Diff for /imach/src/imach.c between versions 1.50 and 1.98

version 1.50, 2002/06/26 23:25:02 version 1.98, 2004/05/16 15:05:56
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.98  2004/05/16 15:05:56  brouard
      New version 0.97 . First attempt to estimate force of mortality
   This program computes Healthy Life Expectancies from    directly from the data i.e. without the need of knowing the health
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    state at each age, but using a Gompertz model: log u =a + b*age .
   first survey ("cross") where individuals from different ages are    This is the basic analysis of mortality and should be done before any
   interviewed on their health status or degree of disability (in the    other analysis, in order to test if the mortality estimated from the
   case of a health survey which is our main interest) -2- at least a    cross-longitudinal survey is different from the mortality estimated
   second wave of interviews ("longitudinal") which measure each change    from other sources like vital statistic data.
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    The same imach parameter file can be used but the option for mle should be -3.
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Agnès, who wrote this part of the code, tried to keep most of the
   simplest model is the multinomial logistic model where pij is the    former routines in order to include the new code within the former code.
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    The output is very simple: only an estimate of the intercept and of
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    the slope with 95% confident intervals.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Current limitations:
   where the markup *Covariates have to be included here again* invites    A) Even if you enter covariates, i.e. with the
   you to do it.  More covariates you add, slower the    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   convergence.    B) There is no computation of Life Expectancy nor Life Table.
   
   The advantage of this computer programme, compared to a simple    Revision 1.97  2004/02/20 13:25:42  lievre
   multinomial logistic model, is clear when the delay between waves is not    Version 0.96d. Population forecasting command line is (temporarily)
   identical for each individual. Also, if a individual missed an    suppressed.
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   hPijx is the probability to be observed in state i at age x+h    rewritten within the same printf. Workaround: many printfs.
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.95  2003/07/08 07:54:34  brouard
   states. This elementary transition (by month or quarter trimester,    * imach.c (Repository):
   semester or year) is model as a multinomial logistic.  The hPx    (Repository): Using imachwizard code to output a more meaningful covariance
   matrix is simply the matrix product of nh*stepm elementary matrices    matrix (cov(a12,c31) instead of numbers.
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.93  2003/06/25 16:33:55  brouard
      (Module): On windows (cygwin) function asctime_r doesn't
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    exist so I changed back to asctime which exists.
            Institut national d'études démographiques, Paris.    (Module): Version 0.96b
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.92  2003/06/25 16:30:45  brouard
   It is copyrighted identically to a GNU software product, ie programme and    (Module): On windows (cygwin) function asctime_r doesn't
   software can be distributed freely for non commercial use. Latest version    exist so I changed back to asctime which exists.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.91  2003/06/25 15:30:29  brouard
      * imach.c (Repository): Duplicated warning errors corrected.
 #include <math.h>    (Repository): Elapsed time after each iteration is now output. It
 #include <stdio.h>    helps to forecast when convergence will be reached. Elapsed time
 #include <stdlib.h>    is stamped in powell.  We created a new html file for the graphs
 #include <unistd.h>    concerning matrix of covariance. It has extension -cov.htm.
   
 #define MAXLINE 256    Revision 1.90  2003/06/24 12:34:15  brouard
 #define GNUPLOTPROGRAM "gnuplot"    (Module): Some bugs corrected for windows. Also, when
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    mle=-1 a template is output in file "or"mypar.txt with the design
 #define FILENAMELENGTH 80    of the covariance matrix to be input.
 /*#define DEBUG*/  
 #define windows    Revision 1.89  2003/06/24 12:30:52  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    (Module): Some bugs corrected for windows. Also, when
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.87  2003/06/18 12:26:01  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Version 0.96
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.86  2003/06/17 20:04:08  brouard
 #define YEARM 12. /* Number of months per year */    (Module): Change position of html and gnuplot routines and added
 #define AGESUP 130    routine fileappend.
 #define AGEBASE 40  
 #ifdef windows    Revision 1.85  2003/06/17 13:12:43  brouard
 #define DIRSEPARATOR '\\'    * imach.c (Repository): Check when date of death was earlier that
 #define ODIRSEPARATOR '/'    current date of interview. It may happen when the death was just
 #else    prior to the death. In this case, dh was negative and likelihood
 #define DIRSEPARATOR '/'    was wrong (infinity). We still send an "Error" but patch by
 #define ODIRSEPARATOR '\\'    assuming that the date of death was just one stepm after the
 #endif    interview.
     (Repository): Because some people have very long ID (first column)
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    we changed int to long in num[] and we added a new lvector for
 int erreur; /* Error number */    memory allocation. But we also truncated to 8 characters (left
 int nvar;    truncation)
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    (Repository): No more line truncation errors.
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.84  2003/06/13 21:44:43  brouard
 int ndeath=1; /* Number of dead states */    * imach.c (Repository): Replace "freqsummary" at a correct
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    place. It differs from routine "prevalence" which may be called
 int popbased=0;    many times. Probs is memory consuming and must be used with
     parcimony.
 int *wav; /* Number of waves for this individuual 0 is possible */    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.83  2003/06/10 13:39:11  lievre
 int mle, weightopt;    *** empty log message ***
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.82  2003/06/05 15:57:20  brouard
 double jmean; /* Mean space between 2 waves */    Add log in  imach.c and  fullversion number is now printed.
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  */
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  /*
 FILE *ficlog;     Interpolated Markov Chain
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  
 FILE *ficresprobmorprev;    Short summary of the programme:
 FILE *fichtm; /* Html File */    
 FILE *ficreseij;    This program computes Healthy Life Expectancies from
 char filerese[FILENAMELENGTH];    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 FILE  *ficresvij;    first survey ("cross") where individuals from different ages are
 char fileresv[FILENAMELENGTH];    interviewed on their health status or degree of disability (in the
 FILE  *ficresvpl;    case of a health survey which is our main interest) -2- at least a
 char fileresvpl[FILENAMELENGTH];    second wave of interviews ("longitudinal") which measure each change
 char title[MAXLINE];    (if any) in individual health status.  Health expectancies are
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    computed from the time spent in each health state according to a
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    simplest model is the multinomial logistic model where pij is the
 char filelog[FILENAMELENGTH]; /* Log file */    probability to be observed in state j at the second wave
 char filerest[FILENAMELENGTH];    conditional to be observed in state i at the first wave. Therefore
 char fileregp[FILENAMELENGTH];    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 char popfile[FILENAMELENGTH];    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
 #define NR_END 1    convergence.
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 #define NRANSI    identical for each individual. Also, if a individual missed an
 #define ITMAX 200    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
 #define TOL 2.0e-4  
     hPijx is the probability to be observed in state i at age x+h
 #define CGOLD 0.3819660    conditional to the observed state i at age x. The delay 'h' can be
 #define ZEPS 1.0e-10    split into an exact number (nh*stepm) of unobserved intermediate
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 #define GOLD 1.618034    matrix is simply the matrix product of nh*stepm elementary matrices
 #define GLIMIT 100.0    and the contribution of each individual to the likelihood is simply
 #define TINY 1.0e-20    hPijx.
   
 static double maxarg1,maxarg2;    Also this programme outputs the covariance matrix of the parameters but also
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    of the life expectancies. It also computes the stable prevalence. 
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    
      Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))             Institut national d'études démographiques, Paris.
 #define rint(a) floor(a+0.5)    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
 static double sqrarg;    It is copyrighted identically to a GNU software product, ie programme and
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    software can be distributed freely for non commercial use. Latest version
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    can be accessed at http://euroreves.ined.fr/imach .
   
 int imx;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 int stepm;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 /* Stepm, step in month: minimum step interpolation*/    
     **********************************************************************/
 int estepm;  /*
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    main
     read parameterfile
 int m,nb;    read datafile
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    concatwav
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    freqsummary
 double **pmmij, ***probs, ***mobaverage;    if (mle >= 1)
 double dateintmean=0;      mlikeli
     print results files
 double *weight;    if mle==1 
 int **s; /* Status */       computes hessian
 double *agedc, **covar, idx;    read end of parameter file: agemin, agemax, bage, fage, estepm
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;        begin-prev-date,...
     open gnuplot file
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    open html file
 double ftolhess; /* Tolerance for computing hessian */    stable prevalence
      for age prevalim()
 /**************** split *************************/    h Pij x
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    variance of p varprob
 {    forecasting if prevfcast==1 prevforecast call prevalence()
    char *s;                             /* pointer */    health expectancies
    int  l1, l2;                         /* length counters */    Variance-covariance of DFLE
     prevalence()
    l1 = strlen( path );                 /* length of path */     movingaverage()
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    varevsij() 
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    if popbased==1 varevsij(,popbased)
    if ( s == NULL ) {                   /* no directory, so use current */    total life expectancies
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    Variance of stable prevalence
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/   end
 #if     defined(__bsd__)                /* get current working directory */  */
       extern char       *getwd( );  
   
       if ( getwd( dirc ) == NULL ) {  
 #else   
       extern char       *getcwd( );  #include <math.h>
   #include <stdio.h>
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #include <stdlib.h>
 #endif  #include <unistd.h>
          return( GLOCK_ERROR_GETCWD );  
       }  #include <sys/time.h>
       strcpy( name, path );             /* we've got it */  #include <time.h>
    } else {                             /* strip direcotry from path */  #include "timeval.h"
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */  /* #include <libintl.h> */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  /* #define _(String) gettext (String) */
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  #define MAXLINE 256
       dirc[l1-l2] = 0;                  /* add zero */  #define GNUPLOTPROGRAM "gnuplot"
    }  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
    l1 = strlen( dirc );                 /* length of directory */  #define FILENAMELENGTH 132
 #ifdef windows  /*#define DEBUG*/
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  /*#define windows*/
 #else  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #endif  
    s = strrchr( name, '.' );            /* find last / */  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
    s++;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);  #define NINTERVMAX 8
    l2= strlen( s)+1;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
    strncpy( finame, name, l1-l2);  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
    finame[l1-l2]= 0;  #define NCOVMAX 8 /* Maximum number of covariates */
    return( 0 );                         /* we're done */  #define MAXN 20000
 }  #define YEARM 12. /* Number of months per year */
   #define AGESUP 130
   #define AGEBASE 40
 /******************************************/  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   #ifdef unix
 void replace(char *s, char*t)  #define DIRSEPARATOR '/'
 {  #define ODIRSEPARATOR '\\'
   int i;  #else
   int lg=20;  #define DIRSEPARATOR '\\'
   i=0;  #define ODIRSEPARATOR '/'
   lg=strlen(t);  #endif
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);  /* $Id$ */
     if (t[i]== '\\') s[i]='/';  /* $State$ */
   }  
 }  char version[]="Imach version 0.70, May 2004, INED-EUROREVES ";
   char fullversion[]="$Revision$ $Date$"; 
 int nbocc(char *s, char occ)  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 {  int nvar;
   int i,j=0;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int lg=20;  int npar=NPARMAX;
   i=0;  int nlstate=2; /* Number of live states */
   lg=strlen(s);  int ndeath=1; /* Number of dead states */
   for(i=0; i<= lg; i++) {  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   if  (s[i] == occ ) j++;  int popbased=0;
   }  
   return j;  int *wav; /* Number of waves for this individuual 0 is possible */
 }  int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
 void cutv(char *u,char *v, char*t, char occ)  int gipmx, gsw; /* Global variables on the number of contributions 
 {                     to the likelihood and the sum of weights (done by funcone)*/
   /* cuts string t into u and v where u is ended by char occ excluding it  int mle, weightopt;
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
      gives u="abcedf" and v="ghi2j" */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int i,lg,j,p=0;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   i=0;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   for(j=0; j<=strlen(t)-1; j++) {  double jmean; /* Mean space between 2 waves */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   lg=strlen(t);  FILE *ficlog, *ficrespow;
   for(j=0; j<p; j++) {  int globpr; /* Global variable for printing or not */
     (u[j] = t[j]);  double fretone; /* Only one call to likelihood */
   }  long ipmx; /* Number of contributions */
      u[p]='\0';  double sw; /* Sum of weights */
   char filerespow[FILENAMELENGTH];
    for(j=0; j<= lg; j++) {  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     if (j>=(p+1))(v[j-p-1] = t[j]);  FILE *ficresilk;
   }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 }  FILE *ficresprobmorprev;
   FILE *fichtm, *fichtmcov; /* Html File */
 /********************** nrerror ********************/  FILE *ficreseij;
   char filerese[FILENAMELENGTH];
 void nrerror(char error_text[])  FILE  *ficresvij;
 {  char fileresv[FILENAMELENGTH];
   fprintf(stderr,"ERREUR ...\n");  FILE  *ficresvpl;
   fprintf(stderr,"%s\n",error_text);  char fileresvpl[FILENAMELENGTH];
   exit(1);  char title[MAXLINE];
 }  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 /*********************** vector *******************/  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 double *vector(int nl, int nh)  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 {  char command[FILENAMELENGTH];
   double *v;  int  outcmd=0;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  
   if (!v) nrerror("allocation failure in vector");  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   return v-nl+NR_END;  
 }  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
 /************************ free vector ******************/  char fileregp[FILENAMELENGTH];
 void free_vector(double*v, int nl, int nh)  char popfile[FILENAMELENGTH];
 {  
   free((FREE_ARG)(v+nl-NR_END));  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 }  
   struct timeval start_time, end_time, curr_time, last_time, forecast_time;
 /************************ivector *******************************/  struct timezone tzp;
 int *ivector(long nl,long nh)  extern int gettimeofday();
 {  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   int *v;  long time_value;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  extern long time();
   if (!v) nrerror("allocation failure in ivector");  char strcurr[80], strfor[80];
   return v-nl+NR_END;  
 }  #define NR_END 1
   #define FREE_ARG char*
 /******************free ivector **************************/  #define FTOL 1.0e-10
 void free_ivector(int *v, long nl, long nh)  
 {  #define NRANSI 
   free((FREE_ARG)(v+nl-NR_END));  #define ITMAX 200 
 }  
   #define TOL 2.0e-4 
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #define CGOLD 0.3819660 
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #define ZEPS 1.0e-10 
 {  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;  #define GOLD 1.618034 
    #define GLIMIT 100.0 
   /* allocate pointers to rows */  #define TINY 1.0e-20 
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  static double maxarg1,maxarg2;
   m += NR_END;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   m -= nrl;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
      
    #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   /* allocate rows and set pointers to them */  #define rint(a) floor(a+0.5)
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  static double sqrarg;
   m[nrl] += NR_END;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   m[nrl] -= ncl;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
    int agegomp= AGEGOMP;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
    int imx; 
   /* return pointer to array of pointers to rows */  int stepm=1;
   return m;  /* Stepm, step in month: minimum step interpolation*/
 }  
   int estepm;
 /****************** free_imatrix *************************/  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;  int m,nb;
       long nch,ncl,nrh,nrl;  long *num;
      /* free an int matrix allocated by imatrix() */  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 {  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  double **pmmij, ***probs;
   free((FREE_ARG) (m+nrl-NR_END));  double *ageexmed,*agecens;
 }  double dateintmean=0;
   
 /******************* matrix *******************************/  double *weight;
 double **matrix(long nrl, long nrh, long ncl, long nch)  int **s; /* Status */
 {  double *agedc, **covar, idx;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double **m;  
   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  double ftolhess; /* Tolerance for computing hessian */
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  /**************** split *************************/
   m -= nrl;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    char  *ss;                            /* pointer */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    int   l1, l2;                         /* length counters */
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   return m;    if ( ss == NULL ) {                   /* no directory, so use current */
 }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 /*************************free matrix ************************/      /* get current working directory */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)      /*    extern  char* getcwd ( char *buf , int len);*/
 {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));        return( GLOCK_ERROR_GETCWD );
   free((FREE_ARG)(m+nrl-NR_END));      }
 }      strcpy( name, path );               /* we've got it */
     } else {                              /* strip direcotry from path */
 /******************* ma3x *******************************/      ss++;                               /* after this, the filename */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)      l2 = strlen( ss );                  /* length of filename */
 {      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;      strcpy( name, ss );         /* save file name */
   double ***m;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       dirc[l1-l2] = 0;                    /* add zero */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    }
   if (!m) nrerror("allocation failure 1 in matrix()");    l1 = strlen( dirc );                  /* length of directory */
   m += NR_END;    /*#ifdef windows
   m -= nrl;    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   #else
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #endif
   m[nrl] += NR_END;    */
   m[nrl] -= ncl;    ss = strrchr( name, '.' );            /* find last / */
     ss++;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    strcpy(ext,ss);                       /* save extension */
     l1= strlen( name);
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    l2= strlen(ss)+1;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    strncpy( finame, name, l1-l2);
   m[nrl][ncl] += NR_END;    finame[l1-l2]= 0;
   m[nrl][ncl] -= nll;    return( 0 );                          /* we're done */
   for (j=ncl+1; j<=nch; j++)  }
     m[nrl][j]=m[nrl][j-1]+nlay;  
    
   for (i=nrl+1; i<=nrh; i++) {  /******************************************/
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)  void replace_back_to_slash(char *s, char*t)
       m[i][j]=m[i][j-1]+nlay;  {
   }    int i;
   return m;    int lg=0;
 }    i=0;
     lg=strlen(t);
 /*************************free ma3x ************************/    for(i=0; i<= lg; i++) {
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)      (s[i] = t[i]);
 {      if (t[i]== '\\') s[i]='/';
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    }
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  }
   free((FREE_ARG)(m+nrl-NR_END));  
 }  int nbocc(char *s, char occ)
   {
 /***************** f1dim *************************/    int i,j=0;
 extern int ncom;    int lg=20;
 extern double *pcom,*xicom;    i=0;
 extern double (*nrfunc)(double []);    lg=strlen(s);
      for(i=0; i<= lg; i++) {
 double f1dim(double x)    if  (s[i] == occ ) j++;
 {    }
   int j;    return j;
   double f;  }
   double *xt;  
    void cutv(char *u,char *v, char*t, char occ)
   xt=vector(1,ncom);  {
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    /* cuts string t into u and v where u is ended by char occ excluding it
   f=(*nrfunc)(xt);       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   free_vector(xt,1,ncom);       gives u="abcedf" and v="ghi2j" */
   return f;    int i,lg,j,p=0;
 }    i=0;
     for(j=0; j<=strlen(t)-1; j++) {
 /*****************brent *************************/      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    }
 {  
   int iter;    lg=strlen(t);
   double a,b,d,etemp;    for(j=0; j<p; j++) {
   double fu,fv,fw,fx;      (u[j] = t[j]);
   double ftemp;    }
   double p,q,r,tol1,tol2,u,v,w,x,xm;       u[p]='\0';
   double e=0.0;  
       for(j=0; j<= lg; j++) {
   a=(ax < cx ? ax : cx);      if (j>=(p+1))(v[j-p-1] = t[j]);
   b=(ax > cx ? ax : cx);    }
   x=w=v=bx;  }
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {  /********************** nrerror ********************/
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  void nrerror(char error_text[])
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  {
     printf(".");fflush(stdout);    fprintf(stderr,"ERREUR ...\n");
     fprintf(ficlog,".");fflush(ficlog);    fprintf(stderr,"%s\n",error_text);
 #ifdef DEBUG    exit(EXIT_FAILURE);
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  }
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  /*********************** vector *******************/
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  double *vector(int nl, int nh)
 #endif  {
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    double *v;
       *xmin=x;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
       return fx;    if (!v) nrerror("allocation failure in vector");
     }    return v-nl+NR_END;
     ftemp=fu;  }
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);  /************************ free vector ******************/
       q=(x-v)*(fx-fw);  void free_vector(double*v, int nl, int nh)
       p=(x-v)*q-(x-w)*r;  {
       q=2.0*(q-r);    free((FREE_ARG)(v+nl-NR_END));
       if (q > 0.0) p = -p;  }
       q=fabs(q);  
       etemp=e;  /************************ivector *******************************/
       e=d;  int *ivector(long nl,long nh)
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  {
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    int *v;
       else {    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
         d=p/q;    if (!v) nrerror("allocation failure in ivector");
         u=x+d;    return v-nl+NR_END;
         if (u-a < tol2 || b-u < tol2)  }
           d=SIGN(tol1,xm-x);  
       }  /******************free ivector **************************/
     } else {  void free_ivector(int *v, long nl, long nh)
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  {
     }    free((FREE_ARG)(v+nl-NR_END));
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  }
     fu=(*f)(u);  
     if (fu <= fx) {  /************************lvector *******************************/
       if (u >= x) a=x; else b=x;  long *lvector(long nl,long nh)
       SHFT(v,w,x,u)  {
         SHFT(fv,fw,fx,fu)    long *v;
         } else {    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
           if (u < x) a=u; else b=u;    if (!v) nrerror("allocation failure in ivector");
           if (fu <= fw || w == x) {    return v-nl+NR_END;
             v=w;  }
             w=u;  
             fv=fw;  /******************free lvector **************************/
             fw=fu;  void free_lvector(long *v, long nl, long nh)
           } else if (fu <= fv || v == x || v == w) {  {
             v=u;    free((FREE_ARG)(v+nl-NR_END));
             fv=fu;  }
           }  
         }  /******************* imatrix *******************************/
   }  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   nrerror("Too many iterations in brent");       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   *xmin=x;  { 
   return fx;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 }    int **m; 
     
 /****************** mnbrak ***********************/    /* allocate pointers to rows */ 
     m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    if (!m) nrerror("allocation failure 1 in matrix()"); 
             double (*func)(double))    m += NR_END; 
 {    m -= nrl; 
   double ulim,u,r,q, dum;    
   double fu;    
      /* allocate rows and set pointers to them */ 
   *fa=(*func)(*ax);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   *fb=(*func)(*bx);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   if (*fb > *fa) {    m[nrl] += NR_END; 
     SHFT(dum,*ax,*bx,dum)    m[nrl] -= ncl; 
       SHFT(dum,*fb,*fa,dum)    
       }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   *cx=(*bx)+GOLD*(*bx-*ax);    
   *fc=(*func)(*cx);    /* return pointer to array of pointers to rows */ 
   while (*fb > *fc) {    return m; 
     r=(*bx-*ax)*(*fb-*fc);  } 
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  /****************** free_imatrix *************************/
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  void free_imatrix(m,nrl,nrh,ncl,nch)
     ulim=(*bx)+GLIMIT*(*cx-*bx);        int **m;
     if ((*bx-u)*(u-*cx) > 0.0) {        long nch,ncl,nrh,nrl; 
       fu=(*func)(u);       /* free an int matrix allocated by imatrix() */ 
     } else if ((*cx-u)*(u-ulim) > 0.0) {  { 
       fu=(*func)(u);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       if (fu < *fc) {    free((FREE_ARG) (m+nrl-NR_END)); 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  } 
           SHFT(*fb,*fc,fu,(*func)(u))  
           }  /******************* matrix *******************************/
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  double **matrix(long nrl, long nrh, long ncl, long nch)
       u=ulim;  {
       fu=(*func)(u);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     } else {    double **m;
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     }    if (!m) nrerror("allocation failure 1 in matrix()");
     SHFT(*ax,*bx,*cx,u)    m += NR_END;
       SHFT(*fa,*fb,*fc,fu)    m -= nrl;
       }  
 }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 /*************** linmin ************************/    m[nrl] += NR_END;
     m[nrl] -= ncl;
 int ncom;  
 double *pcom,*xicom;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 double (*nrfunc)(double []);    return m;
      /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))     */
 {  }
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  /*************************free matrix ************************/
   double f1dim(double x);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  {
               double *fc, double (*func)(double));    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   int j;    free((FREE_ARG)(m+nrl-NR_END));
   double xx,xmin,bx,ax;  }
   double fx,fb,fa;  
    /******************* ma3x *******************************/
   ncom=n;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   pcom=vector(1,n);  {
   xicom=vector(1,n);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   nrfunc=func;    double ***m;
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     xicom[j]=xi[j];    if (!m) nrerror("allocation failure 1 in matrix()");
   }    m += NR_END;
   ax=0.0;    m -= nrl;
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 #ifdef DEBUG    m[nrl] += NR_END;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    m[nrl] -= ncl;
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     p[j] += xi[j];    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   }    m[nrl][ncl] += NR_END;
   free_vector(xicom,1,n);    m[nrl][ncl] -= nll;
   free_vector(pcom,1,n);    for (j=ncl+1; j<=nch; j++) 
 }      m[nrl][j]=m[nrl][j-1]+nlay;
     
 /*************** powell ************************/    for (i=nrl+1; i<=nrh; i++) {
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
             double (*func)(double []))      for (j=ncl+1; j<=nch; j++) 
 {        m[i][j]=m[i][j-1]+nlay;
   void linmin(double p[], double xi[], int n, double *fret,    }
               double (*func)(double []));    return m; 
   int i,ibig,j;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   double del,t,*pt,*ptt,*xit;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   double fp,fptt;    */
   double *xits;  }
   pt=vector(1,n);  
   ptt=vector(1,n);  /*************************free ma3x ************************/
   xit=vector(1,n);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   xits=vector(1,n);  {
   *fret=(*func)(p);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   for (j=1;j<=n;j++) pt[j]=p[j];    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   for (*iter=1;;++(*iter)) {    free((FREE_ARG)(m+nrl-NR_END));
     fp=(*fret);  }
     ibig=0;  
     del=0.0;  /*************** function subdirf ***********/
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  char *subdirf(char fileres[])
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  {
     for (i=1;i<=n;i++)    /* Caution optionfilefiname is hidden */
       printf(" %d %.12f",i, p[i]);    strcpy(tmpout,optionfilefiname);
     fprintf(ficlog," %d %.12f",i, p[i]);    strcat(tmpout,"/"); /* Add to the right */
     printf("\n");    strcat(tmpout,fileres);
     fprintf(ficlog,"\n");    return tmpout;
     for (i=1;i<=n;i++) {  }
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  
       fptt=(*fret);  /*************** function subdirf2 ***********/
 #ifdef DEBUG  char *subdirf2(char fileres[], char *preop)
       printf("fret=%lf \n",*fret);  {
       fprintf(ficlog,"fret=%lf \n",*fret);    
 #endif    /* Caution optionfilefiname is hidden */
       printf("%d",i);fflush(stdout);    strcpy(tmpout,optionfilefiname);
       fprintf(ficlog,"%d",i);fflush(ficlog);    strcat(tmpout,"/");
       linmin(p,xit,n,fret,func);    strcat(tmpout,preop);
       if (fabs(fptt-(*fret)) > del) {    strcat(tmpout,fileres);
         del=fabs(fptt-(*fret));    return tmpout;
         ibig=i;  }
       }  
 #ifdef DEBUG  /*************** function subdirf3 ***********/
       printf("%d %.12e",i,(*fret));  char *subdirf3(char fileres[], char *preop, char *preop2)
       fprintf(ficlog,"%d %.12e",i,(*fret));  {
       for (j=1;j<=n;j++) {    
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    /* Caution optionfilefiname is hidden */
         printf(" x(%d)=%.12e",j,xit[j]);    strcpy(tmpout,optionfilefiname);
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    strcat(tmpout,"/");
       }    strcat(tmpout,preop);
       for(j=1;j<=n;j++) {    strcat(tmpout,preop2);
         printf(" p=%.12e",p[j]);    strcat(tmpout,fileres);
         fprintf(ficlog," p=%.12e",p[j]);    return tmpout;
       }  }
       printf("\n");  
       fprintf(ficlog,"\n");  /***************** f1dim *************************/
 #endif  extern int ncom; 
     }  extern double *pcom,*xicom;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  extern double (*nrfunc)(double []); 
 #ifdef DEBUG   
       int k[2],l;  double f1dim(double x) 
       k[0]=1;  { 
       k[1]=-1;    int j; 
       printf("Max: %.12e",(*func)(p));    double f;
       fprintf(ficlog,"Max: %.12e",(*func)(p));    double *xt; 
       for (j=1;j<=n;j++) {   
         printf(" %.12e",p[j]);    xt=vector(1,ncom); 
         fprintf(ficlog," %.12e",p[j]);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       }    f=(*nrfunc)(xt); 
       printf("\n");    free_vector(xt,1,ncom); 
       fprintf(ficlog,"\n");    return f; 
       for(l=0;l<=1;l++) {  } 
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  /*****************brent *************************/
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  { 
         }    int iter; 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    double a,b,d,etemp;
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    double fu,fv,fw,fx;
       }    double ftemp;
 #endif    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     double e=0.0; 
    
       free_vector(xit,1,n);    a=(ax < cx ? ax : cx); 
       free_vector(xits,1,n);    b=(ax > cx ? ax : cx); 
       free_vector(ptt,1,n);    x=w=v=bx; 
       free_vector(pt,1,n);    fw=fv=fx=(*f)(x); 
       return;    for (iter=1;iter<=ITMAX;iter++) { 
     }      xm=0.5*(a+b); 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     for (j=1;j<=n;j++) {      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       ptt[j]=2.0*p[j]-pt[j];      printf(".");fflush(stdout);
       xit[j]=p[j]-pt[j];      fprintf(ficlog,".");fflush(ficlog);
       pt[j]=p[j];  #ifdef DEBUG
     }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     fptt=(*func)(ptt);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     if (fptt < fp) {      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  #endif
       if (t < 0.0) {      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         linmin(p,xit,n,fret,func);        *xmin=x; 
         for (j=1;j<=n;j++) {        return fx; 
           xi[j][ibig]=xi[j][n];      } 
           xi[j][n]=xit[j];      ftemp=fu;
         }      if (fabs(e) > tol1) { 
 #ifdef DEBUG        r=(x-w)*(fx-fv); 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        q=(x-v)*(fx-fw); 
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        p=(x-v)*q-(x-w)*r; 
         for(j=1;j<=n;j++){        q=2.0*(q-r); 
           printf(" %.12e",xit[j]);        if (q > 0.0) p = -p; 
           fprintf(ficlog," %.12e",xit[j]);        q=fabs(q); 
         }        etemp=e; 
         printf("\n");        e=d; 
         fprintf(ficlog,"\n");        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 #endif          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       }        else { 
     }          d=p/q; 
   }          u=x+d; 
 }          if (u-a < tol2 || b-u < tol2) 
             d=SIGN(tol1,xm-x); 
 /**** Prevalence limit ****************/        } 
       } else { 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 {      } 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
      matrix by transitions matrix until convergence is reached */      fu=(*f)(u); 
       if (fu <= fx) { 
   int i, ii,j,k;        if (u >= x) a=x; else b=x; 
   double min, max, maxmin, maxmax,sumnew=0.;        SHFT(v,w,x,u) 
   double **matprod2();          SHFT(fv,fw,fx,fu) 
   double **out, cov[NCOVMAX], **pmij();          } else { 
   double **newm;            if (u < x) a=u; else b=u; 
   double agefin, delaymax=50 ; /* Max number of years to converge */            if (fu <= fw || w == x) { 
               v=w; 
   for (ii=1;ii<=nlstate+ndeath;ii++)              w=u; 
     for (j=1;j<=nlstate+ndeath;j++){              fv=fw; 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);              fw=fu; 
     }            } else if (fu <= fv || v == x || v == w) { 
               v=u; 
    cov[1]=1.;              fv=fu; 
              } 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */          } 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    } 
     newm=savm;    nrerror("Too many iterations in brent"); 
     /* Covariates have to be included here again */    *xmin=x; 
      cov[2]=agefin;    return fx; 
    } 
       for (k=1; k<=cptcovn;k++) {  
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  /****************** mnbrak ***********************/
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  
       }  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];              double (*func)(double)) 
       for (k=1; k<=cptcovprod;k++)  { 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    double ulim,u,r,q, dum;
     double fu; 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/   
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    *fa=(*func)(*ax); 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    *fb=(*func)(*bx); 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    if (*fb > *fa) { 
       SHFT(dum,*ax,*bx,dum) 
     savm=oldm;        SHFT(dum,*fb,*fa,dum) 
     oldm=newm;        } 
     maxmax=0.;    *cx=(*bx)+GOLD*(*bx-*ax); 
     for(j=1;j<=nlstate;j++){    *fc=(*func)(*cx); 
       min=1.;    while (*fb > *fc) { 
       max=0.;      r=(*bx-*ax)*(*fb-*fc); 
       for(i=1; i<=nlstate; i++) {      q=(*bx-*cx)*(*fb-*fa); 
         sumnew=0;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
         prlim[i][j]= newm[i][j]/(1-sumnew);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
         max=FMAX(max,prlim[i][j]);      if ((*bx-u)*(u-*cx) > 0.0) { 
         min=FMIN(min,prlim[i][j]);        fu=(*func)(u); 
       }      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       maxmin=max-min;        fu=(*func)(u); 
       maxmax=FMAX(maxmax,maxmin);        if (fu < *fc) { 
     }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     if(maxmax < ftolpl){            SHFT(*fb,*fc,fu,(*func)(u)) 
       return prlim;            } 
     }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   }        u=ulim; 
 }        fu=(*func)(u); 
       } else { 
 /*************** transition probabilities ***************/        u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      } 
 {      SHFT(*ax,*bx,*cx,u) 
   double s1, s2;        SHFT(*fa,*fb,*fc,fu) 
   /*double t34;*/        } 
   int i,j,j1, nc, ii, jj;  } 
   
     for(i=1; i<= nlstate; i++){  /*************** linmin ************************/
     for(j=1; j<i;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  int ncom; 
         /*s2 += param[i][j][nc]*cov[nc];*/  double *pcom,*xicom;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  double (*nrfunc)(double []); 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/   
       }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       ps[i][j]=s2;  { 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    double brent(double ax, double bx, double cx, 
     }                 double (*f)(double), double tol, double *xmin); 
     for(j=i+1; j<=nlstate+ndeath;j++){    double f1dim(double x); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];                double *fc, double (*func)(double)); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    int j; 
       }    double xx,xmin,bx,ax; 
       ps[i][j]=s2;    double fx,fb,fa;
     }   
   }    ncom=n; 
     /*ps[3][2]=1;*/    pcom=vector(1,n); 
     xicom=vector(1,n); 
   for(i=1; i<= nlstate; i++){    nrfunc=func; 
      s1=0;    for (j=1;j<=n;j++) { 
     for(j=1; j<i; j++)      pcom[j]=p[j]; 
       s1+=exp(ps[i][j]);      xicom[j]=xi[j]; 
     for(j=i+1; j<=nlstate+ndeath; j++)    } 
       s1+=exp(ps[i][j]);    ax=0.0; 
     ps[i][i]=1./(s1+1.);    xx=1.0; 
     for(j=1; j<i; j++)    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     for(j=i+1; j<=nlstate+ndeath; j++)  #ifdef DEBUG
       ps[i][j]= exp(ps[i][j])*ps[i][i];    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   } /* end i */  #endif
     for (j=1;j<=n;j++) { 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      xi[j] *= xmin; 
     for(jj=1; jj<= nlstate+ndeath; jj++){      p[j] += xi[j]; 
       ps[ii][jj]=0;    } 
       ps[ii][ii]=1;    free_vector(xicom,1,n); 
     }    free_vector(pcom,1,n); 
   }  } 
   
   char *asc_diff_time(long time_sec, char ascdiff[])
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  {
     for(jj=1; jj<= nlstate+ndeath; jj++){    long sec_left, days, hours, minutes;
      printf("%lf ",ps[ii][jj]);    days = (time_sec) / (60*60*24);
    }    sec_left = (time_sec) % (60*60*24);
     printf("\n ");    hours = (sec_left) / (60*60) ;
     }    sec_left = (sec_left) %(60*60);
     printf("\n ");printf("%lf ",cov[2]);*/    minutes = (sec_left) /60;
 /*    sec_left = (sec_left) % (60);
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   goto end;*/    return ascdiff;
     return ps;  }
 }  
   /*************** powell ************************/
 /**************** Product of 2 matrices ******************/  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
               double (*func)(double [])) 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  { 
 {    void linmin(double p[], double xi[], int n, double *fret, 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times                double (*func)(double [])); 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    int i,ibig,j; 
   /* in, b, out are matrice of pointers which should have been initialized    double del,t,*pt,*ptt,*xit;
      before: only the contents of out is modified. The function returns    double fp,fptt;
      a pointer to pointers identical to out */    double *xits;
   long i, j, k;    int niterf, itmp;
   for(i=nrl; i<= nrh; i++)  
     for(k=ncolol; k<=ncoloh; k++)    pt=vector(1,n); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    ptt=vector(1,n); 
         out[i][k] +=in[i][j]*b[j][k];    xit=vector(1,n); 
     xits=vector(1,n); 
   return out;    *fret=(*func)(p); 
 }    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (*iter=1;;++(*iter)) { 
       fp=(*fret); 
 /************* Higher Matrix Product ***************/      ibig=0; 
       del=0.0; 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      last_time=curr_time;
 {      (void) gettimeofday(&curr_time,&tzp);
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
      duration (i.e. until      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      */
      (typically every 2 years instead of every month which is too big).     for (i=1;i<=n;i++) {
      Model is determined by parameters x and covariates have to be        printf(" %d %.12f",i, p[i]);
      included manually here.        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
      */      }
       printf("\n");
   int i, j, d, h, k;      fprintf(ficlog,"\n");
   double **out, cov[NCOVMAX];      fprintf(ficrespow,"\n");fflush(ficrespow);
   double **newm;      if(*iter <=3){
         tm = *localtime(&curr_time.tv_sec);
   /* Hstepm could be zero and should return the unit matrix */        strcpy(strcurr,asctime(&tmf));
   for (i=1;i<=nlstate+ndeath;i++)  /*       asctime_r(&tm,strcurr); */
     for (j=1;j<=nlstate+ndeath;j++){        forecast_time=curr_time;
       oldm[i][j]=(i==j ? 1.0 : 0.0);        itmp = strlen(strcurr);
       po[i][j][0]=(i==j ? 1.0 : 0.0);        if(strcurr[itmp-1]=='\n')
     }          strcurr[itmp-1]='\0';
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   for(h=1; h <=nhstepm; h++){        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     for(d=1; d <=hstepm; d++){        for(niterf=10;niterf<=30;niterf+=10){
       newm=savm;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       /* Covariates have to be included here again */          tmf = *localtime(&forecast_time.tv_sec);
       cov[1]=1.;  /*      asctime_r(&tmf,strfor); */
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;          strcpy(strfor,asctime(&tmf));
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          itmp = strlen(strfor);
       for (k=1; k<=cptcovage;k++)          if(strfor[itmp-1]=='\n')
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          strfor[itmp-1]='\0';
       for (k=1; k<=cptcovprod;k++)          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         }
       }
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      for (i=1;i<=n;i++) { 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        fptt=(*fret); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  #ifdef DEBUG
       savm=oldm;        printf("fret=%lf \n",*fret);
       oldm=newm;        fprintf(ficlog,"fret=%lf \n",*fret);
     }  #endif
     for(i=1; i<=nlstate+ndeath; i++)        printf("%d",i);fflush(stdout);
       for(j=1;j<=nlstate+ndeath;j++) {        fprintf(ficlog,"%d",i);fflush(ficlog);
         po[i][j][h]=newm[i][j];        linmin(p,xit,n,fret,func); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        if (fabs(fptt-(*fret)) > del) { 
          */          del=fabs(fptt-(*fret)); 
       }          ibig=i; 
   } /* end h */        } 
   return po;  #ifdef DEBUG
 }        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
 /*************** log-likelihood *************/          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 double func( double *x)          printf(" x(%d)=%.12e",j,xit[j]);
 {          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   int i, ii, j, k, mi, d, kk;        }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        for(j=1;j<=n;j++) {
   double **out;          printf(" p=%.12e",p[j]);
   double sw; /* Sum of weights */          fprintf(ficlog," p=%.12e",p[j]);
   double lli; /* Individual log likelihood */        }
   long ipmx;        printf("\n");
   /*extern weight */        fprintf(ficlog,"\n");
   /* We are differentiating ll according to initial status */  #endif
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      } 
   /*for(i=1;i<imx;i++)      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     printf(" %d\n",s[4][i]);  #ifdef DEBUG
   */        int k[2],l;
   cov[1]=1.;        k[0]=1;
         k[1]=-1;
   for(k=1; k<=nlstate; k++) ll[k]=0.;        printf("Max: %.12e",(*func)(p));
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        fprintf(ficlog,"Max: %.12e",(*func)(p));
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        for (j=1;j<=n;j++) {
     for(mi=1; mi<= wav[i]-1; mi++){          printf(" %.12e",p[j]);
       for (ii=1;ii<=nlstate+ndeath;ii++)          fprintf(ficlog," %.12e",p[j]);
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        }
       for(d=0; d<dh[mi][i]; d++){        printf("\n");
         newm=savm;        fprintf(ficlog,"\n");
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        for(l=0;l<=1;l++) {
         for (kk=1; kk<=cptcovage;kk++) {          for (j=1;j<=n;j++) {
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
                    fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          }
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         savm=oldm;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         oldm=newm;        }
          #endif
          
       } /* end mult */  
              free_vector(xit,1,n); 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        free_vector(xits,1,n); 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        free_vector(ptt,1,n); 
       ipmx +=1;        free_vector(pt,1,n); 
       sw += weight[i];        return; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      } 
     } /* end of wave */      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   } /* end of individual */      for (j=1;j<=n;j++) { 
         ptt[j]=2.0*p[j]-pt[j]; 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        xit[j]=p[j]-pt[j]; 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        pt[j]=p[j]; 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      } 
   return -l;      fptt=(*func)(ptt); 
 }      if (fptt < fp) { 
         t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         if (t < 0.0) { 
 /*********** Maximum Likelihood Estimation ***************/          linmin(p,xit,n,fret,func); 
           for (j=1;j<=n;j++) { 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))            xi[j][ibig]=xi[j][n]; 
 {            xi[j][n]=xit[j]; 
   int i,j, iter;          }
   double **xi,*delti;  #ifdef DEBUG
   double fret;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   xi=matrix(1,npar,1,npar);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for (i=1;i<=npar;i++)          for(j=1;j<=n;j++){
     for (j=1;j<=npar;j++)            printf(" %.12e",xit[j]);
       xi[i][j]=(i==j ? 1.0 : 0.0);            fprintf(ficlog," %.12e",xit[j]);
   printf("Powell\n");  fprintf(ficlog,"Powell\n");          }
   powell(p,xi,npar,ftol,&iter,&fret,func);          printf("\n");
           fprintf(ficlog,"\n");
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  #endif
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        }
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      } 
     } 
 }  } 
   
 /**** Computes Hessian and covariance matrix ***/  /**** Prevalence limit (stable prevalence)  ****************/
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  
 {  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   double  **a,**y,*x,pd;  {
   double **hess;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   int i, j,jk;       matrix by transitions matrix until convergence is reached */
   int *indx;  
     int i, ii,j,k;
   double hessii(double p[], double delta, int theta, double delti[]);    double min, max, maxmin, maxmax,sumnew=0.;
   double hessij(double p[], double delti[], int i, int j);    double **matprod2();
   void lubksb(double **a, int npar, int *indx, double b[]) ;    double **out, cov[NCOVMAX], **pmij();
   void ludcmp(double **a, int npar, int *indx, double *d) ;    double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
   hess=matrix(1,npar,1,npar);  
     for (ii=1;ii<=nlstate+ndeath;ii++)
   printf("\nCalculation of the hessian matrix. Wait...\n");      for (j=1;j<=nlstate+ndeath;j++){
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (i=1;i<=npar;i++){      }
     printf("%d",i);fflush(stdout);  
     fprintf(ficlog,"%d",i);fflush(ficlog);     cov[1]=1.;
     hess[i][i]=hessii(p,ftolhess,i,delti);   
     /*printf(" %f ",p[i]);*/   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     /*printf(" %lf ",hess[i][i]);*/    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   }      newm=savm;
        /* Covariates have to be included here again */
   for (i=1;i<=npar;i++) {       cov[2]=agefin;
     for (j=1;j<=npar;j++)  {    
       if (j>i) {        for (k=1; k<=cptcovn;k++) {
         printf(".%d%d",i,j);fflush(stdout);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         hess[i][j]=hessij(p,delti,i,j);        }
         hess[j][i]=hess[i][j];            for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         /*printf(" %lf ",hess[i][j]);*/        for (k=1; k<=cptcovprod;k++)
       }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     }  
   }        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   printf("\n");        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   fprintf(ficlog,"\n");        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");      savm=oldm;
        oldm=newm;
   a=matrix(1,npar,1,npar);      maxmax=0.;
   y=matrix(1,npar,1,npar);      for(j=1;j<=nlstate;j++){
   x=vector(1,npar);        min=1.;
   indx=ivector(1,npar);        max=0.;
   for (i=1;i<=npar;i++)        for(i=1; i<=nlstate; i++) {
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          sumnew=0;
   ludcmp(a,npar,indx,&pd);          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           prlim[i][j]= newm[i][j]/(1-sumnew);
   for (j=1;j<=npar;j++) {          max=FMAX(max,prlim[i][j]);
     for (i=1;i<=npar;i++) x[i]=0;          min=FMIN(min,prlim[i][j]);
     x[j]=1;        }
     lubksb(a,npar,indx,x);        maxmin=max-min;
     for (i=1;i<=npar;i++){        maxmax=FMAX(maxmax,maxmin);
       matcov[i][j]=x[i];      }
     }      if(maxmax < ftolpl){
   }        return prlim;
       }
   printf("\n#Hessian matrix#\n");    }
   fprintf(ficlog,"\n#Hessian matrix#\n");  }
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++) {  /*************** transition probabilities ***************/ 
       printf("%.3e ",hess[i][j]);  
       fprintf(ficlog,"%.3e ",hess[i][j]);  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     }  {
     printf("\n");    double s1, s2;
     fprintf(ficlog,"\n");    /*double t34;*/
   }    int i,j,j1, nc, ii, jj;
   
   /* Recompute Inverse */      for(i=1; i<= nlstate; i++){
   for (i=1;i<=npar;i++)      for(j=1; j<i;j++){
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   ludcmp(a,npar,indx,&pd);          /*s2 += param[i][j][nc]*cov[nc];*/
           s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   /*  printf("\n#Hessian matrix recomputed#\n");          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
         }
   for (j=1;j<=npar;j++) {        ps[i][j]=s2;
     for (i=1;i<=npar;i++) x[i]=0;        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
     x[j]=1;      }
     lubksb(a,npar,indx,x);      for(j=i+1; j<=nlstate+ndeath;j++){
     for (i=1;i<=npar;i++){        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       y[i][j]=x[i];          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       printf("%.3e ",y[i][j]);          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
       fprintf(ficlog,"%.3e ",y[i][j]);        }
     }        ps[i][j]=s2;
     printf("\n");      }
     fprintf(ficlog,"\n");    }
   }      /*ps[3][2]=1;*/
   */  
     for(i=1; i<= nlstate; i++){
   free_matrix(a,1,npar,1,npar);       s1=0;
   free_matrix(y,1,npar,1,npar);      for(j=1; j<i; j++)
   free_vector(x,1,npar);        s1+=exp(ps[i][j]);
   free_ivector(indx,1,npar);      for(j=i+1; j<=nlstate+ndeath; j++)
   free_matrix(hess,1,npar,1,npar);        s1+=exp(ps[i][j]);
       ps[i][i]=1./(s1+1.);
       for(j=1; j<i; j++)
 }        ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(j=i+1; j<=nlstate+ndeath; j++)
 /*************** hessian matrix ****************/        ps[i][j]= exp(ps[i][j])*ps[i][i];
 double hessii( double x[], double delta, int theta, double delti[])      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 {    } /* end i */
   int i;  
   int l=1, lmax=20;    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   double k1,k2;      for(jj=1; jj<= nlstate+ndeath; jj++){
   double p2[NPARMAX+1];        ps[ii][jj]=0;
   double res;        ps[ii][ii]=1;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      }
   double fx;    }
   int k=0,kmax=10;  
   double l1;  
     /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   fx=func(x);      for(jj=1; jj<= nlstate+ndeath; jj++){
   for (i=1;i<=npar;i++) p2[i]=x[i];       printf("%lf ",ps[ii][jj]);
   for(l=0 ; l <=lmax; l++){     }
     l1=pow(10,l);      printf("\n ");
     delts=delt;      }
     for(k=1 ; k <kmax; k=k+1){      printf("\n ");printf("%lf ",cov[2]);*/
       delt = delta*(l1*k);  /*
       p2[theta]=x[theta] +delt;    for(i=1; i<= npar; i++) printf("%f ",x[i]);
       k1=func(p2)-fx;    goto end;*/
       p2[theta]=x[theta]-delt;      return ps;
       k2=func(p2)-fx;  }
       /*res= (k1-2.0*fx+k2)/delt/delt; */  
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  /**************** Product of 2 matrices ******************/
        
 #ifdef DEBUG  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  {
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
 #endif       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    /* in, b, out are matrice of pointers which should have been initialized 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){       before: only the contents of out is modified. The function returns
         k=kmax;       a pointer to pointers identical to out */
       }    long i, j, k;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    for(i=nrl; i<= nrh; i++)
         k=kmax; l=lmax*10.;      for(k=ncolol; k<=ncoloh; k++)
       }        for(j=ncl,out[i][k]=0.; j<=nch; j++)
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          out[i][k] +=in[i][j]*b[j][k];
         delts=delt;  
       }    return out;
     }  }
   }  
   delti[theta]=delts;  
   return res;  /************* Higher Matrix Product ***************/
    
 }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   {
 double hessij( double x[], double delti[], int thetai,int thetaj)    /* Computes the transition matrix starting at age 'age' over 
 {       'nhstepm*hstepm*stepm' months (i.e. until
   int i;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   int l=1, l1, lmax=20;       nhstepm*hstepm matrices. 
   double k1,k2,k3,k4,res,fx;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   double p2[NPARMAX+1];       (typically every 2 years instead of every month which is too big 
   int k;       for the memory).
        Model is determined by parameters x and covariates have to be 
   fx=func(x);       included manually here. 
   for (k=1; k<=2; k++) {  
     for (i=1;i<=npar;i++) p2[i]=x[i];       */
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    int i, j, d, h, k;
     k1=func(p2)-fx;    double **out, cov[NCOVMAX];
      double **newm;
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    /* Hstepm could be zero and should return the unit matrix */
     k2=func(p2)-fx;    for (i=1;i<=nlstate+ndeath;i++)
        for (j=1;j<=nlstate+ndeath;j++){
     p2[thetai]=x[thetai]-delti[thetai]/k;        oldm[i][j]=(i==j ? 1.0 : 0.0);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        po[i][j][0]=(i==j ? 1.0 : 0.0);
     k3=func(p2)-fx;      }
      /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     p2[thetai]=x[thetai]-delti[thetai]/k;    for(h=1; h <=nhstepm; h++){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      for(d=1; d <=hstepm; d++){
     k4=func(p2)-fx;        newm=savm;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        /* Covariates have to be included here again */
 #ifdef DEBUG        cov[1]=1.;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 #endif        for (k=1; k<=cptcovage;k++)
   }          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   return res;        for (k=1; k<=cptcovprod;k++)
 }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
 /************** Inverse of matrix **************/  
 void ludcmp(double **a, int n, int *indx, double *d)        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 {        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   int i,imax,j,k;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   double big,dum,sum,temp;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   double *vv;        savm=oldm;
          oldm=newm;
   vv=vector(1,n);      }
   *d=1.0;      for(i=1; i<=nlstate+ndeath; i++)
   for (i=1;i<=n;i++) {        for(j=1;j<=nlstate+ndeath;j++) {
     big=0.0;          po[i][j][h]=newm[i][j];
     for (j=1;j<=n;j++)          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       if ((temp=fabs(a[i][j])) > big) big=temp;           */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        }
     vv[i]=1.0/big;    } /* end h */
   }    return po;
   for (j=1;j<=n;j++) {  }
     for (i=1;i<j;i++) {  
       sum=a[i][j];  
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  /*************** log-likelihood *************/
       a[i][j]=sum;  double func( double *x)
     }  {
     big=0.0;    int i, ii, j, k, mi, d, kk;
     for (i=j;i<=n;i++) {    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       sum=a[i][j];    double **out;
       for (k=1;k<j;k++)    double sw; /* Sum of weights */
         sum -= a[i][k]*a[k][j];    double lli; /* Individual log likelihood */
       a[i][j]=sum;    int s1, s2;
       if ( (dum=vv[i]*fabs(sum)) >= big) {    double bbh, survp;
         big=dum;    long ipmx;
         imax=i;    /*extern weight */
       }    /* We are differentiating ll according to initial status */
     }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     if (j != imax) {    /*for(i=1;i<imx;i++) 
       for (k=1;k<=n;k++) {      printf(" %d\n",s[4][i]);
         dum=a[imax][k];    */
         a[imax][k]=a[j][k];    cov[1]=1.;
         a[j][k]=dum;  
       }    for(k=1; k<=nlstate; k++) ll[k]=0.;
       *d = -(*d);  
       vv[imax]=vv[j];    if(mle==1){
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     indx[j]=imax;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     if (a[j][j] == 0.0) a[j][j]=TINY;        for(mi=1; mi<= wav[i]-1; mi++){
     if (j != n) {          for (ii=1;ii<=nlstate+ndeath;ii++)
       dum=1.0/(a[j][j]);            for (j=1;j<=nlstate+ndeath;j++){
       for (i=j+1;i<=n;i++) a[i][j] *= dum;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
   free_vector(vv,1,n);  /* Doesn't work */          for(d=0; d<dh[mi][i]; d++){
 ;            newm=savm;
 }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
 void lubksb(double **a, int n, int *indx, double b[])              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 {            }
   int i,ii=0,ip,j;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double sum;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
   for (i=1;i<=n;i++) {            oldm=newm;
     ip=indx[i];          } /* end mult */
     sum=b[ip];        
     b[ip]=b[i];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     if (ii)          /* But now since version 0.9 we anticipate for bias and large stepm.
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     else if (sum) ii=i;           * (in months) between two waves is not a multiple of stepm, we rounded to 
     b[i]=sum;           * the nearest (and in case of equal distance, to the lowest) interval but now
   }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   for (i=n;i>=1;i--) {           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     sum=b[i];           * probability in order to take into account the bias as a fraction of the way
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     b[i]=sum/a[i][i];           * -stepm/2 to stepm/2 .
   }           * For stepm=1 the results are the same as for previous versions of Imach.
 }           * For stepm > 1 the results are less biased than in previous versions. 
            */
 /************ Frequencies ********************/          s1=s[mw[mi][i]][i];
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          s2=s[mw[mi+1][i]][i];
 {  /* Some frequencies */          bbh=(double)bh[mi][i]/(double)stepm; 
            /* bias is positive if real duration
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;           * is higher than the multiple of stepm and negative otherwise.
   int first;           */
   double ***freq; /* Frequencies */          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   double *pp;          if( s2 > nlstate){ 
   double pos, k2, dateintsum=0,k2cpt=0;            /* i.e. if s2 is a death state and if the date of death is known then the contribution
   FILE *ficresp;               to the likelihood is the probability to die between last step unit time and current 
   char fileresp[FILENAMELENGTH];               step unit time, which is also the differences between probability to die before dh 
                 and probability to die before dh-stepm . 
   pp=vector(1,nlstate);               In version up to 0.92 likelihood was computed
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          as if date of death was unknown. Death was treated as any other
   strcpy(fileresp,"p");          health state: the date of the interview describes the actual state
   strcat(fileresp,fileres);          and not the date of a change in health state. The former idea was
   if((ficresp=fopen(fileresp,"w"))==NULL) {          to consider that at each interview the state was recorded
     printf("Problem with prevalence resultfile: %s\n", fileresp);          (healthy, disable or death) and IMaCh was corrected; but when we
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);          introduced the exact date of death then we should have modified
     exit(0);          the contribution of an exact death to the likelihood. This new
   }          contribution is smaller and very dependent of the step unit
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          stepm. It is no more the probability to die between last interview
   j1=0;          and month of death but the probability to survive from last
            interview up to one month before death multiplied by the
   j=cptcoveff;          probability to die within a month. Thanks to Chris
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          Jackson for correcting this bug.  Former versions increased
           mortality artificially. The bad side is that we add another loop
   first=1;          which slows down the processing. The difference can be up to 10%
           lower mortality.
   for(k1=1; k1<=j;k1++){            */
     for(i1=1; i1<=ncodemax[k1];i1++){            lli=log(out[s1][s2] - savm[s1][s2]);
       j1++;          }else{
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         scanf("%d", i);*/            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
       for (i=-1; i<=nlstate+ndeath; i++)            } 
         for (jk=-1; jk<=nlstate+ndeath; jk++)            /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           for(m=agemin; m <= agemax+3; m++)          /*if(lli ==000.0)*/
             freq[i][jk][m]=0;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
                ipmx +=1;
       dateintsum=0;          sw += weight[i];
       k2cpt=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for (i=1; i<=imx; i++) {        } /* end of wave */
         bool=1;      } /* end of individual */
         if  (cptcovn>0) {    }  else if(mle==2){
           for (z1=1; z1<=cptcoveff; z1++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
               bool=0;        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
         if (bool==1) {            for (j=1;j<=nlstate+ndeath;j++){
           for(m=firstpass; m<=lastpass; m++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             k2=anint[m][i]+(mint[m][i]/12.);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            }
               if(agev[m][i]==0) agev[m][i]=agemax+1;          for(d=0; d<=dh[mi][i]; d++){
               if(agev[m][i]==1) agev[m][i]=agemax+2;            newm=savm;
               if (m<lastpass) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            for (kk=1; kk<=cptcovage;kk++) {
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               }            }
                          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                 dateintsum=dateintsum+k2;            savm=oldm;
                 k2cpt++;            oldm=newm;
               }          } /* end mult */
             }        
           }          s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
       }          bbh=(double)bh[mi][i]/(double)stepm; 
                  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          ipmx +=1;
           sw += weight[i];
       if  (cptcovn>0) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         fprintf(ficresp, "\n#********** Variable ");        } /* end of wave */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      } /* end of individual */
         fprintf(ficresp, "**********\n#");    }  else if(mle==3){  /* exponential inter-extrapolation */
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(i=1; i<=nlstate;i++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        for(mi=1; mi<= wav[i]-1; mi++){
       fprintf(ficresp, "\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
                  for (j=1;j<=nlstate+ndeath;j++){
       for(i=(int)agemin; i <= (int)agemax+3; i++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if(i==(int)agemax+3){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           fprintf(ficlog,"Total");            }
         }else{          for(d=0; d<dh[mi][i]; d++){
           if(first==1){            newm=savm;
             first=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             printf("See log file for details...\n");            for (kk=1; kk<=cptcovage;kk++) {
           }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           fprintf(ficlog,"Age %d", i);            }
         }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(jk=1; jk <=nlstate ; jk++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)            savm=oldm;
             pp[jk] += freq[jk][m][i];            oldm=newm;
         }          } /* end mult */
         for(jk=1; jk <=nlstate ; jk++){        
           for(m=-1, pos=0; m <=0 ; m++)          s1=s[mw[mi][i]][i];
             pos += freq[jk][m][i];          s2=s[mw[mi+1][i]][i];
           if(pp[jk]>=1.e-10){          bbh=(double)bh[mi][i]/(double)stepm; 
             if(first==1){          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          ipmx +=1;
             }          sw += weight[i];
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           }else{        } /* end of wave */
             if(first==1)      } /* end of individual */
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
         for(jk=1; jk <=nlstate ; jk++){            for (j=1;j<=nlstate+ndeath;j++){
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             pp[jk] += freq[jk][m][i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
           for(d=0; d<dh[mi][i]; d++){
         for(jk=1,pos=0; jk <=nlstate ; jk++)            newm=savm;
           pos += pp[jk];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for(jk=1; jk <=nlstate ; jk++){            for (kk=1; kk<=cptcovage;kk++) {
           if(pos>=1.e-5){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             if(first==1)            }
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           }else{                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             if(first==1)            savm=oldm;
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            oldm=newm;
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          } /* end mult */
           }        
           if( i <= (int) agemax){          s1=s[mw[mi][i]][i];
             if(pos>=1.e-5){          s2=s[mw[mi+1][i]][i];
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          if( s2 > nlstate){ 
               probs[i][jk][j1]= pp[jk]/pos;            lli=log(out[s1][s2] - savm[s1][s2]);
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          }else{
             }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
             else          }
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          ipmx +=1;
           }          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         for(jk=-1; jk <=nlstate+ndeath; jk++)        } /* end of wave */
           for(m=-1; m <=nlstate+ndeath; m++)      } /* end of individual */
             if(freq[jk][m][i] !=0 ) {    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
             if(first==1)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);        for(mi=1; mi<= wav[i]-1; mi++){
             }          for (ii=1;ii<=nlstate+ndeath;ii++)
         if(i <= (int) agemax)            for (j=1;j<=nlstate+ndeath;j++){
           fprintf(ficresp,"\n");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if(first==1)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           printf("Others in log...\n");            }
         fprintf(ficlog,"\n");          for(d=0; d<dh[mi][i]; d++){
       }            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
   dateintmean=dateintsum/k2cpt;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
   fclose(ficresp);          
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   free_vector(pp,1,nlstate);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
   /* End of Freq */            oldm=newm;
 }          } /* end mult */
         
 /************ Prevalence ********************/          s1=s[mw[mi][i]][i];
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          s2=s[mw[mi+1][i]][i];
 {  /* Some frequencies */          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
            ipmx +=1;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          sw += weight[i];
   double ***freq; /* Frequencies */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double *pp;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   double pos, k2;        } /* end of wave */
       } /* end of individual */
   pp=vector(1,nlstate);    } /* End of if */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   j1=0;    return -l;
    }
   j=cptcoveff;  
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  /*************** log-likelihood *************/
    double funcone( double *x)
   for(k1=1; k1<=j;k1++){  {
     for(i1=1; i1<=ncodemax[k1];i1++){    /* Same as likeli but slower because of a lot of printf and if */
       j1++;    int i, ii, j, k, mi, d, kk;
          double l, ll[NLSTATEMAX], cov[NCOVMAX];
       for (i=-1; i<=nlstate+ndeath; i++)      double **out;
         for (jk=-1; jk<=nlstate+ndeath; jk++)      double lli; /* Individual log likelihood */
           for(m=agemin; m <= agemax+3; m++)    double llt;
             freq[i][jk][m]=0;    int s1, s2;
          double bbh, survp;
       for (i=1; i<=imx; i++) {    /*extern weight */
         bool=1;    /* We are differentiating ll according to initial status */
         if  (cptcovn>0) {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           for (z1=1; z1<=cptcoveff; z1++)    /*for(i=1;i<imx;i++) 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      printf(" %d\n",s[4][i]);
               bool=0;    */
         }    cov[1]=1.;
         if (bool==1) {  
           for(m=firstpass; m<=lastpass; m++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
             k2=anint[m][i]+(mint[m][i]/12.);  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               if(agev[m][i]==0) agev[m][i]=agemax+1;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
               if(agev[m][i]==1) agev[m][i]=agemax+2;      for(mi=1; mi<= wav[i]-1; mi++){
               if (m<lastpass) {        for (ii=1;ii<=nlstate+ndeath;ii++)
                 if (calagedate>0)          for (j=1;j<=nlstate+ndeath;j++){
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                 else            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          }
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];        for(d=0; d<dh[mi][i]; d++){
               }          newm=savm;
             }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           }          for (kk=1; kk<=cptcovage;kk++) {
         }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }          }
       for(i=(int)agemin; i <= (int)agemax+3; i++){          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(jk=1; jk <=nlstate ; jk++){                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          savm=oldm;
             pp[jk] += freq[jk][m][i];          oldm=newm;
         }        } /* end mult */
         for(jk=1; jk <=nlstate ; jk++){        
           for(m=-1, pos=0; m <=0 ; m++)        s1=s[mw[mi][i]][i];
             pos += freq[jk][m][i];        s2=s[mw[mi+1][i]][i];
         }        bbh=(double)bh[mi][i]/(double)stepm; 
                /* bias is positive if real duration
         for(jk=1; jk <=nlstate ; jk++){         * is higher than the multiple of stepm and negative otherwise.
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)         */
             pp[jk] += freq[jk][m][i];        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         }          lli=log(out[s1][s2] - savm[s1][s2]);
                } else if (mle==1){
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                } else if(mle==2){
         for(jk=1; jk <=nlstate ; jk++){              lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           if( i <= (int) agemax){        } else if(mle==3){  /* exponential inter-extrapolation */
             if(pos>=1.e-5){          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
               probs[i][jk][j1]= pp[jk]/pos;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
             }          lli=log(out[s1][s2]); /* Original formula */
           }        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
         }/* end jk */          lli=log(out[s1][s2]); /* Original formula */
       }/* end i */        } /* End of if */
     } /* end i1 */        ipmx +=1;
   } /* end k1 */        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        if(globpr){
   free_vector(pp,1,nlstate);          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
     %10.6f %10.6f %10.6f ", \
 }  /* End of Freq */                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 /************* Waves Concatenation ***************/          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
 {          }
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          fprintf(ficresilk," %10.6f\n", -llt);
      Death is a valid wave (if date is known).        }
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      } /* end of wave */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    } /* end of individual */
      and mw[mi+1][i]. dh depends on stepm.    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   int i, mi, m;    if(globpr==0){ /* First time we count the contributions and weights */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      gipmx=ipmx;
      double sum=0., jmean=0.;*/      gsw=sw;
   int first;    }
   int j, k=0,jk, ju, jl;    return -l;
   double sum=0.;  }
   first=0;  
   jmin=1e+5;  
   jmax=-1;  /*************** function likelione ***********/
   jmean=0.;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   for(i=1; i<=imx; i++){  {
     mi=0;    /* This routine should help understanding what is done with 
     m=firstpass;       the selection of individuals/waves and
     while(s[m][i] <= nlstate){       to check the exact contribution to the likelihood.
       if(s[m][i]>=1)       Plotting could be done.
         mw[++mi][i]=m;     */
       if(m >=lastpass)    int k;
         break;  
       else    if(*globpri !=0){ /* Just counts and sums, no printings */
         m++;      strcpy(fileresilk,"ilk"); 
     }/* end while */      strcat(fileresilk,fileres);
     if (s[m][i] > nlstate){      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       mi++;     /* Death is another wave */        printf("Problem with resultfile: %s\n", fileresilk);
       /* if(mi==0)  never been interviewed correctly before death */        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
          /* Only death is a correct wave */      }
       mw[mi][i]=m;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     }      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     wav[i]=mi;      for(k=1; k<=nlstate; k++) 
     if(mi==0){        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       if(first==0){      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);    }
         first=1;  
       }    *fretone=(*funcone)(p);
       if(first==1){    if(*globpri !=0){
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);      fclose(ficresilk);
       }      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     } /* end mi==0 */      fflush(fichtm); 
   }    } 
     return;
   for(i=1; i<=imx; i++){  }
     for(mi=1; mi<wav[i];mi++){  
       if (stepm <=0)  
         dh[mi][i]=1;  /*********** Maximum Likelihood Estimation ***************/
       else{  
         if (s[mw[mi+1][i]][i] > nlstate) {  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
           if (agedc[i] < 2*AGESUP) {  {
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    int i,j, iter;
           if(j==0) j=1;  /* Survives at least one month after exam */    double **xi;
           k=k+1;    double fret;
           if (j >= jmax) jmax=j;    double fretone; /* Only one call to likelihood */
           if (j <= jmin) jmin=j;    /*  char filerespow[FILENAMELENGTH];*/
           sum=sum+j;    xi=matrix(1,npar,1,npar);
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    for (i=1;i<=npar;i++)
           }      for (j=1;j<=npar;j++)
         }        xi[i][j]=(i==j ? 1.0 : 0.0);
         else{    printf("Powell\n");  fprintf(ficlog,"Powell\n");
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    strcpy(filerespow,"pow"); 
           k=k+1;    strcat(filerespow,fileres);
           if (j >= jmax) jmax=j;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
           else if (j <= jmin)jmin=j;      printf("Problem with resultfile: %s\n", filerespow);
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
           sum=sum+j;    }
         }    fprintf(ficrespow,"# Powell\n# iter -2*LL");
         jk= j/stepm;    for (i=1;i<=nlstate;i++)
         jl= j -jk*stepm;      for(j=1;j<=nlstate+ndeath;j++)
         ju= j -(jk+1)*stepm;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         if(jl <= -ju)    fprintf(ficrespow,"\n");
           dh[mi][i]=jk;  
         else    powell(p,xi,npar,ftol,&iter,&fret,func);
           dh[mi][i]=jk+1;  
         if(dh[mi][i]==0)    fclose(ficrespow);
           dh[mi][i]=1; /* At least one step */    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     }    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   }  
   jmean=sum/k;  }
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  /**** Computes Hessian and covariance matrix ***/
  }  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   {
 /*********** Tricode ****************************/    double  **a,**y,*x,pd;
 void tricode(int *Tvar, int **nbcode, int imx)    double **hess;
 {    int i, j,jk;
   int Ndum[20],ij=1, k, j, i;    int *indx;
   int cptcode=0;  
   cptcoveff=0;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
      double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   for (k=0; k<19; k++) Ndum[k]=0;    void lubksb(double **a, int npar, int *indx, double b[]) ;
   for (k=1; k<=7; k++) ncodemax[k]=0;    void ludcmp(double **a, int npar, int *indx, double *d) ;
     double gompertz(double p[]);
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    hess=matrix(1,npar,1,npar);
     for (i=1; i<=imx; i++) {  
       ij=(int)(covar[Tvar[j]][i]);    printf("\nCalculation of the hessian matrix. Wait...\n");
       Ndum[ij]++;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    for (i=1;i<=npar;i++){
       if (ij > cptcode) cptcode=ij;      printf("%d",i);fflush(stdout);
     }      fprintf(ficlog,"%d",i);fflush(ficlog);
      
     for (i=0; i<=cptcode; i++) {       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       if(Ndum[i]!=0) ncodemax[j]++;      
     }      /*  printf(" %f ",p[i]);
     ij=1;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }
     
     for (i=1; i<=ncodemax[j]; i++) {    for (i=1;i<=npar;i++) {
       for (k=0; k<=19; k++) {      for (j=1;j<=npar;j++)  {
         if (Ndum[k] != 0) {        if (j>i) { 
           nbcode[Tvar[j]][ij]=k;          printf(".%d%d",i,j);fflush(stdout);
                    fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           ij++;          hess[i][j]=hessij(p,delti,i,j,func,npar);
         }          
         if (ij > ncodemax[j]) break;          hess[j][i]=hess[i][j];    
       }            /*printf(" %lf ",hess[i][j]);*/
     }        }
   }        }
     }
  for (k=0; k<19; k++) Ndum[k]=0;    printf("\n");
     fprintf(ficlog,"\n");
  for (i=1; i<=ncovmodel-2; i++) {  
    ij=Tvar[i];    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
    Ndum[ij]++;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
  }    
     a=matrix(1,npar,1,npar);
  ij=1;    y=matrix(1,npar,1,npar);
  for (i=1; i<=10; i++) {    x=vector(1,npar);
    if((Ndum[i]!=0) && (i<=ncovcol)){    indx=ivector(1,npar);
      Tvaraff[ij]=i;    for (i=1;i<=npar;i++)
      ij++;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
    }    ludcmp(a,npar,indx,&pd);
  }  
      for (j=1;j<=npar;j++) {
  cptcoveff=ij-1;      for (i=1;i<=npar;i++) x[i]=0;
 }      x[j]=1;
       lubksb(a,npar,indx,x);
 /*********** Health Expectancies ****************/      for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )      }
     }
 {  
   /* Health expectancies */    printf("\n#Hessian matrix#\n");
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    fprintf(ficlog,"\n#Hessian matrix#\n");
   double age, agelim, hf;    for (i=1;i<=npar;i++) { 
   double ***p3mat,***varhe;      for (j=1;j<=npar;j++) { 
   double **dnewm,**doldm;        printf("%.3e ",hess[i][j]);
   double *xp;        fprintf(ficlog,"%.3e ",hess[i][j]);
   double **gp, **gm;      }
   double ***gradg, ***trgradg;      printf("\n");
   int theta;      fprintf(ficlog,"\n");
     }
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  
   xp=vector(1,npar);    /* Recompute Inverse */
   dnewm=matrix(1,nlstate*2,1,npar);    for (i=1;i<=npar;i++)
   doldm=matrix(1,nlstate*2,1,nlstate*2);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
      ludcmp(a,npar,indx,&pd);
   fprintf(ficreseij,"# Health expectancies\n");  
   fprintf(ficreseij,"# Age");    /*  printf("\n#Hessian matrix recomputed#\n");
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)    for (j=1;j<=npar;j++) {
       fprintf(ficreseij," %1d-%1d (SE)",i,j);      for (i=1;i<=npar;i++) x[i]=0;
   fprintf(ficreseij,"\n");      x[j]=1;
       lubksb(a,npar,indx,x);
   if(estepm < stepm){      for (i=1;i<=npar;i++){ 
     printf ("Problem %d lower than %d\n",estepm, stepm);        y[i][j]=x[i];
   }        printf("%.3e ",y[i][j]);
   else  hstepm=estepm;          fprintf(ficlog,"%.3e ",y[i][j]);
   /* We compute the life expectancy from trapezoids spaced every estepm months      }
    * This is mainly to measure the difference between two models: for example      printf("\n");
    * if stepm=24 months pijx are given only every 2 years and by summing them      fprintf(ficlog,"\n");
    * we are calculating an estimate of the Life Expectancy assuming a linear    }
    * progression inbetween and thus overestimating or underestimating according    */
    * to the curvature of the survival function. If, for the same date, we  
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    free_matrix(a,1,npar,1,npar);
    * to compare the new estimate of Life expectancy with the same linear    free_matrix(y,1,npar,1,npar);
    * hypothesis. A more precise result, taking into account a more precise    free_vector(x,1,npar);
    * curvature will be obtained if estepm is as small as stepm. */    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  
      nhstepm is the number of hstepm from age to agelim  }
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size  /*************** hessian matrix ****************/
      and note for a fixed period like estepm months */  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  {
      survival function given by stepm (the optimization length). Unfortunately it    int i;
      means that if the survival funtion is printed only each two years of age and if    int l=1, lmax=20;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    double k1,k2;
      results. So we changed our mind and took the option of the best precision.    double p2[NPARMAX+1];
   */    double res;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
   agelim=AGESUP;    int k=0,kmax=10;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double l1;
     /* nhstepm age range expressed in number of stepm */  
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    fx=func(x);
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    for (i=1;i<=npar;i++) p2[i]=x[i];
     /* if (stepm >= YEARM) hstepm=1;*/    for(l=0 ; l <=lmax; l++){
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      l1=pow(10,l);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      delts=delt;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);      for(k=1 ; k <kmax; k=k+1){
     gp=matrix(0,nhstepm,1,nlstate*2);        delt = delta*(l1*k);
     gm=matrix(0,nhstepm,1,nlstate*2);        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        p2[theta]=x[theta]-delt;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        k2=func(p2)-fx;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          /*res= (k1-2.0*fx+k2)/delt/delt; */
          res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  #ifdef DEBUG
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     /* Computing Variances of health expectancies */        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   #endif
      for(theta=1; theta <=npar; theta++){        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       for(i=1; i<=npar; i++){        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          k=kmax;
       }        }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
            k=kmax; l=lmax*10.;
       cptj=0;        }
       for(j=1; j<= nlstate; j++){        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         for(i=1; i<=nlstate; i++){          delts=delt;
           cptj=cptj+1;        }
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      }
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    }
           }    delti[theta]=delts;
         }    return res; 
       }    
        }
        
       for(i=1; i<=npar; i++)  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      int i;
          int l=1, l1, lmax=20;
       cptj=0;    double k1,k2,k3,k4,res,fx;
       for(j=1; j<= nlstate; j++){    double p2[NPARMAX+1];
         for(i=1;i<=nlstate;i++){    int k;
           cptj=cptj+1;  
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    fx=func(x);
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    for (k=1; k<=2; k++) {
           }      for (i=1;i<=npar;i++) p2[i]=x[i];
         }      p2[thetai]=x[thetai]+delti[thetai]/k;
       }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       for(j=1; j<= nlstate*2; j++)      k1=func(p2)-fx;
         for(h=0; h<=nhstepm-1; h++){    
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      p2[thetai]=x[thetai]+delti[thetai]/k;
         }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
      }      k2=func(p2)-fx;
        
 /* End theta */      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      k3=func(p2)-fx;
     
      for(h=0; h<=nhstepm-1; h++)      p2[thetai]=x[thetai]-delti[thetai]/k;
       for(j=1; j<=nlstate*2;j++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         for(theta=1; theta <=npar; theta++)      k4=func(p2)-fx;
           trgradg[h][j][theta]=gradg[h][theta][j];      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
        #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      for(i=1;i<=nlstate*2;i++)      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       for(j=1;j<=nlstate*2;j++)  #endif
         varhe[i][j][(int)age] =0.;    }
     return res;
      printf("%d|",(int)age);fflush(stdout);  }
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);  
      for(h=0;h<=nhstepm-1;h++){  /************** Inverse of matrix **************/
       for(k=0;k<=nhstepm-1;k++){  void ludcmp(double **a, int n, int *indx, double *d) 
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);  { 
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    int i,imax,j,k; 
         for(i=1;i<=nlstate*2;i++)    double big,dum,sum,temp; 
           for(j=1;j<=nlstate*2;j++)    double *vv; 
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;   
       }    vv=vector(1,n); 
     }    *d=1.0; 
     /* Computing expectancies */    for (i=1;i<=n;i++) { 
     for(i=1; i<=nlstate;i++)      big=0.0; 
       for(j=1; j<=nlstate;j++)      for (j=1;j<=n;j++) 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        if ((temp=fabs(a[i][j])) > big) big=temp; 
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
                vv[i]=1.0/big; 
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    } 
     for (j=1;j<=n;j++) { 
         }      for (i=1;i<j;i++) { 
         sum=a[i][j]; 
     fprintf(ficreseij,"%3.0f",age );        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     cptj=0;        a[i][j]=sum; 
     for(i=1; i<=nlstate;i++)      } 
       for(j=1; j<=nlstate;j++){      big=0.0; 
         cptj++;      for (i=j;i<=n;i++) { 
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        sum=a[i][j]; 
       }        for (k=1;k<j;k++) 
     fprintf(ficreseij,"\n");          sum -= a[i][k]*a[k][j]; 
            a[i][j]=sum; 
     free_matrix(gm,0,nhstepm,1,nlstate*2);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     free_matrix(gp,0,nhstepm,1,nlstate*2);          big=dum; 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);          imax=i; 
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);        } 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      } 
   }      if (j != imax) { 
   printf("\n");        for (k=1;k<=n;k++) { 
   fprintf(ficlog,"\n");          dum=a[imax][k]; 
           a[imax][k]=a[j][k]; 
   free_vector(xp,1,npar);          a[j][k]=dum; 
   free_matrix(dnewm,1,nlstate*2,1,npar);        } 
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        *d = -(*d); 
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);        vv[imax]=vv[j]; 
 }      } 
       indx[j]=imax; 
 /************ Variance ******************/      if (a[j][j] == 0.0) a[j][j]=TINY; 
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)      if (j != n) { 
 {        dum=1.0/(a[j][j]); 
   /* Variance of health expectancies */        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      } 
   /* double **newm;*/    } 
   double **dnewm,**doldm;    free_vector(vv,1,n);  /* Doesn't work */
   double **dnewmp,**doldmp;  ;
   int i, j, nhstepm, hstepm, h, nstepm ;  } 
   int k, cptcode;  
   double *xp;  void lubksb(double **a, int n, int *indx, double b[]) 
   double **gp, **gm;  /* for var eij */  { 
   double ***gradg, ***trgradg; /*for var eij */    int i,ii=0,ip,j; 
   double **gradgp, **trgradgp; /* for var p point j */    double sum; 
   double *gpp, *gmp; /* for var p point j */   
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */    for (i=1;i<=n;i++) { 
   double ***p3mat;      ip=indx[i]; 
   double age,agelim, hf;      sum=b[ip]; 
   int theta;      b[ip]=b[i]; 
   char digit[4];      if (ii) 
   char digitp[16];        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
   char fileresprobmorprev[FILENAMELENGTH];      b[i]=sum; 
     } 
   if(popbased==1)    for (i=n;i>=1;i--) { 
     strcpy(digitp,"-populbased-");      sum=b[i]; 
   else      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     strcpy(digitp,"-stablbased-");      b[i]=sum/a[i][i]; 
     } 
   strcpy(fileresprobmorprev,"prmorprev");  } 
   sprintf(digit,"%-d",ij);  
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/  /************ Frequencies ********************/
   strcat(fileresprobmorprev,digit); /* Tvar to be done */  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
   strcat(fileresprobmorprev,digitp); /* Popbased or not */  {  /* Some frequencies */
   strcat(fileresprobmorprev,fileres);    
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    int first;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);    double ***freq; /* Frequencies */
   }    double *pp, **prop;
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    FILE *ficresp;
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");    char fileresp[FILENAMELENGTH];
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);    
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){    pp=vector(1,nlstate);
     fprintf(ficresprobmorprev," p.%-d SE",j);    prop=matrix(1,nlstate,iagemin,iagemax+3);
     for(i=1; i<=nlstate;i++)    strcpy(fileresp,"p");
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);    strcat(fileresp,fileres);
   }      if((ficresp=fopen(fileresp,"w"))==NULL) {
   fprintf(ficresprobmorprev,"\n");      printf("Problem with prevalence resultfile: %s\n", fileresp);
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);      exit(0);
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);    }
     exit(0);    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
   }    j1=0;
   else{    
     fprintf(ficgp,"\n# Routine varevsij");    j=cptcoveff;
   }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {  
     printf("Problem with html file: %s\n", optionfilehtm);    first=1;
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);  
     exit(0);    for(k1=1; k1<=j;k1++){
   }      for(i1=1; i1<=ncodemax[k1];i1++){
   else{        j1++;
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   }          scanf("%d", i);*/
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        for (i=-1; i<=nlstate+ndeath; i++)  
           for (jk=-1; jk<=nlstate+ndeath; jk++)  
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");            for(m=iagemin; m <= iagemax+3; m++)
   fprintf(ficresvij,"# Age");              freq[i][jk][m]=0;
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)      for (i=1; i<=nlstate; i++)  
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        for(m=iagemin; m <= iagemax+3; m++)
   fprintf(ficresvij,"\n");          prop[i][m]=0;
         
   xp=vector(1,npar);        dateintsum=0;
   dnewm=matrix(1,nlstate,1,npar);        k2cpt=0;
   doldm=matrix(1,nlstate,1,nlstate);        for (i=1; i<=imx; i++) {
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);          bool=1;
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   gpp=vector(nlstate+1,nlstate+ndeath);                bool=0;
   gmp=vector(nlstate+1,nlstate+ndeath);          }
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/          if (bool==1){
              for(m=firstpass; m<=lastpass; m++){
   if(estepm < stepm){              k2=anint[m][i]+(mint[m][i]/12.);
     printf ("Problem %d lower than %d\n",estepm, stepm);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   else  hstepm=estepm;                  if(agev[m][i]==1) agev[m][i]=iagemax+2;
   /* For example we decided to compute the life expectancy with the smallest unit */                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.                if (m<lastpass) {
      nhstepm is the number of hstepm from age to agelim                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
      nstepm is the number of stepm from age to agelin.                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
      Look at hpijx to understand the reason of that which relies in memory size                }
      and note for a fixed period like k years */                
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
      survival function given by stepm (the optimization length). Unfortunately it                  dateintsum=dateintsum+k2;
      means that if the survival funtion is printed only each two years of age and if                  k2cpt++;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same                }
      results. So we changed our mind and took the option of the best precision.                /*}*/
   */            }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          }
   agelim = AGESUP;        }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */         
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if  (cptcovn>0) {
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          fprintf(ficresp, "\n#********** Variable "); 
     gp=matrix(0,nhstepm,1,nlstate);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     gm=matrix(0,nhstepm,1,nlstate);          fprintf(ficresp, "**********\n#");
         }
         for(i=1; i<=nlstate;i++) 
     for(theta=1; theta <=npar; theta++){          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       for(i=1; i<=npar; i++){ /* Computes gradient */        fprintf(ficresp, "\n");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        
       }        for(i=iagemin; i <= iagemax+3; i++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            if(i==iagemax+3){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            fprintf(ficlog,"Total");
           }else{
       if (popbased==1) {            if(first==1){
         for(i=1; i<=nlstate;i++)              first=0;
           prlim[i][i]=probs[(int)age][i][ij];              printf("See log file for details...\n");
       }            }
              fprintf(ficlog,"Age %d", i);
       for(j=1; j<= nlstate; j++){          }
         for(h=0; h<=nhstepm; h++){          for(jk=1; jk <=nlstate ; jk++){
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];              pp[jk] += freq[jk][m][i]; 
         }          }
       }          for(jk=1; jk <=nlstate ; jk++){
       /* This for computing forces of mortality (h=1)as a weighted average */            for(m=-1, pos=0; m <=0 ; m++)
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){              pos += freq[jk][m][i];
         for(i=1; i<= nlstate; i++)            if(pp[jk]>=1.e-10){
           gpp[j] += prlim[i][i]*p3mat[i][j][1];              if(first==1){
       }                  printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       /* end force of mortality */              }
               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       for(i=1; i<=npar; i++) /* Computes gradient */            }else{
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              if(first==1)
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                  printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
              }
       if (popbased==1) {          }
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];          for(jk=1; jk <=nlstate ; jk++){
       }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               pp[jk] += freq[jk][m][i];
       for(j=1; j<= nlstate; j++){          }       
         for(h=0; h<=nhstepm; h++){          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)            pos += pp[jk];
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];            posprop += prop[jk][i];
         }          }
       }          for(jk=1; jk <=nlstate ; jk++){
       /* This for computing force of mortality (h=1)as a weighted average */            if(pos>=1.e-5){
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){              if(first==1)
         for(i=1; i<= nlstate; i++)                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           gmp[j] += prlim[i][i]*p3mat[i][j][1];              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       }                }else{
       /* end force of mortality */              if(first==1)
                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       for(j=1; j<= nlstate; j++) /* vareij */              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         for(h=0; h<=nhstepm; h++){            }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            if( i <= iagemax){
         }              if(pos>=1.e-5){
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];                /*probs[i][jk][j1]= pp[jk]/pos;*/
       }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
     } /* End theta */              else
                 fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */            }
           }
     for(h=0; h<=nhstepm; h++) /* veij */          
       for(j=1; j<=nlstate;j++)          for(jk=-1; jk <=nlstate+ndeath; jk++)
         for(theta=1; theta <=npar; theta++)            for(m=-1; m <=nlstate+ndeath; m++)
           trgradg[h][j][theta]=gradg[h][theta][j];              if(freq[jk][m][i] !=0 ) {
               if(first==1)
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       for(theta=1; theta <=npar; theta++)                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
         trgradgp[j][theta]=gradgp[theta][j];              }
           if(i <= iagemax)
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            fprintf(ficresp,"\n");
     for(i=1;i<=nlstate;i++)          if(first==1)
       for(j=1;j<=nlstate;j++)            printf("Others in log...\n");
         vareij[i][j][(int)age] =0.;          fprintf(ficlog,"\n");
         }
     for(h=0;h<=nhstepm;h++){      }
       for(k=0;k<=nhstepm;k++){    }
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    dateintmean=dateintsum/k2cpt; 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);   
         for(i=1;i<=nlstate;i++)    fclose(ficresp);
           for(j=1;j<=nlstate;j++)    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    free_vector(pp,1,nlstate);
       }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     }    /* End of Freq */
   }
     /* pptj */  
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);  /************ Prevalence ********************/
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     for(j=nlstate+1;j<=nlstate+ndeath;j++)  {  
       for(i=nlstate+1;i<=nlstate+ndeath;i++)    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         varppt[j][i]=doldmp[j][i];       in each health status at the date of interview (if between dateprev1 and dateprev2).
     /* end ppptj */       We still use firstpass and lastpass as another selection.
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);      */
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);   
      int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     if (popbased==1) {    double ***freq; /* Frequencies */
       for(i=1; i<=nlstate;i++)    double *pp, **prop;
         prlim[i][i]=probs[(int)age][i][ij];    double pos,posprop; 
     }    double  y2; /* in fractional years */
        int iagemin, iagemax;
     /* This for computing force of mortality (h=1)as a weighted average */  
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){    iagemin= (int) agemin;
       for(i=1; i<= nlstate; i++)    iagemax= (int) agemax;
         gmp[j] += prlim[i][i]*p3mat[i][j][1];    /*pp=vector(1,nlstate);*/
     }        prop=matrix(1,nlstate,iagemin,iagemax+3); 
     /* end force of mortality */    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     j1=0;
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);    
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){    j=cptcoveff;
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       for(i=1; i<=nlstate;i++){    
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);    for(k1=1; k1<=j;k1++){
       }      for(i1=1; i1<=ncodemax[k1];i1++){
     }        j1++;
     fprintf(ficresprobmorprev,"\n");        
         for (i=1; i<=nlstate; i++)  
     fprintf(ficresvij,"%.0f ",age );          for(m=iagemin; m <= iagemax+3; m++)
     for(i=1; i<=nlstate;i++)            prop[i][m]=0.0;
       for(j=1; j<=nlstate;j++){       
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);        for (i=1; i<=imx; i++) { /* Each individual */
       }          bool=1;
     fprintf(ficresvij,"\n");          if  (cptcovn>0) {
     free_matrix(gp,0,nhstepm,1,nlstate);            for (z1=1; z1<=cptcoveff; z1++) 
     free_matrix(gm,0,nhstepm,1,nlstate);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);                bool=0;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          } 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          if (bool==1) { 
   } /* End age */            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   free_vector(gpp,nlstate+1,nlstate+ndeath);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   free_vector(gmp,nlstate+1,nlstate+ndeath);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);                  prop[s[m][i]][iagemax+3] += weight[i]; 
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);                } 
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);              }
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);            } /* end selection of waves */
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);          }
         }
   free_vector(xp,1,npar);        for(i=iagemin; i <= iagemax+3; i++){  
   free_matrix(doldm,1,nlstate,1,nlstate);          
   free_matrix(dnewm,1,nlstate,1,npar);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            posprop += prop[jk][i]; 
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);          } 
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  
   fclose(ficresprobmorprev);          for(jk=1; jk <=nlstate ; jk++){     
   fclose(ficgp);            if( i <=  iagemax){ 
   fclose(fichtm);              if(posprop>=1.e-5){ 
                 probs[i][jk][j1]= prop[jk][i]/posprop;
 }              } 
             } 
 /************ Variance of prevlim ******************/          }/* end jk */ 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        }/* end i */ 
 {      } /* end i1 */
   /* Variance of prevalence limit */    } /* end k1 */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    
   double **newm;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   double **dnewm,**doldm;    /*free_vector(pp,1,nlstate);*/
   int i, j, nhstepm, hstepm;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   int k, cptcode;  }  /* End of prevalence */
   double *xp;  
   double *gp, *gm;  /************* Waves Concatenation ***************/
   double **gradg, **trgradg;  
   double age,agelim;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   int theta;  {
        /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");       Death is a valid wave (if date is known).
   fprintf(ficresvpl,"# Age");       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   for(i=1; i<=nlstate;i++)       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       fprintf(ficresvpl," %1d-%1d",i,i);       and mw[mi+1][i]. dh depends on stepm.
   fprintf(ficresvpl,"\n");       */
   
   xp=vector(1,npar);    int i, mi, m;
   dnewm=matrix(1,nlstate,1,npar);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   doldm=matrix(1,nlstate,1,nlstate);       double sum=0., jmean=0.;*/
      int first;
   hstepm=1*YEARM; /* Every year of age */    int j, k=0,jk, ju, jl;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    double sum=0.;
   agelim = AGESUP;    first=0;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    jmin=1e+5;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    jmax=-1;
     if (stepm >= YEARM) hstepm=1;    jmean=0.;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    for(i=1; i<=imx; i++){
     gradg=matrix(1,npar,1,nlstate);      mi=0;
     gp=vector(1,nlstate);      m=firstpass;
     gm=vector(1,nlstate);      while(s[m][i] <= nlstate){
         if(s[m][i]>=1)
     for(theta=1; theta <=npar; theta++){          mw[++mi][i]=m;
       for(i=1; i<=npar; i++){ /* Computes gradient */        if(m >=lastpass)
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          break;
       }        else
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          m++;
       for(i=1;i<=nlstate;i++)      }/* end while */
         gp[i] = prlim[i][i];      if (s[m][i] > nlstate){
            mi++;     /* Death is another wave */
       for(i=1; i<=npar; i++) /* Computes gradient */        /* if(mi==0)  never been interviewed correctly before death */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);           /* Only death is a correct wave */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        mw[mi][i]=m;
       for(i=1;i<=nlstate;i++)      }
         gm[i] = prlim[i][i];  
       wav[i]=mi;
       for(i=1;i<=nlstate;i++)      if(mi==0){
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        nbwarn++;
     } /* End theta */        if(first==0){
           printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     trgradg =matrix(1,nlstate,1,npar);          first=1;
         }
     for(j=1; j<=nlstate;j++)        if(first==1){
       for(theta=1; theta <=npar; theta++)          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
         trgradg[j][theta]=gradg[theta][j];        }
       } /* end mi==0 */
     for(i=1;i<=nlstate;i++)    } /* End individuals */
       varpl[i][(int)age] =0.;  
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    for(i=1; i<=imx; i++){
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      for(mi=1; mi<wav[i];mi++){
     for(i=1;i<=nlstate;i++)        if (stepm <=0)
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          dh[mi][i]=1;
         else{
     fprintf(ficresvpl,"%.0f ",age );          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     for(i=1; i<=nlstate;i++)            if (agedc[i] < 2*AGESUP) {
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     fprintf(ficresvpl,"\n");              if(j==0) j=1;  /* Survives at least one month after exam */
     free_vector(gp,1,nlstate);              else if(j<0){
     free_vector(gm,1,nlstate);                nberr++;
     free_matrix(gradg,1,npar,1,nlstate);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     free_matrix(trgradg,1,nlstate,1,npar);                j=1; /* Temporary Dangerous patch */
   } /* End age */                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
                 fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   free_vector(xp,1,npar);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
   free_matrix(doldm,1,nlstate,1,npar);              }
   free_matrix(dnewm,1,nlstate,1,nlstate);              k=k+1;
               if (j >= jmax) jmax=j;
 }              if (j <= jmin) jmin=j;
               sum=sum+j;
 /************ Variance of one-step probabilities  ******************/              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 {            }
   int i, j=0,  i1, k1, l1, t, tj;          }
   int k2, l2, j1,  z1;          else{
   int k=0,l, cptcode;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   int first=1, first1;            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;            k=k+1;
   double **dnewm,**doldm;            if (j >= jmax) jmax=j;
   double *xp;            else if (j <= jmin)jmin=j;
   double *gp, *gm;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   double **gradg, **trgradg;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   double **mu;            if(j<0){
   double age,agelim, cov[NCOVMAX];              nberr++;
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   int theta;              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   char fileresprob[FILENAMELENGTH];            }
   char fileresprobcov[FILENAMELENGTH];            sum=sum+j;
   char fileresprobcor[FILENAMELENGTH];          }
           jk= j/stepm;
   double ***varpij;          jl= j -jk*stepm;
           ju= j -(jk+1)*stepm;
   strcpy(fileresprob,"prob");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   strcat(fileresprob,fileres);            if(jl==0){
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {              dh[mi][i]=jk;
     printf("Problem with resultfile: %s\n", fileresprob);              bh[mi][i]=0;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);            }else{ /* We want a negative bias in order to only have interpolation ie
   }                    * at the price of an extra matrix product in likelihood */
   strcpy(fileresprobcov,"probcov");              dh[mi][i]=jk+1;
   strcat(fileresprobcov,fileres);              bh[mi][i]=ju;
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {            }
     printf("Problem with resultfile: %s\n", fileresprobcov);          }else{
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);            if(jl <= -ju){
   }              dh[mi][i]=jk;
   strcpy(fileresprobcor,"probcor");              bh[mi][i]=jl;       /* bias is positive if real duration
   strcat(fileresprobcor,fileres);                                   * is higher than the multiple of stepm and negative otherwise.
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {                                   */
     printf("Problem with resultfile: %s\n", fileresprobcor);            }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);            else{
   }              dh[mi][i]=jk+1;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);              bh[mi][i]=ju;
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);            }
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);            if(dh[mi][i]==0){
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);              dh[mi][i]=1; /* At least one step */
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);              bh[mi][i]=ju; /* At least one step */
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
              }
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");          } /* end if mle */
   fprintf(ficresprob,"# Age");        }
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");      } /* end wave */
   fprintf(ficresprobcov,"# Age");    }
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    jmean=sum/k;
   fprintf(ficresprobcov,"# Age");    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
    }
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=(nlstate+ndeath);j++){  /*********** Tricode ****************************/
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);  void tricode(int *Tvar, int **nbcode, int imx)
       fprintf(ficresprobcov," p%1d-%1d ",i,j);  {
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    
     }      int Ndum[20],ij=1, k, j, i, maxncov=19;
   fprintf(ficresprob,"\n");    int cptcode=0;
   fprintf(ficresprobcov,"\n");    cptcoveff=0; 
   fprintf(ficresprobcor,"\n");   
   xp=vector(1,npar);    for (k=0; k<maxncov; k++) Ndum[k]=0;
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    for (k=1; k<=7; k++) ncodemax[k]=0;
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));  
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   first=1;                                 modality*/ 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);        Ndum[ij]++; /*store the modality */
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
     exit(0);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   }                                         Tvar[j]. If V=sex and male is 0 and 
   else{                                         female is 1, then  cptcode=1.*/
     fprintf(ficgp,"\n# Routine varprob");      }
   }  
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {      for (i=0; i<=cptcode; i++) {
     printf("Problem with html file: %s\n", optionfilehtm);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);      }
     exit(0);  
   }      ij=1; 
   else{      for (i=1; i<=ncodemax[j]; i++) {
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");        for (k=0; k<= maxncov; k++) {
     fprintf(fichtm,"\n");          if (Ndum[k] != 0) {
             nbcode[Tvar[j]][ij]=k; 
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");            
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");            ij++;
           }
   }          if (ij > ncodemax[j]) break; 
         }  
        } 
   cov[1]=1;    }  
   tj=cptcoveff;  
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}   for (k=0; k< maxncov; k++) Ndum[k]=0;
   j1=0;  
   for(t=1; t<=tj;t++){   for (i=1; i<=ncovmodel-2; i++) { 
     for(i1=1; i1<=ncodemax[t];i1++){     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       j1++;     ij=Tvar[i];
           Ndum[ij]++;
       if  (cptcovn>0) {   }
         fprintf(ficresprob, "\n#********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);   ij=1;
         fprintf(ficresprob, "**********\n#");   for (i=1; i<= maxncov; i++) {
         fprintf(ficresprobcov, "\n#********** Variable ");     if((Ndum[i]!=0) && (i<=ncovcol)){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       Tvaraff[ij]=i; /*For printing */
         fprintf(ficresprobcov, "**********\n#");       ij++;
             }
         fprintf(ficgp, "\n#********** Variable ");   }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);   
         fprintf(ficgp, "**********\n#");   cptcoveff=ij-1; /*Number of simple covariates*/
          }
          
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");  /*********** Health Expectancies ****************/
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
          
         fprintf(ficresprobcor, "\n#********** Variable ");      {
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    /* Health expectancies */
         fprintf(ficgp, "**********\n#");        int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
       }    double age, agelim, hf;
          double ***p3mat,***varhe;
       for (age=bage; age<=fage; age ++){    double **dnewm,**doldm;
         cov[2]=age;    double *xp;
         for (k=1; k<=cptcovn;k++) {    double **gp, **gm;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    double ***gradg, ***trgradg;
         }    int theta;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
         for (k=1; k<=cptcovprod;k++)    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    xp=vector(1,npar);
            dnewm=matrix(1,nlstate*nlstate,1,npar);
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    
         gp=vector(1,(nlstate)*(nlstate+ndeath));    fprintf(ficreseij,"# Health expectancies\n");
         gm=vector(1,(nlstate)*(nlstate+ndeath));    fprintf(ficreseij,"# Age");
        for(i=1; i<=nlstate;i++)
         for(theta=1; theta <=npar; theta++){      for(j=1; j<=nlstate;j++)
           for(i=1; i<=npar; i++)        fprintf(ficreseij," %1d-%1d (SE)",i,j);
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    fprintf(ficreseij,"\n");
            
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    if(estepm < stepm){
                printf ("Problem %d lower than %d\n",estepm, stepm);
           k=0;    }
           for(i=1; i<= (nlstate); i++){    else  hstepm=estepm;   
             for(j=1; j<=(nlstate+ndeath);j++){    /* We compute the life expectancy from trapezoids spaced every estepm months
               k=k+1;     * This is mainly to measure the difference between two models: for example
               gp[k]=pmmij[i][j];     * if stepm=24 months pijx are given only every 2 years and by summing them
             }     * we are calculating an estimate of the Life Expectancy assuming a linear 
           }     * progression in between and thus overestimating or underestimating according
               * to the curvature of the survival function. If, for the same date, we 
           for(i=1; i<=npar; i++)     * estimate the model with stepm=1 month, we can keep estepm to 24 months
             xp[i] = x[i] - (i==theta ?delti[theta]:0);     * to compare the new estimate of Life expectancy with the same linear 
         * hypothesis. A more precise result, taking into account a more precise
           pmij(pmmij,cov,ncovmodel,xp,nlstate);     * curvature will be obtained if estepm is as small as stepm. */
           k=0;  
           for(i=1; i<=(nlstate); i++){    /* For example we decided to compute the life expectancy with the smallest unit */
             for(j=1; j<=(nlstate+ndeath);j++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
               k=k+1;       nhstepm is the number of hstepm from age to agelim 
               gm[k]=pmmij[i][j];       nstepm is the number of stepm from age to agelin. 
             }       Look at hpijx to understand the reason of that which relies in memory size
           }       and note for a fixed period like estepm months */
          /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)       survival function given by stepm (the optimization length). Unfortunately it
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];         means that if the survival funtion is printed only each two years of age and if
         }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    */
           for(theta=1; theta <=npar; theta++)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
             trgradg[j][theta]=gradg[theta][j];  
            agelim=AGESUP;
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);      /* nhstepm age range expressed in number of stepm */
              nstepm=(int) rint((agelim-age)*YEARM/stepm); 
         pmij(pmmij,cov,ncovmodel,x,nlstate);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
              /* if (stepm >= YEARM) hstepm=1;*/
         k=0;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         for(i=1; i<=(nlstate); i++){      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           for(j=1; j<=(nlstate+ndeath);j++){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
             k=k+1;      gp=matrix(0,nhstepm,1,nlstate*nlstate);
             mu[k][(int) age]=pmmij[i][j];      gm=matrix(0,nhstepm,1,nlstate*nlstate);
           }  
         }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
             varpij[i][j][(int)age] = doldm[i][j];   
   
         /*printf("\n%d ",(int)age);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      /* Computing  Variances of health expectancies */
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  
      }*/       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
         fprintf(ficresprob,"\n%d ",(int)age);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         fprintf(ficresprobcov,"\n%d ",(int)age);        }
         fprintf(ficresprobcor,"\n%d ",(int)age);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)        cptj=0;
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));        for(j=1; j<= nlstate; j++){
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          for(i=1; i<=nlstate; i++){
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);            cptj=cptj+1;
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
         }              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
         i=0;            }
         for (k=1; k<=(nlstate);k++){          }
           for (l=1; l<=(nlstate+ndeath);l++){        }
             i=i++;       
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);       
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);        for(i=1; i<=npar; i++) 
             for (j=1; j<=i;j++){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));        
             }        cptj=0;
           }        for(j=1; j<= nlstate; j++){
         }/* end of loop for state */          for(i=1;i<=nlstate;i++){
       } /* end of loop for age */            cptj=cptj+1;
             for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
       /* Confidence intervalle of pij  */  
       /*              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
       fprintf(ficgp,"\nset noparametric;unset label");            }
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");          }
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");        }
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);        for(j=1; j<= nlstate*nlstate; j++)
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);          for(h=0; h<=nhstepm-1; h++){
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);          }
       */       } 
      
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/  /* End theta */
       first1=1;  
       for (k1=1; k1<=(nlstate);k1++){       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
         for (l1=1; l1<=(nlstate+ndeath);l1++){  
           if(l1==k1) continue;       for(h=0; h<=nhstepm-1; h++)
           i=(k1-1)*(nlstate+ndeath)+l1;        for(j=1; j<=nlstate*nlstate;j++)
           for (k2=1; k2<=(nlstate);k2++){          for(theta=1; theta <=npar; theta++)
             for (l2=1; l2<=(nlstate+ndeath);l2++){            trgradg[h][j][theta]=gradg[h][theta][j];
               if(l2==k2) continue;       
               j=(k2-1)*(nlstate+ndeath)+l2;  
               if(j<=i) continue;       for(i=1;i<=nlstate*nlstate;i++)
               for (age=bage; age<=fage; age ++){        for(j=1;j<=nlstate*nlstate;j++)
                 if ((int)age %5==0){          varhe[i][j][(int)age] =0.;
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;  
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;       printf("%d|",(int)age);fflush(stdout);
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                   mu1=mu[i][(int) age]/stepm*YEARM ;       for(h=0;h<=nhstepm-1;h++){
                   mu2=mu[j][(int) age]/stepm*YEARM;        for(k=0;k<=nhstepm-1;k++){
                   /* Computing eigen value of matrix of covariance */          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));          for(i=1;i<=nlstate*nlstate;i++)
                   if(first1==1){            for(j=1;j<=nlstate*nlstate;j++)
                     first1=0;              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
                     printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\nOthers in log...\n",v1,v2,cv12,lc1,lc2);        }
                   }      }
                   fprintf(ficlog,"Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);      /* Computing expectancies */
                   /* Eigen vectors */      for(i=1; i<=nlstate;i++)
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));        for(j=1; j<=nlstate;j++)
                   v21=sqrt(1.-v11*v11);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                   v12=-v21;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                   v22=v11;            
                   /*printf(fignu*/  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */  
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */          }
                   if(first==1){  
                     first=0;      fprintf(ficreseij,"%3.0f",age );
                     fprintf(ficgp,"\nset parametric;set nolabel");      cptj=0;
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);      for(i=1; i<=nlstate;i++)
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");        for(j=1; j<=nlstate;j++){
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1,optionfilefiname, j1,k2,l2,k1,l1);          cptj++;
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k2,l2,k1,l1);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k2,l2,k1,l1);        }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);      fprintf(ficreseij,"\n");
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);     
                     /*              fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
                     */      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));    printf("\n");
                   }else{    fprintf(ficlog,"\n");
                     first=0;  
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    free_vector(xp,1,npar);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
                     /*    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \  }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);  
                     */  /************ Variance ******************/
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \  {
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2));    /* Variance of health expectancies */
                   }/* if first */    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
                 } /* age mod 5 */    /* double **newm;*/
               } /* end loop age */    double **dnewm,**doldm;
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k2,l2,k1,l1);    double **dnewmp,**doldmp;
               first=1;    int i, j, nhstepm, hstepm, h, nstepm ;
             } /*l12 */    int k, cptcode;
           } /* k12 */    double *xp;
         } /*l1 */    double **gp, **gm;  /* for var eij */
       }/* k1 */    double ***gradg, ***trgradg; /*for var eij */
     } /* loop covariates */    double **gradgp, **trgradgp; /* for var p point j */
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    double *gpp, *gmp; /* for var p point j */
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    double ***p3mat;
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    double age,agelim, hf;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    double ***mobaverage;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    int theta;
   }    char digit[4];
   free_vector(xp,1,npar);    char digitp[25];
   fclose(ficresprob);  
   fclose(ficresprobcov);    char fileresprobmorprev[FILENAMELENGTH];
   fclose(ficresprobcor);  
   fclose(ficgp);    if(popbased==1){
   fclose(fichtm);      if(mobilav!=0)
 }        strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
 /******************* Printing html file ***********/    else 
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      strcpy(digitp,"-stablbased-");
                   int lastpass, int stepm, int weightopt, char model[],\  
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    if (mobilav!=0) {
                   int popforecast, int estepm ,\      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   double jprev1, double mprev1,double anprev1, \      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
                   double jprev2, double mprev2,double anprev2){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   int jj1, k1, i1, cpt;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   /*char optionfilehtm[FILENAMELENGTH];*/      }
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    }
     printf("Problem with %s \n",optionfilehtm), exit(0);  
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);    strcpy(fileresprobmorprev,"prmorprev"); 
   }    sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n    strcat(fileresprobmorprev,digit); /* Tvar to be done */
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    strcat(fileresprobmorprev,fileres);
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
  - Life expectancies by age and initial health status (estepm=%2d months):      printf("Problem with resultfile: %s\n", fileresprobmorprev);
    <a href=\"e%s\">e%s</a> <br>\n</li>", \      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
  m=cptcoveff;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
  jj1=0;      for(i=1; i<=nlstate;i++)
  for(k1=1; k1<=m;k1++){        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
    for(i1=1; i1<=ncodemax[k1];i1++){    }  
      jj1++;    fprintf(ficresprobmorprev,"\n");
      if (cptcovn > 0) {    fprintf(ficgp,"\n# Routine varevsij");
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
        for (cpt=1; cpt<=cptcoveff;cpt++)    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  /*   } */
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      }  
      /* Pij */    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>    fprintf(ficresvij,"# Age");
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        for(i=1; i<=nlstate;i++)
      /* Quasi-incidences */      for(j=1; j<=nlstate;j++)
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    fprintf(ficresvij,"\n");
        /* Stable prevalence in each health state */  
        for(cpt=1; cpt<nlstate;cpt++){    xp=vector(1,npar);
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>    dnewm=matrix(1,nlstate,1,npar);
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    doldm=matrix(1,nlstate,1,nlstate);
        }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
      for(cpt=1; cpt<=nlstate;cpt++) {    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>  
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
      }    gpp=vector(nlstate+1,nlstate+ndeath);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    gmp=vector(nlstate+1,nlstate+ndeath);
 health expectancies in states (1) and (2): e%s%d.png<br>    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    
    } /* end i1 */    if(estepm < stepm){
  }/* End k1 */      printf ("Problem %d lower than %d\n",estepm, stepm);
  fprintf(fichtm,"</ul>");    }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n       nhstepm is the number of hstepm from age to agelim 
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n       nstepm is the number of stepm from age to agelin. 
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n       Look at hpijx to understand the reason of that which relies in memory size
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n       and note for a fixed period like k years */
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n       survival function given by stepm (the optimization length). Unfortunately it
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);       means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
  if(popforecast==1) fprintf(fichtm,"\n       results. So we changed our mind and took the option of the best precision.
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    */
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         <br>",fileres,fileres,fileres,fileres);    agelim = AGESUP;
  else    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  m=cptcoveff;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
  jj1=0;  
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){      for(theta=1; theta <=npar; theta++){
      jj1++;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
      if (cptcovn > 0) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        }
        for (cpt=1; cpt<=cptcoveff;cpt++)        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
      }        if (popbased==1) {
      for(cpt=1; cpt<=nlstate;cpt++) {          if(mobilav ==0){
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident            for(i=1; i<=nlstate;i++)
 interval) in state (%d): v%s%d%d.png <br>              prlim[i][i]=probs[(int)age][i][ij];
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            }else{ /* mobilav */ 
      }            for(i=1; i<=nlstate;i++)
    } /* end i1 */              prlim[i][i]=mobaverage[(int)age][i][ij];
  }/* End k1 */          }
  fprintf(fichtm,"</ul>");        }
 fclose(fichtm);    
 }        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
 /******************* Gnuplot file **************/            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        }
   int ng;        /* This for computing probability of death (h=1 means
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {           computed over hstepm matrices product = hstepm*stepm months) 
     printf("Problem with file %s",optionfilegnuplot);           as a weighted average of prlim.
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);        */
   }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
 #ifdef windows            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     fprintf(ficgp,"cd \"%s\" \n",pathc);        }    
 #endif        /* end probability of death */
 m=pow(2,cptcoveff);  
          for(i=1; i<=npar; i++) /* Computes gradient x - delta */
  /* 1eme*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   for (cpt=1; cpt<= nlstate ; cpt ++) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
    for (k1=1; k1<= m ; k1 ++) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
 #ifdef windows        if (popbased==1) {
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          if(mobilav ==0){
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);            for(i=1; i<=nlstate;i++)
 #endif              prlim[i][i]=probs[(int)age][i][ij];
 #ifdef unix          }else{ /* mobilav */ 
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            for(i=1; i<=nlstate;i++)
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);              prlim[i][i]=mobaverage[(int)age][i][ij];
 #endif          }
         }
 for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        for(j=1; j<= nlstate; j++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");          for(h=0; h<=nhstepm; h++){
 }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     for (i=1; i<= nlstate ; i ++) {          }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        }
   else fprintf(ficgp," \%%*lf (\%%*lf)");        /* This for computing probability of death (h=1 means
 }           computed over hstepm matrices product = hstepm*stepm months) 
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);           as a weighted average of prlim.
      for (i=1; i<= nlstate ; i ++) {        */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");          for(i=1,gmp[j]=0.; i<= nlstate; i++)
 }             gmp[j] += prlim[i][i]*p3mat[i][j][1];
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        }    
 #ifdef unix        /* end probability of death */
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");  
 #endif        for(j=1; j<= nlstate; j++) /* vareij */
    }          for(h=0; h<=nhstepm; h++){
   }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   /*2 eme*/          }
   
   for (k1=1; k1<= m ; k1 ++) {        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);        }
      
     for (i=1; i<= nlstate+1 ; i ++) {      } /* End theta */
       k=2*i;  
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      for(h=0; h<=nhstepm; h++) /* veij */
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(j=1; j<=nlstate;j++)
 }            for(theta=1; theta <=npar; theta++)
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            trgradg[h][j][theta]=gradg[h][theta][j];
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
       for (j=1; j<= nlstate+1 ; j ++) {        for(theta=1; theta <=npar; theta++)
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          trgradgp[j][theta]=gradgp[theta][j];
         else fprintf(ficgp," \%%*lf (\%%*lf)");    
 }    
       fprintf(ficgp,"\" t\"\" w l 0,");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      for(i=1;i<=nlstate;i++)
       for (j=1; j<= nlstate+1 ; j ++) {        for(j=1;j<=nlstate;j++)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          vareij[i][j][(int)age] =0.;
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }        for(h=0;h<=nhstepm;h++){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        for(k=0;k<=nhstepm;k++){
       else fprintf(ficgp,"\" t\"\" w l 0,");          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   }          for(i=1;i<=nlstate;i++)
              for(j=1;j<=nlstate;j++)
   /*3eme*/              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
   for (k1=1; k1<= m ; k1 ++) {      }
     for (cpt=1; cpt<= nlstate ; cpt ++) {    
       k=2+nlstate*(2*cpt-2);      /* pptj */
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        for(i=nlstate+1;i<=nlstate+ndeath;i++)
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          varppt[j][i]=doldmp[j][i];
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      /* end ppptj */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      /*  x centered again */
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 */   
       for (i=1; i< nlstate ; i ++) {      if (popbased==1) {
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);        if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
       }            prlim[i][i]=probs[(int)age][i][ij];
     }        }else{ /* mobilav */ 
   }          for(i=1; i<=nlstate;i++)
              prlim[i][i]=mobaverage[(int)age][i][ij];
   /* CV preval stat */        }
     for (k1=1; k1<= m ; k1 ++) {      }
     for (cpt=1; cpt<nlstate ; cpt ++) {               
       k=3;      /* This for computing probability of death (h=1 means
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);         as a weighted average of prlim.
       */
       for (i=1; i< nlstate ; i ++)      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         fprintf(ficgp,"+$%d",k+i+1);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
            }    
       l=3+(nlstate+ndeath)*cpt;      /* end probability of death */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  
       for (i=1; i< nlstate ; i ++) {      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
         l=3+(nlstate+ndeath)*cpt;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficgp,"+$%d",l+i+1);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
       }        for(i=1; i<=nlstate;i++){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     }        }
   }        } 
        fprintf(ficresprobmorprev,"\n");
   /* proba elementaires */  
    for(i=1,jk=1; i <=nlstate; i++){      fprintf(ficresvij,"%.0f ",age );
     for(k=1; k <=(nlstate+ndeath); k++){      for(i=1; i<=nlstate;i++)
       if (k != i) {        for(j=1; j<=nlstate;j++){
         for(j=1; j <=ncovmodel; j++){          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        }
           jk++;      fprintf(ficresvij,"\n");
           fprintf(ficgp,"\n");      free_matrix(gp,0,nhstepm,1,nlstate);
         }      free_matrix(gm,0,nhstepm,1,nlstate);
       }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
     }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
    }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    free_vector(gpp,nlstate+1,nlstate+ndeath);
      for(jk=1; jk <=m; jk++) {    free_vector(gmp,nlstate+1,nlstate+ndeath);
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
        if (ng==2)    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
        else    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
          fprintf(ficgp,"\nset title \"Probability\"\n");    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
        i=1;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
        for(k2=1; k2<=nlstate; k2++) {  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
          k3=i;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
          for(k=1; k<=(nlstate+ndeath); k++) {    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
            if (k != k2){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
              if(ng==2)    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
              else    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  */
              ij=1;  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
              for(j=3; j <=ncovmodel; j++) {    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    free_vector(xp,1,npar);
                  ij++;    free_matrix(doldm,1,nlstate,1,nlstate);
                }    free_matrix(dnewm,1,nlstate,1,npar);
                else    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
              }    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
              fprintf(ficgp,")/(1");    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                  fclose(ficresprobmorprev);
              for(k1=1; k1 <=nlstate; k1++){      fflush(ficgp);
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    fflush(fichtm); 
                ij=1;  }  /* end varevsij */
                for(j=3; j <=ncovmodel; j++){  
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  /************ Variance of prevlim ******************/
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
                    ij++;  {
                  }    /* Variance of prevalence limit */
                  else    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    double **newm;
                }    double **dnewm,**doldm;
                fprintf(ficgp,")");    int i, j, nhstepm, hstepm;
              }    int k, cptcode;
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    double *xp;
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    double *gp, *gm;
              i=i+ncovmodel;    double **gradg, **trgradg;
            }    double age,agelim;
          } /* end k */    int theta;
        } /* end k2 */     
      } /* end jk */    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
    } /* end ng */    fprintf(ficresvpl,"# Age");
    fclose(ficgp);    for(i=1; i<=nlstate;i++)
 }  /* end gnuplot */        fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
 /*************** Moving average **************/    xp=vector(1,npar);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
   int i, cpt, cptcod;    
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    hstepm=1*YEARM; /* Every year of age */
       for (i=1; i<=nlstate;i++)    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    agelim = AGESUP;
           mobaverage[(int)agedeb][i][cptcod]=0.;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
          nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){      if (stepm >= YEARM) hstepm=1;
       for (i=1; i<=nlstate;i++){      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      gradg=matrix(1,npar,1,nlstate);
           for (cpt=0;cpt<=4;cpt++){      gp=vector(1,nlstate);
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      gm=vector(1,nlstate);
           }  
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      for(theta=1; theta <=npar; theta++){
         }        for(i=1; i<=npar; i++){ /* Computes gradient */
       }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     }        }
            prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 }        for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
 /************** Forecasting ******************/        for(i=1; i<=npar; i++) /* Computes gradient */
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        for(i=1;i<=nlstate;i++)
   int *popage;          gm[i] = prlim[i][i];
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;        for(i=1;i<=nlstate;i++)
   double ***p3mat;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   char fileresf[FILENAMELENGTH];      } /* End theta */
   
  agelim=AGESUP;      trgradg =matrix(1,nlstate,1,npar);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;  
       for(j=1; j<=nlstate;j++)
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        for(theta=1; theta <=npar; theta++)
            trgradg[j][theta]=gradg[theta][j];
    
   strcpy(fileresf,"f");      for(i=1;i<=nlstate;i++)
   strcat(fileresf,fileres);        varpl[i][(int)age] =0.;
   if((ficresf=fopen(fileresf,"w"))==NULL) {      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     printf("Problem with forecast resultfile: %s\n", fileresf);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);      for(i=1;i<=nlstate;i++)
   }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   printf("Computing forecasting: result on file '%s' \n", fileresf);  
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);      fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
   if (mobilav==1) {      free_vector(gp,1,nlstate);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      free_vector(gm,1,nlstate);
     movingaverage(agedeb, fage, ageminpar, mobaverage);      free_matrix(gradg,1,npar,1,nlstate);
   }      free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;    free_vector(xp,1,npar);
      free_matrix(doldm,1,nlstate,1,npar);
   agelim=AGESUP;    free_matrix(dnewm,1,nlstate,1,nlstate);
    
   hstepm=1;  }
   hstepm=hstepm/stepm;  
   yp1=modf(dateintmean,&yp);  /************ Variance of one-step probabilities  ******************/
   anprojmean=yp;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   yp2=modf((yp1*12),&yp);  {
   mprojmean=yp;    int i, j=0,  i1, k1, l1, t, tj;
   yp1=modf((yp2*30.5),&yp);    int k2, l2, j1,  z1;
   jprojmean=yp;    int k=0,l, cptcode;
   if(jprojmean==0) jprojmean=1;    int first=1, first1;
   if(mprojmean==0) jprojmean=1;    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
      double **dnewm,**doldm;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    double *xp;
      double *gp, *gm;
   for(cptcov=1;cptcov<=i2;cptcov++){    double **gradg, **trgradg;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    double **mu;
       k=k+1;    double age,agelim, cov[NCOVMAX];
       fprintf(ficresf,"\n#******");    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
       for(j=1;j<=cptcoveff;j++) {    int theta;
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    char fileresprob[FILENAMELENGTH];
       }    char fileresprobcov[FILENAMELENGTH];
       fprintf(ficresf,"******\n");    char fileresprobcor[FILENAMELENGTH];
       fprintf(ficresf,"# StartingAge FinalAge");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    double ***varpij;
        
          strcpy(fileresprob,"prob"); 
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    strcat(fileresprob,fileres);
         fprintf(ficresf,"\n");    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    strcpy(fileresprobcov,"probcov"); 
           nhstepm = nhstepm/hstepm;    strcat(fileresprobcov,fileres);
              if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      printf("Problem with resultfile: %s\n", fileresprobcov);
           oldm=oldms;savm=savms;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      }
            strcpy(fileresprobcor,"probcor"); 
           for (h=0; h<=nhstepm; h++){    strcat(fileresprobcor,fileres);
             if (h==(int) (calagedate+YEARM*cpt)) {    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);      printf("Problem with resultfile: %s\n", fileresprobcor);
             }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
             for(j=1; j<=nlstate+ndeath;j++) {    }
               kk1=0.;kk2=0;    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
               for(i=1; i<=nlstate;i++) {                  fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                 if (mobilav==1)    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                 else {    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                 }    
                    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
               }    fprintf(ficresprob,"# Age");
               if (h==(int)(calagedate+12*cpt)){    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
                 fprintf(ficresf," %.3f", kk1);    fprintf(ficresprobcov,"# Age");
                            fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
               }    fprintf(ficresprobcov,"# Age");
             }  
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(i=1; i<=nlstate;i++)
         }      for(j=1; j<=(nlstate+ndeath);j++){
       }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
   }        fprintf(ficresprobcor," p%1d-%1d ",i,j);
              }  
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
   fclose(ficresf);    fprintf(ficresprobcor,"\n");
 }   */
 /************** Forecasting ******************/   xp=vector(1,npar);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
      doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   int *popage;    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    first=1;
   double *popeffectif,*popcount;    fprintf(ficgp,"\n# Routine varprob");
   double ***p3mat,***tabpop,***tabpopprev;    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   char filerespop[FILENAMELENGTH];    fprintf(fichtm,"\n");
   
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   agelim=AGESUP;    file %s<br>\n",optionfilehtmcov);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
    and drawn. It helps understanding how is the covariance between two incidences.\
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
      fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
    It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   strcpy(filerespop,"pop");  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   strcat(filerespop,fileres);  standard deviations wide on each axis. <br>\
   if((ficrespop=fopen(filerespop,"w"))==NULL) {   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     printf("Problem with forecast resultfile: %s\n", filerespop);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   }  
   printf("Computing forecasting: result on file '%s' \n", filerespop);    cov[1]=1;
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);    tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    j1=0;
     for(t=1; t<=tj;t++){
   if (mobilav==1) {      for(i1=1; i1<=ncodemax[t];i1++){ 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        j1++;
     movingaverage(agedeb, fage, ageminpar, mobaverage);        if  (cptcovn>0) {
   }          fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   stepsize=(int) (stepm+YEARM-1)/YEARM;          fprintf(ficresprob, "**********\n#\n");
   if (stepm<=12) stepsize=1;          fprintf(ficresprobcov, "\n#********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   agelim=AGESUP;          fprintf(ficresprobcov, "**********\n#\n");
            
   hstepm=1;          fprintf(ficgp, "\n#********** Variable "); 
   hstepm=hstepm/stepm;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficgp, "**********\n#\n");
   if (popforecast==1) {          
     if((ficpop=fopen(popfile,"r"))==NULL) {          
       printf("Problem with population file : %s\n",popfile);exit(0);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     popage=ivector(0,AGESUP);          
     popeffectif=vector(0,AGESUP);          fprintf(ficresprobcor, "\n#********** Variable ");    
     popcount=vector(0,AGESUP);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
              fprintf(ficresprobcor, "**********\n#");    
     i=1;          }
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;        
            for (age=bage; age<=fage; age ++){ 
     imx=i;          cov[2]=age;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          for (k=1; k<=cptcovn;k++) {
   }            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
   for(cptcov=1;cptcov<=i2;cptcov++){          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          for (k=1; k<=cptcovprod;k++)
       k=k+1;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       fprintf(ficrespop,"\n#******");          
       for(j=1;j<=cptcoveff;j++) {          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       }          gp=vector(1,(nlstate)*(nlstate+ndeath));
       fprintf(ficrespop,"******\n");          gm=vector(1,(nlstate)*(nlstate+ndeath));
       fprintf(ficrespop,"# Age");      
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);          for(theta=1; theta <=npar; theta++){
       if (popforecast==1)  fprintf(ficrespop," [Population]");            for(i=1; i<=npar; i++)
                    xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
       for (cpt=0; cpt<=0;cpt++) {            
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              pmij(pmmij,cov,ncovmodel,xp,nlstate);
                    
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){            k=0;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            for(i=1; i<= (nlstate); i++){
           nhstepm = nhstepm/hstepm;              for(j=1; j<=(nlstate+ndeath);j++){
                          k=k+1;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                gp[k]=pmmij[i][j];
           oldm=oldms;savm=savms;              }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              }
                    
           for (h=0; h<=nhstepm; h++){            for(i=1; i<=npar; i++)
             if (h==(int) (calagedate+YEARM*cpt)) {              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      
             }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             for(j=1; j<=nlstate+ndeath;j++) {            k=0;
               kk1=0.;kk2=0;            for(i=1; i<=(nlstate); i++){
               for(i=1; i<=nlstate;i++) {                            for(j=1; j<=(nlstate+ndeath);j++){
                 if (mobilav==1)                k=k+1;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];                gm[k]=pmmij[i][j];
                 else {              }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            }
                 }       
               }            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               if (h==(int)(calagedate+12*cpt)){              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;          }
                   /*fprintf(ficrespop," %.3f", kk1);  
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
               }            for(theta=1; theta <=npar; theta++)
             }              trgradg[j][theta]=gradg[theta][j];
             for(i=1; i<=nlstate;i++){          
               kk1=0.;          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
                 for(j=1; j<=nlstate;j++){          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
                 }          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
             }          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)          pmij(pmmij,cov,ncovmodel,x,nlstate);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          
           }          k=0;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(i=1; i<=(nlstate); i++){
         }            for(j=1; j<=(nlstate+ndeath);j++){
       }              k=k+1;
                mu[k][(int) age]=pmmij[i][j];
   /******/            }
           }
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              varpij[i][j][(int)age] = doldm[i][j];
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;          /*printf("\n%d ",(int)age);
                      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
           oldm=oldms;savm=savms;            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              }*/
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {          fprintf(ficresprob,"\n%d ",(int)age);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          fprintf(ficresprobcov,"\n%d ",(int)age);
             }          fprintf(ficresprobcor,"\n%d ",(int)age);
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
               for(i=1; i<=nlstate;i++) {                          fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];              for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
               }            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
             }          }
           }          i=0;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (k=1; k<=(nlstate);k++){
         }            for (l=1; l<=(nlstate+ndeath);l++){ 
       }              i=i++;
    }              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   }              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
                for (j=1; j<=i;j++){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   if (popforecast==1) {              }
     free_ivector(popage,0,AGESUP);            }
     free_vector(popeffectif,0,AGESUP);          }/* end of loop for state */
     free_vector(popcount,0,AGESUP);        } /* end of loop for age */
   }  
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        /* Confidence intervalle of pij  */
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        /*
   fclose(ficrespop);          fprintf(ficgp,"\nset noparametric;unset label");
 }          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 /***********************************************/          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
 /**************** Main Program *****************/          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
 /***********************************************/          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
 int main(int argc, char *argv[])        */
 {  
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        first1=1;
   double agedeb, agefin,hf;        for (k2=1; k2<=(nlstate);k2++){
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
   double fret;            j=(k2-1)*(nlstate+ndeath)+l2;
   double **xi,tmp,delta;            for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   double dum; /* Dummy variable */                if(l1==k1) continue;
   double ***p3mat;                i=(k1-1)*(nlstate+ndeath)+l1;
   int *indx;                if(i<=j) continue;
   char line[MAXLINE], linepar[MAXLINE];                for (age=bage; age<=fage; age ++){ 
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];                  if ((int)age %5==0){
   int firstobs=1, lastobs=10;                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   int sdeb, sfin; /* Status at beginning and end */                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   int c,  h , cpt,l;                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   int ju,jl, mi;                    mu1=mu[i][(int) age]/stepm*YEARM ;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;                    mu2=mu[j][(int) age]/stepm*YEARM;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;                    c12=cv12/sqrt(v1*v2);
   int mobilav=0,popforecast=0;                    /* Computing eigen value of matrix of covariance */
   int hstepm, nhstepm;                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
   double bage, fage, age, agelim, agebase;                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   double ftolpl=FTOL;                    /*v21=sqrt(1.-v11*v11); *//* error */
   double **prlim;                    v21=(lc1-v1)/cv12*v11;
   double *severity;                    v12=-v21;
   double ***param; /* Matrix of parameters */                    v22=v11;
   double  *p;                    tnalp=v21/v11;
   double **matcov; /* Matrix of covariance */                    if(first1==1){
   double ***delti3; /* Scale */                      first1=0;
   double *delti; /* Scale */                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   double ***eij, ***vareij;                    }
   double **varpl; /* Variances of prevalence limits by age */                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   double *epj, vepp;                    /*printf(fignu*/
   double kk1, kk2;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                      if(first==1){
                       first=0;
   char *alph[]={"a","a","b","c","d","e"}, str[4];                      fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   char z[1]="c", occ;                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
 #include <sys/time.h>   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
 #include <time.h>  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                                subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   /* long total_usecs;                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   struct timeval start_time, end_time;                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                        fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   getcwd(pathcd, size);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   printf("\n%s",version);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   if(argc <=1){                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     printf("\nEnter the parameter file name: ");                    }else{
     scanf("%s",pathtot);                      first=0;
   }                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   else{                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     strcpy(pathtot,argv[1]);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   }                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   /*cygwin_split_path(pathtot,path,optionfile);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/                    }/* if first */
   /* cutv(path,optionfile,pathtot,'\\');*/                  } /* age mod 5 */
                 } /* end loop age */
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);                first=1;
   chdir(path);              } /*l12 */
   replace(pathc,path);            } /* k12 */
           } /*l1 */
 /*-------- arguments in the command line --------*/        }/* k1 */
       } /* loop covariates */
   /* Log file */    }
   strcat(filelog, optionfilefiname);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   strcat(filelog,".log");    /* */    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   if((ficlog=fopen(filelog,"w"))==NULL)    {    free_vector(xp,1,npar);
     printf("Problem with logfile %s\n",filelog);    fclose(ficresprob);
     goto end;    fclose(ficresprobcov);
   }    fclose(ficresprobcor);
   fprintf(ficlog,"Log filename:%s\n",filelog);    fflush(ficgp);
   fprintf(ficlog,"\n%s",version);    fflush(fichtmcov);
   fprintf(ficlog,"\nEnter the parameter file name: ");  }
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  
   fflush(ficlog);  
   /******************* Printing html file ***********/
   /* */  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   strcpy(fileres,"r");                    int lastpass, int stepm, int weightopt, char model[],\
   strcat(fileres, optionfilefiname);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   strcat(fileres,".txt");    /* Other files have txt extension */                    int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
   /*---------arguments file --------*/                    double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  
     printf("Problem with optionfile %s\n",optionfile);     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
     goto end;             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   }     fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   strcpy(filereso,"o");             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   strcat(filereso,fileres);     fprintf(fichtm,"\
   if((ficparo=fopen(filereso,"w"))==NULL) {   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
     printf("Problem with Output resultfile: %s\n", filereso);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);     fprintf(fichtm,"\
     goto end;   - Life expectancies by age and initial health status (estepm=%2d months): \
   }     <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);   m=cptcoveff;
     puts(line);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     fputs(line,ficparo);  
   }   jj1=0;
   ungetc(c,ficpar);   for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);       jj1++;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);       if (cptcovn > 0) {
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 while((c=getc(ficpar))=='#' && c!= EOF){         for (cpt=1; cpt<=cptcoveff;cpt++) 
     ungetc(c,ficpar);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     fgets(line, MAXLINE, ficpar);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     puts(line);       }
     fputs(line,ficparo);       /* Pij */
   }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   ungetc(c,ficpar);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
         /* Quasi-incidences */
           fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
   covar=matrix(0,NCOVMAX,1,n);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   cptcovn=0;  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;         /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
   ncovmodel=2+cptcovn;           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
           }
   /* Read guess parameters */       for(cpt=1; cpt<=nlstate;cpt++) {
   /* Reads comments: lines beginning with '#' */          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   while((c=getc(ficpar))=='#' && c!= EOF){  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
     ungetc(c,ficpar);       }
     fgets(line, MAXLINE, ficpar);     } /* end i1 */
     puts(line);   }/* End k1 */
     fputs(line,ficparo);   fprintf(fichtm,"</ul>");
   }  
   ungetc(c,ficpar);  
     fprintf(fichtm,"\
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  \n<br><li><h4> Result files (second order: variances)</h4>\n\
     for(i=1; i <=nlstate; i++)   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       fprintf(ficparo,"%1d%1d",i1,j1);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
       if(mle==1)   fprintf(fichtm,"\
         printf("%1d%1d",i,j);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       fprintf(ficlog,"%1d%1d",i,j);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar," %lf",&param[i][j][k]);   fprintf(fichtm,"\
         if(mle==1){   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           printf(" %lf",param[i][j][k]);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
           fprintf(ficlog," %lf",param[i][j][k]);   fprintf(fichtm,"\
         }   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
         else           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
           fprintf(ficlog," %lf",param[i][j][k]);   fprintf(fichtm,"\
         fprintf(ficparo," %lf",param[i][j][k]);   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
       }           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
       fscanf(ficpar,"\n");   fprintf(fichtm,"\
       if(mle==1)   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
         printf("\n");           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
       fprintf(ficlog,"\n");  
       fprintf(ficparo,"\n");  /*  if(popforecast==1) fprintf(fichtm,"\n */
     }  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
    /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;  /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   p=param[1][1];  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
     fflush(fichtm);
   /* Reads comments: lines beginning with '#' */   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);   m=cptcoveff;
     fgets(line, MAXLINE, ficpar);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     puts(line);  
     fputs(line,ficparo);   jj1=0;
   }   for(k1=1; k1<=m;k1++){
   ungetc(c,ficpar);     for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);       if (cptcovn > 0) {
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   for(i=1; i <=nlstate; i++){         for (cpt=1; cpt<=cptcoveff;cpt++) 
     for(j=1; j <=nlstate+ndeath-1; j++){           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       fscanf(ficpar,"%1d%1d",&i1,&j1);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       printf("%1d%1d",i,j);       }
       fprintf(ficparo,"%1d%1d",i1,j1);       for(cpt=1; cpt<=nlstate;cpt++) {
       for(k=1; k<=ncovmodel;k++){         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
         fscanf(ficpar,"%le",&delti3[i][j][k]);  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
         printf(" %le",delti3[i][j][k]);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
         fprintf(ficparo," %le",delti3[i][j][k]);       }
       }       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
       fscanf(ficpar,"\n");  health expectancies in states (1) and (2): %s%d.png<br>\
       printf("\n");  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
       fprintf(ficparo,"\n");     } /* end i1 */
     }   }/* End k1 */
   }   fprintf(fichtm,"</ul>");
   delti=delti3[1][1];   fflush(fichtm);
    }
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){  /******************* Gnuplot file **************/
     ungetc(c,ficpar);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     fgets(line, MAXLINE, ficpar);  
     puts(line);    char dirfileres[132],optfileres[132];
     fputs(line,ficparo);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   }    int ng;
   ungetc(c,ficpar);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
    /*     printf("Problem with file %s",optionfilegnuplot); */
   matcov=matrix(1,npar,1,npar);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   for(i=1; i <=npar; i++){  /*   } */
     fscanf(ficpar,"%s",&str);  
     if(mle==1)    /*#ifdef windows */
       printf("%s",str);    fprintf(ficgp,"cd \"%s\" \n",pathc);
     fprintf(ficlog,"%s",str);      /*#endif */
     fprintf(ficparo,"%s",str);    m=pow(2,cptcoveff);
     for(j=1; j <=i; j++){  
       fscanf(ficpar," %le",&matcov[i][j]);    strcpy(dirfileres,optionfilefiname);
       if(mle==1){    strcpy(optfileres,"vpl");
         printf(" %.5le",matcov[i][j]);   /* 1eme*/
         fprintf(ficlog," %.5le",matcov[i][j]);    for (cpt=1; cpt<= nlstate ; cpt ++) {
       }     for (k1=1; k1<= m ; k1 ++) {
       else       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
         fprintf(ficlog," %.5le",matcov[i][j]);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
       fprintf(ficparo," %.5le",matcov[i][j]);       fprintf(ficgp,"set xlabel \"Age\" \n\
     }  set ylabel \"Probability\" \n\
     fscanf(ficpar,"\n");  set ter png small\n\
     if(mle==1)  set size 0.65,0.65\n\
       printf("\n");  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
     fprintf(ficlog,"\n");  
     fprintf(ficparo,"\n");       for (i=1; i<= nlstate ; i ++) {
   }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   for(i=1; i <=npar; i++)         else fprintf(ficgp," \%%*lf (\%%*lf)");
     for(j=i+1;j<=npar;j++)       }
       matcov[i][j]=matcov[j][i];       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
           for (i=1; i<= nlstate ; i ++) {
   if(mle==1)         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     printf("\n");         else fprintf(ficgp," \%%*lf (\%%*lf)");
   fprintf(ficlog,"\n");       } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
     /*-------- Rewriting paramater file ----------*/         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
      strcpy(rfileres,"r");    /* "Rparameterfile */         else fprintf(ficgp," \%%*lf (\%%*lf)");
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/       }  
      strcat(rfileres,".");    /* */       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      strcat(rfileres,optionfilext);    /* Other files have txt extension */     }
     if((ficres =fopen(rfileres,"w"))==NULL) {    }
       printf("Problem writing new parameter file: %s\n", fileres);goto end;    /*2 eme*/
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;    
     }    for (k1=1; k1<= m ; k1 ++) { 
     fprintf(ficres,"#%s\n",version);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
          fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
     /*-------- data file ----------*/      
     if((fic=fopen(datafile,"r"))==NULL)    {      for (i=1; i<= nlstate+1 ; i ++) {
       printf("Problem with datafile: %s\n", datafile);goto end;        k=2*i;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     }        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     n= lastobs;          else fprintf(ficgp," \%%*lf (\%%*lf)");
     severity = vector(1,maxwav);        }   
     outcome=imatrix(1,maxwav+1,1,n);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
     num=ivector(1,n);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
     moisnais=vector(1,n);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     annais=vector(1,n);        for (j=1; j<= nlstate+1 ; j ++) {
     moisdc=vector(1,n);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     andc=vector(1,n);          else fprintf(ficgp," \%%*lf (\%%*lf)");
     agedc=vector(1,n);        }   
     cod=ivector(1,n);        fprintf(ficgp,"\" t\"\" w l 0,");
     weight=vector(1,n);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        for (j=1; j<= nlstate+1 ; j ++) {
     mint=matrix(1,maxwav,1,n);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     anint=matrix(1,maxwav,1,n);          else fprintf(ficgp," \%%*lf (\%%*lf)");
     s=imatrix(1,maxwav+1,1,n);        }   
     adl=imatrix(1,maxwav+1,1,n);            if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
     tab=ivector(1,NCOVMAX);        else fprintf(ficgp,"\" t\"\" w l 0,");
     ncodemax=ivector(1,8);      }
     }
     i=1;    
     while (fgets(line, MAXLINE, fic) != NULL)    {    /*3eme*/
       if ((i >= firstobs) && (i <=lastobs)) {    
            for (k1=1; k1<= m ; k1 ++) { 
         for (j=maxwav;j>=1;j--){      for (cpt=1; cpt<= nlstate ; cpt ++) {
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        k=2+nlstate*(2*cpt-2);
           strcpy(line,stra);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficgp,"set ter png small\n\
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  set size 0.65,0.65\n\
         }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
                /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        */
         for (j=ncovcol;j>=1;j--){        for (i=1; i< nlstate ; i ++) {
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
         }          
         num[i]=atol(stra);        } 
              }
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    }
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    
     /* CV preval stable (period) */
         i=i+1;    for (k1=1; k1<= m ; k1 ++) { 
       }      for (cpt=1; cpt<=nlstate ; cpt ++) {
     }        k=3;
     /* printf("ii=%d", ij);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
        scanf("%d",i);*/        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   imx=i-1; /* Number of individuals */  set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   /* for (i=1; i<=imx; i++){  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        for (i=1; i< nlstate ; i ++)
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          fprintf(ficgp,"+$%d",k+i+1);
     }*/        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
    /*  for (i=1; i<=imx; i++){        
      if (s[4][i]==9)  s[4][i]=-1;        l=3+(nlstate+ndeath)*cpt;
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
          for (i=1; i< nlstate ; i ++) {
            l=3+(nlstate+ndeath)*cpt;
   /* Calculation of the number of parameter from char model*/          fprintf(ficgp,"+$%d",l+i+1);
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */        }
   Tprod=ivector(1,15);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
   Tvaraff=ivector(1,15);      } 
   Tvard=imatrix(1,15,1,2);    }  
   Tage=ivector(1,15);          
        /* proba elementaires */
   if (strlen(model) >1){    for(i=1,jk=1; i <=nlstate; i++){
     j=0, j1=0, k1=1, k2=1;      for(k=1; k <=(nlstate+ndeath); k++){
     j=nbocc(model,'+');        if (k != i) {
     j1=nbocc(model,'*');          for(j=1; j <=ncovmodel; j++){
     cptcovn=j+1;            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
     cptcovprod=j1;            jk++; 
                fprintf(ficgp,"\n");
     strcpy(modelsav,model);          }
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){        }
       printf("Error. Non available option model=%s ",model);      }
       fprintf(ficlog,"Error. Non available option model=%s ",model);     }
       goto end;  
     }     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
           for(jk=1; jk <=m; jk++) {
     for(i=(j+1); i>=1;i--){         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */         if (ng==2)
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/         else
       /*scanf("%d",i);*/           fprintf(ficgp,"\nset title \"Probability\"\n");
       if (strchr(strb,'*')) {  /* Model includes a product */         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/         i=1;
         if (strcmp(strc,"age")==0) { /* Vn*age */         for(k2=1; k2<=nlstate; k2++) {
           cptcovprod--;           k3=i;
           cutv(strb,stre,strd,'V');           for(k=1; k<=(nlstate+ndeath); k++) {
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/             if (k != k2){
           cptcovage++;               if(ng==2)
             Tage[cptcovage]=i;                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
             /*printf("stre=%s ", stre);*/               else
         }                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
         else if (strcmp(strd,"age")==0) { /* or age*Vn */               ij=1;
           cptcovprod--;               for(j=3; j <=ncovmodel; j++) {
           cutv(strb,stre,strc,'V');                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
           Tvar[i]=atoi(stre);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
           cptcovage++;                   ij++;
           Tage[cptcovage]=i;                 }
         }                 else
         else {  /* Age is not in the model */                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/               }
           Tvar[i]=ncovcol+k1;               fprintf(ficgp,")/(1");
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */               
           Tprod[k1]=i;               for(k1=1; k1 <=nlstate; k1++){   
           Tvard[k1][1]=atoi(strc); /* m*/                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
           Tvard[k1][2]=atoi(stre); /* n */                 ij=1;
           Tvar[cptcovn+k2]=Tvard[k1][1];                 for(j=3; j <=ncovmodel; j++){
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
           for (k=1; k<=lastobs;k++)                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                     ij++;
           k1++;                   }
           k2=k2+2;                   else
         }                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       }                 }
       else { /* no more sum */                 fprintf(ficgp,")");
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/               }
        /*  scanf("%d",i);*/               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
       cutv(strd,strc,strb,'V');               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
       Tvar[i]=atoi(strc);               i=i+ncovmodel;
       }             }
       strcpy(modelsav,stra);             } /* end k */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);         } /* end k2 */
         scanf("%d",i);*/       } /* end jk */
     } /* end of loop + */     } /* end ng */
   } /* end model */     fflush(ficgp); 
    }  /* end gnuplot */
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  
   printf("cptcovprod=%d ", cptcovprod);  
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);  /*************** Moving average **************/
   scanf("%d ",i);*/  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
     fclose(fic);  
     int i, cpt, cptcod;
     /*  if(mle==1){*/    int modcovmax =1;
     if (weightopt != 1) { /* Maximisation without weights*/    int mobilavrange, mob;
       for(i=1;i<=n;i++) weight[i]=1.0;    double age;
     }  
     /*-calculation of age at interview from date of interview and age at death -*/    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
     agev=matrix(1,maxwav,1,imx);                             a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
     for (i=1; i<=imx; i++) {  
       for(m=2; (m<= maxwav); m++) {    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){      if(mobilav==1) mobilavrange=5; /* default */
          anint[m][i]=9999;      else mobilavrange=mobilav;
          s[m][i]=-1;      for (age=bage; age<=fage; age++)
        }        for (i=1; i<=nlstate;i++)
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;          for (cptcod=1;cptcod<=modcovmax;cptcod++)
       }            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
     }      /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
     for (i=1; i<=imx; i++)  {         we use a 5 terms etc. until the borders are no more concerned. 
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      */ 
       for(m=1; (m<= maxwav); m++){      for (mob=3;mob <=mobilavrange;mob=mob+2){
         if(s[m][i] >0){        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           if (s[m][i] >= nlstate+1) {          for (i=1; i<=nlstate;i++){
             if(agedc[i]>0)            for (cptcod=1;cptcod<=modcovmax;cptcod++){
               if(moisdc[i]!=99 && andc[i]!=9999)              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 agev[m][i]=agedc[i];                for (cpt=1;cpt<=(mob-1)/2;cpt++){
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
            else {                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
               if (andc[i]!=9999){                }
               printf("Warning negative age at death: %d line:%d\n",num[i],i);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);            }
               agev[m][i]=-1;          }
               }        }/* end age */
             }      }/* end mob */
           }    }else return -1;
           else if(s[m][i] !=9){ /* Should no more exist */    return 0;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  }/* End movingaverage */
             if(mint[m][i]==99 || anint[m][i]==9999)  
               agev[m][i]=1;  
             else if(agev[m][i] <agemin){  /************** Forecasting ******************/
               agemin=agev[m][i];  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    /* proj1, year, month, day of starting projection 
             }       agemin, agemax range of age
             else if(agev[m][i] >agemax){       dateprev1 dateprev2 range of dates during which prevalence is computed
               agemax=agev[m][i];       anproj2 year of en of projection (same day and month as proj1).
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    */
             }    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
             /*agev[m][i]=anint[m][i]-annais[i];*/    int *popage;
             /*   agev[m][i] = age[i]+2*m;*/    double agec; /* generic age */
           }    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
           else { /* =9 */    double *popeffectif,*popcount;
             agev[m][i]=1;    double ***p3mat;
             s[m][i]=-1;    double ***mobaverage;
           }    char fileresf[FILENAMELENGTH];
         }  
         else /*= 0 Unknown */    agelim=AGESUP;
           agev[m][i]=1;    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       }   
        strcpy(fileresf,"f"); 
     }    strcat(fileresf,fileres);
     for (i=1; i<=imx; i++)  {    if((ficresf=fopen(fileresf,"w"))==NULL) {
       for(m=1; (m<= maxwav); m++){      printf("Problem with forecast resultfile: %s\n", fileresf);
         if (s[m][i] > (nlstate+ndeath)) {      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      }
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      printf("Computing forecasting: result on file '%s' \n", fileresf);
           goto end;    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
         }  
       }    if (cptcoveff==0) ncodemax[cptcoveff]=1;
     }  
     if (mobilav!=0) {
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     free_vector(severity,1,maxwav);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     free_imatrix(outcome,1,maxwav+1,1,n);      }
     free_vector(moisnais,1,n);    }
     free_vector(annais,1,n);  
     /* free_matrix(mint,1,maxwav,1,n);    stepsize=(int) (stepm+YEARM-1)/YEARM;
        free_matrix(anint,1,maxwav,1,n);*/    if (stepm<=12) stepsize=1;
     free_vector(moisdc,1,n);    if(estepm < stepm){
     free_vector(andc,1,n);      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
        else  hstepm=estepm;   
     wav=ivector(1,imx);  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    hstepm=hstepm/stepm; 
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                     fractional in yp1 */
     /* Concatenates waves */    anprojmean=yp;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
       Tcode=ivector(1,100);    jprojmean=yp;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    if(jprojmean==0) jprojmean=1;
       ncodemax[1]=1;    if(mprojmean==0) jprojmean=1;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  
          i1=cptcoveff;
    codtab=imatrix(1,100,1,10);    if (cptcovn < 1){i1=1;}
    h=0;    
    m=pow(2,cptcoveff);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
      
    for(k=1;k<=cptcoveff; k++){    fprintf(ficresf,"#****** Routine prevforecast **\n");
      for(i=1; i <=(m/pow(2,k));i++){  
        for(j=1; j <= ncodemax[k]; j++){  /*            if (h==(int)(YEARM*yearp)){ */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
            h++;      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;        k=k+1;
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/        fprintf(ficresf,"\n#******");
          }        for(j=1;j<=cptcoveff;j++) {
        }          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
      }        }
    }        fprintf(ficresf,"******\n");
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
       codtab[1][2]=1;codtab[2][2]=2; */        for(j=1; j<=nlstate+ndeath;j++){ 
    /* for(i=1; i <=m ;i++){          for(i=1; i<=nlstate;i++)              
       for(k=1; k <=cptcovn; k++){            fprintf(ficresf," p%d%d",i,j);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);          fprintf(ficresf," p.%d",j);
       }        }
       printf("\n");        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
       }          fprintf(ficresf,"\n");
       scanf("%d",i);*/          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
      
    /* Calculates basic frequencies. Computes observed prevalence at single age          for (agec=fage; agec>=(ageminpar-1); agec--){ 
        and prints on file fileres'p'. */            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
                p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                oldm=oldms;savm=savms;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for (h=0; h<=nhstepm; h++){
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              if (h*hstepm/YEARM*stepm ==yearp) {
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                fprintf(ficresf,"\n");
                      for(j=1;j<=cptcoveff;j++) 
     /* For Powell, parameters are in a vector p[] starting at p[1]                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */              } 
               for(j=1; j<=nlstate+ndeath;j++) {
     if(mle==1){                ppij=0.;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);                for(i=1; i<=nlstate;i++) {
     }                  if (mobilav==1) 
                        ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
     /*--------- results files --------------*/                  else {
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                    }
                   if (h*hstepm/YEARM*stepm== yearp) {
    jk=1;                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                  }
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                } /* end i */
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                if (h*hstepm/YEARM*stepm==yearp) {
    for(i=1,jk=1; i <=nlstate; i++){                  fprintf(ficresf," %.3f", ppij);
      for(k=1; k <=(nlstate+ndeath); k++){                }
        if (k != i)              }/* end j */
          {            } /* end h */
            printf("%d%d ",i,k);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            fprintf(ficlog,"%d%d ",i,k);          } /* end agec */
            fprintf(ficres,"%1d%1d ",i,k);        } /* end yearp */
            for(j=1; j <=ncovmodel; j++){      } /* end cptcod */
              printf("%f ",p[jk]);    } /* end  cptcov */
              fprintf(ficlog,"%f ",p[jk]);         
              fprintf(ficres,"%f ",p[jk]);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
              jk++;  
            }    fclose(ficresf);
            printf("\n");  }
            fprintf(ficlog,"\n");  
            fprintf(ficres,"\n");  /************** Forecasting *****not tested NB*************/
          }  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
      }    
    }    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
    if(mle==1){    int *popage;
      /* Computing hessian and covariance matrix */    double calagedatem, agelim, kk1, kk2;
      ftolhess=ftol; /* Usually correct */    double *popeffectif,*popcount;
      hesscov(matcov, p, npar, delti, ftolhess, func);    double ***p3mat,***tabpop,***tabpopprev;
    }    double ***mobaverage;
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    char filerespop[FILENAMELENGTH];
    printf("# Scales (for hessian or gradient estimation)\n");  
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    for(i=1,jk=1; i <=nlstate; i++){    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      for(j=1; j <=nlstate+ndeath; j++){    agelim=AGESUP;
        if (j!=i) {    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
          fprintf(ficres,"%1d%1d",i,j);    
          printf("%1d%1d",i,j);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
          fprintf(ficlog,"%1d%1d",i,j);    
          for(k=1; k<=ncovmodel;k++){    
            printf(" %.5e",delti[jk]);    strcpy(filerespop,"pop"); 
            fprintf(ficlog," %.5e",delti[jk]);    strcat(filerespop,fileres);
            fprintf(ficres," %.5e",delti[jk]);    if((ficrespop=fopen(filerespop,"w"))==NULL) {
            jk++;      printf("Problem with forecast resultfile: %s\n", filerespop);
          }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
          printf("\n");    }
          fprintf(ficlog,"\n");    printf("Computing forecasting: result on file '%s' \n", filerespop);
          fprintf(ficres,"\n");    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
        }  
      }    if (cptcoveff==0) ncodemax[cptcoveff]=1;
    }  
        if (mobilav!=0) {
    k=1;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
    if(mle==1)        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      }
    for(i=1;i<=npar;i++){    }
      /*  if (k>nlstate) k=1;  
          i1=(i-1)/(ncovmodel*nlstate)+1;    stepsize=(int) (stepm+YEARM-1)/YEARM;
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    if (stepm<=12) stepsize=1;
          printf("%s%d%d",alph[k],i1,tab[i]);*/    
      fprintf(ficres,"%3d",i);    agelim=AGESUP;
      if(mle==1)    
        printf("%3d",i);    hstepm=1;
      fprintf(ficlog,"%3d",i);    hstepm=hstepm/stepm; 
      for(j=1; j<=i;j++){    
        fprintf(ficres," %.5e",matcov[i][j]);    if (popforecast==1) {
        if(mle==1)      if((ficpop=fopen(popfile,"r"))==NULL) {
          printf(" %.5e",matcov[i][j]);        printf("Problem with population file : %s\n",popfile);exit(0);
        fprintf(ficlog," %.5e",matcov[i][j]);        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
      }      } 
      fprintf(ficres,"\n");      popage=ivector(0,AGESUP);
      if(mle==1)      popeffectif=vector(0,AGESUP);
        printf("\n");      popcount=vector(0,AGESUP);
      fprintf(ficlog,"\n");      
      k++;      i=1;   
    }      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
         
    while((c=getc(ficpar))=='#' && c!= EOF){      imx=i;
      ungetc(c,ficpar);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
      fgets(line, MAXLINE, ficpar);    }
      puts(line);  
      fputs(line,ficparo);    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
    }     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
    ungetc(c,ficpar);        k=k+1;
    estepm=0;        fprintf(ficrespop,"\n#******");
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);        for(j=1;j<=cptcoveff;j++) {
    if (estepm==0 || estepm < stepm) estepm=stepm;          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
    if (fage <= 2) {        }
      bage = ageminpar;        fprintf(ficrespop,"******\n");
      fage = agemaxpar;        fprintf(ficrespop,"# Age");
    }        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
            if (popforecast==1)  fprintf(ficrespop," [Population]");
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        for (cpt=0; cpt<=0;cpt++) { 
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
              
    while((c=getc(ficpar))=='#' && c!= EOF){          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
      ungetc(c,ficpar);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
      fgets(line, MAXLINE, ficpar);            nhstepm = nhstepm/hstepm; 
      puts(line);            
      fputs(line,ficparo);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    }            oldm=oldms;savm=savms;
    ungetc(c,ficpar);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
            
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);            for (h=0; h<=nhstepm; h++){
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              if (h==(int) (calagedatem+YEARM*cpt)) {
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
                  } 
    while((c=getc(ficpar))=='#' && c!= EOF){              for(j=1; j<=nlstate+ndeath;j++) {
      ungetc(c,ficpar);                kk1=0.;kk2=0;
      fgets(line, MAXLINE, ficpar);                for(i=1; i<=nlstate;i++) {              
      puts(line);                  if (mobilav==1) 
      fputs(line,ficparo);                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
    }                  else {
    ungetc(c,ficpar);                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                    }
                 }
    dateprev1=anprev1+mprev1/12.+jprev1/365.;                if (h==(int)(calagedatem+12*cpt)){
    dateprev2=anprev2+mprev2/12.+jprev2/365.;                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
   fscanf(ficpar,"pop_based=%d\n",&popbased);                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   fprintf(ficparo,"pop_based=%d\n",popbased);                  }
   fprintf(ficres,"pop_based=%d\n",popbased);                }
                for(i=1; i<=nlstate;i++){
   while((c=getc(ficpar))=='#' && c!= EOF){                kk1=0.;
     ungetc(c,ficpar);                  for(j=1; j<=nlstate;j++){
     fgets(line, MAXLINE, ficpar);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
     puts(line);                  }
     fputs(line,ficparo);                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
   }              }
   ungetc(c,ficpar);  
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            }
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
 while((c=getc(ficpar))=='#' && c!= EOF){   
     ungetc(c,ficpar);    /******/
     fgets(line, MAXLINE, ficpar);  
     puts(line);        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
     fputs(line,ficparo);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   }          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   ungetc(c,ficpar);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);            
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
 /*------------ gnuplot -------------*/                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   strcpy(optionfilegnuplot,optionfilefiname);              } 
   strcat(optionfilegnuplot,".gp");              for(j=1; j<=nlstate+ndeath;j++) {
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {                kk1=0.;kk2=0;
     printf("Problem with file %s",optionfilegnuplot);                for(i=1; i<=nlstate;i++) {              
   }                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
   fclose(ficgp);                }
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
 /*--------- index.htm --------*/              }
             }
   strcpy(optionfilehtm,optionfile);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcat(optionfilehtm,".htm");          }
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        }
     printf("Problem with %s \n",optionfilehtm), exit(0);     } 
   }    }
    
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n  
 \n    if (popforecast==1) {
 Total number of observations=%d <br>\n      free_ivector(popage,0,AGESUP);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n      free_vector(popeffectif,0,AGESUP);
 <hr  size=\"2\" color=\"#EC5E5E\">      free_vector(popcount,0,AGESUP);
  <ul><li><h4>Parameter files</h4>\n    }
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  - Log file of the run: <a href=\"%s\">%s</a><br>\n    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);    fclose(ficrespop);
   fclose(fichtm);  } /* End of popforecast */
   
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);  int fileappend(FILE *fichier, char *optionfich)
    {
 /*------------ free_vector  -------------*/    if((fichier=fopen(optionfich,"a"))==NULL) {
  chdir(path);      printf("Problem with file: %s\n", optionfich);
        fprintf(ficlog,"Problem with file: %s\n", optionfich);
  free_ivector(wav,1,imx);      return (0);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    }
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      fflush(fichier);
  free_ivector(num,1,n);    return (1);
  free_vector(agedc,1,n);  }
  /*free_matrix(covar,1,NCOVMAX,1,n);*/  
  fclose(ficparo);  
  fclose(ficres);  /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   /*--------------- Prevalence limit --------------*/  
      /* Wizard to print covariance matrix template */
   strcpy(filerespl,"pl");  
   strcat(filerespl,fileres);    char ca[32], cb[32], cc[32];
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    int numlinepar;
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;  
   }    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);    for(i=1; i <=nlstate; i++){
   fprintf(ficrespl,"#Prevalence limit\n");      jj=0;
   fprintf(ficrespl,"#Age ");      for(j=1; j <=nlstate+ndeath; j++){
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        if(j==i) continue;
   fprintf(ficrespl,"\n");        jj++;
          /*ca[0]= k+'a'-1;ca[1]='\0';*/
   prlim=matrix(1,nlstate,1,nlstate);        printf("%1d%1d",i,j);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        fprintf(ficparo,"%1d%1d",i,j);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for(k=1; k<=ncovmodel;k++){
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          /*        printf(" %lf",param[i][j][k]); */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          /*        fprintf(ficparo," %lf",param[i][j][k]); */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          printf(" 0.");
   k=0;          fprintf(ficparo," 0.");
   agebase=ageminpar;        }
   agelim=agemaxpar;        printf("\n");
   ftolpl=1.e-10;        fprintf(ficparo,"\n");
   i1=cptcoveff;      }
   if (cptcovn < 1){i1=1;}    }
     printf("# Scales (for hessian or gradient estimation)\n");
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
         k=k+1;    for(i=1; i <=nlstate; i++){
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      jj=0;
         fprintf(ficrespl,"\n#******");      for(j=1; j <=nlstate+ndeath; j++){
         printf("\n#******");        if(j==i) continue;
         fprintf(ficlog,"\n#******");        jj++;
         for(j=1;j<=cptcoveff;j++) {        fprintf(ficparo,"%1d%1d",i,j);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        printf("%1d%1d",i,j);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fflush(stdout);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(k=1; k<=ncovmodel;k++){
         }          /*      printf(" %le",delti3[i][j][k]); */
         fprintf(ficrespl,"******\n");          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
         printf("******\n");          printf(" 0.");
         fprintf(ficlog,"******\n");          fprintf(ficparo," 0.");
                }
         for (age=agebase; age<=agelim; age++){        numlinepar++;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        printf("\n");
           fprintf(ficrespl,"%.0f",age );        fprintf(ficparo,"\n");
           for(i=1; i<=nlstate;i++)      }
           fprintf(ficrespl," %.5f", prlim[i][i]);    }
           fprintf(ficrespl,"\n");    printf("# Covariance matrix\n");
         }  /* # 121 Var(a12)\n\ */
       }  /* # 122 Cov(b12,a12) Var(b12)\n\ */
     }  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   fclose(ficrespl);  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /*------------- h Pij x at various ages ------------*/  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
    /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    fflush(stdout);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    fprintf(ficparo,"# Covariance matrix\n");
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;    /* # 121 Var(a12)\n\ */
   }    /* # 122 Cov(b12,a12) Var(b12)\n\ */
   printf("Computing pij: result on file '%s' \n", filerespij);    /* #   ...\n\ */
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
      
   stepsize=(int) (stepm+YEARM-1)/YEARM;    for(itimes=1;itimes<=2;itimes++){
   /*if (stepm<=24) stepsize=2;*/      jj=0;
       for(i=1; i <=nlstate; i++){
   agelim=AGESUP;        for(j=1; j <=nlstate+ndeath; j++){
   hstepm=stepsize*YEARM; /* Every year of age */          if(j==i) continue;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */          for(k=1; k<=ncovmodel;k++){
             jj++;
   /* hstepm=1;   aff par mois*/            ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
   k=0;              printf("#%1d%1d%d",i,j,k);
   for(cptcov=1;cptcov<=i1;cptcov++){              fprintf(ficparo,"#%1d%1d%d",i,j,k);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            }else{
       k=k+1;              printf("%1d%1d%d",i,j,k);
         fprintf(ficrespij,"\n#****** ");              fprintf(ficparo,"%1d%1d%d",i,j,k);
         for(j=1;j<=cptcoveff;j++)              /*  printf(" %.5le",matcov[i][j]); */
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            }
         fprintf(ficrespij,"******\n");            ll=0;
                    for(li=1;li <=nlstate; li++){
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */              for(lj=1;lj <=nlstate+ndeath; lj++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                if(lj==li) continue;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
           /*      nhstepm=nhstepm*YEARM; aff par mois*/                  if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    if(ll<jj){
           oldm=oldms;savm=savms;                      if(itimes==1){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                          printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
           fprintf(ficrespij,"# Age");                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
           for(i=1; i<=nlstate;i++)                      }else{
             for(j=1; j<=nlstate+ndeath;j++)                        printf(" 0.");
               fprintf(ficrespij," %1d-%1d",i,j);                        fprintf(ficparo," 0.");
           fprintf(ficrespij,"\n");                      }
            for (h=0; h<=nhstepm; h++){                    }else{
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                      if(itimes==1){
             for(i=1; i<=nlstate;i++)                        printf(" Var(%s%1d%1d)",ca,i,j);
               for(j=1; j<=nlstate+ndeath;j++)                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                      }else{
             fprintf(ficrespij,"\n");                        printf(" 0.");
              }                        fprintf(ficparo," 0.");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                      }
           fprintf(ficrespij,"\n");                    }
         }                  }
     }                } /* end lk */
   }              } /* end lj */
             } /* end li */
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);            printf("\n");
             fprintf(ficparo,"\n");
   fclose(ficrespij);            numlinepar++;
           } /* end k*/
         } /*end j */
   /*---------- Forecasting ------------------*/      } /* end i */
   if((stepm == 1) && (strcmp(model,".")==0)){    } /* end itimes */
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);  
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);  } /* end of prwizard */
   }  /******************* Gompertz Likelihood ******************************/
   else{  double gompertz(double x[])
     erreur=108;  { 
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    double A,B,L=0.0,sump=0.,num=0.;
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    int i,n=0; /* n is the size of the sample */
   }    for (i=0;i<=imx-1 ; i++) {
        sump=sump+weight[i];
       sump=sump+1;
   /*---------- Health expectancies and variances ------------*/      num=num+1;
     }
   strcpy(filerest,"t");   
   strcat(filerest,fileres);   
   if((ficrest=fopen(filerest,"w"))==NULL) {    /* for (i=1; i<=imx; i++) 
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;  
   }    for (i=0;i<=imx-1 ; i++)
   printf("Computing Total LEs with variances: file '%s' \n", filerest);      {
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);        if (cens[i]==1 & wav[i]>1)
           A=-x[1]/(x[2])*
             (exp(x[2]/YEARM*(agecens[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)));
   strcpy(filerese,"e");        
   strcat(filerese,fileres);        if (cens[i]==0 & wav[i]>1)
   if((ficreseij=fopen(filerese,"w"))==NULL) {          A=-x[1]/(x[2])*
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);               (exp(x[2]/YEARM*(agedc[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)))
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);            +log(x[1]/YEARM)+x[2]/YEARM*(agedc[i]*12-agegomp*12)+log(YEARM);      
   }        
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);        if (wav[i]>1 & agecens[i]>15) {
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);          L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
   strcpy(fileresv,"v");        }
   strcat(fileresv,fileres);      }
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);   
   }    return -2*L*num/sump;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  }
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
   calagedate=-1;  /******************* Printing html file ***********/
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
   k=0;                    int imx,  double p[],double **matcov){
   for(cptcov=1;cptcov<=i1;cptcov++){    int i;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
       fprintf(ficrest,"\n#****** ");    fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
       for(j=1;j<=cptcoveff;j++)    for (i=1;i<=2;i++) 
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       fprintf(ficrest,"******\n");    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
       fprintf(ficreseij,"\n#****** ");    fflush(fichtm);
       for(j=1;j<=cptcoveff;j++)  }
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficreseij,"******\n");  /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
       fprintf(ficresvij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)    char dirfileres[132],optfileres[132];
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
       fprintf(ficresvij,"******\n");    int ng;
   
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;    /*#ifdef windows */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      fprintf(ficgp,"cd \"%s\" \n",pathc);
        /*#endif */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;  
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);    strcpy(dirfileres,optionfilefiname);
       if(popbased==1){    strcpy(optfileres,"vpl");
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);    fprintf(ficgp,"set out \"graphmort.png\"\n "); 
        }    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
      fprintf(ficgp, "set size 0.65,0.65\n");
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  
       fprintf(ficrest,"\n");  } 
   
       epj=vector(1,nlstate+1);  
       for(age=bage; age <=fage ;age++){  
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
         if (popbased==1) {  /***********************************************/
           for(i=1; i<=nlstate;i++)  /**************** Main Program *****************/
             prlim[i][i]=probs[(int)age][i][k];  /***********************************************/
         }  
          int main(int argc, char *argv[])
         fprintf(ficrest," %4.0f",age);  {
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    int jj, ll, li, lj, lk, imk;
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    int numlinepar=0; /* Current linenumber of parameter file */
           }    int itimes;
           epj[nlstate+1] +=epj[j];    int NDIM=2;
         }  
     char ca[32], cb[32], cc[32];
         for(i=1, vepp=0.;i <=nlstate;i++)    /*  FILE *fichtm; *//* Html File */
           for(j=1;j <=nlstate;j++)    /* FILE *ficgp;*/ /*Gnuplot File */
             vepp += vareij[i][j][(int)age];    double agedeb, agefin,hf;
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
         for(j=1;j <=nlstate;j++){  
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    double fret;
         }    double **xi,tmp,delta;
         fprintf(ficrest,"\n");  
       }    double dum; /* Dummy variable */
     }    double ***p3mat;
   }    double ***mobaverage;
 free_matrix(mint,1,maxwav,1,n);    int *indx;
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    char line[MAXLINE], linepar[MAXLINE];
     free_vector(weight,1,n);    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
   fclose(ficreseij);    char pathr[MAXLINE]; 
   fclose(ficresvij);    int firstobs=1, lastobs=10;
   fclose(ficrest);    int sdeb, sfin; /* Status at beginning and end */
   fclose(ficpar);    int c,  h , cpt,l;
   free_vector(epj,1,nlstate+1);    int ju,jl, mi;
      int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
   /*------- Variance limit prevalence------*/      int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
   strcpy(fileresvpl,"vpl");    int mobilav=0,popforecast=0;
   strcat(fileresvpl,fileres);    int hstepm, nhstepm;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
     exit(0);  
   }    double bage, fage, age, agelim, agebase;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    double ftolpl=FTOL;
     double **prlim;
   k=0;    double *severity;
   for(cptcov=1;cptcov<=i1;cptcov++){    double ***param; /* Matrix of parameters */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double  *p;
       k=k+1;    double **matcov; /* Matrix of covariance */
       fprintf(ficresvpl,"\n#****** ");    double ***delti3; /* Scale */
       for(j=1;j<=cptcoveff;j++)    double *delti; /* Scale */
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double ***eij, ***vareij;
       fprintf(ficresvpl,"******\n");    double **varpl; /* Variances of prevalence limits by age */
          double *epj, vepp;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    double kk1, kk2;
       oldm=oldms;savm=savms;    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    double **ximort;
     }    char *alph[]={"a","a","b","c","d","e"}, str[4];
  }    int *dcwave;
   
   fclose(ficresvpl);    char z[1]="c", occ;
   
   /*---------- End : free ----------------*/    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    char strstart[80], *strt, strtend[80];
      char *stratrunc;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    int lstra;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
      long total_usecs;
     
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  /*   setlocale (LC_ALL, ""); */
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  /*   textdomain (PACKAGE); */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  /*   setlocale (LC_CTYPE, ""); */
    /*   setlocale (LC_MESSAGES, ""); */
   free_matrix(matcov,1,npar,1,npar);  
   free_vector(delti,1,npar);    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
   free_matrix(agev,1,maxwav,1,imx);    (void) gettimeofday(&start_time,&tzp);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
   fprintf(fichtm,"\n</body>");    tmg = *gmtime(&start_time.tv_sec);
   fclose(fichtm);    strcpy(strstart,asctime(&tm));
   fclose(ficgp);  
    /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   if(erreur >0){  /*  tm = *localtime(&start_time.tv_sec); */
     printf("End of Imach with error or warning %d\n",erreur);  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   }else{  /*   tmg.tm_hour=tmg.tm_hour + 1; */
    printf("End of Imach\n");  /*   tp.tv_sec = mktime(&tmg); */
    fprintf(ficlog,"End of Imach\n");  /*   strt=asctime(&tmg); */
   }  /*   printf("Time(after) =%s",strstart);  */
   printf("See log file on %s\n",filelog);  /*  (void) time (&time_value);
   fclose(ficlog);  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  *  tm = *localtime(&time_value);
    *  strstart=asctime(&tm);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   /*printf("Total time was %d uSec.\n", total_usecs);*/  */
   /*------ End -----------*/  
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
  end:    getcwd(pathcd, size);
 #ifdef windows  
   /* chdir(pathcd);*/    printf("\n%s\n%s",version,fullversion);
 #endif    if(argc <=1){
  /*system("wgnuplot graph.plt");*/      printf("\nEnter the parameter file name: ");
  /*system("../gp37mgw/wgnuplot graph.plt");*/      scanf("%s",pathtot);
  /*system("cd ../gp37mgw");*/    }
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    else{
  strcpy(plotcmd,GNUPLOTPROGRAM);      strcpy(pathtot,argv[1]);
  strcat(plotcmd," ");    }
  strcat(plotcmd,optionfilegnuplot);    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
  system(plotcmd);    /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
 #ifdef windows    /* cutv(path,optionfile,pathtot,'\\');*/
   while (z[0] != 'q') {  
     /* chdir(path); */    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     scanf("%s",z);    chdir(path);
     if (z[0] == 'c') system("./imach");    strcpy(command,"mkdir ");
     else if (z[0] == 'e') system(optionfilehtm);    strcat(command,optionfilefiname);
     else if (z[0] == 'g') system(plotcmd);    if((outcmd=system(command)) != 0){
     else if (z[0] == 'q') exit(0);      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
   }      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
 #endif      /* fclose(ficlog); */
 }  /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (j=1; j<=lastpass; j++)
           if (s[j][i]>nlstate) {
             dcwave[i]=j;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];agecens[i]=1.; 
           if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
           cens[i]=1;
           
           if (ageexmed[i]<1) cens[i]=-1;
           if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
   
       p[1]=0.1; p[2]=0.1;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow-mort"); 
     strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     /*  for (i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     */
     fprintf(ficrespow,"\n");
   
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov);
     } /* Endof if mle==-3 */
   
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
       fprintf(ficrespl,"#Stable prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
   
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total LEs with variances: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficreseij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
           }
   
    
           fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of stable prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.50  
changed lines
  Added in v.1.98


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>