/(w_1p1i+w_2 p2i)] *\/ */
                     */          /* dnewm=dsavm; /\* doldm is now Px * diag [1/(w_1p1i+w_2 p2i)] *\/ */
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\          /* left Product of this matrix by diag matrix of prevalences (savm) */
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \          for (j=1;j<=nlstate+ndeath;j++){
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));                  for (ii=1;ii<=nlstate+ndeath;ii++){
                   }/* if first */                          dsavm[ii][j]=(ii==j ? prevacurrent[(int)agefin][ii][ij] : 0.0);
                 } /* age mod 5 */                  }
               } /* end loop age */          } /* End j, At the end oldm is diag[1/(w_1p1i+w_2 p2i)] */
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k2,l2,k1,l1);          ps=matprod2(doldm, dsavm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, dnewm); /* Bug Valgrind */
               first=1;          /* newm or out is now diag[w_i] * Px * diag [1/(w_1p1i+w_2 p2i)] */
             } /*l12 */          /* end bmij */
           } /* k12 */          return ps; 
         } /*l1 */  }
       }/* k1 */  /*************** transition probabilities ***************/ 
     } /* loop covariates */  
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);  double **bpmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));  {
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    /* According to parameters values stored in x and the covariate's values stored in cov,
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);       computes the probability to be observed in state j being in state i by appying the
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);       model to the ncovmodel covariates (including constant and age).
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
   }       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
   free_vector(xp,1,npar);       ncth covariate in the global vector x is given by the formula:
   fclose(ficresprob);       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
   fclose(ficresprobcov);       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
   fclose(ficresprobcor);       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
   fclose(ficgp);       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
   fclose(fichtm);       Outputs ps[i][j] the probability to be observed in j being in j according to
 }       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
     */
     double s1, lnpijopii;
 /******************* Printing html file ***********/    /*double t34;*/
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    int i,j, nc, ii, jj;
                   int lastpass, int stepm, int weightopt, char model[],\  
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\          for(i=1; i<= nlstate; i++){
                   int popforecast, int estepm ,\                  for(j=1; j<i;j++){
                   double jprev1, double mprev1,double anprev1, \                          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                   double jprev2, double mprev2,double anprev2){                                  /*lnpijopii += param[i][j][nc]*cov[nc];*/
   int jj1, k1, i1, cpt;                                  lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
   /*char optionfilehtm[FILENAMELENGTH];*/                                  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {                          }
     printf("Problem with %s \n",optionfilehtm), exit(0);                          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);                          /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   }                  }
                   for(j=i+1; j<=nlstate+ndeath;j++){
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n                          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n                                  /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n                                  lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n                                  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
  - Life expectancies by age and initial health status (estepm=%2d months):                          }
    <a href=\"e%s\">e%s</a> <br>\n</li>", \                          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);                  }
           }
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");          
           for(i=1; i<= nlstate; i++){
  m=cptcoveff;                  s1=0;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}                  for(j=1; j<i; j++){
                           s1+=exp(ps[i][j]); /* In fact sums pij/pii */
  jj1=0;                          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
  for(k1=1; k1<=m;k1++){                  }
    for(i1=1; i1<=ncodemax[k1];i1++){                  for(j=i+1; j<=nlstate+ndeath; j++){
      jj1++;                          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
      if (cptcovn > 0) {                          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");                  }
        for (cpt=1; cpt<=cptcoveff;cpt++)                  /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);                  ps[i][i]=1./(s1+1.);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");                  /* Computing other pijs */
      }                  for(j=1; j<i; j++)
      /* Pij */                          ps[i][j]= exp(ps[i][j])*ps[i][i];
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>                  for(j=i+1; j<=nlstate+ndeath; j++)
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                              ps[i][j]= exp(ps[i][j])*ps[i][i];
      /* Quasi-incidences */                  /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>          } /* end i */
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          
        /* Stable prevalence in each health state */          for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
        for(cpt=1; cpt<nlstate;cpt++){                  for(jj=1; jj<= nlstate+ndeath; jj++){
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>                          ps[ii][jj]=0;
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                          ps[ii][ii]=1;
        }                  }
      for(cpt=1; cpt<=nlstate;cpt++) {          }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>          /* Added for backcast */ /* Transposed matrix too */
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          for(jj=1; jj<= nlstate+ndeath; jj++){
      }                  s1=0.;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and                  for(ii=1; ii<= nlstate+ndeath; ii++){
 health expectancies in states (1) and (2): e%s%d.png<br>                          s1+=ps[ii][jj];
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                  }
    } /* end i1 */                  for(ii=1; ii<= nlstate; ii++){
  }/* End k1 */                          ps[ii][jj]=ps[ii][jj]/s1;
  fprintf(fichtm,"</ul>");                  }
           }
           /* Transposition */
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n          for(jj=1; jj<= nlstate+ndeath; jj++){
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n                  for(ii=jj; ii<= nlstate+ndeath; ii++){
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n                          s1=ps[ii][jj];
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n                          ps[ii][jj]=ps[jj][ii];
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n                          ps[jj][ii]=s1;
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n                  }
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n          }
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);          /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
           /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
  if(popforecast==1) fprintf(fichtm,"\n          /*      printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n          /*   } */
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n          /*   printf("\n "); */
         <br>",fileres,fileres,fileres,fileres);          /* } */
  else          /* printf("\n ");printf("%lf ",cov[2]);*/
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);          /*
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");                  for(i=1; i<= npar; i++) printf("%f ",x[i]);
                   goto end;*/
  m=cptcoveff;          return ps;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  }
   
  jj1=0;  
  for(k1=1; k1<=m;k1++){  /**************** Product of 2 matrices ******************/
    for(i1=1; i1<=ncodemax[k1];i1++){  
      jj1++;  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
      if (cptcovn > 0) {  {
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        for (cpt=1; cpt<=cptcoveff;cpt++)       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    /* in, b, out are matrice of pointers which should have been initialized 
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");       before: only the contents of out is modified. The function returns
      }       a pointer to pointers identical to out */
      for(cpt=1; cpt<=nlstate;cpt++) {    int i, j, k;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    for(i=nrl; i<= nrh; i++)
 interval) in state (%d): v%s%d%d.png <br>      for(k=ncolol; k<=ncoloh; k++){
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          out[i][k]=0.;
      }        for(j=ncl; j<=nch; j++)
    } /* end i1 */          out[i][k] +=in[i][j]*b[j][k];
  }/* End k1 */      }
  fprintf(fichtm,"</ul>");    return out;
 fclose(fichtm);  }
 }  
   
 /******************* Gnuplot file **************/  /************* Higher Matrix Product ***************/
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  
   double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  {
   int ng;    /* Computes the transition matrix starting at age 'age' and combination of covariate values corresponding to ij over 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {       'nhstepm*hstepm*stepm' months (i.e. until
     printf("Problem with file %s",optionfilegnuplot);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);       nhstepm*hstepm matrices. 
   }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
        (typically every 2 years instead of every month which is too big 
 #ifdef windows       for the memory).
     fprintf(ficgp,"cd \"%s\" \n",pathc);       Model is determined by parameters x and covariates have to be 
 #endif       included manually here. 
 m=pow(2,cptcoveff);  
         */
  /* 1eme*/  
   for (cpt=1; cpt<= nlstate ; cpt ++) {    int i, j, d, h, k;
    for (k1=1; k1<= m ; k1 ++) {    double **out, cov[NCOVMAX+1];
     double **newm;
 #ifdef windows    double agexact;
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    double agebegin, ageend;
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);  
 #endif    /* Hstepm could be zero and should return the unit matrix */
 #ifdef unix    for (i=1;i<=nlstate+ndeath;i++)
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      for (j=1;j<=nlstate+ndeath;j++){
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);        oldm[i][j]=(i==j ? 1.0 : 0.0);
 #endif        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }
 for (i=1; i<= nlstate ; i ++) {    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    for(h=1; h <=nhstepm; h++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");      for(d=1; d <=hstepm; d++){
 }        newm=savm;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        /* Covariates have to be included here again */
     for (i=1; i<= nlstate ; i ++) {        cov[1]=1.;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */
   else fprintf(ficgp," \%%*lf (\%%*lf)");        cov[2]=agexact;
 }        if(nagesqr==1)
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);                                  cov[3]= agexact*agexact;
      for (i=1; i<= nlstate ; i ++) {        for (k=1; k<=cptcovn;k++) 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                                  cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
   else fprintf(ficgp," \%%*lf (\%%*lf)");                          /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
 }          for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));                                  /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
 #ifdef unix                                  cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");                          /* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
 #endif        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
    }                                  cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
   }                          /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
   /*2 eme*/  
   
   for (k1=1; k1<= m ; k1 ++) {        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);                          /* right multiplication of oldm by the current matrix */
            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     for (i=1; i<= nlstate+1 ; i ++) {                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       k=2*i;        /* if((int)age == 70){ */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        /*        printf(" Forward hpxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */
       for (j=1; j<= nlstate+1 ; j ++) {        /*        for(i=1; i<=nlstate+ndeath; i++) { */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        /*          printf("%d pmmij ",i); */
   else fprintf(ficgp," \%%*lf (\%%*lf)");        /*          for(j=1;j<=nlstate+ndeath;j++) { */
 }          /*            printf("%f ",pmmij[i][j]); */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        /*          } */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        /*          printf(" oldm "); */
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        /*          for(j=1;j<=nlstate+ndeath;j++) { */
       for (j=1; j<= nlstate+1 ; j ++) {        /*            printf("%f ",oldm[i][j]); */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        /*          } */
         else fprintf(ficgp," \%%*lf (\%%*lf)");        /*          printf("\n"); */
 }          /*        } */
       fprintf(ficgp,"\" t\"\" w l 0,");        /* } */
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        savm=oldm;
       for (j=1; j<= nlstate+1 ; j ++) {        oldm=newm;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      }
   else fprintf(ficgp," \%%*lf (\%%*lf)");      for(i=1; i<=nlstate+ndeath; i++)
 }          for(j=1;j<=nlstate+ndeath;j++) {
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");                                  po[i][j][h]=newm[i][j];
       else fprintf(ficgp,"\" t\"\" w l 0,");                                  /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
     }        }
   }      /*printf("h=%d ",h);*/
      } /* end h */
   /*3eme*/          /*     printf("\n H=%d \n",h); */
     return po;
   for (k1=1; k1<= m ; k1 ++) {  }
     for (cpt=1; cpt<= nlstate ; cpt ++) {  
       k=2+nlstate*(2*cpt-2);  /************* Higher Back Matrix Product ***************/
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  /* double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, int ij ) */
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);   double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, int ij )
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  {
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    /* Computes the transition matrix starting at age 'age' over
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);       'nhstepm*hstepm*stepm' months (i.e. until
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");       nhstepm*hstepm matrices.
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step
        (typically every 2 years instead of every month which is too big
 */       for the memory).
       for (i=1; i< nlstate ; i ++) {       Model is determined by parameters x and covariates have to be
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);       included manually here.
   
       }       */
     }  
   }    int i, j, d, h, k;
      double **out, cov[NCOVMAX+1];
   /* CV preval stat */    double **newm;
     for (k1=1; k1<= m ; k1 ++) {    double agexact;
     for (cpt=1; cpt<nlstate ; cpt ++) {    double agebegin, ageend;
       k=3;          double **oldm, **savm;
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);          oldm=oldms;savm=savms;
     /* Hstepm could be zero and should return the unit matrix */
       for (i=1; i< nlstate ; i ++)    for (i=1;i<=nlstate+ndeath;i++)
         fprintf(ficgp,"+$%d",k+i+1);      for (j=1;j<=nlstate+ndeath;j++){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        oldm[i][j]=(i==j ? 1.0 : 0.0);
              po[i][j][0]=(i==j ? 1.0 : 0.0);
       l=3+(nlstate+ndeath)*cpt;      }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       for (i=1; i< nlstate ; i ++) {    for(h=1; h <=nhstepm; h++){
         l=3+(nlstate+ndeath)*cpt;      for(d=1; d <=hstepm; d++){
         fprintf(ficgp,"+$%d",l+i+1);        newm=savm;
       }        /* Covariates have to be included here again */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          cov[1]=1.;
     }        agexact=age-((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */
   }          /* agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /\* age just before transition *\/ */
          cov[2]=agexact;
   /* proba elementaires */        if(nagesqr==1)
    for(i=1,jk=1; i <=nlstate; i++){                                  cov[3]= agexact*agexact;
     for(k=1; k <=(nlstate+ndeath); k++){        for (k=1; k<=cptcovn;k++)
       if (k != i) {                                  cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
         for(j=1; j <=ncovmodel; j++){                          /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
           jk++;                                  /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           fprintf(ficgp,"\n");                                  cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
         }                          /* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
       }        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
     }                                  cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
    }                          /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
                           
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/                          
      for(jk=1; jk <=m; jk++) {        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
        if (ng==2)        /* Careful transposed matrix */
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");                          /* age is in cov[2] */
        else        /* out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij),\ */
          fprintf(ficgp,"\nset title \"Probability\"\n");                          /*                                               1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); */
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij),\
        i=1;                                                                           1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
        for(k2=1; k2<=nlstate; k2++) {        /* if((int)age == 70){ */
          k3=i;        /*        printf(" Backward hbxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */
          for(k=1; k<=(nlstate+ndeath); k++) {        /*        for(i=1; i<=nlstate+ndeath; i++) { */
            if (k != k2){        /*          printf("%d pmmij ",i); */
              if(ng==2)        /*          for(j=1;j<=nlstate+ndeath;j++) { */
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);        /*            printf("%f ",pmmij[i][j]); */
              else        /*          } */
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        /*          printf(" oldm "); */
              ij=1;        /*          for(j=1;j<=nlstate+ndeath;j++) { */
              for(j=3; j <=ncovmodel; j++) {        /*            printf("%f ",oldm[i][j]); */
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        /*          } */
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        /*          printf("\n"); */
                  ij++;        /*        } */
                }        /* } */
                else        savm=oldm;
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        oldm=newm;
              }      }
              fprintf(ficgp,")/(1");      for(i=1; i<=nlstate+ndeath; i++)
                      for(j=1;j<=nlstate+ndeath;j++) {
              for(k1=1; k1 <=nlstate; k1++){                                    po[i][j][h]=newm[i][j];
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);                                  /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
                ij=1;        }
                for(j=3; j <=ncovmodel; j++){      /*printf("h=%d ",h);*/
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    } /* end h */
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          /*     printf("\n H=%d \n",h); */
                    ij++;    return po;
                  }  }
                  else  
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
                }  #ifdef NLOPT
                fprintf(ficgp,")");    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
              }    double fret;
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    double *xt;
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    int j;
              i=i+ncovmodel;    myfunc_data *d2 = (myfunc_data *) pd;
            }  /* xt = (p1-1); */
          } /* end k */    xt=vector(1,n); 
        } /* end k2 */    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
      } /* end jk */  
    } /* end ng */    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
    fclose(ficgp);    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
 }  /* end gnuplot */    printf("Function = %.12lf ",fret);
     for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
     printf("\n");
 /*************** Moving average **************/   free_vector(xt,1,n);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    return fret;
   }
   int i, cpt, cptcod;  #endif
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)  
       for (i=1; i<=nlstate;i++)  /*************** log-likelihood *************/
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  double func( double *x)
           mobaverage[(int)agedeb][i][cptcod]=0.;  {
        int i, ii, j, k, mi, d, kk;
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
       for (i=1; i<=nlstate;i++){    double **out;
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    double sw; /* Sum of weights */
           for (cpt=0;cpt<=4;cpt++){    double lli; /* Individual log likelihood */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    int s1, s2;
           }    double bbh, survp;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    long ipmx;
         }    double agexact;
       }    /*extern weight */
     }    /* We are differentiating ll according to initial status */
        /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 }    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
     */
 /************** Forecasting ******************/  
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    ++countcallfunc;
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    cov[1]=1.;
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   double *popeffectif,*popcount;  
   double ***p3mat;    if(mle==1){
   char fileresf[FILENAMELENGTH];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         /* Computes the values of the ncovmodel covariates of the model
  agelim=AGESUP;           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
            to be observed in j being in i according to the model.
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);         */
          for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
              cov[2+nagesqr+k]=covar[Tvar[k]][i];
   strcpy(fileresf,"f");        }
   strcat(fileresf,fileres);        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
   if((ficresf=fopen(fileresf,"w"))==NULL) {           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
     printf("Problem with forecast resultfile: %s\n", fileresf);           has been calculated etc */
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);        for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
   printf("Computing forecasting: result on file '%s' \n", fileresf);            for (j=1;j<=nlstate+ndeath;j++){
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            }
           for(d=0; d<dh[mi][i]; d++){
   if (mobilav==1) {            newm=savm;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
     movingaverage(agedeb, fage, ageminpar, mobaverage);            cov[2]=agexact;
   }            if(nagesqr==1)
               cov[3]= agexact*agexact;
   stepsize=(int) (stepm+YEARM-1)/YEARM;            for (kk=1; kk<=cptcovage;kk++) {
   if (stepm<=12) stepsize=1;              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
              }
   agelim=AGESUP;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   hstepm=1;            savm=oldm;
   hstepm=hstepm/stepm;            oldm=newm;
   yp1=modf(dateintmean,&yp);          } /* end mult */
   anprojmean=yp;        
   yp2=modf((yp1*12),&yp);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   mprojmean=yp;          /* But now since version 0.9 we anticipate for bias at large stepm.
   yp1=modf((yp2*30.5),&yp);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   jprojmean=yp;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   if(jprojmean==0) jprojmean=1;           * the nearest (and in case of equal distance, to the lowest) interval but now
   if(mprojmean==0) jprojmean=1;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);           * probability in order to take into account the bias as a fraction of the way
             * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   for(cptcov=1;cptcov<=i2;cptcov++){           * -stepm/2 to stepm/2 .
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){           * For stepm=1 the results are the same as for previous versions of Imach.
       k=k+1;           * For stepm > 1 the results are less biased than in previous versions. 
       fprintf(ficresf,"\n#******");           */
       for(j=1;j<=cptcoveff;j++) {          s1=s[mw[mi][i]][i];
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          s2=s[mw[mi+1][i]][i];
       }          bbh=(double)bh[mi][i]/(double)stepm; 
       fprintf(ficresf,"******\n");          /* bias bh is positive if real duration
       fprintf(ficresf,"# StartingAge FinalAge");           * is higher than the multiple of stepm and negative otherwise.
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);           */
                /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
                if( s2 > nlstate){ 
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {            /* i.e. if s2 is a death state and if the date of death is known 
         fprintf(ficresf,"\n");               then the contribution to the likelihood is the probability to 
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);                 die between last step unit time and current  step unit time, 
                which is also equal to probability to die before dh 
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){               minus probability to die before dh-stepm . 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);               In version up to 0.92 likelihood was computed
           nhstepm = nhstepm/hstepm;          as if date of death was unknown. Death was treated as any other
                    health state: the date of the interview describes the actual state
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          and not the date of a change in health state. The former idea was
           oldm=oldms;savm=savms;          to consider that at each interview the state was recorded
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            (healthy, disable or death) and IMaCh was corrected; but when we
                  introduced the exact date of death then we should have modified
           for (h=0; h<=nhstepm; h++){          the contribution of an exact death to the likelihood. This new
             if (h==(int) (calagedate+YEARM*cpt)) {          contribution is smaller and very dependent of the step unit
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);          stepm. It is no more the probability to die between last interview
             }          and month of death but the probability to survive from last
             for(j=1; j<=nlstate+ndeath;j++) {          interview up to one month before death multiplied by the
               kk1=0.;kk2=0;          probability to die within a month. Thanks to Chris
               for(i=1; i<=nlstate;i++) {                        Jackson for correcting this bug.  Former versions increased
                 if (mobilav==1)          mortality artificially. The bad side is that we add another loop
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          which slows down the processing. The difference can be up to 10%
                 else {          lower mortality.
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            */
                 }          /* If, at the beginning of the maximization mostly, the
                             cumulative probability or probability to be dead is
               }             constant (ie = 1) over time d, the difference is equal to
               if (h==(int)(calagedate+12*cpt)){             0.  out[s1][3] = savm[s1][3]: probability, being at state
                 fprintf(ficresf," %.3f", kk1);             s1 at precedent wave, to be dead a month before current
                                     wave is equal to probability, being at state s1 at
               }             precedent wave, to be dead at mont of the current
             }             wave. Then the observed probability (that this person died)
           }             is null according to current estimated parameter. In fact,
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);             it should be very low but not zero otherwise the log go to
         }             infinity.
       }          */
     }  /* #ifdef INFINITYORIGINAL */
   }  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
          /* #else */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*        if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
   /*          lli=log(mytinydouble); */
   fclose(ficresf);  /*        else */
 }  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
 /************** Forecasting ******************/  /* #endif */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){            lli=log(out[s1][s2] - savm[s1][s2]);
              
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          } else if  ( s2==-1 ) { /* alive */
   int *popage;            for (j=1,survp=0. ; j<=nlstate; j++) 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   double *popeffectif,*popcount;            /*survp += out[s1][j]; */
   double ***p3mat,***tabpop,***tabpopprev;            lli= log(survp);
   char filerespop[FILENAMELENGTH];          }
           else if  (s2==-4) { 
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for (j=3,survp=0. ; j<=nlstate; j++)  
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   agelim=AGESUP;            lli= log(survp); 
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          } 
            else if  (s2==-5) { 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            for (j=1,survp=0. ; j<=2; j++)  
                survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
              lli= log(survp); 
   strcpy(filerespop,"pop");          } 
   strcat(filerespop,fileres);          else{
   if((ficrespop=fopen(filerespop,"w"))==NULL) {            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     printf("Problem with forecast resultfile: %s\n", filerespop);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);          } 
   }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   printf("Computing forecasting: result on file '%s' \n", filerespop);          /*if(lli ==000.0)*/
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ipmx +=1;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   if (mobilav==1) {          /* if (lli < log(mytinydouble)){ */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
     movingaverage(agedeb, fage, ageminpar, mobaverage);          /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
   }          /* } */
         } /* end of wave */
   stepsize=(int) (stepm+YEARM-1)/YEARM;      } /* end of individual */
   if (stepm<=12) stepsize=1;    }  else if(mle==2){
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   agelim=AGESUP;        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   hstepm=1;          for (ii=1;ii<=nlstate+ndeath;ii++)
   hstepm=hstepm/stepm;            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   if (popforecast==1) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     if((ficpop=fopen(popfile,"r"))==NULL) {            }
       printf("Problem with population file : %s\n",popfile);exit(0);          for(d=0; d<=dh[mi][i]; d++){
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);            newm=savm;
     }            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
     popage=ivector(0,AGESUP);            cov[2]=agexact;
     popeffectif=vector(0,AGESUP);            if(nagesqr==1)
     popcount=vector(0,AGESUP);              cov[3]= agexact*agexact;
                for (kk=1; kk<=cptcovage;kk++) {
     i=1;                cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;            }
                out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     imx=i;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];            savm=oldm;
   }            oldm=newm;
           } /* end mult */
   for(cptcov=1;cptcov<=i2;cptcov++){        
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          s1=s[mw[mi][i]][i];
       k=k+1;          s2=s[mw[mi+1][i]][i];
       fprintf(ficrespop,"\n#******");          bbh=(double)bh[mi][i]/(double)stepm; 
       for(j=1;j<=cptcoveff;j++) {          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          ipmx +=1;
       }          sw += weight[i];
       fprintf(ficrespop,"******\n");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       fprintf(ficrespop,"# Age");        } /* end of wave */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);      } /* end of individual */
       if (popforecast==1)  fprintf(ficrespop," [Population]");    }  else if(mle==3){  /* exponential inter-extrapolation */
            for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (cpt=0; cpt<=0;cpt++) {        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          for(mi=1; mi<= wav[i]-1; mi++){
                  for (ii=1;ii<=nlstate+ndeath;ii++)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){            for (j=1;j<=nlstate+ndeath;j++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           nhstepm = nhstepm/hstepm;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                      }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(d=0; d<dh[mi][i]; d++){
           oldm=oldms;savm=savms;            newm=savm;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                    cov[2]=agexact;
           for (h=0; h<=nhstepm; h++){            if(nagesqr==1)
             if (h==(int) (calagedate+YEARM*cpt)) {              cov[3]= agexact*agexact;
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            for (kk=1; kk<=cptcovage;kk++) {
             }              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
             for(j=1; j<=nlstate+ndeath;j++) {            }
               kk1=0.;kk2=0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               for(i=1; i<=nlstate;i++) {                                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                 if (mobilav==1)            savm=oldm;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            oldm=newm;
                 else {          } /* end mult */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        
                 }          s1=s[mw[mi][i]][i];
               }          s2=s[mw[mi+1][i]][i];
               if (h==(int)(calagedate+12*cpt)){          bbh=(double)bh[mi][i]/(double)stepm; 
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
                   /*fprintf(ficrespop," %.3f", kk1);          ipmx +=1;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/          sw += weight[i];
               }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             }        } /* end of wave */
             for(i=1; i<=nlstate;i++){      } /* end of individual */
               kk1=0.;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
                 for(j=1; j<=nlstate;j++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
                 }        for(mi=1; mi<= wav[i]-1; mi++){
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];          for (ii=1;ii<=nlstate+ndeath;ii++)
             }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);            }
           }          for(d=0; d<dh[mi][i]; d++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            newm=savm;
         }            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }            cov[2]=agexact;
              if(nagesqr==1)
   /******/              cov[3]= agexact*agexact;
             for (kk=1; kk<=cptcovage;kk++) {
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           nhstepm = nhstepm/hstepm;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                      savm=oldm;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            oldm=newm;
           oldm=oldms;savm=savms;          } /* end mult */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          
           for (h=0; h<=nhstepm; h++){          s1=s[mw[mi][i]][i];
             if (h==(int) (calagedate+YEARM*cpt)) {          s2=s[mw[mi+1][i]][i];
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          if( s2 > nlstate){ 
             }            lli=log(out[s1][s2] - savm[s1][s2]);
             for(j=1; j<=nlstate+ndeath;j++) {          } else if  ( s2==-1 ) { /* alive */
               kk1=0.;kk2=0;            for (j=1,survp=0. ; j<=nlstate; j++) 
               for(i=1; i<=nlstate;i++) {                            survp += out[s1][j];
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                lli= log(survp);
               }          }else{
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
             }          }
           }          ipmx +=1;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
    }        } /* end of wave */
   }      } /* end of individual */
      }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
   if (popforecast==1) {        for(mi=1; mi<= wav[i]-1; mi++){
     free_ivector(popage,0,AGESUP);          for (ii=1;ii<=nlstate+ndeath;ii++)
     free_vector(popeffectif,0,AGESUP);            for (j=1;j<=nlstate+ndeath;j++){
     free_vector(popcount,0,AGESUP);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            }
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(d=0; d<dh[mi][i]; d++){
   fclose(ficrespop);            newm=savm;
 }            agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
             cov[2]=agexact;
 /***********************************************/            if(nagesqr==1)
 /**************** Main Program *****************/              cov[3]= agexact*agexact;
 /***********************************************/            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
 int main(int argc, char *argv[])            }
 {          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double agedeb, agefin,hf;            savm=oldm;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;            oldm=newm;
           } /* end mult */
   double fret;        
   double **xi,tmp,delta;          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   double dum; /* Dummy variable */          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   double ***p3mat;          ipmx +=1;
   int *indx;          sw += weight[i];
   char line[MAXLINE], linepar[MAXLINE];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   int firstobs=1, lastobs=10;        } /* end of wave */
   int sdeb, sfin; /* Status at beginning and end */      } /* end of individual */
   int c,  h , cpt,l;    } /* End of if */
   int ju,jl, mi;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   int mobilav=0,popforecast=0;    return -l;
   int hstepm, nhstepm;  }
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;  
   /*************** log-likelihood *************/
   double bage, fage, age, agelim, agebase;  double funcone( double *x)
   double ftolpl=FTOL;  {
   double **prlim;    /* Same as likeli but slower because of a lot of printf and if */
   double *severity;    int i, ii, j, k, mi, d, kk;
   double ***param; /* Matrix of parameters */    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   double  *p;    double **out;
   double **matcov; /* Matrix of covariance */    double lli; /* Individual log likelihood */
   double ***delti3; /* Scale */    double llt;
   double *delti; /* Scale */    int s1, s2;
   double ***eij, ***vareij;    double bbh, survp;
   double **varpl; /* Variances of prevalence limits by age */    double agexact;
   double *epj, vepp;    double agebegin, ageend;
   double kk1, kk2;    /*extern weight */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    /* We are differentiating ll according to initial status */
      /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
   char *alph[]={"a","a","b","c","d","e"}, str[4];      printf(" %d\n",s[4][i]);
     */
     cov[1]=1.;
   char z[1]="c", occ;  
 #include <sys/time.h>    for(k=1; k<=nlstate; k++) ll[k]=0.;
 #include <time.h>  
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
        for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
   /* long total_usecs;      for(mi=1; mi<= wav[i]-1; mi++){
   struct timeval start_time, end_time;        for (ii=1;ii<=nlstate+ndeath;ii++)
            for (j=1;j<=nlstate+ndeath;j++){
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   getcwd(pathcd, size);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
   printf("\n%s",version);        
   if(argc <=1){        agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */
     printf("\nEnter the parameter file name: ");        ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */
     scanf("%s",pathtot);        for(d=0; d<dh[mi][i]; d++){  /* Delay between two effective waves */
   }          /*dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   else{            and mw[mi+1][i]. dh depends on stepm.*/
     strcpy(pathtot,argv[1]);          newm=savm;
   }          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/          cov[2]=agexact;
   /*cygwin_split_path(pathtot,path,optionfile);          if(nagesqr==1)
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/            cov[3]= agexact*agexact;
   /* cutv(path,optionfile,pathtot,'\\');*/          for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);          }
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  
   chdir(path);          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   replace(pathc,path);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 /*-------- arguments in the command line --------*/          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
           /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
   /* Log file */          savm=oldm;
   strcat(filelog, optionfilefiname);          oldm=newm;
   strcat(filelog,".log");    /* */        } /* end mult */
   if((ficlog=fopen(filelog,"w"))==NULL)    {        
     printf("Problem with logfile %s\n",filelog);        s1=s[mw[mi][i]][i];
     goto end;        s2=s[mw[mi+1][i]][i];
   }        /* if(s2==-1){ */
   fprintf(ficlog,"Log filename:%s\n",filelog);        /*        printf(" s1=%d, s2=%d i=%d \n", s1, s2, i); */
   fprintf(ficlog,"\n%s",version);        /*        /\* exit(1); *\/ */
   fprintf(ficlog,"\nEnter the parameter file name: ");        /* } */
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        bbh=(double)bh[mi][i]/(double)stepm; 
   fflush(ficlog);        /* bias is positive if real duration
          * is higher than the multiple of stepm and negative otherwise.
   /* */         */
   strcpy(fileres,"r");        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   strcat(fileres, optionfilefiname);          lli=log(out[s1][s2] - savm[s1][s2]);
   strcat(fileres,".txt");    /* Other files have txt extension */        } else if  ( s2==-1 ) { /* alive */
           for (j=1,survp=0. ; j<=nlstate; j++) 
   /*---------arguments file --------*/            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           lli= log(survp);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        }else if (mle==1){
     printf("Problem with optionfile %s\n",optionfile);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);        } else if(mle==2){
     goto end;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   }        } else if(mle==3){  /* exponential inter-extrapolation */
           lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   strcpy(filereso,"o");        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   strcat(filereso,fileres);          lli=log(out[s1][s2]); /* Original formula */
   if((ficparo=fopen(filereso,"w"))==NULL) {        } else{  /* mle=0 back to 1 */
     printf("Problem with Output resultfile: %s\n", filereso);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);          /*lli=log(out[s1][s2]); */ /* Original formula */
     goto end;        } /* End of if */
   }        ipmx +=1;
         sw += weight[i];
   /* Reads comments: lines beginning with '#' */        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   while((c=getc(ficpar))=='#' && c!= EOF){        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     ungetc(c,ficpar);        if(globpr){
     fgets(line, MAXLINE, ficpar);          fprintf(ficresilk,"%9ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %11.6f %8.4f %8.3f\
     puts(line);   %11.6f %11.6f %11.6f ", \
     fputs(line,ficparo);                  num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw,
   }                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   ungetc(c,ficpar);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);          }
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);          fprintf(ficresilk," %10.6f\n", -llt);
 while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);      } /* end of wave */
     fgets(line, MAXLINE, ficpar);    } /* end of individual */
     puts(line);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     fputs(line,ficparo);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   ungetc(c,ficpar);    if(globpr==0){ /* First time we count the contributions and weights */
        gipmx=ipmx;
          gsw=sw;
   covar=matrix(0,NCOVMAX,1,n);    }
   cptcovn=0;    return -l;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  }
   
   ncovmodel=2+cptcovn;  
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  /*************** function likelione ***********/
    void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   /* Read guess parameters */  {
   /* Reads comments: lines beginning with '#' */    /* This routine should help understanding what is done with 
   while((c=getc(ficpar))=='#' && c!= EOF){       the selection of individuals/waves and
     ungetc(c,ficpar);       to check the exact contribution to the likelihood.
     fgets(line, MAXLINE, ficpar);       Plotting could be done.
     puts(line);     */
     fputs(line,ficparo);    int k;
   }  
   ungetc(c,ficpar);    if(*globpri !=0){ /* Just counts and sums, no printings */
        strcpy(fileresilk,"ILK_"); 
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      strcat(fileresilk,fileresu);
     for(i=1; i <=nlstate; i++)      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     for(j=1; j <=nlstate+ndeath-1; j++){        printf("Problem with resultfile: %s\n", fileresilk);
       fscanf(ficpar,"%1d%1d",&i1,&j1);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       fprintf(ficparo,"%1d%1d",i1,j1);      }
       if(mle==1)      fprintf(ficresilk, "#individual(line's_record) count ageb ageend s1 s2 wave# effective_wave# number_of_matrices_product pij weight weight/gpw -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         printf("%1d%1d",i,j);      fprintf(ficresilk, "#num_i ageb agend i s1 s2 mi mw dh likeli weight %%weight 2wlli out sav ");
       fprintf(ficlog,"%1d%1d",i,j);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(k=1; k<=ncovmodel;k++){      for(k=1; k<=nlstate; k++) 
         fscanf(ficpar," %lf",&param[i][j][k]);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
         if(mle==1){      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
           printf(" %lf",param[i][j][k]);    }
           fprintf(ficlog," %lf",param[i][j][k]);  
         }    *fretone=(*funcone)(p);
         else    if(*globpri !=0){
           fprintf(ficlog," %lf",param[i][j][k]);      fclose(ficresilk);
         fprintf(ficparo," %lf",param[i][j][k]);      if (mle ==0)
       }        fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with initial parameters and mle = %d.",mle);
       fscanf(ficpar,"\n");      else if(mle >=1)
       if(mle==1)        fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with optimized parameters mle = %d.",mle);
         printf("\n");      fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fprintf(ficlog,"\n");      
       fprintf(ficparo,"\n");        
     }      for (k=1; k<= nlstate ; k++) {
          fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Dot's sizes are related to corresponding weight: <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  <img src=\"%s-p%dj.png\">",k,k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k);
       }
   p=param[1][1];      fprintf(fichtm,"<br>- The function drawn is -2Log(L) in Log scale: by state of origin <a href=\"%s-ori.png\">%s-ori.png</a><br> \
    <img src=\"%s-ori.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
   /* Reads comments: lines beginning with '#' */      fprintf(fichtm,"<br>- and by state of destination <a href=\"%s-dest.png\">%s-dest.png</a><br> \
   while((c=getc(ficpar))=='#' && c!= EOF){  <img src=\"%s-dest.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
     ungetc(c,ficpar);      fflush(fichtm);
     fgets(line, MAXLINE, ficpar);    }
     puts(line);    return;
     fputs(line,ficparo);  }
   }  
   ungetc(c,ficpar);  
   /*********** Maximum Likelihood Estimation ***************/
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   for(i=1; i <=nlstate; i++){  {
     for(j=1; j <=nlstate+ndeath-1; j++){    int i,j, iter=0;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    double **xi;
       printf("%1d%1d",i,j);    double fret;
       fprintf(ficparo,"%1d%1d",i1,j1);    double fretone; /* Only one call to likelihood */
       for(k=1; k<=ncovmodel;k++){    /*  char filerespow[FILENAMELENGTH];*/
         fscanf(ficpar,"%le",&delti3[i][j][k]);  
         printf(" %le",delti3[i][j][k]);  #ifdef NLOPT
         fprintf(ficparo," %le",delti3[i][j][k]);    int creturn;
       }    nlopt_opt opt;
       fscanf(ficpar,"\n");    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
       printf("\n");    double *lb;
       fprintf(ficparo,"\n");    double minf; /* the minimum objective value, upon return */
     }    double * p1; /* Shifted parameters from 0 instead of 1 */
   }    myfunc_data dinst, *d = &dinst;
   delti=delti3[1][1];  #endif
    
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    xi=matrix(1,npar,1,npar);
     ungetc(c,ficpar);    for (i=1;i<=npar;i++)
     fgets(line, MAXLINE, ficpar);      for (j=1;j<=npar;j++)
     puts(line);        xi[i][j]=(i==j ? 1.0 : 0.0);
     fputs(line,ficparo);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   }    strcpy(filerespow,"POW_"); 
   ungetc(c,ficpar);    strcat(filerespow,fileres);
      if((ficrespow=fopen(filerespow,"w"))==NULL) {
   matcov=matrix(1,npar,1,npar);      printf("Problem with resultfile: %s\n", filerespow);
   for(i=1; i <=npar; i++){      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     fscanf(ficpar,"%s",&str);    }
     if(mle==1)    fprintf(ficrespow,"# Powell\n# iter -2*LL");
       printf("%s",str);    for (i=1;i<=nlstate;i++)
     fprintf(ficlog,"%s",str);      for(j=1;j<=nlstate+ndeath;j++)
     fprintf(ficparo,"%s",str);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     for(j=1; j <=i; j++){    fprintf(ficrespow,"\n");
       fscanf(ficpar," %le",&matcov[i][j]);  #ifdef POWELL
       if(mle==1){    powell(p,xi,npar,ftol,&iter,&fret,func);
         printf(" %.5le",matcov[i][j]);  #endif
         fprintf(ficlog," %.5le",matcov[i][j]);  
       }  #ifdef NLOPT
       else  #ifdef NEWUOA
         fprintf(ficlog," %.5le",matcov[i][j]);    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
       fprintf(ficparo," %.5le",matcov[i][j]);  #else
     }    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
     fscanf(ficpar,"\n");  #endif
     if(mle==1)    lb=vector(0,npar-1);
       printf("\n");    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
     fprintf(ficlog,"\n");    nlopt_set_lower_bounds(opt, lb);
     fprintf(ficparo,"\n");    nlopt_set_initial_step1(opt, 0.1);
   }    
   for(i=1; i <=npar; i++)    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
     for(j=i+1;j<=npar;j++)    d->function = func;
       matcov[i][j]=matcov[j][i];    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
        nlopt_set_min_objective(opt, myfunc, d);
   if(mle==1)    nlopt_set_xtol_rel(opt, ftol);
     printf("\n");    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
   fprintf(ficlog,"\n");      printf("nlopt failed! %d\n",creturn); 
     }
     else {
     /*-------- Rewriting paramater file ----------*/      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
      strcpy(rfileres,"r");    /* "Rparameterfile */      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      iter=1; /* not equal */
      strcat(rfileres,".");    /* */    }
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    nlopt_destroy(opt);
     if((ficres =fopen(rfileres,"w"))==NULL) {  #endif
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    free_matrix(xi,1,npar,1,npar);
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;    fclose(ficrespow);
     }    printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
     fprintf(ficres,"#%s\n",version);    fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
        fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
     /*-------- data file ----------*/  
     if((fic=fopen(datafile,"r"))==NULL)    {  }
       printf("Problem with datafile: %s\n", datafile);goto end;  
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;  /**** Computes Hessian and covariance matrix ***/
     }  void hesscov(double **matcov, double **hess, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   {
     n= lastobs;    double  **a,**y,*x,pd;
     severity = vector(1,maxwav);    /* double **hess; */
     outcome=imatrix(1,maxwav+1,1,n);    int i, j;
     num=ivector(1,n);    int *indx;
     moisnais=vector(1,n);  
     annais=vector(1,n);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     moisdc=vector(1,n);    double hessij(double p[], double **hess, double delti[], int i, int j,double (*func)(double []),int npar);
     andc=vector(1,n);    void lubksb(double **a, int npar, int *indx, double b[]) ;
     agedc=vector(1,n);    void ludcmp(double **a, int npar, int *indx, double *d) ;
     cod=ivector(1,n);    double gompertz(double p[]);
     weight=vector(1,n);    /* hess=matrix(1,npar,1,npar); */
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  
     mint=matrix(1,maxwav,1,n);    printf("\nCalculation of the hessian matrix. Wait...\n");
     anint=matrix(1,maxwav,1,n);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     s=imatrix(1,maxwav+1,1,n);    for (i=1;i<=npar;i++){
     adl=imatrix(1,maxwav+1,1,n);          printf("%d-",i);fflush(stdout);
     tab=ivector(1,NCOVMAX);      fprintf(ficlog,"%d-",i);fflush(ficlog);
     ncodemax=ivector(1,8);     
        hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     i=1;      
     while (fgets(line, MAXLINE, fic) != NULL)    {      /*  printf(" %f ",p[i]);
       if ((i >= firstobs) && (i <=lastobs)) {          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
            }
         for (j=maxwav;j>=1;j--){    
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    for (i=1;i<=npar;i++) {
           strcpy(line,stra);      for (j=1;j<=npar;j++)  {
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        if (j>i) { 
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          printf(".%d-%d",i,j);fflush(stdout);
         }          fprintf(ficlog,".%d-%d",i,j);fflush(ficlog);
                  hess[i][j]=hessij(p,hess, delti,i,j,func,npar);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        }
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      }
     }
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    printf("\n");
         for (j=ncovcol;j>=1;j--){    fprintf(ficlog,"\n");
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         num[i]=atol(stra);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
            
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    a=matrix(1,npar,1,npar);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    y=matrix(1,npar,1,npar);
     x=vector(1,npar);
         i=i+1;    indx=ivector(1,npar);
       }    for (i=1;i<=npar;i++)
     }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     /* printf("ii=%d", ij);    ludcmp(a,npar,indx,&pd);
        scanf("%d",i);*/  
   imx=i-1; /* Number of individuals */    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
   /* for (i=1; i<=imx; i++){      x[j]=1;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      lubksb(a,npar,indx,x);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      for (i=1;i<=npar;i++){ 
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;        matcov[i][j]=x[i];
     }*/      }
    /*  for (i=1; i<=imx; i++){    }
      if (s[4][i]==9)  s[4][i]=-1;  
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    printf("\n#Hessian matrix#\n");
      fprintf(ficlog,"\n#Hessian matrix#\n");
      for (i=1;i<=npar;i++) { 
   /* Calculation of the number of parameter from char model*/      for (j=1;j<=npar;j++) { 
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */        printf("%.6e ",hess[i][j]);
   Tprod=ivector(1,15);        fprintf(ficlog,"%.6e ",hess[i][j]);
   Tvaraff=ivector(1,15);      }
   Tvard=imatrix(1,15,1,2);      printf("\n");
   Tage=ivector(1,15);            fprintf(ficlog,"\n");
        }
   if (strlen(model) >1){  
     j=0, j1=0, k1=1, k2=1;    /* printf("\n#Covariance matrix#\n"); */
     j=nbocc(model,'+');    /* fprintf(ficlog,"\n#Covariance matrix#\n"); */
     j1=nbocc(model,'*');    /* for (i=1;i<=npar;i++) {  */
     cptcovn=j+1;    /*   for (j=1;j<=npar;j++) {  */
     cptcovprod=j1;    /*     printf("%.6e ",matcov[i][j]); */
        /*     fprintf(ficlog,"%.6e ",matcov[i][j]); */
     strcpy(modelsav,model);    /*   } */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    /*   printf("\n"); */
       printf("Error. Non available option model=%s ",model);    /*   fprintf(ficlog,"\n"); */
       fprintf(ficlog,"Error. Non available option model=%s ",model);    /* } */
       goto end;  
     }    /* Recompute Inverse */
        /* for (i=1;i<=npar;i++) */
     for(i=(j+1); i>=1;i--){    /*   for (j=1;j<=npar;j++) a[i][j]=matcov[i][j]; */
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */    /* ludcmp(a,npar,indx,&pd); */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */  
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    /*  printf("\n#Hessian matrix recomputed#\n"); */
       /*scanf("%d",i);*/  
       if (strchr(strb,'*')) {  /* Model includes a product */    /* for (j=1;j<=npar;j++) { */
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/    /*   for (i=1;i<=npar;i++) x[i]=0; */
         if (strcmp(strc,"age")==0) { /* Vn*age */    /*   x[j]=1; */
           cptcovprod--;    /*   lubksb(a,npar,indx,x); */
           cutv(strb,stre,strd,'V');    /*   for (i=1;i<=npar;i++){  */
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/    /*     y[i][j]=x[i]; */
           cptcovage++;    /*     printf("%.3e ",y[i][j]); */
             Tage[cptcovage]=i;    /*     fprintf(ficlog,"%.3e ",y[i][j]); */
             /*printf("stre=%s ", stre);*/    /*   } */
         }    /*   printf("\n"); */
         else if (strcmp(strd,"age")==0) { /* or age*Vn */    /*   fprintf(ficlog,"\n"); */
           cptcovprod--;    /* } */
           cutv(strb,stre,strc,'V');  
           Tvar[i]=atoi(stre);    /* Verifying the inverse matrix */
           cptcovage++;  #ifdef DEBUGHESS
           Tage[cptcovage]=i;    y=matprod2(y,hess,1,npar,1,npar,1,npar,matcov);
         }  
         else {  /* Age is not in the model */     printf("\n#Verification: multiplying the matrix of covariance by the Hessian matrix, should be unity:#\n");
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/     fprintf(ficlog,"\n#Verification: multiplying the matrix of covariance by the Hessian matrix. Should be unity:#\n");
           Tvar[i]=ncovcol+k1;  
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */    for (j=1;j<=npar;j++) {
           Tprod[k1]=i;      for (i=1;i<=npar;i++){ 
           Tvard[k1][1]=atoi(strc); /* m*/        printf("%.2f ",y[i][j]);
           Tvard[k1][2]=atoi(stre); /* n */        fprintf(ficlog,"%.2f ",y[i][j]);
           Tvar[cptcovn+k2]=Tvard[k1][1];      }
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      printf("\n");
           for (k=1; k<=lastobs;k++)      fprintf(ficlog,"\n");
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    }
           k1++;  #endif
           k2=k2+2;  
         }    free_matrix(a,1,npar,1,npar);
       }    free_matrix(y,1,npar,1,npar);
       else { /* no more sum */    free_vector(x,1,npar);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    free_ivector(indx,1,npar);
        /*  scanf("%d",i);*/    /* free_matrix(hess,1,npar,1,npar); */
       cutv(strd,strc,strb,'V');  
       Tvar[i]=atoi(strc);  
       }  }
       strcpy(modelsav,stra);    
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  /*************** hessian matrix ****************/
         scanf("%d",i);*/  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     } /* end of loop + */  { /* Around values of x, computes the function func and returns the scales delti and hessian */
   } /* end model */    int i;
      int l=1, lmax=20;
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    double k1,k2, res, fx;
   printf("cptcovprod=%d ", cptcovprod);    double p2[MAXPARM+1]; /* identical to x */
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   scanf("%d ",i);*/    int k=0,kmax=10;
     fclose(fic);    double l1;
   
     /*  if(mle==1){*/    fx=func(x);
     if (weightopt != 1) { /* Maximisation without weights*/    for (i=1;i<=npar;i++) p2[i]=x[i];
       for(i=1;i<=n;i++) weight[i]=1.0;    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
     }      l1=pow(10,l);
     /*-calculation of age at interview from date of interview and age at death -*/      delts=delt;
     agev=matrix(1,maxwav,1,imx);      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
     for (i=1; i<=imx; i++) {        p2[theta]=x[theta] +delt;
       for(m=2; (m<= maxwav); m++) {        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        p2[theta]=x[theta]-delt;
          anint[m][i]=9999;        k2=func(p2)-fx;
          s[m][i]=-1;        /*res= (k1-2.0*fx+k2)/delt/delt; */
        }        res= (k1+k2)/delt/delt/2.; /* Divided by 2 because L and not 2*L */
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;        
       }  #ifdef DEBUGHESSII
     }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     for (i=1; i<=imx; i++)  {  #endif
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       for(m=1; (m<= maxwav); m++){        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         if(s[m][i] >0){          k=kmax;
           if (s[m][i] >= nlstate+1) {        }
             if(agedc[i]>0)        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
               if(moisdc[i]!=99 && andc[i]!=9999)          k=kmax; l=lmax*10;
                 agev[m][i]=agedc[i];        }
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
            else {          delts=delt;
               if (andc[i]!=9999){        }
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      } /* End loop k */
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);    }
               agev[m][i]=-1;    delti[theta]=delts;
               }    return res; 
             }    
           }  }
           else if(s[m][i] !=9){ /* Should no more exist */  
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  double hessij( double x[], double **hess, double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
             if(mint[m][i]==99 || anint[m][i]==9999)  {
               agev[m][i]=1;    int i;
             else if(agev[m][i] <agemin){    int l=1, lmax=20;
               agemin=agev[m][i];    double k1,k2,k3,k4,res,fx;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    double p2[MAXPARM+1];
             }    int k, kmax=1;
             else if(agev[m][i] >agemax){    double v1, v2, cv12, lc1, lc2;
               agemax=agev[m][i];  
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    int firstime=0;
             }    
             /*agev[m][i]=anint[m][i]-annais[i];*/    fx=func(x);
             /*   agev[m][i] = age[i]+2*m;*/    for (k=1; k<=kmax; k=k+10) {
           }      for (i=1;i<=npar;i++) p2[i]=x[i];
           else { /* =9 */      p2[thetai]=x[thetai]+delti[thetai]*k;
             agev[m][i]=1;      p2[thetaj]=x[thetaj]+delti[thetaj]*k;
             s[m][i]=-1;      k1=func(p2)-fx;
           }    
         }      p2[thetai]=x[thetai]+delti[thetai]*k;
         else /*= 0 Unknown */      p2[thetaj]=x[thetaj]-delti[thetaj]*k;
           agev[m][i]=1;      k2=func(p2)-fx;
       }    
          p2[thetai]=x[thetai]-delti[thetai]*k;
     }      p2[thetaj]=x[thetaj]+delti[thetaj]*k;
     for (i=1; i<=imx; i++)  {      k3=func(p2)-fx;
       for(m=1; (m<= maxwav); m++){    
         if (s[m][i] > (nlstate+ndeath)) {      p2[thetai]=x[thetai]-delti[thetai]*k;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);        p2[thetaj]=x[thetaj]-delti[thetaj]*k;
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);        k4=func(p2)-fx;
           goto end;      res=(k1-k2-k3+k4)/4.0/delti[thetai]/k/delti[thetaj]/k/2.; /* Because of L not 2*L */
         }      if(k1*k2*k3*k4 <0.){
       }        firstime=1;
     }        kmax=kmax+10;
       }
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      if(kmax >=10 || firstime ==1){
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you may increase ftol=%.2e\n",thetai,thetaj, ftol);
         fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you may increase ftol=%.2e\n",thetai,thetaj, ftol);
     free_vector(severity,1,maxwav);        printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     free_imatrix(outcome,1,maxwav+1,1,n);        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     free_vector(moisnais,1,n);      }
     free_vector(annais,1,n);  #ifdef DEBUGHESSIJ
     /* free_matrix(mint,1,maxwav,1,n);      v1=hess[thetai][thetai];
        free_matrix(anint,1,maxwav,1,n);*/      v2=hess[thetaj][thetaj];
     free_vector(moisdc,1,n);      cv12=res;
     free_vector(andc,1,n);      /* Computing eigen value of Hessian matrix */
       lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
          lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     wav=ivector(1,imx);      if ((lc2 <0) || (lc1 <0) ){
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        printf("Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        fprintf(ficlog, "Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
            printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     /* Concatenates waves */        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      }
   #endif
     }
       Tcode=ivector(1,100);    return res;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);  }
       ncodemax[1]=1;  
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      /* Not done yet: Was supposed to fix if not exactly at the maximum */
        /* double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar) */
    codtab=imatrix(1,100,1,10);  /* { */
    h=0;  /*   int i; */
    m=pow(2,cptcoveff);  /*   int l=1, lmax=20; */
    /*   double k1,k2,k3,k4,res,fx; */
    for(k=1;k<=cptcoveff; k++){  /*   double p2[MAXPARM+1]; */
      for(i=1; i <=(m/pow(2,k));i++){  /*   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4; */
        for(j=1; j <= ncodemax[k]; j++){  /*   int k=0,kmax=10; */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /*   double l1; */
            h++;    
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  /*   fx=func(x); */
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/  /*   for(l=0 ; l <=lmax; l++){  /\* Enlarging the zone around the Maximum *\/ */
          }  /*     l1=pow(10,l); */
        }  /*     delts=delt; */
      }  /*     for(k=1 ; k <kmax; k=k+1){ */
    }  /*       delt = delti*(l1*k); */
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);  /*       for (i=1;i<=npar;i++) p2[i]=x[i]; */
       codtab[1][2]=1;codtab[2][2]=2; */  /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
    /* for(i=1; i <=m ;i++){  /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
       for(k=1; k <=cptcovn; k++){  /*       k1=func(p2)-fx; */
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);        
       }  /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
       printf("\n");  /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
       }  /*       k2=func(p2)-fx; */
       scanf("%d",i);*/        
      /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
    /* Calculates basic frequencies. Computes observed prevalence at single age  /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
        and prints on file fileres'p'. */  /*       k3=func(p2)-fx; */
         
      /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
      /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /*       k4=func(p2)-fx; */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /*       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /\* Because of L not 2*L *\/ */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /* #ifdef DEBUGHESSIJ */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /*       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  /*       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
        /* #endif */
     /* For Powell, parameters are in a vector p[] starting at p[1]  /*       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)){ */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */  /*      k=kmax; */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  /*       } */
   /*       else if((k1 >khi/nkhif) || (k2 >khi/nkhif) || (k4 >khi/nkhif) || (k4 >khi/nkhif)){ /\* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. *\/ */
     if(mle==1){  /*      k=kmax; l=lmax*10; */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  /*       } */
     }  /*       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  */
      /*      delts=delt; */
     /*--------- results files --------------*/  /*       } */
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  /*     } /\* End loop k *\/ */
    /*   } */
   /*   delti[theta]=delts; */
    jk=1;  /*   return res;  */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  /* } */
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    for(i=1,jk=1; i <=nlstate; i++){  /************** Inverse of matrix **************/
      for(k=1; k <=(nlstate+ndeath); k++){  void ludcmp(double **a, int n, int *indx, double *d) 
        if (k != i)  { 
          {    int i,imax,j,k; 
            printf("%d%d ",i,k);    double big,dum,sum,temp; 
            fprintf(ficlog,"%d%d ",i,k);    double *vv; 
            fprintf(ficres,"%1d%1d ",i,k);   
            for(j=1; j <=ncovmodel; j++){    vv=vector(1,n); 
              printf("%f ",p[jk]);    *d=1.0; 
              fprintf(ficlog,"%f ",p[jk]);    for (i=1;i<=n;i++) { 
              fprintf(ficres,"%f ",p[jk]);      big=0.0; 
              jk++;      for (j=1;j<=n;j++) 
            }        if ((temp=fabs(a[i][j])) > big) big=temp; 
            printf("\n");      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
            fprintf(ficlog,"\n");      vv[i]=1.0/big; 
            fprintf(ficres,"\n");    } 
          }    for (j=1;j<=n;j++) { 
      }      for (i=1;i<j;i++) { 
    }        sum=a[i][j]; 
    if(mle==1){        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
      /* Computing hessian and covariance matrix */        a[i][j]=sum; 
      ftolhess=ftol; /* Usually correct */      } 
      hesscov(matcov, p, npar, delti, ftolhess, func);      big=0.0; 
    }      for (i=j;i<=n;i++) { 
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");        sum=a[i][j]; 
    printf("# Scales (for hessian or gradient estimation)\n");        for (k=1;k<j;k++) 
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");          sum -= a[i][k]*a[k][j]; 
    for(i=1,jk=1; i <=nlstate; i++){        a[i][j]=sum; 
      for(j=1; j <=nlstate+ndeath; j++){        if ( (dum=vv[i]*fabs(sum)) >= big) { 
        if (j!=i) {          big=dum; 
          fprintf(ficres,"%1d%1d",i,j);          imax=i; 
          printf("%1d%1d",i,j);        } 
          fprintf(ficlog,"%1d%1d",i,j);      } 
          for(k=1; k<=ncovmodel;k++){      if (j != imax) { 
            printf(" %.5e",delti[jk]);        for (k=1;k<=n;k++) { 
            fprintf(ficlog," %.5e",delti[jk]);          dum=a[imax][k]; 
            fprintf(ficres," %.5e",delti[jk]);          a[imax][k]=a[j][k]; 
            jk++;          a[j][k]=dum; 
          }        } 
          printf("\n");        *d = -(*d); 
          fprintf(ficlog,"\n");        vv[imax]=vv[j]; 
          fprintf(ficres,"\n");      } 
        }      indx[j]=imax; 
      }      if (a[j][j] == 0.0) a[j][j]=TINY; 
    }      if (j != n) { 
            dum=1.0/(a[j][j]); 
    k=1;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      } 
    if(mle==1)    } 
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    free_vector(vv,1,n);  /* Doesn't work */
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  ;
    for(i=1;i<=npar;i++){  } 
      /*  if (k>nlstate) k=1;  
          i1=(i-1)/(ncovmodel*nlstate)+1;  void lubksb(double **a, int n, int *indx, double b[]) 
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  { 
          printf("%s%d%d",alph[k],i1,tab[i]);*/    int i,ii=0,ip,j; 
      fprintf(ficres,"%3d",i);    double sum; 
      if(mle==1)   
        printf("%3d",i);    for (i=1;i<=n;i++) { 
      fprintf(ficlog,"%3d",i);      ip=indx[i]; 
      for(j=1; j<=i;j++){      sum=b[ip]; 
        fprintf(ficres," %.5e",matcov[i][j]);      b[ip]=b[i]; 
        if(mle==1)      if (ii) 
          printf(" %.5e",matcov[i][j]);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
        fprintf(ficlog," %.5e",matcov[i][j]);      else if (sum) ii=i; 
      }      b[i]=sum; 
      fprintf(ficres,"\n");    } 
      if(mle==1)    for (i=n;i>=1;i--) { 
        printf("\n");      sum=b[i]; 
      fprintf(ficlog,"\n");      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
      k++;      b[i]=sum/a[i][i]; 
    }    } 
      } 
    while((c=getc(ficpar))=='#' && c!= EOF){  
      ungetc(c,ficpar);  void pstamp(FILE *fichier)
      fgets(line, MAXLINE, ficpar);  {
      puts(line);    fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart);
      fputs(line,ficparo);  }
    }  
    ungetc(c,ficpar);  /************ Frequencies ********************/
    estepm=0;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, \
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);                    int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[],\
    if (estepm==0 || estepm < stepm) estepm=stepm;                    int firstpass,  int lastpass, int stepm, int weightopt, char model[])
    if (fage <= 2) {  {  /* Some frequencies */
      bage = ageminpar;    
      fage = agemaxpar;    int i, m, jk, j1, bool, z1,j;
    }    int mi; /* Effective wave */
        int first;
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    double ***freq; /* Frequencies */
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    double *pp, **prop;
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
        char fileresp[FILENAMELENGTH], fileresphtm[FILENAMELENGTH], fileresphtmfr[FILENAMELENGTH];
    while((c=getc(ficpar))=='#' && c!= EOF){    double agebegin, ageend;
      ungetc(c,ficpar);      
      fgets(line, MAXLINE, ficpar);    pp=vector(1,nlstate);
      puts(line);    prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+3+AGEMARGE); 
      fputs(line,ficparo);    /* prop=matrix(1,nlstate,iagemin,iagemax+3); */
    }    strcpy(fileresp,"P_");
    ungetc(c,ficpar);    strcat(fileresp,fileresu);
      /*strcat(fileresphtm,fileresu);*/
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    if((ficresp=fopen(fileresp,"w"))==NULL) {
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      printf("Problem with prevalence resultfile: %s\n", fileresp);
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
          exit(0);
    while((c=getc(ficpar))=='#' && c!= EOF){    }
      ungetc(c,ficpar);  
      fgets(line, MAXLINE, ficpar);    strcpy(fileresphtm,subdirfext(optionfilefiname,"PHTM_",".htm"));
      puts(line);    if((ficresphtm=fopen(fileresphtm,"w"))==NULL) {
      fputs(line,ficparo);      printf("Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno));
    }      fprintf(ficlog,"Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno));
    ungetc(c,ficpar);      fflush(ficlog);
        exit(70); 
     }
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    else{
    dateprev2=anprev2+mprev2/12.+jprev2/365.;      fprintf(ficresphtm,"<html><head>\n<title>IMaCh PHTM_ %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   fscanf(ficpar,"pop_based=%d\n",&popbased);  Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
   fprintf(ficparo,"pop_based=%d\n",popbased);              fileresphtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
   fprintf(ficres,"pop_based=%d\n",popbased);      }
        fprintf(ficresphtm,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies and prevalence by age at begin of transition</h4>\n",fileresphtm, fileresphtm);
   while((c=getc(ficpar))=='#' && c!= EOF){      
     ungetc(c,ficpar);    strcpy(fileresphtmfr,subdirfext(optionfilefiname,"PHTMFR_",".htm"));
     fgets(line, MAXLINE, ficpar);    if((ficresphtmfr=fopen(fileresphtmfr,"w"))==NULL) {
     puts(line);      printf("Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
     fputs(line,ficparo);      fprintf(ficlog,"Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
   }      fflush(ficlog);
   ungetc(c,ficpar);      exit(70); 
     }
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    else{
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      fprintf(ficresphtmfr,"<html><head>\n<title>IMaCh PHTM_Frequency table %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
             fileresphtmfr,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
 while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);    fprintf(ficresphtmfr,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies of all effective transitions by age at begin of transition </h4>Unknown status is -1<br/>\n",fileresphtmfr, fileresphtmfr);
     fgets(line, MAXLINE, ficpar);  
     puts(line);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin-AGEMARGE,iagemax+3+AGEMARGE);
     fputs(line,ficparo);    j1=0;
   }    
   ungetc(c,ficpar);    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    first=1;
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
     for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){ /* Loop on covariates combination */
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           scanf("%d", i);*/
 /*------------ gnuplot -------------*/        for (i=-5; i<=nlstate+ndeath; i++)  
   strcpy(optionfilegnuplot,optionfilefiname);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   strcat(optionfilegnuplot,".gp");            for(m=iagemin; m <= iagemax+3; m++)
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {              freq[i][jk][m]=0;
     printf("Problem with file %s",optionfilegnuplot);        
   }        for (i=1; i<=nlstate; i++)  
   fclose(ficgp);          for(m=iagemin; m <= iagemax+3; m++)
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);            prop[i][m]=0;
 /*--------- index.htm --------*/        
         dateintsum=0;
   strcpy(optionfilehtm,optionfile);        k2cpt=0;
   strcat(optionfilehtm,".htm");        for (i=1; i<=imx; i++) { /* For each individual i */
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          bool=1;
     printf("Problem with %s \n",optionfilehtm), exit(0);          if (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
   }            for (z1=1; z1<=cptcoveff; z1++)       
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n                bool=0;
 \n                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", 
 Total number of observations=%d <br>\n                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n                  j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/
 <hr  size=\"2\" color=\"#EC5E5E\">                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/
  <ul><li><h4>Parameter files</h4>\n              } 
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n          } /* cptcovn > 0 */
  - Log file of the run: <a href=\"%s\">%s</a><br>\n  
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);          if (bool==1){
   fclose(fichtm);            /* for(m=firstpass; m<=lastpass; m++){ */
             for(mi=1; mi<wav[i];mi++){
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);              m=mw[mi][i];
                /* dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective (mi) waves m=mw[mi][i]
 /*------------ free_vector  -------------*/                 and mw[mi+1][i]. dh depends on stepm. */
  chdir(path);              agebegin=agev[m][i]; /* Age at beginning of wave before transition*/
                ageend=agev[m][i]+(dh[m][i])*stepm/YEARM; /* Age at end of wave and transition */
  free_ivector(wav,1,imx);              if(m >=firstpass && m <=lastpass){
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                k2=anint[m][i]+(mint[m][i]/12.);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                  /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
  free_ivector(num,1,n);                if(agev[m][i]==0) agev[m][i]=iagemax+1;  /* All ages equal to 0 are in iagemax+1 */
  free_vector(agedc,1,n);                if(agev[m][i]==1) agev[m][i]=iagemax+2;  /* All ages equal to 1 are in iagemax+2 */
  /*free_matrix(covar,1,NCOVMAX,1,n);*/                if (s[m][i]>0 && s[m][i]<=nlstate)  /* If status at wave m is known and a live state */
  fclose(ficparo);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];  /* At age of beginning of transition, where status is known */
  fclose(ficres);                if (m<lastpass) {
                   /* if(s[m][i]==4 && s[m+1][i]==4) */
                   /*   printf(" num=%ld m=%d, i=%d s1=%d s2=%d agev at m=%d\n", num[i], m, i,s[m][i],s[m+1][i], (int)agev[m][i]); */
   /*--------------- Prevalence limit --------------*/                  if(s[m][i]==-1)
                      printf(" num=%ld m=%d, i=%d s1=%d s2=%d agev at m=%d agebegin=%.2f ageend=%.2f, agemed=%d\n", num[i], m, i,s[m][i],s[m+1][i], (int)agev[m][i],agebegin, ageend, (int)((agebegin+ageend)/2.));
   strcpy(filerespl,"pl");                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i]; /* At age of beginning of transition, where status is known */
   strcat(filerespl,fileres);                  /* freq[s[m][i]][s[m+1][i]][(int)((agebegin+ageend)/2.)] += weight[i]; */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i]; /* Total is in iagemax+3 *//* At age of beginning of transition, where status is known */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                }
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;              }  
   }              if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3)) && (anint[m][i]!=9999) && (mint[m][i]!=99)) {
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                dateintsum=dateintsum+k2;
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);                k2cpt++;
   fprintf(ficrespl,"#Prevalence limit\n");                /* printf("i=%ld dateintmean = %lf dateintsum=%lf k2cpt=%lf k2=%lf\n",i, dateintsum/k2cpt, dateintsum,k2cpt, k2); */
   fprintf(ficrespl,"#Age ");              }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);              /*}*/
   fprintf(ficrespl,"\n");            } /* end m */
            } /* end bool */
   prlim=matrix(1,nlstate,1,nlstate);        } /* end i = 1 to imx */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        pstamp(ficresp);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        if  (cptcovn>0) {
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          fprintf(ficresp, "\n#********** Variable "); 
   k=0;          fprintf(ficresphtm, "\n<br/><br/><h3>********** Variable "); 
   agebase=ageminpar;          fprintf(ficresphtmfr, "\n<br/><br/><h3>********** Variable "); 
   agelim=agemaxpar;          for (z1=1; z1<=cptcoveff; z1++){
   ftolpl=1.e-10;            fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
   i1=cptcoveff;            fprintf(ficresphtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
   if (cptcovn < 1){i1=1;}            fprintf(ficresphtmfr, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           }
   for(cptcov=1;cptcov<=i1;cptcov++){            fprintf(ficresp, "**********\n#");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(ficresphtm, "**********</h3>\n");
         k=k+1;          fprintf(ficresphtmfr, "**********</h3>\n");
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          fprintf(ficlog, "\n#********** Variable "); 
         fprintf(ficrespl,"\n#******");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
         printf("\n#******");          fprintf(ficlog, "**********\n");
         fprintf(ficlog,"\n#******");        }
         for(j=1;j<=cptcoveff;j++) {        fprintf(ficresphtm,"<table style=\"text-align:center; border: 1px solid\">");
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(i=1; i<=nlstate;i++) {
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficresphtm, "<th>Age</th><th>Prev(%d)</th><th>N(%d)</th><th>N</th>",i,i);
         }        }
         fprintf(ficrespl,"******\n");        fprintf(ficresp, "\n");
         printf("******\n");        fprintf(ficresphtm, "\n");
         fprintf(ficlog,"******\n");        
                /* Header of frequency table by age */
         for (age=agebase; age<=agelim; age++){        fprintf(ficresphtmfr,"<table style=\"text-align:center; border: 1px solid\">");
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        fprintf(ficresphtmfr,"<th>Age</th> ");
           fprintf(ficrespl,"%.0f",age );        for(jk=-1; jk <=nlstate+ndeath; jk++){
           for(i=1; i<=nlstate;i++)          for(m=-1; m <=nlstate+ndeath; m++){
           fprintf(ficrespl," %.5f", prlim[i][i]);            if(jk!=0 && m!=0)
           fprintf(ficrespl,"\n");              fprintf(ficresphtmfr,"<th>%d%d</th> ",jk,m);
         }          }
       }        }
     }        fprintf(ficresphtmfr, "\n");
   fclose(ficrespl);        
         /* For each age */
   /*------------- h Pij x at various ages ------------*/        for(i=iagemin; i <= iagemax+3; i++){
            fprintf(ficresphtm,"<tr>");
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          if(i==iagemax+1){
   if((ficrespij=fopen(filerespij,"w"))==NULL) {            fprintf(ficlog,"1");
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;            fprintf(ficresphtmfr,"<tr><th>0</th> ");
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;          }else if(i==iagemax+2){
   }            fprintf(ficlog,"0");
   printf("Computing pij: result on file '%s' \n", filerespij);            fprintf(ficresphtmfr,"<tr><th>Unknown</th> ");
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);          }else if(i==iagemax+3){
              fprintf(ficlog,"Total");
   stepsize=(int) (stepm+YEARM-1)/YEARM;            fprintf(ficresphtmfr,"<tr><th>Total</th> ");
   /*if (stepm<=24) stepsize=2;*/          }else{
             if(first==1){
   agelim=AGESUP;              first=0;
   hstepm=stepsize*YEARM; /* Every year of age */              printf("See log file for details...\n");
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */            }
             fprintf(ficresphtmfr,"<tr><th>%d</th> ",i);
   /* hstepm=1;   aff par mois*/            fprintf(ficlog,"Age %d", i);
           }
   k=0;          for(jk=1; jk <=nlstate ; jk++){
   for(cptcov=1;cptcov<=i1;cptcov++){            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              pp[jk] += freq[jk][m][i]; 
       k=k+1;          }
         fprintf(ficrespij,"\n#****** ");          for(jk=1; jk <=nlstate ; jk++){
         for(j=1;j<=cptcoveff;j++)            for(m=-1, pos=0; m <=0 ; m++)
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              pos += freq[jk][m][i];
         fprintf(ficrespij,"******\n");            if(pp[jk]>=1.e-10){
                      if(first==1){
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              }
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }else{
           /*      nhstepm=nhstepm*YEARM; aff par mois*/              if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
           oldm=oldms;savm=savms;            }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            }
           fprintf(ficrespij,"# Age");  
           for(i=1; i<=nlstate;i++)          for(jk=1; jk <=nlstate ; jk++){
             for(j=1; j<=nlstate+ndeath;j++)            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               fprintf(ficrespij," %1d-%1d",i,j);              pp[jk] += freq[jk][m][i];
           fprintf(ficrespij,"\n");          }       
            for (h=0; h<=nhstepm; h++){          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );            pos += pp[jk];
             for(i=1; i<=nlstate;i++)            posprop += prop[jk][i];
               for(j=1; j<=nlstate+ndeath;j++)          }
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          for(jk=1; jk <=nlstate ; jk++){
             fprintf(ficrespij,"\n");            if(pos>=1.e-5){
              }              if(first==1)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           fprintf(ficrespij,"\n");              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         }            }else{
     }              if(first==1)
   }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);            }
             if( i <= iagemax){
   fclose(ficrespij);              if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 fprintf(ficresphtm,"<th>%d</th><td>%.5f</td><td>%.0f</td><td>%.0f</td>",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   /*---------- Forecasting ------------------*/                /*probs[i][jk][j1]= pp[jk]/pos;*/
   if((stepm == 1) && (strcmp(model,".")==0)){                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);              }
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);              else{
   }                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   else{                fprintf(ficresphtm,"<th>%d</th><td>NaNq</td><td>%.0f</td><td>%.0f</td>",i, prop[jk][i],posprop);
     erreur=108;              }
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);            }
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);          }
   }          
            for(jk=-1; jk <=nlstate+ndeath; jk++){
             for(m=-1; m <=nlstate+ndeath; m++){
   /*---------- Health expectancies and variances ------------*/              if(freq[jk][m][i] !=0 ) { /* minimizing output */
                 if(first==1){
   strcpy(filerest,"t");                  printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   strcat(filerest,fileres);                }
   if((ficrest=fopen(filerest,"w"))==NULL) {                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;              }
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;              if(jk!=0 && m!=0)
   }                fprintf(ficresphtmfr,"<td>%.0f</td> ",freq[jk][m][i]);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);            }
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);          }
           fprintf(ficresphtmfr,"</tr>\n ");
           if(i <= iagemax){
   strcpy(filerese,"e");            fprintf(ficresp,"\n");
   strcat(filerese,fileres);            fprintf(ficresphtm,"</tr>\n");
   if((ficreseij=fopen(filerese,"w"))==NULL) {          }
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          if(first==1)
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);            printf("Others in log...\n");
   }          fprintf(ficlog,"\n");
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);        } /* end loop i */
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);        fprintf(ficresphtm,"</table>\n");
         fprintf(ficresphtmfr,"</table>\n");
   strcpy(fileresv,"v");        /*}*/
   strcat(fileresv,fileres);    } /* end j1 */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    dateintmean=dateintsum/k2cpt; 
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);   
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);    fclose(ficresp);
   }    fclose(ficresphtm);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    fclose(ficresphtmfr);
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin-AGEMARGE, iagemax+3+AGEMARGE);
   calagedate=-1;    free_vector(pp,1,nlstate);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    free_matrix(prop,1,nlstate,iagemin-AGEMARGE, iagemax+3+AGEMARGE);
     /* End of Freq */
   k=0;  }
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  /************ Prevalence ********************/
       k=k+1;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       fprintf(ficrest,"\n#****** ");  {  
       for(j=1;j<=cptcoveff;j++)    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       in each health status at the date of interview (if between dateprev1 and dateprev2).
       fprintf(ficrest,"******\n");       We still use firstpass and lastpass as another selection.
     */
       fprintf(ficreseij,"\n#****** ");   
       for(j=1;j<=cptcoveff;j++)    int i, m, jk, j1, bool, z1,j;
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int mi; /* Effective wave */
       fprintf(ficreseij,"******\n");    int iage;
     double agebegin, ageend;
       fprintf(ficresvij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)    double **prop;
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double posprop; 
       fprintf(ficresvij,"******\n");    double  y2; /* in fractional years */
     int iagemin, iagemax;
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    int first; /** to stop verbosity which is redirected to log file */
       oldm=oldms;savm=savms;  
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      iagemin= (int) agemin;
      iagemax= (int) agemax;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    /*pp=vector(1,nlstate);*/
       oldm=oldms;savm=savms;    prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+3+AGEMARGE); 
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       if(popbased==1){    j1=0;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);    
        }    /*j=cptcoveff;*/
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
      
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    first=1;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
       fprintf(ficrest,"\n");      for (i=1; i<=nlstate; i++)  
         for(iage=iagemin-AGEMARGE; iage <= iagemax+3+AGEMARGE; iage++)
       epj=vector(1,nlstate+1);                                  prop[i][iage]=0.0;
       for(age=bage; age <=fage ;age++){      
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      for (i=1; i<=imx; i++) { /* Each individual */
         if (popbased==1) {        bool=1;
           for(i=1; i<=nlstate;i++)        if  (cptcovn>0) {  /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
             prlim[i][i]=probs[(int)age][i][k];                                  for (z1=1; z1<=cptcoveff; z1++) 
         }                                          if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) 
                                                          bool=0;
         fprintf(ficrest," %4.0f",age);        } 
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        if (bool==1) { 
           for(i=1, epj[j]=0.;i <=nlstate;i++) {                                  /* for(m=firstpass; m<=lastpass; m++){/\* Other selection (we can limit to certain interviews*\/ */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];                                  for(mi=1; mi<wav[i];mi++){
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/                                          m=mw[mi][i];
           }                                          agebegin=agev[m][i]; /* Age at beginning of wave before transition*/
           epj[nlstate+1] +=epj[j];                                          /* ageend=agev[m][i]+(dh[m][i])*stepm/YEARM; /\* Age at end of wave and transition *\/ */
         }                                          if(m >=firstpass && m <=lastpass){
                                                   y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         for(i=1, vepp=0.;i <=nlstate;i++)                                                  if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           for(j=1;j <=nlstate;j++)                                                          if(agev[m][i]==0) agev[m][i]=iagemax+1;
             vepp += vareij[i][j][(int)age];                                                          if(agev[m][i]==1) agev[m][i]=iagemax+2;
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));                                                          if((int)agev[m][i] <iagemin-AGEMARGE || (int)agev[m][i] >iagemax+3+AGEMARGE){
         for(j=1;j <=nlstate;j++){                                                                  printf("Error on individual # %d agev[m][i]=%f <%d-%d or > %d+3+%d  m=%d; either change agemin or agemax or fix data\n",i, agev[m][i],iagemin,AGEMARGE, iagemax,AGEMARGE,m); 
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));                                                                  exit(1);
         }                                                          }
         fprintf(ficrest,"\n");                                                          if (s[m][i]>0 && s[m][i]<=nlstate) { 
       }                                                                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     }                                                                  prop[s[m][i]][(int)agev[m][i]] += weight[i];/* At age of beginning of transition, where status is known */
   }                                                                  prop[s[m][i]][iagemax+3] += weight[i]; 
 free_matrix(mint,1,maxwav,1,n);                                                          } /* end valid statuses */ 
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);                                                  } /* end selection of dates */
     free_vector(weight,1,n);                                          } /* end selection of waves */
   fclose(ficreseij);                                  } /* end effective waves */
   fclose(ficresvij);        } /* end bool */
   fclose(ficrest);      }
   fclose(ficpar);      for(i=iagemin; i <= iagemax+3; i++){  
   free_vector(epj,1,nlstate+1);        for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
                                    posprop += prop[jk][i]; 
   /*------- Variance limit prevalence------*/          } 
         
   strcpy(fileresvpl,"vpl");        for(jk=1; jk <=nlstate ; jk++){       
   strcat(fileresvpl,fileres);                                  if( i <=  iagemax){ 
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {                                          if(posprop>=1.e-5){ 
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);                                                  probs[i][jk][j1]= prop[jk][i]/posprop;
     exit(0);                                          } else{
   }                                                  if(first==1){
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);                                                          first=0;
                                                           printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
   k=0;                                                  }
   for(cptcov=1;cptcov<=i1;cptcov++){                                          }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                                  } 
       k=k+1;        }/* end jk */ 
       fprintf(ficresvpl,"\n#****** ");      }/* end i */ 
       for(j=1;j<=cptcoveff;j++)      /*} *//* end i1 */
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    } /* end j1 */
       fprintf(ficresvpl,"******\n");    
          /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    /*free_vector(pp,1,nlstate);*/
       oldm=oldms;savm=savms;    free_matrix(prop,1,nlstate, iagemin-AGEMARGE,iagemax+3+AGEMARGE);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  }  /* End of prevalence */
     }  
  }  /************* Waves Concatenation ***************/
   
   fclose(ficresvpl);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   {
   /*---------- End : free ----------------*/    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);       Death is a valid wave (if date is known).
         mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);       and mw[mi+1][i]. dh depends on stepm.
         */
    
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    int i, mi, m;
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);       double sum=0., jmean=0.;*/
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    int first, firstwo, firsthree, firstfour;
      int j, k=0,jk, ju, jl;
   free_matrix(matcov,1,npar,1,npar);    double sum=0.;
   free_vector(delti,1,npar);    first=0;
   free_matrix(agev,1,maxwav,1,imx);    firstwo=0;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    firsthree=0;
     firstfour=0;
   fprintf(fichtm,"\n</body>");    jmin=100000;
   fclose(fichtm);    jmax=-1;
   fclose(ficgp);    jmean=0.;
      for(i=1; i<=imx; i++){  /* For simple cases and if state is death */
       mi=0;
   if(erreur >0){      m=firstpass;
     printf("End of Imach with error or warning %d\n",erreur);      while(s[m][i] <= nlstate){  /* a live state */
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);        if(s[m][i]>=1 || s[m][i]==-4 || s[m][i]==-5){ /* Since 0.98r4 if status=-2 vital status is really unknown, wave should be skipped */
   }else{          mw[++mi][i]=m;
    printf("End of Imach\n");        }
    fprintf(ficlog,"End of Imach\n");        if(m >=lastpass){
   }          if(s[m][i]==-1 && (int) andc[i] == 9999 && (int)anint[m][i] != 9999){
   printf("See log file on %s\n",filelog);            if(firsthree == 0){
   fclose(ficlog);              printf("Information! Unknown health status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */              firsthree=1;
              }
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/            fprintf(ficlog,"Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood.\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m);
   /*printf("Total time was %d uSec.\n", total_usecs);*/            mw[++mi][i]=m;
   /*------ End -----------*/          }
           if(s[m][i]==-2){ /* Vital status is really unknown */
             nbwarn++;
  end:            if((int)anint[m][i] == 9999){  /*  Has the vital status really been verified? */
 #ifdef windows              printf("Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);
   /* chdir(pathcd);*/              fprintf(ficlog,"Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);
 #endif            }
  /*system("wgnuplot graph.plt");*/            break;
  /*system("../gp37mgw/wgnuplot graph.plt");*/          }
  /*system("cd ../gp37mgw");*/          break;
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/        }
  strcpy(plotcmd,GNUPLOTPROGRAM);        else
  strcat(plotcmd," ");          m++;
  strcat(plotcmd,optionfilegnuplot);      }/* end while */
  system(plotcmd);      
       /* After last pass */
 #ifdef windows      if (s[m][i] > nlstate){  /* In a death state */
   while (z[0] != 'q') {        mi++;     /* Death is another wave */
     /* chdir(path); */        /* if(mi==0)  never been interviewed correctly before death */
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");           /* Only death is a correct wave */
     scanf("%s",z);        mw[mi][i]=m;
     if (z[0] == 'c') system("./imach");      }else if ((int) andc[i] != 9999) { /* Status is either death or negative. A death occured after lastpass, we can't take it into account because of potential bias */
     else if (z[0] == 'e') system(optionfilehtm);        /* m++; */
     else if (z[0] == 'g') system(plotcmd);        /* mi++; */
     else if (z[0] == 'q') exit(0);        /* s[m][i]=nlstate+1;  /\* We are setting the status to the last of non live state *\/ */
   }        /* mw[mi][i]=m; */
 #endif        nberr++;
 }        if ((int)anint[m][i]!= 9999) { /* date of last interview is known */
           if(firstwo==0){
             printf("Error! Death for individual %ld line=%d  occurred %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
             firstwo=1;
           }
           fprintf(ficlog,"Error! Death for individual %ld line=%d  occurred %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
         }else{ /* end date of interview is known */
           /* death is known but not confirmed by death status at any wave */
           if(firstfour==0){
             printf("Error! Death for individual %ld line=%d  occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
             firstfour=1;
           }
           fprintf(ficlog,"Error! Death for individual %ld line=%d  occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
         }
       }
       wav[i]=mi;
       if(mi==0){
         nbwarn++;
         if(first==0){
           printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
         }
         if(first==1){
           fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         }
       } /* end mi==0 */
     } /* End individuals */
     /* wav and mw are no more changed */
   
     
     for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
           dh[mi][i]=1;
         else{
           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
               if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
                 nberr++;
                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 j=1; /* Temporary Dangerous patch */
                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                 fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
               }
               k=k+1;
               if (j >= jmax){
                 jmax=j;
                 ijmax=i;
               }
               if (j <= jmin){
                 jmin=j;
                 ijmin=i;
               }
               sum=sum+j;
               /*if (j<0) printf("j=%d num=%d \n",j,i);*/
               /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
           }
           else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   
             k=k+1;
             if (j >= jmax) {
               jmax=j;
               ijmax=i;
             }
             else if (j <= jmin){
               jmin=j;
               ijmin=i;
             }
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             if(j<0){
               nberr++;
               printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             }
             sum=sum+j;
           }
           jk= j/stepm;
           jl= j -jk*stepm;
           ju= j -(jk+1)*stepm;
           if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             if(jl==0){
               dh[mi][i]=jk;
               bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
                     * to avoid the price of an extra matrix product in likelihood */
               dh[mi][i]=jk+1;
               bh[mi][i]=ju;
             }
           }else{
             if(jl <= -ju){
               dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
                                    * is higher than the multiple of stepm and negative otherwise.
                                    */
             }
             else{
               dh[mi][i]=jk+1;
               bh[mi][i]=ju;
             }
             if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
               bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
           } /* end if mle */
         }
       } /* end wave */
     }
     jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
    }
   
   /*********** Tricode ****************************/
   void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
   {
     /**< Uses cptcovn+2*cptcovprod as the number of covariates */
     /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
      * Boring subroutine which should only output nbcode[Tvar[j]][k]
      * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
      * nbcode[Tvar[j]][1]= 
     */
   
     int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     int modmaxcovj=0; /* Modality max of covariates j */
     int cptcode=0; /* Modality max of covariates j */
     int modmincovj=0; /* Modality min of covariates j */
   
   
     cptcoveff=0; 
    
     for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   
     /* Loop on covariates without age and products */
     for (j=1; j<=(cptcovs); j++) { /* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only */
       for (k=-1; k < maxncov; k++) Ndum[k]=0;
       for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the 
                                  modality of this covariate Vj*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
                                       * If product of Vn*Vm, still boolean *:
                                       * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
                                       * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
         /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
                                         modality of the nth covariate of individual i. */
         if (ij > modmaxcovj)
           modmaxcovj=ij; 
         else if (ij < modmincovj) 
           modmincovj=ij; 
         if ((ij < -1) && (ij > NCOVMAX)){
           printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
           exit(1);
         }else
         Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
         /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         /* getting the maximum value of the modality of the covariate
            (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
            female is 1, then modmaxcovj=1.*/
       } /* end for loop on individuals i */
       printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
       fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
       cptcode=modmaxcovj;
       /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
      /*for (i=0; i<=cptcode; i++) {*/
       for (k=modmincovj;  k<=modmaxcovj; k++) { /* k=-1 ? 0 and 1*//* For each value k of the modality of model-cov j */
         printf("Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
         fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]);
         if( Ndum[k] != 0 ){ /* Counts if nobody answered modality k ie empty modality, we skip it and reorder */
           if( k != -1){
             ncodemax[j]++;  /* ncodemax[j]= Number of modalities of the j th
                                covariate for which somebody answered excluding 
                                undefined. Usually 2: 0 and 1. */
           }
           ncodemaxwundef[j]++; /* ncodemax[j]= Number of modalities of the j th
                                covariate for which somebody answered including 
                                undefined. Usually 3: -1, 0 and 1. */
         }
         /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
            historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
       } /* Ndum[-1] number of undefined modalities */
   
       /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
       /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. 
          If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125;
          modmincovj=3; modmaxcovj = 7;
          There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3;
          which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10;
          defining two dummy variables: variables V1_1 and V1_2.
          nbcode[Tvar[j]][ij]=k;
          nbcode[Tvar[j]][1]=0;
          nbcode[Tvar[j]][2]=1;
          nbcode[Tvar[j]][3]=2;
          To be continued (not working yet).
       */
       ij=0; /* ij is similar to i but can jump over null modalities */
       for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
           if (Ndum[i] == 0) { /* If nobody responded to this modality k */
             break;
           }
           ij++;
           nbcode[Tvar[j]][ij]=i;  /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality.*/
           cptcode = ij; /* New max modality for covar j */
       } /* end of loop on modality i=-1 to 1 or more */
         
       /*   for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */
       /*  /\*recode from 0 *\/ */
       /*                               k is a modality. If we have model=V1+V1*sex  */
       /*                               then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       /*                            But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */
       /*  } */
       /*  /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */
       /*  if (ij > ncodemax[j]) { */
       /*    printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]);  */
       /*    fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */
       /*    break; */
       /*  } */
       /*   }  /\* end of loop on modality k *\/ */
     } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
     
    for (k=-1; k< maxncov; k++) Ndum[k]=0; 
     
     for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
      ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
      Ndum[ij]++; /* Might be supersed V1 + V1*age */
    } 
   
    ij=0;
    for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
      /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
      if((Ndum[i]!=0) && (i<=ncovcol)){
        ij++;
        /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
        Tvaraff[ij]=i; /*For printing (unclear) */
      }else{
          /* Tvaraff[ij]=0; */
      }
    }
    /* ij--; */
    cptcoveff=ij; /*Number of total covariates*/
   
   }
   
   
   /*********** Health Expectancies ****************/
   
   void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
   {
     /* Health expectancies, no variances */
     int i, j, nhstepm, hstepm, h, nstepm;
     int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
     double ***p3mat;
     double eip;
   
     pstamp(ficreseij);
     fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++){
         fprintf(ficreseij," e%1d%1d ",i,j);
       }
       fprintf(ficreseij," e%1d. ",i);
     }
     fprintf(ficreseij,"\n");
   
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     agelim=AGESUP;
     /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       
   /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
       printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       
       /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0;
         for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
           fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
         fprintf(ficreseij,"%9.4f", eip );
       }
       fprintf(ficreseij,"\n");
       
     }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
     
   }
   
   void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
   {
     /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .
     */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
     double **dnewm,**doldm;
     double *xp, *xm;
     double **gp, **gm;
     double ***gradg, ***trgradg;
     int theta;
   
     double eip, vip;
   
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
     xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
     pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
     }
     fprintf(ficresstdeij,"\n");
   
     pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
       }
     fprintf(ficrescveij,"\n");
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
                   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                   
       /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
                                   xp[i] = x[i] + (i==theta ?delti[theta]:0);
                                   xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
                           
         for(j=1; j<= nlstate; j++){
                                   for(i=1; i<=nlstate; i++){
                                           for(h=0; h<=nhstepm-1; h++){
                                                   gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
                                                   gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
                                           }
                                   }
         }
                           
         for(ij=1; ij<= nlstate*nlstate; ij++)
                                   for(h=0; h<=nhstepm-1; h++){
                                           gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
                                   }
       }/* End theta */
       
       
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
                                   for(theta=1; theta <=npar; theta++)
                                           trgradg[h][j][theta]=gradg[h][theta][j];
       
                   
                   for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
                                   varhe[ij][ji][(int)age] =0.;
                   
                   printf("%d|",(int)age);fflush(stdout);
                   fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                   for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
                                   matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
                                   matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
                                   for(ij=1;ij<=nlstate*nlstate;ij++)
                                           for(ji=1;ji<=nlstate*nlstate;ji++)
                                                   varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
                   
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
                                   for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                                           eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
                                           
                                           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                                           
                                   }
                   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
                                   eip += eij[i][j][(int)age];
                                   for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
                                           vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
                                   fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
                   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
                                   cptj= (j-1)*nlstate+i;
                                   for(i2=1; i2<=nlstate;i2++)
                                           for(j2=1; j2<=nlstate;j2++){
                                                   cptj2= (j2-1)*nlstate+i2;
                                                   if(cptj2 <= cptj)
                                                           fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
                                           }
         }
       fprintf(ficrescveij,"\n");
                   
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
           
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
    
   /************ Variance ******************/
    void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
    {
      /* Variance of health expectancies */
      /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
      /* double **newm;*/
      /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
     
      /* int movingaverage(); */
      double **dnewm,**doldm;
      double **dnewmp,**doldmp;
      int i, j, nhstepm, hstepm, h, nstepm ;
      int k;
      double *xp;
      double **gp, **gm;  /* for var eij */
      double ***gradg, ***trgradg; /*for var eij */
      double **gradgp, **trgradgp; /* for var p point j */
      double *gpp, *gmp; /* for var p point j */
      double **varppt; /* for var p point j nlstate to nlstate+ndeath */
      double ***p3mat;
      double age,agelim, hf;
      /* double ***mobaverage; */
      int theta;
      char digit[4];
      char digitp[25];
   
      char fileresprobmorprev[FILENAMELENGTH];
   
      if(popbased==1){
        if(mobilav!=0)
          strcpy(digitp,"-POPULBASED-MOBILAV_");
        else strcpy(digitp,"-POPULBASED-NOMOBIL_");
      }
      else 
        strcpy(digitp,"-STABLBASED_");
   
      /* if (mobilav!=0) { */
      /*   mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
      /*   if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){ */
      /*     fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); */
      /*     printf(" Error in movingaverage mobilav=%d\n",mobilav); */
      /*   } */
      /* } */
   
      strcpy(fileresprobmorprev,"PRMORPREV-"); 
      sprintf(digit,"%-d",ij);
      /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
      strcat(fileresprobmorprev,digit); /* Tvar to be done */
      strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
      strcat(fileresprobmorprev,fileresu);
      if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobmorprev);
        fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
      }
      printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      pstamp(ficresprobmorprev);
      fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
      fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
        fprintf(ficresprobmorprev," p.%-d SE",j);
        for(i=1; i<=nlstate;i++)
          fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
      }  
      fprintf(ficresprobmorprev,"\n");
     
      fprintf(ficgp,"\n# Routine varevsij");
      fprintf(ficgp,"\nunset title \n");
      /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
      /*   } */
      varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      pstamp(ficresvij);
      fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
      if(popbased==1)
        fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
      else
        fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
      fprintf(ficresvij,"# Age");
      for(i=1; i<=nlstate;i++)
        for(j=1; j<=nlstate;j++)
          fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
      fprintf(ficresvij,"\n");
   
      xp=vector(1,npar);
      dnewm=matrix(1,nlstate,1,npar);
      doldm=matrix(1,nlstate,1,nlstate);
      dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
      doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
      gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
      gpp=vector(nlstate+1,nlstate+ndeath);
      gmp=vector(nlstate+1,nlstate+ndeath);
      trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
      if(estepm < stepm){
        printf ("Problem %d lower than %d\n",estepm, stepm);
      }
      else  hstepm=estepm;   
      /* For example we decided to compute the life expectancy with the smallest unit */
      /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         nhstepm is the number of hstepm from age to agelim 
         nstepm is the number of stepm from age to agelim. 
         Look at function hpijx to understand why because of memory size limitations, 
         we decided (b) to get a life expectancy respecting the most precise curvature of the
         survival function given by stepm (the optimization length). Unfortunately it
         means that if the survival funtion is printed every two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         results. So we changed our mind and took the option of the best precision.
      */
      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      agelim = AGESUP;
      for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
        gp=matrix(0,nhstepm,1,nlstate);
        gm=matrix(0,nhstepm,1,nlstate);
                   
                   
        for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
          }
                           
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
                           
          if (popbased==1) {
            if(mobilav ==0){
              for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
            }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
                prlim[i][i]=mobaverage[(int)age][i][ij];
            }
          }
                           
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  /* Returns p3mat[i][j][h] for h=1 to nhstepm */
          for(j=1; j<= nlstate; j++){
            for(h=0; h<=nhstepm; h++){
              for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                gp[h][j] += prlim[i][i]*p3mat[i][j][h];
            }
          }
          /* Next for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
             as a weighted average of prlim.
          */
          for(j=nlstate+1;j<=nlstate+ndeath;j++){
            for(i=1,gpp[j]=0.; i<= nlstate; i++)
              gpp[j] += prlim[i][i]*p3mat[i][j][1];
          }    
          /* end probability of death */
                           
          for(i=1; i<=npar; i++) /* Computes gradient x - delta */
            xp[i] = x[i] - (i==theta ?delti[theta]:0);
                           
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij);
                           
          if (popbased==1) {
            if(mobilav ==0){
              for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
            }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
                prlim[i][i]=mobaverage[(int)age][i][ij];
            }
          }
                           
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                           
          for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
            for(h=0; h<=nhstepm; h++){
              for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                gm[h][j] += prlim[i][i]*p3mat[i][j][h];
            }
          }
          /* This for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
             as a weighted average of prlim.
          */
          for(j=nlstate+1;j<=nlstate+ndeath;j++){
            for(i=1,gmp[j]=0.; i<= nlstate; i++)
              gmp[j] += prlim[i][i]*p3mat[i][j][1];
          }    
          /* end probability of death */
                           
          for(j=1; j<= nlstate; j++) /* vareij */
            for(h=0; h<=nhstepm; h++){
              gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
            }
                           
          for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
            gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
          }
                           
        } /* End theta */
                   
        trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
                   
        for(h=0; h<=nhstepm; h++) /* veij */
          for(j=1; j<=nlstate;j++)
            for(theta=1; theta <=npar; theta++)
              trgradg[h][j][theta]=gradg[h][theta][j];
                   
        for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
          for(theta=1; theta <=npar; theta++)
            trgradgp[j][theta]=gradgp[theta][j];
                   
                   
        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        for(i=1;i<=nlstate;i++)
          for(j=1;j<=nlstate;j++)
            vareij[i][j][(int)age] =0.;
                   
        for(h=0;h<=nhstepm;h++){
          for(k=0;k<=nhstepm;k++){
            matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
            matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
            for(i=1;i<=nlstate;i++)
              for(j=1;j<=nlstate;j++)
                vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
          }
        }
                   
        /* pptj */
        matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
        matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
        for(j=nlstate+1;j<=nlstate+ndeath;j++)
          for(i=nlstate+1;i<=nlstate+ndeath;i++)
            varppt[j][i]=doldmp[j][i];
        /* end ppptj */
        /*  x centered again */
                   
        prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyearp,ij);
                   
        if (popbased==1) {
          if(mobilav ==0){
            for(i=1; i<=nlstate;i++)
              prlim[i][i]=probs[(int)age][i][ij];
          }else{ /* mobilav */ 
            for(i=1; i<=nlstate;i++)
              prlim[i][i]=mobaverage[(int)age][i][ij];
          }
        }
                   
        /* This for computing probability of death (h=1 means
           computed over hstepm (estepm) matrices product = hstepm*stepm months) 
           as a weighted average of prlim.
        */
        hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
        for(j=nlstate+1;j<=nlstate+ndeath;j++){
          for(i=1,gmp[j]=0.;i<= nlstate; i++) 
            gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
        }    
        /* end probability of death */
                   
        fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
        for(j=nlstate+1; j<=(nlstate+ndeath);j++){
          fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
          for(i=1; i<=nlstate;i++){
            fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
          }
        } 
        fprintf(ficresprobmorprev,"\n");
                   
        fprintf(ficresvij,"%.0f ",age );
        for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++){
            fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
          }
        fprintf(ficresvij,"\n");
        free_matrix(gp,0,nhstepm,1,nlstate);
        free_matrix(gm,0,nhstepm,1,nlstate);
        free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
        free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      } /* End age */
      free_vector(gpp,nlstate+1,nlstate+ndeath);
      free_vector(gmp,nlstate+1,nlstate+ndeath);
      free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
      free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      /* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */
      fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480");
      /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
      fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
      fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
      /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
      /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
      /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
      fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
      fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
      fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
      fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.svg\"> <br>\n", estepm,subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
      /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.svg\"> <br>\n", stepm,YEARM,digitp,digit);
       */
      /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */
      fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
   
      free_vector(xp,1,npar);
      free_matrix(doldm,1,nlstate,1,nlstate);
      free_matrix(dnewm,1,nlstate,1,npar);
      free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
      free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      /* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
      fclose(ficresprobmorprev);
      fflush(ficgp);
      fflush(fichtm); 
    }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
    void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, char strstart[])
   {
     /* Variance of prevalence limit  for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mgm, **mgp;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       mgp=matrix(1,npar,1,nlstate);
       mgm=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         if((int)age==79 ||(int)age== 80 ||(int)age== 81 )
           prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
         else
           prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
         for(i=1;i<=nlstate;i++){
           gp[i] = prlim[i][i];
           mgp[theta][i] = prlim[i][i];
         }
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         if((int)age==79 ||(int)age== 80 ||(int)age== 81 )
           prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
         else
           prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
         for(i=1;i<=nlstate;i++){
           gm[i] = prlim[i][i];
           mgm[theta][i] = prlim[i][i];
         }
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
         /* gradg[theta][2]= -gradg[theta][1]; */ /* For testing if nlstate=2 */
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
       /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
       /*   printf("\nmgm mgp %d ",(int)age); */
       /*   for(j=1; j<=nlstate;j++){ */
       /*  printf(" %d ",j); */
       /*  for(theta=1; theta <=npar; theta++) */
       /*    printf(" %d %lf %lf",theta,mgm[theta][j],mgp[theta][j]); */
       /*  printf("\n "); */
       /*   } */
       /* } */
       /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
       /*   printf("\n gradg %d ",(int)age); */
       /*   for(j=1; j<=nlstate;j++){ */
       /*  printf("%d ",j); */
       /*  for(theta=1; theta <=npar; theta++) */
       /*    printf("%d %lf ",theta,gradg[theta][j]); */
       /*  printf("\n "); */
       /*   } */
       /* } */
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       if((int)age==79 ||(int)age== 80  ||(int)age== 81){
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       }else{
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       }
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(mgm,1,npar,1,nlstate);
       free_matrix(mgp,1,npar,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  k1, l1, tj;
     int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"PROB_"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"PROBCOV_"); 
     strcat(fileresprobcov,fileresu);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"PROBCOR_"); 
     strcat(fileresprobcor,fileresu);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back.</li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           if(nagesqr==1)
             cov[3]= age*age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)];
             /*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n");
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter svg size 640, 480");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s_%d%1d%1d-%1d%1d.svg\">\
   %s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s_%d%1d%1d-%1d%1d.svg\"> ",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s_%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out;\nset out \"%s_%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int prevfcast, int backcast, int estepm , \
                     double jprev1, double mprev1,double anprev1, double dateprev1, \
                     double jprev2, double mprev2,double anprev2, double dateprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n");
      fprintf(fichtm,"<li>- Observed frequency between two states (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file)<br/>\n",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTMFR_",".htm"),subdirfext3(optionfilefiname,"PHTMFR_",".htm"));
      fprintf(fichtm,"<li> - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file) ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTM_",".htm"),subdirfext3(optionfilefiname,"PHTM_",".htm"));
      fprintf(fichtm,",  <a href=\"%s\">%s</a> (text file) <br>\n",subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileresu,"PIJ_"),subdirf2(fileresu,"PIJ_"));
      fprintf(fichtm,"\
    - Estimated back transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileresu,"PIJB_"),subdirf2(fileresu,"PIJB_"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_"));
      fprintf(fichtm,"\
    - Period (stable) back prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileresu,"PLB_"),subdirf2(fileresu,"PLB_"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, e<sub>i.</sub> (b) health expectancies by health status at initial age, e<sub>ij</sub> . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_"));
      if(prevfcast==1){
        fprintf(fichtm,"\
    - Prevalence projections by age and states:                            \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_"));
      }
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++){ 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
            printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout);
          }
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* aij, bij */
        fprintf(fichtm,"<br>- Logit model (yours is: 1+age+%s), for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: <a href=\"%s_%d-1.svg\">%s_%d-1.svg</a><br> \
   <img src=\"%s_%d-1.svg\">",model,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);
        /* Pij */
        fprintf(fichtm,"<br>\n- P<sub>ij</sub> or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2.svg\">%s_%d-2.svg</a><br> \
   <img src=\"%s_%d-2.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>\n- I<sub>ij</sub> or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too,\
    incidence (rates) are the limit when h tends to zero of the ratio of the probability  <sub>h</sub>P<sub>ij</sub> \
   divided by h: <sub>h</sub>P<sub>ij</sub>/h : <a href=\"%s_%d-3.svg\">%s_%d-3.svg</a><br> \
   <img src=\"%s_%d-3.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); 
        /* Survival functions (period) in state j */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Survival functions in state %d. Or probability to survive in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1);
        }
        /* State specific survival functions (period) */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Survival functions from state %d in each live state and total.\
    Or probability to survive in various states (1 to %d) being in state %d at different ages.\
    <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> <img src=\"%s_%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1);
        }
        /* Period (stable) prevalence in each health state */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1);
        }
       if(backcast==1){
        /* Period (stable) back prevalence in each health state */
        for(cpt=1; cpt<=nlstate;cpt++){
          fprintf(fichtm,"<br>\n- Convergence to period (stable) back prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"PB_"),cpt,jj1,subdirf2(optionfilefiname,"PB_"),cpt,jj1,subdirf2(optionfilefiname,"PB_"),cpt,jj1);
        }
       }
       if(prevfcast==1){
         /* Projection of prevalence up to period (stable) prevalence in each health state */
         for(cpt=1; cpt<=nlstate;cpt++){
           fprintf(fichtm,"<br>\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f) up to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \
   <img src=\"%s_%d-%d.svg\">", dateprev1, dateprev2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1);
         }
       }
   
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d%d.svg\">%s_%d%d.svg</a> <br> \
   <img src=\"%s_%d%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1);
        }
      /* } /\* end i1 *\/ */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \
    - 95%% confidence intervals and Wald tests of the estimated parameters are in the log file if optimization has been done (mle != 0).<br> \
   But because parameters are usually highly correlated (a higher incidence of disability \
   and a higher incidence of recovery can give very close observed transition) it might \
   be very useful to look not only at linear confidence intervals estimated from the \
   variances but at the covariance matrix. And instead of looking at the estimated coefficients \
   (parameters) of the logistic regression, it might be more meaningful to visualize the \
   covariance matrix of the one-step probabilities. \
   See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres);
   
    fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PROB_"),subdirf2(fileresu,"PROB_"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PROBCOV_"),subdirf2(fileresu,"PROBCOV_"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileresu,"PROBCOR_"),subdirf2(fileresu,"PROBCOR_"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileresu,"CVE_"),subdirf2(fileresu,"CVE_"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"\n<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d-%d.svg\"> %s_%d-%d.svg</a>\n <br>\
   <img src=\"%s_%d-%d.svg\">",cpt,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences:  <a href=\"%s_%d.svg\">%s_%d.svg</a>\n<br>\
   <img src=\"%s_%d.svg\">",subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1);
      /* } /\* end i1 *\/ */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
    void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , int prevfcast, int backcast, char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int lv=0, vlv=0, kl=0;
     int ng=0;
     int vpopbased;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     /* Contribution to likelihood */
     /* Plot the probability implied in the likelihood */
       fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n");
       fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Likelihood (-2Log(L))\";");
       /* fprintf(ficgp,"\nset ter svg size 640, 480"); */ /* Too big for svg */
       fprintf(ficgp,"\nset ter pngcairo size 640, 480");
   /* nice for mle=4 plot by number of matrix products.
      replot  "rrtest1/toto.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with point lc 1 */
   /* replot exp(p1+p2*x)/(1+exp(p1+p2*x)+exp(p3+p4*x)+exp(p5+p6*x)) t "p12(x)"  */
       /* fprintf(ficgp,"\nset out \"%s.svg\";",subdirf2(optionfilefiname,"ILK_")); */
       fprintf(ficgp,"\nset out \"%s-dest.png\";",subdirf2(optionfilefiname,"ILK_"));
       fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$13):6 t \"All sample, transitions colored by destination\" with dots lc variable; set out;\n",subdirf(fileresilk));
       fprintf(ficgp,"\nset out \"%s-ori.png\";",subdirf2(optionfilefiname,"ILK_"));
       fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$13):5 t \"All sample, transitions colored by origin\" with dots lc variable; set out;\n\n",subdirf(fileresilk));
       for (i=1; i<= nlstate ; i ++) {
         fprintf(ficgp,"\nset out \"%s-p%dj.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i);
         fprintf(ficgp,"unset log;\n# plot weighted, mean weight should have point size of 0.5\n plot  \"%s\"",subdirf(fileresilk));
         fprintf(ficgp,"  u  2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable \\\n",i,1,i,1);
         for (j=2; j<= nlstate+ndeath ; j ++) {
           fprintf(ficgp,",\\\n \"\" u  2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable ",i,j,i,j);
         }
         fprintf(ficgp,";\nset out; unset ylabel;\n"); 
       }
       /* unset log; plot  "rrtest1_sorted_4/ILK_rrtest1_sorted_4.txt" u  2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with points lc variable */              
       /* fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk)); */
       /* fprintf(ficgp,"\nreplot  \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk)); */
       fprintf(ficgp,"\nset out;unset log\n");
       /* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) { /* For each live state */
       for (k1=1; k1<= m ; k1 ++) { /* For each combination of covariate */
         /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
         fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files ");
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[lv]][lv];
           fprintf(ficgp," V%d=%d ",k,vlv);
         }
         fprintf(ficgp,"\n#\n");
   
        fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1);
        fprintf(ficgp,"\n#set out \"V_%s_%d-%d.svg\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter svg size 640, 480\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence\" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1));
                    if(backcast==1){
                            fprintf(ficgp,",\"%s\" every :::%d::%d u 1:($%d) t\"Backward stable prevalence\" w l lt 3",subdirf2(fileresu,"PLB_"),k1-1,k1-1,1+cpt);
                    }
        fprintf(ficgp,"\nset out \n");
       } /* k1 */
     } /* cpt */
     /*2 eme*/
     for (k1=1; k1<= m ; k1 ++) { 
         fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files ");
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[lv]][lv];
           fprintf(ficgp," V%d=%d ",k,vlv);
         }
         fprintf(ficgp,"\n#\n");
   
       fprintf(ficgp,"\nset out \"%s_%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1);
       for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
         if(vpopbased==0)
           fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage);
         else
           fprintf(ficgp,"\nreplot ");
         for (i=1; i<= nlstate+1 ; i ++) {
           k=2*i;
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1, vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }   
           if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i);
           else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1);
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }   
           fprintf(ficgp,"\" t\"\" w l lt 0,");
           fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
           for (j=1; j<= nlstate+1 ; j ++) {
             if (j==i) fprintf(ficgp," %%lf (%%lf)");
             else fprintf(ficgp," %%*lf (%%*lf)");
           }   
           if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
           else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n");
         } /* state */
       } /* vpopbased */
       fprintf(ficgp,"\nset out;set out \"%s_%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1); /* Buggy gnuplot */
     } /* k1 */
   
   
     /*3eme*/
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         fprintf(ficgp,"\n# 3d: Life expectancy with EXP_ files:  cov=%d state=%d",k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[lv]][lv];
           fprintf(ficgp," V%d=%d ",k,vlv);
         }
         fprintf(ficgp,"\n#\n");
   
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s_%d%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1);
         fprintf(ficgp,"set ter svg size 640, 480\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* Survival functions (period) from state i in state j by initial state i */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'LIJ_' files, cov=%d state=%d",k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[lv]][lv];
           fprintf(ficgp," V%d=%d ",k,vlv);
         }
         fprintf(ficgp,"\n#\n");
   
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         k=3;
         for (i=1; i<= nlstate ; i ++){
           if(i==1){
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           }else{
             fprintf(ficgp,", '' ");
           }
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=2; j<= nlstate+ndeath ; j ++)
             fprintf(ficgp,"+$%d",k+l+j-1);
           fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
   
     /* Survival functions (period) from state i in state j by final state j */
     for (k1=1; k1<= m ; k1 ++) { /* For each covariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state  */
         fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[lv]][lv];
           fprintf(ficgp," V%d=%d ",k,vlv);
         }
         fprintf(ficgp,"\n#\n");
   
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         k=3;
         for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
           if(j==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(cpt-1) +j;
           fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l);
           /* for (i=2; i<= nlstate+ndeath ; i ++) */
           /*   fprintf(ficgp,"+$%d",k+l+i-1); */
           fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j);
         } /* nlstate */
         fprintf(ficgp,", '' ");
         fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1);
         for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
           l=(nlstate+ndeath)*(cpt-1) +j;
           if(j < nlstate)
             fprintf(ficgp,"$%d +",k+l);
           else
             fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt);
         }
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
   
     /* CV preval stable (period) for each covariate */
     for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt);
         for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
           lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
           /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
           /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
           /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
           vlv= nbcode[Tvaraff[lv]][lv];
           fprintf(ficgp," V%d=%d ",k,vlv);
         }
         fprintf(ficgp,"\n#\n");
   
         fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         k=3; /* Offset */
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=2; j<= nlstate ; j ++)
             fprintf(ficgp,"+$%d",k+l+j-1);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\nset out\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     if(backcast == 1){
       /* CV back preval stable (period) for each covariate */
       for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */
         for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
           fprintf(ficgp,"\n#\n#\n#CV Back preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt);
           for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[lv]][lv];
             fprintf(ficgp," V%d=%d ",k,vlv);
           }
           fprintf(ficgp,"\n#\n");
           
           fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"PB_"),cpt,k1);
           fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter svg size 640, 480\n                                             \
   unset log y\n                                                           \
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
           k=3; /* Offset */
           for (i=1; i<= nlstate ; i ++){
             if(i==1)
               fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJB_"));
             else
               fprintf(ficgp,", '' ");
             /* l=(nlstate+ndeath)*(i-1)+1; */
             l=(nlstate+ndeath)*(cpt-1)+1;
             /* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); /\* a vérifier *\/ */
             /* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l+(cpt-1)+i-1); /\* a vérifier *\/ */
             fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d",k1,k+l+(cpt-1)+i-1); /* a vérifier */
             /* for (j=2; j<= nlstate ; j ++) */
             /*    fprintf(ficgp,"+$%d",k+l+j-1); */
             /*    /\* fprintf(ficgp,"+$%d",k+l+j-1); *\/ */
             fprintf(ficgp,") t \"bprev(%d,%d)\" w l",i,cpt);
           } /* nlstate */
           fprintf(ficgp,"\nset out\n");
         } /* end cpt state*/ 
       } /* end covariate */  
     } /* End if backcast */
     
     if(prevfcast==1){
       /* Projection from cross-sectional to stable (period) for each covariate */
       
       for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */
         for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
           fprintf(ficgp,"\n#\n#\n#Projection of prevalence to stable (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt);
           for (k=1; k<=cptcoveff; k++){    /* For each correspondig covariate value  */
             lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
             /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
             /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
             /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
             vlv= nbcode[Tvaraff[lv]][lv];
             fprintf(ficgp," V%d=%d ",k,vlv);
           }
           fprintf(ficgp,"\n#\n");
           
           fprintf(ficgp,"# hpijx=probability over h years, hp.jx is weighted by observed prev\n ");
           fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJ_"),cpt,k1);
           fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\
   set ter svg size 640, 480\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
           for (i=1; i<= nlstate+1 ; i ++){  /* nlstate +1 p11 p21 p.1 */
             /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
             /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
             /*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
             /*#   1       2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
             if(i==1){
               fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"F_"));
             }else{
               fprintf(ficgp,",\\\n '' ");
             }
             if(cptcoveff ==0){ /* No covariate */
               fprintf(ficgp," u 2:("); /* Age is in 2 */
               /*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
               /*#   1       2   3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
               if(i==nlstate+1)
                 fprintf(ficgp," $%d/(1.-$%d)) t 'p.%d' with line ", \
                           2+(cpt-1)*(nlstate+1)+1+(i-1),  2+1+(i-1)+(nlstate+1)*nlstate,cpt );
               else
                 fprintf(ficgp," $%d/(1.-$%d)) t 'p%d%d' with line ", \
                         2+(cpt-1)*(nlstate+1)+1+(i-1),  2+1+(i-1)+(nlstate+1)*nlstate,i,cpt );
             }else{
               fprintf(ficgp,"u 6:(("); /* Age is in 6 */
               /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
               /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
               kl=0;
               for (k=1; k<=cptcoveff; k++){    /* For each covariate  */
                 lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
                 /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                 /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                 /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                 vlv= nbcode[Tvaraff[lv]][lv];
                 kl++;
                 /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
                 /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
                 /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
                 /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
                 if(k==cptcoveff)
                   if(i==nlstate+1)
                     fprintf(ficgp,"$%d==%d && $%d==%d)? $%d/(1.-$%d) : 1/0) t 'p.%d' with line ",kl, k,kl+1,nbcode[Tvaraff[lv]][lv], \
                             6+(cpt-1)*(nlstate+1)+1+(i-1),  6+1+(i-1)+(nlstate+1)*nlstate,cpt );
                   else
                     fprintf(ficgp,"$%d==%d && $%d==%d)? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ",kl, k,kl+1,nbcode[Tvaraff[lv]][lv], \
                             6+(cpt-1)*(nlstate+1)+1+(i-1),  6+1+(i-1)+(nlstate+1)*nlstate,i,cpt );
                 else{
                   fprintf(ficgp,"$%d==%d && $%d==%d && ",kl, k,kl+1,nbcode[Tvaraff[lv]][lv]);
                   kl++;
                 }
               } /* end covariate */
             } /* end if covariate */
           } /* nlstate */
           fprintf(ficgp,"\nset out\n");
         } /* end cpt state*/
       } /* end covariate */
     } /* End if prevfcast */
   
   
     /* proba elementaires */
     fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n");
     for(i=1,jk=1; i <=nlstate; i++){
       fprintf(ficgp,"# initial state %d\n",i);
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           fprintf(ficgp,"#   current state %d\n",k);
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f; ",jk,p[jk]);
             jk++; 
           }
           fprintf(ficgp,"\n");
         }
       }
      }
     fprintf(ficgp,"##############\n#\n");
   
     /*goto avoid;*/
     fprintf(ficgp,"\n##############\n#Graphics of probabilities or incidences\n#############\n");
     fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
     fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
     fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n");
     fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
     fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n");
     fprintf(ficgp,"#     (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
     fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
     fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
     fprintf(ficgp,"#\n");
      for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/
        fprintf(ficgp,"# ng=%d\n",ng);
        fprintf(ficgp,"#   jk=1 to 2^%d=%d\n",cptcoveff,m);
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"#    jk=%d\n",jk);
          fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),jk,ng);
          fprintf(ficgp,"\nset ter svg size 640, 480 ");
          if (ng==1){
            fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */
            fprintf(ficgp,"\nunset log y");
          }else if (ng==2){
            fprintf(ficgp,"\nset ylabel \"Probability\"\n");
            fprintf(ficgp,"\nset log y");
          }else if (ng==3){
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
            fprintf(ficgp,"\nset log y");
          }else
            fprintf(ficgp,"\nunset title ");
          fprintf(ficgp,"\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                switch( ng) {
                case 1:
                  if(nagesqr==0)
                    fprintf(ficgp," p%d+p%d*x",i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                  break;
                case 2: /* ng=2 */
                  if(nagesqr==0)
                    fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                  else /* nagesqr =1 */
                      fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                  break;
                case 3:
                  if(nagesqr==0)
                    fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
                  break;
                }
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel-nagesqr; j++) {
                  /* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */
                  if(ij <=cptcovage) { /* Bug valgrind */
                    if((j-2)==Tage[ij]) { /* Bug valgrind */
                      fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                      /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                      ij++;
                    }
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                }
              }else{
                i=i-ncovmodel;
                if(ng !=1 ) /* For logit formula of log p11 is more difficult to get */
                  fprintf(ficgp," (1.");
              }
              
              if(ng != 1){
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){ 
                  if(nagesqr==0)
                    fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  else /* nagesqr =1 */
                    fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr);
                  
                  ij=1;
                  for(j=3; j <=ncovmodel-nagesqr; j++){
                    if(ij <=cptcovage) { /* Bug valgrind */
                      if((j-2)==Tage[ij]) { /* Bug valgrind */
                        fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                        /* fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                        ij++;
                      }
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,")");
                if(ng ==2)
                  fprintf(ficgp," t \"p%d%d\" ", k2,k);
                else /* ng= 3 */
                  fprintf(ficgp," t \"i%d%d\" ", k2,k);
              }else{ /* end ng <> 1 */
                if( k !=k2) /* logit p11 is hard to draw */
                  fprintf(ficgp," t \"logit(p%d%d)\" ", k2,k);
              }
              if ((k+k2)!= (nlstate*2+ndeath) && ng != 1)
                fprintf(ficgp,",");
              if (ng == 1 && k!=k2 && (k+k2)!= (nlstate*2+ndeath))
                fprintf(ficgp,",");
              i=i+ncovmodel;
            } /* end k */
          } /* end k2 */
          fprintf(ficgp,"\n set out\n");
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
                   /* int movingaverage(double ***probs, double bage, double fage, double ***mobaverage, int mobilav, double bageout, double fageout){ */
   int movingaverage(double ***probs, double bage, double fage, double ***mobaverage, int mobilav){
      
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
     int iage=0;
     double *sumnewp, *sumnewm;
     double *agemingood, *agemaxgood; /* Currently identical for all covariates */
     
     sumnewp = vector(1,modcovmax);
     sumnewm = vector(1,modcovmax);
     agemingood = vector(1,modcovmax);     
     agemaxgood = vector(1,modcovmax);
     
     
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities, should be equal to ncovcombmax  */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
     
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
               for (cpt=1;cpt<=(mob-1)/2;cpt++){
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
               }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else
       return -1;
     for (cptcod=1;cptcod<=modcovmax;cptcod++){
       /* for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ */
       agemingood[cptcod]=fage+(mob-1)/2;
       for (age=fage-(mob-1)/2; age>=bage; age--){/* From oldest to youngest, finding the youngest wrong */
         sumnewm[cptcod]=0.;
         for (i=1; i<=nlstate;i++){
           sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
         }
         if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
           agemingood[cptcod]=age;
         }else{ /* bad */
           for (i=1; i<=nlstate;i++){
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod];
           } /* i */
         } /* end bad */
       }/* age */
       /* From youngest, finding the oldest wrong */
       agemaxgood[cptcod]=bage+(mob-1)/2;
       for (age=bage+(mob-1)/2; age<=fage; age++){
         sumnewm[cptcod]=0.;
         for (i=1; i<=nlstate;i++){
           sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
         }
         if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
           agemaxgood[cptcod]=age;
         }else{ /* bad */
           for (i=1; i<=nlstate;i++){
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod];
           } /* i */
         } /* end bad */
       }/* age */
       for (age=bage; age<=fage; age++){
         printf("%d %d ", cptcod, (int)age);
         sumnewp[cptcod]=0.;
         sumnewm[cptcod]=0.;
         for (i=1; i<=nlstate;i++){
           sumnewp[cptcod]+=probs[(int)age][i][cptcod];
           sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
           printf("%.4f %.4f ",probs[(int)age][i][cptcod], mobaverage[(int)age][i][cptcod]);
         }
         printf("%.4f %.4f \n",sumnewp[cptcod], sumnewm[cptcod]);
       }
       printf("\n");
       /* brutal averaging */
       for (i=1; i<=nlstate;i++){
         for (age=1; age<=bage; age++){
           mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod];
           printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]);
         } 
         for (age=fage; age<=AGESUP; age++){
           mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod];
           printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]);
         }
       } /* end i status */
       for (i=nlstate+1; i<=nlstate+ndeath;i++){
         for (age=1; age<=AGESUP; age++){
           /*printf("i=%d, age=%d, cptcod=%d\n",i, (int)age, cptcod);*/
           mobaverage[(int)age][i][cptcod]=0.;
         }
       }
     }/* end cptcod */
     free_vector(sumnewm,1, modcovmax);
     free_vector(sumnewp,1, modcovmax);
     free_vector(agemaxgood,1, modcovmax);
     free_vector(agemingood,1, modcovmax);
     return 0;
   }/* End movingaverage */
    
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     /* double ***mobaverage; */
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
     */
     /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ */
     /*          firstpass, lastpass,  stepm,  weightopt, model); */
    
     strcpy(fileresf,"F_"); 
     strcat(fileresf,fileresu);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s', please wait... \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s', please wait... \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficresf," yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     fclose(ficresf);
     printf("End of Computing forecasting \n");
     fprintf(ficlog,"End of Computing forecasting\n");
   
   }
   
   /* /\************** Back Forecasting ******************\/ */
   /* void prevbackforecast(char fileres[], double anback1, double mback1, double jback1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anback2, double p[], int cptcoveff){ */
   /*   /\* back1, year, month, day of starting backection  */
   /*      agemin, agemax range of age */
   /*      dateprev1 dateprev2 range of dates during which prevalence is computed */
   /*      anback2 year of en of backection (same day and month as back1). */
   /*   *\/ */
   /*   int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1; */
   /*   double agec; /\* generic age *\/ */
   /*   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; */
   /*   double *popeffectif,*popcount; */
   /*   double ***p3mat; */
   /*   /\* double ***mobaverage; *\/ */
   /*   char fileresfb[FILENAMELENGTH]; */
           
   /*   agelim=AGESUP; */
   /*   /\* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people */
   /*      in each health status at the date of interview (if between dateprev1 and dateprev2). */
   /*      We still use firstpass and lastpass as another selection. */
   /*   *\/ */
   /*   /\* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ *\/ */
   /*   /\*              firstpass, lastpass,  stepm,  weightopt, model); *\/ */
   /*   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */
           
   /*   strcpy(fileresfb,"FB_");  */
   /*   strcat(fileresfb,fileresu); */
   /*   if((ficresfb=fopen(fileresfb,"w"))==NULL) { */
   /*     printf("Problem with back forecast resultfile: %s\n", fileresfb); */
   /*     fprintf(ficlog,"Problem with back forecast resultfile: %s\n", fileresfb); */
   /*   } */
   /*   printf("Computing back forecasting: result on file '%s', please wait... \n", fileresfb); */
   /*   fprintf(ficlog,"Computing back forecasting: result on file '%s', please wait... \n", fileresfb); */
           
   /*   if (cptcoveff==0) ncodemax[cptcoveff]=1; */
           
   /*   /\* if (mobilav!=0) { *\/ */
   /*   /\*   mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
   /*   /\*   if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ *\/ */
   /*   /\*     fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); *\/ */
   /*   /\*     printf(" Error in movingaverage mobilav=%d\n",mobilav); *\/ */
   /*   /\*   } *\/ */
   /*   /\* } *\/ */
           
   /*   stepsize=(int) (stepm+YEARM-1)/YEARM; */
   /*   if (stepm<=12) stepsize=1; */
   /*   if(estepm < stepm){ */
   /*     printf ("Problem %d lower than %d\n",estepm, stepm); */
   /*   } */
   /*   else  hstepm=estepm;    */
           
   /*   hstepm=hstepm/stepm;  */
   /*   yp1=modf(dateintmean,&yp);/\* extracts integral of datemean in yp  and */
   /*                                fractional in yp1 *\/ */
   /*   anprojmean=yp; */
   /*   yp2=modf((yp1*12),&yp); */
   /*   mprojmean=yp; */
   /*   yp1=modf((yp2*30.5),&yp); */
   /*   jprojmean=yp; */
   /*   if(jprojmean==0) jprojmean=1; */
   /*   if(mprojmean==0) jprojmean=1; */
           
   /*   i1=cptcoveff; */
   /*   if (cptcovn < 1){i1=1;} */
     
   /*   fprintf(ficresfb,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);  */
     
   /*   fprintf(ficresfb,"#****** Routine prevbackforecast **\n"); */
           
   /*      /\*           if (h==(int)(YEARM*yearp)){ *\/ */
   /*   for(cptcov=1, k=0;cptcov<=i1;cptcov++){ */
   /*     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ */
   /*       k=k+1; */
   /*       fprintf(ficresfb,"\n#****** hbijx=probability over h years, hp.jx is weighted by observed prev \n#"); */
   /*       for(j=1;j<=cptcoveff;j++) { */
   /*                              fprintf(ficresfb," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */
   /*       } */
   /*       fprintf(ficresfb," yearbproj age"); */
   /*       for(j=1; j<=nlstate+ndeath;j++){  */
   /*                              for(i=1; i<=nlstate;i++)               */
   /*           fprintf(ficresfb," p%d%d",i,j); */
   /*                              fprintf(ficresfb," p.%d",j); */
   /*       } */
   /*       for (yearp=0; yearp>=(anback2-anback1);yearp -=stepsize) {  */
   /*                              /\* for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {  *\/ */
   /*                              fprintf(ficresfb,"\n"); */
   /*                              fprintf(ficresfb,"\n# Back Forecasting at date %.lf/%.lf/%.lf ",jback1,mback1,anback1+yearp);    */
   /*                              for (agec=fage; agec>=(ageminpar-1); agec--){  */
   /*                                      nhstepm=(int) rint((agelim-agec)*YEARM/stepm);  */
   /*                                      nhstepm = nhstepm/hstepm;  */
   /*                                      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*                                      oldm=oldms;savm=savms; */
   /*                                      hbxij(p3mat,nhstepm,agec,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm,oldm,savm, dnewm, doldm, dsavm, k);       */
   /*                                      for (h=0; h<=nhstepm; h++){ */
   /*                                              if (h*hstepm/YEARM*stepm ==yearp) { */
   /*               fprintf(ficresfb,"\n"); */
   /*               for(j=1;j<=cptcoveff;j++)  */
   /*                 fprintf(ficresfb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */
   /*                                                      fprintf(ficresfb,"%.f %.f ",anback1+yearp,agec+h*hstepm/YEARM*stepm); */
   /*                                              }  */
   /*                                              for(j=1; j<=nlstate+ndeath;j++) { */
   /*                                                      ppij=0.; */
   /*                                                      for(i=1; i<=nlstate;i++) { */
   /*                                                              if (mobilav==1)  */
   /*                                                                      ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod]; */
   /*                                                              else { */
   /*                                                                      ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod]; */
   /*                                                              } */
   /*                                                              if (h*hstepm/YEARM*stepm== yearp) { */
   /*                                                                      fprintf(ficresfb," %.3f", p3mat[i][j][h]); */
   /*                                                              } */
   /*                                                      } /\* end i *\/ */
   /*                                                      if (h*hstepm/YEARM*stepm==yearp) { */
   /*                                                              fprintf(ficresfb," %.3f", ppij); */
   /*                                                      } */
   /*                                              }/\* end j *\/ */
   /*                                      } /\* end h *\/ */
   /*                                      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
   /*                              } /\* end agec *\/ */
   /*       } /\* end yearp *\/ */
   /*     } /\* end cptcod *\/ */
   /*   } /\* end  cptcov *\/ */
           
   /*   /\* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
           
   /*   fclose(ficresfb); */
   /*   printf("End of Computing Back forecasting \n"); */
   /*   fprintf(ficlog,"End of Computing Back forecasting\n"); */
           
   /* } */
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     /* double ***mobaverage; */
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"POP_"); 
     strcat(filerespop,fileresu);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     /* if (mobilav!=0) { */
     /*   mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
     /*   if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ */
     /*     fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); */
     /*     printf(" Error in movingaverage mobilav=%d\n",mobilav); */
     /*   } */
     /* } */
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
           
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
       
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
     
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                   /*fprintf(ficrespop," %.3f", kk1);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                 for(j=1; j<=nlstate;j++){
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                 }
                 tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
               
               if (h==(int)(calagedatem+12*cpt))
                 for(j=1; j<=nlstate;j++) 
                   fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
         
         /******/
         
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
       } 
     }
     
     /* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
     
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
    
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileresu[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.svg\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.svg\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter svg size 640, 480\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout);
       fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
      * - nagesqr = 1 if age*age in the model, otherwise 0.
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
      * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
     char *strpt;
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       strcpy(modelsav,model); 
       if ((strpt=strstr(model,"age*age")) !=0){
         printf(" strpt=%s, model=%s\n",strpt, model);
         if(strpt != model){
         printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model);
         fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
    'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
    corresponding column of parameters.\n",model); fflush(ficlog);
         return 1;
       }
   
         nagesqr=1;
         if (strstr(model,"+age*age") !=0)
           substrchaine(modelsav, model, "+age*age");
         else if (strstr(model,"age*age+") !=0)
           substrchaine(modelsav, model, "age*age+");
         else 
           substrchaine(modelsav, model, "age*age");
       }else
         nagesqr=0;
       if (strlen(modelsav) >1){
         j=nbocc(modelsav,'+'); /**< j=Number of '+' */
         j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
         cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =2  */
         cptcovt= j+1; /* Number of total covariates in the model, not including
                      * cst, age and age*age 
                      * V1+V1*age+ V3 + V3*V4+age*age=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated 
                     * separately: ncovn=4- 2=2 (V1+V3). */
         cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
         cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
   
       
         /*   Design
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
          *  <          ncovcol=8                >
          * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
          *   k=  1    2      3       4     5       6      7        8
          *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
          *  covar[k,i], value of kth covariate if not including age for individual i:
          *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
          *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
          *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
          *  Tage[++cptcovage]=k
          *       if products, new covar are created after ncovcol with k1
          *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
          *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
          *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
          *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
          *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
          *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
          *  <          ncovcol=8                >
          *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
          *          k=  1    2      3       4     5       6      7        8    9   10   11  12
          *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
          * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          * p Tprod[1]@2={                         6, 5}
          *p Tvard[1][1]@4= {7, 8, 5, 6}
          * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
          *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          *How to reorganize?
          * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
          * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
          *       {2,   1,     4,      8,    5,      6,     3,       7}
          * Struct []
          */
   
         /* This loop fills the array Tvar from the string 'model'.*/
         /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
         /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
         /*        k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
         /*        k=3 V4 Tvar[k=3]= 4 (from V4) */
         /*        k=2 V1 Tvar[k=2]= 1 (from V1) */
         /*        k=1 Tvar[1]=2 (from V2) */
         /*        k=5 Tvar[5] */
         /* for (k=1; k<=cptcovn;k++) { */
         /*        cov[2+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
         /*        } */
         /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */
         /*
          * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
         for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
         cptcovage=0;
         for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
           cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                            modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
           if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
           /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
           /*scanf("%d",i);*/
           if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
             cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
             if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
               /* covar is not filled and then is empty */
               cptcovprod--;
               cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
               Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
               cptcovage++; /* Sums the number of covariates which include age as a product */
               Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
               /*printf("stre=%s ", stre);*/
             } else if (strcmp(strd,"age")==0) { /* or age*Vn */
               cptcovprod--;
               cutl(stre,strb,strc,'V');
               Tvar[k]=atoi(stre);
               cptcovage++;
               Tage[cptcovage]=k;
             } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
               /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
               cptcovn++;
               cptcovprodnoage++;k1++;
               cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
               Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                      because this model-covariate is a construction we invent a new column
                                      ncovcol + k1
                                      If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                      Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
               cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
               Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
               Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
               Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
               k2=k2+2;
               Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
               Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
               for (i=1; i<=lastobs;i++){
                 /* Computes the new covariate which is a product of
                    covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
                 covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
               }
             } /* End age is not in the model */
           } /* End if model includes a product */
           else { /* no more sum */
             /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
             /*  scanf("%d",i);*/
             cutl(strd,strc,strb,'V');
             ks++; /**< Number of simple covariates */
             cptcovn++;
             Tvar[k]=atoi(strd);
           }
           strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
           /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
             scanf("%d",i);*/
         } /* end of loop + on total covariates */
       } /* end if strlen(modelsave == 0) age*age might exist */
     } /* end if strlen(model == 0) */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
     int firstone=0;
     
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           if (s[m][i] != -2) /* Keeping initial status of unknown vital status */
             s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           if(firstone == 0){
             firstone=1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results can be biased (%d) because status is a death state %d at wave %d. Wave dropped.\nOther similar cases in log file\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr,s[m][i],m);
           }
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results can be biased (%d) because status is a death state %d at wave %d. Wave dropped.\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr,s[m][i],m);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0  || s[m][i]==-1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){ /* What if s[m][i]=-1 */
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
                 /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           } /* end if */
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           } /* en if 9*/
           else { /* =9 */
             /* printf("Debug num[%d]=%ld s[%d][%d]=%d\n",i,num[i], m,i, s[m][i]); */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else if(s[m][i]==0) /*= 0 Unknown */
           agev[m][i]=1;
         else{
           printf("Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]); 
           fprintf(ficlog, "Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]); 
           agev[m][i]=0;
         }
       } /* End for lastpass */
     }
       
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   
   void syscompilerinfo(int logged)
    {
      /* #include "syscompilerinfo.h"*/
      /* command line Intel compiler 32bit windows, XP compatible:*/
      /* /GS /W3 /Gy
         /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
         "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
         "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
         /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
      */ 
      /* 64 bits */
      /*
        /GS /W3 /Gy
        /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
        /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
        /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
        "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
      /* Optimization are useless and O3 is slower than O2 */
      /*
        /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
        /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
        /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
        /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
      */
      /* Link is */ /* /OUT:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
         /PDB:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
         "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
         "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
         "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
         /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
         /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
         uiAccess='false'"
         /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
         /NOLOGO /TLBID:1
      */
   #if defined __INTEL_COMPILER
   #if defined(__GNUC__)
           struct utsname sysInfo;  /* For Intel on Linux and OS/X */
   #endif
   #elif defined(__GNUC__) 
   #ifndef  __APPLE__
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
      struct utsname sysInfo;
      int cross = CROSS;
      if (cross){
              printf("Cross-");
              if(logged) fprintf(ficlog, "Cross-");
      }
   #endif
   
   #include <stdint.h>
   
      printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");       /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");if(logged)fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");if(logged)fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");if(logged)fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); if(logged) fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");if(logged)fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");if(logged) fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");if(logged)fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for "); if (logged) fprintf(ficlog, " for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");if(logged) fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");if(logged) fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");if(logged) fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");if(logged) fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); if(logged) fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); if(logged) fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); if(logged) fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      if(logged) fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
      if (uname(&sysInfo) != -1) {
        printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
            if(logged) fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
      //#ifndef __INTEL_COMPILER 
   #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      if(logged) fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
   #endif
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
              if (logged) fprintf(ficlog, "\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("\nThe program is not running under WOW64 (i.e probably on a 64bit Windows).\n");
              if (logged) fprintf(ficlog, "\nThe programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
    }
   
    int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp){
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     int i, j, k, i1 ;
     /* double ftolpl = 1.e-10; */
     double age, agebase, agelim;
     double tot;
   
     strcpy(filerespl,"PL_");
     strcat(filerespl,fileresu);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
       fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
     }
     printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
     pstamp(ficrespl);
     fprintf(ficrespl,"# Period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl);
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
       /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
       agebase=ageminpar;
       agelim=agemaxpar;
   
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
           fprintf(ficrespl,"#******");
           printf("#******");
           fprintf(ficlog,"#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
   
           fprintf(ficrespl,"#Age ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
           }
           for(i=1; i<=nlstate;i++) fprintf(ficrespl,"  %d-%d   ",i,i);
           fprintf(ficrespl,"Total Years_to_converge\n");
           
           for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
             prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
             tot=0.;
             for(i=1; i<=nlstate;i++){
               tot +=  prlim[i][i];
               fprintf(ficrespl," %.5f", prlim[i][i]);
             }
             fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp);
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
           return 0;
   }
   
   int back_prevalence_limit(double *p, double **bprlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp, double dateprev1,double dateprev2, int firstpass, int lastpass, int mobilavproj){
           /*--------------- Back Prevalence limit  (period or stable prevalence) --------------*/
           
           /* Computes the back prevalence limit  for any combination      of covariate values 
      * at any age between ageminpar and agemaxpar
            */
     int i, j, k, i1 ;
     /* double ftolpl = 1.e-10; */
     double age, agebase, agelim;
     double tot;
     /* double ***mobaverage; */
     /* double      **dnewm, **doldm, **dsavm;  /\* for use *\/ */
   
     strcpy(fileresplb,"PLB_");
     strcat(fileresplb,fileresu);
     if((ficresplb=fopen(fileresplb,"w"))==NULL) {
       printf("Problem with period (stable) back prevalence resultfile: %s\n", fileresplb);return 1;
       fprintf(ficlog,"Problem with period (stable) back prevalence resultfile: %s\n", fileresplb);return 1;
     }
     printf("Computing period (stable) back prevalence: result on file '%s' \n", fileresplb);
     fprintf(ficlog,"Computing period (stable) back prevalence: result on file '%s' \n", fileresplb);
     pstamp(ficresplb);
     fprintf(ficresplb,"# Period (stable) back prevalence. Precision given by ftolpl=%g \n", ftolpl);
     fprintf(ficresplb,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficresplb,"%d-%d ",i,i);
     fprintf(ficresplb,"\n");
     
     
     /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
     
     agebase=ageminpar;
     agelim=agemaxpar;
     
     
     i1=pow(2,cptcoveff);
     if (cptcovn < 1){i1=1;}
     
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
       //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
       k=k+1;
       /* to clean */
       //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
       fprintf(ficresplb,"#******");
       printf("#******");
       fprintf(ficlog,"#******");
       for(j=1;j<=cptcoveff;j++) {
         fprintf(ficresplb," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
       }
       fprintf(ficresplb,"******\n");
       printf("******\n");
       fprintf(ficlog,"******\n");
       
       fprintf(ficresplb,"#Age ");
       for(j=1;j<=cptcoveff;j++) {
         fprintf(ficresplb,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
       }
       for(i=1; i<=nlstate;i++) fprintf(ficresplb,"  %d-%d   ",i,i);
       fprintf(ficresplb,"Total Years_to_converge\n");
       
       
       for (age=agebase; age<=agelim; age++){
         /* for (age=agebase; age<=agebase; age++){ */
         if(mobilavproj > 0){
           /* bprevalim(bprlim, mobaverage, nlstate, p, age, ageminpar, agemaxpar, oldm, savm, doldm, dsavm, ftolpl, ncvyearp, k); */
           /* bprevalim(bprlim, mobaverage, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */
           bprevalim(bprlim, mobaverage, nlstate, p, age, ftolpl, ncvyearp, k);
         }else if (mobilavproj == 0){
           printf("There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj);
           fprintf(ficlog,"There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj);
           exit(1);
         }else{
           /* bprevalim(bprlim, probs, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */
           bprevalim(bprlim, probs, nlstate, p, age, ftolpl, ncvyearp, k);
         }
         fprintf(ficresplb,"%.0f ",age );
         for(j=1;j<=cptcoveff;j++)
           fprintf(ficresplb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         tot=0.;
         for(i=1; i<=nlstate;i++){
           tot +=  bprlim[i][i];
           fprintf(ficresplb," %.5f", bprlim[i][i]);
         }
         fprintf(ficresplb," %.3f %d\n", tot, *ncvyearp);
       } /* Age */
       /* was end of cptcod */
     } /* cptcov */
     
     /* hBijx(p, bage, fage); */
     /* fclose(ficrespijb); */
     
     return 0;
   }
    
   int hPijx(double *p, int bage, int fage){
       /*------------- h Pij x at various ages ------------*/
   
     int stepsize;
     int agelim;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k;
   
     double agedeb;
     double ***p3mat;
   
       strcpy(filerespij,"PIJ_");  strcat(filerespij,fileresu);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
                   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       i1= pow(2,cptcoveff);
                   /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
                   /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
                   /*      k=k+1;  */
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficrespij,"******\n");
         
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
         /*}*/
       }
       return 0;
   }
    
    int hBijx(double *p, int bage, int fage, double ***prevacurrent){
       /*------------- h Bij x at various ages ------------*/
   
     int stepsize;
     /* int agelim; */
           int ageminl;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k;
           
     double agedeb;
     double ***p3mat;
           
     strcpy(filerespijb,"PIJB_");  strcat(filerespijb,fileresu);
     if((ficrespijb=fopen(filerespijb,"w"))==NULL) {
       printf("Problem with Pij back resultfile: %s\n", filerespijb); return 1;
       fprintf(ficlog,"Problem with Pij back resultfile: %s\n", filerespijb); return 1;
     }
     printf("Computing pij back: result on file '%s' \n", filerespijb);
     fprintf(ficlog,"Computing pij back: result on file '%s' \n", filerespijb);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
     
     /* agelim=AGESUP; */
     ageminl=30;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
     
     /* hstepm=1;   aff par mois*/
     pstamp(ficrespijb);
     fprintf(ficrespijb,"#****** h Pij x Back Probability to be in state i at age x-h being in j at x ");
     i1= pow(2,cptcoveff);
     /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
     /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
     /*    k=k+1;  */
     for (k=1; k <= (int) pow(2,cptcoveff); k++){
       fprintf(ficrespijb,"\n#****** ");
       for(j=1;j<=cptcoveff;j++)
         fprintf(ficrespijb,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
       fprintf(ficrespijb,"******\n");
       
       /* for (agedeb=fage; agedeb>=bage; agedeb--){ /\* If stepm=6 months *\/ */
       for (agedeb=bage; agedeb<=fage; agedeb++){ /* If stepm=6 months and estepm=24 (2 years) */
         /* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /\* Typically 20 years = 20*12/6=40 *\/ */
         nhstepm=(int) rint((agedeb-ageminl)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
         nhstepm = nhstepm/hstepm; /* Typically 40/4=10, because estepm=24 stepm=6 => hstepm=24/6=4 */
         
         /*          nhstepm=nhstepm*YEARM; aff par mois*/
         
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         /* oldm=oldms;savm=savms; */
         /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */
         hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm, k);
         /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm, dnewm, doldm, dsavm, k); */
         fprintf(ficrespijb,"# Cov Agex agex-h hpijx with i,j=");
         for(i=1; i<=nlstate;i++)
           for(j=1; j<=nlstate+ndeath;j++)
             fprintf(ficrespijb," %1d-%1d",i,j);
         fprintf(ficrespijb,"\n");
         for (h=0; h<=nhstepm; h++){
           /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
           fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb - h*hstepm/YEARM*stepm );
           /* fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); */
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespijb," %.5f", p3mat[i][j][h]);
           fprintf(ficrespijb,"\n");
         }
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficrespijb,"\n");
       }
       /*}*/
     }
     return 0;
    } /*  hBijx */
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
     int ncvyear=0; /* Number of years needed for the period prevalence to converge */
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int num_filled;
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb=0.;
   
     double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW;
           double ageminout=-AGEOVERFLOW,agemaxout=AGEOVERFLOW; /* Smaller Age range redefined after movingaverage */
   
     double fret;
     double dum=0.; /* Dummy variable */
     double ***p3mat;
     /* double ***mobaverage; */
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE];
   
     char model[MAXLINE], modeltemp[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt, c2;
     int jl=0;
     int i1, j1, jk, stepsize=0;
     int count=0;
   
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int backcast=0;
     int mobilav=0,popforecast=0;
     int hstepm=0, nhstepm=0;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110., age, agelim=0., agebase=0.;
     double ftolpl=FTOL;
     double **prlim;
     double **bprlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double **hess; /* Hessian matrix */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double jback1=1,mback1=1,anback1=2000,jback2=1,mback2=1,anback2=2000;
   
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
   #ifdef WIN32
     _getcwd(pathcd, size);
   #else
     getcwd(pathcd, size);
   #endif
     syscompilerinfo(0);
     printf("\nIMaCh version %s, %s\n%s",version, copyright, fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       if(!fgets(pathr,FILENAMELENGTH,stdin)){
         printf("ERROR Empty parameter file name\n");
         goto end;
       }
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(i >= 1 && pathr[i-1]==' ') {/* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
       }
       i=strlen(pathr);
       if( i==0 ){
         printf("ERROR Empty parameter file name\n");
         goto end;
       }
       for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   #ifdef WIN32
     _chdir(path); /* Can be a relative path */
     if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   #else
     chdir(path); /* Can be a relative path */
     if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
   #endif
     printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Main Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"Version %s %s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo(1);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileresu, optionfilefiname); /* Without r in front */
     strcat(fileres,".txt");    /* Other files have txt extension */
     strcat(fileresu,".txt");    /* Other files have txt extension */
   
     /* Main ---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileresu);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
   
       /* First parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", \
                           title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){
       if (num_filled != 5) {
         printf("Should be 5 parameters\n");
       }
       numlinepar++;
       printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
     }
     /* Second parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \
                           &ftol, &stepm, &ncovcol, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){
       if (num_filled != 8) {
         printf("Not 8 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n");
         printf("but line=%s\n",line);
       }
       printf("ftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt);
     }
     /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
     /*ftolpl=6.e-4; *//* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
     /* Third parameter line */
     while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
     if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){
       if (num_filled == 0)
               model[0]='\0';
       else if (num_filled != 1){
         printf("ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
         model[0]='\0';
         goto end;
       }
       else{
         if (model[0]=='+'){
           for(i=1; i<=strlen(model);i++)
             modeltemp[i-1]=model[i];
           strcpy(model,modeltemp); 
         }
       }
       /* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */
       printf("model=1+age+%s\n",model);fflush(stdout);
     }
     /* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */
     /* numlinepar=numlinepar+3; /\* In general *\/ */
     /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     /* if(model[0]=='#'|| model[0]== '\0'){ */
     if(model[0]=='#'){
       printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \
    'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \
    'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n");          \
       if(mle != -1){
         printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n");
         exit(1);
       }
     }
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */
         z[0]=line[1];
       }
       /* printf("****line [1] = %c \n",line[1]); */
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/
     else
       ncovmodel=2; /* Constant and age */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) { /* Main Wizard */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
       hess=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) || (j1 != jj)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,jj);
           fprintf(ficlog,"%1d%1d",i,jj);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       hess=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       /* Scans npar lines */
       for(i=1; i <=npar; i++){
         count=fscanf(ficpar,"%1d%1d%1d",&i1,&j1,&jk);
         if(count != 3){
           printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
   This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
           exit(1);
         }else
           if(mle==1)
             printf("%1d%1d%1d",i1,j1,jk);
         fprintf(ficlog,"%1d%1d%1d",i1,j1,jk);
         fprintf(ficparo,"%1d%1d%1d",i1,j1,jk);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       /* End of read covariance matrix npar lines */
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", rfileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
     
     /*  Main data
      */
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
     ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
   /* Main decodemodel */
   
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     /* free_vector(moisdc,1,n); */
     /* free_vector(andc,1,n); */
     /* */
     
     wav=ivector(1,imx);
     /* dh=imatrix(1,lastpass-firstpass+1,1,imx); */
     /* bh=imatrix(1,lastpass-firstpass+1,1,imx); */
     /* mw=imatrix(1,lastpass-firstpass+1,1,imx); */
     dh=imatrix(1,lastpass-firstpass+2,1,imx); /* We are adding a wave if status is unknown at last wave but death occurs after last wave.*/
     bh=imatrix(1,lastpass-firstpass+2,1,imx);
     mw=imatrix(1,lastpass-firstpass+2,1,imx);
      
     /* Concatenates waves */
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
        mw[mi][i] is the number of (mi=1 to wav[i]) effective wave out of mi of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
     */
   
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel-nagesqr > 2 ) /* That is if covariate other than cst, age and age*age */
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
     /* Nbcode gives the value of the lth modality (currently 1 to 2) of jth covariate, in
        V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
     /* 1 to ncodemax[j] which is the maximum value of this jth covariate */
   
     /*  codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/
     /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
     /* nbcode[Tvaraff[j]][codtabm(h,j)]) : if there are only 2 modalities for a covariate j, 
      * codtabm(h,j) gives its value classified at position h and nbcode gives how it is coded 
      * (currently 0 or 1) in the data.
      * In a loop on h=1 to 2**k, and a loop on j (=1 to k), we get the value of 
      * corresponding modality (h,j).
      */
   
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              * For k=4 covariates, h goes from 1 to m=2**k
              * codtabm(h,k)=  (1 & (h-1) >> (k-1)) + 1;
              * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
              *     h\k   1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     2
              *    10     2     1     1     2
              *    11 i=6 1     2     1     2
              *    12     2     2     1     2
              *    13 i=7 1 i=4 1     2     2    
              *    14     2     1     2     2
              *    15 i=8 1     2     2     2
              *    16     2     2     2     2
              */
     /* How to do the opposite? From combination h (=1 to 2**k) how to get the value on the covariates? */
        /* from h=5 and m, we get then number of covariates k=log(m)/log(2)=4
        * and the value of each covariate?
        * V1=1, V2=1, V3=2, V4=1 ?
        * h-1=4 and 4 is 0100 or reverse 0010, and +1 is 1121 ok.
        * h=6, 6-1=5, 5 is 0101, 1010, 2121, V1=2nd, V2=1st, V3=2nd, V4=1st.
        * In order to get the real value in the data, we use nbcode
        * nbcode[Tvar[3][2nd]]=1 and nbcode[Tvar[4][1]]=0
        * We are keeping this crazy system in order to be able (in the future?) 
        * to have more than 2 values (0 or 1) for a covariate.
        * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
        * h=6, k=2? h-1=5=0101, reverse 1010, +1=2121, k=2nd position: value is 1: codtabm(6,2)=1
        *              bbbbbbbb
        *              76543210     
        *   h-1        00000101 (6-1=5)
        *(h-1)>>(k-1)= 00000001 >> (2-1) = 1 right shift
        *           &
        *     1        00000001 (1)
        *              00000001        = 1 & ((h-1) >> (k-1))
        *          +1= 00000010 =2 
        *
        * h=14, k=3 => h'=h-1=13, k'=k-1=2
        *          h'      1101 =2^3+2^2+0x2^1+2^0
        *    >>k'            11
        *          &   00000001
        *            = 00000001
        *      +1    = 00000010=2    =  codtabm(14,3)   
        * Reverse h=6 and m=16?
        * cptcoveff=log(16)/log(2)=4 covariate: 6-1=5=0101 reversed=1010 +1=2121 =>V1=2, V2=1, V3=2, V4=1.
        * for (j=1 to cptcoveff) Vj=decodtabm(j,h,cptcoveff)
        * decodtabm(h,j,cptcoveff)= (((h-1) >> (j-1)) & 1) +1 
        * decodtabm(h,j,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (j-1)) & 1) +1 : -1)
        * V3=decodtabm(14,3,2**4)=2
        *          h'=13   1101 =2^3+2^2+0x2^1+2^0
        *(h-1) >> (j-1)    0011 =13 >> 2
        *          &1 000000001
        *           = 000000001
        *         +1= 000000010 =2
        *                  2211
        *                  V1=1+1, V2=0+1, V3=1+1, V4=1+1
        *                  V3=2
        */
   
     /* /\* for(h=1; h <=100 ;h++){  *\/ */
     /*   /\* printf("h=%2d ", h); *\/ */
     /*    /\* for(k=1; k <=10; k++){ *\/ */
     /*      /\* printf("k=%d %d ",k,codtabm(h,k)); *\/ */
     /*    /\*   codtab[h][k]=codtabm(h,k); *\/ */
     /*    /\* } *\/ */
     /*    /\* printf("\n"); *\/ */
     /* } */
     /* for(k=1;k<=cptcoveff; k++){ /\* scans any effective covariate *\/ */
     /*   for(i=1; i <=pow(2,cptcoveff-k);i++){ /\* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 *\/  */
     /*     for(j=1; j <= ncodemax[k]; j++){ /\* For each modality of this covariate ncodemax=2*\/ */
     /*    for(cpt=1; cpt <=pow(2,k-1); cpt++){  /\* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 *\/  */
     /*      h++; */
     /*      if (h>m)  */
     /*        h=1; */
     /*      codtab[h][k]=j; */
     /*      /\* codtab[12][3]=1; *\/ */
     /*      /\*codtab[h][Tvar[k]]=j;*\/ */
     /*      /\* printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]); *\/ */
     /*    }  */
     /*     } */
     /*   } */
     /* }  */
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){  */
     /*    for(k=1; k <=cptcovn; k++){ */
     /*      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff); */
     /*    } */
     /*    printf("\n"); */
     /* } */
     /*   scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /* Initialisation of ----------- gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-MORT_");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# IMaCh-%s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
   
   
     /* Initialisation of --------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-MORT_");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<head>\n<meta charset=\"utf-8\"/><meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n<title>IMaCh %s</title></head>\n <body><font size=\"7\"><a href=http:/euroreves.ined.fr/imach>IMaCh for Interpolated Markov Chain</a> </font><br>\n<font size=\"3\">Sponsored by Copyright (C)  2002-2015 <a href=http://www.ined.fr>INED</a>-EUROREVES-Institut de longévité-2013-2016-Japan Society for the Promotion of Sciences 日本学術振興会 (<a href=https://www.jsps.go.jp/english/e-grants/>Grant-in-Aid for Scientific Research 25293121</a>) - <a href=https://software.intel.com/en-us>Intel Software 2015-2018</a></font><br>  \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   <font size=\"2\">IMaCh-%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
   #ifdef WIN32
     _chdir(optionfilefiname); /* Move to directory named optionfile */
   #else
     chdir(optionfilefiname); /* Move to directory named optionfile */
   #endif
             
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\
                 firstpass, lastpass,  stepm,  weightopt, model);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
   
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     /* For mortality only */
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
       /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
                                   if (s[m][i]>nlstate) {
                                           dcwave[i]=m;
                                           /*      printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
                                           break;
                                   }
       }
                   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
                                   ageexmed[i]=agev[mw[1][i]][i];
                                   j=wav[i];
                                   agecens[i]=1.; 
                                   
                                   if (ageexmed[i]> 1 && wav[i] > 0){
                                           agecens[i]=agev[mw[j][i]][i];
                                           cens[i]= 1;
                                   }else if (ageexmed[i]< 1) 
                                           cens[i]= -1;
                                   if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
                                           cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
                                   ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"POW-MORT_"); 
       strcat(filerespow,fileresu);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
       /*     gsl_vector_set(x, 0, 0.0268); */
       /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, hess, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       fprintf(ficlog,"\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
           fprintf(ficlog,"%f ",matcov[i][j]);
         }
         printf("\n ");  fprintf(ficlog,"\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) {
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
         fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       }
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else
         printinggnuplotmort(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       printinghtmlmort(fileresu,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 mortality only */
     /* Standard  */
     else{ /* For mle !=- 3, could be 0 or 1 or 4 etc. */
       globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
       /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2, Real Maximization */
         /* mlikeli uses func not funcone */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       if(mle==0) {/* No optimization, will print the likelihoods for the datafile */
         globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
         /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
         likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       }
       globpr=1; /* again, to print the individual contributions using computed gpimx and gsw */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%12.7f ",p[jk]);
               fprintf(ficlog,"%12.7f ",p[jk]);
               fprintf(ficres,"%12.7f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle != 0){
         /* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, hess, p, npar, delti, ftolhess, func);
         printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
         fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n  It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
         for(i=1,jk=1; i <=nlstate; i++){
           for(k=1; k <=(nlstate+ndeath); k++){
             if (k != i) {
               printf("%d%d ",i,k);
               fprintf(ficlog,"%d%d ",i,k);
               for(j=1; j <=ncovmodel; j++){
                 printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                 jk++; 
               }
               printf("\n");
               fprintf(ficlog,"\n");
             }
           }
         }
       } /* end of hesscov and Wald tests */
   
       /*  */
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle >= 1) /* To big for the screen */
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.7e",matcov[jj][ll]); 
                           fprintf(ficlog," %.7e",matcov[jj][ll]); 
                           fprintf(ficres," %.7e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
         while(fgets(line, MAXLINE, ficpar)) {
       /* If line starts with a # it is a comment */
       if (line[0] == '#') {
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
         continue;
       }else
         break;
     }
   
       /* while((c=getc(ficpar))=='#' && c!= EOF){ */
       /*   ungetc(c,ficpar); */
       /*   fgets(line, MAXLINE, ficpar); */
       /*   fputs(line,stdout); */
       /*   fputs(line,ficparo); */
       /* } */
       /* ungetc(c,ficpar); */
       
       estepm=0;
       if((num_filled=sscanf(line,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm, &ftolpl)) !=EOF){
   
       if (num_filled != 6) {
         printf("Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n");
         printf("but line=%s\n",line);
         goto end;
       }
       printf("agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",ageminpar,agemaxpar, bage, fage, estepm, ftolpl);
     }
     /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
     /*ftolpl=6.e-4;*/ /* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
   
       /* fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); */
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d, ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
   
       /* Other stuffs, more or less useful */    
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficlog,"pop_based=%d\n",popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"backcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&backcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj);
       fscanf(ficparo,"backcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&backcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj);
       fscanf(ficlog,"backcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&backcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj);
       fscanf(ficres,"backcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&backcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){
           printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
           fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
   This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
   Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
       }else
         printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, backcast, pathc,p);
       
       printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,prevfcast,backcast, estepm, \
                    jprev1,mprev1,anprev1,dateprev1,jprev2,mprev2,anprev2,dateprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       /* free_ivector(wav,1,imx); */  /* Moved after last prevalence call */
       /* free_imatrix(dh,1,lastpass-firstpass+2,1,imx); */
       /* free_imatrix(bh,1,lastpass-firstpass+2,1,imx); */
       /* free_imatrix(mw,1,lastpass-firstpass+2,1,imx);    */
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /* Other results (useful)*/
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar, ftolpl, &ncvyear);
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
   
                   ncovcombmax=  pow(2,cptcoveff);
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
                   /* Prevalence for each covariates in probs[age][status][cov] */
       probs= ma3x(1,AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=nlstate;j++)
                                   for(k=1;k<=ncovcombmax;k++)
                                           probs[i][j][k]=0.;
                   prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
                   if (mobilav!=0 ||mobilavproj !=0 ) {
                           mobaverage= ma3x(1, AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
                           if (mobilav!=0) {
                                   if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilav)!=0){
                                           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                                           printf(" Error in movingaverage mobilav=%d\n",mobilav);
                                   }
                           }
                           /* /\* Prevalence for each covariates in probs[age][status][cov] *\/ */
                           /* prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */
                           else if (mobilavproj !=0) {
                                   if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilavproj)!=0){
                                           fprintf(ficlog," Error in movingaverage mobilavproj=%d\n",mobilavproj);
                                           printf(" Error in movingaverage mobilavproj=%d\n",mobilavproj);
                                   }
                           }
                   }/* end if moving average */
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileresu, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
       }
       if(backcast==1){
                   ddnewms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);      
                   ddoldms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);      
                   ddsavms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);
   
                           /*--------------- Back Prevalence limit  (period or stable prevalence) --------------*/
                           /*#include "prevlim.h"*/  /* Use ficresplb, ficlog */
                           bprlim=matrix(1,nlstate,1,nlstate);
                           back_prevalence_limit(p, bprlim,  ageminpar, agemaxpar, ftolpl, &ncvyear, dateprev1, dateprev2, firstpass, lastpass, mobilavproj);
                           fclose(ficresplb);
   
                           hBijx(p, bage, fage, mobaverage);
                           fclose(ficrespijb);
                           free_matrix(bprlim,1,nlstate,1,nlstate); /*here or after loop ? */
   
         /* prevbackforecast(fileresu, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anback2, p, cptcoveff); */
                           free_matrix(ddnewms, 1, nlstate+ndeath, 1, nlstate+ndeath);
                           free_matrix(ddsavms, 1, nlstate+ndeath, 1, nlstate+ndeath);
                           free_matrix(ddoldms, 1, nlstate+ndeath, 1, nlstate+ndeath);
                   }
     /* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
     /* if (mobilavproj!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
   
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
       /*      }  */
       /*      else{ */
       /*        erreur=108; */
       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
       /*      } */
       
    
       /* ------ Other prevalence ratios------------ */
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       /* prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+2,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+2,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+2,1,imx);   
                   
                   
                   /*   if (mobilav!=0) { */
                   /*     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
                   /*     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){ */
                   /* fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); */
                   /* printf(" Error in movingaverage mobilav=%d\n",mobilav); */
                   /*     } */
                   /*   } */
                   
                   
       /*---------- Health expectancies, no variances ------------*/
                   
       strcpy(filerese,"E_");
       strcat(filerese,fileresu);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' ...", filerese);fflush(stdout);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' ...", filerese);fflush(ficlog);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
                   
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
                           fprintf(ficreseij,"\n#****** ");
                           for(j=1;j<=cptcoveff;j++) {
                                   fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                           }
                           fprintf(ficreseij,"******\n");
                           
                           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
                           oldm=oldms;savm=savms;
                           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
                           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
       printf("done evsij\n");fflush(stdout);
       fprintf(ficlog,"done evsij\n");fflush(ficlog);
                   
       /*---------- Health expectancies and variances ------------*/
                   
                   
       strcpy(filerest,"T_");
       strcat(filerest,fileresu);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(stdout);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(ficlog);
                   
   
       strcpy(fileresstde,"STDE_");
       strcat(fileresstde,fileresu);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("  Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"  Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"CVE_");
       strcat(filerescve,fileresu);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("    Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"    Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"V_");
       strcat(fileresv,fileresu);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("      Computing Variance-covariance of DFLEs: file '%s' ... ", fileresv);fflush(stdout);
       fprintf(ficlog,"      Computing Variance-covariance of DFLEs: file '%s' ... ", fileresv);fflush(ficlog);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
                                   fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficrest,"******\n");
         
         fprintf(ficresstdeij,"\n#****** ");
         fprintf(ficrescveij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) {
                                   fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                                   fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         }
         fprintf(ficresstdeij,"******\n");
         fprintf(ficrescveij,"******\n");
         
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
                                   fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
         fprintf(ficresvij,"******\n");
         
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         printf(" cvevsij %d, ",k);
         fprintf(ficlog, " cvevsij %d, ",k);
         cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);
         printf(" end cvevsij \n ");
         fprintf(ficlog, " end cvevsij \n ");
         
         /*
          */
         /* goto endfree; */
         
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         pstamp(ficrest);
         
         
         for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
                                   oldm=oldms;savm=savms; /* ZZ Segmentation fault */
                                   cptcod= 0; /* To be deleted */
                                   printf("varevsij %d \n",vpopbased);
                                   fprintf(ficlog, "varevsij %d \n",vpopbased);
                                   varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
                                   fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
                                   if(vpopbased==1)
                                           fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
                                   else
                                           fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
                                   fprintf(ficrest,"# Age popbased mobilav e.. (std) ");
                                   for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
                                   fprintf(ficrest,"\n");
                                   /* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */
                                   epj=vector(1,nlstate+1);
                                   printf("Computing age specific period (stable) prevalences in each health state \n");
                                   fprintf(ficlog,"Computing age specific period (stable) prevalences in each health state \n");
                                   for(age=bage; age <=fage ;age++){
                                           prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, &ncvyear, k); /*ZZ Is it the correct prevalim */
                                           if (vpopbased==1) {
                                                   if(mobilav ==0){
                                                           for(i=1; i<=nlstate;i++)
                                                                   prlim[i][i]=probs[(int)age][i][k];
                                                   }else{ /* mobilav */ 
                                                           for(i=1; i<=nlstate;i++)
                                                                   prlim[i][i]=mobaverage[(int)age][i][k];
                                                   }
                                           }
                                           
                                           fprintf(ficrest," %4.0f %d %d",age, vpopbased, mobilav);
                                           /* fprintf(ficrest," %4.0f %d %d %d %d",age, vpopbased, mobilav,Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ /* to be done */
                                           /* printf(" age %4.0f ",age); */
                                           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                                                   for(i=1, epj[j]=0.;i <=nlstate;i++) {
                                                           epj[j] += prlim[i][i]*eij[i][j][(int)age];
                                                           /*ZZZ  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                                                           /* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */
                                                   }
                                                   epj[nlstate+1] +=epj[j];
                                           }
                                           /* printf(" age %4.0f \n",age); */
                                           
                                           for(i=1, vepp=0.;i <=nlstate;i++)
                                                   for(j=1;j <=nlstate;j++)
                                                           vepp += vareij[i][j][(int)age];
                                           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
                                           for(j=1;j <=nlstate;j++){
                                                   fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
                                           }
                                           fprintf(ficrest,"\n");
                                   }
         } /* End vpopbased */
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
         printf("done \n");fflush(stdout);
         fprintf(ficlog,"done\n");fflush(ficlog);
         
         /*}*/
       } /* End k */
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       printf("done Health expectancies\n");fflush(stdout);
       fprintf(ficlog,"done Health expectancies\n");fflush(ficlog);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"VPL_");
       strcat(fileresvpl,fileresu);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout);
       fprintf(ficlog, "Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
                           for(j=1;j<=cptcoveff;j++) 
                                   fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                           fprintf(ficresvpl,"******\n");
         
                           varpl=matrix(1,nlstate,(int) bage, (int) fage);
                           oldm=oldms;savm=savms;
                           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, strstart);
                           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
                   
       fclose(ficresvpl);
       printf("done variance-covariance of period prevalence\n");fflush(stdout);
       fprintf(ficlog,"done variance-covariance of period prevalence\n");fflush(ficlog);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0 ||mobilavproj !=0) free_ma3x(mobaverage,1, AGESUP,1,nlstate+ndeath, 1,ncovcombmax); /* We need to have a squared matrix with prevalence of the dead! */
       free_ma3x(probs,1,AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       free_matrix(hess,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(ncodemaxwundef,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       /* free_imatrix(codtab,1,100,1,10); */
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings. Please look at the log file for details.\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d. Please look at the log file for details.\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
   #ifdef WIN32
      if (_chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n",path);
      if(_getcwd(pathcd,MAXLINE) > 0)
   #else
      if(chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n", path);
      if (getcwd(pathcd, MAXLINE) > 0)
   #endif 
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: "); fflush(stdout);
       scanf("%s",z);
     }
   }

Removed from v.1.50  
changed lines
  Added in v.1.218


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>