Diff for /imach/src/imach.c between versions 1.51 and 1.123

version 1.51, 2002/07/19 12:22:25 version 1.123, 2006/03/20 10:52:43
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.123  2006/03/20 10:52:43  brouard
      * imach.c (Module): <title> changed, corresponds to .htm file
   This program computes Healthy Life Expectancies from    name. <head> headers where missing.
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    * imach.c (Module): Weights can have a decimal point as for
   interviewed on their health status or degree of disability (in the    English (a comma might work with a correct LC_NUMERIC environment,
   case of a health survey which is our main interest) -2- at least a    otherwise the weight is truncated).
   second wave of interviews ("longitudinal") which measure each change    Modification of warning when the covariates values are not 0 or
   (if any) in individual health status.  Health expectancies are    1.
   computed from the time spent in each health state according to a    Version 0.98g
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.122  2006/03/20 09:45:41  brouard
   simplest model is the multinomial logistic model where pij is the    (Module): Weights can have a decimal point as for
   probability to be observed in state j at the second wave    English (a comma might work with a correct LC_NUMERIC environment,
   conditional to be observed in state i at the first wave. Therefore    otherwise the weight is truncated).
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Modification of warning when the covariates values are not 0 or
   'age' is age and 'sex' is a covariate. If you want to have a more    1.
   complex model than "constant and age", you should modify the program    Version 0.98g
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.121  2006/03/16 17:45:01  lievre
   convergence.    * imach.c (Module): Comments concerning covariates added
   
   The advantage of this computer programme, compared to a simple    * imach.c (Module): refinements in the computation of lli if
   multinomial logistic model, is clear when the delay between waves is not    status=-2 in order to have more reliable computation if stepm is
   identical for each individual. Also, if a individual missed an    not 1 month. Version 0.98f
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.120  2006/03/16 15:10:38  lievre
     (Module): refinements in the computation of lli if
   hPijx is the probability to be observed in state i at age x+h    status=-2 in order to have more reliable computation if stepm is
   conditional to the observed state i at age x. The delay 'h' can be    not 1 month. Version 0.98f
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.119  2006/03/15 17:42:26  brouard
   semester or year) is model as a multinomial logistic.  The hPx    (Module): Bug if status = -2, the loglikelihood was
   matrix is simply the matrix product of nh*stepm elementary matrices    computed as likelihood omitting the logarithm. Version O.98e
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
   Also this programme outputs the covariance matrix of the parameters but also    table of variances if popbased=1 .
   of the life expectancies. It also computes the prevalence limits.    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
      (Module): Function pstamp added
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Module): Version 0.98d
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.117  2006/03/14 17:16:22  brouard
   from the European Union.    (Module): varevsij Comments added explaining the second
   It is copyrighted identically to a GNU software product, ie programme and    table of variances if popbased=1 .
   software can be distributed freely for non commercial use. Latest version    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   can be accessed at http://euroreves.ined.fr/imach .    (Module): Function pstamp added
   **********************************************************************/    (Module): Version 0.98d
    
 #include <math.h>    Revision 1.116  2006/03/06 10:29:27  brouard
 #include <stdio.h>    (Module): Variance-covariance wrong links and
 #include <stdlib.h>    varian-covariance of ej. is needed (Saito).
 #include <unistd.h>  
     Revision 1.115  2006/02/27 12:17:45  brouard
 #define MAXLINE 256    (Module): One freematrix added in mlikeli! 0.98c
 #define GNUPLOTPROGRAM "gnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.114  2006/02/26 12:57:58  brouard
 #define FILENAMELENGTH 80    (Module): Some improvements in processing parameter
 /*#define DEBUG*/    filename with strsep.
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.113  2006/02/24 14:20:24  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    allocation too.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.112  2006/01/30 09:55:26  brouard
 #define NINTERVMAX 8    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.111  2006/01/25 20:38:18  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    (Module): Lots of cleaning and bugs added (Gompertz)
 #define MAXN 20000    (Module): Comments can be added in data file. Missing date values
 #define YEARM 12. /* Number of months per year */    can be a simple dot '.'.
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.110  2006/01/25 00:51:50  brouard
 #ifdef windows    (Module): Lots of cleaning and bugs added (Gompertz)
 #define DIRSEPARATOR '\\'  
 #define ODIRSEPARATOR '/'    Revision 1.109  2006/01/24 19:37:15  brouard
 #else    (Module): Comments (lines starting with a #) are allowed in data.
 #define DIRSEPARATOR '/'  
 #define ODIRSEPARATOR '\\'    Revision 1.108  2006/01/19 18:05:42  lievre
 #endif    Gnuplot problem appeared...
     To be fixed
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";  
 int erreur; /* Error number */    Revision 1.107  2006/01/19 16:20:37  brouard
 int nvar;    Test existence of gnuplot in imach path
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.106  2006/01/19 13:24:36  brouard
 int nlstate=2; /* Number of live states */    Some cleaning and links added in html output
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.105  2006/01/05 20:23:19  lievre
 int popbased=0;    *** empty log message ***
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.104  2005/09/30 16:11:43  lievre
 int maxwav; /* Maxim number of waves */    (Module): sump fixed, loop imx fixed, and simplifications.
 int jmin, jmax; /* min, max spacing between 2 waves */    (Module): If the status is missing at the last wave but we know
 int mle, weightopt;    that the person is alive, then we can code his/her status as -2
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    (instead of missing=-1 in earlier versions) and his/her
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    contributions to the likelihood is 1 - Prob of dying from last
 double jmean; /* Mean space between 2 waves */    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 double **oldm, **newm, **savm; /* Working pointers to matrices */    the healthy state at last known wave). Version is 0.98
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.103  2005/09/30 15:54:49  lievre
 FILE *ficlog;    (Module): sump fixed, loop imx fixed, and simplifications.
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  
 FILE *ficresprobmorprev;    Revision 1.102  2004/09/15 17:31:30  brouard
 FILE *fichtm; /* Html File */    Add the possibility to read data file including tab characters.
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    Revision 1.101  2004/09/15 10:38:38  brouard
 FILE  *ficresvij;    Fix on curr_time
 char fileresv[FILENAMELENGTH];  
 FILE  *ficresvpl;    Revision 1.100  2004/07/12 18:29:06  brouard
 char fileresvpl[FILENAMELENGTH];    Add version for Mac OS X. Just define UNIX in Makefile
 char title[MAXLINE];  
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Revision 1.99  2004/06/05 08:57:40  brouard
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    *** empty log message ***
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Revision 1.98  2004/05/16 15:05:56  brouard
 char filelog[FILENAMELENGTH]; /* Log file */    New version 0.97 . First attempt to estimate force of mortality
 char filerest[FILENAMELENGTH];    directly from the data i.e. without the need of knowing the health
 char fileregp[FILENAMELENGTH];    state at each age, but using a Gompertz model: log u =a + b*age .
 char popfile[FILENAMELENGTH];    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    cross-longitudinal survey is different from the mortality estimated
     from other sources like vital statistic data.
 #define NR_END 1  
 #define FREE_ARG char*    The same imach parameter file can be used but the option for mle should be -3.
 #define FTOL 1.0e-10  
     Agnès, who wrote this part of the code, tried to keep most of the
 #define NRANSI    former routines in order to include the new code within the former code.
 #define ITMAX 200  
     The output is very simple: only an estimate of the intercept and of
 #define TOL 2.0e-4    the slope with 95% confident intervals.
   
 #define CGOLD 0.3819660    Current limitations:
 #define ZEPS 1.0e-10    A) Even if you enter covariates, i.e. with the
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.97  2004/02/20 13:25:42  lievre
 #define TINY 1.0e-20    Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.96  2003/07/15 15:38:55  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
      rewritten within the same printf. Workaround: many printfs.
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
 static double sqrarg;    (Repository): Using imachwizard code to output a more meaningful covariance
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    matrix (cov(a12,c31) instead of numbers.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.94  2003/06/27 13:00:02  brouard
 int imx;    Just cleaning
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 int estepm;    exist so I changed back to asctime which exists.
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    (Module): Version 0.96b
   
 int m,nb;    Revision 1.92  2003/06/25 16:30:45  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    (Module): On windows (cygwin) function asctime_r doesn't
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    exist so I changed back to asctime which exists.
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
 double *weight;    (Repository): Elapsed time after each iteration is now output. It
 int **s; /* Status */    helps to forecast when convergence will be reached. Elapsed time
 double *agedc, **covar, idx;    is stamped in powell.  We created a new html file for the graphs
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    concerning matrix of covariance. It has extension -cov.htm.
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.90  2003/06/24 12:34:15  brouard
 double ftolhess; /* Tolerance for computing hessian */    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 /**************** split *************************/    of the covariance matrix to be input.
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {    Revision 1.89  2003/06/24 12:30:52  brouard
    char *s;                             /* pointer */    (Module): Some bugs corrected for windows. Also, when
    int  l1, l2;                         /* length counters */    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.88  2003/06/23 17:54:56  brouard
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
    if ( s == NULL ) {                   /* no directory, so use current */  
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    Revision 1.87  2003/06/18 12:26:01  brouard
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    Version 0.96
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
       if ( getwd( dirc ) == NULL ) {    routine fileappend.
 #else  
       extern char       *getcwd( );    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    current date of interview. It may happen when the death was just
 #endif    prior to the death. In this case, dh was negative and likelihood
          return( GLOCK_ERROR_GETCWD );    was wrong (infinity). We still send an "Error" but patch by
       }    assuming that the date of death was just one stepm after the
       strcpy( name, path );             /* we've got it */    interview.
    } else {                             /* strip direcotry from path */    (Repository): Because some people have very long ID (first column)
       s++;                              /* after this, the filename */    we changed int to long in num[] and we added a new lvector for
       l2 = strlen( s );                 /* length of filename */    memory allocation. But we also truncated to 8 characters (left
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    truncation)
       strcpy( name, s );                /* save file name */    (Repository): No more line truncation errors.
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Revision 1.84  2003/06/13 21:44:43  brouard
    }    * imach.c (Repository): Replace "freqsummary" at a correct
    l1 = strlen( dirc );                 /* length of directory */    place. It differs from routine "prevalence" which may be called
 #ifdef windows    many times. Probs is memory consuming and must be used with
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    parcimony.
 #else    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif    Revision 1.83  2003/06/10 13:39:11  lievre
    s = strrchr( name, '.' );            /* find last / */    *** empty log message ***
    s++;  
    strcpy(ext,s);                       /* save extension */    Revision 1.82  2003/06/05 15:57:20  brouard
    l1= strlen( name);    Add log in  imach.c and  fullversion number is now printed.
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);  */
    finame[l1-l2]= 0;  /*
    return( 0 );                         /* we're done */     Interpolated Markov Chain
 }  
     Short summary of the programme:
     
 /******************************************/    This program computes Healthy Life Expectancies from
     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 void replace(char *s, char*t)    first survey ("cross") where individuals from different ages are
 {    interviewed on their health status or degree of disability (in the
   int i;    case of a health survey which is our main interest) -2- at least a
   int lg=20;    second wave of interviews ("longitudinal") which measure each change
   i=0;    (if any) in individual health status.  Health expectancies are
   lg=strlen(t);    computed from the time spent in each health state according to a
   for(i=0; i<= lg; i++) {    model. More health states you consider, more time is necessary to reach the
     (s[i] = t[i]);    Maximum Likelihood of the parameters involved in the model.  The
     if (t[i]== '\\') s[i]='/';    simplest model is the multinomial logistic model where pij is the
   }    probability to be observed in state j at the second wave
 }    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int nbocc(char *s, char occ)    'age' is age and 'sex' is a covariate. If you want to have a more
 {    complex model than "constant and age", you should modify the program
   int i,j=0;    where the markup *Covariates have to be included here again* invites
   int lg=20;    you to do it.  More covariates you add, slower the
   i=0;    convergence.
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {    The advantage of this computer programme, compared to a simple
   if  (s[i] == occ ) j++;    multinomial logistic model, is clear when the delay between waves is not
   }    identical for each individual. Also, if a individual missed an
   return j;    intermediate interview, the information is lost, but taken into
 }    account using an interpolation or extrapolation.  
   
 void cutv(char *u,char *v, char*t, char occ)    hPijx is the probability to be observed in state i at age x+h
 {    conditional to the observed state i at age x. The delay 'h' can be
   /* cuts string t into u and v where u is ended by char occ excluding it    split into an exact number (nh*stepm) of unobserved intermediate
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)    states. This elementary transition (by month, quarter,
      gives u="abcedf" and v="ghi2j" */    semester or year) is modelled as a multinomial logistic.  The hPx
   int i,lg,j,p=0;    matrix is simply the matrix product of nh*stepm elementary matrices
   i=0;    and the contribution of each individual to the likelihood is simply
   for(j=0; j<=strlen(t)-1; j++) {    hPijx.
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }    Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the period (stable) prevalence. 
   lg=strlen(t);    
   for(j=0; j<p; j++) {    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
     (u[j] = t[j]);             Institut national d'études démographiques, Paris.
   }    This software have been partly granted by Euro-REVES, a concerted action
      u[p]='\0';    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
    for(j=0; j<= lg; j++) {    software can be distributed freely for non commercial use. Latest version
     if (j>=(p+1))(v[j-p-1] = t[j]);    can be accessed at http://euroreves.ined.fr/imach .
   }  
 }    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 /********************** nrerror ********************/    
     **********************************************************************/
 void nrerror(char error_text[])  /*
 {    main
   fprintf(stderr,"ERREUR ...\n");    read parameterfile
   fprintf(stderr,"%s\n",error_text);    read datafile
   exit(1);    concatwav
 }    freqsummary
 /*********************** vector *******************/    if (mle >= 1)
 double *vector(int nl, int nh)      mlikeli
 {    print results files
   double *v;    if mle==1 
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));       computes hessian
   if (!v) nrerror("allocation failure in vector");    read end of parameter file: agemin, agemax, bage, fage, estepm
   return v-nl+NR_END;        begin-prev-date,...
 }    open gnuplot file
     open html file
 /************************ free vector ******************/    period (stable) prevalence
 void free_vector(double*v, int nl, int nh)     for age prevalim()
 {    h Pij x
   free((FREE_ARG)(v+nl-NR_END));    variance of p varprob
 }    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 /************************ivector *******************************/    Variance-covariance of DFLE
 int *ivector(long nl,long nh)    prevalence()
 {     movingaverage()
   int *v;    varevsij() 
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    if popbased==1 varevsij(,popbased)
   if (!v) nrerror("allocation failure in ivector");    total life expectancies
   return v-nl+NR_END;    Variance of period (stable) prevalence
 }   end
   */
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)  
 {  
   free((FREE_ARG)(v+nl-NR_END));   
 }  #include <math.h>
   #include <stdio.h>
 /******************* imatrix *******************************/  #include <stdlib.h>
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #include <string.h>
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #include <unistd.h>
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #include <limits.h>
   int **m;  #include <sys/types.h>
    #include <sys/stat.h>
   /* allocate pointers to rows */  #include <errno.h>
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  extern int errno;
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  /* #include <sys/time.h> */
   m -= nrl;  #include <time.h>
    #include "timeval.h"
    
   /* allocate rows and set pointers to them */  /* #include <libintl.h> */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  /* #define _(String) gettext (String) */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  #define MAXLINE 256
   m[nrl] -= ncl;  
    #define GNUPLOTPROGRAM "gnuplot"
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
    #define FILENAMELENGTH 132
   /* return pointer to array of pointers to rows */  
   return m;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 }  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 /****************** free_imatrix *************************/  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 void free_imatrix(m,nrl,nrh,ncl,nch)  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
       int **m;  
       long nch,ncl,nrh,nrl;  #define NINTERVMAX 8
      /* free an int matrix allocated by imatrix() */  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 {  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #define NCOVMAX 8 /* Maximum number of covariates */
   free((FREE_ARG) (m+nrl-NR_END));  #define MAXN 20000
 }  #define YEARM 12. /* Number of months per year */
   #define AGESUP 130
 /******************* matrix *******************************/  #define AGEBASE 40
 double **matrix(long nrl, long nrh, long ncl, long nch)  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
 {  #ifdef UNIX
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #define DIRSEPARATOR '/'
   double **m;  #define CHARSEPARATOR "/"
   #define ODIRSEPARATOR '\\'
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #else
   if (!m) nrerror("allocation failure 1 in matrix()");  #define DIRSEPARATOR '\\'
   m += NR_END;  #define CHARSEPARATOR "\\"
   m -= nrl;  #define ODIRSEPARATOR '/'
   #endif
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /* $Id$ */
   m[nrl] += NR_END;  /* $State$ */
   m[nrl] -= ncl;  
   char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  char fullversion[]="$Revision$ $Date$"; 
   return m;  char strstart[80];
 }  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 /*************************free matrix ************************/  int nvar;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 {  int npar=NPARMAX;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int nlstate=2; /* Number of live states */
   free((FREE_ARG)(m+nrl-NR_END));  int ndeath=1; /* Number of dead states */
 }  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  int *wav; /* Number of waves for this individuual 0 is possible */
 {  int maxwav; /* Maxim number of waves */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  int jmin, jmax; /* min, max spacing between 2 waves */
   double ***m;  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   int gipmx, gsw; /* Global variables on the number of contributions 
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));                     to the likelihood and the sum of weights (done by funcone)*/
   if (!m) nrerror("allocation failure 1 in matrix()");  int mle, weightopt;
   m += NR_END;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   m -= nrl;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  double jmean; /* Mean space between 2 waves */
   m[nrl] += NR_END;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   m[nrl] -= ncl;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  FILE *ficlog, *ficrespow;
   int globpr; /* Global variable for printing or not */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  double fretone; /* Only one call to likelihood */
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  long ipmx; /* Number of contributions */
   m[nrl][ncl] += NR_END;  double sw; /* Sum of weights */
   m[nrl][ncl] -= nll;  char filerespow[FILENAMELENGTH];
   for (j=ncl+1; j<=nch; j++)  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     m[nrl][j]=m[nrl][j-1]+nlay;  FILE *ficresilk;
    FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   for (i=nrl+1; i<=nrh; i++) {  FILE *ficresprobmorprev;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  FILE *fichtm, *fichtmcov; /* Html File */
     for (j=ncl+1; j<=nch; j++)  FILE *ficreseij;
       m[i][j]=m[i][j-1]+nlay;  char filerese[FILENAMELENGTH];
   }  FILE *ficresstdeij;
   return m;  char fileresstde[FILENAMELENGTH];
 }  FILE *ficrescveij;
   char filerescve[FILENAMELENGTH];
 /*************************free ma3x ************************/  FILE  *ficresvij;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  char fileresv[FILENAMELENGTH];
 {  FILE  *ficresvpl;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  char fileresvpl[FILENAMELENGTH];
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char title[MAXLINE];
   free((FREE_ARG)(m+nrl-NR_END));  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 }  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 /***************** f1dim *************************/  char command[FILENAMELENGTH];
 extern int ncom;  int  outcmd=0;
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
    
 double f1dim(double x)  char filelog[FILENAMELENGTH]; /* Log file */
 {  char filerest[FILENAMELENGTH];
   int j;  char fileregp[FILENAMELENGTH];
   double f;  char popfile[FILENAMELENGTH];
   double *xt;  
    char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   f=(*nrfunc)(xt);  struct timezone tzp;
   free_vector(xt,1,ncom);  extern int gettimeofday();
   return f;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 }  long time_value;
   extern long time();
 /*****************brent *************************/  char strcurr[80], strfor[80];
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {  char *endptr;
   int iter;  long lval;
   double a,b,d,etemp;  double dval;
   double fu,fv,fw,fx;  
   double ftemp;  #define NR_END 1
   double p,q,r,tol1,tol2,u,v,w,x,xm;  #define FREE_ARG char*
   double e=0.0;  #define FTOL 1.0e-10
    
   a=(ax < cx ? ax : cx);  #define NRANSI 
   b=(ax > cx ? ax : cx);  #define ITMAX 200 
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);  #define TOL 2.0e-4 
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);  #define CGOLD 0.3819660 
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  #define ZEPS 1.0e-10 
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     printf(".");fflush(stdout);  
     fprintf(ficlog,".");fflush(ficlog);  #define GOLD 1.618034 
 #ifdef DEBUG  #define GLIMIT 100.0 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  #define TINY 1.0e-20 
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  static double maxarg1,maxarg2;
 #endif  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       *xmin=x;    
       return fx;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     }  #define rint(a) floor(a+0.5)
     ftemp=fu;  
     if (fabs(e) > tol1) {  static double sqrarg;
       r=(x-w)*(fx-fv);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       q=(x-v)*(fx-fw);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       p=(x-v)*q-(x-w)*r;  int agegomp= AGEGOMP;
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;  int imx; 
       q=fabs(q);  int stepm=1;
       etemp=e;  /* Stepm, step in month: minimum step interpolation*/
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  int estepm;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       else {  
         d=p/q;  int m,nb;
         u=x+d;  long *num;
         if (u-a < tol2 || b-u < tol2)  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
           d=SIGN(tol1,xm-x);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       }  double **pmmij, ***probs;
     } else {  double *ageexmed,*agecens;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  double dateintmean=0;
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  double *weight;
     fu=(*f)(u);  int **s; /* Status */
     if (fu <= fx) {  double *agedc, **covar, idx;
       if (u >= x) a=x; else b=x;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
       SHFT(v,w,x,u)  double *lsurv, *lpop, *tpop;
         SHFT(fv,fw,fx,fu)  
         } else {  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
           if (u < x) a=u; else b=u;  double ftolhess; /* Tolerance for computing hessian */
           if (fu <= fw || w == x) {  
             v=w;  /**************** split *************************/
             w=u;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
             fv=fw;  {
             fw=fu;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
           } else if (fu <= fv || v == x || v == w) {       the name of the file (name), its extension only (ext) and its first part of the name (finame)
             v=u;    */ 
             fv=fu;    char  *ss;                            /* pointer */
           }    int   l1, l2;                         /* length counters */
         }  
   }    l1 = strlen(path );                   /* length of path */
   nrerror("Too many iterations in brent");    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   *xmin=x;    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   return fx;    if ( ss == NULL ) {                   /* no directory, so determine current directory */
 }      strcpy( name, path );               /* we got the fullname name because no directory */
       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 /****************** mnbrak ***********************/        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* get current working directory */
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,      /*    extern  char* getcwd ( char *buf , int len);*/
             double (*func)(double))      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 {        return( GLOCK_ERROR_GETCWD );
   double ulim,u,r,q, dum;      }
   double fu;      /* got dirc from getcwd*/
        printf(" DIRC = %s \n",dirc);
   *fa=(*func)(*ax);    } else {                              /* strip direcotry from path */
   *fb=(*func)(*bx);      ss++;                               /* after this, the filename */
   if (*fb > *fa) {      l2 = strlen( ss );                  /* length of filename */
     SHFT(dum,*ax,*bx,dum)      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       SHFT(dum,*fb,*fa,dum)      strcpy( name, ss );         /* save file name */
       }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   *cx=(*bx)+GOLD*(*bx-*ax);      dirc[l1-l2] = 0;                    /* add zero */
   *fc=(*func)(*cx);      printf(" DIRC2 = %s \n",dirc);
   while (*fb > *fc) {    }
     r=(*bx-*ax)*(*fb-*fc);    /* We add a separator at the end of dirc if not exists */
     q=(*bx-*cx)*(*fb-*fa);    l1 = strlen( dirc );                  /* length of directory */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    if( dirc[l1-1] != DIRSEPARATOR ){
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));      dirc[l1] =  DIRSEPARATOR;
     ulim=(*bx)+GLIMIT*(*cx-*bx);      dirc[l1+1] = 0; 
     if ((*bx-u)*(u-*cx) > 0.0) {      printf(" DIRC3 = %s \n",dirc);
       fu=(*func)(u);    }
     } else if ((*cx-u)*(u-ulim) > 0.0) {    ss = strrchr( name, '.' );            /* find last / */
       fu=(*func)(u);    if (ss >0){
       if (fu < *fc) {      ss++;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))      strcpy(ext,ss);                     /* save extension */
           SHFT(*fb,*fc,fu,(*func)(u))      l1= strlen( name);
           }      l2= strlen(ss)+1;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      strncpy( finame, name, l1-l2);
       u=ulim;      finame[l1-l2]= 0;
       fu=(*func)(u);    }
     } else {  
       u=(*cx)+GOLD*(*cx-*bx);    return( 0 );                          /* we're done */
       fu=(*func)(u);  }
     }  
     SHFT(*ax,*bx,*cx,u)  
       SHFT(*fa,*fb,*fc,fu)  /******************************************/
       }  
 }  void replace_back_to_slash(char *s, char*t)
   {
 /*************** linmin ************************/    int i;
     int lg=0;
 int ncom;    i=0;
 double *pcom,*xicom;    lg=strlen(t);
 double (*nrfunc)(double []);    for(i=0; i<= lg; i++) {
        (s[i] = t[i]);
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))      if (t[i]== '\\') s[i]='/';
 {    }
   double brent(double ax, double bx, double cx,  }
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);  int nbocc(char *s, char occ)
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  {
               double *fc, double (*func)(double));    int i,j=0;
   int j;    int lg=20;
   double xx,xmin,bx,ax;    i=0;
   double fx,fb,fa;    lg=strlen(s);
      for(i=0; i<= lg; i++) {
   ncom=n;    if  (s[i] == occ ) j++;
   pcom=vector(1,n);    }
   xicom=vector(1,n);    return j;
   nrfunc=func;  }
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];  void cutv(char *u,char *v, char*t, char occ)
     xicom[j]=xi[j];  {
   }    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
   ax=0.0;       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
   xx=1.0;       gives u="abcedf" and v="ghi2j" */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    int i,lg,j,p=0;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    i=0;
 #ifdef DEBUG    for(j=0; j<=strlen(t)-1; j++) {
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    }
 #endif  
   for (j=1;j<=n;j++) {    lg=strlen(t);
     xi[j] *= xmin;    for(j=0; j<p; j++) {
     p[j] += xi[j];      (u[j] = t[j]);
   }    }
   free_vector(xicom,1,n);       u[p]='\0';
   free_vector(pcom,1,n);  
 }     for(j=0; j<= lg; j++) {
       if (j>=(p+1))(v[j-p-1] = t[j]);
 /*************** powell ************************/    }
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  }
             double (*func)(double []))  
 {  /********************** nrerror ********************/
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));  void nrerror(char error_text[])
   int i,ibig,j;  {
   double del,t,*pt,*ptt,*xit;    fprintf(stderr,"ERREUR ...\n");
   double fp,fptt;    fprintf(stderr,"%s\n",error_text);
   double *xits;    exit(EXIT_FAILURE);
   pt=vector(1,n);  }
   ptt=vector(1,n);  /*********************** vector *******************/
   xit=vector(1,n);  double *vector(int nl, int nh)
   xits=vector(1,n);  {
   *fret=(*func)(p);    double *v;
   for (j=1;j<=n;j++) pt[j]=p[j];    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   for (*iter=1;;++(*iter)) {    if (!v) nrerror("allocation failure in vector");
     fp=(*fret);    return v-nl+NR_END;
     ibig=0;  }
     del=0.0;  
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  /************************ free vector ******************/
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  void free_vector(double*v, int nl, int nh)
     for (i=1;i<=n;i++)  {
       printf(" %d %.12f",i, p[i]);    free((FREE_ARG)(v+nl-NR_END));
     fprintf(ficlog," %d %.12f",i, p[i]);  }
     printf("\n");  
     fprintf(ficlog,"\n");  /************************ivector *******************************/
     for (i=1;i<=n;i++) {  int *ivector(long nl,long nh)
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  {
       fptt=(*fret);    int *v;
 #ifdef DEBUG    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       printf("fret=%lf \n",*fret);    if (!v) nrerror("allocation failure in ivector");
       fprintf(ficlog,"fret=%lf \n",*fret);    return v-nl+NR_END;
 #endif  }
       printf("%d",i);fflush(stdout);  
       fprintf(ficlog,"%d",i);fflush(ficlog);  /******************free ivector **************************/
       linmin(p,xit,n,fret,func);  void free_ivector(int *v, long nl, long nh)
       if (fabs(fptt-(*fret)) > del) {  {
         del=fabs(fptt-(*fret));    free((FREE_ARG)(v+nl-NR_END));
         ibig=i;  }
       }  
 #ifdef DEBUG  /************************lvector *******************************/
       printf("%d %.12e",i,(*fret));  long *lvector(long nl,long nh)
       fprintf(ficlog,"%d %.12e",i,(*fret));  {
       for (j=1;j<=n;j++) {    long *v;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
         printf(" x(%d)=%.12e",j,xit[j]);    if (!v) nrerror("allocation failure in ivector");
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    return v-nl+NR_END;
       }  }
       for(j=1;j<=n;j++) {  
         printf(" p=%.12e",p[j]);  /******************free lvector **************************/
         fprintf(ficlog," p=%.12e",p[j]);  void free_lvector(long *v, long nl, long nh)
       }  {
       printf("\n");    free((FREE_ARG)(v+nl-NR_END));
       fprintf(ficlog,"\n");  }
 #endif  
     }  /******************* imatrix *******************************/
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  int **imatrix(long nrl, long nrh, long ncl, long nch) 
 #ifdef DEBUG       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       int k[2],l;  { 
       k[0]=1;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       k[1]=-1;    int **m; 
       printf("Max: %.12e",(*func)(p));    
       fprintf(ficlog,"Max: %.12e",(*func)(p));    /* allocate pointers to rows */ 
       for (j=1;j<=n;j++) {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         printf(" %.12e",p[j]);    if (!m) nrerror("allocation failure 1 in matrix()"); 
         fprintf(ficlog," %.12e",p[j]);    m += NR_END; 
       }    m -= nrl; 
       printf("\n");    
       fprintf(ficlog,"\n");    
       for(l=0;l<=1;l++) {    /* allocate rows and set pointers to them */ 
         for (j=1;j<=n;j++) {    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    m[nrl] += NR_END; 
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    m[nrl] -= ncl; 
         }    
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    
       }    /* return pointer to array of pointers to rows */ 
 #endif    return m; 
   } 
   
       free_vector(xit,1,n);  /****************** free_imatrix *************************/
       free_vector(xits,1,n);  void free_imatrix(m,nrl,nrh,ncl,nch)
       free_vector(ptt,1,n);        int **m;
       free_vector(pt,1,n);        long nch,ncl,nrh,nrl; 
       return;       /* free an int matrix allocated by imatrix() */ 
     }  { 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     for (j=1;j<=n;j++) {    free((FREE_ARG) (m+nrl-NR_END)); 
       ptt[j]=2.0*p[j]-pt[j];  } 
       xit[j]=p[j]-pt[j];  
       pt[j]=p[j];  /******************* matrix *******************************/
     }  double **matrix(long nrl, long nrh, long ncl, long nch)
     fptt=(*func)(ptt);  {
     if (fptt < fp) {    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    double **m;
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         for (j=1;j<=n;j++) {    if (!m) nrerror("allocation failure 1 in matrix()");
           xi[j][ibig]=xi[j][n];    m += NR_END;
           xi[j][n]=xit[j];    m -= nrl;
         }  
 #ifdef DEBUG    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    m[nrl] += NR_END;
         for(j=1;j<=n;j++){    m[nrl] -= ncl;
           printf(" %.12e",xit[j]);  
           fprintf(ficlog," %.12e",xit[j]);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         }    return m;
         printf("\n");    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
         fprintf(ficlog,"\n");     */
 #endif  }
       }  
     }  /*************************free matrix ************************/
   }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 }  {
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
 /**** Prevalence limit ****************/    free((FREE_ARG)(m+nrl-NR_END));
   }
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  
 {  /******************* ma3x *******************************/
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
      matrix by transitions matrix until convergence is reached */  {
     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   int i, ii,j,k;    double ***m;
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double **out, cov[NCOVMAX], **pmij();    if (!m) nrerror("allocation failure 1 in matrix()");
   double **newm;    m += NR_END;
   double agefin, delaymax=50 ; /* Max number of years to converge */    m -= nrl;
   
   for (ii=1;ii<=nlstate+ndeath;ii++)    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     for (j=1;j<=nlstate+ndeath;j++){    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    m[nrl] += NR_END;
     }    m[nrl] -= ncl;
   
    cov[1]=1.;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
    
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     newm=savm;    m[nrl][ncl] += NR_END;
     /* Covariates have to be included here again */    m[nrl][ncl] -= nll;
      cov[2]=agefin;    for (j=ncl+1; j<=nch; j++) 
        m[nrl][j]=m[nrl][j-1]+nlay;
       for (k=1; k<=cptcovn;k++) {    
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    for (i=nrl+1; i<=nrh; i++) {
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       }      for (j=ncl+1; j<=nch; j++) 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        m[i][j]=m[i][j-1]+nlay;
       for (k=1; k<=cptcovprod;k++)    }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    return m; 
     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    */
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  }
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  
   /*************************free ma3x ************************/
     savm=oldm;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     oldm=newm;  {
     maxmax=0.;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     for(j=1;j<=nlstate;j++){    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       min=1.;    free((FREE_ARG)(m+nrl-NR_END));
       max=0.;  }
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;  /*************** function subdirf ***********/
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  char *subdirf(char fileres[])
         prlim[i][j]= newm[i][j]/(1-sumnew);  {
         max=FMAX(max,prlim[i][j]);    /* Caution optionfilefiname is hidden */
         min=FMIN(min,prlim[i][j]);    strcpy(tmpout,optionfilefiname);
       }    strcat(tmpout,"/"); /* Add to the right */
       maxmin=max-min;    strcat(tmpout,fileres);
       maxmax=FMAX(maxmax,maxmin);    return tmpout;
     }  }
     if(maxmax < ftolpl){  
       return prlim;  /*************** function subdirf2 ***********/
     }  char *subdirf2(char fileres[], char *preop)
   }  {
 }    
     /* Caution optionfilefiname is hidden */
 /*************** transition probabilities ***************/    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    strcat(tmpout,preop);
 {    strcat(tmpout,fileres);
   double s1, s2;    return tmpout;
   /*double t34;*/  }
   int i,j,j1, nc, ii, jj;  
   /*************** function subdirf3 ***********/
     for(i=1; i<= nlstate; i++){  char *subdirf3(char fileres[], char *preop, char *preop2)
     for(j=1; j<i;j++){  {
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    
         /*s2 += param[i][j][nc]*cov[nc];*/    /* Caution optionfilefiname is hidden */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    strcpy(tmpout,optionfilefiname);
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    strcat(tmpout,"/");
       }    strcat(tmpout,preop);
       ps[i][j]=s2;    strcat(tmpout,preop2);
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    strcat(tmpout,fileres);
     }    return tmpout;
     for(j=i+1; j<=nlstate+ndeath;j++){  }
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /***************** f1dim *************************/
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  extern int ncom; 
       }  extern double *pcom,*xicom;
       ps[i][j]=s2;  extern double (*nrfunc)(double []); 
     }   
   }  double f1dim(double x) 
     /*ps[3][2]=1;*/  { 
     int j; 
   for(i=1; i<= nlstate; i++){    double f;
      s1=0;    double *xt; 
     for(j=1; j<i; j++)   
       s1+=exp(ps[i][j]);    xt=vector(1,ncom); 
     for(j=i+1; j<=nlstate+ndeath; j++)    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       s1+=exp(ps[i][j]);    f=(*nrfunc)(xt); 
     ps[i][i]=1./(s1+1.);    free_vector(xt,1,ncom); 
     for(j=1; j<i; j++)    return f; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];  } 
     for(j=i+1; j<=nlstate+ndeath; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];  /*****************brent *************************/
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   } /* end i */  { 
     int iter; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    double a,b,d,etemp;
     for(jj=1; jj<= nlstate+ndeath; jj++){    double fu,fv,fw,fx;
       ps[ii][jj]=0;    double ftemp;
       ps[ii][ii]=1;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     }    double e=0.0; 
   }   
     a=(ax < cx ? ax : cx); 
     b=(ax > cx ? ax : cx); 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    x=w=v=bx; 
     for(jj=1; jj<= nlstate+ndeath; jj++){    fw=fv=fx=(*f)(x); 
      printf("%lf ",ps[ii][jj]);    for (iter=1;iter<=ITMAX;iter++) { 
    }      xm=0.5*(a+b); 
     printf("\n ");      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     printf("\n ");printf("%lf ",cov[2]);*/      printf(".");fflush(stdout);
 /*      fprintf(ficlog,".");fflush(ficlog);
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  #ifdef DEBUG
   goto end;*/      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     return ps;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   #endif
 /**************** Product of 2 matrices ******************/      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         *xmin=x; 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        return fx; 
 {      } 
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      ftemp=fu;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      if (fabs(e) > tol1) { 
   /* in, b, out are matrice of pointers which should have been initialized        r=(x-w)*(fx-fv); 
      before: only the contents of out is modified. The function returns        q=(x-v)*(fx-fw); 
      a pointer to pointers identical to out */        p=(x-v)*q-(x-w)*r; 
   long i, j, k;        q=2.0*(q-r); 
   for(i=nrl; i<= nrh; i++)        if (q > 0.0) p = -p; 
     for(k=ncolol; k<=ncoloh; k++)        q=fabs(q); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        etemp=e; 
         out[i][k] +=in[i][j]*b[j][k];        e=d; 
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   return out;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 }        else { 
           d=p/q; 
           u=x+d; 
 /************* Higher Matrix Product ***************/          if (u-a < tol2 || b-u < tol2) 
             d=SIGN(tol1,xm-x); 
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        } 
 {      } else { 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
      duration (i.e. until      } 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      fu=(*f)(u); 
      (typically every 2 years instead of every month which is too big).      if (fu <= fx) { 
      Model is determined by parameters x and covariates have to be        if (u >= x) a=x; else b=x; 
      included manually here.        SHFT(v,w,x,u) 
           SHFT(fv,fw,fx,fu) 
      */          } else { 
             if (u < x) a=u; else b=u; 
   int i, j, d, h, k;            if (fu <= fw || w == x) { 
   double **out, cov[NCOVMAX];              v=w; 
   double **newm;              w=u; 
               fv=fw; 
   /* Hstepm could be zero and should return the unit matrix */              fw=fu; 
   for (i=1;i<=nlstate+ndeath;i++)            } else if (fu <= fv || v == x || v == w) { 
     for (j=1;j<=nlstate+ndeath;j++){              v=u; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);              fv=fu; 
       po[i][j][0]=(i==j ? 1.0 : 0.0);            } 
     }          } 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    } 
   for(h=1; h <=nhstepm; h++){    nrerror("Too many iterations in brent"); 
     for(d=1; d <=hstepm; d++){    *xmin=x; 
       newm=savm;    return fx; 
       /* Covariates have to be included here again */  } 
       cov[1]=1.;  
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  /****************** mnbrak ***********************/
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];              double (*func)(double)) 
       for (k=1; k<=cptcovprod;k++)  { 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    double ulim,u,r,q, dum;
     double fu; 
    
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    *fa=(*func)(*ax); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    *fb=(*func)(*bx); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    if (*fb > *fa) { 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      SHFT(dum,*ax,*bx,dum) 
       savm=oldm;        SHFT(dum,*fb,*fa,dum) 
       oldm=newm;        } 
     }    *cx=(*bx)+GOLD*(*bx-*ax); 
     for(i=1; i<=nlstate+ndeath; i++)    *fc=(*func)(*cx); 
       for(j=1;j<=nlstate+ndeath;j++) {    while (*fb > *fc) { 
         po[i][j][h]=newm[i][j];      r=(*bx-*ax)*(*fb-*fc); 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      q=(*bx-*cx)*(*fb-*fa); 
          */      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   } /* end h */      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   return po;      if ((*bx-u)*(u-*cx) > 0.0) { 
 }        fu=(*func)(u); 
       } else if ((*cx-u)*(u-ulim) > 0.0) { 
         fu=(*func)(u); 
 /*************** log-likelihood *************/        if (fu < *fc) { 
 double func( double *x)          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 {            SHFT(*fb,*fc,fu,(*func)(u)) 
   int i, ii, j, k, mi, d, kk;            } 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   double **out;        u=ulim; 
   double sw; /* Sum of weights */        fu=(*func)(u); 
   double lli; /* Individual log likelihood */      } else { 
   long ipmx;        u=(*cx)+GOLD*(*cx-*bx); 
   /*extern weight */        fu=(*func)(u); 
   /* We are differentiating ll according to initial status */      } 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      SHFT(*ax,*bx,*cx,u) 
   /*for(i=1;i<imx;i++)        SHFT(*fa,*fb,*fc,fu) 
     printf(" %d\n",s[4][i]);        } 
   */  } 
   cov[1]=1.;  
   /*************** linmin ************************/
   for(k=1; k<=nlstate; k++) ll[k]=0.;  
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  int ncom; 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  double *pcom,*xicom;
     for(mi=1; mi<= wav[i]-1; mi++){  double (*nrfunc)(double []); 
       for (ii=1;ii<=nlstate+ndeath;ii++)   
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       for(d=0; d<dh[mi][i]; d++){  { 
         newm=savm;    double brent(double ax, double bx, double cx, 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;                 double (*f)(double), double tol, double *xmin); 
         for (kk=1; kk<=cptcovage;kk++) {    double f1dim(double x); 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         }                double *fc, double (*func)(double)); 
            int j; 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    double xx,xmin,bx,ax; 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    double fx,fb,fa;
         savm=oldm;   
         oldm=newm;    ncom=n; 
            pcom=vector(1,n); 
            xicom=vector(1,n); 
       } /* end mult */    nrfunc=func; 
          for (j=1;j<=n;j++) { 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      pcom[j]=p[j]; 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      xicom[j]=xi[j]; 
       ipmx +=1;    } 
       sw += weight[i];    ax=0.0; 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    xx=1.0; 
     } /* end of wave */    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   } /* end of individual */    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   #ifdef DEBUG
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  #endif
   return -l;    for (j=1;j<=n;j++) { 
 }      xi[j] *= xmin; 
       p[j] += xi[j]; 
     } 
 /*********** Maximum Likelihood Estimation ***************/    free_vector(xicom,1,n); 
     free_vector(pcom,1,n); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  } 
 {  
   int i,j, iter;  char *asc_diff_time(long time_sec, char ascdiff[])
   double **xi,*delti;  {
   double fret;    long sec_left, days, hours, minutes;
   xi=matrix(1,npar,1,npar);    days = (time_sec) / (60*60*24);
   for (i=1;i<=npar;i++)    sec_left = (time_sec) % (60*60*24);
     for (j=1;j<=npar;j++)    hours = (sec_left) / (60*60) ;
       xi[i][j]=(i==j ? 1.0 : 0.0);    sec_left = (sec_left) %(60*60);
   printf("Powell\n");  fprintf(ficlog,"Powell\n");    minutes = (sec_left) /60;
   powell(p,xi,npar,ftol,&iter,&fret,func);    sec_left = (sec_left) % (60);
     sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    return ascdiff;
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  }
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  
   /*************** powell ************************/
 }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
               double (*func)(double [])) 
 /**** Computes Hessian and covariance matrix ***/  { 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    void linmin(double p[], double xi[], int n, double *fret, 
 {                double (*func)(double [])); 
   double  **a,**y,*x,pd;    int i,ibig,j; 
   double **hess;    double del,t,*pt,*ptt,*xit;
   int i, j,jk;    double fp,fptt;
   int *indx;    double *xits;
     int niterf, itmp;
   double hessii(double p[], double delta, int theta, double delti[]);  
   double hessij(double p[], double delti[], int i, int j);    pt=vector(1,n); 
   void lubksb(double **a, int npar, int *indx, double b[]) ;    ptt=vector(1,n); 
   void ludcmp(double **a, int npar, int *indx, double *d) ;    xit=vector(1,n); 
     xits=vector(1,n); 
   hess=matrix(1,npar,1,npar);    *fret=(*func)(p); 
     for (j=1;j<=n;j++) pt[j]=p[j]; 
   printf("\nCalculation of the hessian matrix. Wait...\n");    for (*iter=1;;++(*iter)) { 
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");      fp=(*fret); 
   for (i=1;i<=npar;i++){      ibig=0; 
     printf("%d",i);fflush(stdout);      del=0.0; 
     fprintf(ficlog,"%d",i);fflush(ficlog);      last_time=curr_time;
     hess[i][i]=hessii(p,ftolhess,i,delti);      (void) gettimeofday(&curr_time,&tzp);
     /*printf(" %f ",p[i]);*/      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     /*printf(" %lf ",hess[i][i]);*/      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   }      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
        */
   for (i=1;i<=npar;i++) {     for (i=1;i<=n;i++) {
     for (j=1;j<=npar;j++)  {        printf(" %d %.12f",i, p[i]);
       if (j>i) {        fprintf(ficlog," %d %.12lf",i, p[i]);
         printf(".%d%d",i,j);fflush(stdout);        fprintf(ficrespow," %.12lf", p[i]);
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);      }
         hess[i][j]=hessij(p,delti,i,j);      printf("\n");
         hess[j][i]=hess[i][j];          fprintf(ficlog,"\n");
         /*printf(" %lf ",hess[i][j]);*/      fprintf(ficrespow,"\n");fflush(ficrespow);
       }      if(*iter <=3){
     }        tm = *localtime(&curr_time.tv_sec);
   }        strcpy(strcurr,asctime(&tm));
   printf("\n");  /*       asctime_r(&tm,strcurr); */
   fprintf(ficlog,"\n");        forecast_time=curr_time; 
         itmp = strlen(strcurr);
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");          strcurr[itmp-1]='\0';
          printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   a=matrix(1,npar,1,npar);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   y=matrix(1,npar,1,npar);        for(niterf=10;niterf<=30;niterf+=10){
   x=vector(1,npar);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   indx=ivector(1,npar);          tmf = *localtime(&forecast_time.tv_sec);
   for (i=1;i<=npar;i++)  /*      asctime_r(&tmf,strfor); */
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          strcpy(strfor,asctime(&tmf));
   ludcmp(a,npar,indx,&pd);          itmp = strlen(strfor);
           if(strfor[itmp-1]=='\n')
   for (j=1;j<=npar;j++) {          strfor[itmp-1]='\0';
     for (i=1;i<=npar;i++) x[i]=0;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     x[j]=1;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     lubksb(a,npar,indx,x);        }
     for (i=1;i<=npar;i++){      }
       matcov[i][j]=x[i];      for (i=1;i<=n;i++) { 
     }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   }        fptt=(*fret); 
   #ifdef DEBUG
   printf("\n#Hessian matrix#\n");        printf("fret=%lf \n",*fret);
   fprintf(ficlog,"\n#Hessian matrix#\n");        fprintf(ficlog,"fret=%lf \n",*fret);
   for (i=1;i<=npar;i++) {  #endif
     for (j=1;j<=npar;j++) {        printf("%d",i);fflush(stdout);
       printf("%.3e ",hess[i][j]);        fprintf(ficlog,"%d",i);fflush(ficlog);
       fprintf(ficlog,"%.3e ",hess[i][j]);        linmin(p,xit,n,fret,func); 
     }        if (fabs(fptt-(*fret)) > del) { 
     printf("\n");          del=fabs(fptt-(*fret)); 
     fprintf(ficlog,"\n");          ibig=i; 
   }        } 
   #ifdef DEBUG
   /* Recompute Inverse */        printf("%d %.12e",i,(*fret));
   for (i=1;i<=npar;i++)        fprintf(ficlog,"%d %.12e",i,(*fret));
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        for (j=1;j<=n;j++) {
   ludcmp(a,npar,indx,&pd);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
   /*  printf("\n#Hessian matrix recomputed#\n");          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
   for (j=1;j<=npar;j++) {        for(j=1;j<=n;j++) {
     for (i=1;i<=npar;i++) x[i]=0;          printf(" p=%.12e",p[j]);
     x[j]=1;          fprintf(ficlog," p=%.12e",p[j]);
     lubksb(a,npar,indx,x);        }
     for (i=1;i<=npar;i++){        printf("\n");
       y[i][j]=x[i];        fprintf(ficlog,"\n");
       printf("%.3e ",y[i][j]);  #endif
       fprintf(ficlog,"%.3e ",y[i][j]);      } 
     }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     printf("\n");  #ifdef DEBUG
     fprintf(ficlog,"\n");        int k[2],l;
   }        k[0]=1;
   */        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
   free_matrix(a,1,npar,1,npar);        fprintf(ficlog,"Max: %.12e",(*func)(p));
   free_matrix(y,1,npar,1,npar);        for (j=1;j<=n;j++) {
   free_vector(x,1,npar);          printf(" %.12e",p[j]);
   free_ivector(indx,1,npar);          fprintf(ficlog," %.12e",p[j]);
   free_matrix(hess,1,npar,1,npar);        }
         printf("\n");
         fprintf(ficlog,"\n");
 }        for(l=0;l<=1;l++) {
           for (j=1;j<=n;j++) {
 /*************** hessian matrix ****************/            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 double hessii( double x[], double delta, int theta, double delti[])            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 {            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   int i;          }
   int l=1, lmax=20;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double k1,k2;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double p2[NPARMAX+1];        }
   double res;  #endif
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  
   double fx;  
   int k=0,kmax=10;        free_vector(xit,1,n); 
   double l1;        free_vector(xits,1,n); 
         free_vector(ptt,1,n); 
   fx=func(x);        free_vector(pt,1,n); 
   for (i=1;i<=npar;i++) p2[i]=x[i];        return; 
   for(l=0 ; l <=lmax; l++){      } 
     l1=pow(10,l);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     delts=delt;      for (j=1;j<=n;j++) { 
     for(k=1 ; k <kmax; k=k+1){        ptt[j]=2.0*p[j]-pt[j]; 
       delt = delta*(l1*k);        xit[j]=p[j]-pt[j]; 
       p2[theta]=x[theta] +delt;        pt[j]=p[j]; 
       k1=func(p2)-fx;      } 
       p2[theta]=x[theta]-delt;      fptt=(*func)(ptt); 
       k2=func(p2)-fx;      if (fptt < fp) { 
       /*res= (k1-2.0*fx+k2)/delt/delt; */        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        if (t < 0.0) { 
                linmin(p,xit,n,fret,func); 
 #ifdef DEBUG          for (j=1;j<=n;j++) { 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);            xi[j][ibig]=xi[j][n]; 
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);            xi[j][n]=xit[j]; 
 #endif          }
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  #ifdef DEBUG
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         k=kmax;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       }          for(j=1;j<=n;j++){
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */            printf(" %.12e",xit[j]);
         k=kmax; l=lmax*10.;            fprintf(ficlog," %.12e",xit[j]);
       }          }
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          printf("\n");
         delts=delt;          fprintf(ficlog,"\n");
       }  #endif
     }        }
   }      } 
   delti[theta]=delts;    } 
   return res;  } 
    
 }  /**** Prevalence limit (stable or period prevalence)  ****************/
   
 double hessij( double x[], double delti[], int thetai,int thetaj)  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 {  {
   int i;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   int l=1, l1, lmax=20;       matrix by transitions matrix until convergence is reached */
   double k1,k2,k3,k4,res,fx;  
   double p2[NPARMAX+1];    int i, ii,j,k;
   int k;    double min, max, maxmin, maxmax,sumnew=0.;
     double **matprod2();
   fx=func(x);    double **out, cov[NCOVMAX], **pmij();
   for (k=1; k<=2; k++) {    double **newm;
     for (i=1;i<=npar;i++) p2[i]=x[i];    double agefin, delaymax=50 ; /* Max number of years to converge */
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    for (ii=1;ii<=nlstate+ndeath;ii++)
     k1=func(p2)-fx;      for (j=1;j<=nlstate+ndeath;j++){
          oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     p2[thetai]=x[thetai]+delti[thetai]/k;      }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k2=func(p2)-fx;     cov[1]=1.;
     
     p2[thetai]=x[thetai]-delti[thetai]/k;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     k3=func(p2)-fx;      newm=savm;
        /* Covariates have to be included here again */
     p2[thetai]=x[thetai]-delti[thetai]/k;       cov[2]=agefin;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    
     k4=func(p2)-fx;        for (k=1; k<=cptcovn;k++) {
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 #ifdef DEBUG          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        }
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 #endif        for (k=1; k<=cptcovprod;k++)
   }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   return res;  
 }        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 /************** Inverse of matrix **************/        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 void ludcmp(double **a, int n, int *indx, double *d)      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
 {  
   int i,imax,j,k;      savm=oldm;
   double big,dum,sum,temp;      oldm=newm;
   double *vv;      maxmax=0.;
        for(j=1;j<=nlstate;j++){
   vv=vector(1,n);        min=1.;
   *d=1.0;        max=0.;
   for (i=1;i<=n;i++) {        for(i=1; i<=nlstate; i++) {
     big=0.0;          sumnew=0;
     for (j=1;j<=n;j++)          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       if ((temp=fabs(a[i][j])) > big) big=temp;          prlim[i][j]= newm[i][j]/(1-sumnew);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          max=FMAX(max,prlim[i][j]);
     vv[i]=1.0/big;          min=FMIN(min,prlim[i][j]);
   }        }
   for (j=1;j<=n;j++) {        maxmin=max-min;
     for (i=1;i<j;i++) {        maxmax=FMAX(maxmax,maxmin);
       sum=a[i][j];      }
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      if(maxmax < ftolpl){
       a[i][j]=sum;        return prlim;
     }      }
     big=0.0;    }
     for (i=j;i<=n;i++) {  }
       sum=a[i][j];  
       for (k=1;k<j;k++)  /*************** transition probabilities ***************/ 
         sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       if ( (dum=vv[i]*fabs(sum)) >= big) {  {
         big=dum;    double s1, s2;
         imax=i;    /*double t34;*/
       }    int i,j,j1, nc, ii, jj;
     }  
     if (j != imax) {      for(i=1; i<= nlstate; i++){
       for (k=1;k<=n;k++) {        for(j=1; j<i;j++){
         dum=a[imax][k];          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         a[imax][k]=a[j][k];            /*s2 += param[i][j][nc]*cov[nc];*/
         a[j][k]=dum;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       }  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
       *d = -(*d);          }
       vv[imax]=vv[j];          ps[i][j]=s2;
     }  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
     indx[j]=imax;        }
     if (a[j][j] == 0.0) a[j][j]=TINY;        for(j=i+1; j<=nlstate+ndeath;j++){
     if (j != n) {          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       dum=1.0/(a[j][j]);            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     }          }
   }          ps[i][j]=s2;
   free_vector(vv,1,n);  /* Doesn't work */        }
 ;      }
 }      /*ps[3][2]=1;*/
       
 void lubksb(double **a, int n, int *indx, double b[])      for(i=1; i<= nlstate; i++){
 {        s1=0;
   int i,ii=0,ip,j;        for(j=1; j<i; j++)
   double sum;          s1+=exp(ps[i][j]);
          for(j=i+1; j<=nlstate+ndeath; j++)
   for (i=1;i<=n;i++) {          s1+=exp(ps[i][j]);
     ip=indx[i];        ps[i][i]=1./(s1+1.);
     sum=b[ip];        for(j=1; j<i; j++)
     b[ip]=b[i];          ps[i][j]= exp(ps[i][j])*ps[i][i];
     if (ii)        for(j=i+1; j<=nlstate+ndeath; j++)
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          ps[i][j]= exp(ps[i][j])*ps[i][i];
     else if (sum) ii=i;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     b[i]=sum;      } /* end i */
   }      
   for (i=n;i>=1;i--) {      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     sum=b[i];        for(jj=1; jj<= nlstate+ndeath; jj++){
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          ps[ii][jj]=0;
     b[i]=sum/a[i][i];          ps[ii][ii]=1;
   }        }
 }      }
       
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
 {  /* Some frequencies */  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
    /*         printf("ddd %lf ",ps[ii][jj]); */
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  /*       } */
   int first;  /*       printf("\n "); */
   double ***freq; /* Frequencies */  /*        } */
   double *pp;  /*        printf("\n ");printf("%lf ",cov[2]); */
   double pos, k2, dateintsum=0,k2cpt=0;         /*
   FILE *ficresp;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   char fileresp[FILENAMELENGTH];        goto end;*/
        return ps;
   pp=vector(1,nlstate);  }
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   strcpy(fileresp,"p");  /**************** Product of 2 matrices ******************/
   strcat(fileresp,fileres);  
   if((ficresp=fopen(fileresp,"w"))==NULL) {  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     printf("Problem with prevalence resultfile: %s\n", fileresp);  {
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     exit(0);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   }    /* in, b, out are matrice of pointers which should have been initialized 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);       before: only the contents of out is modified. The function returns
   j1=0;       a pointer to pointers identical to out */
      long i, j, k;
   j=cptcoveff;    for(i=nrl; i<= nrh; i++)
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      for(k=ncolol; k<=ncoloh; k++)
         for(j=ncl,out[i][k]=0.; j<=nch; j++)
   first=1;          out[i][k] +=in[i][j]*b[j][k];
   
   for(k1=1; k1<=j;k1++){    return out;
     for(i1=1; i1<=ncodemax[k1];i1++){  }
       j1++;  
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  
         scanf("%d", i);*/  /************* Higher Matrix Product ***************/
       for (i=-1; i<=nlstate+ndeath; i++)    
         for (jk=-1; jk<=nlstate+ndeath; jk++)    double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
           for(m=agemin; m <= agemax+3; m++)  {
             freq[i][jk][m]=0;    /* Computes the transition matrix starting at age 'age' over 
             'nhstepm*hstepm*stepm' months (i.e. until
       dateintsum=0;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       k2cpt=0;       nhstepm*hstepm matrices. 
       for (i=1; i<=imx; i++) {       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         bool=1;       (typically every 2 years instead of every month which is too big 
         if  (cptcovn>0) {       for the memory).
           for (z1=1; z1<=cptcoveff; z1++)       Model is determined by parameters x and covariates have to be 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])       included manually here. 
               bool=0;  
         }       */
         if (bool==1) {  
           for(m=firstpass; m<=lastpass; m++){    int i, j, d, h, k;
             k2=anint[m][i]+(mint[m][i]/12.);    double **out, cov[NCOVMAX];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    double **newm;
               if(agev[m][i]==0) agev[m][i]=agemax+1;  
               if(agev[m][i]==1) agev[m][i]=agemax+2;    /* Hstepm could be zero and should return the unit matrix */
               if (m<lastpass) {    for (i=1;i<=nlstate+ndeath;i++)
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      for (j=1;j<=nlstate+ndeath;j++){
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        oldm[i][j]=(i==j ? 1.0 : 0.0);
               }        po[i][j][0]=(i==j ? 1.0 : 0.0);
                    }
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
                 dateintsum=dateintsum+k2;    for(h=1; h <=nhstepm; h++){
                 k2cpt++;      for(d=1; d <=hstepm; d++){
               }        newm=savm;
             }        /* Covariates have to be included here again */
           }        cov[1]=1.;
         }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
                for (k=1; k<=cptcovage;k++)
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
       if  (cptcovn>0) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         fprintf(ficresp, "\n#********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficresp, "**********\n#");        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       for(i=1; i<=nlstate;i++)        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficresp, "\n");        savm=oldm;
              oldm=newm;
       for(i=(int)agemin; i <= (int)agemax+3; i++){      }
         if(i==(int)agemax+3){      for(i=1; i<=nlstate+ndeath; i++)
           fprintf(ficlog,"Total");        for(j=1;j<=nlstate+ndeath;j++) {
         }else{          po[i][j][h]=newm[i][j];
           if(first==1){          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
             first=0;           */
             printf("See log file for details...\n");        }
           }    } /* end h */
           fprintf(ficlog,"Age %d", i);    return po;
         }  }
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  
             pp[jk] += freq[jk][m][i];  /*************** log-likelihood *************/
         }  double func( double *x)
         for(jk=1; jk <=nlstate ; jk++){  {
           for(m=-1, pos=0; m <=0 ; m++)    int i, ii, j, k, mi, d, kk;
             pos += freq[jk][m][i];    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           if(pp[jk]>=1.e-10){    double **out;
             if(first==1){    double sw; /* Sum of weights */
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    double lli; /* Individual log likelihood */
             }    int s1, s2;
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    double bbh, survp;
           }else{    long ipmx;
             if(first==1)    /*extern weight */
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    /* We are differentiating ll according to initial status */
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
           }    /*for(i=1;i<imx;i++) 
         }      printf(" %d\n",s[4][i]);
     */
         for(jk=1; jk <=nlstate ; jk++){    cov[1]=1.;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
             pp[jk] += freq[jk][m][i];    for(k=1; k<=nlstate; k++) ll[k]=0.;
         }  
     if(mle==1){
         for(jk=1,pos=0; jk <=nlstate ; jk++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           pos += pp[jk];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(jk=1; jk <=nlstate ; jk++){        for(mi=1; mi<= wav[i]-1; mi++){
           if(pos>=1.e-5){          for (ii=1;ii<=nlstate+ndeath;ii++)
             if(first==1)            for (j=1;j<=nlstate+ndeath;j++){
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }else{            }
             if(first==1)          for(d=0; d<dh[mi][i]; d++){
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            newm=savm;
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           }            for (kk=1; kk<=cptcovage;kk++) {
           if( i <= (int) agemax){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             if(pos>=1.e-5){            }
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
               probs[i][jk][j1]= pp[jk]/pos;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/            savm=oldm;
             }            oldm=newm;
             else          } /* end mult */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        
           }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         }          /* But now since version 0.9 we anticipate for bias at large stepm.
                   * If stepm is larger than one month (smallest stepm) and if the exact delay 
         for(jk=-1; jk <=nlstate+ndeath; jk++)           * (in months) between two waves is not a multiple of stepm, we rounded to 
           for(m=-1; m <=nlstate+ndeath; m++)           * the nearest (and in case of equal distance, to the lowest) interval but now
             if(freq[jk][m][i] !=0 ) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             if(first==1)           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);           * probability in order to take into account the bias as a fraction of the way
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
             }           * -stepm/2 to stepm/2 .
         if(i <= (int) agemax)           * For stepm=1 the results are the same as for previous versions of Imach.
           fprintf(ficresp,"\n");           * For stepm > 1 the results are less biased than in previous versions. 
         if(first==1)           */
           printf("Others in log...\n");          s1=s[mw[mi][i]][i];
         fprintf(ficlog,"\n");          s2=s[mw[mi+1][i]][i];
       }          bbh=(double)bh[mi][i]/(double)stepm; 
     }          /* bias bh is positive if real duration
   }           * is higher than the multiple of stepm and negative otherwise.
   dateintmean=dateintsum/k2cpt;           */
            /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   fclose(ficresp);          if( s2 > nlstate){ 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            /* i.e. if s2 is a death state and if the date of death is known 
   free_vector(pp,1,nlstate);               then the contribution to the likelihood is the probability to 
                 die between last step unit time and current  step unit time, 
   /* End of Freq */               which is also equal to probability to die before dh 
 }               minus probability to die before dh-stepm . 
                In version up to 0.92 likelihood was computed
 /************ Prevalence ********************/          as if date of death was unknown. Death was treated as any other
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          health state: the date of the interview describes the actual state
 {  /* Some frequencies */          and not the date of a change in health state. The former idea was
            to consider that at each interview the state was recorded
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          (healthy, disable or death) and IMaCh was corrected; but when we
   double ***freq; /* Frequencies */          introduced the exact date of death then we should have modified
   double *pp;          the contribution of an exact death to the likelihood. This new
   double pos, k2;          contribution is smaller and very dependent of the step unit
           stepm. It is no more the probability to die between last interview
   pp=vector(1,nlstate);          and month of death but the probability to survive from last
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          interview up to one month before death multiplied by the
            probability to die within a month. Thanks to Chris
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          Jackson for correcting this bug.  Former versions increased
   j1=0;          mortality artificially. The bad side is that we add another loop
            which slows down the processing. The difference can be up to 10%
   j=cptcoveff;          lower mortality.
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            */
              lli=log(out[s1][s2] - savm[s1][s2]);
   for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){  
       j1++;          } else if  (s2==-2) {
                  for (j=1,survp=0. ; j<=nlstate; j++) 
       for (i=-1; i<=nlstate+ndeath; i++)                survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         for (jk=-1; jk<=nlstate+ndeath; jk++)              /*survp += out[s1][j]; */
           for(m=agemin; m <= agemax+3; m++)            lli= log(survp);
             freq[i][jk][m]=0;          }
                
       for (i=1; i<=imx; i++) {          else if  (s2==-4) { 
         bool=1;            for (j=3,survp=0. ; j<=nlstate; j++)  
         if  (cptcovn>0) {              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           for (z1=1; z1<=cptcoveff; z1++)            lli= log(survp); 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          } 
               bool=0;  
         }          else if  (s2==-5) { 
         if (bool==1) {            for (j=1,survp=0. ; j<=2; j++)  
           for(m=firstpass; m<=lastpass; m++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             k2=anint[m][i]+(mint[m][i]/12.);            lli= log(survp); 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          } 
               if(agev[m][i]==0) agev[m][i]=agemax+1;          
               if(agev[m][i]==1) agev[m][i]=agemax+2;          else{
               if (m<lastpass) {            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                 if (calagedate>0)            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          } 
                 else          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          /*if(lli ==000.0)*/
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
               }          ipmx +=1;
             }          sw += weight[i];
           }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }        } /* end of wave */
       }      } /* end of individual */
       for(i=(int)agemin; i <= (int)agemax+3; i++){    }  else if(mle==2){
         for(jk=1; jk <=nlstate ; jk++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             pp[jk] += freq[jk][m][i];        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(jk=1; jk <=nlstate ; jk++){            for (j=1;j<=nlstate+ndeath;j++){
           for(m=-1, pos=0; m <=0 ; m++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             pos += freq[jk][m][i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
                  for(d=0; d<=dh[mi][i]; d++){
         for(jk=1; jk <=nlstate ; jk++){            newm=savm;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             pp[jk] += freq[jk][m][i];            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                    }
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                                 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(jk=1; jk <=nlstate ; jk++){                savm=oldm;
           if( i <= (int) agemax){            oldm=newm;
             if(pos>=1.e-5){          } /* end mult */
               probs[i][jk][j1]= pp[jk]/pos;        
             }          s1=s[mw[mi][i]][i];
           }          s2=s[mw[mi+1][i]][i];
         }/* end jk */          bbh=(double)bh[mi][i]/(double)stepm; 
       }/* end i */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     } /* end i1 */          ipmx +=1;
   } /* end k1 */          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          } /* end of wave */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      } /* end of individual */
   free_vector(pp,1,nlstate);    }  else if(mle==3){  /* exponential inter-extrapolation */
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 }  /* End of Freq */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 /************* Waves Concatenation ***************/          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            }
      Death is a valid wave (if date is known).          for(d=0; d<dh[mi][i]; d++){
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            newm=savm;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      and mw[mi+1][i]. dh depends on stepm.            for (kk=1; kk<=cptcovage;kk++) {
      */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   int i, mi, m;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      double sum=0., jmean=0.;*/            savm=oldm;
   int first;            oldm=newm;
   int j, k=0,jk, ju, jl;          } /* end mult */
   double sum=0.;        
   first=0;          s1=s[mw[mi][i]][i];
   jmin=1e+5;          s2=s[mw[mi+1][i]][i];
   jmax=-1;          bbh=(double)bh[mi][i]/(double)stepm; 
   jmean=0.;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   for(i=1; i<=imx; i++){          ipmx +=1;
     mi=0;          sw += weight[i];
     m=firstpass;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     while(s[m][i] <= nlstate){        } /* end of wave */
       if(s[m][i]>=1)      } /* end of individual */
         mw[++mi][i]=m;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       if(m >=lastpass)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         break;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       else        for(mi=1; mi<= wav[i]-1; mi++){
         m++;          for (ii=1;ii<=nlstate+ndeath;ii++)
     }/* end while */            for (j=1;j<=nlstate+ndeath;j++){
     if (s[m][i] > nlstate){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       mi++;     /* Death is another wave */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       /* if(mi==0)  never been interviewed correctly before death */            }
          /* Only death is a correct wave */          for(d=0; d<dh[mi][i]; d++){
       mw[mi][i]=m;            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
     wav[i]=mi;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     if(mi==0){            }
       if(first==0){          
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         first=1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }            savm=oldm;
       if(first==1){            oldm=newm;
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);          } /* end mult */
       }        
     } /* end mi==0 */          s1=s[mw[mi][i]][i];
   }          s2=s[mw[mi+1][i]][i];
           if( s2 > nlstate){ 
   for(i=1; i<=imx; i++){            lli=log(out[s1][s2] - savm[s1][s2]);
     for(mi=1; mi<wav[i];mi++){          }else{
       if (stepm <=0)            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         dh[mi][i]=1;          }
       else{          ipmx +=1;
         if (s[mw[mi+1][i]][i] > nlstate) {          sw += weight[i];
           if (agedc[i] < 2*AGESUP) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           if(j==0) j=1;  /* Survives at least one month after exam */        } /* end of wave */
           k=k+1;      } /* end of individual */
           if (j >= jmax) jmax=j;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
           if (j <= jmin) jmin=j;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           sum=sum+j;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        for(mi=1; mi<= wav[i]-1; mi++){
           }          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
         else{              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           k=k+1;            }
           if (j >= jmax) jmax=j;          for(d=0; d<dh[mi][i]; d++){
           else if (j <= jmin)jmin=j;            newm=savm;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           sum=sum+j;            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         jk= j/stepm;            }
         jl= j -jk*stepm;          
         ju= j -(jk+1)*stepm;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         if(jl <= -ju)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           dh[mi][i]=jk;            savm=oldm;
         else            oldm=newm;
           dh[mi][i]=jk+1;          } /* end mult */
         if(dh[mi][i]==0)        
           dh[mi][i]=1; /* At least one step */          s1=s[mw[mi][i]][i];
       }          s2=s[mw[mi+1][i]][i];
     }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   }          ipmx +=1;
   jmean=sum/k;          sw += weight[i];
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
  }        } /* end of wave */
       } /* end of individual */
 /*********** Tricode ****************************/    } /* End of if */
 void tricode(int *Tvar, int **nbcode, int imx)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 {    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   int Ndum[20],ij=1, k, j, i;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   int cptcode=0;    return -l;
   cptcoveff=0;  }
    
   for (k=0; k<19; k++) Ndum[k]=0;  /*************** log-likelihood *************/
   for (k=1; k<=7; k++) ncodemax[k]=0;  double funcone( double *x)
   {
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    /* Same as likeli but slower because of a lot of printf and if */
     for (i=1; i<=imx; i++) {    int i, ii, j, k, mi, d, kk;
       ij=(int)(covar[Tvar[j]][i]);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       Ndum[ij]++;    double **out;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    double lli; /* Individual log likelihood */
       if (ij > cptcode) cptcode=ij;    double llt;
     }    int s1, s2;
     double bbh, survp;
     for (i=0; i<=cptcode; i++) {    /*extern weight */
       if(Ndum[i]!=0) ncodemax[j]++;    /* We are differentiating ll according to initial status */
     }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     ij=1;    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
     */
     for (i=1; i<=ncodemax[j]; i++) {    cov[1]=1.;
       for (k=0; k<=19; k++) {  
         if (Ndum[k] != 0) {    for(k=1; k<=nlstate; k++) ll[k]=0.;
           nbcode[Tvar[j]][ij]=k;  
              for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           ij++;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }      for(mi=1; mi<= wav[i]-1; mi++){
         if (ij > ncodemax[j]) break;        for (ii=1;ii<=nlstate+ndeath;ii++)
       }            for (j=1;j<=nlstate+ndeath;j++){
     }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
  for (k=0; k<19; k++) Ndum[k]=0;        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
  for (i=1; i<=ncovmodel-2; i++) {          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
    ij=Tvar[i];          for (kk=1; kk<=cptcovage;kk++) {
    Ndum[ij]++;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
  }          }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  ij=1;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
  for (i=1; i<=10; i++) {          savm=oldm;
    if((Ndum[i]!=0) && (i<=ncovcol)){          oldm=newm;
      Tvaraff[ij]=i;        } /* end mult */
      ij++;        
    }        s1=s[mw[mi][i]][i];
  }        s2=s[mw[mi+1][i]][i];
          bbh=(double)bh[mi][i]/(double)stepm; 
  cptcoveff=ij-1;        /* bias is positive if real duration
 }         * is higher than the multiple of stepm and negative otherwise.
          */
 /*********** Health Expectancies ****************/        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        } else if  (s2==-2) {
           for (j=1,survp=0. ; j<=nlstate; j++) 
 {            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   /* Health expectancies */          lli= log(survp);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;        }else if (mle==1){
   double age, agelim, hf;          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   double ***p3mat,***varhe;        } else if(mle==2){
   double **dnewm,**doldm;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   double *xp;        } else if(mle==3){  /* exponential inter-extrapolation */
   double **gp, **gm;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   double ***gradg, ***trgradg;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   int theta;          lli=log(out[s1][s2]); /* Original formula */
         } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);          lli=log(out[s1][s2]); /* Original formula */
   xp=vector(1,npar);        } /* End of if */
   dnewm=matrix(1,nlstate*2,1,npar);        ipmx +=1;
   doldm=matrix(1,nlstate*2,1,nlstate*2);        sw += weight[i];
          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fprintf(ficreseij,"# Health expectancies\n");  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   fprintf(ficreseij,"# Age");        if(globpr){
   for(i=1; i<=nlstate;i++)          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     for(j=1; j<=nlstate;j++)   %11.6f %11.6f %11.6f ", \
       fprintf(ficreseij," %1d-%1d (SE)",i,j);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   fprintf(ficreseij,"\n");                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   if(estepm < stepm){            llt +=ll[k]*gipmx/gsw;
     printf ("Problem %d lower than %d\n",estepm, stepm);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   }          }
   else  hstepm=estepm;            fprintf(ficresilk," %10.6f\n", -llt);
   /* We compute the life expectancy from trapezoids spaced every estepm months        }
    * This is mainly to measure the difference between two models: for example      } /* end of wave */
    * if stepm=24 months pijx are given only every 2 years and by summing them    } /* end of individual */
    * we are calculating an estimate of the Life Expectancy assuming a linear    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
    * progression inbetween and thus overestimating or underestimating according    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
    * to the curvature of the survival function. If, for the same date, we    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    if(globpr==0){ /* First time we count the contributions and weights */
    * to compare the new estimate of Life expectancy with the same linear      gipmx=ipmx;
    * hypothesis. A more precise result, taking into account a more precise      gsw=sw;
    * curvature will be obtained if estepm is as small as stepm. */    }
     return -l;
   /* For example we decided to compute the life expectancy with the smallest unit */  }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.  /*************** function likelione ***********/
      Look at hpijx to understand the reason of that which relies in memory size  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
      and note for a fixed period like estepm months */  {
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    /* This routine should help understanding what is done with 
      survival function given by stepm (the optimization length). Unfortunately it       the selection of individuals/waves and
      means that if the survival funtion is printed only each two years of age and if       to check the exact contribution to the likelihood.
      you sum them up and add 1 year (area under the trapezoids) you won't get the same       Plotting could be done.
      results. So we changed our mind and took the option of the best precision.     */
   */    int k;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  
     if(*globpri !=0){ /* Just counts and sums, no printings */
   agelim=AGESUP;      strcpy(fileresilk,"ilk"); 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      strcat(fileresilk,fileres);
     /* nhstepm age range expressed in number of stepm */      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        printf("Problem with resultfile: %s\n", fileresilk);
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     /* if (stepm >= YEARM) hstepm=1;*/      }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     gp=matrix(0,nhstepm,1,nlstate*2);      for(k=1; k<=nlstate; k++) 
     gm=matrix(0,nhstepm,1,nlstate*2);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      *fretone=(*funcone)(p);
      if(*globpri !=0){
       fclose(ficresilk);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fflush(fichtm); 
     /* Computing Variances of health expectancies */    } 
     return;
      for(theta=1; theta <=npar; theta++){  }
       for(i=1; i<=npar; i++){  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  /*********** Maximum Likelihood Estimation ***************/
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
    void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       cptj=0;  {
       for(j=1; j<= nlstate; j++){    int i,j, iter;
         for(i=1; i<=nlstate; i++){    double **xi;
           cptj=cptj+1;    double fret;
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    double fretone; /* Only one call to likelihood */
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    /*  char filerespow[FILENAMELENGTH];*/
           }    xi=matrix(1,npar,1,npar);
         }    for (i=1;i<=npar;i++)
       }      for (j=1;j<=npar;j++)
              xi[i][j]=(i==j ? 1.0 : 0.0);
          printf("Powell\n");  fprintf(ficlog,"Powell\n");
       for(i=1; i<=npar; i++)    strcpy(filerespow,"pow"); 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    strcat(filerespow,fileres);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      if((ficrespow=fopen(filerespow,"w"))==NULL) {
            printf("Problem with resultfile: %s\n", filerespow);
       cptj=0;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       for(j=1; j<= nlstate; j++){    }
         for(i=1;i<=nlstate;i++){    fprintf(ficrespow,"# Powell\n# iter -2*LL");
           cptj=cptj+1;    for (i=1;i<=nlstate;i++)
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){      for(j=1;j<=nlstate+ndeath;j++)
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
           }    fprintf(ficrespow,"\n");
         }  
       }    powell(p,xi,npar,ftol,&iter,&fret,func);
       for(j=1; j<= nlstate*2; j++)  
         for(h=0; h<=nhstepm-1; h++){    free_matrix(xi,1,npar,1,npar);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    fclose(ficrespow);
         }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
      }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
        fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 /* End theta */  
   }
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);  
   /**** Computes Hessian and covariance matrix ***/
      for(h=0; h<=nhstepm-1; h++)  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       for(j=1; j<=nlstate*2;j++)  {
         for(theta=1; theta <=npar; theta++)    double  **a,**y,*x,pd;
           trgradg[h][j][theta]=gradg[h][theta][j];    double **hess;
          int i, j,jk;
     int *indx;
      for(i=1;i<=nlstate*2;i++)  
       for(j=1;j<=nlstate*2;j++)    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
         varhe[i][j][(int)age] =0.;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
      printf("%d|",(int)age);fflush(stdout);    void ludcmp(double **a, int npar, int *indx, double *d) ;
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    double gompertz(double p[]);
      for(h=0;h<=nhstepm-1;h++){    hess=matrix(1,npar,1,npar);
       for(k=0;k<=nhstepm-1;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    printf("\nCalculation of the hessian matrix. Wait...\n");
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         for(i=1;i<=nlstate*2;i++)    for (i=1;i<=npar;i++){
           for(j=1;j<=nlstate*2;j++)      printf("%d",i);fflush(stdout);
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      fprintf(ficlog,"%d",i);fflush(ficlog);
       }     
     }       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     /* Computing expectancies */      
     for(i=1; i<=nlstate;i++)      /*  printf(" %f ",p[i]);
       for(j=1; j<=nlstate;j++)          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    }
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    
              for (i=1;i<=npar;i++) {
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/      for (j=1;j<=npar;j++)  {
         if (j>i) { 
         }          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     fprintf(ficreseij,"%3.0f",age );          hess[i][j]=hessij(p,delti,i,j,func,npar);
     cptj=0;          
     for(i=1; i<=nlstate;i++)          hess[j][i]=hess[i][j];    
       for(j=1; j<=nlstate;j++){          /*printf(" %lf ",hess[i][j]);*/
         cptj++;        }
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      }
       }    }
     fprintf(ficreseij,"\n");    printf("\n");
        fprintf(ficlog,"\n");
     free_matrix(gm,0,nhstepm,1,nlstate*2);  
     free_matrix(gp,0,nhstepm,1,nlstate*2);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    a=matrix(1,npar,1,npar);
   }    y=matrix(1,npar,1,npar);
   printf("\n");    x=vector(1,npar);
   fprintf(ficlog,"\n");    indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
   free_vector(xp,1,npar);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   free_matrix(dnewm,1,nlstate*2,1,npar);    ludcmp(a,npar,indx,&pd);
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);  
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    for (j=1;j<=npar;j++) {
 }      for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
 /************ Variance ******************/      lubksb(a,npar,indx,x);
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)      for (i=1;i<=npar;i++){ 
 {        matcov[i][j]=x[i];
   /* Variance of health expectancies */      }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    }
   /* double **newm;*/  
   double **dnewm,**doldm;    printf("\n#Hessian matrix#\n");
   double **dnewmp,**doldmp;    fprintf(ficlog,"\n#Hessian matrix#\n");
   int i, j, nhstepm, hstepm, h, nstepm ;    for (i=1;i<=npar;i++) { 
   int k, cptcode;      for (j=1;j<=npar;j++) { 
   double *xp;        printf("%.3e ",hess[i][j]);
   double **gp, **gm;  /* for var eij */        fprintf(ficlog,"%.3e ",hess[i][j]);
   double ***gradg, ***trgradg; /*for var eij */      }
   double **gradgp, **trgradgp; /* for var p point j */      printf("\n");
   double *gpp, *gmp; /* for var p point j */      fprintf(ficlog,"\n");
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */    }
   double ***p3mat;  
   double age,agelim, hf;    /* Recompute Inverse */
   int theta;    for (i=1;i<=npar;i++)
   char digit[4];      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   char digitp[16];    ludcmp(a,npar,indx,&pd);
   
   char fileresprobmorprev[FILENAMELENGTH];    /*  printf("\n#Hessian matrix recomputed#\n");
   
   if(popbased==1)    for (j=1;j<=npar;j++) {
     strcpy(digitp,"-populbased-");      for (i=1;i<=npar;i++) x[i]=0;
   else      x[j]=1;
     strcpy(digitp,"-stablbased-");      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
   strcpy(fileresprobmorprev,"prmorprev");        y[i][j]=x[i];
   sprintf(digit,"%-d",ij);        printf("%.3e ",y[i][j]);
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/        fprintf(ficlog,"%.3e ",y[i][j]);
   strcat(fileresprobmorprev,digit); /* Tvar to be done */      }
   strcat(fileresprobmorprev,digitp); /* Popbased or not */      printf("\n");
   strcat(fileresprobmorprev,fileres);      fprintf(ficlog,"\n");
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {    }
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);  
   }    free_matrix(a,1,npar,1,npar);
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    free_matrix(y,1,npar,1,npar);
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    free_vector(x,1,npar);
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");    free_ivector(indx,1,npar);
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);    free_matrix(hess,1,npar,1,npar);
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){  
     fprintf(ficresprobmorprev," p.%-d SE",j);  
     for(i=1; i<=nlstate;i++)  }
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);  
   }    /*************** hessian matrix ****************/
   fprintf(ficresprobmorprev,"\n");  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  {
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    int i;
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);    int l=1, lmax=20;
     exit(0);    double k1,k2;
   }    double p2[NPARMAX+1];
   else{    double res;
     fprintf(ficgp,"\n# Routine varevsij");    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   }    double fx;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    int k=0,kmax=10;
     printf("Problem with html file: %s\n", optionfilehtm);    double l1;
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);  
     exit(0);    fx=func(x);
   }    for (i=1;i<=npar;i++) p2[i]=x[i];
   else{    for(l=0 ; l <=lmax; l++){
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");      l1=pow(10,l);
   }      delts=delt;
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      for(k=1 ; k <kmax; k=k+1){
         delt = delta*(l1*k);
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");        p2[theta]=x[theta] +delt;
   fprintf(ficresvij,"# Age");        k1=func(p2)-fx;
   for(i=1; i<=nlstate;i++)        p2[theta]=x[theta]-delt;
     for(j=1; j<=nlstate;j++)        k2=func(p2)-fx;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        /*res= (k1-2.0*fx+k2)/delt/delt; */
   fprintf(ficresvij,"\n");        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
   xp=vector(1,npar);  #ifdef DEBUG
   dnewm=matrix(1,nlstate,1,npar);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   doldm=matrix(1,nlstate,1,nlstate);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);  #endif
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);          k=kmax;
   gpp=vector(nlstate+1,nlstate+ndeath);        }
   gmp=vector(nlstate+1,nlstate+ndeath);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/          k=kmax; l=lmax*10.;
          }
   if(estepm < stepm){        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     printf ("Problem %d lower than %d\n",estepm, stepm);          delts=delt;
   }        }
   else  hstepm=estepm;        }
   /* For example we decided to compute the life expectancy with the smallest unit */    }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    delti[theta]=delts;
      nhstepm is the number of hstepm from age to agelim    return res; 
      nstepm is the number of stepm from age to agelin.    
      Look at hpijx to understand the reason of that which relies in memory size  }
      and note for a fixed period like k years */  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
      survival function given by stepm (the optimization length). Unfortunately it  {
      means that if the survival funtion is printed only each two years of age and if    int i;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    int l=1, l1, lmax=20;
      results. So we changed our mind and took the option of the best precision.    double k1,k2,k3,k4,res,fx;
   */    double p2[NPARMAX+1];
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    int k;
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    fx=func(x);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    for (k=1; k<=2; k++) {
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      for (i=1;i<=npar;i++) p2[i]=x[i];
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      p2[thetai]=x[thetai]+delti[thetai]/k;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     gp=matrix(0,nhstepm,1,nlstate);      k1=func(p2)-fx;
     gm=matrix(0,nhstepm,1,nlstate);    
       p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     for(theta=1; theta <=npar; theta++){      k2=func(p2)-fx;
       for(i=1; i<=npar; i++){ /* Computes gradient */    
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      p2[thetai]=x[thetai]-delti[thetai]/k;
       }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        k3=func(p2)-fx;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    
       p2[thetai]=x[thetai]-delti[thetai]/k;
       if (popbased==1) {      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         for(i=1; i<=nlstate;i++)      k4=func(p2)-fx;
           prlim[i][i]=probs[(int)age][i][ij];      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       }  #ifdef DEBUG
        printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       for(j=1; j<= nlstate; j++){      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         for(h=0; h<=nhstepm; h++){  #endif
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    }
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    return res;
         }  }
       }  
       /* This for computing forces of mortality (h=1)as a weighted average */  /************** Inverse of matrix **************/
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){  void ludcmp(double **a, int n, int *indx, double *d) 
         for(i=1; i<= nlstate; i++)  { 
           gpp[j] += prlim[i][i]*p3mat[i][j][1];    int i,imax,j,k; 
       }        double big,dum,sum,temp; 
       /* end force of mortality */    double *vv; 
    
       for(i=1; i<=npar; i++) /* Computes gradient */    vv=vector(1,n); 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    *d=1.0; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for (i=1;i<=n;i++) { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      big=0.0; 
        for (j=1;j<=n;j++) 
       if (popbased==1) {        if ((temp=fabs(a[i][j])) > big) big=temp; 
         for(i=1; i<=nlstate;i++)      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
           prlim[i][i]=probs[(int)age][i][ij];      vv[i]=1.0/big; 
       }    } 
     for (j=1;j<=n;j++) { 
       for(j=1; j<= nlstate; j++){      for (i=1;i<j;i++) { 
         for(h=0; h<=nhstepm; h++){        sum=a[i][j]; 
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        a[i][j]=sum; 
         }      } 
       }      big=0.0; 
       /* This for computing force of mortality (h=1)as a weighted average */      for (i=j;i<=n;i++) { 
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){        sum=a[i][j]; 
         for(i=1; i<= nlstate; i++)        for (k=1;k<j;k++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1];          sum -= a[i][k]*a[k][j]; 
       }            a[i][j]=sum; 
       /* end force of mortality */        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
       for(j=1; j<= nlstate; j++) /* vareij */          imax=i; 
         for(h=0; h<=nhstepm; h++){        } 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      } 
         }      if (j != imax) { 
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */        for (k=1;k<=n;k++) { 
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];          dum=a[imax][k]; 
       }          a[imax][k]=a[j][k]; 
           a[j][k]=dum; 
     } /* End theta */        } 
         *d = -(*d); 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */        vv[imax]=vv[j]; 
       } 
     for(h=0; h<=nhstepm; h++) /* veij */      indx[j]=imax; 
       for(j=1; j<=nlstate;j++)      if (a[j][j] == 0.0) a[j][j]=TINY; 
         for(theta=1; theta <=npar; theta++)      if (j != n) { 
           trgradg[h][j][theta]=gradg[h][theta][j];        dum=1.0/(a[j][j]); 
         for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */      } 
       for(theta=1; theta <=npar; theta++)    } 
         trgradgp[j][theta]=gradgp[theta][j];    free_vector(vv,1,n);  /* Doesn't work */
   ;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  } 
     for(i=1;i<=nlstate;i++)  
       for(j=1;j<=nlstate;j++)  void lubksb(double **a, int n, int *indx, double b[]) 
         vareij[i][j][(int)age] =0.;  { 
     int i,ii=0,ip,j; 
     for(h=0;h<=nhstepm;h++){    double sum; 
       for(k=0;k<=nhstepm;k++){   
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    for (i=1;i<=n;i++) { 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      ip=indx[i]; 
         for(i=1;i<=nlstate;i++)      sum=b[ip]; 
           for(j=1;j<=nlstate;j++)      b[ip]=b[i]; 
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      if (ii) 
       }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     }      else if (sum) ii=i; 
       b[i]=sum; 
     /* pptj */    } 
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);    for (i=n;i>=1;i--) { 
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);      sum=b[i]; 
     for(j=nlstate+1;j<=nlstate+ndeath;j++)      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       for(i=nlstate+1;i<=nlstate+ndeath;i++)      b[i]=sum/a[i][i]; 
         varppt[j][i]=doldmp[j][i];    } 
     /* end ppptj */  } 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);    
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);  void pstamp(FILE *fichier)
    {
     if (popbased==1) {    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
       for(i=1; i<=nlstate;i++)  }
         prlim[i][i]=probs[(int)age][i][ij];  
     }  /************ Frequencies ********************/
      void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     /* This for computing force of mortality (h=1)as a weighted average */  {  /* Some frequencies */
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){    
       for(i=1; i<= nlstate; i++)    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
         gmp[j] += prlim[i][i]*p3mat[i][j][1];    int first;
     }        double ***freq; /* Frequencies */
     /* end force of mortality */    double *pp, **prop;
     double pos,posprop, k2, dateintsum=0,k2cpt=0;
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);    char fileresp[FILENAMELENGTH];
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){    
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));    pp=vector(1,nlstate);
       for(i=1; i<=nlstate;i++){    prop=matrix(1,nlstate,iagemin,iagemax+3);
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);    strcpy(fileresp,"p");
       }    strcat(fileresp,fileres);
     }    if((ficresp=fopen(fileresp,"w"))==NULL) {
     fprintf(ficresprobmorprev,"\n");      printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     fprintf(ficresvij,"%.0f ",age );      exit(0);
     for(i=1; i<=nlstate;i++)    }
       for(j=1; j<=nlstate;j++){    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    j1=0;
       }    
     fprintf(ficresvij,"\n");    j=cptcoveff;
     free_matrix(gp,0,nhstepm,1,nlstate);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     free_matrix(gm,0,nhstepm,1,nlstate);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    first=1;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(k1=1; k1<=j;k1++){
   } /* End age */      for(i1=1; i1<=ncodemax[k1];i1++){
   free_vector(gpp,nlstate+1,nlstate+ndeath);        j1++;
   free_vector(gmp,nlstate+1,nlstate+ndeath);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);          scanf("%d", i);*/
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/        for (i=-5; i<=nlstate+ndeath; i++)  
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");          for (jk=-5; jk<=nlstate+ndeath; jk++)  
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */            for(m=iagemin; m <= iagemax+3; m++)
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");              freq[i][jk][m]=0;
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);  
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);      for (i=1; i<=nlstate; i++)  
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);        for(m=iagemin; m <= iagemax+3; m++)
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);          prop[i][m]=0;
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);        
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);        dateintsum=0;
         k2cpt=0;
   free_vector(xp,1,npar);        for (i=1; i<=imx; i++) {
   free_matrix(doldm,1,nlstate,1,nlstate);          bool=1;
   free_matrix(dnewm,1,nlstate,1,npar);          if  (cptcovn>0) {
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            for (z1=1; z1<=cptcoveff; z1++) 
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);                bool=0;
   fclose(ficresprobmorprev);          }
   fclose(ficgp);          if (bool==1){
   fclose(fichtm);            for(m=firstpass; m<=lastpass; m++){
               k2=anint[m][i]+(mint[m][i]/12.);
 }              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
 /************ Variance of prevlim ******************/                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 {                if (m<lastpass) {
   /* Variance of prevalence limit */                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   double **newm;                }
   double **dnewm,**doldm;                
   int i, j, nhstepm, hstepm;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   int k, cptcode;                  dateintsum=dateintsum+k2;
   double *xp;                  k2cpt++;
   double *gp, *gm;                }
   double **gradg, **trgradg;                /*}*/
   double age,agelim;            }
   int theta;          }
            }
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");         
   fprintf(ficresvpl,"# Age");        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   for(i=1; i<=nlstate;i++)        pstamp(ficresp);
       fprintf(ficresvpl," %1d-%1d",i,i);        if  (cptcovn>0) {
   fprintf(ficresvpl,"\n");          fprintf(ficresp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   xp=vector(1,npar);          fprintf(ficresp, "**********\n#");
   dnewm=matrix(1,nlstate,1,npar);        }
   doldm=matrix(1,nlstate,1,nlstate);        for(i=1; i<=nlstate;i++) 
            fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   hstepm=1*YEARM; /* Every year of age */        fprintf(ficresp, "\n");
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        
   agelim = AGESUP;        for(i=iagemin; i <= iagemax+3; i++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          if(i==iagemax+3){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            fprintf(ficlog,"Total");
     if (stepm >= YEARM) hstepm=1;          }else{
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            if(first==1){
     gradg=matrix(1,npar,1,nlstate);              first=0;
     gp=vector(1,nlstate);              printf("See log file for details...\n");
     gm=vector(1,nlstate);            }
             fprintf(ficlog,"Age %d", i);
     for(theta=1; theta <=npar; theta++){          }
       for(i=1; i<=npar; i++){ /* Computes gradient */          for(jk=1; jk <=nlstate ; jk++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       }              pp[jk] += freq[jk][m][i]; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          }
       for(i=1;i<=nlstate;i++)          for(jk=1; jk <=nlstate ; jk++){
         gp[i] = prlim[i][i];            for(m=-1, pos=0; m <=0 ; m++)
                  pos += freq[jk][m][i];
       for(i=1; i<=npar; i++) /* Computes gradient */            if(pp[jk]>=1.e-10){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              if(first==1){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       for(i=1;i<=nlstate;i++)              }
         gm[i] = prlim[i][i];              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }else{
       for(i=1;i<=nlstate;i++)              if(first==1)
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     } /* End theta */              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             }
     trgradg =matrix(1,nlstate,1,npar);          }
   
     for(j=1; j<=nlstate;j++)          for(jk=1; jk <=nlstate ; jk++){
       for(theta=1; theta <=npar; theta++)            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
         trgradg[j][theta]=gradg[theta][j];              pp[jk] += freq[jk][m][i];
           }       
     for(i=1;i<=nlstate;i++)          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       varpl[i][(int)age] =0.;            pos += pp[jk];
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);            posprop += prop[jk][i];
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          }
     for(i=1;i<=nlstate;i++)          for(jk=1; jk <=nlstate ; jk++){
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */            if(pos>=1.e-5){
               if(first==1)
     fprintf(ficresvpl,"%.0f ",age );                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     for(i=1; i<=nlstate;i++)              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));            }else{
     fprintf(ficresvpl,"\n");              if(first==1)
     free_vector(gp,1,nlstate);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     free_vector(gm,1,nlstate);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     free_matrix(gradg,1,npar,1,nlstate);            }
     free_matrix(trgradg,1,nlstate,1,npar);            if( i <= iagemax){
   } /* End age */              if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   free_vector(xp,1,npar);                /*probs[i][jk][j1]= pp[jk]/pos;*/
   free_matrix(doldm,1,nlstate,1,npar);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   free_matrix(dnewm,1,nlstate,1,nlstate);              }
               else
 }                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             }
 /************ Variance of one-step probabilities  ******************/          }
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)          
 {          for(jk=-1; jk <=nlstate+ndeath; jk++)
   int i, j=0,  i1, k1, l1, t, tj;            for(m=-1; m <=nlstate+ndeath; m++)
   int k2, l2, j1,  z1;              if(freq[jk][m][i] !=0 ) {
   int k=0,l, cptcode;              if(first==1)
   int first=1, first1;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   double **dnewm,**doldm;              }
   double *xp;          if(i <= iagemax)
   double *gp, *gm;            fprintf(ficresp,"\n");
   double **gradg, **trgradg;          if(first==1)
   double **mu;            printf("Others in log...\n");
   double age,agelim, cov[NCOVMAX];          fprintf(ficlog,"\n");
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */        }
   int theta;      }
   char fileresprob[FILENAMELENGTH];    }
   char fileresprobcov[FILENAMELENGTH];    dateintmean=dateintsum/k2cpt; 
   char fileresprobcor[FILENAMELENGTH];   
     fclose(ficresp);
   double ***varpij;    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     free_vector(pp,1,nlstate);
   strcpy(fileresprob,"prob");    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   strcat(fileresprob,fileres);    /* End of Freq */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  }
     printf("Problem with resultfile: %s\n", fileresprob);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);  /************ Prevalence ********************/
   }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   strcpy(fileresprobcov,"probcov");  {  
   strcat(fileresprobcov,fileres);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {       in each health status at the date of interview (if between dateprev1 and dateprev2).
     printf("Problem with resultfile: %s\n", fileresprobcov);       We still use firstpass and lastpass as another selection.
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);    */
   }   
   strcpy(fileresprobcor,"probcor");    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   strcat(fileresprobcor,fileres);    double ***freq; /* Frequencies */
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    double *pp, **prop;
     printf("Problem with resultfile: %s\n", fileresprobcor);    double pos,posprop; 
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    double  y2; /* in fractional years */
   }    int iagemin, iagemax;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);  
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    iagemin= (int) agemin;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    iagemax= (int) agemax;
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    /*pp=vector(1,nlstate);*/
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
      j1=0;
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    
   fprintf(ficresprob,"# Age");    j=cptcoveff;
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   fprintf(ficresprobcov,"# Age");    
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    for(k1=1; k1<=j;k1++){
   fprintf(ficresprobcov,"# Age");      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
         
   for(i=1; i<=nlstate;i++)        for (i=1; i<=nlstate; i++)  
     for(j=1; j<=(nlstate+ndeath);j++){          for(m=iagemin; m <= iagemax+3; m++)
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);            prop[i][m]=0.0;
       fprintf(ficresprobcov," p%1d-%1d ",i,j);       
       fprintf(ficresprobcor," p%1d-%1d ",i,j);        for (i=1; i<=imx; i++) { /* Each individual */
     }            bool=1;
   fprintf(ficresprob,"\n");          if  (cptcovn>0) {
   fprintf(ficresprobcov,"\n");            for (z1=1; z1<=cptcoveff; z1++) 
   fprintf(ficresprobcor,"\n");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   xp=vector(1,npar);                bool=0;
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          } 
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));          if (bool==1) { 
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   first=1;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     exit(0);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   else{                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
     fprintf(ficgp,"\n# Routine varprob");                  prop[s[m][i]][iagemax+3] += weight[i]; 
   }                } 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {              }
     printf("Problem with html file: %s\n", optionfilehtm);            } /* end selection of waves */
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);          }
     exit(0);        }
   }        for(i=iagemin; i <= iagemax+3; i++){  
   else{          
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     fprintf(fichtm,"\n");            posprop += prop[jk][i]; 
           } 
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");  
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");          for(jk=1; jk <=nlstate ; jk++){     
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");            if( i <=  iagemax){ 
               if(posprop>=1.e-5){ 
   }                probs[i][jk][j1]= prop[jk][i]/posprop;
               } 
              } 
   cov[1]=1;          }/* end jk */ 
   tj=cptcoveff;        }/* end i */ 
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}      } /* end i1 */
   j1=0;    } /* end k1 */
   for(t=1; t<=tj;t++){    
     for(i1=1; i1<=ncodemax[t];i1++){    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
       j1++;    /*free_vector(pp,1,nlstate);*/
          free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       if  (cptcovn>0) {  }  /* End of prevalence */
         fprintf(ficresprob, "\n#********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  /************* Waves Concatenation ***************/
         fprintf(ficresprob, "**********\n#");  
         fprintf(ficresprobcov, "\n#********** Variable ");  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  {
         fprintf(ficresprobcov, "**********\n#");    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
               Death is a valid wave (if date is known).
         fprintf(ficgp, "\n#********** Variable ");       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         fprintf(ficgp, "**********\n#");       and mw[mi+1][i]. dh depends on stepm.
               */
          
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");    int i, mi, m;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");       double sum=0., jmean=0.;*/
            int first;
         fprintf(ficresprobcor, "\n#********** Variable ");        int j, k=0,jk, ju, jl;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    double sum=0.;
         fprintf(ficgp, "**********\n#");        first=0;
       }    jmin=1e+5;
          jmax=-1;
       for (age=bage; age<=fage; age ++){    jmean=0.;
         cov[2]=age;    for(i=1; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) {      mi=0;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];      m=firstpass;
         }      while(s[m][i] <= nlstate){
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
         for (k=1; k<=cptcovprod;k++)          mw[++mi][i]=m;
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        if(m >=lastpass)
                  break;
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));        else
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          m++;
         gp=vector(1,(nlstate)*(nlstate+ndeath));      }/* end while */
         gm=vector(1,(nlstate)*(nlstate+ndeath));      if (s[m][i] > nlstate){
            mi++;     /* Death is another wave */
         for(theta=1; theta <=npar; theta++){        /* if(mi==0)  never been interviewed correctly before death */
           for(i=1; i<=npar; i++)           /* Only death is a correct wave */
             xp[i] = x[i] + (i==theta ?delti[theta]:0);        mw[mi][i]=m;
                }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  
                wav[i]=mi;
           k=0;      if(mi==0){
           for(i=1; i<= (nlstate); i++){        nbwarn++;
             for(j=1; j<=(nlstate+ndeath);j++){        if(first==0){
               k=k+1;          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
               gp[k]=pmmij[i][j];          first=1;
             }        }
           }        if(first==1){
                    fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
           for(i=1; i<=npar; i++)        }
             xp[i] = x[i] - (i==theta ?delti[theta]:0);      } /* end mi==0 */
        } /* End individuals */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  
           k=0;    for(i=1; i<=imx; i++){
           for(i=1; i<=(nlstate); i++){      for(mi=1; mi<wav[i];mi++){
             for(j=1; j<=(nlstate+ndeath);j++){        if (stepm <=0)
               k=k+1;          dh[mi][i]=1;
               gm[k]=pmmij[i][j];        else{
             }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
           }            if (agedc[i] < 2*AGESUP) {
                    j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)              if(j==0) j=1;  /* Survives at least one month after exam */
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];                else if(j<0){
         }                nberr++;
                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)                j=1; /* Temporary Dangerous patch */
           for(theta=1; theta <=npar; theta++)                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
             trgradg[j][theta]=gradg[theta][j];                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                        fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);              }
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);              k=k+1;
                      if (j >= jmax){
         pmij(pmmij,cov,ncovmodel,x,nlstate);                jmax=j;
                        ijmax=i;
         k=0;              }
         for(i=1; i<=(nlstate); i++){              if (j <= jmin){
           for(j=1; j<=(nlstate+ndeath);j++){                jmin=j;
             k=k+1;                ijmin=i;
             mu[k][(int) age]=pmmij[i][j];              }
           }              sum=sum+j;
         }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)            }
             varpij[i][j][(int)age] = doldm[i][j];          }
           else{
         /*printf("\n%d ",(int)age);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            k=k+1;
      }*/            if (j >= jmax) {
               jmax=j;
         fprintf(ficresprob,"\n%d ",(int)age);              ijmax=i;
         fprintf(ficresprobcov,"\n%d ",(int)age);            }
         fprintf(ficresprobcor,"\n%d ",(int)age);            else if (j <= jmin){
               jmin=j;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)              ijmin=i;
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));            }
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);            if(j<0){
         }              nberr++;
         i=0;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         for (k=1; k<=(nlstate);k++){              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           for (l=1; l<=(nlstate+ndeath);l++){            }
             i=i++;            sum=sum+j;
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);          }
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);          jk= j/stepm;
             for (j=1; j<=i;j++){          jl= j -jk*stepm;
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          ju= j -(jk+1)*stepm;
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             }            if(jl==0){
           }              dh[mi][i]=jk;
         }/* end of loop for state */              bh[mi][i]=0;
       } /* end of loop for age */            }else{ /* We want a negative bias in order to only have interpolation ie
                     * at the price of an extra matrix product in likelihood */
       /* Confidence intervalle of pij  */              dh[mi][i]=jk+1;
       /*              bh[mi][i]=ju;
       fprintf(ficgp,"\nset noparametric;unset label");            }
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");          }else{
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");            if(jl <= -ju){
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);              dh[mi][i]=jk;
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);              bh[mi][i]=jl;       /* bias is positive if real duration
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);                                   * is higher than the multiple of stepm and negative otherwise.
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);                                   */
       */            }
             else{
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/              dh[mi][i]=jk+1;
       first1=1;              bh[mi][i]=ju;
       for (k2=1; k2<=(nlstate);k2++){            }
         for (l2=1; l2<=(nlstate+ndeath);l2++){            if(dh[mi][i]==0){
           if(l2==k2) continue;              dh[mi][i]=1; /* At least one step */
           j=(k2-1)*(nlstate+ndeath)+l2;              bh[mi][i]=ju; /* At least one step */
           for (k1=1; k1<=(nlstate);k1++){              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             for (l1=1; l1<=(nlstate+ndeath);l1++){            }
               if(l1==k1) continue;          } /* end if mle */
               i=(k1-1)*(nlstate+ndeath)+l1;        }
               if(i<=j) continue;      } /* end wave */
               for (age=bage; age<=fage; age ++){    }
                 if ((int)age %5==0){    jmean=sum/k;
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;   }
                   mu1=mu[i][(int) age]/stepm*YEARM ;  
                   mu2=mu[j][(int) age]/stepm*YEARM;  /*********** Tricode ****************************/
                   c12=cv12/sqrt(v1*v2);  void tricode(int *Tvar, int **nbcode, int imx)
                   /* Computing eigen value of matrix of covariance */  {
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    int Ndum[20],ij=1, k, j, i, maxncov=19;
                   /* Eigen vectors */    int cptcode=0;
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    cptcoveff=0; 
                   /*v21=sqrt(1.-v11*v11); *//* error */   
                   v21=(lc1-v1)/cv12*v11;    for (k=0; k<maxncov; k++) Ndum[k]=0;
                   v12=-v21;    for (k=1; k<=7; k++) ncodemax[k]=0;
                   v22=v11;  
                   tnalp=v21/v11;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
                   if(first1==1){      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                     first1=0;                                 modality*/ 
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
                   }        Ndum[ij]++; /*store the modality */
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
                   /*printf(fignu*/        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */                                         Tvar[j]. If V=sex and male is 0 and 
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */                                         female is 1, then  cptcode=1.*/
                   if(first==1){      }
                     first=0;  
                     fprintf(ficgp,"\nset parametric;unset label");      for (i=0; i<=cptcode; i++) {
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");      }
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);  
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);      ij=1; 
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);      for (i=1; i<=ncodemax[j]; i++) {
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);        for (k=0; k<= maxncov; k++) {
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);          if (Ndum[k] != 0) {
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\            nbcode[Tvar[j]][ij]=k; 
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));            
                   }else{            ij++;
                     first=0;          }
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);          if (ij > ncodemax[j]) break; 
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);        }  
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\      } 
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    }  
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));  
                   }/* if first */   for (k=0; k< maxncov; k++) Ndum[k]=0;
                 } /* age mod 5 */  
               } /* end loop age */   for (i=1; i<=ncovmodel-2; i++) { 
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
               first=1;     ij=Tvar[i];
             } /*l12 */     Ndum[ij]++;
           } /* k12 */   }
         } /*l1 */  
       }/* k1 */   ij=1;
     } /* loop covariates */   for (i=1; i<= maxncov; i++) {
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);     if((Ndum[i]!=0) && (i<=ncovcol)){
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));       Tvaraff[ij]=i; /*For printing */
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));       ij++;
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);     }
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);   }
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);   
   }   cptcoveff=ij-1; /*Number of simple covariates*/
   free_vector(xp,1,npar);  }
   fclose(ficresprob);  
   fclose(ficresprobcov);  /*********** Health Expectancies ****************/
   fclose(ficresprobcor);  
   fclose(ficgp);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   fclose(fichtm);  
 }  {
     /* Health expectancies, no variances */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
 /******************* Printing html file ***********/    double age, agelim, hf;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    double ***p3mat;
                   int lastpass, int stepm, int weightopt, char model[],\    double eip;
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\  
                   int popforecast, int estepm ,\    pstamp(ficreseij);
                   double jprev1, double mprev1,double anprev1, \    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
                   double jprev2, double mprev2,double anprev2){    fprintf(ficreseij,"# Age");
   int jj1, k1, i1, cpt;    for(i=1; i<=nlstate;i++){
   /*char optionfilehtm[FILENAMELENGTH];*/      for(j=1; j<=nlstate;j++){
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {        fprintf(ficreseij," e%1d%1d ",i,j);
     printf("Problem with %s \n",optionfilehtm), exit(0);      }
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);      fprintf(ficreseij," e%1d. ",i);
   }    }
     fprintf(ficreseij,"\n");
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n  
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n    
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    if(estepm < stepm){
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n      printf ("Problem %d lower than %d\n",estepm, stepm);
  - Life expectancies by age and initial health status (estepm=%2d months):    }
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    else  hstepm=estepm;   
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
  m=cptcoveff;     * progression in between and thus overestimating or underestimating according
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}     * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
  jj1=0;     * to compare the new estimate of Life expectancy with the same linear 
  for(k1=1; k1<=m;k1++){     * hypothesis. A more precise result, taking into account a more precise
    for(i1=1; i1<=ncodemax[k1];i1++){     * curvature will be obtained if estepm is as small as stepm. */
      jj1++;  
      if (cptcovn > 0) {    /* For example we decided to compute the life expectancy with the smallest unit */
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        for (cpt=1; cpt<=cptcoveff;cpt++)       nhstepm is the number of hstepm from age to agelim 
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);       nstepm is the number of stepm from age to agelin. 
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");       Look at hpijx to understand the reason of that which relies in memory size
      }       and note for a fixed period like estepm months */
      /* Pij */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>       survival function given by stepm (the optimization length). Unfortunately it
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);           means that if the survival funtion is printed only each two years of age and if
      /* Quasi-incidences */       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>       results. So we changed our mind and took the option of the best precision.
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    */
        /* Stable prevalence in each health state */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
        for(cpt=1; cpt<nlstate;cpt++){  
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>    agelim=AGESUP;
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    /* nhstepm age range expressed in number of stepm */
        }    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
      for(cpt=1; cpt<=nlstate;cpt++) {    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    /* if (stepm >= YEARM) hstepm=1;*/
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      }    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and  
 health expectancies in states (1) and (2): e%s%d.png<br>    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
    } /* end i1 */         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
  }/* End k1 */      
  fprintf(fichtm,"</ul>");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n      
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n      printf("%d|",(int)age);fflush(stdout);
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n      
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n      /* Computing expectancies */
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n      for(i=1; i<=nlstate;i++)
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n        for(j=1; j<=nlstate;j++)
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
  if(popforecast==1) fprintf(fichtm,"\n            
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n  
         <br>",fileres,fileres,fileres,fileres);          }
  else  
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);      fprintf(ficreseij,"%3.0f",age );
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");      for(i=1; i<=nlstate;i++){
         eip=0;
  m=cptcoveff;        for(j=1; j<=nlstate;j++){
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          eip +=eij[i][j][(int)age];
           fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
  jj1=0;        }
  for(k1=1; k1<=m;k1++){        fprintf(ficreseij,"%9.4f", eip );
    for(i1=1; i1<=ncodemax[k1];i1++){      }
      jj1++;      fprintf(ficreseij,"\n");
      if (cptcovn > 0) {      
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    }
        for (cpt=1; cpt<=cptcoveff;cpt++)    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    printf("\n");
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    fprintf(ficlog,"\n");
      }    
      for(cpt=1; cpt<=nlstate;cpt++) {  }
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident  
 interval) in state (%d): v%s%d%d.png <br>  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    
      }  {
    } /* end i1 */    /* Covariances of health expectancies eij and of total life expectancies according
  }/* End k1 */     to initial status i, ei. .
  fprintf(fichtm,"</ul>");    */
 fclose(fichtm);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
 }    double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
 /******************* Gnuplot file **************/    double **dnewm,**doldm;
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    double *xp, *xm;
     double **gp, **gm;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    double ***gradg, ***trgradg;
   int ng;    int theta;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  
     printf("Problem with file %s",optionfilegnuplot);    double eip, vip;
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);  
   }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
 #ifdef windows    xm=vector(1,npar);
     fprintf(ficgp,"cd \"%s\" \n",pathc);    dnewm=matrix(1,nlstate*nlstate,1,npar);
 #endif    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
 m=pow(2,cptcoveff);    
      pstamp(ficresstdeij);
  /* 1eme*/    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   for (cpt=1; cpt<= nlstate ; cpt ++) {    fprintf(ficresstdeij,"# Age");
    for (k1=1; k1<= m ; k1 ++) {    for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++)
 #ifdef windows        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      fprintf(ficresstdeij," e%1d. ",i);
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    }
 #endif    fprintf(ficresstdeij,"\n");
 #ifdef unix  
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    pstamp(ficrescveij);
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
 #endif    fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
 for (i=1; i<= nlstate ; i ++) {      for(j=1; j<=nlstate;j++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        cptj= (j-1)*nlstate+i;
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(i2=1; i2<=nlstate;i2++)
 }          for(j2=1; j2<=nlstate;j2++){
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);            cptj2= (j2-1)*nlstate+i2;
     for (i=1; i<= nlstate ; i ++) {            if(cptj2 <= cptj)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }      }
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    fprintf(ficrescveij,"\n");
      for (i=1; i<= nlstate ; i ++) {    
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    if(estepm < stepm){
   else fprintf(ficgp," \%%*lf (\%%*lf)");      printf ("Problem %d lower than %d\n",estepm, stepm);
 }      }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    else  hstepm=estepm;   
 #ifdef unix    /* We compute the life expectancy from trapezoids spaced every estepm months
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");     * This is mainly to measure the difference between two models: for example
 #endif     * if stepm=24 months pijx are given only every 2 years and by summing them
    }     * we are calculating an estimate of the Life Expectancy assuming a linear 
   }     * progression in between and thus overestimating or underestimating according
   /*2 eme*/     * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
   for (k1=1; k1<= m ; k1 ++) {     * to compare the new estimate of Life expectancy with the same linear 
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);     * hypothesis. A more precise result, taking into account a more precise
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);     * curvature will be obtained if estepm is as small as stepm. */
      
     for (i=1; i<= nlstate+1 ; i ++) {    /* For example we decided to compute the life expectancy with the smallest unit */
       k=2*i;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);       nhstepm is the number of hstepm from age to agelim 
       for (j=1; j<= nlstate+1 ; j ++) {       nstepm is the number of stepm from age to agelin. 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       Look at hpijx to understand the reason of that which relies in memory size
   else fprintf(ficgp," \%%*lf (\%%*lf)");       and note for a fixed period like estepm months */
 }      /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");       survival function given by stepm (the optimization length). Unfortunately it
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);       means that if the survival funtion is printed only each two years of age and if
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       for (j=1; j<= nlstate+1 ; j ++) {       results. So we changed our mind and took the option of the best precision.
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    */
         else fprintf(ficgp," \%%*lf (\%%*lf)");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
 }    
       fprintf(ficgp,"\" t\"\" w l 0,");    /* If stepm=6 months */
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    /* nhstepm age range expressed in number of stepm */
       for (j=1; j<= nlstate+1 ; j ++) {    agelim=AGESUP;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   else fprintf(ficgp," \%%*lf (\%%*lf)");    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 }      /* if (stepm >= YEARM) hstepm=1;*/
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       else fprintf(ficgp,"\" t\"\" w l 0,");    
     }    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   /*3eme*/    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
   for (k1=1; k1<= m ; k1 ++) {    gm=matrix(0,nhstepm,1,nlstate*nlstate);
     for (cpt=1; cpt<= nlstate ; cpt ++) {  
       k=2+nlstate*(2*cpt-2);    for (age=bage; age<=fage; age ++){ 
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");   
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      /* Computing  Variances of health expectancies */
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
 */      for(theta=1; theta <=npar; theta++){
       for (i=1; i< nlstate ; i ++) {        for(i=1; i<=npar; i++){ 
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
       }        }
     }        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   }        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
      
   /* CV preval stat */        for(j=1; j<= nlstate; j++){
     for (k1=1; k1<= m ; k1 ++) {          for(i=1; i<=nlstate; i++){
     for (cpt=1; cpt<nlstate ; cpt ++) {            for(h=0; h<=nhstepm-1; h++){
       k=3;              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);            }
           }
       for (i=1; i< nlstate ; i ++)        }
         fprintf(ficgp,"+$%d",k+i+1);       
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        for(ij=1; ij<= nlstate*nlstate; ij++)
                for(h=0; h<=nhstepm-1; h++){
       l=3+(nlstate+ndeath)*cpt;            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          }
       for (i=1; i< nlstate ; i ++) {      }/* End theta */
         l=3+(nlstate+ndeath)*cpt;      
         fprintf(ficgp,"+$%d",l+i+1);      
       }      for(h=0; h<=nhstepm-1; h++)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          for(j=1; j<=nlstate*nlstate;j++)
     }          for(theta=1; theta <=npar; theta++)
   }              trgradg[h][j][theta]=gradg[h][theta][j];
        
   /* proba elementaires */  
    for(i=1,jk=1; i <=nlstate; i++){       for(ij=1;ij<=nlstate*nlstate;ij++)
     for(k=1; k <=(nlstate+ndeath); k++){        for(ji=1;ji<=nlstate*nlstate;ji++)
       if (k != i) {          varhe[ij][ji][(int)age] =0.;
         for(j=1; j <=ncovmodel; j++){  
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);       printf("%d|",(int)age);fflush(stdout);
           jk++;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           fprintf(ficgp,"\n");       for(h=0;h<=nhstepm-1;h++){
         }        for(k=0;k<=nhstepm-1;k++){
       }          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
    }          for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
      for(jk=1; jk <=m; jk++) {        }
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);      }
        if (ng==2)      /* Computing expectancies */
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
        else      for(i=1; i<=nlstate;i++)
          fprintf(ficgp,"\nset title \"Probability\"\n");        for(j=1; j<=nlstate;j++)
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
        i=1;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
        for(k2=1; k2<=nlstate; k2++) {            
          k3=i;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
          for(k=1; k<=(nlstate+ndeath); k++) {  
            if (k != k2){          }
              if(ng==2)  
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);      fprintf(ficresstdeij,"%3.0f",age );
              else      for(i=1; i<=nlstate;i++){
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        eip=0.;
              ij=1;        vip=0.;
              for(j=3; j <=ncovmodel; j++) {        for(j=1; j<=nlstate;j++){
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          eip += eij[i][j][(int)age];
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
                  ij++;            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
                }          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
                else        }
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
              }      }
              fprintf(ficgp,")/(1");      fprintf(ficresstdeij,"\n");
                
              for(k1=1; k1 <=nlstate; k1++){        fprintf(ficrescveij,"%3.0f",age );
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      for(i=1; i<=nlstate;i++)
                ij=1;        for(j=1; j<=nlstate;j++){
                for(j=3; j <=ncovmodel; j++){          cptj= (j-1)*nlstate+i;
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          for(i2=1; i2<=nlstate;i2++)
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            for(j2=1; j2<=nlstate;j2++){
                    ij++;              cptj2= (j2-1)*nlstate+i2;
                  }              if(cptj2 <= cptj)
                  else                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            }
                }        }
                fprintf(ficgp,")");      fprintf(ficrescveij,"\n");
              }     
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    }
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
              i=i+ncovmodel;    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
            }    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
          } /* end k */    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
        } /* end k2 */    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      } /* end jk */    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    } /* end ng */    printf("\n");
    fclose(ficgp);    fprintf(ficlog,"\n");
 }  /* end gnuplot */  
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
 /*************** Moving average **************/    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   int i, cpt, cptcod;  }
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)  
       for (i=1; i<=nlstate;i++)  /************ Variance ******************/
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
           mobaverage[(int)agedeb][i][cptcod]=0.;  {
        /* Variance of health expectancies */
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
       for (i=1; i<=nlstate;i++){    /* double **newm;*/
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    double **dnewm,**doldm;
           for (cpt=0;cpt<=4;cpt++){    double **dnewmp,**doldmp;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    int i, j, nhstepm, hstepm, h, nstepm ;
           }    int k, cptcode;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;    double *xp;
         }    double **gp, **gm;  /* for var eij */
       }    double ***gradg, ***trgradg; /*for var eij */
     }    double **gradgp, **trgradgp; /* for var p point j */
        double *gpp, *gmp; /* for var p point j */
 }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
 /************** Forecasting ******************/    double ***mobaverage;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    int theta;
      char digit[4];
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    char digitp[25];
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    char fileresprobmorprev[FILENAMELENGTH];
   double *popeffectif,*popcount;  
   double ***p3mat;    if(popbased==1){
   char fileresf[FILENAMELENGTH];      if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
  agelim=AGESUP;      else strcpy(digitp,"-populbased-nomobil-");
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    }
     else 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      strcpy(digitp,"-stablbased-");
    
      if (mobilav!=0) {
   strcpy(fileresf,"f");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcat(fileresf,fileres);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   if((ficresf=fopen(fileresf,"w"))==NULL) {        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     printf("Problem with forecast resultfile: %s\n", fileresf);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);      }
   }    }
   printf("Computing forecasting: result on file '%s' \n", fileresf);  
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);    strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
   if (mobilav==1) {    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    strcat(fileresprobmorprev,fileres);
     movingaverage(agedeb, fage, ageminpar, mobaverage);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    }
   if (stepm<=12) stepsize=1;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     
   agelim=AGESUP;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
      pstamp(ficresprobmorprev);
   hstepm=1;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   hstepm=hstepm/stepm;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   yp1=modf(dateintmean,&yp);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   anprojmean=yp;      fprintf(ficresprobmorprev," p.%-d SE",j);
   yp2=modf((yp1*12),&yp);      for(i=1; i<=nlstate;i++)
   mprojmean=yp;        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   yp1=modf((yp2*30.5),&yp);    }  
   jprojmean=yp;    fprintf(ficresprobmorprev,"\n");
   if(jprojmean==0) jprojmean=1;    fprintf(ficgp,"\n# Routine varevsij");
   if(mprojmean==0) jprojmean=1;    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
    /*   } */
   for(cptcov=1;cptcov<=i2;cptcov++){    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    pstamp(ficresvij);
       k=k+1;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
       fprintf(ficresf,"\n#******");    if(popbased==1)
       for(j=1;j<=cptcoveff;j++) {      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    else
       }      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
       fprintf(ficresf,"******\n");    fprintf(ficresvij,"# Age");
       fprintf(ficresf,"# StartingAge FinalAge");    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      for(j=1; j<=nlstate;j++)
              fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
          fprintf(ficresvij,"\n");
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {  
         fprintf(ficresf,"\n");    xp=vector(1,npar);
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           nhstepm = nhstepm/hstepm;  
              gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    gpp=vector(nlstate+1,nlstate+ndeath);
           oldm=oldms;savm=savms;    gmp=vector(nlstate+1,nlstate+ndeath);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
            
           for (h=0; h<=nhstepm; h++){    if(estepm < stepm){
             if (h==(int) (calagedate+YEARM*cpt)) {      printf ("Problem %d lower than %d\n",estepm, stepm);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    }
             }    else  hstepm=estepm;   
             for(j=1; j<=nlstate+ndeath;j++) {    /* For example we decided to compute the life expectancy with the smallest unit */
               kk1=0.;kk2=0;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
               for(i=1; i<=nlstate;i++) {                     nhstepm is the number of hstepm from age to agelim 
                 if (mobilav==1)       nstepm is the number of stepm from age to agelin. 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];       Look at hpijx to understand the reason of that which relies in memory size
                 else {       and note for a fixed period like k years */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                 }       survival function given by stepm (the optimization length). Unfortunately it
                       means that if the survival funtion is printed every two years of age and if
               }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
               if (h==(int)(calagedate+12*cpt)){       results. So we changed our mind and took the option of the best precision.
                 fprintf(ficresf," %.3f", kk1);    */
                            hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
               }    agelim = AGESUP;
             }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           }      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     }      gp=matrix(0,nhstepm,1,nlstate);
   }      gm=matrix(0,nhstepm,1,nlstate);
          
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
       for(theta=1; theta <=npar; theta++){
   fclose(ficresf);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
 }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
 /************** Forecasting ******************/        }
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;        if (popbased==1) {
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          if(mobilav ==0){
   double *popeffectif,*popcount;            for(i=1; i<=nlstate;i++)
   double ***p3mat,***tabpop,***tabpopprev;              prlim[i][i]=probs[(int)age][i][ij];
   char filerespop[FILENAMELENGTH];          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              prlim[i][i]=mobaverage[(int)age][i][ij];
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
   agelim=AGESUP;        }
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    
          for(j=1; j<= nlstate; j++){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          for(h=0; h<=nhstepm; h++){
              for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   strcpy(filerespop,"pop");          }
   strcat(filerespop,fileres);        }
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        /* This for computing probability of death (h=1 means
     printf("Problem with forecast resultfile: %s\n", filerespop);           computed over hstepm matrices product = hstepm*stepm months) 
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);           as a weighted average of prlim.
   }        */
   printf("Computing forecasting: result on file '%s' \n", filerespop);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        }    
         /* end probability of death */
   if (mobilav==1) {  
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     movingaverage(agedeb, fage, ageminpar, mobaverage);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   stepsize=(int) (stepm+YEARM-1)/YEARM;   
   if (stepm<=12) stepsize=1;        if (popbased==1) {
            if(mobilav ==0){
   agelim=AGESUP;            for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
   hstepm=1;          }else{ /* mobilav */ 
   hstepm=hstepm/stepm;            for(i=1; i<=nlstate;i++)
                prlim[i][i]=mobaverage[(int)age][i][ij];
   if (popforecast==1) {          }
     if((ficpop=fopen(popfile,"r"))==NULL) {        }
       printf("Problem with population file : %s\n",popfile);exit(0);  
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);        for(j=1; j<= nlstate; j++){
     }          for(h=0; h<=nhstepm; h++){
     popage=ivector(0,AGESUP);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     popeffectif=vector(0,AGESUP);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     popcount=vector(0,AGESUP);          }
            }
     i=1;          /* This for computing probability of death (h=1 means
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;           computed over hstepm matrices product = hstepm*stepm months) 
               as a weighted average of prlim.
     imx=i;        */
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
   for(cptcov=1;cptcov<=i2;cptcov++){        }    
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        /* end probability of death */
       k=k+1;  
       fprintf(ficrespop,"\n#******");        for(j=1; j<= nlstate; j++) /* vareij */
       for(j=1;j<=cptcoveff;j++) {          for(h=0; h<=nhstepm; h++){
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       }          }
       fprintf(ficrespop,"******\n");  
       fprintf(ficrespop,"# Age");        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
       if (popforecast==1)  fprintf(ficrespop," [Population]");        }
        
       for (cpt=0; cpt<=0;cpt++) {      } /* End theta */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
              trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      for(h=0; h<=nhstepm; h++) /* veij */
           nhstepm = nhstepm/hstepm;        for(j=1; j<=nlstate;j++)
                    for(theta=1; theta <=npar; theta++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            trgradg[h][j][theta]=gradg[h][theta][j];
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
                for(theta=1; theta <=npar; theta++)
           for (h=0; h<=nhstepm; h++){          trgradgp[j][theta]=gradgp[theta][j];
             if (h==(int) (calagedate+YEARM*cpt)) {    
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
             for(j=1; j<=nlstate+ndeath;j++) {      for(i=1;i<=nlstate;i++)
               kk1=0.;kk2=0;        for(j=1;j<=nlstate;j++)
               for(i=1; i<=nlstate;i++) {                        vareij[i][j][(int)age] =0.;
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      for(h=0;h<=nhstepm;h++){
                 else {        for(k=0;k<=nhstepm;k++){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
                 }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
               }          for(i=1;i<=nlstate;i++)
               if (h==(int)(calagedate+12*cpt)){            for(j=1;j<=nlstate;j++)
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
                   /*fprintf(ficrespop," %.3f", kk1);        }
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      }
               }    
             }      /* pptj */
             for(i=1; i<=nlstate;i++){      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
               kk1=0.;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
                 for(j=1; j<=nlstate;j++){      for(j=nlstate+1;j<=nlstate+ndeath;j++)
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];        for(i=nlstate+1;i<=nlstate+ndeath;i++)
                 }          varppt[j][i]=doldmp[j][i];
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      /* end ppptj */
             }      /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);   
           }      if (popbased==1) {
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if(mobilav ==0){
         }          for(i=1; i<=nlstate;i++)
       }            prlim[i][i]=probs[(int)age][i][ij];
          }else{ /* mobilav */ 
   /******/          for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {        }
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){               
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      /* This for computing probability of death (h=1 means
           nhstepm = nhstepm/hstepm;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
                   as a weighted average of prlim.
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      */
           oldm=oldms;savm=savms;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           for (h=0; h<=nhstepm; h++){          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
             if (h==(int) (calagedate+YEARM*cpt)) {      }    
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      /* end probability of death */
             }  
             for(j=1; j<=nlstate+ndeath;j++) {      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
               kk1=0.;kk2=0;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
               for(i=1; i<=nlstate;i++) {                      fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];            for(i=1; i<=nlstate;i++){
               }          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        }
             }      } 
           }      fprintf(ficresprobmorprev,"\n");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }      fprintf(ficresvij,"%.0f ",age );
       }      for(i=1; i<=nlstate;i++)
    }        for(j=1; j<=nlstate;j++){
   }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
          }
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
   if (popforecast==1) {      free_matrix(gm,0,nhstepm,1,nlstate);
     free_ivector(popage,0,AGESUP);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
     free_vector(popeffectif,0,AGESUP);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     free_vector(popcount,0,AGESUP);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }    } /* End age */
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_vector(gpp,nlstate+1,nlstate+ndeath);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    free_vector(gmp,nlstate+1,nlstate+ndeath);
   fclose(ficrespop);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
 }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
 /***********************************************/    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
 /**************** Main Program *****************/    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
 /***********************************************/  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
 int main(int argc, char *argv[])  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
 {    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
   double agedeb, agefin,hf;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   double fret;  */
   double **xi,tmp,delta;  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   double dum; /* Dummy variable */  
   double ***p3mat;    free_vector(xp,1,npar);
   int *indx;    free_matrix(doldm,1,nlstate,1,nlstate);
   char line[MAXLINE], linepar[MAXLINE];    free_matrix(dnewm,1,nlstate,1,npar);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   int firstobs=1, lastobs=10;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   int sdeb, sfin; /* Status at beginning and end */    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   int c,  h , cpt,l;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   int ju,jl, mi;    fclose(ficresprobmorprev);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    fflush(ficgp);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    fflush(fichtm); 
   int mobilav=0,popforecast=0;  }  /* end varevsij */
   int hstepm, nhstepm;  
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;  /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   double bage, fage, age, agelim, agebase;  {
   double ftolpl=FTOL;    /* Variance of prevalence limit */
   double **prlim;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   double *severity;    double **newm;
   double ***param; /* Matrix of parameters */    double **dnewm,**doldm;
   double  *p;    int i, j, nhstepm, hstepm;
   double **matcov; /* Matrix of covariance */    int k, cptcode;
   double ***delti3; /* Scale */    double *xp;
   double *delti; /* Scale */    double *gp, *gm;
   double ***eij, ***vareij;    double **gradg, **trgradg;
   double **varpl; /* Variances of prevalence limits by age */    double age,agelim;
   double *epj, vepp;    int theta;
   double kk1, kk2;    
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    pstamp(ficresvpl);
      fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
   char *alph[]={"a","a","b","c","d","e"}, str[4];    for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   char z[1]="c", occ;  
 #include <sys/time.h>    xp=vector(1,npar);
 #include <time.h>    dnewm=matrix(1,nlstate,1,npar);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    doldm=matrix(1,nlstate,1,nlstate);
      
   /* long total_usecs;    hstepm=1*YEARM; /* Every year of age */
   struct timeval start_time, end_time;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
      agelim = AGESUP;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   getcwd(pathcd, size);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
   printf("\n%s",version);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   if(argc <=1){      gradg=matrix(1,npar,1,nlstate);
     printf("\nEnter the parameter file name: ");      gp=vector(1,nlstate);
     scanf("%s",pathtot);      gm=vector(1,nlstate);
   }  
   else{      for(theta=1; theta <=npar; theta++){
     strcpy(pathtot,argv[1]);        for(i=1; i<=npar; i++){ /* Computes gradient */
   }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/        }
   /*cygwin_split_path(pathtot,path,optionfile);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/        for(i=1;i<=nlstate;i++)
   /* cutv(path,optionfile,pathtot,'\\');*/          gp[i] = prlim[i][i];
       
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);        for(i=1; i<=npar; i++) /* Computes gradient */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   chdir(path);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   replace(pathc,path);        for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
 /*-------- arguments in the command line --------*/  
         for(i=1;i<=nlstate;i++)
   /* Log file */          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   strcat(filelog, optionfilefiname);      } /* End theta */
   strcat(filelog,".log");    /* */  
   if((ficlog=fopen(filelog,"w"))==NULL)    {      trgradg =matrix(1,nlstate,1,npar);
     printf("Problem with logfile %s\n",filelog);  
     goto end;      for(j=1; j<=nlstate;j++)
   }        for(theta=1; theta <=npar; theta++)
   fprintf(ficlog,"Log filename:%s\n",filelog);          trgradg[j][theta]=gradg[theta][j];
   fprintf(ficlog,"\n%s",version);  
   fprintf(ficlog,"\nEnter the parameter file name: ");      for(i=1;i<=nlstate;i++)
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        varpl[i][(int)age] =0.;
   fflush(ficlog);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   /* */      for(i=1;i<=nlstate;i++)
   strcpy(fileres,"r");        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   strcat(fileres, optionfilefiname);  
   strcat(fileres,".txt");    /* Other files have txt extension */      fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
   /*---------arguments file --------*/        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      free_vector(gp,1,nlstate);
     printf("Problem with optionfile %s\n",optionfile);      free_vector(gm,1,nlstate);
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);      free_matrix(gradg,1,npar,1,nlstate);
     goto end;      free_matrix(trgradg,1,nlstate,1,npar);
   }    } /* End age */
   
   strcpy(filereso,"o");    free_vector(xp,1,npar);
   strcat(filereso,fileres);    free_matrix(doldm,1,nlstate,1,npar);
   if((ficparo=fopen(filereso,"w"))==NULL) {    free_matrix(dnewm,1,nlstate,1,nlstate);
     printf("Problem with Output resultfile: %s\n", filereso);  
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);  }
     goto end;  
   }  /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   /* Reads comments: lines beginning with '#' */  {
   while((c=getc(ficpar))=='#' && c!= EOF){    int i, j=0,  i1, k1, l1, t, tj;
     ungetc(c,ficpar);    int k2, l2, j1,  z1;
     fgets(line, MAXLINE, ficpar);    int k=0,l, cptcode;
     puts(line);    int first=1, first1;
     fputs(line,ficparo);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   }    double **dnewm,**doldm;
   ungetc(c,ficpar);    double *xp;
     double *gp, *gm;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    double **gradg, **trgradg;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    double **mu;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    double age,agelim, cov[NCOVMAX];
 while((c=getc(ficpar))=='#' && c!= EOF){    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     ungetc(c,ficpar);    int theta;
     fgets(line, MAXLINE, ficpar);    char fileresprob[FILENAMELENGTH];
     puts(line);    char fileresprobcov[FILENAMELENGTH];
     fputs(line,ficparo);    char fileresprobcor[FILENAMELENGTH];
   }  
   ungetc(c,ficpar);    double ***varpij;
    
        strcpy(fileresprob,"prob"); 
   covar=matrix(0,NCOVMAX,1,n);    strcat(fileresprob,fileres);
   cptcovn=0;    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   ncovmodel=2+cptcovn;    }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    strcpy(fileresprobcov,"probcov"); 
      strcat(fileresprobcov,fileres);
   /* Read guess parameters */    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   /* Reads comments: lines beginning with '#' */      printf("Problem with resultfile: %s\n", fileresprobcov);
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);    strcpy(fileresprobcor,"probcor"); 
     puts(line);    strcat(fileresprobcor,fileres);
     fputs(line,ficparo);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobcor);
   ungetc(c,ficpar);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
      }
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     for(i=1; i <=nlstate; i++)    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     for(j=1; j <=nlstate+ndeath-1; j++){    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       fprintf(ficparo,"%1d%1d",i1,j1);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       if(mle==1)    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         printf("%1d%1d",i,j);    pstamp(ficresprob);
       fprintf(ficlog,"%1d%1d",i,j);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       for(k=1; k<=ncovmodel;k++){    fprintf(ficresprob,"# Age");
         fscanf(ficpar," %lf",&param[i][j][k]);    pstamp(ficresprobcov);
         if(mle==1){    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
           printf(" %lf",param[i][j][k]);    fprintf(ficresprobcov,"# Age");
           fprintf(ficlog," %lf",param[i][j][k]);    pstamp(ficresprobcor);
         }    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
         else    fprintf(ficresprobcor,"# Age");
           fprintf(ficlog," %lf",param[i][j][k]);  
         fprintf(ficparo," %lf",param[i][j][k]);  
       }    for(i=1; i<=nlstate;i++)
       fscanf(ficpar,"\n");      for(j=1; j<=(nlstate+ndeath);j++){
       if(mle==1)        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         printf("\n");        fprintf(ficresprobcov," p%1d-%1d ",i,j);
       fprintf(ficlog,"\n");        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       fprintf(ficparo,"\n");      }  
     }   /* fprintf(ficresprob,"\n");
      fprintf(ficresprobcov,"\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    fprintf(ficresprobcor,"\n");
    */
   p=param[1][1];   xp=vector(1,npar);
      dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   /* Reads comments: lines beginning with '#' */    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   while((c=getc(ficpar))=='#' && c!= EOF){    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     ungetc(c,ficpar);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     fgets(line, MAXLINE, ficpar);    first=1;
     puts(line);    fprintf(ficgp,"\n# Routine varprob");
     fputs(line,ficparo);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   }    fprintf(fichtm,"\n");
   ungetc(c,ficpar);  
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    file %s<br>\n",optionfilehtmcov);
   for(i=1; i <=nlstate; i++){    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     for(j=1; j <=nlstate+ndeath-1; j++){  and drawn. It helps understanding how is the covariance between two incidences.\
       fscanf(ficpar,"%1d%1d",&i1,&j1);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       printf("%1d%1d",i,j);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
       fprintf(ficparo,"%1d%1d",i1,j1);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
       for(k=1; k<=ncovmodel;k++){  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
         fscanf(ficpar,"%le",&delti3[i][j][k]);  standard deviations wide on each axis. <br>\
         printf(" %le",delti3[i][j][k]);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
         fprintf(ficparo," %le",delti3[i][j][k]);   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
       }  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
       fscanf(ficpar,"\n");  
       printf("\n");    cov[1]=1;
       fprintf(ficparo,"\n");    tj=cptcoveff;
     }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   }    j1=0;
   delti=delti3[1][1];    for(t=1; t<=tj;t++){
        for(i1=1; i1<=ncodemax[t];i1++){ 
   /* Reads comments: lines beginning with '#' */        j1++;
   while((c=getc(ficpar))=='#' && c!= EOF){        if  (cptcovn>0) {
     ungetc(c,ficpar);          fprintf(ficresprob, "\n#********** Variable "); 
     fgets(line, MAXLINE, ficpar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     puts(line);          fprintf(ficresprob, "**********\n#\n");
     fputs(line,ficparo);          fprintf(ficresprobcov, "\n#********** Variable "); 
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   ungetc(c,ficpar);          fprintf(ficresprobcov, "**********\n#\n");
            
   matcov=matrix(1,npar,1,npar);          fprintf(ficgp, "\n#********** Variable "); 
   for(i=1; i <=npar; i++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fscanf(ficpar,"%s",&str);          fprintf(ficgp, "**********\n#\n");
     if(mle==1)          
       printf("%s",str);          
     fprintf(ficlog,"%s",str);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     fprintf(ficparo,"%s",str);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     for(j=1; j <=i; j++){          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
       fscanf(ficpar," %le",&matcov[i][j]);          
       if(mle==1){          fprintf(ficresprobcor, "\n#********** Variable ");    
         printf(" %.5le",matcov[i][j]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficlog," %.5le",matcov[i][j]);          fprintf(ficresprobcor, "**********\n#");    
       }        }
       else        
         fprintf(ficlog," %.5le",matcov[i][j]);        for (age=bage; age<=fage; age ++){ 
       fprintf(ficparo," %.5le",matcov[i][j]);          cov[2]=age;
     }          for (k=1; k<=cptcovn;k++) {
     fscanf(ficpar,"\n");            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     if(mle==1)          }
       printf("\n");          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     fprintf(ficlog,"\n");          for (k=1; k<=cptcovprod;k++)
     fprintf(ficparo,"\n");            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   }          
   for(i=1; i <=npar; i++)          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     for(j=i+1;j<=npar;j++)          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       matcov[i][j]=matcov[j][i];          gp=vector(1,(nlstate)*(nlstate+ndeath));
              gm=vector(1,(nlstate)*(nlstate+ndeath));
   if(mle==1)      
     printf("\n");          for(theta=1; theta <=npar; theta++){
   fprintf(ficlog,"\n");            for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
     /*-------- Rewriting paramater file ----------*/            pmij(pmmij,cov,ncovmodel,xp,nlstate);
      strcpy(rfileres,"r");    /* "Rparameterfile */            
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/            k=0;
      strcat(rfileres,".");    /* */            for(i=1; i<= (nlstate); i++){
      strcat(rfileres,optionfilext);    /* Other files have txt extension */              for(j=1; j<=(nlstate+ndeath);j++){
     if((ficres =fopen(rfileres,"w"))==NULL) {                k=k+1;
       printf("Problem writing new parameter file: %s\n", fileres);goto end;                gp[k]=pmmij[i][j];
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;              }
     }            }
     fprintf(ficres,"#%s\n",version);            
                for(i=1; i<=npar; i++)
     /*-------- data file ----------*/              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     if((fic=fopen(datafile,"r"))==NULL)    {      
       printf("Problem with datafile: %s\n", datafile);goto end;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;            k=0;
     }            for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
     n= lastobs;                k=k+1;
     severity = vector(1,maxwav);                gm[k]=pmmij[i][j];
     outcome=imatrix(1,maxwav+1,1,n);              }
     num=ivector(1,n);            }
     moisnais=vector(1,n);       
     annais=vector(1,n);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     moisdc=vector(1,n);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     andc=vector(1,n);          }
     agedc=vector(1,n);  
     cod=ivector(1,n);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     weight=vector(1,n);            for(theta=1; theta <=npar; theta++)
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */              trgradg[j][theta]=gradg[theta][j];
     mint=matrix(1,maxwav,1,n);          
     anint=matrix(1,maxwav,1,n);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     s=imatrix(1,maxwav+1,1,n);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     adl=imatrix(1,maxwav+1,1,n);              free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     tab=ivector(1,NCOVMAX);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     ncodemax=ivector(1,8);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     i=1;  
     while (fgets(line, MAXLINE, fic) != NULL)    {          pmij(pmmij,cov,ncovmodel,x,nlstate);
       if ((i >= firstobs) && (i <=lastobs)) {          
                  k=0;
         for (j=maxwav;j>=1;j--){          for(i=1; i<=(nlstate); i++){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);            for(j=1; j<=(nlstate+ndeath);j++){
           strcpy(line,stra);              k=k+1;
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              mu[k][(int) age]=pmmij[i][j];
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            }
         }          }
                  for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);              varpij[i][j][(int)age] = doldm[i][j];
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          /*printf("\n%d ",(int)age);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
         for (j=ncovcol;j>=1;j--){            }*/
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }          fprintf(ficresprob,"\n%d ",(int)age);
         num[i]=atol(stra);          fprintf(ficresprobcov,"\n%d ",(int)age);
                  fprintf(ficresprobcor,"\n%d ",(int)age);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
         i=i+1;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       }            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     }            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
     /* printf("ii=%d", ij);          }
        scanf("%d",i);*/          i=0;
   imx=i-1; /* Number of individuals */          for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
   /* for (i=1; i<=imx; i++){              i=i++;
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;              for (j=1; j<=i;j++){
     }*/                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
    /*  for (i=1; i<=imx; i++){                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
      if (s[4][i]==9)  s[4][i]=-1;              }
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/            }
            }/* end of loop for state */
          } /* end of loop for age */
   /* Calculation of the number of parameter from char model*/  
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */        /* Confidence intervalle of pij  */
   Tprod=ivector(1,15);        /*
   Tvaraff=ivector(1,15);          fprintf(ficgp,"\nset noparametric;unset label");
   Tvard=imatrix(1,15,1,2);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   Tage=ivector(1,15);                fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
              fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   if (strlen(model) >1){          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     j=0, j1=0, k1=1, k2=1;          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     j=nbocc(model,'+');          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     j1=nbocc(model,'*');        */
     cptcovn=j+1;  
     cptcovprod=j1;        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
            first1=1;
     strcpy(modelsav,model);        for (k2=1; k2<=(nlstate);k2++){
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
       printf("Error. Non available option model=%s ",model);            if(l2==k2) continue;
       fprintf(ficlog,"Error. Non available option model=%s ",model);            j=(k2-1)*(nlstate+ndeath)+l2;
       goto end;            for (k1=1; k1<=(nlstate);k1++){
     }              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                    if(l1==k1) continue;
     for(i=(j+1); i>=1;i--){                i=(k1-1)*(nlstate+ndeath)+l1;
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */                if(i<=j) continue;
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */                for (age=bage; age<=fage; age ++){ 
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/                  if ((int)age %5==0){
       /*scanf("%d",i);*/                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
       if (strchr(strb,'*')) {  /* Model includes a product */                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
         if (strcmp(strc,"age")==0) { /* Vn*age */                    mu1=mu[i][(int) age]/stepm*YEARM ;
           cptcovprod--;                    mu2=mu[j][(int) age]/stepm*YEARM;
           cutv(strb,stre,strd,'V');                    c12=cv12/sqrt(v1*v2);
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/                    /* Computing eigen value of matrix of covariance */
           cptcovage++;                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
             Tage[cptcovage]=i;                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
             /*printf("stre=%s ", stre);*/                    /* Eigen vectors */
         }                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
         else if (strcmp(strd,"age")==0) { /* or age*Vn */                    /*v21=sqrt(1.-v11*v11); *//* error */
           cptcovprod--;                    v21=(lc1-v1)/cv12*v11;
           cutv(strb,stre,strc,'V');                    v12=-v21;
           Tvar[i]=atoi(stre);                    v22=v11;
           cptcovage++;                    tnalp=v21/v11;
           Tage[cptcovage]=i;                    if(first1==1){
         }                      first1=0;
         else {  /* Age is not in the model */                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/                    }
           Tvar[i]=ncovcol+k1;                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */                    /*printf(fignu*/
           Tprod[k1]=i;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
           Tvard[k1][1]=atoi(strc); /* m*/                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
           Tvard[k1][2]=atoi(stre); /* n */                    if(first==1){
           Tvar[cptcovn+k2]=Tvard[k1][1];                      first=0;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                      fprintf(ficgp,"\nset parametric;unset label");
           for (k=1; k<=lastobs;k++)                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           k1++;                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
           k2=k2+2;   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
         }  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
       }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
       else { /* no more sum */                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
        /*  scanf("%d",i);*/                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
       cutv(strd,strc,strb,'V');                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       Tvar[i]=atoi(strc);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
       strcpy(modelsav,stra);                        fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         scanf("%d",i);*/                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     } /* end of loop + */                    }else{
   } /* end model */                      first=0;
                        fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   printf("cptcovprod=%d ", cptcovprod);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   scanf("%d ",i);*/                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     fclose(fic);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
     /*  if(mle==1){*/                  } /* age mod 5 */
     if (weightopt != 1) { /* Maximisation without weights*/                } /* end loop age */
       for(i=1;i<=n;i++) weight[i]=1.0;                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     }                first=1;
     /*-calculation of age at interview from date of interview and age at death -*/              } /*l12 */
     agev=matrix(1,maxwav,1,imx);            } /* k12 */
           } /*l1 */
     for (i=1; i<=imx; i++) {        }/* k1 */
       for(m=2; (m<= maxwav); m++) {      } /* loop covariates */
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    }
          anint[m][i]=9999;    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
          s[m][i]=-1;    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
        }    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
       }    free_vector(xp,1,npar);
     }    fclose(ficresprob);
     fclose(ficresprobcov);
     for (i=1; i<=imx; i++)  {    fclose(ficresprobcor);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    fflush(ficgp);
       for(m=1; (m<= maxwav); m++){    fflush(fichtmcov);
         if(s[m][i] >0){  }
           if (s[m][i] >= nlstate+1) {  
             if(agedc[i]>0)  
               if(moisdc[i]!=99 && andc[i]!=9999)  /******************* Printing html file ***********/
                 agev[m][i]=agedc[i];  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/                    int lastpass, int stepm, int weightopt, char model[],\
            else {                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
               if (andc[i]!=9999){                    int popforecast, int estepm ,\
               printf("Warning negative age at death: %d line:%d\n",num[i],i);                    double jprev1, double mprev1,double anprev1, \
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);                    double jprev2, double mprev2,double anprev2){
               agev[m][i]=-1;    int jj1, k1, i1, cpt;
               }  
             }     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
           }     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
           else if(s[m][i] !=9){ /* Should no more exist */  </ul>");
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
             if(mint[m][i]==99 || anint[m][i]==9999)   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
               agev[m][i]=1;             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
             else if(agev[m][i] <agemin){     fprintf(fichtm,"\
               agemin=agev[m][i];   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
             }     fprintf(fichtm,"\
             else if(agev[m][i] >agemax){   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
               agemax=agev[m][i];             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/     fprintf(fichtm,"\
             }   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
             /*agev[m][i]=anint[m][i]-annais[i];*/     <a href=\"%s\">%s</a> <br>\n</li>",
             /*   agev[m][i] = age[i]+2*m;*/             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
           }  
           else { /* =9 */  
             agev[m][i]=1;  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
             s[m][i]=-1;  
           }   m=cptcoveff;
         }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
         else /*= 0 Unknown */  
           agev[m][i]=1;   jj1=0;
       }   for(k1=1; k1<=m;k1++){
         for(i1=1; i1<=ncodemax[k1];i1++){
     }       jj1++;
     for (i=1; i<=imx; i++)  {       if (cptcovn > 0) {
       for(m=1; (m<= maxwav); m++){         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
         if (s[m][i] > (nlstate+ndeath)) {         for (cpt=1; cpt<=cptcoveff;cpt++) 
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);             fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);           fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           goto end;       }
         }       /* Pij */
       }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
     }  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
     free_vector(severity,1,maxwav);         /* Period (stable) prevalence in each health state */
     free_imatrix(outcome,1,maxwav+1,1,n);         for(cpt=1; cpt<nlstate;cpt++){
     free_vector(moisnais,1,n);           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
     free_vector(annais,1,n);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     /* free_matrix(mint,1,maxwav,1,n);         }
        free_matrix(anint,1,maxwav,1,n);*/       for(cpt=1; cpt<=nlstate;cpt++) {
     free_vector(moisdc,1,n);          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
     free_vector(andc,1,n);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
         } /* end i1 */
     wav=ivector(1,imx);   }/* End k1 */
     dh=imatrix(1,lastpass-firstpass+1,1,imx);   fprintf(fichtm,"</ul>");
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  
      
     /* Concatenates waves */   fprintf(fichtm,"\
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
       Tcode=ivector(1,100);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
       ncodemax[1]=1;   fprintf(fichtm,"\
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                 subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
    codtab=imatrix(1,100,1,10);  
    h=0;   fprintf(fichtm,"\
    m=pow(2,cptcoveff);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
             subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    for(k=1;k<=cptcoveff; k++){   fprintf(fichtm,"\
      for(i=1; i <=(m/pow(2,k));i++){   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
        for(j=1; j <= ncodemax[k]; j++){     <a href=\"%s\">%s</a> <br>\n</li>",
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
            h++;   fprintf(fichtm,"\
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/     <a href=\"%s\">%s</a> <br>\n</li>",
          }             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
        }   fprintf(fichtm,"\
      }   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
    }           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);   fprintf(fichtm,"\
       codtab[1][2]=1;codtab[2][2]=2; */   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
    /* for(i=1; i <=m ;i++){           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
       for(k=1; k <=cptcovn; k++){   fprintf(fichtm,"\
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
       }           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
       printf("\n");  
       }  /*  if(popforecast==1) fprintf(fichtm,"\n */
       scanf("%d",i);*/  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
      /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
    /* Calculates basic frequencies. Computes observed prevalence at single age  /*      <br>",fileres,fileres,fileres,fileres); */
        and prints on file fileres'p'. */  /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
       fflush(fichtm);
       fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   m=cptcoveff;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */   jj1=0;
         for(k1=1; k1<=m;k1++){
     /* For Powell, parameters are in a vector p[] starting at p[1]     for(i1=1; i1<=ncodemax[k1];i1++){
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */       jj1++;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */       if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     if(mle==1){         for (cpt=1; cpt<=cptcoveff;cpt++) 
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           }
     /*--------- results files --------------*/       for(cpt=1; cpt<=nlstate;cpt++) {
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
    prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
    jk=1;       }
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  health expectancies in states (1) and (2): %s%d.png<br>\
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
    for(i=1,jk=1; i <=nlstate; i++){     } /* end i1 */
      for(k=1; k <=(nlstate+ndeath); k++){   }/* End k1 */
        if (k != i)   fprintf(fichtm,"</ul>");
          {   fflush(fichtm);
            printf("%d%d ",i,k);  }
            fprintf(ficlog,"%d%d ",i,k);  
            fprintf(ficres,"%1d%1d ",i,k);  /******************* Gnuplot file **************/
            for(j=1; j <=ncovmodel; j++){  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
              printf("%f ",p[jk]);  
              fprintf(ficlog,"%f ",p[jk]);    char dirfileres[132],optfileres[132];
              fprintf(ficres,"%f ",p[jk]);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
              jk++;    int ng;
            }  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
            printf("\n");  /*     printf("Problem with file %s",optionfilegnuplot); */
            fprintf(ficlog,"\n");  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
            fprintf(ficres,"\n");  /*   } */
          }  
      }    /*#ifdef windows */
    }    fprintf(ficgp,"cd \"%s\" \n",pathc);
    if(mle==1){      /*#endif */
      /* Computing hessian and covariance matrix */    m=pow(2,cptcoveff);
      ftolhess=ftol; /* Usually correct */  
      hesscov(matcov, p, npar, delti, ftolhess, func);    strcpy(dirfileres,optionfilefiname);
    }    strcpy(optfileres,"vpl");
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");   /* 1eme*/
    printf("# Scales (for hessian or gradient estimation)\n");    for (cpt=1; cpt<= nlstate ; cpt ++) {
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");     for (k1=1; k1<= m ; k1 ++) {
    for(i=1,jk=1; i <=nlstate; i++){       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
      for(j=1; j <=nlstate+ndeath; j++){       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        if (j!=i) {       fprintf(ficgp,"set xlabel \"Age\" \n\
          fprintf(ficres,"%1d%1d",i,j);  set ylabel \"Probability\" \n\
          printf("%1d%1d",i,j);  set ter png small\n\
          fprintf(ficlog,"%1d%1d",i,j);  set size 0.65,0.65\n\
          for(k=1; k<=ncovmodel;k++){  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
            printf(" %.5e",delti[jk]);  
            fprintf(ficlog," %.5e",delti[jk]);       for (i=1; i<= nlstate ; i ++) {
            fprintf(ficres," %.5e",delti[jk]);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
            jk++;         else fprintf(ficgp," \%%*lf (\%%*lf)");
          }       }
          printf("\n");       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
          fprintf(ficlog,"\n");       for (i=1; i<= nlstate ; i ++) {
          fprintf(ficres,"\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
        }         else fprintf(ficgp," \%%*lf (\%%*lf)");
      }       } 
    }       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
           for (i=1; i<= nlstate ; i ++) {
    k=1;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");         else fprintf(ficgp," \%%*lf (\%%*lf)");
    if(mle==1)       }  
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");     }
    for(i=1;i<=npar;i++){    }
      /*  if (k>nlstate) k=1;    /*2 eme*/
          i1=(i-1)/(ncovmodel*nlstate)+1;    
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    for (k1=1; k1<= m ; k1 ++) { 
          printf("%s%d%d",alph[k],i1,tab[i]);*/      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
      fprintf(ficres,"%3d",i);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
      if(mle==1)      
        printf("%3d",i);      for (i=1; i<= nlstate+1 ; i ++) {
      fprintf(ficlog,"%3d",i);        k=2*i;
      for(j=1; j<=i;j++){        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
        fprintf(ficres," %.5e",matcov[i][j]);        for (j=1; j<= nlstate+1 ; j ++) {
        if(mle==1)          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
          printf(" %.5e",matcov[i][j]);          else fprintf(ficgp," \%%*lf (\%%*lf)");
        fprintf(ficlog," %.5e",matcov[i][j]);        }   
      }        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
      fprintf(ficres,"\n");        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
      if(mle==1)        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
        printf("\n");        for (j=1; j<= nlstate+1 ; j ++) {
      fprintf(ficlog,"\n");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
      k++;          else fprintf(ficgp," \%%*lf (\%%*lf)");
    }        }   
            fprintf(ficgp,"\" t\"\" w l 0,");
    while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
      ungetc(c,ficpar);        for (j=1; j<= nlstate+1 ; j ++) {
      fgets(line, MAXLINE, ficpar);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
      puts(line);          else fprintf(ficgp," \%%*lf (\%%*lf)");
      fputs(line,ficparo);        }   
    }        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
    ungetc(c,ficpar);        else fprintf(ficgp,"\" t\"\" w l 0,");
    estepm=0;      }
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    }
    if (estepm==0 || estepm < stepm) estepm=stepm;    
    if (fage <= 2) {    /*3eme*/
      bage = ageminpar;    
      fage = agemaxpar;    for (k1=1; k1<= m ; k1 ++) { 
    }      for (cpt=1; cpt<= nlstate ; cpt ++) {
            /*       k=2+nlstate*(2*cpt-2); */
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        k=2+(nlstate+1)*(cpt-1);
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        fprintf(ficgp,"set ter png small\n\
      set size 0.65,0.65\n\
    while((c=getc(ficpar))=='#' && c!= EOF){  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
      ungetc(c,ficpar);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
      fgets(line, MAXLINE, ficpar);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
      puts(line);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
      fputs(line,ficparo);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
    }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
    ungetc(c,ficpar);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
            
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);        */
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        for (i=1; i< nlstate ; i ++) {
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
              /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
    while((c=getc(ficpar))=='#' && c!= EOF){          
      ungetc(c,ficpar);        } 
      fgets(line, MAXLINE, ficpar);        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
      puts(line);      }
      fputs(line,ficparo);    }
    }    
    ungetc(c,ficpar);    /* CV preval stable (period) */
      for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
    dateprev1=anprev1+mprev1/12.+jprev1/365.;        k=3;
    dateprev2=anprev2+mprev2/12.+jprev2/365.;        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   fscanf(ficpar,"pop_based=%d\n",&popbased);  set ter png small\nset size 0.65,0.65\n\
   fprintf(ficparo,"pop_based=%d\n",popbased);    unset log y\n\
   fprintf(ficres,"pop_based=%d\n",popbased);    plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
          
   while((c=getc(ficpar))=='#' && c!= EOF){        for (i=1; i< nlstate ; i ++)
     ungetc(c,ficpar);          fprintf(ficgp,"+$%d",k+i+1);
     fgets(line, MAXLINE, ficpar);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
     puts(line);        
     fputs(line,ficparo);        l=3+(nlstate+ndeath)*cpt;
   }        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   ungetc(c,ficpar);        for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);          fprintf(ficgp,"+$%d",l+i+1);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        }
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
 while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);    /* proba elementaires */
     fgets(line, MAXLINE, ficpar);    for(i=1,jk=1; i <=nlstate; i++){
     puts(line);      for(k=1; k <=(nlstate+ndeath); k++){
     fputs(line,ficparo);        if (k != i) {
   }          for(j=1; j <=ncovmodel; j++){
   ungetc(c,ficpar);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);            fprintf(ficgp,"\n");
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          }
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        }
       }
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);     }
   
 /*------------ gnuplot -------------*/     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   strcpy(optionfilegnuplot,optionfilefiname);       for(jk=1; jk <=m; jk++) {
   strcat(optionfilegnuplot,".gp");         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {         if (ng==2)
     printf("Problem with file %s",optionfilegnuplot);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   }         else
   fclose(ficgp);           fprintf(ficgp,"\nset title \"Probability\"\n");
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
 /*--------- index.htm --------*/         i=1;
          for(k2=1; k2<=nlstate; k2++) {
   strcpy(optionfilehtm,optionfile);           k3=i;
   strcat(optionfilehtm,".htm");           for(k=1; k<=(nlstate+ndeath); k++) {
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {             if (k != k2){
     printf("Problem with %s \n",optionfilehtm), exit(0);               if(ng==2)
   }                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n               ij=1;
 \n               for(j=3; j <=ncovmodel; j++) {
 Total number of observations=%d <br>\n                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 <hr  size=\"2\" color=\"#EC5E5E\">                   ij++;
  <ul><li><h4>Parameter files</h4>\n                 }
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n                 else
  - Log file of the run: <a href=\"%s\">%s</a><br>\n                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);               }
   fclose(fichtm);               fprintf(ficgp,")/(1");
                
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);               for(k1=1; k1 <=nlstate; k1++){   
                   fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
 /*------------ free_vector  -------------*/                 ij=1;
  chdir(path);                 for(j=3; j <=ncovmodel; j++){
                     if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
  free_ivector(wav,1,imx);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                     ij++;
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                     }
  free_ivector(num,1,n);                   else
  free_vector(agedc,1,n);                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/                 }
  fclose(ficparo);                 fprintf(ficgp,")");
  fclose(ficres);               }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   /*--------------- Prevalence limit --------------*/               i=i+ncovmodel;
               }
   strcpy(filerespl,"pl");           } /* end k */
   strcat(filerespl,fileres);         } /* end k2 */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {       } /* end jk */
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;     } /* end ng */
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;     fflush(ficgp); 
   }  }  /* end gnuplot */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);  
   fprintf(ficrespl,"#Prevalence limit\n");  /*************** Moving average **************/
   fprintf(ficrespl,"#Age ");  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  
   fprintf(ficrespl,"\n");    int i, cpt, cptcod;
      int modcovmax =1;
   prlim=matrix(1,nlstate,1,nlstate);    int mobilavrange, mob;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double age;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                             a covariate has 2 modalities */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   k=0;  
   agebase=ageminpar;    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
   agelim=agemaxpar;      if(mobilav==1) mobilavrange=5; /* default */
   ftolpl=1.e-10;      else mobilavrange=mobilav;
   i1=cptcoveff;      for (age=bage; age<=fage; age++)
   if (cptcovn < 1){i1=1;}        for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
   for(cptcov=1;cptcov<=i1;cptcov++){            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      /* We keep the original values on the extreme ages bage, fage and for 
         k=k+1;         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/         we use a 5 terms etc. until the borders are no more concerned. 
         fprintf(ficrespl,"\n#******");      */ 
         printf("\n#******");      for (mob=3;mob <=mobilavrange;mob=mob+2){
         fprintf(ficlog,"\n#******");        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
         for(j=1;j<=cptcoveff;j++) {          for (i=1; i<=nlstate;i++){
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            for (cptcod=1;cptcod<=modcovmax;cptcod++){
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
         }                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
         fprintf(ficrespl,"******\n");                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
         printf("******\n");                }
         fprintf(ficlog,"******\n");              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
                    }
         for (age=agebase; age<=agelim; age++){          }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        }/* end age */
           fprintf(ficrespl,"%.0f",age );      }/* end mob */
           for(i=1; i<=nlstate;i++)    }else return -1;
           fprintf(ficrespl," %.5f", prlim[i][i]);    return 0;
           fprintf(ficrespl,"\n");  }/* End movingaverage */
         }  
       }  
     }  /************** Forecasting ******************/
   fclose(ficrespl);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
   /*------------- h Pij x at various ages ------------*/       agemin, agemax range of age
         dateprev1 dateprev2 range of dates during which prevalence is computed
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);       anproj2 year of en of projection (same day and month as proj1).
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;    int *popage;
   }    double agec; /* generic age */
   printf("Computing pij: result on file '%s' \n", filerespij);    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);    double *popeffectif,*popcount;
      double ***p3mat;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double ***mobaverage;
   /*if (stepm<=24) stepsize=2;*/    char fileresf[FILENAMELENGTH];
   
   agelim=AGESUP;    agelim=AGESUP;
   hstepm=stepsize*YEARM; /* Every year of age */    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */   
     strcpy(fileresf,"f"); 
   /* hstepm=1;   aff par mois*/    strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
   k=0;      printf("Problem with forecast resultfile: %s\n", fileresf);
   for(cptcov=1;cptcov<=i1;cptcov++){      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    }
       k=k+1;    printf("Computing forecasting: result on file '%s' \n", fileresf);
         fprintf(ficrespij,"\n#****** ");    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
         for(j=1;j<=cptcoveff;j++)  
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
         fprintf(ficrespij,"******\n");  
            if (mobilav!=0) {
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
           /*      nhstepm=nhstepm*YEARM; aff par mois*/      }
     }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    stepsize=(int) (stepm+YEARM-1)/YEARM;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      if (stepm<=12) stepsize=1;
           fprintf(ficrespij,"# Age");    if(estepm < stepm){
           for(i=1; i<=nlstate;i++)      printf ("Problem %d lower than %d\n",estepm, stepm);
             for(j=1; j<=nlstate+ndeath;j++)    }
               fprintf(ficrespij," %1d-%1d",i,j);    else  hstepm=estepm;   
           fprintf(ficrespij,"\n");  
            for (h=0; h<=nhstepm; h++){    hstepm=hstepm/stepm; 
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
             for(i=1; i<=nlstate;i++)                                 fractional in yp1 */
               for(j=1; j<=nlstate+ndeath;j++)    anprojmean=yp;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    yp2=modf((yp1*12),&yp);
             fprintf(ficrespij,"\n");    mprojmean=yp;
              }    yp1=modf((yp2*30.5),&yp);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    jprojmean=yp;
           fprintf(ficrespij,"\n");    if(jprojmean==0) jprojmean=1;
         }    if(mprojmean==0) jprojmean=1;
     }  
   }    i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
   fclose(ficrespij);    
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*---------- Forecasting ------------------*/  /*            if (h==(int)(YEARM*yearp)){ */
   if((stepm == 1) && (strcmp(model,".")==0)){    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);        k=k+1;
   }        fprintf(ficresf,"\n#******");
   else{        for(j=1;j<=cptcoveff;j++) {
     erreur=108;          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);        }
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);        fprintf(ficresf,"******\n");
   }        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
          for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
   /*---------- Health expectancies and variances ------------*/            fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
   strcpy(filerest,"t");        }
   strcat(filerest,fileres);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
   if((ficrest=fopen(filerest,"w"))==NULL) {          fprintf(ficresf,"\n");
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;  
   }          for (agec=fage; agec>=(ageminpar-1); agec--){ 
   printf("Computing Total LEs with variances: file '%s' \n", filerest);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);            nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
   strcpy(filerese,"e");            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
   strcat(filerese,fileres);          
   if((ficreseij=fopen(filerese,"w"))==NULL) {            for (h=0; h<=nhstepm; h++){
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);              if (h*hstepm/YEARM*stepm ==yearp) {
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                fprintf(ficresf,"\n");
   }                for(j=1;j<=cptcoveff;j++) 
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
   strcpy(fileresv,"v");              for(j=1; j<=nlstate+ndeath;j++) {
   strcat(fileresv,fileres);                ppij=0.;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {                for(i=1; i<=nlstate;i++) {
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);                  if (mobilav==1) 
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
   }                  else {
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                  }
   calagedate=-1;                  if (h*hstepm/YEARM*stepm== yearp) {
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
   k=0;                } /* end i */
   for(cptcov=1;cptcov<=i1;cptcov++){                if (h*hstepm/YEARM*stepm==yearp) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                  fprintf(ficresf," %.3f", ppij);
       k=k+1;                }
       fprintf(ficrest,"\n#****** ");              }/* end j */
       for(j=1;j<=cptcoveff;j++)            } /* end h */
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficrest,"******\n");          } /* end agec */
         } /* end yearp */
       fprintf(ficreseij,"\n#****** ");      } /* end cptcod */
       for(j=1;j<=cptcoveff;j++)    } /* end  cptcov */
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         
       fprintf(ficreseij,"******\n");    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
       fprintf(ficresvij,"\n#****** ");    fclose(ficresf);
       for(j=1;j<=cptcoveff;j++)  }
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficresvij,"******\n");  /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    
       oldm=oldms;savm=savms;    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      int *popage;
      double calagedatem, agelim, kk1, kk2;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    double *popeffectif,*popcount;
       oldm=oldms;savm=savms;    double ***p3mat,***tabpop,***tabpopprev;
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);    double ***mobaverage;
       if(popbased==1){    char filerespop[FILENAMELENGTH];
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);  
        }    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      agelim=AGESUP;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    
       fprintf(ficrest,"\n");    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
       epj=vector(1,nlstate+1);    
       for(age=bage; age <=fage ;age++){    strcpy(filerespop,"pop"); 
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    strcat(filerespop,fileres);
         if (popbased==1) {    if((ficrespop=fopen(filerespop,"w"))==NULL) {
           for(i=1; i<=nlstate;i++)      printf("Problem with forecast resultfile: %s\n", filerespop);
             prlim[i][i]=probs[(int)age][i][k];      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
         }    }
            printf("Computing forecasting: result on file '%s' \n", filerespop);
         fprintf(ficrest," %4.0f",age);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    if (cptcoveff==0) ncodemax[cptcoveff]=1;
             epj[j] += prlim[i][i]*eij[i][j][(int)age];  
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    if (mobilav!=0) {
           }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           epj[nlstate+1] +=epj[j];      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
         for(i=1, vepp=0.;i <=nlstate;i++)      }
           for(j=1;j <=nlstate;j++)    }
             vepp += vareij[i][j][(int)age];  
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    stepsize=(int) (stepm+YEARM-1)/YEARM;
         for(j=1;j <=nlstate;j++){    if (stepm<=12) stepsize=1;
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    
         }    agelim=AGESUP;
         fprintf(ficrest,"\n");    
       }    hstepm=1;
     }    hstepm=hstepm/stepm; 
   }    
 free_matrix(mint,1,maxwav,1,n);    if (popforecast==1) {
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);      if((ficpop=fopen(popfile,"r"))==NULL) {
     free_vector(weight,1,n);        printf("Problem with population file : %s\n",popfile);exit(0);
   fclose(ficreseij);        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
   fclose(ficresvij);      } 
   fclose(ficrest);      popage=ivector(0,AGESUP);
   fclose(ficpar);      popeffectif=vector(0,AGESUP);
   free_vector(epj,1,nlstate+1);      popcount=vector(0,AGESUP);
        
   /*------- Variance limit prevalence------*/        i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
   strcpy(fileresvpl,"vpl");     
   strcat(fileresvpl,fileres);      imx=i;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    }
     exit(0);  
   }    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
   k=0;        fprintf(ficrespop,"\n#******");
   for(cptcov=1;cptcov<=i1;cptcov++){        for(j=1;j<=cptcoveff;j++) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       k=k+1;        }
       fprintf(ficresvpl,"\n#****** ");        fprintf(ficrespop,"******\n");
       for(j=1;j<=cptcoveff;j++)        fprintf(ficrespop,"# Age");
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
       fprintf(ficresvpl,"******\n");        if (popforecast==1)  fprintf(ficrespop," [Population]");
              
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        for (cpt=0; cpt<=0;cpt++) { 
       oldm=oldms;savm=savms;          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          
     }          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
  }            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
   fclose(ficresvpl);            
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /*---------- End : free ----------------*/            oldm=oldms;savm=savms;
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
            
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);            for (h=0; h<=nhstepm; h++){
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);              if (h==(int) (calagedatem+YEARM*cpt)) {
                  fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
                } 
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);              for(j=1; j<=nlstate+ndeath;j++) {
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);                kk1=0.;kk2=0;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);                for(i=1; i<=nlstate;i++) {              
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);                  if (mobilav==1) 
                      kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   free_matrix(matcov,1,npar,1,npar);                  else {
   free_vector(delti,1,npar);                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
   free_matrix(agev,1,maxwav,1,imx);                  }
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                }
                 if (h==(int)(calagedatem+12*cpt)){
   fprintf(fichtm,"\n</body>");                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
   fclose(fichtm);                    /*fprintf(ficrespop," %.3f", kk1);
   fclose(ficgp);                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                  }
               }
   if(erreur >0){              for(i=1; i<=nlstate;i++){
     printf("End of Imach with error or warning %d\n",erreur);                kk1=0.;
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);                  for(j=1; j<=nlstate;j++){
   }else{                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
    printf("End of Imach\n");                  }
    fprintf(ficlog,"End of Imach\n");                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
   }              }
   printf("See log file on %s\n",filelog);  
   fclose(ficlog);              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
              }
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /*printf("Total time was %d uSec.\n", total_usecs);*/          }
   /*------ End -----------*/        }
    
     /******/
  end:  
 #ifdef windows        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
   /* chdir(pathcd);*/          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
 #endif          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
  /*system("wgnuplot graph.plt");*/            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
  /*system("../gp37mgw/wgnuplot graph.plt");*/            nhstepm = nhstepm/hstepm; 
  /*system("cd ../gp37mgw");*/            
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  strcpy(plotcmd,GNUPLOTPROGRAM);            oldm=oldms;savm=savms;
  strcat(plotcmd," ");            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
  strcat(plotcmd,optionfilegnuplot);            for (h=0; h<=nhstepm; h++){
  system(plotcmd);              if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
 #ifdef windows              } 
   while (z[0] != 'q') {              for(j=1; j<=nlstate+ndeath;j++) {
     /* chdir(path); */                kk1=0.;kk2=0;
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");                for(i=1; i<=nlstate;i++) {              
     scanf("%s",z);                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
     if (z[0] == 'c') system("./imach");                }
     else if (z[0] == 'e') system(optionfilehtm);                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
     else if (z[0] == 'g') system(plotcmd);              }
     else if (z[0] == 'q') exit(0);            }
   }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 #endif          }
 }        }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.51  
changed lines
  Added in v.1.123


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>