Diff for /imach/src/imach.c between versions 1.50 and 1.86

version 1.50, 2002/06/26 23:25:02 version 1.86, 2003/06/17 20:04:08
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.86  2003/06/17 20:04:08  brouard
      (Module): Change position of html and gnuplot routines and added
   This program computes Healthy Life Expectancies from    routine fileappend.
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.85  2003/06/17 13:12:43  brouard
   interviewed on their health status or degree of disability (in the    * imach.c (Repository): Check when date of death was earlier that
   case of a health survey which is our main interest) -2- at least a    current date of interview. It may happen when the death was just
   second wave of interviews ("longitudinal") which measure each change    prior to the death. In this case, dh was negative and likelihood
   (if any) in individual health status.  Health expectancies are    was wrong (infinity). We still send an "Error" but patch by
   computed from the time spent in each health state according to a    assuming that the date of death was just one stepm after the
   model. More health states you consider, more time is necessary to reach the    interview.
   Maximum Likelihood of the parameters involved in the model.  The    (Repository): Because some people have very long ID (first column)
   simplest model is the multinomial logistic model where pij is the    we changed int to long in num[] and we added a new lvector for
   probability to be observed in state j at the second wave    memory allocation. But we also truncated to 8 characters (left
   conditional to be observed in state i at the first wave. Therefore    truncation)
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    (Repository): No more line truncation errors.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.84  2003/06/13 21:44:43  brouard
   where the markup *Covariates have to be included here again* invites    * imach.c (Repository): Replace "freqsummary" at a correct
   you to do it.  More covariates you add, slower the    place. It differs from routine "prevalence" which may be called
   convergence.    many times. Probs is memory consuming and must be used with
     parcimony.
   The advantage of this computer programme, compared to a simple    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.83  2003/06/10 13:39:11  lievre
   intermediate interview, the information is lost, but taken into    *** empty log message ***
   account using an interpolation or extrapolation.    
     Revision 1.82  2003/06/05 15:57:20  brouard
   hPijx is the probability to be observed in state i at age x+h    Add log in  imach.c and  fullversion number is now printed.
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate  */
   states. This elementary transition (by month or quarter trimester,  /*
   semester or year) is model as a multinomial logistic.  The hPx     Interpolated Markov Chain
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Short summary of the programme:
   hPijx.    
     This program computes Healthy Life Expectancies from
   Also this programme outputs the covariance matrix of the parameters but also    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   of the life expectancies. It also computes the prevalence limits.    first survey ("cross") where individuals from different ages are
      interviewed on their health status or degree of disability (in the
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    case of a health survey which is our main interest) -2- at least a
            Institut national d'études démographiques, Paris.    second wave of interviews ("longitudinal") which measure each change
   This software have been partly granted by Euro-REVES, a concerted action    (if any) in individual health status.  Health expectancies are
   from the European Union.    computed from the time spent in each health state according to a
   It is copyrighted identically to a GNU software product, ie programme and    model. More health states you consider, more time is necessary to reach the
   software can be distributed freely for non commercial use. Latest version    Maximum Likelihood of the parameters involved in the model.  The
   can be accessed at http://euroreves.ined.fr/imach .    simplest model is the multinomial logistic model where pij is the
   **********************************************************************/    probability to be observed in state j at the second wave
      conditional to be observed in state i at the first wave. Therefore
 #include <math.h>    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #include <stdio.h>    'age' is age and 'sex' is a covariate. If you want to have a more
 #include <stdlib.h>    complex model than "constant and age", you should modify the program
 #include <unistd.h>    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
 #define MAXLINE 256    convergence.
 #define GNUPLOTPROGRAM "gnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    The advantage of this computer programme, compared to a simple
 #define FILENAMELENGTH 80    multinomial logistic model, is clear when the delay between waves is not
 /*#define DEBUG*/    identical for each individual. Also, if a individual missed an
 #define windows    intermediate interview, the information is lost, but taken into
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    account using an interpolation or extrapolation.  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     hPijx is the probability to be observed in state i at age x+h
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    conditional to the observed state i at age x. The delay 'h' can be
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
 #define NINTERVMAX 8    semester or year) is modelled as a multinomial logistic.  The hPx
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    matrix is simply the matrix product of nh*stepm elementary matrices
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    and the contribution of each individual to the likelihood is simply
 #define NCOVMAX 8 /* Maximum number of covariates */    hPijx.
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Also this programme outputs the covariance matrix of the parameters but also
 #define AGESUP 130    of the life expectancies. It also computes the stable prevalence. 
 #define AGEBASE 40    
 #ifdef windows    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #define DIRSEPARATOR '\\'             Institut national d'études démographiques, Paris.
 #define ODIRSEPARATOR '/'    This software have been partly granted by Euro-REVES, a concerted action
 #else    from the European Union.
 #define DIRSEPARATOR '/'    It is copyrighted identically to a GNU software product, ie programme and
 #define ODIRSEPARATOR '\\'    software can be distributed freely for non commercial use. Latest version
 #endif    can be accessed at http://euroreves.ined.fr/imach .
   
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 int erreur; /* Error number */    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 int nvar;    
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    **********************************************************************/
 int npar=NPARMAX;  /*
 int nlstate=2; /* Number of live states */    main
 int ndeath=1; /* Number of dead states */    read parameterfile
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    read datafile
 int popbased=0;    concatwav
     freqsummary
 int *wav; /* Number of waves for this individuual 0 is possible */    if (mle >= 1)
 int maxwav; /* Maxim number of waves */      mlikeli
 int jmin, jmax; /* min, max spacing between 2 waves */    print results files
 int mle, weightopt;    if mle==1 
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */       computes hessian
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    read end of parameter file: agemin, agemax, bage, fage, estepm
 double jmean; /* Mean space between 2 waves */        begin-prev-date,...
 double **oldm, **newm, **savm; /* Working pointers to matrices */    open gnuplot file
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    open html file
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    stable prevalence
 FILE *ficlog;     for age prevalim()
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    h Pij x
 FILE *ficresprobmorprev;    variance of p varprob
 FILE *fichtm; /* Html File */    forecasting if prevfcast==1 prevforecast call prevalence()
 FILE *ficreseij;    health expectancies
 char filerese[FILENAMELENGTH];    Variance-covariance of DFLE
 FILE  *ficresvij;    prevalence()
 char fileresv[FILENAMELENGTH];     movingaverage()
 FILE  *ficresvpl;    varevsij() 
 char fileresvpl[FILENAMELENGTH];    if popbased==1 varevsij(,popbased)
 char title[MAXLINE];    total life expectancies
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Variance of stable prevalence
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];   end
   */
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  
 char filelog[FILENAMELENGTH]; /* Log file */  
 char filerest[FILENAMELENGTH];  
 char fileregp[FILENAMELENGTH];   
 char popfile[FILENAMELENGTH];  #include <math.h>
   #include <stdio.h>
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  #include <stdlib.h>
   #include <unistd.h>
 #define NR_END 1  
 #define FREE_ARG char*  #include <sys/time.h>
 #define FTOL 1.0e-10  #include <time.h>
   #include "timeval.h"
 #define NRANSI  
 #define ITMAX 200  #define MAXLINE 256
   #define GNUPLOTPROGRAM "gnuplot"
 #define TOL 2.0e-4  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
 #define CGOLD 0.3819660  /*#define DEBUG*/
 #define ZEPS 1.0e-10  /*#define windows*/
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #define GOLD 1.618034  
 #define GLIMIT 100.0  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 #define TINY 1.0e-20  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 static double maxarg1,maxarg2;  #define NINTERVMAX 8
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
    #define NCOVMAX 8 /* Maximum number of covariates */
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #define MAXN 20000
 #define rint(a) floor(a+0.5)  #define YEARM 12. /* Number of months per year */
   #define AGESUP 130
 static double sqrarg;  #define AGEBASE 40
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #ifdef unix
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  #define DIRSEPARATOR '/'
   #define ODIRSEPARATOR '\\'
 int imx;  #else
 int stepm;  #define DIRSEPARATOR '\\'
 /* Stepm, step in month: minimum step interpolation*/  #define ODIRSEPARATOR '/'
   #endif
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  /* $Id$ */
   /* $State$ */
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  char version[]="Imach version 0.95a2, June 2003, INED-EUROREVES ";
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  char fullversion[]="$Revision$ $Date$"; 
 double **pmmij, ***probs, ***mobaverage;  int erreur; /* Error number */
 double dateintmean=0;  int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 double *weight;  int npar=NPARMAX;
 int **s; /* Status */  int nlstate=2; /* Number of live states */
 double *agedc, **covar, idx;  int ndeath=1; /* Number of dead states */
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
 /**************** split *************************/  int jmin, jmax; /* min, max spacing between 2 waves */
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  int mle, weightopt;
 {  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
    char *s;                             /* pointer */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
    int  l1, l2;                         /* length counters */  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
    l1 = strlen( path );                 /* length of path */  double jmean; /* Mean space between 2 waves */
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  double **oldm, **newm, **savm; /* Working pointers to matrices */
    s= strrchr( path, DIRSEPARATOR );            /* find last / */  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
    if ( s == NULL ) {                   /* no directory, so use current */  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)  FILE *ficlog, *ficrespow;
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  int globpr; /* Global variable for printing or not */
 #if     defined(__bsd__)                /* get current working directory */  double fretone; /* Only one call to likelihood */
       extern char       *getwd( );  long ipmx; /* Number of contributions */
   double sw; /* Sum of weights */
       if ( getwd( dirc ) == NULL ) {  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 #else  FILE *ficresilk;
       extern char       *getcwd( );  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  FILE *fichtm; /* Html File */
 #endif  FILE *ficreseij;
          return( GLOCK_ERROR_GETCWD );  char filerese[FILENAMELENGTH];
       }  FILE  *ficresvij;
       strcpy( name, path );             /* we've got it */  char fileresv[FILENAMELENGTH];
    } else {                             /* strip direcotry from path */  FILE  *ficresvpl;
       s++;                              /* after this, the filename */  char fileresvpl[FILENAMELENGTH];
       l2 = strlen( s );                 /* length of filename */  char title[MAXLINE];
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       strcpy( name, s );                /* save file name */  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
    }  char filelog[FILENAMELENGTH]; /* Log file */
    l1 = strlen( dirc );                 /* length of directory */  char filerest[FILENAMELENGTH];
 #ifdef windows  char fileregp[FILENAMELENGTH];
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  char popfile[FILENAMELENGTH];
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
 #endif  
    s = strrchr( name, '.' );            /* find last / */  #define NR_END 1
    s++;  #define FREE_ARG char*
    strcpy(ext,s);                       /* save extension */  #define FTOL 1.0e-10
    l1= strlen( name);  
    l2= strlen( s)+1;  #define NRANSI 
    strncpy( finame, name, l1-l2);  #define ITMAX 200 
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */  #define TOL 2.0e-4 
 }  
   #define CGOLD 0.3819660 
   #define ZEPS 1.0e-10 
 /******************************************/  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
 void replace(char *s, char*t)  #define GOLD 1.618034 
 {  #define GLIMIT 100.0 
   int i;  #define TINY 1.0e-20 
   int lg=20;  
   i=0;  static double maxarg1,maxarg2;
   lg=strlen(t);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   for(i=0; i<= lg; i++) {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     (s[i] = t[i]);    
     if (t[i]== '\\') s[i]='/';  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   }  #define rint(a) floor(a+0.5)
 }  
   static double sqrarg;
 int nbocc(char *s, char occ)  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   int i,j=0;  
   int lg=20;  int imx; 
   i=0;  int stepm;
   lg=strlen(s);  /* Stepm, step in month: minimum step interpolation*/
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;  int estepm;
   }  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   return j;  
 }  int m,nb;
   long *num;
 void cutv(char *u,char *v, char*t, char occ)  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
 {  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   /* cuts string t into u and v where u is ended by char occ excluding it  double **pmmij, ***probs;
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  double dateintmean=0;
      gives u="abcedf" and v="ghi2j" */  
   int i,lg,j,p=0;  double *weight;
   i=0;  int **s; /* Status */
   for(j=0; j<=strlen(t)-1; j++) {  double *agedc, **covar, idx;
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   }  
   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   lg=strlen(t);  double ftolhess; /* Tolerance for computing hessian */
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);  /**************** split *************************/
   }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
      u[p]='\0';  {
     char  *ss;                            /* pointer */
    for(j=0; j<= lg; j++) {    int   l1, l2;                         /* length counters */
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    l1 = strlen(path );                   /* length of path */
 }    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 /********************** nrerror ********************/    if ( ss == NULL ) {                   /* no directory, so use current */
       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 void nrerror(char error_text[])        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 {      /* get current working directory */
   fprintf(stderr,"ERREUR ...\n");      /*    extern  char* getcwd ( char *buf , int len);*/
   fprintf(stderr,"%s\n",error_text);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   exit(1);        return( GLOCK_ERROR_GETCWD );
 }      }
 /*********************** vector *******************/      strcpy( name, path );               /* we've got it */
 double *vector(int nl, int nh)    } else {                              /* strip direcotry from path */
 {      ss++;                               /* after this, the filename */
   double *v;      l2 = strlen( ss );                  /* length of filename */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   if (!v) nrerror("allocation failure in vector");      strcpy( name, ss );         /* save file name */
   return v-nl+NR_END;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 }      dirc[l1-l2] = 0;                    /* add zero */
     }
 /************************ free vector ******************/    l1 = strlen( dirc );                  /* length of directory */
 void free_vector(double*v, int nl, int nh)    /*#ifdef windows
 {    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   free((FREE_ARG)(v+nl-NR_END));  #else
 }    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   #endif
 /************************ivector *******************************/    */
 int *ivector(long nl,long nh)    ss = strrchr( name, '.' );            /* find last / */
 {    ss++;
   int *v;    strcpy(ext,ss);                       /* save extension */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    l1= strlen( name);
   if (!v) nrerror("allocation failure in ivector");    l2= strlen(ss)+1;
   return v-nl+NR_END;    strncpy( finame, name, l1-l2);
 }    finame[l1-l2]= 0;
     return( 0 );                          /* we're done */
 /******************free ivector **************************/  }
 void free_ivector(int *v, long nl, long nh)  
 {  
   free((FREE_ARG)(v+nl-NR_END));  /******************************************/
 }  
   void replace(char *s, char*t)
 /******************* imatrix *******************************/  {
 int **imatrix(long nrl, long nrh, long ncl, long nch)    int i;
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    int lg=20;
 {    i=0;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    lg=strlen(t);
   int **m;    for(i=0; i<= lg; i++) {
        (s[i] = t[i]);
   /* allocate pointers to rows */      if (t[i]== '\\') s[i]='/';
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    }
   if (!m) nrerror("allocation failure 1 in matrix()");  }
   m += NR_END;  
   m -= nrl;  int nbocc(char *s, char occ)
    {
      int i,j=0;
   /* allocate rows and set pointers to them */    int lg=20;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    i=0;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    lg=strlen(s);
   m[nrl] += NR_END;    for(i=0; i<= lg; i++) {
   m[nrl] -= ncl;    if  (s[i] == occ ) j++;
      }
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    return j;
    }
   /* return pointer to array of pointers to rows */  
   return m;  void cutv(char *u,char *v, char*t, char occ)
 }  {
     /* cuts string t into u and v where u is ended by char occ excluding it
 /****************** free_imatrix *************************/       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
 void free_imatrix(m,nrl,nrh,ncl,nch)       gives u="abcedf" and v="ghi2j" */
       int **m;    int i,lg,j,p=0;
       long nch,ncl,nrh,nrl;    i=0;
      /* free an int matrix allocated by imatrix() */    for(j=0; j<=strlen(t)-1; j++) {
 {      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    }
   free((FREE_ARG) (m+nrl-NR_END));  
 }    lg=strlen(t);
     for(j=0; j<p; j++) {
 /******************* matrix *******************************/      (u[j] = t[j]);
 double **matrix(long nrl, long nrh, long ncl, long nch)    }
 {       u[p]='\0';
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;     for(j=0; j<= lg; j++) {
       if (j>=(p+1))(v[j-p-1] = t[j]);
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    }
   if (!m) nrerror("allocation failure 1 in matrix()");  }
   m += NR_END;  
   m -= nrl;  /********************** nrerror ********************/
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  void nrerror(char error_text[])
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  {
   m[nrl] += NR_END;    fprintf(stderr,"ERREUR ...\n");
   m[nrl] -= ncl;    fprintf(stderr,"%s\n",error_text);
     exit(EXIT_FAILURE);
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  }
   return m;  /*********************** vector *******************/
 }  double *vector(int nl, int nh)
   {
 /*************************free matrix ************************/    double *v;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 {    if (!v) nrerror("allocation failure in vector");
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    return v-nl+NR_END;
   free((FREE_ARG)(m+nrl-NR_END));  }
 }  
   /************************ free vector ******************/
 /******************* ma3x *******************************/  void free_vector(double*v, int nl, int nh)
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  {
 {    free((FREE_ARG)(v+nl-NR_END));
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  }
   double ***m;  
   /************************ivector *******************************/
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int *ivector(long nl,long nh)
   if (!m) nrerror("allocation failure 1 in matrix()");  {
   m += NR_END;    int *v;
   m -= nrl;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (!v) nrerror("allocation failure in ivector");
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    return v-nl+NR_END;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  }
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  /******************free ivector **************************/
   void free_ivector(int *v, long nl, long nh)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  {
     free((FREE_ARG)(v+nl-NR_END));
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  }
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  /************************lvector *******************************/
   m[nrl][ncl] -= nll;  long *lvector(long nl,long nh)
   for (j=ncl+1; j<=nch; j++)  {
     m[nrl][j]=m[nrl][j-1]+nlay;    long *v;
      v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   for (i=nrl+1; i<=nrh; i++) {    if (!v) nrerror("allocation failure in ivector");
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    return v-nl+NR_END;
     for (j=ncl+1; j<=nch; j++)  }
       m[i][j]=m[i][j-1]+nlay;  
   }  /******************free lvector **************************/
   return m;  void free_lvector(long *v, long nl, long nh)
 }  {
     free((FREE_ARG)(v+nl-NR_END));
 /*************************free ma3x ************************/  }
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {  /******************* imatrix *******************************/
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   free((FREE_ARG)(m+nrl-NR_END));  { 
 }    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     int **m; 
 /***************** f1dim *************************/    
 extern int ncom;    /* allocate pointers to rows */ 
 extern double *pcom,*xicom;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 extern double (*nrfunc)(double []);    if (!m) nrerror("allocation failure 1 in matrix()"); 
      m += NR_END; 
 double f1dim(double x)    m -= nrl; 
 {    
   int j;    
   double f;    /* allocate rows and set pointers to them */ 
   double *xt;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
      if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   xt=vector(1,ncom);    m[nrl] += NR_END; 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    m[nrl] -= ncl; 
   f=(*nrfunc)(xt);    
   free_vector(xt,1,ncom);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   return f;    
 }    /* return pointer to array of pointers to rows */ 
     return m; 
 /*****************brent *************************/  } 
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {  /****************** free_imatrix *************************/
   int iter;  void free_imatrix(m,nrl,nrh,ncl,nch)
   double a,b,d,etemp;        int **m;
   double fu,fv,fw,fx;        long nch,ncl,nrh,nrl; 
   double ftemp;       /* free an int matrix allocated by imatrix() */ 
   double p,q,r,tol1,tol2,u,v,w,x,xm;  { 
   double e=0.0;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
      free((FREE_ARG) (m+nrl-NR_END)); 
   a=(ax < cx ? ax : cx);  } 
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;  /******************* matrix *******************************/
   fw=fv=fx=(*f)(x);  double **matrix(long nrl, long nrh, long ncl, long nch)
   for (iter=1;iter<=ITMAX;iter++) {  {
     xm=0.5*(a+b);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    double **m;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     fprintf(ficlog,".");fflush(ficlog);    if (!m) nrerror("allocation failure 1 in matrix()");
 #ifdef DEBUG    m += NR_END;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    m -= nrl;
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 #endif    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    m[nrl] += NR_END;
       *xmin=x;    m[nrl] -= ncl;
       return fx;  
     }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     ftemp=fu;    return m;
     if (fabs(e) > tol1) {    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       r=(x-w)*(fx-fv);     */
       q=(x-v)*(fx-fw);  }
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  /*************************free matrix ************************/
       if (q > 0.0) p = -p;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       q=fabs(q);  {
       etemp=e;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       e=d;    free((FREE_ARG)(m+nrl-NR_END));
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  }
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {  /******************* ma3x *******************************/
         d=p/q;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         u=x+d;  {
         if (u-a < tol2 || b-u < tol2)    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
           d=SIGN(tol1,xm-x);    double ***m;
       }  
     } else {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    if (!m) nrerror("allocation failure 1 in matrix()");
     }    m += NR_END;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    m -= nrl;
     fu=(*f)(u);  
     if (fu <= fx) {    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       if (u >= x) a=x; else b=x;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       SHFT(v,w,x,u)    m[nrl] += NR_END;
         SHFT(fv,fw,fx,fu)    m[nrl] -= ncl;
         } else {  
           if (u < x) a=u; else b=u;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
           if (fu <= fw || w == x) {  
             v=w;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
             w=u;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
             fv=fw;    m[nrl][ncl] += NR_END;
             fw=fu;    m[nrl][ncl] -= nll;
           } else if (fu <= fv || v == x || v == w) {    for (j=ncl+1; j<=nch; j++) 
             v=u;      m[nrl][j]=m[nrl][j-1]+nlay;
             fv=fu;    
           }    for (i=nrl+1; i<=nrh; i++) {
         }      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   }      for (j=ncl+1; j<=nch; j++) 
   nrerror("Too many iterations in brent");        m[i][j]=m[i][j-1]+nlay;
   *xmin=x;    }
   return fx;    return m; 
 }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 /****************** mnbrak ***********************/    */
   }
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  
             double (*func)(double))  /*************************free ma3x ************************/
 {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   double ulim,u,r,q, dum;  {
   double fu;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
      free((FREE_ARG)(m[nrl]+ncl-NR_END));
   *fa=(*func)(*ax);    free((FREE_ARG)(m+nrl-NR_END));
   *fb=(*func)(*bx);  }
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)  /***************** f1dim *************************/
       SHFT(dum,*fb,*fa,dum)  extern int ncom; 
       }  extern double *pcom,*xicom;
   *cx=(*bx)+GOLD*(*bx-*ax);  extern double (*nrfunc)(double []); 
   *fc=(*func)(*cx);   
   while (*fb > *fc) {  double f1dim(double x) 
     r=(*bx-*ax)*(*fb-*fc);  { 
     q=(*bx-*cx)*(*fb-*fa);    int j; 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    double f;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    double *xt; 
     ulim=(*bx)+GLIMIT*(*cx-*bx);   
     if ((*bx-u)*(u-*cx) > 0.0) {    xt=vector(1,ncom); 
       fu=(*func)(u);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     } else if ((*cx-u)*(u-ulim) > 0.0) {    f=(*nrfunc)(xt); 
       fu=(*func)(u);    free_vector(xt,1,ncom); 
       if (fu < *fc) {    return f; 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  } 
           SHFT(*fb,*fc,fu,(*func)(u))  
           }  /*****************brent *************************/
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       u=ulim;  { 
       fu=(*func)(u);    int iter; 
     } else {    double a,b,d,etemp;
       u=(*cx)+GOLD*(*cx-*bx);    double fu,fv,fw,fx;
       fu=(*func)(u);    double ftemp;
     }    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     SHFT(*ax,*bx,*cx,u)    double e=0.0; 
       SHFT(*fa,*fb,*fc,fu)   
       }    a=(ax < cx ? ax : cx); 
 }    b=(ax > cx ? ax : cx); 
     x=w=v=bx; 
 /*************** linmin ************************/    fw=fv=fx=(*f)(x); 
     for (iter=1;iter<=ITMAX;iter++) { 
 int ncom;      xm=0.5*(a+b); 
 double *pcom,*xicom;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 double (*nrfunc)(double []);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
        printf(".");fflush(stdout);
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))      fprintf(ficlog,".");fflush(ficlog);
 {  #ifdef DEBUG
   double brent(double ax, double bx, double cx,      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
                double (*f)(double), double tol, double *xmin);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double f1dim(double x);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  #endif
               double *fc, double (*func)(double));      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   int j;        *xmin=x; 
   double xx,xmin,bx,ax;        return fx; 
   double fx,fb,fa;      } 
        ftemp=fu;
   ncom=n;      if (fabs(e) > tol1) { 
   pcom=vector(1,n);        r=(x-w)*(fx-fv); 
   xicom=vector(1,n);        q=(x-v)*(fx-fw); 
   nrfunc=func;        p=(x-v)*q-(x-w)*r; 
   for (j=1;j<=n;j++) {        q=2.0*(q-r); 
     pcom[j]=p[j];        if (q > 0.0) p = -p; 
     xicom[j]=xi[j];        q=fabs(q); 
   }        etemp=e; 
   ax=0.0;        e=d; 
   xx=1.0;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);        else { 
 #ifdef DEBUG          d=p/q; 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);          u=x+d; 
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);          if (u-a < tol2 || b-u < tol2) 
 #endif            d=SIGN(tol1,xm-x); 
   for (j=1;j<=n;j++) {        } 
     xi[j] *= xmin;      } else { 
     p[j] += xi[j];        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   }      } 
   free_vector(xicom,1,n);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   free_vector(pcom,1,n);      fu=(*f)(u); 
 }      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
 /*************** powell ************************/        SHFT(v,w,x,u) 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,          SHFT(fv,fw,fx,fu) 
             double (*func)(double []))          } else { 
 {            if (u < x) a=u; else b=u; 
   void linmin(double p[], double xi[], int n, double *fret,            if (fu <= fw || w == x) { 
               double (*func)(double []));              v=w; 
   int i,ibig,j;              w=u; 
   double del,t,*pt,*ptt,*xit;              fv=fw; 
   double fp,fptt;              fw=fu; 
   double *xits;            } else if (fu <= fv || v == x || v == w) { 
   pt=vector(1,n);              v=u; 
   ptt=vector(1,n);              fv=fu; 
   xit=vector(1,n);            } 
   xits=vector(1,n);          } 
   *fret=(*func)(p);    } 
   for (j=1;j<=n;j++) pt[j]=p[j];    nrerror("Too many iterations in brent"); 
   for (*iter=1;;++(*iter)) {    *xmin=x; 
     fp=(*fret);    return fx; 
     ibig=0;  } 
     del=0.0;  
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  /****************** mnbrak ***********************/
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       printf(" %d %.12f",i, p[i]);              double (*func)(double)) 
     fprintf(ficlog," %d %.12f",i, p[i]);  { 
     printf("\n");    double ulim,u,r,q, dum;
     fprintf(ficlog,"\n");    double fu; 
     for (i=1;i<=n;i++) {   
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    *fa=(*func)(*ax); 
       fptt=(*fret);    *fb=(*func)(*bx); 
 #ifdef DEBUG    if (*fb > *fa) { 
       printf("fret=%lf \n",*fret);      SHFT(dum,*ax,*bx,dum) 
       fprintf(ficlog,"fret=%lf \n",*fret);        SHFT(dum,*fb,*fa,dum) 
 #endif        } 
       printf("%d",i);fflush(stdout);    *cx=(*bx)+GOLD*(*bx-*ax); 
       fprintf(ficlog,"%d",i);fflush(ficlog);    *fc=(*func)(*cx); 
       linmin(p,xit,n,fret,func);    while (*fb > *fc) { 
       if (fabs(fptt-(*fret)) > del) {      r=(*bx-*ax)*(*fb-*fc); 
         del=fabs(fptt-(*fret));      q=(*bx-*cx)*(*fb-*fa); 
         ibig=i;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 #ifdef DEBUG      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       printf("%d %.12e",i,(*fret));      if ((*bx-u)*(u-*cx) > 0.0) { 
       fprintf(ficlog,"%d %.12e",i,(*fret));        fu=(*func)(u); 
       for (j=1;j<=n;j++) {      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);        fu=(*func)(u); 
         printf(" x(%d)=%.12e",j,xit[j]);        if (fu < *fc) { 
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       }            SHFT(*fb,*fc,fu,(*func)(u)) 
       for(j=1;j<=n;j++) {            } 
         printf(" p=%.12e",p[j]);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         fprintf(ficlog," p=%.12e",p[j]);        u=ulim; 
       }        fu=(*func)(u); 
       printf("\n");      } else { 
       fprintf(ficlog,"\n");        u=(*cx)+GOLD*(*cx-*bx); 
 #endif        fu=(*func)(u); 
     }      } 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      SHFT(*ax,*bx,*cx,u) 
 #ifdef DEBUG        SHFT(*fa,*fb,*fc,fu) 
       int k[2],l;        } 
       k[0]=1;  } 
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));  /*************** linmin ************************/
       fprintf(ficlog,"Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++) {  int ncom; 
         printf(" %.12e",p[j]);  double *pcom,*xicom;
         fprintf(ficlog," %.12e",p[j]);  double (*nrfunc)(double []); 
       }   
       printf("\n");  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       fprintf(ficlog,"\n");  { 
       for(l=0;l<=1;l++) {    double brent(double ax, double bx, double cx, 
         for (j=1;j<=n;j++) {                 double (*f)(double), double tol, double *xmin); 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    double f1dim(double x); 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);                double *fc, double (*func)(double)); 
         }    int j; 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    double xx,xmin,bx,ax; 
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    double fx,fb,fa;
       }   
 #endif    ncom=n; 
     pcom=vector(1,n); 
     xicom=vector(1,n); 
       free_vector(xit,1,n);    nrfunc=func; 
       free_vector(xits,1,n);    for (j=1;j<=n;j++) { 
       free_vector(ptt,1,n);      pcom[j]=p[j]; 
       free_vector(pt,1,n);      xicom[j]=xi[j]; 
       return;    } 
     }    ax=0.0; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    xx=1.0; 
     for (j=1;j<=n;j++) {    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       ptt[j]=2.0*p[j]-pt[j];    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       xit[j]=p[j]-pt[j];  #ifdef DEBUG
       pt[j]=p[j];    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fptt=(*func)(ptt);  #endif
     if (fptt < fp) {    for (j=1;j<=n;j++) { 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      xi[j] *= xmin; 
       if (t < 0.0) {      p[j] += xi[j]; 
         linmin(p,xit,n,fret,func);    } 
         for (j=1;j<=n;j++) {    free_vector(xicom,1,n); 
           xi[j][ibig]=xi[j][n];    free_vector(pcom,1,n); 
           xi[j][n]=xit[j];  } 
         }  
 #ifdef DEBUG  /*************** powell ************************/
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);              double (*func)(double [])) 
         for(j=1;j<=n;j++){  { 
           printf(" %.12e",xit[j]);    void linmin(double p[], double xi[], int n, double *fret, 
           fprintf(ficlog," %.12e",xit[j]);                double (*func)(double [])); 
         }    int i,ibig,j; 
         printf("\n");    double del,t,*pt,*ptt,*xit;
         fprintf(ficlog,"\n");    double fp,fptt;
 #endif    double *xits;
       }    pt=vector(1,n); 
     }    ptt=vector(1,n); 
   }    xit=vector(1,n); 
 }    xits=vector(1,n); 
     *fret=(*func)(p); 
 /**** Prevalence limit ****************/    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (*iter=1;;++(*iter)) { 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)      fp=(*fret); 
 {      ibig=0; 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      del=0.0; 
      matrix by transitions matrix until convergence is reached */      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
   int i, ii,j,k;      fprintf(ficrespow,"%d %.12f",*iter,*fret);
   double min, max, maxmin, maxmax,sumnew=0.;      for (i=1;i<=n;i++) {
   double **matprod2();        printf(" %d %.12f",i, p[i]);
   double **out, cov[NCOVMAX], **pmij();        fprintf(ficlog," %d %.12lf",i, p[i]);
   double **newm;        fprintf(ficrespow," %.12lf", p[i]);
   double agefin, delaymax=50 ; /* Max number of years to converge */      }
       printf("\n");
   for (ii=1;ii<=nlstate+ndeath;ii++)      fprintf(ficlog,"\n");
     for (j=1;j<=nlstate+ndeath;j++){      fprintf(ficrespow,"\n");
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      for (i=1;i<=n;i++) { 
     }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         fptt=(*fret); 
    cov[1]=1.;  #ifdef DEBUG
          printf("fret=%lf \n",*fret);
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        fprintf(ficlog,"fret=%lf \n",*fret);
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  #endif
     newm=savm;        printf("%d",i);fflush(stdout);
     /* Covariates have to be included here again */        fprintf(ficlog,"%d",i);fflush(ficlog);
      cov[2]=agefin;        linmin(p,xit,n,fret,func); 
          if (fabs(fptt-(*fret)) > del) { 
       for (k=1; k<=cptcovn;k++) {          del=fabs(fptt-(*fret)); 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          ibig=i; 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/        } 
       }  #ifdef DEBUG
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        printf("%d %.12e",i,(*fret));
       for (k=1; k<=cptcovprod;k++)        fprintf(ficlog,"%d %.12e",i,(*fret));
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        for (j=1;j<=n;j++) {
           xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/          printf(" x(%d)=%.12e",j,xit[j]);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        }
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        for(j=1;j<=n;j++) {
           printf(" p=%.12e",p[j]);
     savm=oldm;          fprintf(ficlog," p=%.12e",p[j]);
     oldm=newm;        }
     maxmax=0.;        printf("\n");
     for(j=1;j<=nlstate;j++){        fprintf(ficlog,"\n");
       min=1.;  #endif
       max=0.;      } 
       for(i=1; i<=nlstate; i++) {      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         sumnew=0;  #ifdef DEBUG
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        int k[2],l;
         prlim[i][j]= newm[i][j]/(1-sumnew);        k[0]=1;
         max=FMAX(max,prlim[i][j]);        k[1]=-1;
         min=FMIN(min,prlim[i][j]);        printf("Max: %.12e",(*func)(p));
       }        fprintf(ficlog,"Max: %.12e",(*func)(p));
       maxmin=max-min;        for (j=1;j<=n;j++) {
       maxmax=FMAX(maxmax,maxmin);          printf(" %.12e",p[j]);
     }          fprintf(ficlog," %.12e",p[j]);
     if(maxmax < ftolpl){        }
       return prlim;        printf("\n");
     }        fprintf(ficlog,"\n");
   }        for(l=0;l<=1;l++) {
 }          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 /*************** transition probabilities ***************/            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )          }
 {          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double s1, s2;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   /*double t34;*/        }
   int i,j,j1, nc, ii, jj;  #endif
   
     for(i=1; i<= nlstate; i++){  
     for(j=1; j<i;j++){        free_vector(xit,1,n); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        free_vector(xits,1,n); 
         /*s2 += param[i][j][nc]*cov[nc];*/        free_vector(ptt,1,n); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        free_vector(pt,1,n); 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        return; 
       }      } 
       ps[i][j]=s2;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      for (j=1;j<=n;j++) { 
     }        ptt[j]=2.0*p[j]-pt[j]; 
     for(j=i+1; j<=nlstate+ndeath;j++){        xit[j]=p[j]-pt[j]; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        pt[j]=p[j]; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      } 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      fptt=(*func)(ptt); 
       }      if (fptt < fp) { 
       ps[i][j]=s2;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     }        if (t < 0.0) { 
   }          linmin(p,xit,n,fret,func); 
     /*ps[3][2]=1;*/          for (j=1;j<=n;j++) { 
             xi[j][ibig]=xi[j][n]; 
   for(i=1; i<= nlstate; i++){            xi[j][n]=xit[j]; 
      s1=0;          }
     for(j=1; j<i; j++)  #ifdef DEBUG
       s1+=exp(ps[i][j]);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for(j=i+1; j<=nlstate+ndeath; j++)          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       s1+=exp(ps[i][j]);          for(j=1;j<=n;j++){
     ps[i][i]=1./(s1+1.);            printf(" %.12e",xit[j]);
     for(j=1; j<i; j++)            fprintf(ficlog," %.12e",xit[j]);
       ps[i][j]= exp(ps[i][j])*ps[i][i];          }
     for(j=i+1; j<=nlstate+ndeath; j++)          printf("\n");
       ps[i][j]= exp(ps[i][j])*ps[i][i];          fprintf(ficlog,"\n");
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  #endif
   } /* end i */        }
       } 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    } 
     for(jj=1; jj<= nlstate+ndeath; jj++){  } 
       ps[ii][jj]=0;  
       ps[ii][ii]=1;  /**** Prevalence limit (stable prevalence)  ****************/
     }  
   }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
     /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){       matrix by transitions matrix until convergence is reached */
     for(jj=1; jj<= nlstate+ndeath; jj++){  
      printf("%lf ",ps[ii][jj]);    int i, ii,j,k;
    }    double min, max, maxmin, maxmax,sumnew=0.;
     printf("\n ");    double **matprod2();
     }    double **out, cov[NCOVMAX], **pmij();
     printf("\n ");printf("%lf ",cov[2]);*/    double **newm;
 /*    double agefin, delaymax=50 ; /* Max number of years to converge */
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  
   goto end;*/    for (ii=1;ii<=nlstate+ndeath;ii++)
     return ps;      for (j=1;j<=nlstate+ndeath;j++){
 }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }
 /**************** Product of 2 matrices ******************/  
      cov[1]=1.;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)   
 {   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      newm=savm;
   /* in, b, out are matrice of pointers which should have been initialized      /* Covariates have to be included here again */
      before: only the contents of out is modified. The function returns       cov[2]=agefin;
      a pointer to pointers identical to out */    
   long i, j, k;        for (k=1; k<=cptcovn;k++) {
   for(i=nrl; i<= nrh; i++)          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     for(k=ncolol; k<=ncoloh; k++)          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        }
         out[i][k] +=in[i][j]*b[j][k];        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
   return out;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 }  
         /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 /************* Higher Matrix Product ***************/        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  
 {      savm=oldm;
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      oldm=newm;
      duration (i.e. until      maxmax=0.;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      for(j=1;j<=nlstate;j++){
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        min=1.;
      (typically every 2 years instead of every month which is too big).        max=0.;
      Model is determined by parameters x and covariates have to be        for(i=1; i<=nlstate; i++) {
      included manually here.          sumnew=0;
           for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
      */          prlim[i][j]= newm[i][j]/(1-sumnew);
           max=FMAX(max,prlim[i][j]);
   int i, j, d, h, k;          min=FMIN(min,prlim[i][j]);
   double **out, cov[NCOVMAX];        }
   double **newm;        maxmin=max-min;
         maxmax=FMAX(maxmax,maxmin);
   /* Hstepm could be zero and should return the unit matrix */      }
   for (i=1;i<=nlstate+ndeath;i++)      if(maxmax < ftolpl){
     for (j=1;j<=nlstate+ndeath;j++){        return prlim;
       oldm[i][j]=(i==j ? 1.0 : 0.0);      }
       po[i][j][0]=(i==j ? 1.0 : 0.0);    }
     }  }
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(h=1; h <=nhstepm; h++){  /*************** transition probabilities ***************/ 
     for(d=1; d <=hstepm; d++){  
       newm=savm;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       /* Covariates have to be included here again */  {
       cov[1]=1.;    double s1, s2;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    /*double t34;*/
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    int i,j,j1, nc, ii, jj;
       for (k=1; k<=cptcovage;k++)  
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      for(i=1; i<= nlstate; i++){
       for (k=1; k<=cptcovprod;k++)      for(j=1; j<i;j++){
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           /*s2 += param[i][j][nc]*cov[nc];*/
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        }
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        ps[i][j]=s2;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
       savm=oldm;      }
       oldm=newm;      for(j=i+1; j<=nlstate+ndeath;j++){
     }        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     for(i=1; i<=nlstate+ndeath; i++)          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       for(j=1;j<=nlstate+ndeath;j++) {          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
         po[i][j][h]=newm[i][j];        }
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        ps[i][j]=s2;
          */      }
       }    }
   } /* end h */      /*ps[3][2]=1;*/
   return po;  
 }    for(i=1; i<= nlstate; i++){
        s1=0;
       for(j=1; j<i; j++)
 /*************** log-likelihood *************/        s1+=exp(ps[i][j]);
 double func( double *x)      for(j=i+1; j<=nlstate+ndeath; j++)
 {        s1+=exp(ps[i][j]);
   int i, ii, j, k, mi, d, kk;      ps[i][i]=1./(s1+1.);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      for(j=1; j<i; j++)
   double **out;        ps[i][j]= exp(ps[i][j])*ps[i][i];
   double sw; /* Sum of weights */      for(j=i+1; j<=nlstate+ndeath; j++)
   double lli; /* Individual log likelihood */        ps[i][j]= exp(ps[i][j])*ps[i][i];
   long ipmx;      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   /*extern weight */    } /* end i */
   /* We are differentiating ll according to initial status */  
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   /*for(i=1;i<imx;i++)      for(jj=1; jj<= nlstate+ndeath; jj++){
     printf(" %d\n",s[4][i]);        ps[ii][jj]=0;
   */        ps[ii][ii]=1;
   cov[1]=1.;      }
     }
   for(k=1; k<=nlstate; k++) ll[k]=0.;  
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
     for(mi=1; mi<= wav[i]-1; mi++){      for(jj=1; jj<= nlstate+ndeath; jj++){
       for (ii=1;ii<=nlstate+ndeath;ii++)       printf("%lf ",ps[ii][jj]);
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);     }
       for(d=0; d<dh[mi][i]; d++){      printf("\n ");
         newm=savm;      }
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      printf("\n ");printf("%lf ",cov[2]);*/
         for (kk=1; kk<=cptcovage;kk++) {  /*
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    for(i=1; i<= npar; i++) printf("%f ",x[i]);
         }    goto end;*/
              return ps;
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  }
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  
         savm=oldm;  /**************** Product of 2 matrices ******************/
         oldm=newm;  
          double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
          {
       } /* end mult */    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
             b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    /* in, b, out are matrice of pointers which should have been initialized 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/       before: only the contents of out is modified. The function returns
       ipmx +=1;       a pointer to pointers identical to out */
       sw += weight[i];    long i, j, k;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    for(i=nrl; i<= nrh; i++)
     } /* end of wave */      for(k=ncolol; k<=ncoloh; k++)
   } /* end of individual */        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           out[i][k] +=in[i][j]*b[j][k];
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    return out;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  }
   return -l;  
 }  
   /************* Higher Matrix Product ***************/
   
 /*********** Maximum Likelihood Estimation ***************/  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   {
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    /* Computes the transition matrix starting at age 'age' over 
 {       'nhstepm*hstepm*stepm' months (i.e. until
   int i,j, iter;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   double **xi,*delti;       nhstepm*hstepm matrices. 
   double fret;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   xi=matrix(1,npar,1,npar);       (typically every 2 years instead of every month which is too big 
   for (i=1;i<=npar;i++)       for the memory).
     for (j=1;j<=npar;j++)       Model is determined by parameters x and covariates have to be 
       xi[i][j]=(i==j ? 1.0 : 0.0);       included manually here. 
   printf("Powell\n");  fprintf(ficlog,"Powell\n");  
   powell(p,xi,npar,ftol,&iter,&fret,func);       */
   
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    int i, j, d, h, k;
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    double **out, cov[NCOVMAX];
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    double **newm;
   
 }    /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=nlstate+ndeath;i++)
 /**** Computes Hessian and covariance matrix ***/      for (j=1;j<=nlstate+ndeath;j++){
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        oldm[i][j]=(i==j ? 1.0 : 0.0);
 {        po[i][j][0]=(i==j ? 1.0 : 0.0);
   double  **a,**y,*x,pd;      }
   double **hess;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   int i, j,jk;    for(h=1; h <=nhstepm; h++){
   int *indx;      for(d=1; d <=hstepm; d++){
         newm=savm;
   double hessii(double p[], double delta, int theta, double delti[]);        /* Covariates have to be included here again */
   double hessij(double p[], double delti[], int i, int j);        cov[1]=1.;
   void lubksb(double **a, int npar, int *indx, double b[]) ;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   void ludcmp(double **a, int npar, int *indx, double *d) ;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         for (k=1; k<=cptcovage;k++)
   hess=matrix(1,npar,1,npar);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
   printf("\nCalculation of the hessian matrix. Wait...\n");          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");  
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     fprintf(ficlog,"%d",i);fflush(ficlog);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     hess[i][i]=hessii(p,ftolhess,i,delti);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     /*printf(" %f ",p[i]);*/                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     /*printf(" %lf ",hess[i][i]);*/        savm=oldm;
   }        oldm=newm;
        }
   for (i=1;i<=npar;i++) {      for(i=1; i<=nlstate+ndeath; i++)
     for (j=1;j<=npar;j++)  {        for(j=1;j<=nlstate+ndeath;j++) {
       if (j>i) {          po[i][j][h]=newm[i][j];
         printf(".%d%d",i,j);fflush(stdout);          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);           */
         hess[i][j]=hessij(p,delti,i,j);        }
         hess[j][i]=hess[i][j];        } /* end h */
         /*printf(" %lf ",hess[i][j]);*/    return po;
       }  }
     }  
   }  
   printf("\n");  /*************** log-likelihood *************/
   fprintf(ficlog,"\n");  double func( double *x)
   {
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    int i, ii, j, k, mi, d, kk;
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");    double l, ll[NLSTATEMAX], cov[NCOVMAX];
      double **out;
   a=matrix(1,npar,1,npar);    double sw; /* Sum of weights */
   y=matrix(1,npar,1,npar);    double lli; /* Individual log likelihood */
   x=vector(1,npar);    int s1, s2;
   indx=ivector(1,npar);    double bbh, survp;
   for (i=1;i<=npar;i++)    long ipmx;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    /*extern weight */
   ludcmp(a,npar,indx,&pd);    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   for (j=1;j<=npar;j++) {    /*for(i=1;i<imx;i++) 
     for (i=1;i<=npar;i++) x[i]=0;      printf(" %d\n",s[4][i]);
     x[j]=1;    */
     lubksb(a,npar,indx,x);    cov[1]=1.;
     for (i=1;i<=npar;i++){  
       matcov[i][j]=x[i];    for(k=1; k<=nlstate; k++) ll[k]=0.;
     }  
   }    if(mle==1){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   printf("\n#Hessian matrix#\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   fprintf(ficlog,"\n#Hessian matrix#\n");        for(mi=1; mi<= wav[i]-1; mi++){
   for (i=1;i<=npar;i++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
     for (j=1;j<=npar;j++) {            for (j=1;j<=nlstate+ndeath;j++){
       printf("%.3e ",hess[i][j]);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficlog,"%.3e ",hess[i][j]);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
     printf("\n");          for(d=0; d<dh[mi][i]; d++){
     fprintf(ficlog,"\n");            newm=savm;
   }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   /* Recompute Inverse */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for (i=1;i<=npar;i++)            }
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   ludcmp(a,npar,indx,&pd);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
   /*  printf("\n#Hessian matrix recomputed#\n");            oldm=newm;
           } /* end mult */
   for (j=1;j<=npar;j++) {        
     for (i=1;i<=npar;i++) x[i]=0;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     x[j]=1;          /* But now since version 0.9 we anticipate for bias and large stepm.
     lubksb(a,npar,indx,x);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     for (i=1;i<=npar;i++){           * (in months) between two waves is not a multiple of stepm, we rounded to 
       y[i][j]=x[i];           * the nearest (and in case of equal distance, to the lowest) interval but now
       printf("%.3e ",y[i][j]);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       fprintf(ficlog,"%.3e ",y[i][j]);           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     }           * probability in order to take into account the bias as a fraction of the way
     printf("\n");           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     fprintf(ficlog,"\n");           * -stepm/2 to stepm/2 .
   }           * For stepm=1 the results are the same as for previous versions of Imach.
   */           * For stepm > 1 the results are less biased than in previous versions. 
            */
   free_matrix(a,1,npar,1,npar);          s1=s[mw[mi][i]][i];
   free_matrix(y,1,npar,1,npar);          s2=s[mw[mi+1][i]][i];
   free_vector(x,1,npar);          bbh=(double)bh[mi][i]/(double)stepm; 
   free_ivector(indx,1,npar);          /* bias is positive if real duration
   free_matrix(hess,1,npar,1,npar);           * is higher than the multiple of stepm and negative otherwise.
            */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 }          if( s2 > nlstate){ 
             /* i.e. if s2 is a death state and if the date of death is known then the contribution
 /*************** hessian matrix ****************/               to the likelihood is the probability to die between last step unit time and current 
 double hessii( double x[], double delta, int theta, double delti[])               step unit time, which is also the differences between probability to die before dh 
 {               and probability to die before dh-stepm . 
   int i;               In version up to 0.92 likelihood was computed
   int l=1, lmax=20;          as if date of death was unknown. Death was treated as any other
   double k1,k2;          health state: the date of the interview describes the actual state
   double p2[NPARMAX+1];          and not the date of a change in health state. The former idea was
   double res;          to consider that at each interview the state was recorded
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          (healthy, disable or death) and IMaCh was corrected; but when we
   double fx;          introduced the exact date of death then we should have modified
   int k=0,kmax=10;          the contribution of an exact death to the likelihood. This new
   double l1;          contribution is smaller and very dependent of the step unit
           stepm. It is no more the probability to die between last interview
   fx=func(x);          and month of death but the probability to survive from last
   for (i=1;i<=npar;i++) p2[i]=x[i];          interview up to one month before death multiplied by the
   for(l=0 ; l <=lmax; l++){          probability to die within a month. Thanks to Chris
     l1=pow(10,l);          Jackson for correcting this bug.  Former versions increased
     delts=delt;          mortality artificially. The bad side is that we add another loop
     for(k=1 ; k <kmax; k=k+1){          which slows down the processing. The difference can be up to 10%
       delt = delta*(l1*k);          lower mortality.
       p2[theta]=x[theta] +delt;            */
       k1=func(p2)-fx;            lli=log(out[s1][s2] - savm[s1][s2]);
       p2[theta]=x[theta]-delt;          }else{
       k2=func(p2)-fx;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       /*res= (k1-2.0*fx+k2)/delt/delt; */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          } 
                /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 #ifdef DEBUG          /*if(lli ==000.0)*/
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          ipmx +=1;
 #endif          sw += weight[i];
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        } /* end of wave */
         k=kmax;      } /* end of individual */
       }    }  else if(mle==2){
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         k=kmax; l=lmax*10.;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }        for(mi=1; mi<= wav[i]-1; mi++){
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          for (ii=1;ii<=nlstate+ndeath;ii++)
         delts=delt;            for (j=1;j<=nlstate+ndeath;j++){
       }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
   delti[theta]=delts;          for(d=0; d<=dh[mi][i]; d++){
   return res;            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 double hessij( double x[], double delti[], int thetai,int thetaj)            }
 {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int i;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int l=1, l1, lmax=20;            savm=oldm;
   double k1,k2,k3,k4,res,fx;            oldm=newm;
   double p2[NPARMAX+1];          } /* end mult */
   int k;        
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   fx=func(x);          /* But now since version 0.9 we anticipate for bias and large stepm.
   for (k=1; k<=2; k++) {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     for (i=1;i<=npar;i++) p2[i]=x[i];           * (in months) between two waves is not a multiple of stepm, we rounded to 
     p2[thetai]=x[thetai]+delti[thetai]/k;           * the nearest (and in case of equal distance, to the lowest) interval but now
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     k1=func(p2)-fx;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
             * probability in order to take into account the bias as a fraction of the way
     p2[thetai]=x[thetai]+delti[thetai]/k;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;           * -stepm/2 to stepm/2 .
     k2=func(p2)-fx;           * For stepm=1 the results are the same as for previous versions of Imach.
             * For stepm > 1 the results are less biased than in previous versions. 
     p2[thetai]=x[thetai]-delti[thetai]/k;           */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          s1=s[mw[mi][i]][i];
     k3=func(p2)-fx;          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
     p2[thetai]=x[thetai]-delti[thetai]/k;          /* bias is positive if real duration
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;           * is higher than the multiple of stepm and negative otherwise.
     k4=func(p2)-fx;           */
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 #ifdef DEBUG          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 #endif          /*if(lli ==000.0)*/
   }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   return res;          ipmx +=1;
 }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 /************** Inverse of matrix **************/        } /* end of wave */
 void ludcmp(double **a, int n, int *indx, double *d)      } /* end of individual */
 {    }  else if(mle==3){  /* exponential inter-extrapolation */
   int i,imax,j,k;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double big,dum,sum,temp;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double *vv;        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
   vv=vector(1,n);            for (j=1;j<=nlstate+ndeath;j++){
   *d=1.0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (i=1;i<=n;i++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     big=0.0;            }
     for (j=1;j<=n;j++)          for(d=0; d<dh[mi][i]; d++){
       if ((temp=fabs(a[i][j])) > big) big=temp;            newm=savm;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     vv[i]=1.0/big;            for (kk=1; kk<=cptcovage;kk++) {
   }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for (j=1;j<=n;j++) {            }
     for (i=1;i<j;i++) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       sum=a[i][j];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];            savm=oldm;
       a[i][j]=sum;            oldm=newm;
     }          } /* end mult */
     big=0.0;        
     for (i=j;i<=n;i++) {          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       sum=a[i][j];          /* But now since version 0.9 we anticipate for bias and large stepm.
       for (k=1;k<j;k++)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         sum -= a[i][k]*a[k][j];           * (in months) between two waves is not a multiple of stepm, we rounded to 
       a[i][j]=sum;           * the nearest (and in case of equal distance, to the lowest) interval but now
       if ( (dum=vv[i]*fabs(sum)) >= big) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         big=dum;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
         imax=i;           * probability in order to take into account the bias as a fraction of the way
       }           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     }           * -stepm/2 to stepm/2 .
     if (j != imax) {           * For stepm=1 the results are the same as for previous versions of Imach.
       for (k=1;k<=n;k++) {           * For stepm > 1 the results are less biased than in previous versions. 
         dum=a[imax][k];           */
         a[imax][k]=a[j][k];          s1=s[mw[mi][i]][i];
         a[j][k]=dum;          s2=s[mw[mi+1][i]][i];
       }          bbh=(double)bh[mi][i]/(double)stepm; 
       *d = -(*d);          /* bias is positive if real duration
       vv[imax]=vv[j];           * is higher than the multiple of stepm and negative otherwise.
     }           */
     indx[j]=imax;          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
     if (a[j][j] == 0.0) a[j][j]=TINY;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     if (j != n) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       dum=1.0/(a[j][j]);          /*if(lli ==000.0)*/
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     }          ipmx +=1;
   }          sw += weight[i];
   free_vector(vv,1,n);  /* Doesn't work */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 ;        } /* end of wave */
 }      } /* end of individual */
     }else if (mle==4){  /* ml=4 no inter-extrapolation */
 void lubksb(double **a, int n, int *indx, double b[])      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int i,ii=0,ip,j;        for(mi=1; mi<= wav[i]-1; mi++){
   double sum;          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   for (i=1;i<=n;i++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     ip=indx[i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     sum=b[ip];            }
     b[ip]=b[i];          for(d=0; d<dh[mi][i]; d++){
     if (ii)            newm=savm;
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     else if (sum) ii=i;            for (kk=1; kk<=cptcovage;kk++) {
     b[i]=sum;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   }            }
   for (i=n;i>=1;i--) {          
     sum=b[i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     b[i]=sum/a[i][i];            savm=oldm;
   }            oldm=newm;
 }          } /* end mult */
         
 /************ Frequencies ********************/          s1=s[mw[mi][i]][i];
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          s2=s[mw[mi+1][i]][i];
 {  /* Some frequencies */          if( s2 > nlstate){ 
              lli=log(out[s1][s2] - savm[s1][s2]);
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          }else{
   int first;            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   double ***freq; /* Frequencies */          }
   double *pp;          ipmx +=1;
   double pos, k2, dateintsum=0,k2cpt=0;          sw += weight[i];
   FILE *ficresp;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   char fileresp[FILENAMELENGTH];  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
          } /* end of wave */
   pp=vector(1,nlstate);      } /* end of individual */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   strcpy(fileresp,"p");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   strcat(fileresp,fileres);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   if((ficresp=fopen(fileresp,"w"))==NULL) {        for(mi=1; mi<= wav[i]-1; mi++){
     printf("Problem with prevalence resultfile: %s\n", fileresp);          for (ii=1;ii<=nlstate+ndeath;ii++)
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);            for (j=1;j<=nlstate+ndeath;j++){
     exit(0);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            }
   j1=0;          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   j=cptcoveff;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   first=1;            }
           
   for(k1=1; k1<=j;k1++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(i1=1; i1<=ncodemax[k1];i1++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       j1++;            savm=oldm;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);            oldm=newm;
         scanf("%d", i);*/          } /* end mult */
       for (i=-1; i<=nlstate+ndeath; i++)          
         for (jk=-1; jk<=nlstate+ndeath; jk++)            s1=s[mw[mi][i]][i];
           for(m=agemin; m <= agemax+3; m++)          s2=s[mw[mi+1][i]][i];
             freq[i][jk][m]=0;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                ipmx +=1;
       dateintsum=0;          sw += weight[i];
       k2cpt=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for (i=1; i<=imx; i++) {          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         bool=1;        } /* end of wave */
         if  (cptcovn>0) {      } /* end of individual */
           for (z1=1; z1<=cptcoveff; z1++)    } /* End of if */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
               bool=0;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         if (bool==1) {    return -l;
           for(m=firstpass; m<=lastpass; m++){  }
             k2=anint[m][i]+(mint[m][i]/12.);  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  /*************** log-likelihood *************/
               if(agev[m][i]==0) agev[m][i]=agemax+1;  double funcone( double *x)
               if(agev[m][i]==1) agev[m][i]=agemax+2;  {
               if (m<lastpass) {    int i, ii, j, k, mi, d, kk;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    double l, ll[NLSTATEMAX], cov[NCOVMAX];
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    double **out;
               }    double lli; /* Individual log likelihood */
                  int s1, s2;
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    double bbh, survp;
                 dateintsum=dateintsum+k2;    /*extern weight */
                 k2cpt++;    /* We are differentiating ll according to initial status */
               }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
             }    /*for(i=1;i<imx;i++) 
           }      printf(" %d\n",s[4][i]);
         }    */
       }    cov[1]=1.;
          
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
       if  (cptcovn>0) {    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         fprintf(ficresp, "\n#********** Variable ");      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for(mi=1; mi<= wav[i]-1; mi++){
         fprintf(ficresp, "**********\n#");        for (ii=1;ii<=nlstate+ndeath;ii++)
       }          for (j=1;j<=nlstate+ndeath;j++){
       for(i=1; i<=nlstate;i++)            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       fprintf(ficresp, "\n");          }
              for(d=0; d<dh[mi][i]; d++){
       for(i=(int)agemin; i <= (int)agemax+3; i++){          newm=savm;
         if(i==(int)agemax+3){          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           fprintf(ficlog,"Total");          for (kk=1; kk<=cptcovage;kk++) {
         }else{            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           if(first==1){          }
             first=0;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             printf("See log file for details...\n");                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           }          savm=oldm;
           fprintf(ficlog,"Age %d", i);          oldm=newm;
         }        } /* end mult */
         for(jk=1; jk <=nlstate ; jk++){        
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        s1=s[mw[mi][i]][i];
             pp[jk] += freq[jk][m][i];        s2=s[mw[mi+1][i]][i];
         }        bbh=(double)bh[mi][i]/(double)stepm; 
         for(jk=1; jk <=nlstate ; jk++){        /* bias is positive if real duration
           for(m=-1, pos=0; m <=0 ; m++)         * is higher than the multiple of stepm and negative otherwise.
             pos += freq[jk][m][i];         */
           if(pp[jk]>=1.e-10){        if( s2 > nlstate && (mle <5) ){  /* Jackson */
             if(first==1){          lli=log(out[s1][s2] - savm[s1][s2]);
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        } else if (mle==1){
             }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        } else if(mle==2){
           }else{          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
             if(first==1)        } else if(mle==3){  /* exponential inter-extrapolation */
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           }          lli=log(out[s1][s2]); /* Original formula */
         }        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           lli=log(out[s1][s2]); /* Original formula */
         for(jk=1; jk <=nlstate ; jk++){        } /* End of if */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        ipmx +=1;
             pp[jk] += freq[jk][m][i];        sw += weight[i];
         }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         for(jk=1,pos=0; jk <=nlstate ; jk++)        if(globpr){
           pos += pp[jk];          fprintf(ficresilk,"%ld %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
         for(jk=1; jk <=nlstate ; jk++){   %10.6f %10.6f %10.6f ", \
           if(pos>=1.e-5){                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
             if(first==1)                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          for(k=1,l=0.; k<=nlstate; k++) 
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            fprintf(ficresilk," %10.6f",ll[k]);
           }else{          fprintf(ficresilk,"\n");
             if(first==1)        }
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      } /* end of wave */
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    } /* end of individual */
           }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           if( i <= (int) agemax){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
             if(pos>=1.e-5){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    return -l;
               probs[i][jk][j1]= pp[jk]/pos;  }
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  
             }  
             else  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpr, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  {
           }    /* This routine should help understanding what is done with the selection of individuals/waves and
         }       to check the exact contribution to the likelihood.
               Plotting could be done.
         for(jk=-1; jk <=nlstate+ndeath; jk++)     */
           for(m=-1; m <=nlstate+ndeath; m++)    int k;
             if(freq[jk][m][i] !=0 ) {    if(globpr !=0){ /* Just counts and sums no printings */
             if(first==1)      strcpy(fileresilk,"ilk"); 
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      strcat(fileresilk,fileres);
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
             }        printf("Problem with resultfile: %s\n", fileresilk);
         if(i <= (int) agemax)        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
           fprintf(ficresp,"\n");      }
         if(first==1)      fprintf(ficresilk, "#individual(line's record) s1 s2 wave# effective_wave# number_of_product_matrix pij weight 2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state\n");
           printf("Others in log...\n");      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight out sav ");
         fprintf(ficlog,"\n");      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       }      for(k=1; k<=nlstate; k++) 
     }        fprintf(ficresilk," ll[%d]",k);
   }      fprintf(ficresilk,"\n");
   dateintmean=dateintsum/k2cpt;    }
    
   fclose(ficresp);    *fretone=(*funcone)(p);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    if(globpr !=0){
   free_vector(pp,1,nlstate);      fclose(ficresilk);
        if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
   /* End of Freq */        printf("Problem with html file: %s\n", optionfilehtm);
 }        fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
         exit(0);
 /************ Prevalence ********************/      }
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)      else{
 {  /* Some frequencies */        fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",fileresilk);
          fclose(fichtm);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      }
   double ***freq; /* Frequencies */    }
   double *pp;    return;
   double pos, k2;  }
   
   pp=vector(1,nlstate);  /*********** Maximum Likelihood Estimation ***************/
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
    void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  {
   j1=0;    int i,j, iter;
      double **xi;
   j=cptcoveff;    double fret;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    double fretone; /* Only one call to likelihood */
      char filerespow[FILENAMELENGTH];
   for(k1=1; k1<=j;k1++){    xi=matrix(1,npar,1,npar);
     for(i1=1; i1<=ncodemax[k1];i1++){    for (i=1;i<=npar;i++)
       j1++;      for (j=1;j<=npar;j++)
              xi[i][j]=(i==j ? 1.0 : 0.0);
       for (i=-1; i<=nlstate+ndeath; i++)      printf("Powell\n");  fprintf(ficlog,"Powell\n");
         for (jk=-1; jk<=nlstate+ndeath; jk++)      strcpy(filerespow,"pow"); 
           for(m=agemin; m <= agemax+3; m++)    strcat(filerespow,fileres);
             freq[i][jk][m]=0;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
            printf("Problem with resultfile: %s\n", filerespow);
       for (i=1; i<=imx; i++) {      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         bool=1;    }
         if  (cptcovn>0) {    fprintf(ficrespow,"# Powell\n# iter -2*LL");
           for (z1=1; z1<=cptcoveff; z1++)    for (i=1;i<=nlstate;i++)
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      for(j=1;j<=nlstate+ndeath;j++)
               bool=0;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         }    fprintf(ficrespow,"\n");
         if (bool==1) {  
           for(m=firstpass; m<=lastpass; m++){    powell(p,xi,npar,ftol,&iter,&fret,func);
             k2=anint[m][i]+(mint[m][i]/12.);  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    fclose(ficrespow);
               if(agev[m][i]==0) agev[m][i]=agemax+1;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
               if(agev[m][i]==1) agev[m][i]=agemax+2;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
               if (m<lastpass) {    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
                 if (calagedate>0)  
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  }
                 else  
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  /**** Computes Hessian and covariance matrix ***/
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
               }  {
             }    double  **a,**y,*x,pd;
           }    double **hess;
         }    int i, j,jk;
       }    int *indx;
       for(i=(int)agemin; i <= (int)agemax+3; i++){  
         for(jk=1; jk <=nlstate ; jk++){    double hessii(double p[], double delta, int theta, double delti[]);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    double hessij(double p[], double delti[], int i, int j);
             pp[jk] += freq[jk][m][i];    void lubksb(double **a, int npar, int *indx, double b[]) ;
         }    void ludcmp(double **a, int npar, int *indx, double *d) ;
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pos=0; m <=0 ; m++)    hess=matrix(1,npar,1,npar);
             pos += freq[jk][m][i];  
         }    printf("\nCalculation of the hessian matrix. Wait...\n");
            fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         for(jk=1; jk <=nlstate ; jk++){    for (i=1;i<=npar;i++){
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      printf("%d",i);fflush(stdout);
             pp[jk] += freq[jk][m][i];      fprintf(ficlog,"%d",i);fflush(ficlog);
         }      hess[i][i]=hessii(p,ftolhess,i,delti);
              /*printf(" %f ",p[i]);*/
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];      /*printf(" %lf ",hess[i][i]);*/
            }
         for(jk=1; jk <=nlstate ; jk++){        
           if( i <= (int) agemax){    for (i=1;i<=npar;i++) {
             if(pos>=1.e-5){      for (j=1;j<=npar;j++)  {
               probs[i][jk][j1]= pp[jk]/pos;        if (j>i) { 
             }          printf(".%d%d",i,j);fflush(stdout);
           }          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         }/* end jk */          hess[i][j]=hessij(p,delti,i,j);
       }/* end i */          hess[j][i]=hess[i][j];    
     } /* end i1 */          /*printf(" %lf ",hess[i][j]);*/
   } /* end k1 */        }
       }
      }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    printf("\n");
   free_vector(pp,1,nlstate);    fprintf(ficlog,"\n");
    
 }  /* End of Freq */    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 /************* Waves Concatenation ***************/    
     a=matrix(1,npar,1,npar);
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    y=matrix(1,npar,1,npar);
 {    x=vector(1,npar);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    indx=ivector(1,npar);
      Death is a valid wave (if date is known).    for (i=1;i<=npar;i++)
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    ludcmp(a,npar,indx,&pd);
      and mw[mi+1][i]. dh depends on stepm.  
      */    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
   int i, mi, m;      x[j]=1;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      lubksb(a,npar,indx,x);
      double sum=0., jmean=0.;*/      for (i=1;i<=npar;i++){ 
   int first;        matcov[i][j]=x[i];
   int j, k=0,jk, ju, jl;      }
   double sum=0.;    }
   first=0;  
   jmin=1e+5;    printf("\n#Hessian matrix#\n");
   jmax=-1;    fprintf(ficlog,"\n#Hessian matrix#\n");
   jmean=0.;    for (i=1;i<=npar;i++) { 
   for(i=1; i<=imx; i++){      for (j=1;j<=npar;j++) { 
     mi=0;        printf("%.3e ",hess[i][j]);
     m=firstpass;        fprintf(ficlog,"%.3e ",hess[i][j]);
     while(s[m][i] <= nlstate){      }
       if(s[m][i]>=1)      printf("\n");
         mw[++mi][i]=m;      fprintf(ficlog,"\n");
       if(m >=lastpass)    }
         break;  
       else    /* Recompute Inverse */
         m++;    for (i=1;i<=npar;i++)
     }/* end while */      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     if (s[m][i] > nlstate){    ludcmp(a,npar,indx,&pd);
       mi++;     /* Death is another wave */  
       /* if(mi==0)  never been interviewed correctly before death */    /*  printf("\n#Hessian matrix recomputed#\n");
          /* Only death is a correct wave */  
       mw[mi][i]=m;    for (j=1;j<=npar;j++) {
     }      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
     wav[i]=mi;      lubksb(a,npar,indx,x);
     if(mi==0){      for (i=1;i<=npar;i++){ 
       if(first==0){        y[i][j]=x[i];
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);        printf("%.3e ",y[i][j]);
         first=1;        fprintf(ficlog,"%.3e ",y[i][j]);
       }      }
       if(first==1){      printf("\n");
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);      fprintf(ficlog,"\n");
       }    }
     } /* end mi==0 */    */
   }  
     free_matrix(a,1,npar,1,npar);
   for(i=1; i<=imx; i++){    free_matrix(y,1,npar,1,npar);
     for(mi=1; mi<wav[i];mi++){    free_vector(x,1,npar);
       if (stepm <=0)    free_ivector(indx,1,npar);
         dh[mi][i]=1;    free_matrix(hess,1,npar,1,npar);
       else{  
         if (s[mw[mi+1][i]][i] > nlstate) {  
           if (agedc[i] < 2*AGESUP) {  }
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  
           if(j==0) j=1;  /* Survives at least one month after exam */  /*************** hessian matrix ****************/
           k=k+1;  double hessii( double x[], double delta, int theta, double delti[])
           if (j >= jmax) jmax=j;  {
           if (j <= jmin) jmin=j;    int i;
           sum=sum+j;    int l=1, lmax=20;
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    double k1,k2;
           }    double p2[NPARMAX+1];
         }    double res;
         else{    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    double fx;
           k=k+1;    int k=0,kmax=10;
           if (j >= jmax) jmax=j;    double l1;
           else if (j <= jmin)jmin=j;  
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    fx=func(x);
           sum=sum+j;    for (i=1;i<=npar;i++) p2[i]=x[i];
         }    for(l=0 ; l <=lmax; l++){
         jk= j/stepm;      l1=pow(10,l);
         jl= j -jk*stepm;      delts=delt;
         ju= j -(jk+1)*stepm;      for(k=1 ; k <kmax; k=k+1){
         if(jl <= -ju)        delt = delta*(l1*k);
           dh[mi][i]=jk;        p2[theta]=x[theta] +delt;
         else        k1=func(p2)-fx;
           dh[mi][i]=jk+1;        p2[theta]=x[theta]-delt;
         if(dh[mi][i]==0)        k2=func(p2)-fx;
           dh[mi][i]=1; /* At least one step */        /*res= (k1-2.0*fx+k2)/delt/delt; */
       }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     }        
   }  #ifdef DEBUG
   jmean=sum/k;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  #endif
  }        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 /*********** Tricode ****************************/          k=kmax;
 void tricode(int *Tvar, int **nbcode, int imx)        }
 {        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   int Ndum[20],ij=1, k, j, i;          k=kmax; l=lmax*10.;
   int cptcode=0;        }
   cptcoveff=0;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
            delts=delt;
   for (k=0; k<19; k++) Ndum[k]=0;        }
   for (k=1; k<=7; k++) ncodemax[k]=0;      }
     }
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    delti[theta]=delts;
     for (i=1; i<=imx; i++) {    return res; 
       ij=(int)(covar[Tvar[j]][i]);    
       Ndum[ij]++;  }
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/  
       if (ij > cptcode) cptcode=ij;  double hessij( double x[], double delti[], int thetai,int thetaj)
     }  {
     int i;
     for (i=0; i<=cptcode; i++) {    int l=1, l1, lmax=20;
       if(Ndum[i]!=0) ncodemax[j]++;    double k1,k2,k3,k4,res,fx;
     }    double p2[NPARMAX+1];
     ij=1;    int k;
   
     fx=func(x);
     for (i=1; i<=ncodemax[j]; i++) {    for (k=1; k<=2; k++) {
       for (k=0; k<=19; k++) {      for (i=1;i<=npar;i++) p2[i]=x[i];
         if (Ndum[k] != 0) {      p2[thetai]=x[thetai]+delti[thetai]/k;
           nbcode[Tvar[j]][ij]=k;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
                k1=func(p2)-fx;
           ij++;    
         }      p2[thetai]=x[thetai]+delti[thetai]/k;
         if (ij > ncodemax[j]) break;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       }        k2=func(p2)-fx;
     }    
   }        p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
  for (k=0; k<19; k++) Ndum[k]=0;      k3=func(p2)-fx;
     
  for (i=1; i<=ncovmodel-2; i++) {      p2[thetai]=x[thetai]-delti[thetai]/k;
    ij=Tvar[i];      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
    Ndum[ij]++;      k4=func(p2)-fx;
  }      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   #ifdef DEBUG
  ij=1;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
  for (i=1; i<=10; i++) {      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
    if((Ndum[i]!=0) && (i<=ncovcol)){  #endif
      Tvaraff[ij]=i;    }
      ij++;    return res;
    }  }
  }  
    /************** Inverse of matrix **************/
  cptcoveff=ij-1;  void ludcmp(double **a, int n, int *indx, double *d) 
 }  { 
     int i,imax,j,k; 
 /*********** Health Expectancies ****************/    double big,dum,sum,temp; 
     double *vv; 
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )   
     vv=vector(1,n); 
 {    *d=1.0; 
   /* Health expectancies */    for (i=1;i<=n;i++) { 
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;      big=0.0; 
   double age, agelim, hf;      for (j=1;j<=n;j++) 
   double ***p3mat,***varhe;        if ((temp=fabs(a[i][j])) > big) big=temp; 
   double **dnewm,**doldm;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   double *xp;      vv[i]=1.0/big; 
   double **gp, **gm;    } 
   double ***gradg, ***trgradg;    for (j=1;j<=n;j++) { 
   int theta;      for (i=1;i<j;i++) { 
         sum=a[i][j]; 
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   xp=vector(1,npar);        a[i][j]=sum; 
   dnewm=matrix(1,nlstate*2,1,npar);      } 
   doldm=matrix(1,nlstate*2,1,nlstate*2);      big=0.0; 
        for (i=j;i<=n;i++) { 
   fprintf(ficreseij,"# Health expectancies\n");        sum=a[i][j]; 
   fprintf(ficreseij,"# Age");        for (k=1;k<j;k++) 
   for(i=1; i<=nlstate;i++)          sum -= a[i][k]*a[k][j]; 
     for(j=1; j<=nlstate;j++)        a[i][j]=sum; 
       fprintf(ficreseij," %1d-%1d (SE)",i,j);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   fprintf(ficreseij,"\n");          big=dum; 
           imax=i; 
   if(estepm < stepm){        } 
     printf ("Problem %d lower than %d\n",estepm, stepm);      } 
   }      if (j != imax) { 
   else  hstepm=estepm;          for (k=1;k<=n;k++) { 
   /* We compute the life expectancy from trapezoids spaced every estepm months          dum=a[imax][k]; 
    * This is mainly to measure the difference between two models: for example          a[imax][k]=a[j][k]; 
    * if stepm=24 months pijx are given only every 2 years and by summing them          a[j][k]=dum; 
    * we are calculating an estimate of the Life Expectancy assuming a linear        } 
    * progression inbetween and thus overestimating or underestimating according        *d = -(*d); 
    * to the curvature of the survival function. If, for the same date, we        vv[imax]=vv[j]; 
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      } 
    * to compare the new estimate of Life expectancy with the same linear      indx[j]=imax; 
    * hypothesis. A more precise result, taking into account a more precise      if (a[j][j] == 0.0) a[j][j]=TINY; 
    * curvature will be obtained if estepm is as small as stepm. */      if (j != n) { 
         dum=1.0/(a[j][j]); 
   /* For example we decided to compute the life expectancy with the smallest unit */        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      } 
      nhstepm is the number of hstepm from age to agelim    } 
      nstepm is the number of stepm from age to agelin.    free_vector(vv,1,n);  /* Doesn't work */
      Look at hpijx to understand the reason of that which relies in memory size  ;
      and note for a fixed period like estepm months */  } 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it  void lubksb(double **a, int n, int *indx, double b[]) 
      means that if the survival funtion is printed only each two years of age and if  { 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    int i,ii=0,ip,j; 
      results. So we changed our mind and took the option of the best precision.    double sum; 
   */   
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    for (i=1;i<=n;i++) { 
       ip=indx[i]; 
   agelim=AGESUP;      sum=b[ip]; 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      b[ip]=b[i]; 
     /* nhstepm age range expressed in number of stepm */      if (ii) 
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */      else if (sum) ii=i; 
     /* if (stepm >= YEARM) hstepm=1;*/      b[i]=sum; 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    } 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (i=n;i>=1;i--) { 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);      sum=b[i]; 
     gp=matrix(0,nhstepm,1,nlstate*2);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     gm=matrix(0,nhstepm,1,nlstate*2);      b[i]=sum/a[i][i]; 
     } 
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  } 
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    /************ Frequencies ********************/
    void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
   {  /* Some frequencies */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    
     int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     /* Computing Variances of health expectancies */    int first;
     double ***freq; /* Frequencies */
      for(theta=1; theta <=npar; theta++){    double *pp, **prop;
       for(i=1; i<=npar; i++){    double pos,posprop, k2, dateintsum=0,k2cpt=0;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    FILE *ficresp;
       }    char fileresp[FILENAMELENGTH];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      
      pp=vector(1,nlstate);
       cptj=0;    prop=matrix(1,nlstate,iagemin,iagemax+3);
       for(j=1; j<= nlstate; j++){    strcpy(fileresp,"p");
         for(i=1; i<=nlstate; i++){    strcat(fileresp,fileres);
           cptj=cptj+1;    if((ficresp=fopen(fileresp,"w"))==NULL) {
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      printf("Problem with prevalence resultfile: %s\n", fileresp);
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
           }      exit(0);
         }    }
       }    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
          j1=0;
          
       for(i=1; i<=npar; i++)    j=cptcoveff;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
          first=1;
       cptj=0;  
       for(j=1; j<= nlstate; j++){    for(k1=1; k1<=j;k1++){
         for(i=1;i<=nlstate;i++){      for(i1=1; i1<=ncodemax[k1];i1++){
           cptj=cptj+1;        j1++;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          scanf("%d", i);*/
           }        for (i=-1; i<=nlstate+ndeath; i++)  
         }          for (jk=-1; jk<=nlstate+ndeath; jk++)  
       }            for(m=iagemin; m <= iagemax+3; m++)
       for(j=1; j<= nlstate*2; j++)              freq[i][jk][m]=0;
         for(h=0; h<=nhstepm-1; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      for (i=1; i<=nlstate; i++)  
         }        for(m=iagemin; m <= iagemax+3; m++)
      }          prop[i][m]=0;
            
 /* End theta */        dateintsum=0;
         k2cpt=0;
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);        for (i=1; i<=imx; i++) {
           bool=1;
      for(h=0; h<=nhstepm-1; h++)          if  (cptcovn>0) {
       for(j=1; j<=nlstate*2;j++)            for (z1=1; z1<=cptcoveff; z1++) 
         for(theta=1; theta <=npar; theta++)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
           trgradg[h][j][theta]=gradg[h][theta][j];                bool=0;
                }
           if (bool==1){
      for(i=1;i<=nlstate*2;i++)            for(m=firstpass; m<=lastpass; m++){
       for(j=1;j<=nlstate*2;j++)              k2=anint[m][i]+(mint[m][i]/12.);
         varhe[i][j][(int)age] =0.;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
      printf("%d|",(int)age);fflush(stdout);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
      for(h=0;h<=nhstepm-1;h++){                if (m<lastpass) {
       for(k=0;k<=nhstepm-1;k++){                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);                }
         for(i=1;i<=nlstate*2;i++)                
           for(j=1;j<=nlstate*2;j++)                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;                  dateintsum=dateintsum+k2;
       }                  k2cpt++;
     }                }
     /* Computing expectancies */                /*}*/
     for(i=1; i<=nlstate;i++)            }
       for(j=1; j<=nlstate;j++)          }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        }
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;         
                  /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  
         if  (cptcovn>0) {
         }          fprintf(ficresp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fprintf(ficreseij,"%3.0f",age );          fprintf(ficresp, "**********\n#");
     cptj=0;        }
     for(i=1; i<=nlstate;i++)        for(i=1; i<=nlstate;i++) 
       for(j=1; j<=nlstate;j++){          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         cptj++;        fprintf(ficresp, "\n");
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        
       }        for(i=iagemin; i <= iagemax+3; i++){
     fprintf(ficreseij,"\n");          if(i==iagemax+3){
                fprintf(ficlog,"Total");
     free_matrix(gm,0,nhstepm,1,nlstate*2);          }else{
     free_matrix(gp,0,nhstepm,1,nlstate*2);            if(first==1){
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);              first=0;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);              printf("See log file for details...\n");
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
   }            fprintf(ficlog,"Age %d", i);
   printf("\n");          }
   fprintf(ficlog,"\n");          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   free_vector(xp,1,npar);              pp[jk] += freq[jk][m][i]; 
   free_matrix(dnewm,1,nlstate*2,1,npar);          }
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);          for(jk=1; jk <=nlstate ; jk++){
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);            for(m=-1, pos=0; m <=0 ; m++)
 }              pos += freq[jk][m][i];
             if(pp[jk]>=1.e-10){
 /************ Variance ******************/              if(first==1){
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 {              }
   /* Variance of health expectancies */              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            }else{
   /* double **newm;*/              if(first==1)
   double **dnewm,**doldm;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   double **dnewmp,**doldmp;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   int i, j, nhstepm, hstepm, h, nstepm ;            }
   int k, cptcode;          }
   double *xp;  
   double **gp, **gm;  /* for var eij */          for(jk=1; jk <=nlstate ; jk++){
   double ***gradg, ***trgradg; /*for var eij */            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   double **gradgp, **trgradgp; /* for var p point j */              pp[jk] += freq[jk][m][i];
   double *gpp, *gmp; /* for var p point j */          }       
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   double ***p3mat;            pos += pp[jk];
   double age,agelim, hf;            posprop += prop[jk][i];
   int theta;          }
   char digit[4];          for(jk=1; jk <=nlstate ; jk++){
   char digitp[16];            if(pos>=1.e-5){
               if(first==1)
   char fileresprobmorprev[FILENAMELENGTH];                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   if(popbased==1)            }else{
     strcpy(digitp,"-populbased-");              if(first==1)
   else                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     strcpy(digitp,"-stablbased-");              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             }
   strcpy(fileresprobmorprev,"prmorprev");            if( i <= iagemax){
   sprintf(digit,"%-d",ij);              if(pos>=1.e-5){
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   strcat(fileresprobmorprev,digit); /* Tvar to be done */                /*probs[i][jk][j1]= pp[jk]/pos;*/
   strcat(fileresprobmorprev,digitp); /* Popbased or not */                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   strcat(fileresprobmorprev,fileres);              }
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {              else
     printf("Problem with resultfile: %s\n", fileresprobmorprev);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);            }
   }          }
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);          
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);          for(jk=-1; jk <=nlstate+ndeath; jk++)
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");            for(m=-1; m <=nlstate+ndeath; m++)
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);              if(freq[jk][m][i] !=0 ) {
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){              if(first==1)
     fprintf(ficresprobmorprev," p.%-d SE",j);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     for(i=1; i<=nlstate;i++)                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);              }
   }            if(i <= iagemax)
   fprintf(ficresprobmorprev,"\n");            fprintf(ficresp,"\n");
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          if(first==1)
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);            printf("Others in log...\n");
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);          fprintf(ficlog,"\n");
     exit(0);        }
   }      }
   else{    }
     fprintf(ficgp,"\n# Routine varevsij");    dateintmean=dateintsum/k2cpt; 
   }   
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    fclose(ficresp);
     printf("Problem with html file: %s\n", optionfilehtm);    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    free_vector(pp,1,nlstate);
     exit(0);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   }    /* End of Freq */
   else{  }
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");  
   }  /************ Prevalence ********************/
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   {  
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   fprintf(ficresvij,"# Age");       in each health status at the date of interview (if between dateprev1 and dateprev2).
   for(i=1; i<=nlstate;i++)       We still use firstpass and lastpass as another selection.
     for(j=1; j<=nlstate;j++)    */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);   
   fprintf(ficresvij,"\n");    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     double ***freq; /* Frequencies */
   xp=vector(1,npar);    double *pp, **prop;
   dnewm=matrix(1,nlstate,1,npar);    double pos,posprop; 
   doldm=matrix(1,nlstate,1,nlstate);    double  y2; /* in fractional years */
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);    int iagemin, iagemax;
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  
     iagemin= (int) agemin;
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);    iagemax= (int) agemax;
   gpp=vector(nlstate+1,nlstate+ndeath);    /*pp=vector(1,nlstate);*/
   gmp=vector(nlstate+1,nlstate+ndeath);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
      j1=0;
   if(estepm < stepm){    
     printf ("Problem %d lower than %d\n",estepm, stepm);    j=cptcoveff;
   }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   else  hstepm=estepm;      
   /* For example we decided to compute the life expectancy with the smallest unit */    for(k1=1; k1<=j;k1++){
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      for(i1=1; i1<=ncodemax[k1];i1++){
      nhstepm is the number of hstepm from age to agelim        j1++;
      nstepm is the number of stepm from age to agelin.        
      Look at hpijx to understand the reason of that which relies in memory size        for (i=1; i<=nlstate; i++)  
      and note for a fixed period like k years */          for(m=iagemin; m <= iagemax+3; m++)
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            prop[i][m]=0.0;
      survival function given by stepm (the optimization length). Unfortunately it       
      means that if the survival funtion is printed only each two years of age and if        for (i=1; i<=imx; i++) { /* Each individual */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          bool=1;
      results. So we changed our mind and took the option of the best precision.          if  (cptcovn>0) {
   */            for (z1=1; z1<=cptcoveff; z1++) 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   agelim = AGESUP;                bool=0;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          } 
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          if (bool==1) { 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     gp=matrix(0,nhstepm,1,nlstate);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     gm=matrix(0,nhstepm,1,nlstate);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
     for(theta=1; theta <=npar; theta++){                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       for(i=1; i<=npar; i++){ /* Computes gradient */                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                  prop[s[m][i]][iagemax+3] += weight[i]; 
       }                } 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            } /* end selection of waves */
           }
       if (popbased==1) {        }
         for(i=1; i<=nlstate;i++)        for(i=iagemin; i <= iagemax+3; i++){  
           prlim[i][i]=probs[(int)age][i][ij];          
       }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
              posprop += prop[jk][i]; 
       for(j=1; j<= nlstate; j++){          } 
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          for(jk=1; jk <=nlstate ; jk++){     
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];            if( i <=  iagemax){ 
         }              if(posprop>=1.e-5){ 
       }                probs[i][jk][j1]= prop[jk][i]/posprop;
       /* This for computing forces of mortality (h=1)as a weighted average */              } 
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){            } 
         for(i=1; i<= nlstate; i++)          }/* end jk */ 
           gpp[j] += prlim[i][i]*p3mat[i][j][1];        }/* end i */ 
       }          } /* end i1 */
       /* end force of mortality */    } /* end k1 */
     
       for(i=1; i<=npar; i++) /* Computes gradient */    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    /*free_vector(pp,1,nlstate);*/
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  }  /* End of prevalence */
    
       if (popbased==1) {  /************* Waves Concatenation ***************/
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       }  {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       for(j=1; j<= nlstate; j++){       Death is a valid wave (if date is known).
         for(h=0; h<=nhstepm; h++){       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];       and mw[mi+1][i]. dh depends on stepm.
         }       */
       }  
       /* This for computing force of mortality (h=1)as a weighted average */    int i, mi, m;
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         for(i=1; i<= nlstate; i++)       double sum=0., jmean=0.;*/
           gmp[j] += prlim[i][i]*p3mat[i][j][1];    int first;
       }        int j, k=0,jk, ju, jl;
       /* end force of mortality */    double sum=0.;
     first=0;
       for(j=1; j<= nlstate; j++) /* vareij */    jmin=1e+5;
         for(h=0; h<=nhstepm; h++){    jmax=-1;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    jmean=0.;
         }    for(i=1; i<=imx; i++){
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */      mi=0;
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];      m=firstpass;
       }      while(s[m][i] <= nlstate){
         if(s[m][i]>=1)
     } /* End theta */          mw[++mi][i]=m;
         if(m >=lastpass)
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */          break;
         else
     for(h=0; h<=nhstepm; h++) /* veij */          m++;
       for(j=1; j<=nlstate;j++)      }/* end while */
         for(theta=1; theta <=npar; theta++)      if (s[m][i] > nlstate){
           trgradg[h][j][theta]=gradg[h][theta][j];        mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */           /* Only death is a correct wave */
       for(theta=1; theta <=npar; theta++)        mw[mi][i]=m;
         trgradgp[j][theta]=gradgp[theta][j];      }
   
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      wav[i]=mi;
     for(i=1;i<=nlstate;i++)      if(mi==0){
       for(j=1;j<=nlstate;j++)        if(first==0){
         vareij[i][j][(int)age] =0.;          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
     for(h=0;h<=nhstepm;h++){        }
       for(k=0;k<=nhstepm;k++){        if(first==1){
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        }
         for(i=1;i<=nlstate;i++)      } /* end mi==0 */
           for(j=1;j<=nlstate;j++)    } /* End individuals */
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;  
       }    for(i=1; i<=imx; i++){
     }      for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
     /* pptj */          dh[mi][i]=1;
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);        else{
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     for(j=nlstate+1;j<=nlstate+ndeath;j++)            if (agedc[i] < 2*AGESUP) {
       for(i=nlstate+1;i<=nlstate+ndeath;i++)              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
         varppt[j][i]=doldmp[j][i];              if(j==0) j=1;  /* Survives at least one month after exam */
     /* end ppptj */              else if(j<0){
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);                  printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);                j=1; /* Careful Patch */
                  printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
     if (popbased==1) {                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for(i=1; i<=nlstate;i++)                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
         prlim[i][i]=probs[(int)age][i][ij];              }
     }              k=k+1;
                  if (j >= jmax) jmax=j;
     /* This for computing force of mortality (h=1)as a weighted average */              if (j <= jmin) jmin=j;
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){              sum=sum+j;
       for(i=1; i<= nlstate; i++)              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         gmp[j] += prlim[i][i]*p3mat[i][j][1];              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     }                }
     /* end force of mortality */          }
           else{
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));            k=k+1;
       for(i=1; i<=nlstate;i++){            if (j >= jmax) jmax=j;
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);            else if (j <= jmin)jmin=j;
       }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     fprintf(ficresprobmorprev,"\n");            if(j<0){
               printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fprintf(ficresvij,"%.0f ",age );              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     for(i=1; i<=nlstate;i++)            }
       for(j=1; j<=nlstate;j++){            sum=sum+j;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          }
       }          jk= j/stepm;
     fprintf(ficresvij,"\n");          jl= j -jk*stepm;
     free_matrix(gp,0,nhstepm,1,nlstate);          ju= j -(jk+1)*stepm;
     free_matrix(gm,0,nhstepm,1,nlstate);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);            if(jl==0){
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);              dh[mi][i]=jk;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              bh[mi][i]=0;
   } /* End age */            }else{ /* We want a negative bias in order to only have interpolation ie
   free_vector(gpp,nlstate+1,nlstate+ndeath);                    * at the price of an extra matrix product in likelihood */
   free_vector(gmp,nlstate+1,nlstate+ndeath);              dh[mi][i]=jk+1;
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);              bh[mi][i]=ju;
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/            }
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");          }else{
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */            if(jl <= -ju){
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");              dh[mi][i]=jk;
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);              bh[mi][i]=jl;       /* bias is positive if real duration
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);                                   * is higher than the multiple of stepm and negative otherwise.
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);                                   */
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);            }
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);            else{
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
   free_vector(xp,1,npar);            }
   free_matrix(doldm,1,nlstate,1,nlstate);            if(dh[mi][i]==0){
   free_matrix(dnewm,1,nlstate,1,npar);              dh[mi][i]=1; /* At least one step */
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);              bh[mi][i]=ju; /* At least one step */
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            }
   fclose(ficresprobmorprev);          } /* end if mle */
   fclose(ficgp);        }
   fclose(fichtm);      } /* end wave */
     }
 }    jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
 /************ Variance of prevlim ******************/    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)   }
 {  
   /* Variance of prevalence limit */  /*********** Tricode ****************************/
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  void tricode(int *Tvar, int **nbcode, int imx)
   double **newm;  {
   double **dnewm,**doldm;    
   int i, j, nhstepm, hstepm;    int Ndum[20],ij=1, k, j, i, maxncov=19;
   int k, cptcode;    int cptcode=0;
   double *xp;    cptcoveff=0; 
   double *gp, *gm;   
   double **gradg, **trgradg;    for (k=0; k<maxncov; k++) Ndum[k]=0;
   double age,agelim;    for (k=1; k<=7; k++) ncodemax[k]=0;
   int theta;  
        for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   fprintf(ficresvpl,"# Age");                                 modality*/ 
   for(i=1; i<=nlstate;i++)        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
       fprintf(ficresvpl," %1d-%1d",i,i);        Ndum[ij]++; /*store the modality */
   fprintf(ficresvpl,"\n");        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   xp=vector(1,npar);                                         Tvar[j]. If V=sex and male is 0 and 
   dnewm=matrix(1,nlstate,1,npar);                                         female is 1, then  cptcode=1.*/
   doldm=matrix(1,nlstate,1,nlstate);      }
    
   hstepm=1*YEARM; /* Every year of age */      for (i=0; i<=cptcode; i++) {
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   agelim = AGESUP;      }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      ij=1; 
     if (stepm >= YEARM) hstepm=1;      for (i=1; i<=ncodemax[j]; i++) {
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        for (k=0; k<= maxncov; k++) {
     gradg=matrix(1,npar,1,nlstate);          if (Ndum[k] != 0) {
     gp=vector(1,nlstate);            nbcode[Tvar[j]][ij]=k; 
     gm=vector(1,nlstate);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
             
     for(theta=1; theta <=npar; theta++){            ij++;
       for(i=1; i<=npar; i++){ /* Computes gradient */          }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          if (ij > ncodemax[j]) break; 
       }        }  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      } 
       for(i=1;i<=nlstate;i++)    }  
         gp[i] = prlim[i][i];  
       for (k=0; k< maxncov; k++) Ndum[k]=0;
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);   for (i=1; i<=ncovmodel-2; i++) { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       for(i=1;i<=nlstate;i++)     ij=Tvar[i];
         gm[i] = prlim[i][i];     Ndum[ij]++;
    }
       for(i=1;i<=nlstate;i++)  
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];   ij=1;
     } /* End theta */   for (i=1; i<= maxncov; i++) {
      if((Ndum[i]!=0) && (i<=ncovcol)){
     trgradg =matrix(1,nlstate,1,npar);       Tvaraff[ij]=i; /*For printing */
        ij++;
     for(j=1; j<=nlstate;j++)     }
       for(theta=1; theta <=npar; theta++)   }
         trgradg[j][theta]=gradg[theta][j];   
    cptcoveff=ij-1; /*Number of simple covariates*/
     for(i=1;i<=nlstate;i++)  }
       varpl[i][(int)age] =0.;  
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  /*********** Health Expectancies ****************/
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  
     for(i=1;i<=nlstate;i++)  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  
   {
     fprintf(ficresvpl,"%.0f ",age );    /* Health expectancies */
     for(i=1; i<=nlstate;i++)    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    double age, agelim, hf;
     fprintf(ficresvpl,"\n");    double ***p3mat,***varhe;
     free_vector(gp,1,nlstate);    double **dnewm,**doldm;
     free_vector(gm,1,nlstate);    double *xp;
     free_matrix(gradg,1,npar,1,nlstate);    double **gp, **gm;
     free_matrix(trgradg,1,nlstate,1,npar);    double ***gradg, ***trgradg;
   } /* End age */    int theta;
   
   free_vector(xp,1,npar);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   free_matrix(doldm,1,nlstate,1,npar);    xp=vector(1,npar);
   free_matrix(dnewm,1,nlstate,1,nlstate);    dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 }    
     fprintf(ficreseij,"# Health expectancies\n");
 /************ Variance of one-step probabilities  ******************/    fprintf(ficreseij,"# Age");
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    for(i=1; i<=nlstate;i++)
 {      for(j=1; j<=nlstate;j++)
   int i, j=0,  i1, k1, l1, t, tj;        fprintf(ficreseij," %1d-%1d (SE)",i,j);
   int k2, l2, j1,  z1;    fprintf(ficreseij,"\n");
   int k=0,l, cptcode;  
   int first=1, first1;    if(estepm < stepm){
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;      printf ("Problem %d lower than %d\n",estepm, stepm);
   double **dnewm,**doldm;    }
   double *xp;    else  hstepm=estepm;   
   double *gp, *gm;    /* We compute the life expectancy from trapezoids spaced every estepm months
   double **gradg, **trgradg;     * This is mainly to measure the difference between two models: for example
   double **mu;     * if stepm=24 months pijx are given only every 2 years and by summing them
   double age,agelim, cov[NCOVMAX];     * we are calculating an estimate of the Life Expectancy assuming a linear 
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */     * progression in between and thus overestimating or underestimating according
   int theta;     * to the curvature of the survival function. If, for the same date, we 
   char fileresprob[FILENAMELENGTH];     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   char fileresprobcov[FILENAMELENGTH];     * to compare the new estimate of Life expectancy with the same linear 
   char fileresprobcor[FILENAMELENGTH];     * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   double ***varpij;  
     /* For example we decided to compute the life expectancy with the smallest unit */
   strcpy(fileresprob,"prob");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   strcat(fileresprob,fileres);       nhstepm is the number of hstepm from age to agelim 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {       nstepm is the number of stepm from age to agelin. 
     printf("Problem with resultfile: %s\n", fileresprob);       Look at hpijx to understand the reason of that which relies in memory size
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);       and note for a fixed period like estepm months */
   }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   strcpy(fileresprobcov,"probcov");       survival function given by stepm (the optimization length). Unfortunately it
   strcat(fileresprobcov,fileres);       means that if the survival funtion is printed only each two years of age and if
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     printf("Problem with resultfile: %s\n", fileresprobcov);       results. So we changed our mind and took the option of the best precision.
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);    */
   }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   strcpy(fileresprobcor,"probcor");  
   strcat(fileresprobcor,fileres);    agelim=AGESUP;
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     printf("Problem with resultfile: %s\n", fileresprobcor);      /* nhstepm age range expressed in number of stepm */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      /* if (stepm >= YEARM) hstepm=1;*/
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      gm=matrix(0,nhstepm,1,nlstate*nlstate);
    
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   fprintf(ficresprob,"# Age");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   fprintf(ficresprobcov,"# Age");   
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");  
   fprintf(ficresprobcov,"# Age");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       /* Computing Variances of health expectancies */
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=(nlstate+ndeath);j++){       for(theta=1; theta <=npar; theta++){
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        for(i=1; i<=npar; i++){ 
       fprintf(ficresprobcov," p%1d-%1d ",i,j);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       fprintf(ficresprobcor," p%1d-%1d ",i,j);        }
     }          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   fprintf(ficresprob,"\n");    
   fprintf(ficresprobcov,"\n");        cptj=0;
   fprintf(ficresprobcor,"\n");        for(j=1; j<= nlstate; j++){
   xp=vector(1,npar);          for(i=1; i<=nlstate; i++){
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);            cptj=cptj+1;
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);            }
   first=1;          }
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        }
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);       
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);       
     exit(0);        for(i=1; i<=npar; i++) 
   }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   else{        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     fprintf(ficgp,"\n# Routine varprob");        
   }        cptj=0;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {        for(j=1; j<= nlstate; j++){
     printf("Problem with html file: %s\n", optionfilehtm);          for(i=1;i<=nlstate;i++){
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);            cptj=cptj+1;
     exit(0);            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   }  
   else{              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");            }
     fprintf(fichtm,"\n");          }
         }
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");        for(j=1; j<= nlstate*nlstate; j++)
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");          for(h=0; h<=nhstepm-1; h++){
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   }       } 
      
    /* End theta */
   cov[1]=1;  
   tj=cptcoveff;       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}  
   j1=0;       for(h=0; h<=nhstepm-1; h++)
   for(t=1; t<=tj;t++){        for(j=1; j<=nlstate*nlstate;j++)
     for(i1=1; i1<=ncodemax[t];i1++){          for(theta=1; theta <=npar; theta++)
       j1++;            trgradg[h][j][theta]=gradg[h][theta][j];
             
       if  (cptcovn>0) {  
         fprintf(ficresprob, "\n#********** Variable ");       for(i=1;i<=nlstate*nlstate;i++)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(j=1;j<=nlstate*nlstate;j++)
         fprintf(ficresprob, "**********\n#");          varhe[i][j][(int)age] =0.;
         fprintf(ficresprobcov, "\n#********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       printf("%d|",(int)age);fflush(stdout);
         fprintf(ficresprobcov, "**********\n#");       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
               for(h=0;h<=nhstepm-1;h++){
         fprintf(ficgp, "\n#********** Variable ");        for(k=0;k<=nhstepm-1;k++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
         fprintf(ficgp, "**********\n#");          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
                  for(i=1;i<=nlstate*nlstate;i++)
                    for(j=1;j<=nlstate*nlstate;j++)
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        }
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");      }
              /* Computing expectancies */
         fprintf(ficresprobcor, "\n#********** Variable ");          for(i=1; i<=nlstate;i++)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(j=1; j<=nlstate;j++)
         fprintf(ficgp, "**********\n#");              for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                  
       for (age=bage; age<=fage; age ++){  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         cov[2]=age;  
         for (k=1; k<=cptcovn;k++) {          }
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];  
         }      fprintf(ficreseij,"%3.0f",age );
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      cptj=0;
         for (k=1; k<=cptcovprod;k++)      for(i=1; i<=nlstate;i++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        for(j=1; j<=nlstate;j++){
                  cptj++;
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        }
         gp=vector(1,(nlstate)*(nlstate+ndeath));      fprintf(ficreseij,"\n");
         gm=vector(1,(nlstate)*(nlstate+ndeath));     
          free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
         for(theta=1; theta <=npar; theta++){      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
           for(i=1; i<=npar; i++)      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
             xp[i] = x[i] + (i==theta ?delti[theta]:0);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
                free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    }
              printf("\n");
           k=0;    fprintf(ficlog,"\n");
           for(i=1; i<= (nlstate); i++){  
             for(j=1; j<=(nlstate+ndeath);j++){    free_vector(xp,1,npar);
               k=k+1;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
               gp[k]=pmmij[i][j];    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
             }    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
           }  }
            
           for(i=1; i<=npar; i++)  /************ Variance ******************/
             xp[i] = x[i] - (i==theta ?delti[theta]:0);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
      {
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    /* Variance of health expectancies */
           k=0;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
           for(i=1; i<=(nlstate); i++){    /* double **newm;*/
             for(j=1; j<=(nlstate+ndeath);j++){    double **dnewm,**doldm;
               k=k+1;    double **dnewmp,**doldmp;
               gm[k]=pmmij[i][j];    int i, j, nhstepm, hstepm, h, nstepm ;
             }    int k, cptcode;
           }    double *xp;
          double **gp, **gm;  /* for var eij */
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)    double ***gradg, ***trgradg; /*for var eij */
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      double **gradgp, **trgradgp; /* for var p point j */
         }    double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    double ***p3mat;
           for(theta=1; theta <=npar; theta++)    double age,agelim, hf;
             trgradg[j][theta]=gradg[theta][j];    double ***mobaverage;
            int theta;
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);    char digit[4];
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    char digitp[25];
          
         pmij(pmmij,cov,ncovmodel,x,nlstate);    char fileresprobmorprev[FILENAMELENGTH];
          
         k=0;    if(popbased==1){
         for(i=1; i<=(nlstate); i++){      if(mobilav!=0)
           for(j=1; j<=(nlstate+ndeath);j++){        strcpy(digitp,"-populbased-mobilav-");
             k=k+1;      else strcpy(digitp,"-populbased-nomobil-");
             mu[k][(int) age]=pmmij[i][j];    }
           }    else 
         }      strcpy(digitp,"-stablbased-");
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)  
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    if (mobilav!=0) {
             varpij[i][j][(int)age] = doldm[i][j];      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         /*printf("\n%d ",(int)age);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        printf(" Error in movingaverage mobilav=%d\n",mobilav);
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      }
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    }
      }*/  
     strcpy(fileresprobmorprev,"prmorprev"); 
         fprintf(ficresprob,"\n%d ",(int)age);    sprintf(digit,"%-d",ij);
         fprintf(ficresprobcov,"\n%d ",(int)age);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
         fprintf(ficresprobcor,"\n%d ",(int)age);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)    strcat(fileresprobmorprev,fileres);
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      printf("Problem with resultfile: %s\n", fileresprobmorprev);
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);    }
         }    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         i=0;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         for (k=1; k<=(nlstate);k++){    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
           for (l=1; l<=(nlstate+ndeath);l++){    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
             i=i++;    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);      fprintf(ficresprobmorprev," p.%-d SE",j);
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);      for(i=1; i<=nlstate;i++)
             for (j=1; j<=i;j++){        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);    }  
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));    fprintf(ficresprobmorprev,"\n");
             }    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
           }      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
         }/* end of loop for state */      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
       } /* end of loop for age */      exit(0);
     }
       /* Confidence intervalle of pij  */    else{
       /*      fprintf(ficgp,"\n# Routine varevsij");
       fprintf(ficgp,"\nset noparametric;unset label");    }
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");      printf("Problem with html file: %s\n", optionfilehtm);
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);      exit(0);
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);    }
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);    else{
       */      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    }
       first1=1;    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       for (k1=1; k1<=(nlstate);k1++){  
         for (l1=1; l1<=(nlstate+ndeath);l1++){    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
           if(l1==k1) continue;    fprintf(ficresvij,"# Age");
           i=(k1-1)*(nlstate+ndeath)+l1;    for(i=1; i<=nlstate;i++)
           for (k2=1; k2<=(nlstate);k2++){      for(j=1; j<=nlstate;j++)
             for (l2=1; l2<=(nlstate+ndeath);l2++){        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
               if(l2==k2) continue;    fprintf(ficresvij,"\n");
               j=(k2-1)*(nlstate+ndeath)+l2;  
               if(j<=i) continue;    xp=vector(1,npar);
               for (age=bage; age<=fage; age ++){    dnewm=matrix(1,nlstate,1,npar);
                 if ((int)age %5==0){    doldm=matrix(1,nlstate,1,nlstate);
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;  
                   mu1=mu[i][(int) age]/stepm*YEARM ;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
                   mu2=mu[j][(int) age]/stepm*YEARM;    gpp=vector(nlstate+1,nlstate+ndeath);
                   /* Computing eigen value of matrix of covariance */    gmp=vector(nlstate+1,nlstate+ndeath);
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    
                   if(first1==1){    if(estepm < stepm){
                     first1=0;      printf ("Problem %d lower than %d\n",estepm, stepm);
                     printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\nOthers in log...\n",v1,v2,cv12,lc1,lc2);    }
                   }    else  hstepm=estepm;   
                   fprintf(ficlog,"Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);    /* For example we decided to compute the life expectancy with the smallest unit */
                   /* Eigen vectors */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));       nhstepm is the number of hstepm from age to agelim 
                   v21=sqrt(1.-v11*v11);       nstepm is the number of stepm from age to agelin. 
                   v12=-v21;       Look at hpijx to understand the reason of that which relies in memory size
                   v22=v11;       and note for a fixed period like k years */
                   /*printf(fignu*/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */       survival function given by stepm (the optimization length). Unfortunately it
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */       means that if the survival funtion is printed every two years of age and if
                   if(first==1){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                     first=0;       results. So we changed our mind and took the option of the best precision.
                     fprintf(ficgp,"\nset parametric;set nolabel");    */
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    agelim = AGESUP;
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k2,l2,k1,l1);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k2,l2,k1,l1);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
                     /*              fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\      gp=matrix(0,nhstepm,1,nlstate);
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \      gm=matrix(0,nhstepm,1,nlstate);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);  
                     */  
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\      for(theta=1; theta <=npar; theta++){
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   }else{        }
                     first=0;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);  
                     /*        if (popbased==1) {
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\          if(mobilav ==0){
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \            for(i=1; i<=nlstate;i++)
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);              prlim[i][i]=probs[(int)age][i][ij];
                     */          }else{ /* mobilav */ 
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\            for(i=1; i<=nlstate;i++)
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \              prlim[i][i]=mobaverage[(int)age][i][ij];
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));          }
                   }/* if first */        }
                 } /* age mod 5 */    
               } /* end loop age */        for(j=1; j<= nlstate; j++){
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k2,l2,k1,l1);          for(h=0; h<=nhstepm; h++){
               first=1;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
             } /*l12 */              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           } /* k12 */          }
         } /*l1 */        }
       }/* k1 */        /* This for computing probability of death (h=1 means
     } /* loop covariates */           computed over hstepm matrices product = hstepm*stepm months) 
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);           as a weighted average of prlim.
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        */
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        }    
   }        /* end probability of death */
   free_vector(xp,1,npar);  
   fclose(ficresprob);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   fclose(ficresprobcov);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   fclose(ficresprobcor);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   fclose(ficgp);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   fclose(fichtm);   
 }        if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
 /******************* Printing html file ***********/              prlim[i][i]=probs[(int)age][i][ij];
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          }else{ /* mobilav */ 
                   int lastpass, int stepm, int weightopt, char model[],\            for(i=1; i<=nlstate;i++)
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\              prlim[i][i]=mobaverage[(int)age][i][ij];
                   int popforecast, int estepm ,\          }
                   double jprev1, double mprev1,double anprev1, \        }
                   double jprev2, double mprev2,double anprev2){  
   int jj1, k1, i1, cpt;        for(j=1; j<= nlstate; j++){
   /*char optionfilehtm[FILENAMELENGTH];*/          for(h=0; h<=nhstepm; h++){
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     printf("Problem with %s \n",optionfilehtm), exit(0);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);          }
   }        }
         /* This for computing probability of death (h=1 means
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n           computed over hstepm matrices product = hstepm*stepm months) 
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n           as a weighted average of prlim.
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n        */
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n        for(j=nlstate+1;j<=nlstate+ndeath;j++){
  - Life expectancies by age and initial health status (estepm=%2d months):          for(i=1,gmp[j]=0.; i<= nlstate; i++)
    <a href=\"e%s\">e%s</a> <br>\n</li>", \           gmp[j] += prlim[i][i]*p3mat[i][j][1];
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);        }    
         /* end probability of death */
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");  
         for(j=1; j<= nlstate; j++) /* vareij */
  m=cptcoveff;          for(h=0; h<=nhstepm; h++){
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
  jj1=0;  
  for(k1=1; k1<=m;k1++){        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
    for(i1=1; i1<=ncodemax[k1];i1++){          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
      jj1++;        }
      if (cptcovn > 0) {  
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      } /* End theta */
        for (cpt=1; cpt<=cptcoveff;cpt++)  
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
      }      for(h=0; h<=nhstepm; h++) /* veij */
      /* Pij */        for(j=1; j<=nlstate;j++)
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>          for(theta=1; theta <=npar; theta++)
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                trgradg[h][j][theta]=gradg[h][theta][j];
      /* Quasi-incidences */  
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        for(theta=1; theta <=npar; theta++)
        /* Stable prevalence in each health state */          trgradgp[j][theta]=gradgp[theta][j];
        for(cpt=1; cpt<nlstate;cpt++){    
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>  
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        }      for(i=1;i<=nlstate;i++)
      for(cpt=1; cpt<=nlstate;cpt++) {        for(j=1;j<=nlstate;j++)
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>          vareij[i][j][(int)age] =0.;
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
      }      for(h=0;h<=nhstepm;h++){
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        for(k=0;k<=nhstepm;k++){
 health expectancies in states (1) and (2): e%s%d.png<br>          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
    } /* end i1 */          for(i=1;i<=nlstate;i++)
  }/* End k1 */            for(j=1;j<=nlstate;j++)
  fprintf(fichtm,"</ul>");              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n    
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n      /* pptj */
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n      for(j=nlstate+1;j<=nlstate+ndeath;j++)
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n        for(i=nlstate+1;i<=nlstate+ndeath;i++)
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n          varppt[j][i]=doldmp[j][i];
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);      /* end ppptj */
       /*  x centered again */
  if(popforecast==1) fprintf(fichtm,"\n      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n   
         <br>",fileres,fileres,fileres,fileres);      if (popbased==1) {
  else        if(mobilav ==0){
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);          for(i=1; i<=nlstate;i++)
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");            prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
  m=cptcoveff;          for(i=1; i<=nlstate;i++)
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            prlim[i][i]=mobaverage[(int)age][i][ij];
         }
  jj1=0;      }
  for(k1=1; k1<=m;k1++){               
    for(i1=1; i1<=ncodemax[k1];i1++){      /* This for computing probability of death (h=1 means
      jj1++;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
      if (cptcovn > 0) {         as a weighted average of prlim.
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      */
        for (cpt=1; cpt<=cptcoveff;cpt++)      for(j=nlstate+1;j<=nlstate+ndeath;j++){
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
      }      }    
      for(cpt=1; cpt<=nlstate;cpt++) {      /* end probability of death */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident  
 interval) in state (%d): v%s%d%d.png <br>      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        for(j=nlstate+1; j<=(nlstate+ndeath);j++){
      }        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
    } /* end i1 */        for(i=1; i<=nlstate;i++){
  }/* End k1 */          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
  fprintf(fichtm,"</ul>");        }
 fclose(fichtm);      } 
 }      fprintf(ficresprobmorprev,"\n");
   
 /******************* Gnuplot file **************/      fprintf(ficresvij,"%.0f ",age );
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   int ng;        }
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      fprintf(ficresvij,"\n");
     printf("Problem with file %s",optionfilegnuplot);      free_matrix(gp,0,nhstepm,1,nlstate);
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);      free_matrix(gm,0,nhstepm,1,nlstate);
   }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 #ifdef windows      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fprintf(ficgp,"cd \"%s\" \n",pathc);    } /* End age */
 #endif    free_vector(gpp,nlstate+1,nlstate+ndeath);
 m=pow(2,cptcoveff);    free_vector(gmp,nlstate+1,nlstate+ndeath);
      free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
  /* 1eme*/    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   for (cpt=1; cpt<= nlstate ; cpt ++) {    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
    for (k1=1; k1<= m ; k1 ++) {    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 #ifdef windows  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
 #endif    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
 #ifdef unix    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
 #endif    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
 for (i=1; i<= nlstate ; i ++) {  */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }    free_vector(xp,1,npar);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    free_matrix(doldm,1,nlstate,1,nlstate);
     for (i=1; i<= nlstate ; i ++) {    free_matrix(dnewm,1,nlstate,1,npar);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
 }    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      for (i=1; i<= nlstate ; i ++) {    fclose(ficresprobmorprev);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    fclose(ficgp);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fclose(fichtm);
 }    }  /* end varevsij */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  
 #ifdef unix  /************ Variance of prevlim ******************/
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
 #endif  {
    }    /* Variance of prevalence limit */
   }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   /*2 eme*/    double **newm;
     double **dnewm,**doldm;
   for (k1=1; k1<= m ; k1 ++) {    int i, j, nhstepm, hstepm;
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    int k, cptcode;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    double *xp;
        double *gp, *gm;
     for (i=1; i<= nlstate+1 ; i ++) {    double **gradg, **trgradg;
       k=2*i;    double age,agelim;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    int theta;
       for (j=1; j<= nlstate+1 ; j ++) {     
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficresvpl,"# Age");
 }      for(i=1; i<=nlstate;i++)
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        fprintf(ficresvpl," %1d-%1d",i,i);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    fprintf(ficresvpl,"\n");
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {    xp=vector(1,npar);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    dnewm=matrix(1,nlstate,1,npar);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    doldm=matrix(1,nlstate,1,nlstate);
 }      
       fprintf(ficgp,"\" t\"\" w l 0,");    hstepm=1*YEARM; /* Every year of age */
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
       for (j=1; j<= nlstate+1 ; j ++) {    agelim = AGESUP;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   else fprintf(ficgp," \%%*lf (\%%*lf)");      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 }        if (stepm >= YEARM) hstepm=1;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       else fprintf(ficgp,"\" t\"\" w l 0,");      gradg=matrix(1,npar,1,nlstate);
     }      gp=vector(1,nlstate);
   }      gm=vector(1,nlstate);
    
   /*3eme*/      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
   for (k1=1; k1<= m ; k1 ++) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     for (cpt=1; cpt<= nlstate ; cpt ++) {        }
       k=2+nlstate*(2*cpt-2);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        for(i=1;i<=nlstate;i++)
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);          gp[i] = prlim[i][i];
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        for(i=1; i<=npar; i++) /* Computes gradient */
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        for(i=1;i<=nlstate;i++)
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          gm[i] = prlim[i][i];
   
 */        for(i=1;i<=nlstate;i++)
       for (i=1; i< nlstate ; i ++) {          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);      } /* End theta */
   
       }      trgradg =matrix(1,nlstate,1,npar);
     }  
   }      for(j=1; j<=nlstate;j++)
          for(theta=1; theta <=npar; theta++)
   /* CV preval stat */          trgradg[j][theta]=gradg[theta][j];
     for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<nlstate ; cpt ++) {      for(i=1;i<=nlstate;i++)
       k=3;        varpl[i][(int)age] =0.;
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
       for (i=1; i< nlstate ; i ++)        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
         fprintf(ficgp,"+$%d",k+i+1);  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      fprintf(ficresvpl,"%.0f ",age );
            for(i=1; i<=nlstate;i++)
       l=3+(nlstate+ndeath)*cpt;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      fprintf(ficresvpl,"\n");
       for (i=1; i< nlstate ; i ++) {      free_vector(gp,1,nlstate);
         l=3+(nlstate+ndeath)*cpt;      free_vector(gm,1,nlstate);
         fprintf(ficgp,"+$%d",l+i+1);      free_matrix(gradg,1,npar,1,nlstate);
       }      free_matrix(trgradg,1,nlstate,1,npar);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      } /* End age */
     }  
   }      free_vector(xp,1,npar);
      free_matrix(doldm,1,nlstate,1,npar);
   /* proba elementaires */    free_matrix(dnewm,1,nlstate,1,nlstate);
    for(i=1,jk=1; i <=nlstate; i++){  
     for(k=1; k <=(nlstate+ndeath); k++){  }
       if (k != i) {  
         for(j=1; j <=ncovmodel; j++){  /************ Variance of one-step probabilities  ******************/
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
           jk++;  {
           fprintf(ficgp,"\n");    int i, j=0,  i1, k1, l1, t, tj;
         }    int k2, l2, j1,  z1;
       }    int k=0,l, cptcode;
     }    int first=1, first1;
    }    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    double *xp;
      for(jk=1; jk <=m; jk++) {    double *gp, *gm;
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    double **gradg, **trgradg;
        if (ng==2)    double **mu;
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");    double age,agelim, cov[NCOVMAX];
        else    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
          fprintf(ficgp,"\nset title \"Probability\"\n");    int theta;
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    char fileresprob[FILENAMELENGTH];
        i=1;    char fileresprobcov[FILENAMELENGTH];
        for(k2=1; k2<=nlstate; k2++) {    char fileresprobcor[FILENAMELENGTH];
          k3=i;  
          for(k=1; k<=(nlstate+ndeath); k++) {    double ***varpij;
            if (k != k2){  
              if(ng==2)    strcpy(fileresprob,"prob"); 
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    strcat(fileresprob,fileres);
              else    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);      printf("Problem with resultfile: %s\n", fileresprob);
              ij=1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
              for(j=3; j <=ncovmodel; j++) {    }
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    strcpy(fileresprobcov,"probcov"); 
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    strcat(fileresprobcov,fileres);
                  ij++;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
                }      printf("Problem with resultfile: %s\n", fileresprobcov);
                else      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    }
              }    strcpy(fileresprobcor,"probcor"); 
              fprintf(ficgp,")/(1");    strcat(fileresprobcor,fileres);
                  if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
              for(k1=1; k1 <=nlstate; k1++){        printf("Problem with resultfile: %s\n", fileresprobcor);
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
                ij=1;    }
                for(j=3; j <=ncovmodel; j++){    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                    ij++;    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                  }    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                  else    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    
                }    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
                fprintf(ficgp,")");    fprintf(ficresprob,"# Age");
              }    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    fprintf(ficresprobcov,"# Age");
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
              i=i+ncovmodel;    fprintf(ficresprobcov,"# Age");
            }  
          } /* end k */  
        } /* end k2 */    for(i=1; i<=nlstate;i++)
      } /* end jk */      for(j=1; j<=(nlstate+ndeath);j++){
    } /* end ng */        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
    fclose(ficgp);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
 }  /* end gnuplot */        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
 /*************** Moving average **************/    fprintf(ficresprobcov,"\n");
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    fprintf(ficresprobcor,"\n");
    */
   int i, cpt, cptcod;   xp=vector(1,npar);
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       for (i=1; i<=nlstate;i++)    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
           mobaverage[(int)agedeb][i][cptcod]=0.;    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
        first=1;
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       for (i=1; i<=nlstate;i++){      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
           for (cpt=0;cpt<=4;cpt++){      exit(0);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    }
           }    else{
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      fprintf(ficgp,"\n# Routine varprob");
         }    }
       }    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
     }      printf("Problem with html file: %s\n", optionfilehtm);
          fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
 }      exit(0);
     }
     else{
 /************** Forecasting ******************/      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      fprintf(fichtm,"\n");
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
   int *popage;      fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
   double *popeffectif,*popcount;  
   double ***p3mat;    }
   char fileresf[FILENAMELENGTH];  
     cov[1]=1;
  agelim=AGESUP;    tj=cptcoveff;
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    for(t=1; t<=tj;t++){
        for(i1=1; i1<=ncodemax[t];i1++){ 
          j1++;
   strcpy(fileresf,"f");        if  (cptcovn>0) {
   strcat(fileresf,fileres);          fprintf(ficresprob, "\n#********** Variable "); 
   if((ficresf=fopen(fileresf,"w"))==NULL) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     printf("Problem with forecast resultfile: %s\n", fileresf);          fprintf(ficresprob, "**********\n#\n");
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);          fprintf(ficresprobcov, "\n#********** Variable "); 
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   printf("Computing forecasting: result on file '%s' \n", fileresf);          fprintf(ficresprobcov, "**********\n#\n");
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);          
           fprintf(ficgp, "\n#********** Variable "); 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
   if (mobilav==1) {          
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          
     movingaverage(agedeb, fage, ageminpar, mobaverage);          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   stepsize=(int) (stepm+YEARM-1)/YEARM;          
   if (stepm<=12) stepsize=1;          fprintf(ficresprobcor, "\n#********** Variable ");    
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   agelim=AGESUP;          fprintf(ficresprobcor, "**********\n#");    
          }
   hstepm=1;        
   hstepm=hstepm/stepm;        for (age=bage; age<=fage; age ++){ 
   yp1=modf(dateintmean,&yp);          cov[2]=age;
   anprojmean=yp;          for (k=1; k<=cptcovn;k++) {
   yp2=modf((yp1*12),&yp);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   mprojmean=yp;          }
   yp1=modf((yp2*30.5),&yp);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   jprojmean=yp;          for (k=1; k<=cptcovprod;k++)
   if(jprojmean==0) jprojmean=1;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   if(mprojmean==0) jprojmean=1;          
            gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
            gp=vector(1,(nlstate)*(nlstate+ndeath));
   for(cptcov=1;cptcov<=i2;cptcov++){          gm=vector(1,(nlstate)*(nlstate+ndeath));
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      
       k=k+1;          for(theta=1; theta <=npar; theta++){
       fprintf(ficresf,"\n#******");            for(i=1; i<=npar; i++)
       for(j=1;j<=cptcoveff;j++) {              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            
       }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       fprintf(ficresf,"******\n");            
       fprintf(ficresf,"# StartingAge FinalAge");            k=0;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);            for(i=1; i<= (nlstate); i++){
                    for(j=1; j<=(nlstate+ndeath);j++){
                      k=k+1;
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {                gp[k]=pmmij[i][j];
         fprintf(ficresf,"\n");              }
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);              }
             
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){            for(i=1; i<=npar; i++)
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
           nhstepm = nhstepm/hstepm;      
                      pmij(pmmij,cov,ncovmodel,xp,nlstate);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            k=0;
           oldm=oldms;savm=savms;            for(i=1; i<=(nlstate); i++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                for(j=1; j<=(nlstate+ndeath);j++){
                        k=k+1;
           for (h=0; h<=nhstepm; h++){                gm[k]=pmmij[i][j];
             if (h==(int) (calagedate+YEARM*cpt)) {              }
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);            }
             }       
             for(j=1; j<=nlstate+ndeath;j++) {            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               kk1=0.;kk2=0;              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
               for(i=1; i<=nlstate;i++) {                        }
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
                 else {            for(theta=1; theta <=npar; theta++)
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];              trgradg[j][theta]=gradg[theta][j];
                 }          
                          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
               }          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
               if (h==(int)(calagedate+12*cpt)){          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
                 fprintf(ficresf," %.3f", kk1);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
                                  free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
               }          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
             }  
           }          pmij(pmmij,cov,ncovmodel,x,nlstate);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          
         }          k=0;
       }          for(i=1; i<=(nlstate); i++){
     }            for(j=1; j<=(nlstate+ndeath);j++){
   }              k=k+1;
                      mu[k][(int) age]=pmmij[i][j];
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            }
           }
   fclose(ficresf);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
 }            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
 /************** Forecasting ******************/              varpij[i][j][(int)age] = doldm[i][j];
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  
            /*printf("\n%d ",(int)age);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   int *popage;            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   double *popeffectif,*popcount;            }*/
   double ***p3mat,***tabpop,***tabpopprev;  
   char filerespop[FILENAMELENGTH];          fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficresprobcor,"\n%d ",(int)age);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   agelim=AGESUP;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
              fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
            }
   strcpy(filerespop,"pop");          i=0;
   strcat(filerespop,fileres);          for (k=1; k<=(nlstate);k++){
   if((ficrespop=fopen(filerespop,"w"))==NULL) {            for (l=1; l<=(nlstate+ndeath);l++){ 
     printf("Problem with forecast resultfile: %s\n", filerespop);              i=i++;
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   }              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   printf("Computing forecasting: result on file '%s' \n", filerespop);              for (j=1; j<=i;j++){
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   if (cptcoveff==0) ncodemax[cptcoveff]=1;              }
             }
   if (mobilav==1) {          }/* end of loop for state */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        } /* end of loop for age */
     movingaverage(agedeb, fage, ageminpar, mobaverage);  
   }        /* Confidence intervalle of pij  */
         /*
   stepsize=(int) (stepm+YEARM-1)/YEARM;          fprintf(ficgp,"\nset noparametric;unset label");
   if (stepm<=12) stepsize=1;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
            fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   agelim=AGESUP;          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
            fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   hstepm=1;          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   hstepm=hstepm/stepm;          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
          */
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL) {        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
       printf("Problem with population file : %s\n",popfile);exit(0);        first1=1;
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);        for (k2=1; k2<=(nlstate);k2++){
     }          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
     popage=ivector(0,AGESUP);            if(l2==k2) continue;
     popeffectif=vector(0,AGESUP);            j=(k2-1)*(nlstate+ndeath)+l2;
     popcount=vector(0,AGESUP);            for (k1=1; k1<=(nlstate);k1++){
                  for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     i=1;                  if(l1==k1) continue;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;                i=(k1-1)*(nlstate+ndeath)+l1;
                    if(i<=j) continue;
     imx=i;                for (age=bage; age<=fage; age ++){ 
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];                  if ((int)age %5==0){
   }                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   for(cptcov=1;cptcov<=i2;cptcov++){                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                    mu1=mu[i][(int) age]/stepm*YEARM ;
       k=k+1;                    mu2=mu[j][(int) age]/stepm*YEARM;
       fprintf(ficrespop,"\n#******");                    c12=cv12/sqrt(v1*v2);
       for(j=1;j<=cptcoveff;j++) {                    /* Computing eigen value of matrix of covariance */
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       }                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       fprintf(ficrespop,"******\n");                    /* Eigen vectors */
       fprintf(ficrespop,"# Age");                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);                    /*v21=sqrt(1.-v11*v11); *//* error */
       if (popforecast==1)  fprintf(ficrespop," [Population]");                    v21=(lc1-v1)/cv12*v11;
                          v12=-v21;
       for (cpt=0; cpt<=0;cpt++) {                    v22=v11;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                      tnalp=v21/v11;
                            if(first1==1){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){                      first1=0;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           nhstepm = nhstepm/hstepm;                    }
                              fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    /*printf(fignu*/
           oldm=oldms;savm=savms;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                      /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                            if(first==1){
           for (h=0; h<=nhstepm; h++){                      first=0;
             if (h==(int) (calagedate+YEARM*cpt)) {                      fprintf(ficgp,"\nset parametric;unset label");
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
             }                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
             for(j=1; j<=nlstate+ndeath;j++) {                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
               kk1=0.;kk2=0;                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
               for(i=1; i<=nlstate;i++) {                                    fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                 if (mobilav==1)                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                 else {                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                 }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
               }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
               if (h==(int)(calagedate+12*cpt)){                    }else{
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;                      first=0;
                   /*fprintf(ficrespop," %.3f", kk1);                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
               }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
             }                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
             for(i=1; i<=nlstate;i++){                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
               kk1=0.;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                 for(j=1; j<=nlstate;j++){                    }/* if first */
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];                  } /* age mod 5 */
                 }                } /* end loop age */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];                fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
             }                first=1;
               } /*l12 */
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)            } /* k12 */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          } /*l1 */
           }        }/* k1 */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      } /* loop covariates */
         }    }
       }    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
      free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   /******/    free_vector(xp,1,npar);
     fclose(ficresprob);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    fclose(ficresprobcov);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      fclose(ficresprobcor);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fclose(ficgp);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    fclose(fichtm);
           nhstepm = nhstepm/hstepm;  }
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;  /******************* Printing html file ***********/
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
           for (h=0; h<=nhstepm; h++){                    int lastpass, int stepm, int weightopt, char model[],\
             if (h==(int) (calagedate+YEARM*cpt)) {                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                    int popforecast, int estepm ,\
             }                    double jprev1, double mprev1,double anprev1, \
             for(j=1; j<=nlstate+ndeath;j++) {                    double jprev2, double mprev2,double anprev2){
               kk1=0.;kk2=0;    int jj1, k1, i1, cpt;
               for(i=1; i<=nlstate;i++) {                  /*char optionfilehtm[FILENAMELENGTH];*/
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
               }      printf("Problem with %s \n",optionfilehtm), exit(0);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
             }    }
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
         }   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n \
       }   - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n \
    }   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n \
   }   - Life expectancies by age and initial health status (estepm=%2d months): \
       <a href=\"e%s\">e%s</a> <br>\n</li>", \
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
   
   if (popforecast==1) {  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
     free_ivector(popage,0,AGESUP);  
     free_vector(popeffectif,0,AGESUP);   m=cptcoveff;
     free_vector(popcount,0,AGESUP);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   }  
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   jj1=0;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   for(k1=1; k1<=m;k1++){
   fclose(ficrespop);     for(i1=1; i1<=ncodemax[k1];i1++){
 }       jj1++;
        if (cptcovn > 0) {
 /***********************************************/         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 /**************** Main Program *****************/         for (cpt=1; cpt<=cptcoveff;cpt++) 
 /***********************************************/           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
 int main(int argc, char *argv[])       }
 {       /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br> \
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;  <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
   double agedeb, agefin,hf;       /* Quasi-incidences */
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br> \
   double fret;  <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
   double **xi,tmp,delta;         /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
   double dum; /* Dummy variable */           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   double ***p3mat;  <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
   int *indx;         }
   char line[MAXLINE], linepar[MAXLINE];       for(cpt=1; cpt<=nlstate;cpt++) {
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br> \
   int firstobs=1, lastobs=10;  <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
   int sdeb, sfin; /* Status at beginning and end */       }
   int c,  h , cpt,l;       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   int ju,jl, mi;  health expectancies in states (1) and (2): e%s%d.png<br>\
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;     } /* end i1 */
   int mobilav=0,popforecast=0;   }/* End k1 */
   int hstepm, nhstepm;   fprintf(fichtm,"</ul>");
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;  
   
   double bage, fage, age, agelim, agebase;   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
   double ftolpl=FTOL;   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
   double **prlim;   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n\
   double *severity;   - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n\
   double ***param; /* Matrix of parameters */   - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n\
   double  *p;   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n\
   double **matcov; /* Matrix of covariance */   - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n\
   double ***delti3; /* Scale */   - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
   double *delti; /* Scale */  
   double ***eij, ***vareij;  /*  if(popforecast==1) fprintf(fichtm,"\n */
   double **varpl; /* Variances of prevalence limits by age */  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   double *epj, vepp;  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   double kk1, kk2;  /*      <br>",fileres,fileres,fileres,fileres); */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;  /*  else  */
    /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   char *alph[]={"a","a","b","c","d","e"}, str[4];  
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   char z[1]="c", occ;  
 #include <sys/time.h>   jj1=0;
 #include <time.h>   for(k1=1; k1<=m;k1++){
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];     for(i1=1; i1<=ncodemax[k1];i1++){
         jj1++;
   /* long total_usecs;       if (cptcovn > 0) {
   struct timeval start_time, end_time;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           for (cpt=1; cpt<=cptcoveff;cpt++) 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   getcwd(pathcd, size);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
   printf("\n%s",version);       for(cpt=1; cpt<=nlstate;cpt++) {
   if(argc <=1){         fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
     printf("\nEnter the parameter file name: ");  interval) in state (%d): v%s%d%d.png <br>\
     scanf("%s",pathtot);  <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
   }       }
   else{     } /* end i1 */
     strcpy(pathtot,argv[1]);   }/* End k1 */
   }   fprintf(fichtm,"</ul>");
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/  fclose(fichtm);
   /*cygwin_split_path(pathtot,path,optionfile);  }
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  
   /* cutv(path,optionfile,pathtot,'\\');*/  /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   chdir(path);    int ng;
   replace(pathc,path);    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
 /*-------- arguments in the command line --------*/      fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
     }
   /* Log file */  
   strcat(filelog, optionfilefiname);    /*#ifdef windows */
   strcat(filelog,".log");    /* */      fprintf(ficgp,"cd \"%s\" \n",pathc);
   if((ficlog=fopen(filelog,"w"))==NULL)    {      /*#endif */
     printf("Problem with logfile %s\n",filelog);  m=pow(2,cptcoveff);
     goto end;    
   }   /* 1eme*/
   fprintf(ficlog,"Log filename:%s\n",filelog);    for (cpt=1; cpt<= nlstate ; cpt ++) {
   fprintf(ficlog,"\n%s",version);     for (k1=1; k1<= m ; k1 ++) {
   fprintf(ficlog,"\nEnter the parameter file name: ");       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
   fflush(ficlog);  
        for (i=1; i<= nlstate ; i ++) {
   /* */         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   strcpy(fileres,"r");         else fprintf(ficgp," \%%*lf (\%%*lf)");
   strcat(fileres, optionfilefiname);       }
   strcat(fileres,".txt");    /* Other files have txt extension */       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
   /*---------arguments file --------*/         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
   if((ficpar=fopen(optionfile,"r"))==NULL)    {       } 
     printf("Problem with optionfile %s\n",optionfile);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);       for (i=1; i<= nlstate ; i ++) {
     goto end;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   }         else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
   strcpy(filereso,"o");       fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
   strcat(filereso,fileres);     }
   if((ficparo=fopen(filereso,"w"))==NULL) {    }
     printf("Problem with Output resultfile: %s\n", filereso);    /*2 eme*/
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);    
     goto end;    for (k1=1; k1<= m ; k1 ++) { 
   }      fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   /* Reads comments: lines beginning with '#' */      
   while((c=getc(ficpar))=='#' && c!= EOF){      for (i=1; i<= nlstate+1 ; i ++) {
     ungetc(c,ficpar);        k=2*i;
     fgets(line, MAXLINE, ficpar);        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
     puts(line);        for (j=1; j<= nlstate+1 ; j ++) {
     fputs(line,ficparo);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   }          else fprintf(ficgp," \%%*lf (\%%*lf)");
   ungetc(c,ficpar);        }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        for (j=1; j<= nlstate+1 ; j ++) {
 while((c=getc(ficpar))=='#' && c!= EOF){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     ungetc(c,ficpar);          else fprintf(ficgp," \%%*lf (\%%*lf)");
     fgets(line, MAXLINE, ficpar);        }   
     puts(line);        fprintf(ficgp,"\" t\"\" w l 0,");
     fputs(line,ficparo);        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
   }        for (j=1; j<= nlstate+1 ; j ++) {
   ungetc(c,ficpar);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
            else fprintf(ficgp," \%%*lf (\%%*lf)");
            }   
   covar=matrix(0,NCOVMAX,1,n);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
   cptcovn=0;        else fprintf(ficgp,"\" t\"\" w l 0,");
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      }
     }
   ncovmodel=2+cptcovn;    
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    /*3eme*/
      
   /* Read guess parameters */    for (k1=1; k1<= m ; k1 ++) { 
   /* Reads comments: lines beginning with '#' */      for (cpt=1; cpt<= nlstate ; cpt ++) {
   while((c=getc(ficpar))=='#' && c!= EOF){        k=2+nlstate*(2*cpt-2);
     ungetc(c,ficpar);        fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
     fgets(line, MAXLINE, ficpar);        fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
     puts(line);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     fputs(line,ficparo);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   ungetc(c,ficpar);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
            for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     for(i=1; i <=nlstate; i++)          
     for(j=1; j <=nlstate+ndeath-1; j++){        */
       fscanf(ficpar,"%1d%1d",&i1,&j1);        for (i=1; i< nlstate ; i ++) {
       fprintf(ficparo,"%1d%1d",i1,j1);          fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
       if(mle==1)          
         printf("%1d%1d",i,j);        } 
       fprintf(ficlog,"%1d%1d",i,j);      }
       for(k=1; k<=ncovmodel;k++){    }
         fscanf(ficpar," %lf",&param[i][j][k]);    
         if(mle==1){    /* CV preval stable (period) */
           printf(" %lf",param[i][j][k]);    for (k1=1; k1<= m ; k1 ++) { 
           fprintf(ficlog," %lf",param[i][j][k]);      for (cpt=1; cpt<=nlstate ; cpt ++) {
         }        k=3;
         else        fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
           fprintf(ficlog," %lf",param[i][j][k]);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
         fprintf(ficparo," %lf",param[i][j][k]);        
       }        for (i=1; i< nlstate ; i ++)
       fscanf(ficpar,"\n");          fprintf(ficgp,"+$%d",k+i+1);
       if(mle==1)        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         printf("\n");        
       fprintf(ficlog,"\n");        l=3+(nlstate+ndeath)*cpt;
       fprintf(ficparo,"\n");        fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
     }        for (i=1; i< nlstate ; i ++) {
            l=3+(nlstate+ndeath)*cpt;
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;          fprintf(ficgp,"+$%d",l+i+1);
         }
   p=param[1][1];        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
        } 
   /* Reads comments: lines beginning with '#' */    }  
   while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);    /* proba elementaires */
     fgets(line, MAXLINE, ficpar);    for(i=1,jk=1; i <=nlstate; i++){
     puts(line);      for(k=1; k <=(nlstate+ndeath); k++){
     fputs(line,ficparo);        if (k != i) {
   }          for(j=1; j <=ncovmodel; j++){
   ungetc(c,ficpar);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);            fprintf(ficgp,"\n");
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          }
   for(i=1; i <=nlstate; i++){        }
     for(j=1; j <=nlstate+ndeath-1; j++){      }
       fscanf(ficpar,"%1d%1d",&i1,&j1);     }
       printf("%1d%1d",i,j);  
       fprintf(ficparo,"%1d%1d",i1,j1);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
       for(k=1; k<=ncovmodel;k++){       for(jk=1; jk <=m; jk++) {
         fscanf(ficpar,"%le",&delti3[i][j][k]);         fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
         printf(" %le",delti3[i][j][k]);         if (ng==2)
         fprintf(ficparo," %le",delti3[i][j][k]);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
       }         else
       fscanf(ficpar,"\n");           fprintf(ficgp,"\nset title \"Probability\"\n");
       printf("\n");         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
       fprintf(ficparo,"\n");         i=1;
     }         for(k2=1; k2<=nlstate; k2++) {
   }           k3=i;
   delti=delti3[1][1];           for(k=1; k<=(nlstate+ndeath); k++) {
               if (k != k2){
   /* Reads comments: lines beginning with '#' */               if(ng==2)
   while((c=getc(ficpar))=='#' && c!= EOF){                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
     ungetc(c,ficpar);               else
     fgets(line, MAXLINE, ficpar);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
     puts(line);               ij=1;
     fputs(line,ficparo);               for(j=3; j <=ncovmodel; j++) {
   }                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   ungetc(c,ficpar);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                     ij++;
   matcov=matrix(1,npar,1,npar);                 }
   for(i=1; i <=npar; i++){                 else
     fscanf(ficpar,"%s",&str);                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     if(mle==1)               }
       printf("%s",str);               fprintf(ficgp,")/(1");
     fprintf(ficlog,"%s",str);               
     fprintf(ficparo,"%s",str);               for(k1=1; k1 <=nlstate; k1++){   
     for(j=1; j <=i; j++){                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
       fscanf(ficpar," %le",&matcov[i][j]);                 ij=1;
       if(mle==1){                 for(j=3; j <=ncovmodel; j++){
         printf(" %.5le",matcov[i][j]);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
         fprintf(ficlog," %.5le",matcov[i][j]);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       }                     ij++;
       else                   }
         fprintf(ficlog," %.5le",matcov[i][j]);                   else
       fprintf(ficparo," %.5le",matcov[i][j]);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     }                 }
     fscanf(ficpar,"\n");                 fprintf(ficgp,")");
     if(mle==1)               }
       printf("\n");               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
     fprintf(ficlog,"\n");               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
     fprintf(ficparo,"\n");               i=i+ncovmodel;
   }             }
   for(i=1; i <=npar; i++)           } /* end k */
     for(j=i+1;j<=npar;j++)         } /* end k2 */
       matcov[i][j]=matcov[j][i];       } /* end jk */
         } /* end ng */
   if(mle==1)     fclose(ficgp); 
     printf("\n");  }  /* end gnuplot */
   fprintf(ficlog,"\n");  
   
   /*************** Moving average **************/
     /*-------- Rewriting paramater file ----------*/  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
      strcpy(rfileres,"r");    /* "Rparameterfile */  
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/    int i, cpt, cptcod;
      strcat(rfileres,".");    /* */    int modcovmax =1;
      strcat(rfileres,optionfilext);    /* Other files have txt extension */    int mobilavrange, mob;
     if((ficres =fopen(rfileres,"w"))==NULL) {    double age;
       printf("Problem writing new parameter file: %s\n", fileres);goto end;  
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
     }                             a covariate has 2 modalities */
     fprintf(ficres,"#%s\n",version);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
      
     /*-------- data file ----------*/    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
     if((fic=fopen(datafile,"r"))==NULL)    {      if(mobilav==1) mobilavrange=5; /* default */
       printf("Problem with datafile: %s\n", datafile);goto end;      else mobilavrange=mobilav;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;      for (age=bage; age<=fage; age++)
     }        for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
     n= lastobs;            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
     severity = vector(1,maxwav);      /* We keep the original values on the extreme ages bage, fage and for 
     outcome=imatrix(1,maxwav+1,1,n);         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
     num=ivector(1,n);         we use a 5 terms etc. until the borders are no more concerned. 
     moisnais=vector(1,n);      */ 
     annais=vector(1,n);      for (mob=3;mob <=mobilavrange;mob=mob+2){
     moisdc=vector(1,n);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
     andc=vector(1,n);          for (i=1; i<=nlstate;i++){
     agedc=vector(1,n);            for (cptcod=1;cptcod<=modcovmax;cptcod++){
     cod=ivector(1,n);              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
     weight=vector(1,n);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
     mint=matrix(1,maxwav,1,n);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
     anint=matrix(1,maxwav,1,n);                }
     s=imatrix(1,maxwav+1,1,n);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
     adl=imatrix(1,maxwav+1,1,n);                }
     tab=ivector(1,NCOVMAX);          }
     ncodemax=ivector(1,8);        }/* end age */
       }/* end mob */
     i=1;    }else return -1;
     while (fgets(line, MAXLINE, fic) != NULL)    {    return 0;
       if ((i >= firstobs) && (i <=lastobs)) {  }/* End movingaverage */
          
         for (j=maxwav;j>=1;j--){  
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  /************** Forecasting ******************/
           strcpy(line,stra);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    /* proj1, year, month, day of starting projection 
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);       agemin, agemax range of age
         }       dateprev1 dateprev2 range of dates during which prevalence is computed
               anproj2 year of en of projection (same day and month as proj1).
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    */
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    double agec; /* generic age */
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    double ***p3mat;
         for (j=ncovcol;j>=1;j--){    double ***mobaverage;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    char fileresf[FILENAMELENGTH];
         }  
         num[i]=atol(stra);    agelim=AGESUP;
            prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){   
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
         i=i+1;    if((ficresf=fopen(fileresf,"w"))==NULL) {
       }      printf("Problem with forecast resultfile: %s\n", fileresf);
     }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     /* printf("ii=%d", ij);    }
        scanf("%d",i);*/    printf("Computing forecasting: result on file '%s' \n", fileresf);
   imx=i-1; /* Number of individuals */    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
   /* for (i=1; i<=imx; i++){    if (cptcoveff==0) ncodemax[cptcoveff]=1;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    if (mobilav!=0) {
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }*/      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
    /*  for (i=1; i<=imx; i++){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
      if (s[4][i]==9)  s[4][i]=-1;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      }
      }
    
   /* Calculation of the number of parameter from char model*/    stepsize=(int) (stepm+YEARM-1)/YEARM;
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */    if (stepm<=12) stepsize=1;
   Tprod=ivector(1,15);    if(estepm < stepm){
   Tvaraff=ivector(1,15);      printf ("Problem %d lower than %d\n",estepm, stepm);
   Tvard=imatrix(1,15,1,2);    }
   Tage=ivector(1,15);          else  hstepm=estepm;   
      
   if (strlen(model) >1){    hstepm=hstepm/stepm; 
     j=0, j1=0, k1=1, k2=1;    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
     j=nbocc(model,'+');                                 fractional in yp1 */
     j1=nbocc(model,'*');    anprojmean=yp;
     cptcovn=j+1;    yp2=modf((yp1*12),&yp);
     cptcovprod=j1;    mprojmean=yp;
        yp1=modf((yp2*30.5),&yp);
     strcpy(modelsav,model);    jprojmean=yp;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    if(jprojmean==0) jprojmean=1;
       printf("Error. Non available option model=%s ",model);    if(mprojmean==0) jprojmean=1;
       fprintf(ficlog,"Error. Non available option model=%s ",model);  
       goto end;    i1=cptcoveff;
     }    if (cptcovn < 1){i1=1;}
        
     for(i=(j+1); i>=1;i--){    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */    
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */    fprintf(ficresf,"#****** Routine prevforecast **\n");
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  
       /*scanf("%d",i);*/  /*            if (h==(int)(YEARM*yearp)){ */
       if (strchr(strb,'*')) {  /* Model includes a product */    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         if (strcmp(strc,"age")==0) { /* Vn*age */        k=k+1;
           cptcovprod--;        fprintf(ficresf,"\n#******");
           cutv(strb,stre,strd,'V');        for(j=1;j<=cptcoveff;j++) {
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           cptcovage++;        }
             Tage[cptcovage]=i;        fprintf(ficresf,"******\n");
             /*printf("stre=%s ", stre);*/        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         }        for(j=1; j<=nlstate+ndeath;j++){ 
         else if (strcmp(strd,"age")==0) { /* or age*Vn */          for(i=1; i<=nlstate;i++)              
           cptcovprod--;            fprintf(ficresf," p%d%d",i,j);
           cutv(strb,stre,strc,'V');          fprintf(ficresf," p.%d",j);
           Tvar[i]=atoi(stre);        }
           cptcovage++;        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           Tage[cptcovage]=i;          fprintf(ficresf,"\n");
         }          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
         else {  /* Age is not in the model */  
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/          for (agec=fage; agec>=(ageminpar-1); agec--){ 
           Tvar[i]=ncovcol+k1;            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */            nhstepm = nhstepm/hstepm; 
           Tprod[k1]=i;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           Tvard[k1][1]=atoi(strc); /* m*/            oldm=oldms;savm=savms;
           Tvard[k1][2]=atoi(stre); /* n */            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           Tvar[cptcovn+k2]=Tvard[k1][1];          
           Tvar[cptcovn+k2+1]=Tvard[k1][2];            for (h=0; h<=nhstepm; h++){
           for (k=1; k<=lastobs;k++)              if (h*hstepm/YEARM*stepm ==yearp) {
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                fprintf(ficresf,"\n");
           k1++;                for(j=1;j<=cptcoveff;j++) 
           k2=k2+2;                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
       }              } 
       else { /* no more sum */              for(j=1; j<=nlstate+ndeath;j++) {
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/                ppij=0.;
        /*  scanf("%d",i);*/                for(i=1; i<=nlstate;i++) {
       cutv(strd,strc,strb,'V');                  if (mobilav==1) 
       Tvar[i]=atoi(strc);                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
       }                  else {
       strcpy(modelsav,stra);                      ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                  }
         scanf("%d",i);*/                  if (h*hstepm/YEARM*stepm== yearp) {
     } /* end of loop + */                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
   } /* end model */                  }
                  } /* end i */
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);                if (h*hstepm/YEARM*stepm==yearp) {
   printf("cptcovprod=%d ", cptcovprod);                  fprintf(ficresf," %.3f", ppij);
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);                }
   scanf("%d ",i);*/              }/* end j */
     fclose(fic);            } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     /*  if(mle==1){*/          } /* end agec */
     if (weightopt != 1) { /* Maximisation without weights*/        } /* end yearp */
       for(i=1;i<=n;i++) weight[i]=1.0;      } /* end cptcod */
     }    } /* end  cptcov */
     /*-calculation of age at interview from date of interview and age at death -*/         
     agev=matrix(1,maxwav,1,imx);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     for (i=1; i<=imx; i++) {    fclose(ficresf);
       for(m=2; (m<= maxwav); m++) {  }
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){  
          anint[m][i]=9999;  /************** Forecasting *****not tested NB*************/
          s[m][i]=-1;  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
        }    
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
       }    int *popage;
     }    double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     for (i=1; i<=imx; i++)  {    double ***p3mat,***tabpop,***tabpopprev;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    double ***mobaverage;
       for(m=1; (m<= maxwav); m++){    char filerespop[FILENAMELENGTH];
         if(s[m][i] >0){  
           if (s[m][i] >= nlstate+1) {    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             if(agedc[i]>0)    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
               if(moisdc[i]!=99 && andc[i]!=9999)    agelim=AGESUP;
                 agev[m][i]=agedc[i];    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    
            else {    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
               if (andc[i]!=9999){    
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);    strcpy(filerespop,"pop"); 
               agev[m][i]=-1;    strcat(filerespop,fileres);
               }    if((ficrespop=fopen(filerespop,"w"))==NULL) {
             }      printf("Problem with forecast resultfile: %s\n", filerespop);
           }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
           else if(s[m][i] !=9){ /* Should no more exist */    }
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    printf("Computing forecasting: result on file '%s' \n", filerespop);
             if(mint[m][i]==99 || anint[m][i]==9999)    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
               agev[m][i]=1;  
             else if(agev[m][i] <agemin){    if (cptcoveff==0) ncodemax[cptcoveff]=1;
               agemin=agev[m][i];  
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    if (mobilav!=0) {
             }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             else if(agev[m][i] >agemax){      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
               agemax=agev[m][i];        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        printf(" Error in movingaverage mobilav=%d\n",mobilav);
             }      }
             /*agev[m][i]=anint[m][i]-annais[i];*/    }
             /*   agev[m][i] = age[i]+2*m;*/  
           }    stepsize=(int) (stepm+YEARM-1)/YEARM;
           else { /* =9 */    if (stepm<=12) stepsize=1;
             agev[m][i]=1;    
             s[m][i]=-1;    agelim=AGESUP;
           }    
         }    hstepm=1;
         else /*= 0 Unknown */    hstepm=hstepm/stepm; 
           agev[m][i]=1;    
       }    if (popforecast==1) {
          if((ficpop=fopen(popfile,"r"))==NULL) {
     }        printf("Problem with population file : %s\n",popfile);exit(0);
     for (i=1; i<=imx; i++)  {        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       for(m=1; (m<= maxwav); m++){      } 
         if (s[m][i] > (nlstate+ndeath)) {      popage=ivector(0,AGESUP);
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);        popeffectif=vector(0,AGESUP);
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);        popcount=vector(0,AGESUP);
           goto end;      
         }      i=1;   
       }      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
     }     
       imx=i;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    }
   
     free_vector(severity,1,maxwav);    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
     free_imatrix(outcome,1,maxwav+1,1,n);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     free_vector(moisnais,1,n);        k=k+1;
     free_vector(annais,1,n);        fprintf(ficrespop,"\n#******");
     /* free_matrix(mint,1,maxwav,1,n);        for(j=1;j<=cptcoveff;j++) {
        free_matrix(anint,1,maxwav,1,n);*/          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     free_vector(moisdc,1,n);        }
     free_vector(andc,1,n);        fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
            for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
     wav=ivector(1,imx);        if (popforecast==1)  fprintf(ficrespop," [Population]");
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        for (cpt=0; cpt<=0;cpt++) { 
              fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
     /* Concatenates waves */          
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
       Tcode=ivector(1,100);            
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       ncodemax[1]=1;            oldm=oldms;savm=savms;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
                
    codtab=imatrix(1,100,1,10);            for (h=0; h<=nhstepm; h++){
    h=0;              if (h==(int) (calagedatem+YEARM*cpt)) {
    m=pow(2,cptcoveff);                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
                } 
    for(k=1;k<=cptcoveff; k++){              for(j=1; j<=nlstate+ndeath;j++) {
      for(i=1; i <=(m/pow(2,k));i++){                kk1=0.;kk2=0;
        for(j=1; j <= ncodemax[k]; j++){                for(i=1; i<=nlstate;i++) {              
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                  if (mobilav==1) 
            h++;                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;                  else {
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
          }                  }
        }                }
      }                if (h==(int)(calagedatem+12*cpt)){
    }                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);                    /*fprintf(ficrespop," %.3f", kk1);
       codtab[1][2]=1;codtab[2][2]=2; */                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
    /* for(i=1; i <=m ;i++){                }
       for(k=1; k <=cptcovn; k++){              }
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);              for(i=1; i<=nlstate;i++){
       }                kk1=0.;
       printf("\n");                  for(j=1; j<=nlstate;j++){
       }                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
       scanf("%d",i);*/                  }
                        tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
    /* Calculates basic frequencies. Computes observed prevalence at single age              }
        and prints on file fileres'p'. */  
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                    fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
                }
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    /******/
        
     /* For Powell, parameters are in a vector p[] starting at p[1]        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
     if(mle==1){            nhstepm = nhstepm/hstepm; 
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);            
     }            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                oldm=oldms;savm=savms;
     /*--------- results files --------------*/            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);            for (h=0; h<=nhstepm; h++){
                if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
    jk=1;              } 
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");              for(j=1; j<=nlstate+ndeath;j++) {
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                kk1=0.;kk2=0;
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                for(i=1; i<=nlstate;i++) {              
    for(i=1,jk=1; i <=nlstate; i++){                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
      for(k=1; k <=(nlstate+ndeath); k++){                }
        if (k != i)                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
          {              }
            printf("%d%d ",i,k);            }
            fprintf(ficlog,"%d%d ",i,k);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            fprintf(ficres,"%1d%1d ",i,k);          }
            for(j=1; j <=ncovmodel; j++){        }
              printf("%f ",p[jk]);     } 
              fprintf(ficlog,"%f ",p[jk]);    }
              fprintf(ficres,"%f ",p[jk]);   
              jk++;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
            }  
            printf("\n");    if (popforecast==1) {
            fprintf(ficlog,"\n");      free_ivector(popage,0,AGESUP);
            fprintf(ficres,"\n");      free_vector(popeffectif,0,AGESUP);
          }      free_vector(popcount,0,AGESUP);
      }    }
    }    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    if(mle==1){    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      /* Computing hessian and covariance matrix */    fclose(ficrespop);
      ftolhess=ftol; /* Usually correct */  } /* End of popforecast */
      hesscov(matcov, p, npar, delti, ftolhess, func);  
    }  int fileappend(FILE *fichier, char *optionfile)
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  {
    printf("# Scales (for hessian or gradient estimation)\n");    if((fichier=fopen(optionfile,"a"))==NULL) {
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");      printf("Problem with file: %s\n", optionfile);
    for(i=1,jk=1; i <=nlstate; i++){      fprintf(ficlog,"Problem with file: %s\n", optionfile);
      for(j=1; j <=nlstate+ndeath; j++){      return (1);
        if (j!=i) {    }
          fprintf(ficres,"%1d%1d",i,j);  
          printf("%1d%1d",i,j);  }
          fprintf(ficlog,"%1d%1d",i,j);  /***********************************************/
          for(k=1; k<=ncovmodel;k++){  /**************** Main Program *****************/
            printf(" %.5e",delti[jk]);  /***********************************************/
            fprintf(ficlog," %.5e",delti[jk]);  
            fprintf(ficres," %.5e",delti[jk]);  int main(int argc, char *argv[])
            jk++;  {
          }    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
          printf("\n");    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
          fprintf(ficlog,"\n");    int jj;
          fprintf(ficres,"\n");    int numlinepar=0; /* Current linenumber of parameter file */
        }    double agedeb, agefin,hf;
      }    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
    }  
        double fret;
    k=1;    double **xi,tmp,delta;
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
    if(mle==1)    double dum; /* Dummy variable */
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    double ***p3mat;
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    double ***mobaverage;
    for(i=1;i<=npar;i++){    int *indx;
      /*  if (k>nlstate) k=1;    char line[MAXLINE], linepar[MAXLINE];
          i1=(i-1)/(ncovmodel*nlstate)+1;    char path[132],pathc[132],pathcd[132],pathtot[132],model[132];
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    int firstobs=1, lastobs=10;
          printf("%s%d%d",alph[k],i1,tab[i]);*/    int sdeb, sfin; /* Status at beginning and end */
      fprintf(ficres,"%3d",i);    int c,  h , cpt,l;
      if(mle==1)    int ju,jl, mi;
        printf("%3d",i);    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
      fprintf(ficlog,"%3d",i);    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
      for(j=1; j<=i;j++){    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
        fprintf(ficres," %.5e",matcov[i][j]);    int mobilav=0,popforecast=0;
        if(mle==1)    int hstepm, nhstepm;
          printf(" %.5e",matcov[i][j]);    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
        fprintf(ficlog," %.5e",matcov[i][j]);    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
      }  
      fprintf(ficres,"\n");    double bage, fage, age, agelim, agebase;
      if(mle==1)    double ftolpl=FTOL;
        printf("\n");    double **prlim;
      fprintf(ficlog,"\n");    double *severity;
      k++;    double ***param; /* Matrix of parameters */
    }    double  *p;
        double **matcov; /* Matrix of covariance */
    while((c=getc(ficpar))=='#' && c!= EOF){    double ***delti3; /* Scale */
      ungetc(c,ficpar);    double *delti; /* Scale */
      fgets(line, MAXLINE, ficpar);    double ***eij, ***vareij;
      puts(line);    double **varpl; /* Variances of prevalence limits by age */
      fputs(line,ficparo);    double *epj, vepp;
    }    double kk1, kk2;
    ungetc(c,ficpar);    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
    estepm=0;  
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    char *alph[]={"a","a","b","c","d","e"}, str[4];
    if (estepm==0 || estepm < stepm) estepm=stepm;  
    if (fage <= 2) {  
      bage = ageminpar;    char z[1]="c", occ;
      fage = agemaxpar;  
    }    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
        char *strt, *strtend;
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    char *stratrunc;
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    int lstra;
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  
        long total_usecs;
    while((c=getc(ficpar))=='#' && c!= EOF){    struct timeval start_time, end_time, curr_time;
      ungetc(c,ficpar);    struct timezone tzp;
      fgets(line, MAXLINE, ficpar);    extern int gettimeofday();
      puts(line);    struct tm tmg, tm, *gmtime(), *localtime();
      fputs(line,ficparo);    long time_value;
    }    extern long time();
    ungetc(c,ficpar);   
      /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    (void) gettimeofday(&start_time,&tzp);
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    tm = *localtime(&start_time.tv_sec);
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    tmg = *gmtime(&start_time.tv_sec);
        strt=asctime(&tm);
    while((c=getc(ficpar))=='#' && c!= EOF){  
      ungetc(c,ficpar);  /*  printf("Localtime (at start)=%s",strt); */
      fgets(line, MAXLINE, ficpar);  /*  tp.tv_sec = tp.tv_sec +86400; */
      puts(line);  /*  tm = *localtime(&start_time.tv_sec); */
      fputs(line,ficparo);  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
    }  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
    ungetc(c,ficpar);  /*   tmg.tm_hour=tmg.tm_hour + 1; */
    /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
    dateprev1=anprev1+mprev1/12.+jprev1/365.;  /*   printf("Time(after) =%s",strt);  */
    dateprev2=anprev2+mprev2/12.+jprev2/365.;  /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   fscanf(ficpar,"pop_based=%d\n",&popbased);  *  tm = *localtime(&time_value);
   fprintf(ficparo,"pop_based=%d\n",popbased);    *  strt=asctime(&tm);
   fprintf(ficres,"pop_based=%d\n",popbased);    *  printf("tim_value=%d,asctime=%s\n",time_value,strt); 
    */
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    getcwd(pathcd, size);
     fgets(line, MAXLINE, ficpar);  
     puts(line);    printf("\n%s\n%s",version,fullversion);
     fputs(line,ficparo);    if(argc <=1){
   }      printf("\nEnter the parameter file name: ");
   ungetc(c,ficpar);      scanf("%s",pathtot);
     }
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    else{
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      strcpy(pathtot,argv[1]);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    }
     /*if(getcwd(pathcd, 132)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
 while((c=getc(ficpar))=='#' && c!= EOF){      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     ungetc(c,ficpar);    /* cutv(path,optionfile,pathtot,'\\');*/
     fgets(line, MAXLINE, ficpar);  
     puts(line);    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     fputs(line,ficparo);    printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   }    chdir(path);
   ungetc(c,ficpar);    replace(pathc,path);
   
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    /*-------- arguments in the command line --------*/
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    /* Log file */
     strcat(filelog, optionfilefiname);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
 /*------------ gnuplot -------------*/      printf("Problem with logfile %s\n",filelog);
   strcpy(optionfilegnuplot,optionfilefiname);      goto end;
   strcat(optionfilegnuplot,".gp");    }
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    fprintf(ficlog,"Log filename:%s\n",filelog);
     printf("Problem with file %s",optionfilegnuplot);    fprintf(ficlog,"\n%s\n%s",version,fullversion);
   }    fprintf(ficlog,"\nEnter the parameter file name: ");
   fclose(ficgp);    fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);  
 /*--------- index.htm --------*/    printf("Localtime (at start)=%s",strt);
     fprintf(ficlog,"Localtime (at start)=%s",strt);
   strcpy(optionfilehtm,optionfile);    fflush(ficlog);
   strcat(optionfilehtm,".htm");  
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    /* */
     printf("Problem with %s \n",optionfilehtm), exit(0);    strcpy(fileres,"r");
   }    strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n  
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    /*---------arguments file --------*/
 \n  
 Total number of observations=%d <br>\n    if((ficpar=fopen(optionfile,"r"))==NULL)    {
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n      printf("Problem with optionfile %s\n",optionfile);
 <hr  size=\"2\" color=\"#EC5E5E\">      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
  <ul><li><h4>Parameter files</h4>\n      fflush(ficlog);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n      goto end;
  - Log file of the run: <a href=\"%s\">%s</a><br>\n    }
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);  
   fclose(fichtm);    strcpy(filereso,"o");
     strcat(filereso,fileres);
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    if((ficparo=fopen(filereso,"w"))==NULL) {
        printf("Problem with Output resultfile: %s\n", filereso);
 /*------------ free_vector  -------------*/      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
  chdir(path);      fflush(ficlog);
        goto end;
  free_ivector(wav,1,imx);    }
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      /* Reads comments: lines beginning with '#' */
  free_ivector(num,1,n);    numlinepar=0;
  free_vector(agedc,1,n);    while((c=getc(ficpar))=='#' && c!= EOF){
  /*free_matrix(covar,1,NCOVMAX,1,n);*/      ungetc(c,ficpar);
  fclose(ficparo);      fgets(line, MAXLINE, ficpar);
  fclose(ficres);      numlinepar++;
       puts(line);
       fputs(line,ficparo);
   /*--------------- Prevalence limit --------------*/      fputs(line,ficlog);
      }
   strcpy(filerespl,"pl");    ungetc(c,ficpar);
   strcat(filerespl,fileres);  
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    numlinepar++;
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
   }    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);    fflush(ficlog);
   fprintf(ficrespl,"#Prevalence limit\n");    while((c=getc(ficpar))=='#' && c!= EOF){
   fprintf(ficrespl,"#Age ");      ungetc(c,ficpar);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      fgets(line, MAXLINE, ficpar);
   fprintf(ficrespl,"\n");      numlinepar++;
        puts(line);
   prlim=matrix(1,nlstate,1,nlstate);      fputs(line,ficparo);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      fputs(line,ficlog);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    ungetc(c,ficpar);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */     
   k=0;    covar=matrix(0,NCOVMAX,1,n); 
   agebase=ageminpar;    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
   agelim=agemaxpar;    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   ftolpl=1.e-10;  
   i1=cptcoveff;    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
   if (cptcovn < 1){i1=1;}    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
   for(cptcov=1;cptcov<=i1;cptcov++){    /* Read guess parameters */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /* Reads comments: lines beginning with '#' */
         k=k+1;    while((c=getc(ficpar))=='#' && c!= EOF){
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      ungetc(c,ficpar);
         fprintf(ficrespl,"\n#******");      fgets(line, MAXLINE, ficpar);
         printf("\n#******");      numlinepar++;
         fprintf(ficlog,"\n#******");      puts(line);
         for(j=1;j<=cptcoveff;j++) {      fputs(line,ficparo);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fputs(line,ficlog);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    ungetc(c,ficpar);
         }  
         fprintf(ficrespl,"******\n");    param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
         printf("******\n");    for(i=1; i <=nlstate; i++){
         fprintf(ficlog,"******\n");      j=0;
              for(jj=1; jj <=nlstate+ndeath; jj++){
         for (age=agebase; age<=agelim; age++){        if(jj==i) continue;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        j++;
           fprintf(ficrespl,"%.0f",age );        fscanf(ficpar,"%1d%1d",&i1,&j1);
           for(i=1; i<=nlstate;i++)        if ((i1 != i) && (j1 != j)){
           fprintf(ficrespl," %.5f", prlim[i][i]);          printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           fprintf(ficrespl,"\n");          exit(1);
         }        }
       }        fprintf(ficparo,"%1d%1d",i1,j1);
     }        if(mle==1)
   fclose(ficrespl);          printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
   /*------------- h Pij x at various ages ------------*/        for(k=1; k<=ncovmodel;k++){
            fscanf(ficpar," %lf",&param[i][j][k]);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);          if(mle==1){
   if((ficrespij=fopen(filerespij,"w"))==NULL) {            printf(" %lf",param[i][j][k]);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;            fprintf(ficlog," %lf",param[i][j][k]);
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;          }
   }          else
   printf("Computing pij: result on file '%s' \n", filerespij);            fprintf(ficlog," %lf",param[i][j][k]);
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);          fprintf(ficparo," %lf",param[i][j][k]);
          }
   stepsize=(int) (stepm+YEARM-1)/YEARM;        fscanf(ficpar,"\n");
   /*if (stepm<=24) stepsize=2;*/        numlinepar++;
         if(mle==1)
   agelim=AGESUP;          printf("\n");
   hstepm=stepsize*YEARM; /* Every year of age */        fprintf(ficlog,"\n");
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        fprintf(ficparo,"\n");
       }
   /* hstepm=1;   aff par mois*/    }  
     fflush(ficlog);
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    p=param[1][1];
         fprintf(ficrespij,"\n#****** ");    
         for(j=1;j<=cptcoveff;j++)    /* Reads comments: lines beginning with '#' */
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    while((c=getc(ficpar))=='#' && c!= EOF){
         fprintf(ficrespij,"******\n");      ungetc(c,ficpar);
              fgets(line, MAXLINE, ficpar);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      numlinepar++;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      puts(line);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      fputs(line,ficparo);
       fputs(line,ficlog);
           /*      nhstepm=nhstepm*YEARM; aff par mois*/    }
     ungetc(c,ficpar);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
           fprintf(ficrespij,"# Age");    for(i=1; i <=nlstate; i++){
           for(i=1; i<=nlstate;i++)      for(j=1; j <=nlstate+ndeath-1; j++){
             for(j=1; j<=nlstate+ndeath;j++)        fscanf(ficpar,"%1d%1d",&i1,&j1);
               fprintf(ficrespij," %1d-%1d",i,j);        if ((i1-i)*(j1-j)!=0){
           fprintf(ficrespij,"\n");          printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
            for (h=0; h<=nhstepm; h++){          exit(1);
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );        }
             for(i=1; i<=nlstate;i++)        printf("%1d%1d",i,j);
               for(j=1; j<=nlstate+ndeath;j++)        fprintf(ficparo,"%1d%1d",i1,j1);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);        fprintf(ficlog,"%1d%1d",i1,j1);
             fprintf(ficrespij,"\n");        for(k=1; k<=ncovmodel;k++){
              }          fscanf(ficpar,"%le",&delti3[i][j][k]);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          printf(" %le",delti3[i][j][k]);
           fprintf(ficrespij,"\n");          fprintf(ficparo," %le",delti3[i][j][k]);
         }          fprintf(ficlog," %le",delti3[i][j][k]);
     }        }
   }        fscanf(ficpar,"\n");
         numlinepar++;
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);        printf("\n");
         fprintf(ficparo,"\n");
   fclose(ficrespij);        fprintf(ficlog,"\n");
       }
     }
   /*---------- Forecasting ------------------*/    fflush(ficlog);
   if((stepm == 1) && (strcmp(model,".")==0)){  
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    delti=delti3[1][1];
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);  
   }  
   else{    /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     erreur=108;    
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    /* Reads comments: lines beginning with '#' */
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    while((c=getc(ficpar))=='#' && c!= EOF){
   }      ungetc(c,ficpar);
        fgets(line, MAXLINE, ficpar);
       numlinepar++;
   /*---------- Health expectancies and variances ------------*/      puts(line);
       fputs(line,ficparo);
   strcpy(filerest,"t");      fputs(line,ficlog);
   strcat(filerest,fileres);    }
   if((ficrest=fopen(filerest,"w"))==NULL) {    ungetc(c,ficpar);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;    matcov=matrix(1,npar,1,npar);
   }    for(i=1; i <=npar; i++){
   printf("Computing Total LEs with variances: file '%s' \n", filerest);      fscanf(ficpar,"%s",&str);
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);      if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
   strcpy(filerese,"e");      fprintf(ficparo,"%s",str);
   strcat(filerese,fileres);      for(j=1; j <=i; j++){
   if((ficreseij=fopen(filerese,"w"))==NULL) {        fscanf(ficpar," %le",&matcov[i][j]);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        if(mle==1){
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          printf(" %.5le",matcov[i][j]);
   }        }
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);        fprintf(ficlog," %.5le",matcov[i][j]);
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);        fprintf(ficparo," %.5le",matcov[i][j]);
       }
   strcpy(fileresv,"v");      fscanf(ficpar,"\n");
   strcat(fileresv,fileres);      numlinepar++;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      if(mle==1)
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        printf("\n");
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);      fprintf(ficlog,"\n");
   }      fprintf(ficparo,"\n");
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    }
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    for(i=1; i <=npar; i++)
   calagedate=-1;      for(j=i+1;j<=npar;j++)
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        matcov[i][j]=matcov[j][i];
      
   k=0;    if(mle==1)
   for(cptcov=1;cptcov<=i1;cptcov++){      printf("\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficlog,"\n");
       k=k+1;  
       fprintf(ficrest,"\n#****** ");    fflush(ficlog);
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /*-------- Rewriting paramater file ----------*/
       fprintf(ficrest,"******\n");    strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       fprintf(ficreseij,"\n#****** ");    strcat(rfileres,".");    /* */
       for(j=1;j<=cptcoveff;j++)    strcat(rfileres,optionfilext);    /* Other files have txt extension */
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if((ficres =fopen(rfileres,"w"))==NULL) {
       fprintf(ficreseij,"******\n");      printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficresvij,"\n#****** ");    }
       for(j=1;j<=cptcoveff;j++)    fprintf(ficres,"#%s\n",version);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      
       fprintf(ficresvij,"******\n");    /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      printf("Problem with datafile: %s\n", datafile);goto end;
       oldm=oldms;savm=savms;      fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      }
    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    n= lastobs;
       oldm=oldms;savm=savms;    severity = vector(1,maxwav);
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);    outcome=imatrix(1,maxwav+1,1,n);
       if(popbased==1){    num=lvector(1,n);
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);    moisnais=vector(1,n);
        }    annais=vector(1,n);
     moisdc=vector(1,n);
      andc=vector(1,n);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    agedc=vector(1,n);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    cod=ivector(1,n);
       fprintf(ficrest,"\n");    weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
       epj=vector(1,nlstate+1);    mint=matrix(1,maxwav,1,n);
       for(age=bage; age <=fage ;age++){    anint=matrix(1,maxwav,1,n);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    s=imatrix(1,maxwav+1,1,n);
         if (popbased==1) {    tab=ivector(1,NCOVMAX);
           for(i=1; i<=nlstate;i++)    ncodemax=ivector(1,8);
             prlim[i][i]=probs[(int)age][i][k];  
         }    i=1;
            while (fgets(line, MAXLINE, fic) != NULL)    {
         fprintf(ficrest," %4.0f",age);      if ((i >= firstobs) && (i <=lastobs)) {
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        for (j=maxwav;j>=1;j--){
             epj[j] += prlim[i][i]*eij[i][j][(int)age];          cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/          strcpy(line,stra);
           }          cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           epj[nlstate+1] +=epj[j];          cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }        }
           
         for(i=1, vepp=0.;i <=nlstate;i++)        cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
           for(j=1;j <=nlstate;j++)        cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
             vepp += vareij[i][j][(int)age];  
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));        cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         for(j=1;j <=nlstate;j++){        cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));  
         }        cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         fprintf(ficrest,"\n");        for (j=ncovcol;j>=1;j--){
       }          cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
     }        } 
   }        lstra=strlen(stra);
 free_matrix(mint,1,maxwav,1,n);        if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);          stratrunc = &(stra[lstra-9]);
     free_vector(weight,1,n);          num[i]=atol(stratrunc);
   fclose(ficreseij);        }
   fclose(ficresvij);        else
   fclose(ficrest);          num[i]=atol(stra);
   fclose(ficpar);          
   free_vector(epj,1,nlstate+1);        /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
            printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   /*------- Variance limit prevalence------*/    
         i=i+1;
   strcpy(fileresvpl,"vpl");      }
   strcat(fileresvpl,fileres);    }
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    /* printf("ii=%d", ij);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);       scanf("%d",i);*/
     exit(0);    imx=i-1; /* Number of individuals */
   }  
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
   k=0;      if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
   for(cptcov=1;cptcov<=i1;cptcov++){      if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      }*/
       k=k+1;     /*  for (i=1; i<=imx; i++){
       fprintf(ficresvpl,"\n#****** ");       if (s[4][i]==9)  s[4][i]=-1; 
       for(j=1;j<=cptcoveff;j++)       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    
       fprintf(ficresvpl,"******\n");   for (i=1; i<=imx; i++)
         
       varpl=matrix(1,nlstate,(int) bage, (int) fage);     /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
       oldm=oldms;savm=savms;       else weight[i]=1;*/
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
     }    /* Calculation of the number of parameter from char model*/
  }    Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
   fclose(ficresvpl);    Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
   /*---------- End : free ----------------*/    Tage=ivector(1,15);      
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);     
      if (strlen(model) >1){ /* If there is at least 1 covariate */
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      j=0, j1=0, k1=1, k2=1;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      j=nbocc(model,'+'); /* j=Number of '+' */
        j1=nbocc(model,'*'); /* j1=Number of '*' */
        cptcovn=j+1; 
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      cptcovprod=j1; /*Number of products */
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      strcpy(modelsav,model); 
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
          printf("Error. Non available option model=%s ",model);
   free_matrix(matcov,1,npar,1,npar);        fprintf(ficlog,"Error. Non available option model=%s ",model);
   free_vector(delti,1,npar);        goto end;
   free_matrix(agev,1,maxwav,1,imx);      }
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      
       /* This loop fills the array Tvar from the string 'model'.*/
   fprintf(fichtm,"\n</body>");  
   fclose(fichtm);      for(i=(j+1); i>=1;i--){
   fclose(ficgp);        cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
          if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
   if(erreur >0){        /*scanf("%d",i);*/
     printf("End of Imach with error or warning %d\n",erreur);        if (strchr(strb,'*')) {  /* Model includes a product */
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
   }else{          if (strcmp(strc,"age")==0) { /* Vn*age */
    printf("End of Imach\n");            cptcovprod--;
    fprintf(ficlog,"End of Imach\n");            cutv(strb,stre,strd,'V');
   }            Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
   printf("See log file on %s\n",filelog);            cptcovage++;
   fclose(ficlog);              Tage[cptcovage]=i;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */              /*printf("stre=%s ", stre);*/
            }
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/          else if (strcmp(strd,"age")==0) { /* or age*Vn */
   /*printf("Total time was %d uSec.\n", total_usecs);*/            cptcovprod--;
   /*------ End -----------*/            cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
  end:            Tage[cptcovage]=i;
 #ifdef windows          }
   /* chdir(pathcd);*/          else {  /* Age is not in the model */
 #endif            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
  /*system("wgnuplot graph.plt");*/            Tvar[i]=ncovcol+k1;
  /*system("../gp37mgw/wgnuplot graph.plt");*/            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
  /*system("cd ../gp37mgw");*/            Tprod[k1]=i;
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/            Tvard[k1][1]=atoi(strc); /* m*/
  strcpy(plotcmd,GNUPLOTPROGRAM);            Tvard[k1][2]=atoi(stre); /* n */
  strcat(plotcmd," ");            Tvar[cptcovn+k2]=Tvard[k1][1];
  strcat(plotcmd,optionfilegnuplot);            Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
  system(plotcmd);            for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
 #ifdef windows            k1++;
   while (z[0] != 'q') {            k2=k2+2;
     /* chdir(path); */          }
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");        }
     scanf("%s",z);        else { /* no more sum */
     if (z[0] == 'c') system("./imach");          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
     else if (z[0] == 'e') system(optionfilehtm);         /*  scanf("%d",i);*/
     else if (z[0] == 'g') system(plotcmd);        cutv(strd,strc,strb,'V');
     else if (z[0] == 'q') exit(0);        Tvar[i]=atoi(strc);
   }        }
 #endif        strcpy(modelsav,stra);  
 }        /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a>\n\
    - Date and time at start: %s</ul>\n",\
             version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt,\
             model,fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strt);
     fclose(fichtm);
   
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     if(fileappend(fichtm, optionfilehtm)){
       fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
           imx,agemin,agemax,jmin,jmax,jmean);
       fclose(fichtm);
     }
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strtend=asctime(&tm);
     printf("Localtime at start %s and at end=%s",strt, strtend); 
     fprintf(ficlog,"Localtime at start %s and at end=%s",strt, strtend); 
     /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/
   
     printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
     if(fileappend(fichtm,optionfilehtm)){
       fprintf(fichtm,"<br>Localtime at start %s and at end=%s<br>",strt, strtend);
       fclose(fichtm);
     }
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.50  
changed lines
  Added in v.1.86


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>