Diff for /imach/src/imach.c between versions 1.51 and 1.145

version 1.51, 2002/07/19 12:22:25 version 1.145, 2014/06/10 21:23:15
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.145  2014/06/10 21:23:15  brouard
      Summary: Debugging with valgrind
   This program computes Healthy Life Expectancies from    Author: Nicolas Brouard
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Lot of changes in order to output the results with some covariates
   interviewed on their health status or degree of disability (in the    After the Edimburgh REVES conference 2014, it seems mandatory to
   case of a health survey which is our main interest) -2- at least a    improve the code.
   second wave of interviews ("longitudinal") which measure each change    No more memory valgrind error but a lot has to be done in order to
   (if any) in individual health status.  Health expectancies are    continue the work of splitting the code into subroutines.
   computed from the time spent in each health state according to a    Also, decodemodel has been improved. Tricode is still not
   model. More health states you consider, more time is necessary to reach the    optimal. nbcode should be improved. Documentation has been added in
   Maximum Likelihood of the parameters involved in the model.  The    the source code.
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.143  2014/01/26 09:45:38  brouard
   conditional to be observed in state i at the first wave. Therefore    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   complex model than "constant and age", you should modify the program    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.142  2014/01/26 03:57:36  brouard
   convergence.    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   
   The advantage of this computer programme, compared to a simple    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.141  2014/01/26 02:42:01  brouard
   intermediate interview, the information is lost, but taken into    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   account using an interpolation or extrapolation.    
     Revision 1.140  2011/09/02 10:37:54  brouard
   hPijx is the probability to be observed in state i at age x+h    Summary: times.h is ok with mingw32 now.
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.139  2010/06/14 07:50:17  brouard
   states. This elementary transition (by month or quarter trimester,    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
   semester or year) is model as a multinomial logistic.  The hPx    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.138  2010/04/30 18:19:40  brouard
   hPijx.    *** empty log message ***
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.137  2010/04/29 18:11:38  brouard
   of the life expectancies. It also computes the prevalence limits.    (Module): Checking covariates for more complex models
      than V1+V2. A lot of change to be done. Unstable.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.136  2010/04/26 20:30:53  brouard
   This software have been partly granted by Euro-REVES, a concerted action    (Module): merging some libgsl code. Fixing computation
   from the European Union.    of likelione (using inter/intrapolation if mle = 0) in order to
   It is copyrighted identically to a GNU software product, ie programme and    get same likelihood as if mle=1.
   software can be distributed freely for non commercial use. Latest version    Some cleaning of code and comments added.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.135  2009/10/29 15:33:14  brouard
      (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 #include <math.h>  
 #include <stdio.h>    Revision 1.134  2009/10/29 13:18:53  brouard
 #include <stdlib.h>    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 #include <unistd.h>  
     Revision 1.133  2009/07/06 10:21:25  brouard
 #define MAXLINE 256    just nforces
 #define GNUPLOTPROGRAM "gnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.132  2009/07/06 08:22:05  brouard
 #define FILENAMELENGTH 80    Many tings
 /*#define DEBUG*/  
 #define windows    Revision 1.131  2009/06/20 16:22:47  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Some dimensions resccaled
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.130  2009/05/26 06:44:34  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    (Module): Max Covariate is now set to 20 instead of 8. A
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    lot of cleaning with variables initialized to 0. Trying to make
     V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.129  2007/08/31 13:49:27  lievre
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.128  2006/06/30 13:02:05  brouard
 #define YEARM 12. /* Number of months per year */    (Module): Clarifications on computing e.j
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.127  2006/04/28 18:11:50  brouard
 #ifdef windows    (Module): Yes the sum of survivors was wrong since
 #define DIRSEPARATOR '\\'    imach-114 because nhstepm was no more computed in the age
 #define ODIRSEPARATOR '/'    loop. Now we define nhstepma in the age loop.
 #else    (Module): In order to speed up (in case of numerous covariates) we
 #define DIRSEPARATOR '/'    compute health expectancies (without variances) in a first step
 #define ODIRSEPARATOR '\\'    and then all the health expectancies with variances or standard
 #endif    deviation (needs data from the Hessian matrices) which slows the
     computation.
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    In the future we should be able to stop the program is only health
 int erreur; /* Error number */    expectancies and graph are needed without standard deviations.
 int nvar;  
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.126  2006/04/28 17:23:28  brouard
 int npar=NPARMAX;    (Module): Yes the sum of survivors was wrong since
 int nlstate=2; /* Number of live states */    imach-114 because nhstepm was no more computed in the age
 int ndeath=1; /* Number of dead states */    loop. Now we define nhstepma in the age loop.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Version 0.98h
 int popbased=0;  
     Revision 1.125  2006/04/04 15:20:31  lievre
 int *wav; /* Number of waves for this individuual 0 is possible */    Errors in calculation of health expectancies. Age was not initialized.
 int maxwav; /* Maxim number of waves */    Forecasting file added.
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Revision 1.124  2006/03/22 17:13:53  lievre
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Parameters are printed with %lf instead of %f (more numbers after the comma).
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    The log-likelihood is printed in the log file
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.123  2006/03/20 10:52:43  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    * imach.c (Module): <title> changed, corresponds to .htm file
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    name. <head> headers where missing.
 FILE *ficlog;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    * imach.c (Module): Weights can have a decimal point as for
 FILE *ficresprobmorprev;    English (a comma might work with a correct LC_NUMERIC environment,
 FILE *fichtm; /* Html File */    otherwise the weight is truncated).
 FILE *ficreseij;    Modification of warning when the covariates values are not 0 or
 char filerese[FILENAMELENGTH];    1.
 FILE  *ficresvij;    Version 0.98g
 char fileresv[FILENAMELENGTH];  
 FILE  *ficresvpl;    Revision 1.122  2006/03/20 09:45:41  brouard
 char fileresvpl[FILENAMELENGTH];    (Module): Weights can have a decimal point as for
 char title[MAXLINE];    English (a comma might work with a correct LC_NUMERIC environment,
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    otherwise the weight is truncated).
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    Modification of warning when the covariates values are not 0 or
     1.
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Version 0.98g
 char filelog[FILENAMELENGTH]; /* Log file */  
 char filerest[FILENAMELENGTH];    Revision 1.121  2006/03/16 17:45:01  lievre
 char fileregp[FILENAMELENGTH];    * imach.c (Module): Comments concerning covariates added
 char popfile[FILENAMELENGTH];  
     * imach.c (Module): refinements in the computation of lli if
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.120  2006/03/16 15:10:38  lievre
 #define FTOL 1.0e-10    (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
 #define NRANSI    not 1 month. Version 0.98f
 #define ITMAX 200  
     Revision 1.119  2006/03/15 17:42:26  brouard
 #define TOL 2.0e-4    (Module): Bug if status = -2, the loglikelihood was
     computed as likelihood omitting the logarithm. Version O.98e
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.118  2006/03/14 18:20:07  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
 #define GOLD 1.618034    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define GLIMIT 100.0    (Module): Function pstamp added
 #define TINY 1.0e-20    (Module): Version 0.98d
   
 static double maxarg1,maxarg2;    Revision 1.117  2006/03/14 17:16:22  brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    (Module): varevsij Comments added explaining the second
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    table of variances if popbased=1 .
      (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    (Module): Function pstamp added
 #define rint(a) floor(a+0.5)    (Module): Version 0.98d
   
 static double sqrarg;    Revision 1.116  2006/03/06 10:29:27  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    (Module): Variance-covariance wrong links and
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    varian-covariance of ej. is needed (Saito).
   
 int imx;    Revision 1.115  2006/02/27 12:17:45  brouard
 int stepm;    (Module): One freematrix added in mlikeli! 0.98c
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.114  2006/02/26 12:57:58  brouard
 int estepm;    (Module): Some improvements in processing parameter
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    filename with strsep.
   
 int m,nb;    Revision 1.113  2006/02/24 14:20:24  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    (Module): Memory leaks checks with valgrind and:
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    datafile was not closed, some imatrix were not freed and on matrix
 double **pmmij, ***probs, ***mobaverage;    allocation too.
 double dateintmean=0;  
     Revision 1.112  2006/01/30 09:55:26  brouard
 double *weight;    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 int **s; /* Status */  
 double *agedc, **covar, idx;    Revision 1.111  2006/01/25 20:38:18  brouard
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    (Module): Lots of cleaning and bugs added (Gompertz)
     (Module): Comments can be added in data file. Missing date values
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    can be a simple dot '.'.
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.110  2006/01/25 00:51:50  brouard
 /**************** split *************************/    (Module): Lots of cleaning and bugs added (Gompertz)
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {    Revision 1.109  2006/01/24 19:37:15  brouard
    char *s;                             /* pointer */    (Module): Comments (lines starting with a #) are allowed in data.
    int  l1, l2;                         /* length counters */  
     Revision 1.108  2006/01/19 18:05:42  lievre
    l1 = strlen( path );                 /* length of path */    Gnuplot problem appeared...
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    To be fixed
    s= strrchr( path, DIRSEPARATOR );            /* find last / */  
    if ( s == NULL ) {                   /* no directory, so use current */    Revision 1.107  2006/01/19 16:20:37  brouard
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    Test existence of gnuplot in imach path
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  
 #if     defined(__bsd__)                /* get current working directory */    Revision 1.106  2006/01/19 13:24:36  brouard
       extern char       *getwd( );    Some cleaning and links added in html output
   
       if ( getwd( dirc ) == NULL ) {    Revision 1.105  2006/01/05 20:23:19  lievre
 #else    *** empty log message ***
       extern char       *getcwd( );  
     Revision 1.104  2005/09/30 16:11:43  lievre
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    (Module): sump fixed, loop imx fixed, and simplifications.
 #endif    (Module): If the status is missing at the last wave but we know
          return( GLOCK_ERROR_GETCWD );    that the person is alive, then we can code his/her status as -2
       }    (instead of missing=-1 in earlier versions) and his/her
       strcpy( name, path );             /* we've got it */    contributions to the likelihood is 1 - Prob of dying from last
    } else {                             /* strip direcotry from path */    health status (= 1-p13= p11+p12 in the easiest case of somebody in
       s++;                              /* after this, the filename */    the healthy state at last known wave). Version is 0.98
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.103  2005/09/30 15:54:49  lievre
       strcpy( name, s );                /* save file name */    (Module): sump fixed, loop imx fixed, and simplifications.
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Revision 1.102  2004/09/15 17:31:30  brouard
    }    Add the possibility to read data file including tab characters.
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    Revision 1.101  2004/09/15 10:38:38  brouard
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Fix on curr_time
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Revision 1.100  2004/07/12 18:29:06  brouard
 #endif    Add version for Mac OS X. Just define UNIX in Makefile
    s = strrchr( name, '.' );            /* find last / */  
    s++;    Revision 1.99  2004/06/05 08:57:40  brouard
    strcpy(ext,s);                       /* save extension */    *** empty log message ***
    l1= strlen( name);  
    l2= strlen( s)+1;    Revision 1.98  2004/05/16 15:05:56  brouard
    strncpy( finame, name, l1-l2);    New version 0.97 . First attempt to estimate force of mortality
    finame[l1-l2]= 0;    directly from the data i.e. without the need of knowing the health
    return( 0 );                         /* we're done */    state at each age, but using a Gompertz model: log u =a + b*age .
 }    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
 /******************************************/    from other sources like vital statistic data.
   
 void replace(char *s, char*t)    The same imach parameter file can be used but the option for mle should be -3.
 {  
   int i;    Agnès, who wrote this part of the code, tried to keep most of the
   int lg=20;    former routines in order to include the new code within the former code.
   i=0;  
   lg=strlen(t);    The output is very simple: only an estimate of the intercept and of
   for(i=0; i<= lg; i++) {    the slope with 95% confident intervals.
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Current limitations:
   }    A) Even if you enter covariates, i.e. with the
 }    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
 int nbocc(char *s, char occ)  
 {    Revision 1.97  2004/02/20 13:25:42  lievre
   int i,j=0;    Version 0.96d. Population forecasting command line is (temporarily)
   int lg=20;    suppressed.
   i=0;  
   lg=strlen(s);    Revision 1.96  2003/07/15 15:38:55  brouard
   for(i=0; i<= lg; i++) {    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   if  (s[i] == occ ) j++;    rewritten within the same printf. Workaround: many printfs.
   }  
   return j;    Revision 1.95  2003/07/08 07:54:34  brouard
 }    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
 void cutv(char *u,char *v, char*t, char occ)    matrix (cov(a12,c31) instead of numbers.
 {  
   /* cuts string t into u and v where u is ended by char occ excluding it    Revision 1.94  2003/06/27 13:00:02  brouard
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)    Just cleaning
      gives u="abcedf" and v="ghi2j" */  
   int i,lg,j,p=0;    Revision 1.93  2003/06/25 16:33:55  brouard
   i=0;    (Module): On windows (cygwin) function asctime_r doesn't
   for(j=0; j<=strlen(t)-1; j++) {    exist so I changed back to asctime which exists.
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    (Module): Version 0.96b
   }  
     Revision 1.92  2003/06/25 16:30:45  brouard
   lg=strlen(t);    (Module): On windows (cygwin) function asctime_r doesn't
   for(j=0; j<p; j++) {    exist so I changed back to asctime which exists.
     (u[j] = t[j]);  
   }    Revision 1.91  2003/06/25 15:30:29  brouard
      u[p]='\0';    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
    for(j=0; j<= lg; j++) {    helps to forecast when convergence will be reached. Elapsed time
     if (j>=(p+1))(v[j-p-1] = t[j]);    is stamped in powell.  We created a new html file for the graphs
   }    concerning matrix of covariance. It has extension -cov.htm.
 }  
     Revision 1.90  2003/06/24 12:34:15  brouard
 /********************** nrerror ********************/    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 void nrerror(char error_text[])    of the covariance matrix to be input.
 {  
   fprintf(stderr,"ERREUR ...\n");    Revision 1.89  2003/06/24 12:30:52  brouard
   fprintf(stderr,"%s\n",error_text);    (Module): Some bugs corrected for windows. Also, when
   exit(1);    mle=-1 a template is output in file "or"mypar.txt with the design
 }    of the covariance matrix to be input.
 /*********************** vector *******************/  
 double *vector(int nl, int nh)    Revision 1.88  2003/06/23 17:54:56  brouard
 {    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    Revision 1.87  2003/06/18 12:26:01  brouard
   if (!v) nrerror("allocation failure in vector");    Version 0.96
   return v-nl+NR_END;  
 }    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
 /************************ free vector ******************/    routine fileappend.
 void free_vector(double*v, int nl, int nh)  
 {    Revision 1.85  2003/06/17 13:12:43  brouard
   free((FREE_ARG)(v+nl-NR_END));    * imach.c (Repository): Check when date of death was earlier that
 }    current date of interview. It may happen when the death was just
     prior to the death. In this case, dh was negative and likelihood
 /************************ivector *******************************/    was wrong (infinity). We still send an "Error" but patch by
 int *ivector(long nl,long nh)    assuming that the date of death was just one stepm after the
 {    interview.
   int *v;    (Repository): Because some people have very long ID (first column)
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    we changed int to long in num[] and we added a new lvector for
   if (!v) nrerror("allocation failure in ivector");    memory allocation. But we also truncated to 8 characters (left
   return v-nl+NR_END;    truncation)
 }    (Repository): No more line truncation errors.
   
 /******************free ivector **************************/    Revision 1.84  2003/06/13 21:44:43  brouard
 void free_ivector(int *v, long nl, long nh)    * imach.c (Repository): Replace "freqsummary" at a correct
 {    place. It differs from routine "prevalence" which may be called
   free((FREE_ARG)(v+nl-NR_END));    many times. Probs is memory consuming and must be used with
 }    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Revision 1.83  2003/06/10 13:39:11  lievre
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    *** empty log message ***
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    Revision 1.82  2003/06/05 15:57:20  brouard
   int **m;    Add log in  imach.c and  fullversion number is now printed.
    
   /* allocate pointers to rows */  */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  /*
   if (!m) nrerror("allocation failure 1 in matrix()");     Interpolated Markov Chain
   m += NR_END;  
   m -= nrl;    Short summary of the programme:
      
      This program computes Healthy Life Expectancies from
   /* allocate rows and set pointers to them */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    first survey ("cross") where individuals from different ages are
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    interviewed on their health status or degree of disability (in the
   m[nrl] += NR_END;    case of a health survey which is our main interest) -2- at least a
   m[nrl] -= ncl;    second wave of interviews ("longitudinal") which measure each change
      (if any) in individual health status.  Health expectancies are
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    computed from the time spent in each health state according to a
      model. More health states you consider, more time is necessary to reach the
   /* return pointer to array of pointers to rows */    Maximum Likelihood of the parameters involved in the model.  The
   return m;    simplest model is the multinomial logistic model where pij is the
 }    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
 /****************** free_imatrix *************************/    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 void free_imatrix(m,nrl,nrh,ncl,nch)    'age' is age and 'sex' is a covariate. If you want to have a more
       int **m;    complex model than "constant and age", you should modify the program
       long nch,ncl,nrh,nrl;    where the markup *Covariates have to be included here again* invites
      /* free an int matrix allocated by imatrix() */    you to do it.  More covariates you add, slower the
 {    convergence.
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));    The advantage of this computer programme, compared to a simple
 }    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
 /******************* matrix *******************************/    intermediate interview, the information is lost, but taken into
 double **matrix(long nrl, long nrh, long ncl, long nch)    account using an interpolation or extrapolation.  
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    hPijx is the probability to be observed in state i at age x+h
   double **m;    conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    states. This elementary transition (by month, quarter,
   if (!m) nrerror("allocation failure 1 in matrix()");    semester or year) is modelled as a multinomial logistic.  The hPx
   m += NR_END;    matrix is simply the matrix product of nh*stepm elementary matrices
   m -= nrl;    and the contribution of each individual to the likelihood is simply
     hPijx.
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Also this programme outputs the covariance matrix of the parameters but also
   m[nrl] += NR_END;    of the life expectancies. It also computes the period (stable) prevalence. 
   m[nrl] -= ncl;    
     Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;             Institut national d'études démographiques, Paris.
   return m;    This software have been partly granted by Euro-REVES, a concerted action
 }    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
 /*************************free matrix ************************/    software can be distributed freely for non commercial use. Latest version
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    can be accessed at http://euroreves.ined.fr/imach .
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   free((FREE_ARG)(m+nrl-NR_END));    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 }    
     **********************************************************************/
 /******************* ma3x *******************************/  /*
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    main
 {    read parameterfile
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    read datafile
   double ***m;    concatwav
     freqsummary
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    if (mle >= 1)
   if (!m) nrerror("allocation failure 1 in matrix()");      mlikeli
   m += NR_END;    print results files
   m -= nrl;    if mle==1 
        computes hessian
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    read end of parameter file: agemin, agemax, bage, fage, estepm
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");        begin-prev-date,...
   m[nrl] += NR_END;    open gnuplot file
   m[nrl] -= ncl;    open html file
     period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
                                     | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));      freexexit2 possible for memory heap.
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;    h Pij x                         | pij_nom  ficrestpij
   m[nrl][ncl] -= nll;     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
   for (j=ncl+1; j<=nch; j++)         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
     m[nrl][j]=m[nrl][j-1]+nlay;         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
    
   for (i=nrl+1; i<=nrh; i++) {         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
     for (j=ncl+1; j<=nch; j++)    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
       m[i][j]=m[i][j-1]+nlay;     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
   }     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
   return m;  
 }    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 /*************************free ma3x ************************/    Variance-covariance of DFLE
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    prevalence()
 {     movingaverage()
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    varevsij() 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    if popbased==1 varevsij(,popbased)
   free((FREE_ARG)(m+nrl-NR_END));    total life expectancies
 }    Variance of period (stable) prevalence
    end
 /***************** f1dim *************************/  */
 extern int ncom;  
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);  
     
 double f1dim(double x)  #include <math.h>
 {  #include <stdio.h>
   int j;  #include <stdlib.h>
   double f;  #include <string.h>
   double *xt;  #include <unistd.h>
    
   xt=vector(1,ncom);  #include <limits.h>
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #include <sys/types.h>
   f=(*nrfunc)(xt);  #include <sys/stat.h>
   free_vector(xt,1,ncom);  #include <errno.h>
   return f;  extern int errno;
 }  
   #ifdef LINUX
 /*****************brent *************************/  #include <time.h>
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  #include "timeval.h"
 {  #else
   int iter;  #include <sys/time.h>
   double a,b,d,etemp;  #endif
   double fu,fv,fw,fx;  
   double ftemp;  #ifdef GSL
   double p,q,r,tol1,tol2,u,v,w,x,xm;  #include <gsl/gsl_errno.h>
   double e=0.0;  #include <gsl/gsl_multimin.h>
    #endif
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);  /* #include <libintl.h> */
   x=w=v=bx;  /* #define _(String) gettext (String) */
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  #define GNUPLOTPROGRAM "gnuplot"
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
     printf(".");fflush(stdout);  #define FILENAMELENGTH 132
     fprintf(ficlog,".");fflush(ficlog);  
 #ifdef DEBUG  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
 #endif  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  #define NINTERVMAX 8
       return fx;  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
     }  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
     ftemp=fu;  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
     if (fabs(e) > tol1) {  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
       r=(x-w)*(fx-fv);  #define MAXN 20000
       q=(x-v)*(fx-fw);  #define YEARM 12. /**< Number of months per year */
       p=(x-v)*q-(x-w)*r;  #define AGESUP 130
       q=2.0*(q-r);  #define AGEBASE 40
       if (q > 0.0) p = -p;  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
       q=fabs(q);  #ifdef UNIX
       etemp=e;  #define DIRSEPARATOR '/'
       e=d;  #define CHARSEPARATOR "/"
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  #define ODIRSEPARATOR '\\'
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  #else
       else {  #define DIRSEPARATOR '\\'
         d=p/q;  #define CHARSEPARATOR "\\"
         u=x+d;  #define ODIRSEPARATOR '/'
         if (u-a < tol2 || b-u < tol2)  #endif
           d=SIGN(tol1,xm-x);  
       }  /* $Id$ */
     } else {  /* $State$ */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  
     }  char version[]="Imach version 0.98nR2, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  char fullversion[]="$Revision$ $Date$"; 
     fu=(*f)(u);  char strstart[80];
     if (fu <= fx) {  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
       if (u >= x) a=x; else b=x;  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       SHFT(v,w,x,u)  int nvar=0, nforce=0; /* Number of variables, number of forces */
         SHFT(fv,fw,fx,fu)  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
         } else {  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
           if (u < x) a=u; else b=u;  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
           if (fu <= fw || w == x) {  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
             v=w;  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
             w=u;  int cptcovprodnoage=0; /**< Number of covariate products without age */   
             fv=fw;  int cptcoveff=0; /* Total number of covariates to vary for printing results */
             fw=fu;  int cptcov=0; /* Working variable */
           } else if (fu <= fv || v == x || v == w) {  int npar=NPARMAX;
             v=u;  int nlstate=2; /* Number of live states */
             fv=fu;  int ndeath=1; /* Number of dead states */
           }  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
         }  int popbased=0;
   }  
   nrerror("Too many iterations in brent");  int *wav; /* Number of waves for this individuual 0 is possible */
   *xmin=x;  int maxwav=0; /* Maxim number of waves */
   return fx;  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
 }  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   int gipmx=0, gsw=0; /* Global variables on the number of contributions 
 /****************** mnbrak ***********************/                     to the likelihood and the sum of weights (done by funcone)*/
   int mle=1, weightopt=0;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
             double (*func)(double))  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 {  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   double ulim,u,r,q, dum;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double fu;  double jmean=1; /* Mean space between 2 waves */
    double **matprod2(); /* test */
   *fa=(*func)(*ax);  double **oldm, **newm, **savm; /* Working pointers to matrices */
   *fb=(*func)(*bx);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   if (*fb > *fa) {  /*FILE *fic ; */ /* Used in readdata only */
     SHFT(dum,*ax,*bx,dum)  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       SHFT(dum,*fb,*fa,dum)  FILE *ficlog, *ficrespow;
       }  int globpr=0; /* Global variable for printing or not */
   *cx=(*bx)+GOLD*(*bx-*ax);  double fretone; /* Only one call to likelihood */
   *fc=(*func)(*cx);  long ipmx=0; /* Number of contributions */
   while (*fb > *fc) {  double sw; /* Sum of weights */
     r=(*bx-*ax)*(*fb-*fc);  char filerespow[FILENAMELENGTH];
     q=(*bx-*cx)*(*fb-*fa);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  FILE *ficresilk;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     ulim=(*bx)+GLIMIT*(*cx-*bx);  FILE *ficresprobmorprev;
     if ((*bx-u)*(u-*cx) > 0.0) {  FILE *fichtm, *fichtmcov; /* Html File */
       fu=(*func)(u);  FILE *ficreseij;
     } else if ((*cx-u)*(u-ulim) > 0.0) {  char filerese[FILENAMELENGTH];
       fu=(*func)(u);  FILE *ficresstdeij;
       if (fu < *fc) {  char fileresstde[FILENAMELENGTH];
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  FILE *ficrescveij;
           SHFT(*fb,*fc,fu,(*func)(u))  char filerescve[FILENAMELENGTH];
           }  FILE  *ficresvij;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  char fileresv[FILENAMELENGTH];
       u=ulim;  FILE  *ficresvpl;
       fu=(*func)(u);  char fileresvpl[FILENAMELENGTH];
     } else {  char title[MAXLINE];
       u=(*cx)+GOLD*(*cx-*bx);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
       fu=(*func)(u);  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     }  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
     SHFT(*ax,*bx,*cx,u)  char command[FILENAMELENGTH];
       SHFT(*fa,*fb,*fc,fu)  int  outcmd=0;
       }  
 }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   
 /*************** linmin ************************/  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
 int ncom;  char fileregp[FILENAMELENGTH];
 double *pcom,*xicom;  char popfile[FILENAMELENGTH];
 double (*nrfunc)(double []);  
    char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   double brent(double ax, double bx, double cx,  struct timezone tzp;
                double (*f)(double), double tol, double *xmin);  extern int gettimeofday();
   double f1dim(double x);  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  long time_value;
               double *fc, double (*func)(double));  extern long time();
   int j;  char strcurr[80], strfor[80];
   double xx,xmin,bx,ax;  
   double fx,fb,fa;  char *endptr;
    long lval;
   ncom=n;  double dval;
   pcom=vector(1,n);  
   xicom=vector(1,n);  #define NR_END 1
   nrfunc=func;  #define FREE_ARG char*
   for (j=1;j<=n;j++) {  #define FTOL 1.0e-10
     pcom[j]=p[j];  
     xicom[j]=xi[j];  #define NRANSI 
   }  #define ITMAX 200 
   ax=0.0;  
   xx=1.0;  #define TOL 2.0e-4 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  #define CGOLD 0.3819660 
 #ifdef DEBUG  #define ZEPS 1.0e-10 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif  #define GOLD 1.618034 
   for (j=1;j<=n;j++) {  #define GLIMIT 100.0 
     xi[j] *= xmin;  #define TINY 1.0e-20 
     p[j] += xi[j];  
   }  static double maxarg1,maxarg2;
   free_vector(xicom,1,n);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   free_vector(pcom,1,n);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 }    
   #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 /*************** powell ************************/  #define rint(a) floor(a+0.5)
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  
             double (*func)(double []))  static double sqrarg;
 {  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   void linmin(double p[], double xi[], int n, double *fret,  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
               double (*func)(double []));  int agegomp= AGEGOMP;
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  int imx; 
   double fp,fptt;  int stepm=1;
   double *xits;  /* Stepm, step in month: minimum step interpolation*/
   pt=vector(1,n);  
   ptt=vector(1,n);  int estepm;
   xit=vector(1,n);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   xits=vector(1,n);  
   *fret=(*func)(p);  int m,nb;
   for (j=1;j<=n;j++) pt[j]=p[j];  long *num;
   for (*iter=1;;++(*iter)) {  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     fp=(*fret);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     ibig=0;  double **pmmij, ***probs;
     del=0.0;  double *ageexmed,*agecens;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  double dateintmean=0;
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)  double *weight;
       printf(" %d %.12f",i, p[i]);  int **s; /* Status */
     fprintf(ficlog," %d %.12f",i, p[i]);  double *agedc;
     printf("\n");  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
     fprintf(ficlog,"\n");                    * covar=matrix(0,NCOVMAX,1,n); 
     for (i=1;i<=n;i++) {                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  double  idx; 
       fptt=(*fret);  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
 #ifdef DEBUG  int *Ndum; /** Freq of modality (tricode */
       printf("fret=%lf \n",*fret);  int **codtab; /**< codtab=imatrix(1,100,1,10); */
       fprintf(ficlog,"fret=%lf \n",*fret);  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
 #endif  double *lsurv, *lpop, *tpop;
       printf("%d",i);fflush(stdout);  
       fprintf(ficlog,"%d",i);fflush(ficlog);  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
       linmin(p,xit,n,fret,func);  double ftolhess; /**< Tolerance for computing hessian */
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));  /**************** split *************************/
         ibig=i;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       }  {
 #ifdef DEBUG    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       printf("%d %.12e",i,(*fret));       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       fprintf(ficlog,"%d %.12e",i,(*fret));    */ 
       for (j=1;j<=n;j++) {    char  *ss;                            /* pointer */
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    int   l1, l2;                         /* length counters */
         printf(" x(%d)=%.12e",j,xit[j]);  
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    l1 = strlen(path );                   /* length of path */
       }    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       for(j=1;j<=n;j++) {    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
         printf(" p=%.12e",p[j]);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
         fprintf(ficlog," p=%.12e",p[j]);      strcpy( name, path );               /* we got the fullname name because no directory */
       }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       printf("\n");        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       fprintf(ficlog,"\n");      /* get current working directory */
 #endif      /*    extern  char* getcwd ( char *buf , int len);*/
     }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {        return( GLOCK_ERROR_GETCWD );
 #ifdef DEBUG      }
       int k[2],l;      /* got dirc from getcwd*/
       k[0]=1;      printf(" DIRC = %s \n",dirc);
       k[1]=-1;    } else {                              /* strip direcotry from path */
       printf("Max: %.12e",(*func)(p));      ss++;                               /* after this, the filename */
       fprintf(ficlog,"Max: %.12e",(*func)(p));      l2 = strlen( ss );                  /* length of filename */
       for (j=1;j<=n;j++) {      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
         printf(" %.12e",p[j]);      strcpy( name, ss );         /* save file name */
         fprintf(ficlog," %.12e",p[j]);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       }      dirc[l1-l2] = 0;                    /* add zero */
       printf("\n");      printf(" DIRC2 = %s \n",dirc);
       fprintf(ficlog,"\n");    }
       for(l=0;l<=1;l++) {    /* We add a separator at the end of dirc if not exists */
         for (j=1;j<=n;j++) {    l1 = strlen( dirc );                  /* length of directory */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    if( dirc[l1-1] != DIRSEPARATOR ){
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      dirc[l1] =  DIRSEPARATOR;
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      dirc[l1+1] = 0; 
         }      printf(" DIRC3 = %s \n",dirc);
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    }
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    ss = strrchr( name, '.' );            /* find last / */
       }    if (ss >0){
 #endif      ss++;
       strcpy(ext,ss);                     /* save extension */
       l1= strlen( name);
       free_vector(xit,1,n);      l2= strlen(ss)+1;
       free_vector(xits,1,n);      strncpy( finame, name, l1-l2);
       free_vector(ptt,1,n);      finame[l1-l2]= 0;
       free_vector(pt,1,n);    }
       return;  
     }    return( 0 );                          /* we're done */
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  }
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];  
       xit[j]=p[j]-pt[j];  /******************************************/
       pt[j]=p[j];  
     }  void replace_back_to_slash(char *s, char*t)
     fptt=(*func)(ptt);  {
     if (fptt < fp) {    int i;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    int lg=0;
       if (t < 0.0) {    i=0;
         linmin(p,xit,n,fret,func);    lg=strlen(t);
         for (j=1;j<=n;j++) {    for(i=0; i<= lg; i++) {
           xi[j][ibig]=xi[j][n];      (s[i] = t[i]);
           xi[j][n]=xit[j];      if (t[i]== '\\') s[i]='/';
         }    }
 #ifdef DEBUG  }
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  char *trimbb(char *out, char *in)
         for(j=1;j<=n;j++){  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
           printf(" %.12e",xit[j]);    char *s;
           fprintf(ficlog," %.12e",xit[j]);    s=out;
         }    while (*in != '\0'){
         printf("\n");      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
         fprintf(ficlog,"\n");        in++;
 #endif      }
       }      *out++ = *in++;
     }    }
   }    *out='\0';
 }    return s;
   }
 /**** Prevalence limit ****************/  
   char *cutl(char *blocc, char *alocc, char *in, char occ)
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  {
 {    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
      matrix by transitions matrix until convergence is reached */       gives blocc="abcdef2ghi" and alocc="j".
        If occ is not found blocc is null and alocc is equal to in. Returns blocc
   int i, ii,j,k;    */
   double min, max, maxmin, maxmax,sumnew=0.;    char *s, *t, *bl;
   double **matprod2();    t=in;s=in;
   double **out, cov[NCOVMAX], **pmij();    while ((*in != occ) && (*in != '\0')){
   double **newm;      *alocc++ = *in++;
   double agefin, delaymax=50 ; /* Max number of years to converge */    }
     if( *in == occ){
   for (ii=1;ii<=nlstate+ndeath;ii++)      *(alocc)='\0';
     for (j=1;j<=nlstate+ndeath;j++){      s=++in;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    }
     }   
     if (s == t) {/* occ not found */
    cov[1]=1.;      *(alocc-(in-s))='\0';
        in=s;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    }
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    while ( *in != '\0'){
     newm=savm;      *blocc++ = *in++;
     /* Covariates have to be included here again */    }
      cov[2]=agefin;  
      *blocc='\0';
       for (k=1; k<=cptcovn;k++) {    return t;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  }
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  char *cutv(char *blocc, char *alocc, char *in, char occ)
       }  {
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
       for (k=1; k<=cptcovprod;k++)       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];       gives blocc="abcdef2ghi" and alocc="j".
        If occ is not found blocc is null and alocc is equal to in. Returns alocc
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    */
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    char *s, *t;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    t=in;s=in;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    while (*in != '\0'){
       while( *in == occ){
     savm=oldm;        *blocc++ = *in++;
     oldm=newm;        s=in;
     maxmax=0.;      }
     for(j=1;j<=nlstate;j++){      *blocc++ = *in++;
       min=1.;    }
       max=0.;    if (s == t) /* occ not found */
       for(i=1; i<=nlstate; i++) {      *(blocc-(in-s))='\0';
         sumnew=0;    else
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      *(blocc-(in-s)-1)='\0';
         prlim[i][j]= newm[i][j]/(1-sumnew);    in=s;
         max=FMAX(max,prlim[i][j]);    while ( *in != '\0'){
         min=FMIN(min,prlim[i][j]);      *alocc++ = *in++;
       }    }
       maxmin=max-min;  
       maxmax=FMAX(maxmax,maxmin);    *alocc='\0';
     }    return s;
     if(maxmax < ftolpl){  }
       return prlim;  
     }  int nbocc(char *s, char occ)
   }  {
 }    int i,j=0;
     int lg=20;
 /*************** transition probabilities ***************/    i=0;
     lg=strlen(s);
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    for(i=0; i<= lg; i++) {
 {    if  (s[i] == occ ) j++;
   double s1, s2;    }
   /*double t34;*/    return j;
   int i,j,j1, nc, ii, jj;  }
   
     for(i=1; i<= nlstate; i++){  /* void cutv(char *u,char *v, char*t, char occ) */
     for(j=1; j<i;j++){  /* { */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
         /*s2 += param[i][j][nc]*cov[nc];*/  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /*      gives u="abcdef2ghi" and v="j" *\/ */
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  /*   int i,lg,j,p=0; */
       }  /*   i=0; */
       ps[i][j]=s2;  /*   lg=strlen(t); */
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  /*   for(j=0; j<=lg-1; j++) { */
     }  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
     for(j=i+1; j<=nlstate+ndeath;j++){  /*   } */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  /*   for(j=0; j<p; j++) { */
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  /*     (u[j] = t[j]); */
       }  /*   } */
       ps[i][j]=s2;  /*      u[p]='\0'; */
     }  
   }  /*    for(j=0; j<= lg; j++) { */
     /*ps[3][2]=1;*/  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   /*   } */
   for(i=1; i<= nlstate; i++){  /* } */
      s1=0;  
     for(j=1; j<i; j++)  /********************** nrerror ********************/
       s1+=exp(ps[i][j]);  
     for(j=i+1; j<=nlstate+ndeath; j++)  void nrerror(char error_text[])
       s1+=exp(ps[i][j]);  {
     ps[i][i]=1./(s1+1.);    fprintf(stderr,"ERREUR ...\n");
     for(j=1; j<i; j++)    fprintf(stderr,"%s\n",error_text);
       ps[i][j]= exp(ps[i][j])*ps[i][i];    exit(EXIT_FAILURE);
     for(j=i+1; j<=nlstate+ndeath; j++)  }
       ps[i][j]= exp(ps[i][j])*ps[i][i];  /*********************** vector *******************/
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  double *vector(int nl, int nh)
   } /* end i */  {
     double *v;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     for(jj=1; jj<= nlstate+ndeath; jj++){    if (!v) nrerror("allocation failure in vector");
       ps[ii][jj]=0;    return v-nl+NR_END;
       ps[ii][ii]=1;  }
     }  
   }  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
   {
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    free((FREE_ARG)(v+nl-NR_END));
     for(jj=1; jj<= nlstate+ndeath; jj++){  }
      printf("%lf ",ps[ii][jj]);  
    }  /************************ivector *******************************/
     printf("\n ");  int *ivector(long nl,long nh)
     }  {
     printf("\n ");printf("%lf ",cov[2]);*/    int *v;
 /*    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    if (!v) nrerror("allocation failure in ivector");
   goto end;*/    return v-nl+NR_END;
     return ps;  }
 }  
   /******************free ivector **************************/
 /**************** Product of 2 matrices ******************/  void free_ivector(int *v, long nl, long nh)
   {
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    free((FREE_ARG)(v+nl-NR_END));
 {  }
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  /************************lvector *******************************/
   /* in, b, out are matrice of pointers which should have been initialized  long *lvector(long nl,long nh)
      before: only the contents of out is modified. The function returns  {
      a pointer to pointers identical to out */    long *v;
   long i, j, k;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   for(i=nrl; i<= nrh; i++)    if (!v) nrerror("allocation failure in ivector");
     for(k=ncolol; k<=ncoloh; k++)    return v-nl+NR_END;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  }
         out[i][k] +=in[i][j]*b[j][k];  
   /******************free lvector **************************/
   return out;  void free_lvector(long *v, long nl, long nh)
 }  {
     free((FREE_ARG)(v+nl-NR_END));
   }
 /************* Higher Matrix Product ***************/  
   /******************* imatrix *******************************/
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  int **imatrix(long nrl, long nrh, long ncl, long nch) 
 {       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  { 
      duration (i.e. until    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    int **m; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    
      (typically every 2 years instead of every month which is too big).    /* allocate pointers to rows */ 
      Model is determined by parameters x and covariates have to be    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
      included manually here.    if (!m) nrerror("allocation failure 1 in matrix()"); 
     m += NR_END; 
      */    m -= nrl; 
     
   int i, j, d, h, k;    
   double **out, cov[NCOVMAX];    /* allocate rows and set pointers to them */ 
   double **newm;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   /* Hstepm could be zero and should return the unit matrix */    m[nrl] += NR_END; 
   for (i=1;i<=nlstate+ndeath;i++)    m[nrl] -= ncl; 
     for (j=1;j<=nlstate+ndeath;j++){    
       oldm[i][j]=(i==j ? 1.0 : 0.0);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       po[i][j][0]=(i==j ? 1.0 : 0.0);    
     }    /* return pointer to array of pointers to rows */ 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    return m; 
   for(h=1; h <=nhstepm; h++){  } 
     for(d=1; d <=hstepm; d++){  
       newm=savm;  /****************** free_imatrix *************************/
       /* Covariates have to be included here again */  void free_imatrix(m,nrl,nrh,ncl,nch)
       cov[1]=1.;        int **m;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        long nch,ncl,nrh,nrl; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];       /* free an int matrix allocated by imatrix() */ 
       for (k=1; k<=cptcovage;k++)  { 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       for (k=1; k<=cptcovprod;k++)    free((FREE_ARG) (m+nrl-NR_END)); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  } 
   
   /******************* matrix *******************************/
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  double **matrix(long nrl, long nrh, long ncl, long nch)
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  {
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    double **m;
       savm=oldm;  
       oldm=newm;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     }    if (!m) nrerror("allocation failure 1 in matrix()");
     for(i=1; i<=nlstate+ndeath; i++)    m += NR_END;
       for(j=1;j<=nlstate+ndeath;j++) {    m -= nrl;
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
          */    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       }    m[nrl] += NR_END;
   } /* end h */    m[nrl] -= ncl;
   return po;  
 }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     return m;
     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
 /*************** log-likelihood *************/  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
 double func( double *x)  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
 {     */
   int i, ii, j, k, mi, d, kk;  }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;  /*************************free matrix ************************/
   double sw; /* Sum of weights */  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   double lli; /* Individual log likelihood */  {
   long ipmx;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   /*extern weight */    free((FREE_ARG)(m+nrl-NR_END));
   /* We are differentiating ll according to initial status */  }
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  
   /*for(i=1;i<imx;i++)  /******************* ma3x *******************************/
     printf(" %d\n",s[4][i]);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   */  {
   cov[1]=1.;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     double ***m;
   for(k=1; k<=nlstate; k++) ll[k]=0.;  
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    if (!m) nrerror("allocation failure 1 in matrix()");
     for(mi=1; mi<= wav[i]-1; mi++){    m += NR_END;
       for (ii=1;ii<=nlstate+ndeath;ii++)    m -= nrl;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
       for(d=0; d<dh[mi][i]; d++){    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         newm=savm;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    m[nrl] += NR_END;
         for (kk=1; kk<=cptcovage;kk++) {    m[nrl] -= ncl;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
         }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
          
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         savm=oldm;    m[nrl][ncl] += NR_END;
         oldm=newm;    m[nrl][ncl] -= nll;
            for (j=ncl+1; j<=nch; j++) 
              m[nrl][j]=m[nrl][j-1]+nlay;
       } /* end mult */    
          for (i=nrl+1; i<=nrh; i++) {
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      for (j=ncl+1; j<=nch; j++) 
       ipmx +=1;        m[i][j]=m[i][j-1]+nlay;
       sw += weight[i];    }
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    return m; 
     } /* end of wave */    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   } /* end of individual */             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  }
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  /*************************free ma3x ************************/
   return -l;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 }  {
     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
 /*********** Maximum Likelihood Estimation ***************/    free((FREE_ARG)(m+nrl-NR_END));
   }
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  
 {  /*************** function subdirf ***********/
   int i,j, iter;  char *subdirf(char fileres[])
   double **xi,*delti;  {
   double fret;    /* Caution optionfilefiname is hidden */
   xi=matrix(1,npar,1,npar);    strcpy(tmpout,optionfilefiname);
   for (i=1;i<=npar;i++)    strcat(tmpout,"/"); /* Add to the right */
     for (j=1;j<=npar;j++)    strcat(tmpout,fileres);
       xi[i][j]=(i==j ? 1.0 : 0.0);    return tmpout;
   printf("Powell\n");  fprintf(ficlog,"Powell\n");  }
   powell(p,xi,npar,ftol,&iter,&fret,func);  
   /*************** function subdirf2 ***********/
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  char *subdirf2(char fileres[], char *preop)
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  {
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    
     /* Caution optionfilefiname is hidden */
 }    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
 /**** Computes Hessian and covariance matrix ***/    strcat(tmpout,preop);
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    strcat(tmpout,fileres);
 {    return tmpout;
   double  **a,**y,*x,pd;  }
   double **hess;  
   int i, j,jk;  /*************** function subdirf3 ***********/
   int *indx;  char *subdirf3(char fileres[], char *preop, char *preop2)
   {
   double hessii(double p[], double delta, int theta, double delti[]);    
   double hessij(double p[], double delti[], int i, int j);    /* Caution optionfilefiname is hidden */
   void lubksb(double **a, int npar, int *indx, double b[]) ;    strcpy(tmpout,optionfilefiname);
   void ludcmp(double **a, int npar, int *indx, double *d) ;    strcat(tmpout,"/");
     strcat(tmpout,preop);
   hess=matrix(1,npar,1,npar);    strcat(tmpout,preop2);
     strcat(tmpout,fileres);
   printf("\nCalculation of the hessian matrix. Wait...\n");    return tmpout;
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");  }
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);  /***************** f1dim *************************/
     fprintf(ficlog,"%d",i);fflush(ficlog);  extern int ncom; 
     hess[i][i]=hessii(p,ftolhess,i,delti);  extern double *pcom,*xicom;
     /*printf(" %f ",p[i]);*/  extern double (*nrfunc)(double []); 
     /*printf(" %lf ",hess[i][i]);*/   
   }  double f1dim(double x) 
    { 
   for (i=1;i<=npar;i++) {    int j; 
     for (j=1;j<=npar;j++)  {    double f;
       if (j>i) {    double *xt; 
         printf(".%d%d",i,j);fflush(stdout);   
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);    xt=vector(1,ncom); 
         hess[i][j]=hessij(p,delti,i,j);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
         hess[j][i]=hess[i][j];        f=(*nrfunc)(xt); 
         /*printf(" %lf ",hess[i][j]);*/    free_vector(xt,1,ncom); 
       }    return f; 
     }  } 
   }  
   printf("\n");  /*****************brent *************************/
   fprintf(ficlog,"\n");  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   { 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    int iter; 
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");    double a,b,d,etemp;
      double fu,fv,fw,fx;
   a=matrix(1,npar,1,npar);    double ftemp;
   y=matrix(1,npar,1,npar);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   x=vector(1,npar);    double e=0.0; 
   indx=ivector(1,npar);   
   for (i=1;i<=npar;i++)    a=(ax < cx ? ax : cx); 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    b=(ax > cx ? ax : cx); 
   ludcmp(a,npar,indx,&pd);    x=w=v=bx; 
     fw=fv=fx=(*f)(x); 
   for (j=1;j<=npar;j++) {    for (iter=1;iter<=ITMAX;iter++) { 
     for (i=1;i<=npar;i++) x[i]=0;      xm=0.5*(a+b); 
     x[j]=1;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     lubksb(a,npar,indx,x);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     for (i=1;i<=npar;i++){      printf(".");fflush(stdout);
       matcov[i][j]=x[i];      fprintf(ficlog,".");fflush(ficlog);
     }  #ifdef DEBUG
   }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   printf("\n#Hessian matrix#\n");      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   fprintf(ficlog,"\n#Hessian matrix#\n");  #endif
   for (i=1;i<=npar;i++) {      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     for (j=1;j<=npar;j++) {        *xmin=x; 
       printf("%.3e ",hess[i][j]);        return fx; 
       fprintf(ficlog,"%.3e ",hess[i][j]);      } 
     }      ftemp=fu;
     printf("\n");      if (fabs(e) > tol1) { 
     fprintf(ficlog,"\n");        r=(x-w)*(fx-fv); 
   }        q=(x-v)*(fx-fw); 
         p=(x-v)*q-(x-w)*r; 
   /* Recompute Inverse */        q=2.0*(q-r); 
   for (i=1;i<=npar;i++)        if (q > 0.0) p = -p; 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        q=fabs(q); 
   ludcmp(a,npar,indx,&pd);        etemp=e; 
         e=d; 
   /*  printf("\n#Hessian matrix recomputed#\n");        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   for (j=1;j<=npar;j++) {        else { 
     for (i=1;i<=npar;i++) x[i]=0;          d=p/q; 
     x[j]=1;          u=x+d; 
     lubksb(a,npar,indx,x);          if (u-a < tol2 || b-u < tol2) 
     for (i=1;i<=npar;i++){            d=SIGN(tol1,xm-x); 
       y[i][j]=x[i];        } 
       printf("%.3e ",y[i][j]);      } else { 
       fprintf(ficlog,"%.3e ",y[i][j]);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     }      } 
     printf("\n");      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     fprintf(ficlog,"\n");      fu=(*f)(u); 
   }      if (fu <= fx) { 
   */        if (u >= x) a=x; else b=x; 
         SHFT(v,w,x,u) 
   free_matrix(a,1,npar,1,npar);          SHFT(fv,fw,fx,fu) 
   free_matrix(y,1,npar,1,npar);          } else { 
   free_vector(x,1,npar);            if (u < x) a=u; else b=u; 
   free_ivector(indx,1,npar);            if (fu <= fw || w == x) { 
   free_matrix(hess,1,npar,1,npar);              v=w; 
               w=u; 
               fv=fw; 
 }              fw=fu; 
             } else if (fu <= fv || v == x || v == w) { 
 /*************** hessian matrix ****************/              v=u; 
 double hessii( double x[], double delta, int theta, double delti[])              fv=fu; 
 {            } 
   int i;          } 
   int l=1, lmax=20;    } 
   double k1,k2;    nrerror("Too many iterations in brent"); 
   double p2[NPARMAX+1];    *xmin=x; 
   double res;    return fx; 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  } 
   double fx;  
   int k=0,kmax=10;  /****************** mnbrak ***********************/
   double l1;  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   fx=func(x);              double (*func)(double)) 
   for (i=1;i<=npar;i++) p2[i]=x[i];  { 
   for(l=0 ; l <=lmax; l++){    double ulim,u,r,q, dum;
     l1=pow(10,l);    double fu; 
     delts=delt;   
     for(k=1 ; k <kmax; k=k+1){    *fa=(*func)(*ax); 
       delt = delta*(l1*k);    *fb=(*func)(*bx); 
       p2[theta]=x[theta] +delt;    if (*fb > *fa) { 
       k1=func(p2)-fx;      SHFT(dum,*ax,*bx,dum) 
       p2[theta]=x[theta]-delt;        SHFT(dum,*fb,*fa,dum) 
       k2=func(p2)-fx;        } 
       /*res= (k1-2.0*fx+k2)/delt/delt; */    *cx=(*bx)+GOLD*(*bx-*ax); 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    *fc=(*func)(*cx); 
          while (*fb > *fc) { 
 #ifdef DEBUG      r=(*bx-*ax)*(*fb-*fc); 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      q=(*bx-*cx)*(*fb-*fa); 
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 #endif        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      if ((*bx-u)*(u-*cx) > 0.0) { 
         k=kmax;        fu=(*func)(u); 
       }      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        fu=(*func)(u); 
         k=kmax; l=lmax*10.;        if (fu < *fc) { 
       }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){            SHFT(*fb,*fc,fu,(*func)(u)) 
         delts=delt;            } 
       }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     }        u=ulim; 
   }        fu=(*func)(u); 
   delti[theta]=delts;      } else { 
   return res;        u=(*cx)+GOLD*(*cx-*bx); 
          fu=(*func)(u); 
 }      } 
       SHFT(*ax,*bx,*cx,u) 
 double hessij( double x[], double delti[], int thetai,int thetaj)        SHFT(*fa,*fb,*fc,fu) 
 {        } 
   int i;  } 
   int l=1, l1, lmax=20;  
   double k1,k2,k3,k4,res,fx;  /*************** linmin ************************/
   double p2[NPARMAX+1];  
   int k;  int ncom; 
   double *pcom,*xicom;
   fx=func(x);  double (*nrfunc)(double []); 
   for (k=1; k<=2; k++) {   
     for (i=1;i<=npar;i++) p2[i]=x[i];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     p2[thetai]=x[thetai]+delti[thetai]/k;  { 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    double brent(double ax, double bx, double cx, 
     k1=func(p2)-fx;                 double (*f)(double), double tol, double *xmin); 
      double f1dim(double x); 
     p2[thetai]=x[thetai]+delti[thetai]/k;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;                double *fc, double (*func)(double)); 
     k2=func(p2)-fx;    int j; 
      double xx,xmin,bx,ax; 
     p2[thetai]=x[thetai]-delti[thetai]/k;    double fx,fb,fa;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;   
     k3=func(p2)-fx;    ncom=n; 
      pcom=vector(1,n); 
     p2[thetai]=x[thetai]-delti[thetai]/k;    xicom=vector(1,n); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    nrfunc=func; 
     k4=func(p2)-fx;    for (j=1;j<=n;j++) { 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      pcom[j]=p[j]; 
 #ifdef DEBUG      xicom[j]=xi[j]; 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    } 
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    ax=0.0; 
 #endif    xx=1.0; 
   }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   return res;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 }  #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 /************** Inverse of matrix **************/    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 void ludcmp(double **a, int n, int *indx, double *d)  #endif
 {    for (j=1;j<=n;j++) { 
   int i,imax,j,k;      xi[j] *= xmin; 
   double big,dum,sum,temp;      p[j] += xi[j]; 
   double *vv;    } 
      free_vector(xicom,1,n); 
   vv=vector(1,n);    free_vector(pcom,1,n); 
   *d=1.0;  } 
   for (i=1;i<=n;i++) {  
     big=0.0;  char *asc_diff_time(long time_sec, char ascdiff[])
     for (j=1;j<=n;j++)  {
       if ((temp=fabs(a[i][j])) > big) big=temp;    long sec_left, days, hours, minutes;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    days = (time_sec) / (60*60*24);
     vv[i]=1.0/big;    sec_left = (time_sec) % (60*60*24);
   }    hours = (sec_left) / (60*60) ;
   for (j=1;j<=n;j++) {    sec_left = (sec_left) %(60*60);
     for (i=1;i<j;i++) {    minutes = (sec_left) /60;
       sum=a[i][j];    sec_left = (sec_left) % (60);
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
       a[i][j]=sum;    return ascdiff;
     }  }
     big=0.0;  
     for (i=j;i<=n;i++) {  /*************** powell ************************/
       sum=a[i][j];  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       for (k=1;k<j;k++)              double (*func)(double [])) 
         sum -= a[i][k]*a[k][j];  { 
       a[i][j]=sum;    void linmin(double p[], double xi[], int n, double *fret, 
       if ( (dum=vv[i]*fabs(sum)) >= big) {                double (*func)(double [])); 
         big=dum;    int i,ibig,j; 
         imax=i;    double del,t,*pt,*ptt,*xit;
       }    double fp,fptt;
     }    double *xits;
     if (j != imax) {    int niterf, itmp;
       for (k=1;k<=n;k++) {  
         dum=a[imax][k];    pt=vector(1,n); 
         a[imax][k]=a[j][k];    ptt=vector(1,n); 
         a[j][k]=dum;    xit=vector(1,n); 
       }    xits=vector(1,n); 
       *d = -(*d);    *fret=(*func)(p); 
       vv[imax]=vv[j];    for (j=1;j<=n;j++) pt[j]=p[j]; 
     }    for (*iter=1;;++(*iter)) { 
     indx[j]=imax;      fp=(*fret); 
     if (a[j][j] == 0.0) a[j][j]=TINY;      ibig=0; 
     if (j != n) {      del=0.0; 
       dum=1.0/(a[j][j]);      last_time=curr_time;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      (void) gettimeofday(&curr_time,&tzp);
     }      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
   free_vector(vv,1,n);  /* Doesn't work */  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
 ;     for (i=1;i<=n;i++) {
 }        printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
 void lubksb(double **a, int n, int *indx, double b[])        fprintf(ficrespow," %.12lf", p[i]);
 {      }
   int i,ii=0,ip,j;      printf("\n");
   double sum;      fprintf(ficlog,"\n");
        fprintf(ficrespow,"\n");fflush(ficrespow);
   for (i=1;i<=n;i++) {      if(*iter <=3){
     ip=indx[i];        tm = *localtime(&curr_time.tv_sec);
     sum=b[ip];        strcpy(strcurr,asctime(&tm));
     b[ip]=b[i];  /*       asctime_r(&tm,strcurr); */
     if (ii)        forecast_time=curr_time; 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        itmp = strlen(strcurr);
     else if (sum) ii=i;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     b[i]=sum;          strcurr[itmp-1]='\0';
   }        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   for (i=n;i>=1;i--) {        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     sum=b[i];        for(niterf=10;niterf<=30;niterf+=10){
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     b[i]=sum/a[i][i];          tmf = *localtime(&forecast_time.tv_sec);
   }  /*      asctime_r(&tmf,strfor); */
 }          strcpy(strfor,asctime(&tmf));
           itmp = strlen(strfor);
 /************ Frequencies ********************/          if(strfor[itmp-1]=='\n')
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          strfor[itmp-1]='\0';
 {  /* Some frequencies */          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
            fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        }
   int first;      }
   double ***freq; /* Frequencies */      for (i=1;i<=n;i++) { 
   double *pp;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   double pos, k2, dateintsum=0,k2cpt=0;        fptt=(*fret); 
   FILE *ficresp;  #ifdef DEBUG
   char fileresp[FILENAMELENGTH];        printf("fret=%lf \n",*fret);
          fprintf(ficlog,"fret=%lf \n",*fret);
   pp=vector(1,nlstate);  #endif
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        printf("%d",i);fflush(stdout);
   strcpy(fileresp,"p");        fprintf(ficlog,"%d",i);fflush(ficlog);
   strcat(fileresp,fileres);        linmin(p,xit,n,fret,func); 
   if((ficresp=fopen(fileresp,"w"))==NULL) {        if (fabs(fptt-(*fret)) > del) { 
     printf("Problem with prevalence resultfile: %s\n", fileresp);          del=fabs(fptt-(*fret)); 
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);          ibig=i; 
     exit(0);        } 
   }  #ifdef DEBUG
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        printf("%d %.12e",i,(*fret));
   j1=0;        fprintf(ficlog,"%d %.12e",i,(*fret));
          for (j=1;j<=n;j++) {
   j=cptcoveff;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   first=1;        }
         for(j=1;j<=n;j++) {
   for(k1=1; k1<=j;k1++){          printf(" p=%.12e",p[j]);
     for(i1=1; i1<=ncodemax[k1];i1++){          fprintf(ficlog," p=%.12e",p[j]);
       j1++;        }
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        printf("\n");
         scanf("%d", i);*/        fprintf(ficlog,"\n");
       for (i=-1; i<=nlstate+ndeath; i++)    #endif
         for (jk=-1; jk<=nlstate+ndeath; jk++)        } 
           for(m=agemin; m <= agemax+3; m++)      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
             freq[i][jk][m]=0;  #ifdef DEBUG
              int k[2],l;
       dateintsum=0;        k[0]=1;
       k2cpt=0;        k[1]=-1;
       for (i=1; i<=imx; i++) {        printf("Max: %.12e",(*func)(p));
         bool=1;        fprintf(ficlog,"Max: %.12e",(*func)(p));
         if  (cptcovn>0) {        for (j=1;j<=n;j++) {
           for (z1=1; z1<=cptcoveff; z1++)          printf(" %.12e",p[j]);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          fprintf(ficlog," %.12e",p[j]);
               bool=0;        }
         }        printf("\n");
         if (bool==1) {        fprintf(ficlog,"\n");
           for(m=firstpass; m<=lastpass; m++){        for(l=0;l<=1;l++) {
             k2=anint[m][i]+(mint[m][i]/12.);          for (j=1;j<=n;j++) {
             if ((k2>=dateprev1) && (k2<=dateprev2)) {            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
               if(agev[m][i]==0) agev[m][i]=agemax+1;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
               if(agev[m][i]==1) agev[m][i]=agemax+2;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
               if (m<lastpass) {          }
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
               }        }
                #endif
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  
                 dateintsum=dateintsum+k2;  
                 k2cpt++;        free_vector(xit,1,n); 
               }        free_vector(xits,1,n); 
             }        free_vector(ptt,1,n); 
           }        free_vector(pt,1,n); 
         }        return; 
       }      } 
              if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      for (j=1;j<=n;j++) { 
         ptt[j]=2.0*p[j]-pt[j]; 
       if  (cptcovn>0) {        xit[j]=p[j]-pt[j]; 
         fprintf(ficresp, "\n#********** Variable ");        pt[j]=p[j]; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      } 
         fprintf(ficresp, "**********\n#");      fptt=(*func)(ptt); 
       }      if (fptt < fp) { 
       for(i=1; i<=nlstate;i++)        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        if (t < 0.0) { 
       fprintf(ficresp, "\n");          linmin(p,xit,n,fret,func); 
                for (j=1;j<=n;j++) { 
       for(i=(int)agemin; i <= (int)agemax+3; i++){            xi[j][ibig]=xi[j][n]; 
         if(i==(int)agemax+3){            xi[j][n]=xit[j]; 
           fprintf(ficlog,"Total");          }
         }else{  #ifdef DEBUG
           if(first==1){          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
             first=0;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
             printf("See log file for details...\n");          for(j=1;j<=n;j++){
           }            printf(" %.12e",xit[j]);
           fprintf(ficlog,"Age %d", i);            fprintf(ficlog," %.12e",xit[j]);
         }          }
         for(jk=1; jk <=nlstate ; jk++){          printf("\n");
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          fprintf(ficlog,"\n");
             pp[jk] += freq[jk][m][i];  #endif
         }        }
         for(jk=1; jk <=nlstate ; jk++){      } 
           for(m=-1, pos=0; m <=0 ; m++)    } 
             pos += freq[jk][m][i];  } 
           if(pp[jk]>=1.e-10){  
             if(first==1){  /**** Prevalence limit (stable or period prevalence)  ****************/
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
             }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  {
           }else{    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
             if(first==1)       matrix by transitions matrix until convergence is reached */
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    int i, ii,j,k;
           }    double min, max, maxmin, maxmax,sumnew=0.;
         }    /* double **matprod2(); */ /* test */
     double **out, cov[NCOVMAX+1], **pmij();
         for(jk=1; jk <=nlstate ; jk++){    double **newm;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    double agefin, delaymax=50 ; /* Max number of years to converge */
             pp[jk] += freq[jk][m][i];  
         }    for (ii=1;ii<=nlstate+ndeath;ii++)
       for (j=1;j<=nlstate+ndeath;j++){
         for(jk=1,pos=0; jk <=nlstate ; jk++)        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           pos += pp[jk];      }
         for(jk=1; jk <=nlstate ; jk++){  
           if(pos>=1.e-5){     cov[1]=1.;
             if(first==1)   
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
           }else{      newm=savm;
             if(first==1)      /* Covariates have to be included here again */
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      cov[2]=agefin;
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      
           }      for (k=1; k<=cptcovn;k++) {
           if( i <= (int) agemax){        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
             if(pos>=1.e-5){        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      }
               probs[i][jk][j1]= pp[jk]/pos;      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
             }      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
             else      
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
           }      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         }      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
              /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
         for(jk=-1; jk <=nlstate+ndeath; jk++)      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
           for(m=-1; m <=nlstate+ndeath; m++)      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
             if(freq[jk][m][i] !=0 ) {      
             if(first==1)      savm=oldm;
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      oldm=newm;
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);      maxmax=0.;
             }      for(j=1;j<=nlstate;j++){
         if(i <= (int) agemax)        min=1.;
           fprintf(ficresp,"\n");        max=0.;
         if(first==1)        for(i=1; i<=nlstate; i++) {
           printf("Others in log...\n");          sumnew=0;
         fprintf(ficlog,"\n");          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       }          prlim[i][j]= newm[i][j]/(1-sumnew);
     }          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
   }          max=FMAX(max,prlim[i][j]);
   dateintmean=dateintsum/k2cpt;          min=FMIN(min,prlim[i][j]);
          }
   fclose(ficresp);        maxmin=max-min;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        maxmax=FMAX(maxmax,maxmin);
   free_vector(pp,1,nlstate);      }
        if(maxmax < ftolpl){
   /* End of Freq */        return prlim;
 }      }
     }
 /************ Prevalence ********************/  }
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  
 {  /* Some frequencies */  /*************** transition probabilities ***************/ 
    
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   double ***freq; /* Frequencies */  {
   double *pp;    /* According to parameters values stored in x and the covariate's values stored in cov,
   double pos, k2;       computes the probability to be observed in state j being in state i by appying the
        model to the ncovmodel covariates (including constant and age).
   pp=vector(1,nlstate);       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
         ncth covariate in the global vector x is given by the formula:
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
   j1=0;       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
         Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
   j=cptcoveff;       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
   if (cptcovn<1) {j=1;ncodemax[1]=1;}       Outputs ps[i][j] the probability to be observed in j being in j according to
         the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
   for(k1=1; k1<=j;k1++){    */
     for(i1=1; i1<=ncodemax[k1];i1++){    double s1, lnpijopii;
       j1++;    /*double t34;*/
          int i,j,j1, nc, ii, jj;
       for (i=-1; i<=nlstate+ndeath; i++)    
         for (jk=-1; jk<=nlstate+ndeath; jk++)        for(i=1; i<= nlstate; i++){
           for(m=agemin; m <= agemax+3; m++)        for(j=1; j<i;j++){
             freq[i][jk][m]=0;          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                  /*lnpijopii += param[i][j][nc]*cov[nc];*/
       for (i=1; i<=imx; i++) {            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
         bool=1;  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         if  (cptcovn>0) {          }
           for (z1=1; z1<=cptcoveff; z1++)          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
               bool=0;        }
         }        for(j=i+1; j<=nlstate+ndeath;j++){
         if (bool==1) {          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
           for(m=firstpass; m<=lastpass; m++){            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
             k2=anint[m][i]+(mint[m][i]/12.);            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
               if(agev[m][i]==0) agev[m][i]=agemax+1;          }
               if(agev[m][i]==1) agev[m][i]=agemax+2;          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
               if (m<lastpass) {        }
                 if (calagedate>0)      }
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];      
                 else      for(i=1; i<= nlstate; i++){
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        s1=0;
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];        for(j=1; j<i; j++){
               }          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
             }          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
           }        }
         }        for(j=i+1; j<=nlstate+ndeath; j++){
       }          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
       for(i=(int)agemin; i <= (int)agemax+3; i++){          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         for(jk=1; jk <=nlstate ; jk++){        }
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
             pp[jk] += freq[jk][m][i];        ps[i][i]=1./(s1+1.);
         }        /* Computing other pijs */
         for(jk=1; jk <=nlstate ; jk++){        for(j=1; j<i; j++)
           for(m=-1, pos=0; m <=0 ; m++)          ps[i][j]= exp(ps[i][j])*ps[i][i];
             pos += freq[jk][m][i];        for(j=i+1; j<=nlstate+ndeath; j++)
         }          ps[i][j]= exp(ps[i][j])*ps[i][i];
                /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         for(jk=1; jk <=nlstate ; jk++){      } /* end i */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      
             pp[jk] += freq[jk][m][i];      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         }        for(jj=1; jj<= nlstate+ndeath; jj++){
                  ps[ii][jj]=0;
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          ps[ii][ii]=1;
                }
         for(jk=1; jk <=nlstate ; jk++){          }
           if( i <= (int) agemax){      
             if(pos>=1.e-5){      
               probs[i][jk][j1]= pp[jk]/pos;      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
             }      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
           }      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
         }/* end jk */      /*   } */
       }/* end i */      /*   printf("\n "); */
     } /* end i1 */      /* } */
   } /* end k1 */      /* printf("\n ");printf("%lf ",cov[2]);*/
       /*
          for(i=1; i<= npar; i++) printf("%f ",x[i]);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        goto end;*/
   free_vector(pp,1,nlstate);      return ps;
    }
 }  /* End of Freq */  
   /**************** Product of 2 matrices ******************/
 /************* Waves Concatenation ***************/  
   double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  {
 {    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
      Death is a valid wave (if date is known).    /* in, b, out are matrice of pointers which should have been initialized 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i       before: only the contents of out is modified. The function returns
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]       a pointer to pointers identical to out */
      and mw[mi+1][i]. dh depends on stepm.    int i, j, k;
      */    for(i=nrl; i<= nrh; i++)
       for(k=ncolol; k<=ncoloh; k++){
   int i, mi, m;        out[i][k]=0.;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        for(j=ncl; j<=nch; j++)
      double sum=0., jmean=0.;*/          out[i][k] +=in[i][j]*b[j][k];
   int first;      }
   int j, k=0,jk, ju, jl;    return out;
   double sum=0.;  }
   first=0;  
   jmin=1e+5;  
   jmax=-1;  /************* Higher Matrix Product ***************/
   jmean=0.;  
   for(i=1; i<=imx; i++){  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     mi=0;  {
     m=firstpass;    /* Computes the transition matrix starting at age 'age' over 
     while(s[m][i] <= nlstate){       'nhstepm*hstepm*stepm' months (i.e. until
       if(s[m][i]>=1)       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         mw[++mi][i]=m;       nhstepm*hstepm matrices. 
       if(m >=lastpass)       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         break;       (typically every 2 years instead of every month which is too big 
       else       for the memory).
         m++;       Model is determined by parameters x and covariates have to be 
     }/* end while */       included manually here. 
     if (s[m][i] > nlstate){  
       mi++;     /* Death is another wave */       */
       /* if(mi==0)  never been interviewed correctly before death */  
          /* Only death is a correct wave */    int i, j, d, h, k;
       mw[mi][i]=m;    double **out, cov[NCOVMAX+1];
     }    double **newm;
   
     wav[i]=mi;    /* Hstepm could be zero and should return the unit matrix */
     if(mi==0){    for (i=1;i<=nlstate+ndeath;i++)
       if(first==0){      for (j=1;j<=nlstate+ndeath;j++){
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);        oldm[i][j]=(i==j ? 1.0 : 0.0);
         first=1;        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }      }
       if(first==1){    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);    for(h=1; h <=nhstepm; h++){
       }      for(d=1; d <=hstepm; d++){
     } /* end mi==0 */        newm=savm;
   }        /* Covariates have to be included here again */
         cov[1]=1.;
   for(i=1; i<=imx; i++){        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     for(mi=1; mi<wav[i];mi++){        for (k=1; k<=cptcovn;k++) 
       if (stepm <=0)          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         dh[mi][i]=1;        for (k=1; k<=cptcovage;k++)
       else{          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         if (s[mw[mi+1][i]][i] > nlstate) {        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
           if (agedc[i] < 2*AGESUP) {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  
           if(j==0) j=1;  /* Survives at least one month after exam */  
           k=k+1;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
           if (j >= jmax) jmax=j;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
           if (j <= jmin) jmin=j;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
           sum=sum+j;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        savm=oldm;
           }        oldm=newm;
         }      }
         else{      for(i=1; i<=nlstate+ndeath; i++)
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        for(j=1;j<=nlstate+ndeath;j++) {
           k=k+1;          po[i][j][h]=newm[i][j];
           if (j >= jmax) jmax=j;          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
           else if (j <= jmin)jmin=j;        }
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      /*printf("h=%d ",h);*/
           sum=sum+j;    } /* end h */
         }  /*     printf("\n H=%d \n",h); */
         jk= j/stepm;    return po;
         jl= j -jk*stepm;  }
         ju= j -(jk+1)*stepm;  
         if(jl <= -ju)  
           dh[mi][i]=jk;  /*************** log-likelihood *************/
         else  double func( double *x)
           dh[mi][i]=jk+1;  {
         if(dh[mi][i]==0)    int i, ii, j, k, mi, d, kk;
           dh[mi][i]=1; /* At least one step */    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
       }    double **out;
     }    double sw; /* Sum of weights */
   }    double lli; /* Individual log likelihood */
   jmean=sum/k;    int s1, s2;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    double bbh, survp;
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    long ipmx;
  }    /*extern weight */
     /* We are differentiating ll according to initial status */
 /*********** Tricode ****************************/    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 void tricode(int *Tvar, int **nbcode, int imx)    /*for(i=1;i<imx;i++) 
 {      printf(" %d\n",s[4][i]);
   int Ndum[20],ij=1, k, j, i;    */
   int cptcode=0;    cov[1]=1.;
   cptcoveff=0;  
      for(k=1; k<=nlstate; k++) ll[k]=0.;
   for (k=0; k<19; k++) Ndum[k]=0;  
   for (k=1; k<=7; k++) ncodemax[k]=0;    if(mle==1){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        /* Computes the values of the ncovmodel covariates of the model
     for (i=1; i<=imx; i++) {           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
       ij=(int)(covar[Tvar[j]][i]);           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
       Ndum[ij]++;           to be observed in j being in i according to the model.
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/         */
       if (ij > cptcode) cptcode=ij;        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
     }          cov[2+k]=covar[Tvar[k]][i];
         }
     for (i=0; i<=cptcode; i++) {        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
       if(Ndum[i]!=0) ncodemax[j]++;           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
     }           has been calculated etc */
     ij=1;        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
     for (i=1; i<=ncodemax[j]; i++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (k=0; k<=19; k++) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if (Ndum[k] != 0) {            }
           nbcode[Tvar[j]][ij]=k;          for(d=0; d<dh[mi][i]; d++){
                      newm=savm;
           ij++;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }            for (kk=1; kk<=cptcovage;kk++) {
         if (ij > ncodemax[j]) break;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
       }              }
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
  for (k=0; k<19; k++) Ndum[k]=0;            oldm=newm;
           } /* end mult */
  for (i=1; i<=ncovmodel-2; i++) {        
    ij=Tvar[i];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
    Ndum[ij]++;          /* But now since version 0.9 we anticipate for bias at large stepm.
  }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
  ij=1;           * the nearest (and in case of equal distance, to the lowest) interval but now
  for (i=1; i<=10; i++) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
    if((Ndum[i]!=0) && (i<=ncovcol)){           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
      Tvaraff[ij]=i;           * probability in order to take into account the bias as a fraction of the way
      ij++;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
    }           * -stepm/2 to stepm/2 .
  }           * For stepm=1 the results are the same as for previous versions of Imach.
             * For stepm > 1 the results are less biased than in previous versions. 
  cptcoveff=ij-1;           */
 }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
 /*********** Health Expectancies ****************/          bbh=(double)bh[mi][i]/(double)stepm; 
           /* bias bh is positive if real duration
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )           * is higher than the multiple of stepm and negative otherwise.
            */
 {          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   /* Health expectancies */          if( s2 > nlstate){ 
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;            /* i.e. if s2 is a death state and if the date of death is known 
   double age, agelim, hf;               then the contribution to the likelihood is the probability to 
   double ***p3mat,***varhe;               die between last step unit time and current  step unit time, 
   double **dnewm,**doldm;               which is also equal to probability to die before dh 
   double *xp;               minus probability to die before dh-stepm . 
   double **gp, **gm;               In version up to 0.92 likelihood was computed
   double ***gradg, ***trgradg;          as if date of death was unknown. Death was treated as any other
   int theta;          health state: the date of the interview describes the actual state
           and not the date of a change in health state. The former idea was
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);          to consider that at each interview the state was recorded
   xp=vector(1,npar);          (healthy, disable or death) and IMaCh was corrected; but when we
   dnewm=matrix(1,nlstate*2,1,npar);          introduced the exact date of death then we should have modified
   doldm=matrix(1,nlstate*2,1,nlstate*2);          the contribution of an exact death to the likelihood. This new
            contribution is smaller and very dependent of the step unit
   fprintf(ficreseij,"# Health expectancies\n");          stepm. It is no more the probability to die between last interview
   fprintf(ficreseij,"# Age");          and month of death but the probability to survive from last
   for(i=1; i<=nlstate;i++)          interview up to one month before death multiplied by the
     for(j=1; j<=nlstate;j++)          probability to die within a month. Thanks to Chris
       fprintf(ficreseij," %1d-%1d (SE)",i,j);          Jackson for correcting this bug.  Former versions increased
   fprintf(ficreseij,"\n");          mortality artificially. The bad side is that we add another loop
           which slows down the processing. The difference can be up to 10%
   if(estepm < stepm){          lower mortality.
     printf ("Problem %d lower than %d\n",estepm, stepm);            */
   }            lli=log(out[s1][s2] - savm[s1][s2]);
   else  hstepm=estepm;    
   /* We compute the life expectancy from trapezoids spaced every estepm months  
    * This is mainly to measure the difference between two models: for example          } else if  (s2==-2) {
    * if stepm=24 months pijx are given only every 2 years and by summing them            for (j=1,survp=0. ; j<=nlstate; j++) 
    * we are calculating an estimate of the Life Expectancy assuming a linear              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
    * progression inbetween and thus overestimating or underestimating according            /*survp += out[s1][j]; */
    * to the curvature of the survival function. If, for the same date, we            lli= log(survp);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          }
    * to compare the new estimate of Life expectancy with the same linear          
    * hypothesis. A more precise result, taking into account a more precise          else if  (s2==-4) { 
    * curvature will be obtained if estepm is as small as stepm. */            for (j=3,survp=0. ; j<=nlstate; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   /* For example we decided to compute the life expectancy with the smallest unit */            lli= log(survp); 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          } 
      nhstepm is the number of hstepm from age to agelim  
      nstepm is the number of stepm from age to agelin.          else if  (s2==-5) { 
      Look at hpijx to understand the reason of that which relies in memory size            for (j=1,survp=0. ; j<=2; j++)  
      and note for a fixed period like estepm months */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            lli= log(survp); 
      survival function given by stepm (the optimization length). Unfortunately it          } 
      means that if the survival funtion is printed only each two years of age and if          
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          else{
      results. So we changed our mind and took the option of the best precision.            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          } 
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   agelim=AGESUP;          /*if(lli ==000.0)*/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     /* nhstepm age range expressed in number of stepm */          ipmx +=1;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          sw += weight[i];
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     /* if (stepm >= YEARM) hstepm=1;*/        } /* end of wave */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      } /* end of individual */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }  else if(mle==2){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     gp=matrix(0,nhstepm,1,nlstate*2);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     gm=matrix(0,nhstepm,1,nlstate*2);        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
     /* Computed by stepm unit matrices, product of hstepm matrices, stored            for (j=1;j<=nlstate+ndeath;j++){
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);                savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
           for(d=0; d<=dh[mi][i]; d++){
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     /* Computing Variances of health expectancies */            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
      for(theta=1; theta <=npar; theta++){            }
       for(i=1; i<=npar; i++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }            savm=oldm;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              oldm=newm;
            } /* end mult */
       cptj=0;        
       for(j=1; j<= nlstate; j++){          s1=s[mw[mi][i]][i];
         for(i=1; i<=nlstate; i++){          s2=s[mw[mi+1][i]][i];
           cptj=cptj+1;          bbh=(double)bh[mi][i]/(double)stepm; 
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          ipmx +=1;
           }          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }        } /* end of wave */
            } /* end of individual */
          }  else if(mle==3){  /* exponential inter-extrapolation */
       for(i=1; i<=npar; i++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for(mi=1; mi<= wav[i]-1; mi++){
                for (ii=1;ii<=nlstate+ndeath;ii++)
       cptj=0;            for (j=1;j<=nlstate+ndeath;j++){
       for(j=1; j<= nlstate; j++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(i=1;i<=nlstate;i++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           cptj=cptj+1;            }
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          for(d=0; d<dh[mi][i]; d++){
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;            newm=savm;
           }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(j=1; j<= nlstate*2; j++)            }
         for(h=0; h<=nhstepm-1; h++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
      }            oldm=newm;
              } /* end mult */
 /* End theta */        
           s1=s[mw[mi][i]][i];
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
      for(h=0; h<=nhstepm-1; h++)          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       for(j=1; j<=nlstate*2;j++)          ipmx +=1;
         for(theta=1; theta <=npar; theta++)          sw += weight[i];
           trgradg[h][j][theta]=gradg[h][theta][j];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
              } /* end of wave */
       } /* end of individual */
      for(i=1;i<=nlstate*2;i++)    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       for(j=1;j<=nlstate*2;j++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         varhe[i][j][(int)age] =0.;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
      printf("%d|",(int)age);fflush(stdout);          for (ii=1;ii<=nlstate+ndeath;ii++)
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);            for (j=1;j<=nlstate+ndeath;j++){
      for(h=0;h<=nhstepm-1;h++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(k=0;k<=nhstepm-1;k++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);            }
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          for(d=0; d<dh[mi][i]; d++){
         for(i=1;i<=nlstate*2;i++)            newm=savm;
           for(j=1;j<=nlstate*2;j++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }            }
     /* Computing expectancies */          
     for(i=1; i<=nlstate;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(j=1; j<=nlstate;j++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){            savm=oldm;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;            oldm=newm;
                    } /* end mult */
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        
           s1=s[mw[mi][i]][i];
         }          s2=s[mw[mi+1][i]][i];
           if( s2 > nlstate){ 
     fprintf(ficreseij,"%3.0f",age );            lli=log(out[s1][s2] - savm[s1][s2]);
     cptj=0;          }else{
     for(i=1; i<=nlstate;i++)            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       for(j=1; j<=nlstate;j++){          }
         cptj++;          ipmx +=1;
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );          sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     fprintf(ficreseij,"\n");  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
            } /* end of wave */
     free_matrix(gm,0,nhstepm,1,nlstate*2);      } /* end of individual */
     free_matrix(gp,0,nhstepm,1,nlstate*2);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
   printf("\n");            for (j=1;j<=nlstate+ndeath;j++){
   fprintf(ficlog,"\n");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_vector(xp,1,npar);            }
   free_matrix(dnewm,1,nlstate*2,1,npar);          for(d=0; d<dh[mi][i]; d++){
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);            newm=savm;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 /************ Variance ******************/            }
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)          
 {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   /* Variance of health expectancies */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            savm=oldm;
   /* double **newm;*/            oldm=newm;
   double **dnewm,**doldm;          } /* end mult */
   double **dnewmp,**doldmp;        
   int i, j, nhstepm, hstepm, h, nstepm ;          s1=s[mw[mi][i]][i];
   int k, cptcode;          s2=s[mw[mi+1][i]][i];
   double *xp;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   double **gp, **gm;  /* for var eij */          ipmx +=1;
   double ***gradg, ***trgradg; /*for var eij */          sw += weight[i];
   double **gradgp, **trgradgp; /* for var p point j */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double *gpp, *gmp; /* for var p point j */          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */        } /* end of wave */
   double ***p3mat;      } /* end of individual */
   double age,agelim, hf;    } /* End of if */
   int theta;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   char digit[4];    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   char digitp[16];    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     return -l;
   char fileresprobmorprev[FILENAMELENGTH];  }
   
   if(popbased==1)  /*************** log-likelihood *************/
     strcpy(digitp,"-populbased-");  double funcone( double *x)
   else  {
     strcpy(digitp,"-stablbased-");    /* Same as likeli but slower because of a lot of printf and if */
     int i, ii, j, k, mi, d, kk;
   strcpy(fileresprobmorprev,"prmorprev");    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   sprintf(digit,"%-d",ij);    double **out;
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/    double lli; /* Individual log likelihood */
   strcat(fileresprobmorprev,digit); /* Tvar to be done */    double llt;
   strcat(fileresprobmorprev,digitp); /* Popbased or not */    int s1, s2;
   strcat(fileresprobmorprev,fileres);    double bbh, survp;
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {    /*extern weight */
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    /* We are differentiating ll according to initial status */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   }    /*for(i=1;i<imx;i++) 
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);      printf(" %d\n",s[4][i]);
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    */
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");    cov[1]=1.;
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);  
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){    for(k=1; k<=nlstate; k++) ll[k]=0.;
     fprintf(ficresprobmorprev," p.%-d SE",j);  
     for(i=1; i<=nlstate;i++)    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
   fprintf(ficresprobmorprev,"\n");        for (ii=1;ii<=nlstate+ndeath;ii++)
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          for (j=1;j<=nlstate+ndeath;j++){
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
     exit(0);          }
   }        for(d=0; d<dh[mi][i]; d++){
   else{          newm=savm;
     fprintf(ficgp,"\n# Routine varevsij");          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }          for (kk=1; kk<=cptcovage;kk++) {
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     printf("Problem with html file: %s\n", optionfilehtm);          }
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
     exit(0);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   else{          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
   }          savm=oldm;
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          oldm=newm;
         } /* end mult */
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");        
   fprintf(ficresvij,"# Age");        s1=s[mw[mi][i]][i];
   for(i=1; i<=nlstate;i++)        s2=s[mw[mi+1][i]][i];
     for(j=1; j<=nlstate;j++)        bbh=(double)bh[mi][i]/(double)stepm; 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        /* bias is positive if real duration
   fprintf(ficresvij,"\n");         * is higher than the multiple of stepm and negative otherwise.
          */
   xp=vector(1,npar);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   dnewm=matrix(1,nlstate,1,npar);          lli=log(out[s1][s2] - savm[s1][s2]);
   doldm=matrix(1,nlstate,1,nlstate);        } else if  (s2==-2) {
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);          for (j=1,survp=0. ; j<=nlstate; j++) 
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           lli= log(survp);
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);        }else if (mle==1){
   gpp=vector(nlstate+1,nlstate+ndeath);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   gmp=vector(nlstate+1,nlstate+ndeath);        } else if(mle==2){
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
          } else if(mle==3){  /* exponential inter-extrapolation */
   if(estepm < stepm){          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     printf ("Problem %d lower than %d\n",estepm, stepm);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   }          lli=log(out[s1][s2]); /* Original formula */
   else  hstepm=estepm;          } else{  /* mle=0 back to 1 */
   /* For example we decided to compute the life expectancy with the smallest unit */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          /*lli=log(out[s1][s2]); */ /* Original formula */
      nhstepm is the number of hstepm from age to agelim        } /* End of if */
      nstepm is the number of stepm from age to agelin.        ipmx +=1;
      Look at hpijx to understand the reason of that which relies in memory size        sw += weight[i];
      and note for a fixed period like k years */        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
      survival function given by stepm (the optimization length). Unfortunately it        if(globpr){
      means that if the survival funtion is printed only each two years of age and if          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
      you sum them up and add 1 year (area under the trapezoids) you won't get the same   %11.6f %11.6f %11.6f ", \
      results. So we changed our mind and took the option of the best precision.                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   */                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   agelim = AGESUP;            llt +=ll[k]*gipmx/gsw;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          fprintf(ficresilk," %10.6f\n", -llt);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      } /* end of wave */
     gp=matrix(0,nhstepm,1,nlstate);    } /* end of individual */
     gm=matrix(0,nhstepm,1,nlstate);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     for(theta=1; theta <=npar; theta++){    if(globpr==0){ /* First time we count the contributions and weights */
       for(i=1; i<=npar; i++){ /* Computes gradient */      gipmx=ipmx;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      gsw=sw;
       }    }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      return -l;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  }
   
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)  /*************** function likelione ***********/
           prlim[i][i]=probs[(int)age][i][ij];  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       }  {
      /* This routine should help understanding what is done with 
       for(j=1; j<= nlstate; j++){       the selection of individuals/waves and
         for(h=0; h<=nhstepm; h++){       to check the exact contribution to the likelihood.
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)       Plotting could be done.
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];     */
         }    int k;
       }  
       /* This for computing forces of mortality (h=1)as a weighted average */    if(*globpri !=0){ /* Just counts and sums, no printings */
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){      strcpy(fileresilk,"ilk"); 
         for(i=1; i<= nlstate; i++)      strcat(fileresilk,fileres);
           gpp[j] += prlim[i][i]*p3mat[i][j][1];      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       }            printf("Problem with resultfile: %s\n", fileresilk);
       /* end force of mortality */        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
       for(i=1; i<=npar; i++) /* Computes gradient */      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for(k=1; k<=nlstate; k++) 
          fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       if (popbased==1) {      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
         for(i=1; i<=nlstate;i++)    }
           prlim[i][i]=probs[(int)age][i][ij];  
       }    *fretone=(*funcone)(p);
     if(*globpri !=0){
       for(j=1; j<= nlstate; j++){      fclose(ficresilk);
         for(h=0; h<=nhstepm; h++){      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      fflush(fichtm); 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    } 
         }    return;
       }  }
       /* This for computing force of mortality (h=1)as a weighted average */  
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){  
         for(i=1; i<= nlstate; i++)  /*********** Maximum Likelihood Estimation ***************/
           gmp[j] += prlim[i][i]*p3mat[i][j][1];  
       }      void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       /* end force of mortality */  {
     int i,j, iter;
       for(j=1; j<= nlstate; j++) /* vareij */    double **xi;
         for(h=0; h<=nhstepm; h++){    double fret;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    double fretone; /* Only one call to likelihood */
         }    /*  char filerespow[FILENAMELENGTH];*/
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */    xi=matrix(1,npar,1,npar);
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];    for (i=1;i<=npar;i++)
       }      for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
     } /* End theta */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow"); 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */    strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
     for(h=0; h<=nhstepm; h++) /* veij */      printf("Problem with resultfile: %s\n", filerespow);
       for(j=1; j<=nlstate;j++)      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         for(theta=1; theta <=npar; theta++)    }
           trgradg[h][j][theta]=gradg[h][theta][j];    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for (i=1;i<=nlstate;i++)
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */      for(j=1;j<=nlstate+ndeath;j++)
       for(theta=1; theta <=npar; theta++)        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         trgradgp[j][theta]=gradgp[theta][j];    fprintf(ficrespow,"\n");
   
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    powell(p,xi,npar,ftol,&iter,&fret,func);
     for(i=1;i<=nlstate;i++)  
       for(j=1;j<=nlstate;j++)    free_matrix(xi,1,npar,1,npar);
         vareij[i][j][(int)age] =0.;    fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     for(h=0;h<=nhstepm;h++){    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       for(k=0;k<=nhstepm;k++){    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  }
         for(i=1;i<=nlstate;i++)  
           for(j=1;j<=nlstate;j++)  /**** Computes Hessian and covariance matrix ***/
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       }  {
     }    double  **a,**y,*x,pd;
     double **hess;
     /* pptj */    int i, j,jk;
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);    int *indx;
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);  
     for(j=nlstate+1;j<=nlstate+ndeath;j++)    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       for(i=nlstate+1;i<=nlstate+ndeath;i++)    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
         varppt[j][i]=doldmp[j][i];    void lubksb(double **a, int npar, int *indx, double b[]) ;
     /* end ppptj */    void ludcmp(double **a, int npar, int *indx, double *d) ;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);      double gompertz(double p[]);
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);    hess=matrix(1,npar,1,npar);
    
     if (popbased==1) {    printf("\nCalculation of the hessian matrix. Wait...\n");
       for(i=1; i<=nlstate;i++)    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
         prlim[i][i]=probs[(int)age][i][ij];    for (i=1;i<=npar;i++){
     }      printf("%d",i);fflush(stdout);
          fprintf(ficlog,"%d",i);fflush(ficlog);
     /* This for computing force of mortality (h=1)as a weighted average */     
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       for(i=1; i<= nlstate; i++)      
         gmp[j] += prlim[i][i]*p3mat[i][j][1];      /*  printf(" %f ",p[i]);
     }              printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     /* end force of mortality */    }
     
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);    for (i=1;i<=npar;i++) {
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){      for (j=1;j<=npar;j++)  {
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));        if (j>i) { 
       for(i=1; i<=nlstate;i++){          printf(".%d%d",i,j);fflush(stdout);
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       }          hess[i][j]=hessij(p,delti,i,j,func,npar);
     }          
     fprintf(ficresprobmorprev,"\n");          hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
     fprintf(ficresvij,"%.0f ",age );        }
     for(i=1; i<=nlstate;i++)      }
       for(j=1; j<=nlstate;j++){    }
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    printf("\n");
       }    fprintf(ficlog,"\n");
     fprintf(ficresvij,"\n");  
     free_matrix(gp,0,nhstepm,1,nlstate);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     free_matrix(gm,0,nhstepm,1,nlstate);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    a=matrix(1,npar,1,npar);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    y=matrix(1,npar,1,npar);
   } /* End age */    x=vector(1,npar);
   free_vector(gpp,nlstate+1,nlstate+ndeath);    indx=ivector(1,npar);
   free_vector(gmp,nlstate+1,nlstate+ndeath);    for (i=1;i<=npar;i++)
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    ludcmp(a,npar,indx,&pd);
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");  
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */    for (j=1;j<=npar;j++) {
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");      for (i=1;i<=npar;i++) x[i]=0;
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);      x[j]=1;
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);      lubksb(a,npar,indx,x);
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);      for (i=1;i<=npar;i++){ 
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);        matcov[i][j]=x[i];
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);      }
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);    }
   
   free_vector(xp,1,npar);    printf("\n#Hessian matrix#\n");
   free_matrix(doldm,1,nlstate,1,nlstate);    fprintf(ficlog,"\n#Hessian matrix#\n");
   free_matrix(dnewm,1,nlstate,1,npar);    for (i=1;i<=npar;i++) { 
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      for (j=1;j<=npar;j++) { 
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);        printf("%.3e ",hess[i][j]);
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        fprintf(ficlog,"%.3e ",hess[i][j]);
   fclose(ficresprobmorprev);      }
   fclose(ficgp);      printf("\n");
   fclose(fichtm);      fprintf(ficlog,"\n");
     }
 }  
     /* Recompute Inverse */
 /************ Variance of prevlim ******************/    for (i=1;i<=npar;i++)
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 {    ludcmp(a,npar,indx,&pd);
   /* Variance of prevalence limit */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    /*  printf("\n#Hessian matrix recomputed#\n");
   double **newm;  
   double **dnewm,**doldm;    for (j=1;j<=npar;j++) {
   int i, j, nhstepm, hstepm;      for (i=1;i<=npar;i++) x[i]=0;
   int k, cptcode;      x[j]=1;
   double *xp;      lubksb(a,npar,indx,x);
   double *gp, *gm;      for (i=1;i<=npar;i++){ 
   double **gradg, **trgradg;        y[i][j]=x[i];
   double age,agelim;        printf("%.3e ",y[i][j]);
   int theta;        fprintf(ficlog,"%.3e ",y[i][j]);
          }
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");      printf("\n");
   fprintf(ficresvpl,"# Age");      fprintf(ficlog,"\n");
   for(i=1; i<=nlstate;i++)    }
       fprintf(ficresvpl," %1d-%1d",i,i);    */
   fprintf(ficresvpl,"\n");  
     free_matrix(a,1,npar,1,npar);
   xp=vector(1,npar);    free_matrix(y,1,npar,1,npar);
   dnewm=matrix(1,nlstate,1,npar);    free_vector(x,1,npar);
   doldm=matrix(1,nlstate,1,nlstate);    free_ivector(indx,1,npar);
      free_matrix(hess,1,npar,1,npar);
   hstepm=1*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;  }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  /*************** hessian matrix ****************/
     if (stepm >= YEARM) hstepm=1;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  {
     gradg=matrix(1,npar,1,nlstate);    int i;
     gp=vector(1,nlstate);    int l=1, lmax=20;
     gm=vector(1,nlstate);    double k1,k2;
     double p2[MAXPARM+1]; /* identical to x */
     for(theta=1; theta <=npar; theta++){    double res;
       for(i=1; i<=npar; i++){ /* Computes gradient */    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double fx;
       }    int k=0,kmax=10;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double l1;
       for(i=1;i<=nlstate;i++)  
         gp[i] = prlim[i][i];    fx=func(x);
        for (i=1;i<=npar;i++) p2[i]=x[i];
       for(i=1; i<=npar; i++) /* Computes gradient */    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      l1=pow(10,l);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      delts=delt;
       for(i=1;i<=nlstate;i++)      for(k=1 ; k <kmax; k=k+1){
         gm[i] = prlim[i][i];        delt = delta*(l1*k);
         p2[theta]=x[theta] +delt;
       for(i=1;i<=nlstate;i++)        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        p2[theta]=x[theta]-delt;
     } /* End theta */        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
     trgradg =matrix(1,nlstate,1,npar);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         
     for(j=1; j<=nlstate;j++)  #ifdef DEBUGHESS
       for(theta=1; theta <=npar; theta++)        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         trgradg[j][theta]=gradg[theta][j];        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   #endif
     for(i=1;i<=nlstate;i++)        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       varpl[i][(int)age] =0.;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          k=kmax;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        }
     for(i=1;i<=nlstate;i++)        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          k=kmax; l=lmax*10.;
         }
     fprintf(ficresvpl,"%.0f ",age );        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     for(i=1; i<=nlstate;i++)          delts=delt;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        }
     fprintf(ficresvpl,"\n");      }
     free_vector(gp,1,nlstate);    }
     free_vector(gm,1,nlstate);    delti[theta]=delts;
     free_matrix(gradg,1,npar,1,nlstate);    return res; 
     free_matrix(trgradg,1,nlstate,1,npar);    
   } /* End age */  }
   
   free_vector(xp,1,npar);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   free_matrix(doldm,1,nlstate,1,npar);  {
   free_matrix(dnewm,1,nlstate,1,nlstate);    int i;
     int l=1, l1, lmax=20;
 }    double k1,k2,k3,k4,res,fx;
     double p2[MAXPARM+1];
 /************ Variance of one-step probabilities  ******************/    int k;
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)  
 {    fx=func(x);
   int i, j=0,  i1, k1, l1, t, tj;    for (k=1; k<=2; k++) {
   int k2, l2, j1,  z1;      for (i=1;i<=npar;i++) p2[i]=x[i];
   int k=0,l, cptcode;      p2[thetai]=x[thetai]+delti[thetai]/k;
   int first=1, first1;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;      k1=func(p2)-fx;
   double **dnewm,**doldm;    
   double *xp;      p2[thetai]=x[thetai]+delti[thetai]/k;
   double *gp, *gm;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double **gradg, **trgradg;      k2=func(p2)-fx;
   double **mu;    
   double age,agelim, cov[NCOVMAX];      p2[thetai]=x[thetai]-delti[thetai]/k;
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   int theta;      k3=func(p2)-fx;
   char fileresprob[FILENAMELENGTH];    
   char fileresprobcov[FILENAMELENGTH];      p2[thetai]=x[thetai]-delti[thetai]/k;
   char fileresprobcor[FILENAMELENGTH];      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k4=func(p2)-fx;
   double ***varpij;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   #ifdef DEBUG
   strcpy(fileresprob,"prob");      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   strcat(fileresprob,fileres);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  #endif
     printf("Problem with resultfile: %s\n", fileresprob);    }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    return res;
   }  }
   strcpy(fileresprobcov,"probcov");  
   strcat(fileresprobcov,fileres);  /************** Inverse of matrix **************/
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {  void ludcmp(double **a, int n, int *indx, double *d) 
     printf("Problem with resultfile: %s\n", fileresprobcov);  { 
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);    int i,imax,j,k; 
   }    double big,dum,sum,temp; 
   strcpy(fileresprobcor,"probcor");    double *vv; 
   strcat(fileresprobcor,fileres);   
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    vv=vector(1,n); 
     printf("Problem with resultfile: %s\n", fileresprobcor);    *d=1.0; 
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    for (i=1;i<=n;i++) { 
   }      big=0.0; 
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      for (j=1;j<=n;j++) 
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        if ((temp=fabs(a[i][j])) > big) big=temp; 
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      vv[i]=1.0/big; 
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    } 
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    for (j=1;j<=n;j++) { 
        for (i=1;i<j;i++) { 
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");        sum=a[i][j]; 
   fprintf(ficresprob,"# Age");        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");        a[i][j]=sum; 
   fprintf(ficresprobcov,"# Age");      } 
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");      big=0.0; 
   fprintf(ficresprobcov,"# Age");      for (i=j;i<=n;i++) { 
         sum=a[i][j]; 
         for (k=1;k<j;k++) 
   for(i=1; i<=nlstate;i++)          sum -= a[i][k]*a[k][j]; 
     for(j=1; j<=(nlstate+ndeath);j++){        a[i][j]=sum; 
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       fprintf(ficresprobcov," p%1d-%1d ",i,j);          big=dum; 
       fprintf(ficresprobcor," p%1d-%1d ",i,j);          imax=i; 
     }          } 
   fprintf(ficresprob,"\n");      } 
   fprintf(ficresprobcov,"\n");      if (j != imax) { 
   fprintf(ficresprobcor,"\n");        for (k=1;k<=n;k++) { 
   xp=vector(1,npar);          dum=a[imax][k]; 
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          a[imax][k]=a[j][k]; 
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));          a[j][k]=dum; 
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);        } 
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);        *d = -(*d); 
   first=1;        vv[imax]=vv[j]; 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      } 
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);      indx[j]=imax; 
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);      if (a[j][j] == 0.0) a[j][j]=TINY; 
     exit(0);      if (j != n) { 
   }        dum=1.0/(a[j][j]); 
   else{        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     fprintf(ficgp,"\n# Routine varprob");      } 
   }    } 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    free_vector(vv,1,n);  /* Doesn't work */
     printf("Problem with html file: %s\n", optionfilehtm);  ;
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);  } 
     exit(0);  
   }  void lubksb(double **a, int n, int *indx, double b[]) 
   else{  { 
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    int i,ii=0,ip,j; 
     fprintf(fichtm,"\n");    double sum; 
    
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");    for (i=1;i<=n;i++) { 
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");      ip=indx[i]; 
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");      sum=b[ip]; 
       b[ip]=b[i]; 
   }      if (ii) 
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
        else if (sum) ii=i; 
   cov[1]=1;      b[i]=sum; 
   tj=cptcoveff;    } 
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}    for (i=n;i>=1;i--) { 
   j1=0;      sum=b[i]; 
   for(t=1; t<=tj;t++){      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     for(i1=1; i1<=ncodemax[t];i1++){      b[i]=sum/a[i][i]; 
       j1++;    } 
        } 
       if  (cptcovn>0) {  
         fprintf(ficresprob, "\n#********** Variable ");  void pstamp(FILE *fichier)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  {
         fprintf(ficresprob, "**********\n#");    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
         fprintf(ficresprobcov, "\n#********** Variable ");  }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficresprobcov, "**********\n#");  /************ Frequencies ********************/
          void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
         fprintf(ficgp, "\n#********** Variable ");  {  /* Some frequencies */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    
         fprintf(ficgp, "**********\n#");    int i, m, jk, k1,i1, j1, bool, z1,j;
            int first;
            double ***freq; /* Frequencies */
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");    double *pp, **prop;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");    char fileresp[FILENAMELENGTH];
            
         fprintf(ficresprobcor, "\n#********** Variable ");        pp=vector(1,nlstate);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    prop=matrix(1,nlstate,iagemin,iagemax+3);
         fprintf(ficgp, "**********\n#");        strcpy(fileresp,"p");
       }    strcat(fileresp,fileres);
          if((ficresp=fopen(fileresp,"w"))==NULL) {
       for (age=bage; age<=fage; age ++){      printf("Problem with prevalence resultfile: %s\n", fileresp);
         cov[2]=age;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
         for (k=1; k<=cptcovn;k++) {      exit(0);
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    }
         }    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    j1=0;
         for (k=1; k<=cptcovprod;k++)    
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    j=cptcoveff;
            if (cptcovn<1) {j=1;ncodemax[1]=1;}
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));  
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    first=1;
         gp=vector(1,(nlstate)*(nlstate+ndeath));  
         gm=vector(1,(nlstate)*(nlstate+ndeath));    /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
        /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
         for(theta=1; theta <=npar; theta++){    /*    j1++;
           for(i=1; i<=npar; i++)  */
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
                  /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          scanf("%d", i);*/
                  for (i=-5; i<=nlstate+ndeath; i++)  
           k=0;          for (jk=-5; jk<=nlstate+ndeath; jk++)  
           for(i=1; i<= (nlstate); i++){            for(m=iagemin; m <= iagemax+3; m++)
             for(j=1; j<=(nlstate+ndeath);j++){              freq[i][jk][m]=0;
               k=k+1;        
               gp[k]=pmmij[i][j];        for (i=1; i<=nlstate; i++)  
             }          for(m=iagemin; m <= iagemax+3; m++)
           }            prop[i][m]=0;
                  
           for(i=1; i<=npar; i++)        dateintsum=0;
             xp[i] = x[i] - (i==theta ?delti[theta]:0);        k2cpt=0;
            for (i=1; i<=imx; i++) {
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          bool=1;
           k=0;          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
           for(i=1; i<=(nlstate); i++){            for (z1=1; z1<=cptcoveff; z1++)       
             for(j=1; j<=(nlstate+ndeath);j++){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
               k=k+1;                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
               gm[k]=pmmij[i][j];                bool=0;
             }                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
           }                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
                        j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];                } 
         }          }
    
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)          if (bool==1){
           for(theta=1; theta <=npar; theta++)            for(m=firstpass; m<=lastpass; m++){
             trgradg[j][theta]=gradg[theta][j];              k2=anint[m][i]+(mint[m][i]/12.);
                      /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                        if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
         pmij(pmmij,cov,ncovmodel,x,nlstate);                if (m<lastpass) {
                          freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         k=0;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
         for(i=1; i<=(nlstate); i++){                }
           for(j=1; j<=(nlstate+ndeath);j++){                
             k=k+1;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
             mu[k][(int) age]=pmmij[i][j];                  dateintsum=dateintsum+k2;
           }                  k2cpt++;
         }                }
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)                /*}*/
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)            }
             varpij[i][j][(int)age] = doldm[i][j];          }
         } /* end i */
         /*printf("\n%d ",(int)age);         
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        pstamp(ficresp);
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        if  (cptcovn>0) {
      }*/          fprintf(ficresp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         fprintf(ficresprob,"\n%d ",(int)age);          fprintf(ficresp, "**********\n#");
         fprintf(ficresprobcov,"\n%d ",(int)age);          fprintf(ficlog, "\n#********** Variable "); 
         fprintf(ficresprobcor,"\n%d ",(int)age);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficlog, "**********\n#");
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)        }
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));        for(i=1; i<=nlstate;i++) 
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);        fprintf(ficresp, "\n");
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);        
         }        for(i=iagemin; i <= iagemax+3; i++){
         i=0;          if(i==iagemax+3){
         for (k=1; k<=(nlstate);k++){            fprintf(ficlog,"Total");
           for (l=1; l<=(nlstate+ndeath);l++){          }else{
             i=i++;            if(first==1){
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);              first=0;
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);              printf("See log file for details...\n");
             for (j=1; j<=i;j++){            }
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);            fprintf(ficlog,"Age %d", i);
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));          }
             }          for(jk=1; jk <=nlstate ; jk++){
           }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         }/* end of loop for state */              pp[jk] += freq[jk][m][i]; 
       } /* end of loop for age */          }
           for(jk=1; jk <=nlstate ; jk++){
       /* Confidence intervalle of pij  */            for(m=-1, pos=0; m <=0 ; m++)
       /*              pos += freq[jk][m][i];
       fprintf(ficgp,"\nset noparametric;unset label");            if(pp[jk]>=1.e-10){
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");              if(first==1){
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);              }
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);            }else{
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);              if(first==1)
       */                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/            }
       first1=1;          }
       for (k2=1; k2<=(nlstate);k2++){  
         for (l2=1; l2<=(nlstate+ndeath);l2++){          for(jk=1; jk <=nlstate ; jk++){
           if(l2==k2) continue;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
           j=(k2-1)*(nlstate+ndeath)+l2;              pp[jk] += freq[jk][m][i];
           for (k1=1; k1<=(nlstate);k1++){          }       
             for (l1=1; l1<=(nlstate+ndeath);l1++){          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
               if(l1==k1) continue;            pos += pp[jk];
               i=(k1-1)*(nlstate+ndeath)+l1;            posprop += prop[jk][i];
               if(i<=j) continue;          }
               for (age=bage; age<=fage; age ++){          for(jk=1; jk <=nlstate ; jk++){
                 if ((int)age %5==0){            if(pos>=1.e-5){
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;              if(first==1)
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                   mu1=mu[i][(int) age]/stepm*YEARM ;            }else{
                   mu2=mu[j][(int) age]/stepm*YEARM;              if(first==1)
                   c12=cv12/sqrt(v1*v2);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                   /* Computing eigen value of matrix of covariance */              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;            }
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;            if( i <= iagemax){
                   /* Eigen vectors */              if(pos>=1.e-5){
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                   /*v21=sqrt(1.-v11*v11); *//* error */                /*probs[i][jk][j1]= pp[jk]/pos;*/
                   v21=(lc1-v1)/cv12*v11;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                   v12=-v21;              }
                   v22=v11;              else
                   tnalp=v21/v11;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                   if(first1==1){            }
                     first1=0;          }
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);          
                   }          for(jk=-1; jk <=nlstate+ndeath; jk++)
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);            for(m=-1; m <=nlstate+ndeath; m++)
                   /*printf(fignu*/              if(freq[jk][m][i] !=0 ) {
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */              if(first==1)
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                   if(first==1){                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                     first=0;              }
                     fprintf(ficgp,"\nset parametric;unset label");          if(i <= iagemax)
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);            fprintf(ficresp,"\n");
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          if(first==1)
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);            printf("Others in log...\n");
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);          fprintf(ficlog,"\n");
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);        }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);        /*}*/
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    }
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    dateintmean=dateintsum/k2cpt; 
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\   
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    fclose(ficresp);
                   }else{    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
                     first=0;    free_vector(pp,1,nlstate);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    /* End of Freq */
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\  }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\  
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));  /************ Prevalence ********************/
                   }/* if first */  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
                 } /* age mod 5 */  {  
               } /* end loop age */    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);       in each health status at the date of interview (if between dateprev1 and dateprev2).
               first=1;       We still use firstpass and lastpass as another selection.
             } /*l12 */    */
           } /* k12 */   
         } /*l1 */    int i, m, jk, k1, i1, j1, bool, z1,j;
       }/* k1 */    double ***freq; /* Frequencies */
     } /* loop covariates */    double *pp, **prop;
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    double pos,posprop; 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    double  y2; /* in fractional years */
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    int iagemin, iagemax;
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    int first; /** to stop verbosity which is redirected to log file */
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    iagemin= (int) agemin;
   }    iagemax= (int) agemax;
   free_vector(xp,1,npar);    /*pp=vector(1,nlstate);*/
   fclose(ficresprob);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   fclose(ficresprobcov);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   fclose(ficresprobcor);    j1=0;
   fclose(ficgp);    
   fclose(fichtm);    /*j=cptcoveff;*/
 }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
     first=1;
 /******************* Printing html file ***********/    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      /*for(i1=1; i1<=ncodemax[k1];i1++){
                   int lastpass, int stepm, int weightopt, char model[],\        j1++;*/
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\        
                   int popforecast, int estepm ,\        for (i=1; i<=nlstate; i++)  
                   double jprev1, double mprev1,double anprev1, \          for(m=iagemin; m <= iagemax+3; m++)
                   double jprev2, double mprev2,double anprev2){            prop[i][m]=0.0;
   int jj1, k1, i1, cpt;       
   /*char optionfilehtm[FILENAMELENGTH];*/        for (i=1; i<=imx; i++) { /* Each individual */
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {          bool=1;
     printf("Problem with %s \n",optionfilehtm), exit(0);          if  (cptcovn>0) {
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);            for (z1=1; z1<=cptcoveff; z1++) 
   }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n          } 
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n          if (bool==1) { 
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
  - Life expectancies by age and initial health status (estepm=%2d months):              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
    <a href=\"e%s\">e%s</a> <br>\n</li>", \                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");                if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
  m=cptcoveff;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}                  prop[s[m][i]][iagemax+3] += weight[i]; 
                 } 
  jj1=0;              }
  for(k1=1; k1<=m;k1++){            } /* end selection of waves */
    for(i1=1; i1<=ncodemax[k1];i1++){          }
      jj1++;        }
      if (cptcovn > 0) {        for(i=iagemin; i <= iagemax+3; i++){  
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
        for (cpt=1; cpt<=cptcoveff;cpt++)            posprop += prop[jk][i]; 
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          } 
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          
      }          for(jk=1; jk <=nlstate ; jk++){     
      /* Pij */            if( i <=  iagemax){ 
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>              if(posprop>=1.e-5){ 
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                    probs[i][jk][j1]= prop[jk][i]/posprop;
      /* Quasi-incidences */              } else{
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>                if(first==1){
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                  first=0;
        /* Stable prevalence in each health state */                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
        for(cpt=1; cpt<nlstate;cpt++){                }
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>              }
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            } 
        }          }/* end jk */ 
      for(cpt=1; cpt<=nlstate;cpt++) {        }/* end i */ 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>      /*} *//* end i1 */
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    } /* end j1 */
      }    
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 health expectancies in states (1) and (2): e%s%d.png<br>    /*free_vector(pp,1,nlstate);*/
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
    } /* end i1 */  }  /* End of prevalence */
  }/* End k1 */  
  fprintf(fichtm,"</ul>");  /************* Waves Concatenation ***************/
   
   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n  {
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n       Death is a valid wave (if date is known).
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n       and mw[mi+1][i]. dh depends on stepm.
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n       */
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);  
     int i, mi, m;
  if(popforecast==1) fprintf(fichtm,"\n    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n       double sum=0., jmean=0.;*/
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    int first;
         <br>",fileres,fileres,fileres,fileres);    int j, k=0,jk, ju, jl;
  else    double sum=0.;
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    first=0;
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    jmin=1e+5;
     jmax=-1;
  m=cptcoveff;    jmean=0.;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    for(i=1; i<=imx; i++){
       mi=0;
  jj1=0;      m=firstpass;
  for(k1=1; k1<=m;k1++){      while(s[m][i] <= nlstate){
    for(i1=1; i1<=ncodemax[k1];i1++){        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
      jj1++;          mw[++mi][i]=m;
      if (cptcovn > 0) {        if(m >=lastpass)
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          break;
        for (cpt=1; cpt<=cptcoveff;cpt++)        else
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);          m++;
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      }/* end while */
      }      if (s[m][i] > nlstate){
      for(cpt=1; cpt<=nlstate;cpt++) {        mi++;     /* Death is another wave */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        /* if(mi==0)  never been interviewed correctly before death */
 interval) in state (%d): v%s%d%d.png <br>           /* Only death is a correct wave */
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          mw[mi][i]=m;
      }      }
    } /* end i1 */  
  }/* End k1 */      wav[i]=mi;
  fprintf(fichtm,"</ul>");      if(mi==0){
 fclose(fichtm);        nbwarn++;
 }        if(first==0){
           printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 /******************* Gnuplot file **************/          first=1;
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        }
         if(first==1){
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   int ng;        }
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      } /* end mi==0 */
     printf("Problem with file %s",optionfilegnuplot);    } /* End individuals */
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);  
   }    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
 #ifdef windows        if (stepm <=0)
     fprintf(ficgp,"cd \"%s\" \n",pathc);          dh[mi][i]=1;
 #endif        else{
 m=pow(2,cptcoveff);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
              if (agedc[i] < 2*AGESUP) {
  /* 1eme*/              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   for (cpt=1; cpt<= nlstate ; cpt ++) {              if(j==0) j=1;  /* Survives at least one month after exam */
    for (k1=1; k1<= m ; k1 ++) {              else if(j<0){
                 nberr++;
 #ifdef windows                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);                j=1; /* Temporary Dangerous patch */
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 #endif                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 #ifdef unix                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              }
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);              k=k+1;
 #endif              if (j >= jmax){
                 jmax=j;
 for (i=1; i<= nlstate ; i ++) {                ijmax=i;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              }
   else fprintf(ficgp," \%%*lf (\%%*lf)");              if (j <= jmin){
 }                jmin=j;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);                ijmin=i;
     for (i=1; i<= nlstate ; i ++) {              }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              sum=sum+j;
   else fprintf(ficgp," \%%*lf (\%%*lf)");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            }
      for (i=1; i<= nlstate ; i ++) {          }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          else{
   else fprintf(ficgp," \%%*lf (\%%*lf)");            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 }    /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  
 #ifdef unix            k=k+1;
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");            if (j >= jmax) {
 #endif              jmax=j;
    }              ijmax=i;
   }            }
   /*2 eme*/            else if (j <= jmin){
               jmin=j;
   for (k1=1; k1<= m ; k1 ++) {              ijmin=i;
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);            }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     for (i=1; i<= nlstate+1 ; i ++) {            if(j<0){
       k=2*i;              nberr++;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for (j=1; j<= nlstate+1 ; j ++) {              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            }
   else fprintf(ficgp," \%%*lf (\%%*lf)");            sum=sum+j;
 }            }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          jk= j/stepm;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          jl= j -jk*stepm;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);          ju= j -(jk+1)*stepm;
       for (j=1; j<= nlstate+1 ; j ++) {          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            if(jl==0){
         else fprintf(ficgp," \%%*lf (\%%*lf)");              dh[mi][i]=jk;
 }                bh[mi][i]=0;
       fprintf(ficgp,"\" t\"\" w l 0,");            }else{ /* We want a negative bias in order to only have interpolation ie
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);                    * to avoid the price of an extra matrix product in likelihood */
       for (j=1; j<= nlstate+1 ; j ++) {              dh[mi][i]=jk+1;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              bh[mi][i]=ju;
   else fprintf(ficgp," \%%*lf (\%%*lf)");            }
 }            }else{
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            if(jl <= -ju){
       else fprintf(ficgp,"\" t\"\" w l 0,");              dh[mi][i]=jk;
     }              bh[mi][i]=jl;       /* bias is positive if real duration
   }                                   * is higher than the multiple of stepm and negative otherwise.
                                     */
   /*3eme*/            }
             else{
   for (k1=1; k1<= m ; k1 ++) {              dh[mi][i]=jk+1;
     for (cpt=1; cpt<= nlstate ; cpt ++) {              bh[mi][i]=ju;
       k=2+nlstate*(2*cpt-2);            }
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            if(dh[mi][i]==0){
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);              dh[mi][i]=1; /* At least one step */
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              bh[mi][i]=ju; /* At least one step */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            }
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          } /* end if mle */
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      } /* end wave */
     }
 */    jmean=sum/k;
       for (i=1; i< nlstate ; i ++) {    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
    }
       }  
     }  /*********** Tricode ****************************/
   }  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
    {
   /* CV preval stat */    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
     for (k1=1; k1<= m ; k1 ++) {    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
     for (cpt=1; cpt<nlstate ; cpt ++) {    /* Boring subroutine which should only output nbcode[Tvar[j]][k]
       k=3;     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    /* nbcode[Tvar[j]][1]= 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    */
   
       for (i=1; i< nlstate ; i ++)    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
         fprintf(ficgp,"+$%d",k+i+1);    int modmaxcovj=0; /* Modality max of covariates j */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    int cptcode=0; /* Modality max of covariates j */
          int modmincovj=0; /* Modality min of covariates j */
       l=3+(nlstate+ndeath)*cpt;  
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  
       for (i=1; i< nlstate ; i ++) {    cptcoveff=0; 
         l=3+(nlstate+ndeath)*cpt;   
         fprintf(ficgp,"+$%d",l+i+1);    for (k=-1; k < maxncov; k++) Ndum[k]=0;
       }    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    
     }    /* Loop on covariates without age and products */
   }      for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
        for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
   /* proba elementaires */                                 modality of this covariate Vj*/ 
    for(i=1,jk=1; i <=nlstate; i++){        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
     for(k=1; k <=(nlstate+ndeath); k++){                                      * If product of Vn*Vm, still boolean *:
       if (k != i) {                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
         for(j=1; j <=ncovmodel; j++){                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
           jk++;                                        modality of the nth covariate of individual i. */
           fprintf(ficgp,"\n");        if (ij > modmaxcovj)
         }          modmaxcovj=ij; 
       }        else if (ij < modmincovj) 
     }          modmincovj=ij; 
    }        if ((ij < -1) && (ij > NCOVMAX)){
           printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/          exit(1);
      for(jk=1; jk <=m; jk++) {        }else
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
        if (ng==2)        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
        else        /* getting the maximum value of the modality of the covariate
          fprintf(ficgp,"\nset title \"Probability\"\n");           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);           female is 1, then modmaxcovj=1.*/
        i=1;      }
        for(k2=1; k2<=nlstate; k2++) {      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
          k3=i;      cptcode=modmaxcovj;
          for(k=1; k<=(nlstate+ndeath); k++) {      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
            if (k != k2){     /*for (i=0; i<=cptcode; i++) {*/
              if(ng==2)      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
              else        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
              ij=1;        }
              for(j=3; j <=ncovmodel; j++) {        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      } /* Ndum[-1] number of undefined modalities */
                  ij++;  
                }      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
                else      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
              }         modmincovj=3; modmaxcovj = 7;
              fprintf(ficgp,")/(1");         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
                       which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
              for(k1=1; k1 <=nlstate; k1++){           variables V1_1 and V1_2.
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);         nbcode[Tvar[j]][ij]=k;
                ij=1;         nbcode[Tvar[j]][1]=0;
                for(j=3; j <=ncovmodel; j++){         nbcode[Tvar[j]][2]=1;
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {         nbcode[Tvar[j]][3]=2;
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      */
                    ij++;      ij=1; /* ij is similar to i but can jumps over null modalities */
                  }      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
                  else        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          /*recode from 0 */
                }          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
                fprintf(ficgp,")");            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
              }                                       k is a modality. If we have model=V1+V1*sex 
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");            ij++;
              i=i+ncovmodel;          }
            }          if (ij > ncodemax[j]) break; 
          } /* end k */        }  /* end of loop on */
        } /* end k2 */      } /* end of loop on modality */ 
      } /* end jk */    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
    } /* end ng */    
    fclose(ficgp);   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
 }  /* end gnuplot */    
     for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
 /*************** Moving average **************/     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){     Ndum[ij]++; 
    } 
   int i, cpt, cptcod;  
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)   ij=1;
       for (i=1; i<=nlstate;i++)   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
           mobaverage[(int)agedeb][i][cptcod]=0.;     if((Ndum[i]!=0) && (i<=ncovcol)){
           /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){       Tvaraff[ij]=i; /*For printing (unclear) */
       for (i=1; i<=nlstate;i++){       ij++;
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){     }else
           for (cpt=0;cpt<=4;cpt++){         Tvaraff[ij]=0;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];   }
           }   ij--;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;   cptcoveff=ij; /*Number of total covariates*/
         }  
       }  }
     }  
      
 }  /*********** Health Expectancies ****************/
   
   void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
 /************** Forecasting ******************/  
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){  {
      /* Health expectancies, no variances */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   int *popage;    int nhstepma, nstepma; /* Decreasing with age */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    double age, agelim, hf;
   double *popeffectif,*popcount;    double ***p3mat;
   double ***p3mat;    double eip;
   char fileresf[FILENAMELENGTH];  
     pstamp(ficreseij);
  agelim=AGESUP;    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      for(j=1; j<=nlstate;j++){
          fprintf(ficreseij," e%1d%1d ",i,j);
        }
   strcpy(fileresf,"f");      fprintf(ficreseij," e%1d. ",i);
   strcat(fileresf,fileres);    }
   if((ficresf=fopen(fileresf,"w"))==NULL) {    fprintf(ficreseij,"\n");
     printf("Problem with forecast resultfile: %s\n", fileresf);  
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    
   }    if(estepm < stepm){
   printf("Computing forecasting: result on file '%s' \n", fileresf);      printf ("Problem %d lower than %d\n",estepm, stepm);
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);    }
     else  hstepm=estepm;   
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
   if (mobilav==1) {     * if stepm=24 months pijx are given only every 2 years and by summing them
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     * we are calculating an estimate of the Life Expectancy assuming a linear 
     movingaverage(agedeb, fage, ageminpar, mobaverage);     * progression in between and thus overestimating or underestimating according
   }     * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
   stepsize=(int) (stepm+YEARM-1)/YEARM;     * to compare the new estimate of Life expectancy with the same linear 
   if (stepm<=12) stepsize=1;     * hypothesis. A more precise result, taking into account a more precise
       * curvature will be obtained if estepm is as small as stepm. */
   agelim=AGESUP;  
      /* For example we decided to compute the life expectancy with the smallest unit */
   hstepm=1;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   hstepm=hstepm/stepm;       nhstepm is the number of hstepm from age to agelim 
   yp1=modf(dateintmean,&yp);       nstepm is the number of stepm from age to agelin. 
   anprojmean=yp;       Look at hpijx to understand the reason of that which relies in memory size
   yp2=modf((yp1*12),&yp);       and note for a fixed period like estepm months */
   mprojmean=yp;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   yp1=modf((yp2*30.5),&yp);       survival function given by stepm (the optimization length). Unfortunately it
   jprojmean=yp;       means that if the survival funtion is printed only each two years of age and if
   if(jprojmean==0) jprojmean=1;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   if(mprojmean==0) jprojmean=1;       results. So we changed our mind and took the option of the best precision.
      */
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    
   for(cptcov=1;cptcov<=i2;cptcov++){    agelim=AGESUP;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    /* If stepm=6 months */
       k=k+1;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       fprintf(ficresf,"\n#******");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       for(j=1;j<=cptcoveff;j++) {      
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /* nhstepm age range expressed in number of stepm */
       }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       fprintf(ficresf,"******\n");    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       fprintf(ficresf,"# StartingAge FinalAge");    /* if (stepm >= YEARM) hstepm=1;*/
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    for (age=bage; age<=fage; age ++){ 
         fprintf(ficresf,"\n");      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;      /* If stepm=6 months */
                /* Computed by stepm unit matrices, product of hstepma matrices, stored
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
           oldm=oldms;savm=savms;      
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
              
           for (h=0; h<=nhstepm; h++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
             if (h==(int) (calagedate+YEARM*cpt)) {      
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);      printf("%d|",(int)age);fflush(stdout);
             }      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
             for(j=1; j<=nlstate+ndeath;j++) {      
               kk1=0.;kk2=0;      /* Computing expectancies */
               for(i=1; i<=nlstate;i++) {                    for(i=1; i<=nlstate;i++)
                 if (mobilav==1)        for(j=1; j<=nlstate;j++)
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                 else {            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            
                 }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                  
               }          }
               if (h==(int)(calagedate+12*cpt)){  
                 fprintf(ficresf," %.3f", kk1);      fprintf(ficreseij,"%3.0f",age );
                              for(i=1; i<=nlstate;i++){
               }        eip=0;
             }        for(j=1; j<=nlstate;j++){
           }          eip +=eij[i][j][(int)age];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }        }
       }        fprintf(ficreseij,"%9.4f", eip );
     }      }
   }      fprintf(ficreseij,"\n");
              
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fclose(ficresf);    printf("\n");
 }    fprintf(ficlog,"\n");
 /************** Forecasting ******************/    
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){  }
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  {
   double *popeffectif,*popcount;    /* Covariances of health expectancies eij and of total life expectancies according
   double ***p3mat,***tabpop,***tabpopprev;     to initial status i, ei. .
   char filerespop[FILENAMELENGTH];    */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    int nhstepma, nstepma; /* Decreasing with age */
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double age, agelim, hf;
   agelim=AGESUP;    double ***p3matp, ***p3matm, ***varhe;
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    double **dnewm,**doldm;
      double *xp, *xm;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    double **gp, **gm;
      double ***gradg, ***trgradg;
      int theta;
   strcpy(filerespop,"pop");  
   strcat(filerespop,fileres);    double eip, vip;
   if((ficrespop=fopen(filerespop,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", filerespop);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);    xp=vector(1,npar);
   }    xm=vector(1,npar);
   printf("Computing forecasting: result on file '%s' \n", filerespop);    dnewm=matrix(1,nlstate*nlstate,1,npar);
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
   if (mobilav==1) {    fprintf(ficresstdeij,"# Age");
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for(i=1; i<=nlstate;i++){
     movingaverage(agedeb, fage, ageminpar, mobaverage);      for(j=1; j<=nlstate;j++)
   }        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    }
   if (stepm<=12) stepsize=1;    fprintf(ficresstdeij,"\n");
    
   agelim=AGESUP;    pstamp(ficrescveij);
      fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
   hstepm=1;    fprintf(ficrescveij,"# Age");
   hstepm=hstepm/stepm;    for(i=1; i<=nlstate;i++)
        for(j=1; j<=nlstate;j++){
   if (popforecast==1) {        cptj= (j-1)*nlstate+i;
     if((ficpop=fopen(popfile,"r"))==NULL) {        for(i2=1; i2<=nlstate;i2++)
       printf("Problem with population file : %s\n",popfile);exit(0);          for(j2=1; j2<=nlstate;j2++){
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);            cptj2= (j2-1)*nlstate+i2;
     }            if(cptj2 <= cptj)
     popage=ivector(0,AGESUP);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
     popeffectif=vector(0,AGESUP);          }
     popcount=vector(0,AGESUP);      }
        fprintf(ficrescveij,"\n");
     i=1;      
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    if(estepm < stepm){
          printf ("Problem %d lower than %d\n",estepm, stepm);
     imx=i;    }
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    else  hstepm=estepm;   
   }    /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
   for(cptcov=1;cptcov<=i2;cptcov++){     * if stepm=24 months pijx are given only every 2 years and by summing them
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){     * we are calculating an estimate of the Life Expectancy assuming a linear 
       k=k+1;     * progression in between and thus overestimating or underestimating according
       fprintf(ficrespop,"\n#******");     * to the curvature of the survival function. If, for the same date, we 
       for(j=1;j<=cptcoveff;j++) {     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     * to compare the new estimate of Life expectancy with the same linear 
       }     * hypothesis. A more precise result, taking into account a more precise
       fprintf(ficrespop,"******\n");     * curvature will be obtained if estepm is as small as stepm. */
       fprintf(ficrespop,"# Age");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    /* For example we decided to compute the life expectancy with the smallest unit */
       if (popforecast==1)  fprintf(ficrespop," [Population]");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
             nhstepm is the number of hstepm from age to agelim 
       for (cpt=0; cpt<=0;cpt++) {       nstepm is the number of stepm from age to agelin. 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);         Look at hpijx to understand the reason of that which relies in memory size
               and note for a fixed period like estepm months */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       survival function given by stepm (the optimization length). Unfortunately it
           nhstepm = nhstepm/hstepm;       means that if the survival funtion is printed only each two years of age and if
                 you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       results. So we changed our mind and took the option of the best precision.
           oldm=oldms;savm=savms;    */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
          
           for (h=0; h<=nhstepm; h++){    /* If stepm=6 months */
             if (h==(int) (calagedate+YEARM*cpt)) {    /* nhstepm age range expressed in number of stepm */
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    agelim=AGESUP;
             }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
             for(j=1; j<=nlstate+ndeath;j++) {    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
               kk1=0.;kk2=0;    /* if (stepm >= YEARM) hstepm=1;*/
               for(i=1; i<=nlstate;i++) {                  nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                 if (mobilav==1)    
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                 else {    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
                 }    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
               }    gp=matrix(0,nhstepm,1,nlstate*nlstate);
               if (h==(int)(calagedate+12*cpt)){    gm=matrix(0,nhstepm,1,nlstate*nlstate);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;  
                   /*fprintf(ficrespop," %.3f", kk1);    for (age=bage; age<=fage; age ++){ 
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
               }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
             }      /* if (stepm >= YEARM) hstepm=1;*/
             for(i=1; i<=nlstate;i++){      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
               kk1=0.;  
                 for(j=1; j<=nlstate;j++){      /* If stepm=6 months */
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      /* Computed by stepm unit matrices, product of hstepma matrices, stored
                 }         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      
             }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      /* Computing  Variances of health expectancies */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
           }         decrease memory allocation */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(theta=1; theta <=npar; theta++){
         }        for(i=1; i<=npar; i++){ 
       }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
            xm[i] = x[i] - (i==theta ?delti[theta]:0);
   /******/        }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        for(j=1; j<= nlstate; j++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          for(i=1; i<=nlstate; i++){
           nhstepm = nhstepm/hstepm;            for(h=0; h<=nhstepm-1; h++){
                        gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
           oldm=oldms;savm=savms;            }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            }
           for (h=0; h<=nhstepm; h++){        }
             if (h==(int) (calagedate+YEARM*cpt)) {       
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        for(ij=1; ij<= nlstate*nlstate; ij++)
             }          for(h=0; h<=nhstepm-1; h++){
             for(j=1; j<=nlstate+ndeath;j++) {            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
               kk1=0.;kk2=0;          }
               for(i=1; i<=nlstate;i++) {                    }/* End theta */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];          
               }      
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      for(h=0; h<=nhstepm-1; h++)
             }        for(j=1; j<=nlstate*nlstate;j++)
           }          for(theta=1; theta <=npar; theta++)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            trgradg[h][j][theta]=gradg[h][theta][j];
         }      
       }  
    }       for(ij=1;ij<=nlstate*nlstate;ij++)
   }        for(ji=1;ji<=nlstate*nlstate;ji++)
            varhe[ij][ji][(int)age] =0.;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
        printf("%d|",(int)age);fflush(stdout);
   if (popforecast==1) {       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     free_ivector(popage,0,AGESUP);       for(h=0;h<=nhstepm-1;h++){
     free_vector(popeffectif,0,AGESUP);        for(k=0;k<=nhstepm-1;k++){
     free_vector(popcount,0,AGESUP);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   }          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(ij=1;ij<=nlstate*nlstate;ij++)
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(ji=1;ji<=nlstate*nlstate;ji++)
   fclose(ficrespop);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
 }        }
       }
 /***********************************************/  
 /**************** Main Program *****************/      /* Computing expectancies */
 /***********************************************/      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
 int main(int argc, char *argv[])        for(j=1; j<=nlstate;j++)
 {          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;            
   double agedeb, agefin,hf;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  
           }
   double fret;  
   double **xi,tmp,delta;      fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
   double dum; /* Dummy variable */        eip=0.;
   double ***p3mat;        vip=0.;
   int *indx;        for(j=1; j<=nlstate;j++){
   char line[MAXLINE], linepar[MAXLINE];          eip += eij[i][j][(int)age];
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   int firstobs=1, lastobs=10;            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   int sdeb, sfin; /* Status at beginning and end */          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   int c,  h , cpt,l;        }
   int ju,jl, mi;        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      }
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      fprintf(ficresstdeij,"\n");
   int mobilav=0,popforecast=0;  
   int hstepm, nhstepm;      fprintf(ficrescveij,"%3.0f",age );
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
   double bage, fage, age, agelim, agebase;          cptj= (j-1)*nlstate+i;
   double ftolpl=FTOL;          for(i2=1; i2<=nlstate;i2++)
   double **prlim;            for(j2=1; j2<=nlstate;j2++){
   double *severity;              cptj2= (j2-1)*nlstate+i2;
   double ***param; /* Matrix of parameters */              if(cptj2 <= cptj)
   double  *p;                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   double **matcov; /* Matrix of covariance */            }
   double ***delti3; /* Scale */        }
   double *delti; /* Scale */      fprintf(ficrescveij,"\n");
   double ***eij, ***vareij;     
   double **varpl; /* Variances of prevalence limits by age */    }
   double *epj, vepp;    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   double kk1, kk2;    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   char *alph[]={"a","a","b","c","d","e"}, str[4];    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   char z[1]="c", occ;  
 #include <sys/time.h>    free_vector(xm,1,npar);
 #include <time.h>    free_vector(xp,1,npar);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
      free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   /* long total_usecs;    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   struct timeval start_time, end_time;  }
    
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  /************ Variance ******************/
   getcwd(pathcd, size);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
   printf("\n%s",version);    /* Variance of health expectancies */
   if(argc <=1){    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     printf("\nEnter the parameter file name: ");    /* double **newm;*/
     scanf("%s",pathtot);    double **dnewm,**doldm;
   }    double **dnewmp,**doldmp;
   else{    int i, j, nhstepm, hstepm, h, nstepm ;
     strcpy(pathtot,argv[1]);    int k, cptcode;
   }    double *xp;
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    double **gp, **gm;  /* for var eij */
   /*cygwin_split_path(pathtot,path,optionfile);    double ***gradg, ***trgradg; /*for var eij */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    double **gradgp, **trgradgp; /* for var p point j */
   /* cutv(path,optionfile,pathtot,'\\');*/    double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    double ***p3mat;
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    double age,agelim, hf;
   chdir(path);    double ***mobaverage;
   replace(pathc,path);    int theta;
     char digit[4];
 /*-------- arguments in the command line --------*/    char digitp[25];
   
   /* Log file */    char fileresprobmorprev[FILENAMELENGTH];
   strcat(filelog, optionfilefiname);  
   strcat(filelog,".log");    /* */    if(popbased==1){
   if((ficlog=fopen(filelog,"w"))==NULL)    {      if(mobilav!=0)
     printf("Problem with logfile %s\n",filelog);        strcpy(digitp,"-populbased-mobilav-");
     goto end;      else strcpy(digitp,"-populbased-nomobil-");
   }    }
   fprintf(ficlog,"Log filename:%s\n",filelog);    else 
   fprintf(ficlog,"\n%s",version);      strcpy(digitp,"-stablbased-");
   fprintf(ficlog,"\nEnter the parameter file name: ");  
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    if (mobilav!=0) {
   fflush(ficlog);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   /* */        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   strcpy(fileres,"r");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   strcat(fileres, optionfilefiname);      }
   strcat(fileres,".txt");    /* Other files have txt extension */    }
   
   /*---------arguments file --------*/    strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     printf("Problem with optionfile %s\n",optionfile);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     goto end;    strcat(fileresprobmorprev,fileres);
   }    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
   strcpy(filereso,"o");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   strcat(filereso,fileres);    }
   if((ficparo=fopen(filereso,"w"))==NULL) {    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     printf("Problem with Output resultfile: %s\n", filereso);   
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     goto end;    pstamp(ficresprobmorprev);
   }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   /* Reads comments: lines beginning with '#' */    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficresprobmorprev," p.%-d SE",j);
     ungetc(c,ficpar);      for(i=1; i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     puts(line);    }  
     fputs(line,ficparo);    fprintf(ficresprobmorprev,"\n");
   }    fprintf(ficgp,"\n# Routine varevsij");
   ungetc(c,ficpar);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);  /*   } */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 while((c=getc(ficpar))=='#' && c!= EOF){    pstamp(ficresvij);
     ungetc(c,ficpar);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     fgets(line, MAXLINE, ficpar);    if(popbased==1)
     puts(line);      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     fputs(line,ficparo);    else
   }      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
   ungetc(c,ficpar);    fprintf(ficresvij,"# Age");
      for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++)
   covar=matrix(0,NCOVMAX,1,n);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   cptcovn=0;    fprintf(ficresvij,"\n");
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;  
     xp=vector(1,npar);
   ncovmodel=2+cptcovn;    dnewm=matrix(1,nlstate,1,npar);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    doldm=matrix(1,nlstate,1,nlstate);
      dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   /* Read guess parameters */    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     ungetc(c,ficpar);    gpp=vector(nlstate+1,nlstate+ndeath);
     fgets(line, MAXLINE, ficpar);    gmp=vector(nlstate+1,nlstate+ndeath);
     puts(line);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fputs(line,ficparo);    
   }    if(estepm < stepm){
   ungetc(c,ficpar);      printf ("Problem %d lower than %d\n",estepm, stepm);
      }
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    else  hstepm=estepm;   
     for(i=1; i <=nlstate; i++)    /* For example we decided to compute the life expectancy with the smallest unit */
     for(j=1; j <=nlstate+ndeath-1; j++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       fscanf(ficpar,"%1d%1d",&i1,&j1);       nhstepm is the number of hstepm from age to agelim 
       fprintf(ficparo,"%1d%1d",i1,j1);       nstepm is the number of stepm from age to agelin. 
       if(mle==1)       Look at function hpijx to understand why (it is linked to memory size questions) */
         printf("%1d%1d",i,j);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       fprintf(ficlog,"%1d%1d",i,j);       survival function given by stepm (the optimization length). Unfortunately it
       for(k=1; k<=ncovmodel;k++){       means that if the survival funtion is printed every two years of age and if
         fscanf(ficpar," %lf",&param[i][j][k]);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         if(mle==1){       results. So we changed our mind and took the option of the best precision.
           printf(" %lf",param[i][j][k]);    */
           fprintf(ficlog," %lf",param[i][j][k]);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         }    agelim = AGESUP;
         else    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           fprintf(ficlog," %lf",param[i][j][k]);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         fprintf(ficparo," %lf",param[i][j][k]);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fscanf(ficpar,"\n");      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       if(mle==1)      gp=matrix(0,nhstepm,1,nlstate);
         printf("\n");      gm=matrix(0,nhstepm,1,nlstate);
       fprintf(ficlog,"\n");  
       fprintf(ficparo,"\n");  
     }      for(theta=1; theta <=npar; theta++){
          for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
   p=param[1][1];        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){        if (popbased==1) {
     ungetc(c,ficpar);          if(mobilav ==0){
     fgets(line, MAXLINE, ficpar);            for(i=1; i<=nlstate;i++)
     puts(line);              prlim[i][i]=probs[(int)age][i][ij];
     fputs(line,ficparo);          }else{ /* mobilav */ 
   }            for(i=1; i<=nlstate;i++)
   ungetc(c,ficpar);              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        }
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    
   for(i=1; i <=nlstate; i++){        for(j=1; j<= nlstate; j++){
     for(j=1; j <=nlstate+ndeath-1; j++){          for(h=0; h<=nhstepm; h++){
       fscanf(ficpar,"%1d%1d",&i1,&j1);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       printf("%1d%1d",i,j);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       fprintf(ficparo,"%1d%1d",i1,j1);          }
       for(k=1; k<=ncovmodel;k++){        }
         fscanf(ficpar,"%le",&delti3[i][j][k]);        /* This for computing probability of death (h=1 means
         printf(" %le",delti3[i][j][k]);           computed over hstepm matrices product = hstepm*stepm months) 
         fprintf(ficparo," %le",delti3[i][j][k]);           as a weighted average of prlim.
       }        */
       fscanf(ficpar,"\n");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       printf("\n");          for(i=1,gpp[j]=0.; i<= nlstate; i++)
       fprintf(ficparo,"\n");            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     }        }    
   }        /* end probability of death */
   delti=delti3[1][1];  
          for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   /* Reads comments: lines beginning with '#' */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   while((c=getc(ficpar))=='#' && c!= EOF){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     ungetc(c,ficpar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     fgets(line, MAXLINE, ficpar);   
     puts(line);        if (popbased==1) {
     fputs(line,ficparo);          if(mobilav ==0){
   }            for(i=1; i<=nlstate;i++)
   ungetc(c,ficpar);              prlim[i][i]=probs[(int)age][i][ij];
            }else{ /* mobilav */ 
   matcov=matrix(1,npar,1,npar);            for(i=1; i<=nlstate;i++)
   for(i=1; i <=npar; i++){              prlim[i][i]=mobaverage[(int)age][i][ij];
     fscanf(ficpar,"%s",&str);          }
     if(mle==1)        }
       printf("%s",str);  
     fprintf(ficlog,"%s",str);        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
     fprintf(ficparo,"%s",str);          for(h=0; h<=nhstepm; h++){
     for(j=1; j <=i; j++){            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       fscanf(ficpar," %le",&matcov[i][j]);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       if(mle==1){          }
         printf(" %.5le",matcov[i][j]);        }
         fprintf(ficlog," %.5le",matcov[i][j]);        /* This for computing probability of death (h=1 means
       }           computed over hstepm matrices product = hstepm*stepm months) 
       else           as a weighted average of prlim.
         fprintf(ficlog," %.5le",matcov[i][j]);        */
       fprintf(ficparo," %.5le",matcov[i][j]);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     fscanf(ficpar,"\n");           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     if(mle==1)        }    
       printf("\n");        /* end probability of death */
     fprintf(ficlog,"\n");  
     fprintf(ficparo,"\n");        for(j=1; j<= nlstate; j++) /* vareij */
   }          for(h=0; h<=nhstepm; h++){
   for(i=1; i <=npar; i++)            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     for(j=i+1;j<=npar;j++)          }
       matcov[i][j]=matcov[j][i];  
            for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
   if(mle==1)          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     printf("\n");        }
   fprintf(ficlog,"\n");  
       } /* End theta */
   
     /*-------- Rewriting paramater file ----------*/      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
      strcpy(rfileres,"r");    /* "Rparameterfile */  
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      for(h=0; h<=nhstepm; h++) /* veij */
      strcat(rfileres,".");    /* */        for(j=1; j<=nlstate;j++)
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          for(theta=1; theta <=npar; theta++)
     if((ficres =fopen(rfileres,"w"))==NULL) {            trgradg[h][j][theta]=gradg[h][theta][j];
       printf("Problem writing new parameter file: %s\n", fileres);goto end;  
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     }        for(theta=1; theta <=npar; theta++)
     fprintf(ficres,"#%s\n",version);          trgradgp[j][theta]=gradgp[theta][j];
        
     /*-------- data file ----------*/  
     if((fic=fopen(datafile,"r"))==NULL)    {      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       printf("Problem with datafile: %s\n", datafile);goto end;      for(i=1;i<=nlstate;i++)
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;        for(j=1;j<=nlstate;j++)
     }          vareij[i][j][(int)age] =0.;
   
     n= lastobs;      for(h=0;h<=nhstepm;h++){
     severity = vector(1,maxwav);        for(k=0;k<=nhstepm;k++){
     outcome=imatrix(1,maxwav+1,1,n);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     num=ivector(1,n);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     moisnais=vector(1,n);          for(i=1;i<=nlstate;i++)
     annais=vector(1,n);            for(j=1;j<=nlstate;j++)
     moisdc=vector(1,n);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
     andc=vector(1,n);        }
     agedc=vector(1,n);      }
     cod=ivector(1,n);    
     weight=vector(1,n);      /* pptj */
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     mint=matrix(1,maxwav,1,n);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     anint=matrix(1,maxwav,1,n);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
     s=imatrix(1,maxwav+1,1,n);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     adl=imatrix(1,maxwav+1,1,n);              varppt[j][i]=doldmp[j][i];
     tab=ivector(1,NCOVMAX);      /* end ppptj */
     ncodemax=ivector(1,8);      /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     i=1;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     while (fgets(line, MAXLINE, fic) != NULL)    {   
       if ((i >= firstobs) && (i <=lastobs)) {      if (popbased==1) {
                if(mobilav ==0){
         for (j=maxwav;j>=1;j--){          for(i=1; i<=nlstate;i++)
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);            prlim[i][i]=probs[(int)age][i][ij];
           strcpy(line,stra);        }else{ /* mobilav */ 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for(i=1; i<=nlstate;i++)
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            prlim[i][i]=mobaverage[(int)age][i][ij];
         }        }
              }
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);               
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);         as a weighted average of prlim.
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
         for (j=ncovcol;j>=1;j--){          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      }    
         }      /* end probability of death */
         num[i]=atol(stra);  
              fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
         i=i+1;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
       }        }
     }      } 
     /* printf("ii=%d", ij);      fprintf(ficresprobmorprev,"\n");
        scanf("%d",i);*/  
   imx=i-1; /* Number of individuals */      fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
   /* for (i=1; i<=imx; i++){        for(j=1; j<=nlstate;j++){
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        }
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      fprintf(ficresvij,"\n");
     }*/      free_matrix(gp,0,nhstepm,1,nlstate);
    /*  for (i=1; i<=imx; i++){      free_matrix(gm,0,nhstepm,1,nlstate);
      if (s[4][i]==9)  s[4][i]=-1;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      } /* End age */
   /* Calculation of the number of parameter from char model*/    free_vector(gpp,nlstate+1,nlstate+ndeath);
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */    free_vector(gmp,nlstate+1,nlstate+ndeath);
   Tprod=ivector(1,15);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   Tvaraff=ivector(1,15);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   Tvard=imatrix(1,15,1,2);    fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
   Tage=ivector(1,15);          /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
        fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   if (strlen(model) >1){  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     j=0, j1=0, k1=1, k2=1;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     j=nbocc(model,'+');  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     j1=nbocc(model,'*');    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     cptcovn=j+1;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     cptcovprod=j1;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
        fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     strcpy(modelsav,model);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
       printf("Error. Non available option model=%s ",model);  */
       fprintf(ficlog,"Error. Non available option model=%s ",model);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
       goto end;    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     }  
        free_vector(xp,1,npar);
     for(i=(j+1); i>=1;i--){    free_matrix(doldm,1,nlstate,1,nlstate);
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */    free_matrix(dnewm,1,nlstate,1,npar);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
       /*scanf("%d",i);*/    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       if (strchr(strb,'*')) {  /* Model includes a product */    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/    fclose(ficresprobmorprev);
         if (strcmp(strc,"age")==0) { /* Vn*age */    fflush(ficgp);
           cptcovprod--;    fflush(fichtm); 
           cutv(strb,stre,strd,'V');  }  /* end varevsij */
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/  
           cptcovage++;  /************ Variance of prevlim ******************/
             Tage[cptcovage]=i;  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
             /*printf("stre=%s ", stre);*/  {
         }    /* Variance of prevalence limit */
         else if (strcmp(strd,"age")==0) { /* or age*Vn */    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
           cptcovprod--;    double **newm;
           cutv(strb,stre,strc,'V');    double **dnewm,**doldm;
           Tvar[i]=atoi(stre);    int i, j, nhstepm, hstepm;
           cptcovage++;    int k, cptcode;
           Tage[cptcovage]=i;    double *xp;
         }    double *gp, *gm;
         else {  /* Age is not in the model */    double **gradg, **trgradg;
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/    double age,agelim;
           Tvar[i]=ncovcol+k1;    int theta;
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */    
           Tprod[k1]=i;    pstamp(ficresvpl);
           Tvard[k1][1]=atoi(strc); /* m*/    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
           Tvard[k1][2]=atoi(stre); /* n */    fprintf(ficresvpl,"# Age");
           Tvar[cptcovn+k2]=Tvard[k1][1];    for(i=1; i<=nlstate;i++)
           Tvar[cptcovn+k2+1]=Tvard[k1][2];        fprintf(ficresvpl," %1d-%1d",i,i);
           for (k=1; k<=lastobs;k++)    fprintf(ficresvpl,"\n");
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  
           k1++;    xp=vector(1,npar);
           k2=k2+2;    dnewm=matrix(1,nlstate,1,npar);
         }    doldm=matrix(1,nlstate,1,nlstate);
       }    
       else { /* no more sum */    hstepm=1*YEARM; /* Every year of age */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
        /*  scanf("%d",i);*/    agelim = AGESUP;
       cutv(strd,strc,strb,'V');    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       Tvar[i]=atoi(strc);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       }      if (stepm >= YEARM) hstepm=1;
       strcpy(modelsav,stra);        nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      gradg=matrix(1,npar,1,nlstate);
         scanf("%d",i);*/      gp=vector(1,nlstate);
     } /* end of loop + */      gm=vector(1,nlstate);
   } /* end model */  
        for(theta=1; theta <=npar; theta++){
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        for(i=1; i<=npar; i++){ /* Computes gradient */
   printf("cptcovprod=%d ", cptcovprod);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);        }
   scanf("%d ",i);*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     fclose(fic);        for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
     /*  if(mle==1){*/      
     if (weightopt != 1) { /* Maximisation without weights*/        for(i=1; i<=npar; i++) /* Computes gradient */
       for(i=1;i<=n;i++) weight[i]=1.0;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     /*-calculation of age at interview from date of interview and age at death -*/        for(i=1;i<=nlstate;i++)
     agev=matrix(1,maxwav,1,imx);          gm[i] = prlim[i][i];
   
     for (i=1; i<=imx; i++) {        for(i=1;i<=nlstate;i++)
       for(m=2; (m<= maxwav); m++) {          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){      } /* End theta */
          anint[m][i]=9999;  
          s[m][i]=-1;      trgradg =matrix(1,nlstate,1,npar);
        }  
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;      for(j=1; j<=nlstate;j++)
       }        for(theta=1; theta <=npar; theta++)
     }          trgradg[j][theta]=gradg[theta][j];
   
     for (i=1; i<=imx; i++)  {      for(i=1;i<=nlstate;i++)
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        varpl[i][(int)age] =0.;
       for(m=1; (m<= maxwav); m++){      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
         if(s[m][i] >0){      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
           if (s[m][i] >= nlstate+1) {      for(i=1;i<=nlstate;i++)
             if(agedc[i]>0)        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
               if(moisdc[i]!=99 && andc[i]!=9999)  
                 agev[m][i]=agedc[i];      fprintf(ficresvpl,"%.0f ",age );
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/      for(i=1; i<=nlstate;i++)
            else {        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
               if (andc[i]!=9999){      fprintf(ficresvpl,"\n");
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      free_vector(gp,1,nlstate);
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);      free_vector(gm,1,nlstate);
               agev[m][i]=-1;      free_matrix(gradg,1,npar,1,nlstate);
               }      free_matrix(trgradg,1,nlstate,1,npar);
             }    } /* End age */
           }  
           else if(s[m][i] !=9){ /* Should no more exist */    free_vector(xp,1,npar);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    free_matrix(doldm,1,nlstate,1,npar);
             if(mint[m][i]==99 || anint[m][i]==9999)    free_matrix(dnewm,1,nlstate,1,nlstate);
               agev[m][i]=1;  
             else if(agev[m][i] <agemin){  }
               agemin=agev[m][i];  
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  /************ Variance of one-step probabilities  ******************/
             }  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
             else if(agev[m][i] >agemax){  {
               agemax=agev[m][i];    int i, j=0,  i1, k1, l1, t, tj;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    int k2, l2, j1,  z1;
             }    int k=0,l, cptcode;
             /*agev[m][i]=anint[m][i]-annais[i];*/    int first=1, first1, first2;
             /*   agev[m][i] = age[i]+2*m;*/    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
           }    double **dnewm,**doldm;
           else { /* =9 */    double *xp;
             agev[m][i]=1;    double *gp, *gm;
             s[m][i]=-1;    double **gradg, **trgradg;
           }    double **mu;
         }    double age,agelim, cov[NCOVMAX+1];
         else /*= 0 Unknown */    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
           agev[m][i]=1;    int theta;
       }    char fileresprob[FILENAMELENGTH];
        char fileresprobcov[FILENAMELENGTH];
     }    char fileresprobcor[FILENAMELENGTH];
     for (i=1; i<=imx; i++)  {    double ***varpij;
       for(m=1; (m<= maxwav); m++){  
         if (s[m][i] > (nlstate+ndeath)) {    strcpy(fileresprob,"prob"); 
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      strcat(fileresprob,fileres);
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      if((ficresprob=fopen(fileresprob,"w"))==NULL) {
           goto end;      printf("Problem with resultfile: %s\n", fileresprob);
         }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
       }    }
     }    strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     free_vector(severity,1,maxwav);    }
     free_imatrix(outcome,1,maxwav+1,1,n);    strcpy(fileresprobcor,"probcor"); 
     free_vector(moisnais,1,n);    strcat(fileresprobcor,fileres);
     free_vector(annais,1,n);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     /* free_matrix(mint,1,maxwav,1,n);      printf("Problem with resultfile: %s\n", fileresprobcor);
        free_matrix(anint,1,maxwav,1,n);*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     free_vector(moisdc,1,n);    }
     free_vector(andc,1,n);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
        printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     wav=ivector(1,imx);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
        pstamp(ficresprob);
     /* Concatenates waves */    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       Tcode=ivector(1,100);    fprintf(ficresprobcov,"# Age");
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    pstamp(ficresprobcor);
       ncodemax[1]=1;    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    fprintf(ficresprobcor,"# Age");
        
    codtab=imatrix(1,100,1,10);  
    h=0;    for(i=1; i<=nlstate;i++)
    m=pow(2,cptcoveff);      for(j=1; j<=(nlstate+ndeath);j++){
          fprintf(ficresprob," p%1d-%1d (SE)",i,j);
    for(k=1;k<=cptcoveff; k++){        fprintf(ficresprobcov," p%1d-%1d ",i,j);
      for(i=1; i <=(m/pow(2,k));i++){        fprintf(ficresprobcor," p%1d-%1d ",i,j);
        for(j=1; j <= ncodemax[k]; j++){      }  
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){   /* fprintf(ficresprob,"\n");
            h++;    fprintf(ficresprobcov,"\n");
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    fprintf(ficresprobcor,"\n");
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/   */
          }    xp=vector(1,npar);
        }    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
      }    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
    }    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
       codtab[1][2]=1;codtab[2][2]=2; */    first=1;
    /* for(i=1; i <=m ;i++){    fprintf(ficgp,"\n# Routine varprob");
       for(k=1; k <=cptcovn; k++){    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    fprintf(fichtm,"\n");
       }  
       printf("\n");    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
       }    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
       scanf("%d",i);*/    file %s<br>\n",optionfilehtmcov);
        fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
    /* Calculates basic frequencies. Computes observed prevalence at single age  and drawn. It helps understanding how is the covariance between two incidences.\
        and prints on file fileres'p'. */   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
      It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
      would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  standard deviations wide on each axis. <br>\
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
          cov[1]=1;
     /* For Powell, parameters are in a vector p[] starting at p[1]    /* tj=cptcoveff; */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    tj = (int) pow(2,cptcoveff);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     if(mle==1){    for(j1=1; j1<=tj;j1++){
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      /*for(i1=1; i1<=ncodemax[t];i1++){ */
     }      /*j1++;*/
            if  (cptcovn>0) {
     /*--------- results files --------------*/          fprintf(ficresprob, "\n#********** Variable "); 
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
    jk=1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          fprintf(ficresprobcov, "**********\n#\n");
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          fprintf(ficgp, "\n#********** Variable "); 
    for(i=1,jk=1; i <=nlstate; i++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      for(k=1; k <=(nlstate+ndeath); k++){          fprintf(ficgp, "**********\n#\n");
        if (k != i)          
          {          
            printf("%d%d ",i,k);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
            fprintf(ficlog,"%d%d ",i,k);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficres,"%1d%1d ",i,k);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
            for(j=1; j <=ncovmodel; j++){          
              printf("%f ",p[jk]);          fprintf(ficresprobcor, "\n#********** Variable ");    
              fprintf(ficlog,"%f ",p[jk]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
              fprintf(ficres,"%f ",p[jk]);          fprintf(ficresprobcor, "**********\n#");    
              jk++;        }
            }        
            printf("\n");        gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
            fprintf(ficlog,"\n");        trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
            fprintf(ficres,"\n");        gp=vector(1,(nlstate)*(nlstate+ndeath));
          }        gm=vector(1,(nlstate)*(nlstate+ndeath));
      }        for (age=bage; age<=fage; age ++){ 
    }          cov[2]=age;
    if(mle==1){          for (k=1; k<=cptcovn;k++) {
      /* Computing hessian and covariance matrix */            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
      ftolhess=ftol; /* Usually correct */                                                           * 1  1 1 1 1
      hesscov(matcov, p, npar, delti, ftolhess, func);                                                           * 2  2 1 1 1
    }                                                           * 3  1 2 1 1
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");                                                           */
    printf("# Scales (for hessian or gradient estimation)\n");            /* nbcode[1][1]=0 nbcode[1][2]=1;*/
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");          }
    for(i=1,jk=1; i <=nlstate; i++){          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
      for(j=1; j <=nlstate+ndeath; j++){          for (k=1; k<=cptcovprod;k++)
        if (j!=i) {            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
          fprintf(ficres,"%1d%1d",i,j);          
          printf("%1d%1d",i,j);      
          fprintf(ficlog,"%1d%1d",i,j);          for(theta=1; theta <=npar; theta++){
          for(k=1; k<=ncovmodel;k++){            for(i=1; i<=npar; i++)
            printf(" %.5e",delti[jk]);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
            fprintf(ficlog," %.5e",delti[jk]);            
            fprintf(ficres," %.5e",delti[jk]);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
            jk++;            
          }            k=0;
          printf("\n");            for(i=1; i<= (nlstate); i++){
          fprintf(ficlog,"\n");              for(j=1; j<=(nlstate+ndeath);j++){
          fprintf(ficres,"\n");                k=k+1;
        }                gp[k]=pmmij[i][j];
      }              }
    }            }
                
    k=1;            for(i=1; i<=npar; i++)
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
    if(mle==1)      
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            pmij(pmmij,cov,ncovmodel,xp,nlstate);
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            k=0;
    for(i=1;i<=npar;i++){            for(i=1; i<=(nlstate); i++){
      /*  if (k>nlstate) k=1;              for(j=1; j<=(nlstate+ndeath);j++){
          i1=(i-1)/(ncovmodel*nlstate)+1;                k=k+1;
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);                gm[k]=pmmij[i][j];
          printf("%s%d%d",alph[k],i1,tab[i]);*/              }
      fprintf(ficres,"%3d",i);            }
      if(mle==1)       
        printf("%3d",i);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
      fprintf(ficlog,"%3d",i);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
      for(j=1; j<=i;j++){          }
        fprintf(ficres," %.5e",matcov[i][j]);  
        if(mle==1)          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
          printf(" %.5e",matcov[i][j]);            for(theta=1; theta <=npar; theta++)
        fprintf(ficlog," %.5e",matcov[i][j]);              trgradg[j][theta]=gradg[theta][j];
      }          
      fprintf(ficres,"\n");          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
      if(mle==1)          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
        printf("\n");  
      fprintf(ficlog,"\n");          pmij(pmmij,cov,ncovmodel,x,nlstate);
      k++;          
    }          k=0;
              for(i=1; i<=(nlstate); i++){
    while((c=getc(ficpar))=='#' && c!= EOF){            for(j=1; j<=(nlstate+ndeath);j++){
      ungetc(c,ficpar);              k=k+1;
      fgets(line, MAXLINE, ficpar);              mu[k][(int) age]=pmmij[i][j];
      puts(line);            }
      fputs(line,ficparo);          }
    }          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
    ungetc(c,ficpar);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
    estepm=0;              varpij[i][j][(int)age] = doldm[i][j];
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  
    if (estepm==0 || estepm < stepm) estepm=stepm;          /*printf("\n%d ",(int)age);
    if (fage <= 2) {            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
      bage = ageminpar;            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
      fage = agemaxpar;            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
    }            }*/
      
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          fprintf(ficresprob,"\n%d ",(int)age);
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          fprintf(ficresprobcov,"\n%d ",(int)age);
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          fprintf(ficresprobcor,"\n%d ",(int)age);
      
    while((c=getc(ficpar))=='#' && c!= EOF){          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
      ungetc(c,ficpar);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
      fgets(line, MAXLINE, ficpar);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
      puts(line);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
      fputs(line,ficparo);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
    }          }
    ungetc(c,ficpar);          i=0;
            for (k=1; k<=(nlstate);k++){
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);            for (l=1; l<=(nlstate+ndeath);l++){ 
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              i++;
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                  fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
    while((c=getc(ficpar))=='#' && c!= EOF){              for (j=1; j<=i;j++){
      ungetc(c,ficpar);                /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
      fgets(line, MAXLINE, ficpar);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
      puts(line);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
      fputs(line,ficparo);              }
    }            }
    ungetc(c,ficpar);          }/* end of loop for state */
          } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
    dateprev1=anprev1+mprev1/12.+jprev1/365.;        free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
    dateprev2=anprev2+mprev2/12.+jprev2/365.;        free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   fscanf(ficpar,"pop_based=%d\n",&popbased);        
   fprintf(ficparo,"pop_based=%d\n",popbased);          /* Confidence intervalle of pij  */
   fprintf(ficres,"pop_based=%d\n",popbased);          /*
            fprintf(ficgp,"\nunset parametric;unset label");
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     ungetc(c,ficpar);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     fgets(line, MAXLINE, ficpar);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     puts(line);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     fputs(line,ficparo);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   }          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   ungetc(c,ficpar);        */
   
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        first1=1;first2=2;
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
 while((c=getc(ficpar))=='#' && c!= EOF){            j=(k2-1)*(nlstate+ndeath)+l2;
     ungetc(c,ficpar);            for (k1=1; k1<=(nlstate);k1++){
     fgets(line, MAXLINE, ficpar);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     puts(line);                if(l1==k1) continue;
     fputs(line,ficparo);                i=(k1-1)*(nlstate+ndeath)+l1;
   }                if(i<=j) continue;
   ungetc(c,ficpar);                for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                    mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
 /*------------ gnuplot -------------*/                    /* Computing eigen value of matrix of covariance */
   strcpy(optionfilegnuplot,optionfilefiname);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   strcat(optionfilegnuplot,".gp");                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {                    if ((lc2 <0) || (lc1 <0) ){
     printf("Problem with file %s",optionfilegnuplot);                      if(first2==1){
   }                        first1=0;
   fclose(ficgp);                      printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);                      }
 /*--------- index.htm --------*/                      fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
   strcpy(optionfilehtm,optionfile);                      /* lc2=fabs(lc2); */
   strcat(optionfilehtm,".htm");                    }
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {  
     printf("Problem with %s \n",optionfilehtm), exit(0);                    /* Eigen vectors */
   }                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n                    v21=(lc1-v1)/cv12*v11;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n                    v12=-v21;
 \n                    v22=v11;
 Total number of observations=%d <br>\n                    tnalp=v21/v11;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n                    if(first1==1){
 <hr  size=\"2\" color=\"#EC5E5E\">                      first1=0;
  <ul><li><h4>Parameter files</h4>\n                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n                    }
  - Log file of the run: <a href=\"%s\">%s</a><br>\n                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);                    /*printf(fignu*/
   fclose(fichtm);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);                    if(first==1){
                        first=0;
 /*------------ free_vector  -------------*/                      fprintf(ficgp,"\nset parametric;unset label");
  chdir(path);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                        fprintf(ficgp,"\nset ter png small size 320, 240");
  free_ivector(wav,1,imx);                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
  free_ivector(num,1,n);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
  free_vector(agedc,1,n);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
  fclose(ficparo);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
  fclose(ficres);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   /*--------------- Prevalence limit --------------*/                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                                mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   strcpy(filerespl,"pl");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   strcat(filerespl,fileres);                    }else{
   if((ficrespl=fopen(filerespl,"w"))==NULL) {                      first=0;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   fprintf(ficrespl,"#Prevalence limit\n");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   fprintf(ficrespl,"#Age ");                    }/* if first */
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                  } /* age mod 5 */
   fprintf(ficrespl,"\n");                } /* end loop age */
                  fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   prlim=matrix(1,nlstate,1,nlstate);                first=1;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              } /*l12 */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            } /* k12 */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          } /*l1 */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }/* k1 */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        /* } /* loop covariates */
   k=0;    }
   agebase=ageminpar;    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   agelim=agemaxpar;    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   ftolpl=1.e-10;    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   i1=cptcoveff;    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
   if (cptcovn < 1){i1=1;}    free_vector(xp,1,npar);
     fclose(ficresprob);
   for(cptcov=1;cptcov<=i1;cptcov++){    fclose(ficresprobcov);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fclose(ficresprobcor);
         k=k+1;    fflush(ficgp);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    fflush(fichtmcov);
         fprintf(ficrespl,"\n#******");  }
         printf("\n#******");  
         fprintf(ficlog,"\n#******");  
         for(j=1;j<=cptcoveff;j++) {  /******************* Printing html file ***********/
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    int lastpass, int stepm, int weightopt, char model[],\
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
         }                    int popforecast, int estepm ,\
         fprintf(ficrespl,"******\n");                    double jprev1, double mprev1,double anprev1, \
         printf("******\n");                    double jprev2, double mprev2,double anprev2){
         fprintf(ficlog,"******\n");    int jj1, k1, i1, cpt;
          
         for (age=agebase; age<=agelim; age++){     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
           fprintf(ficrespl,"%.0f",age );  </ul>");
           for(i=1; i<=nlstate;i++)     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
           fprintf(ficrespl," %.5f", prlim[i][i]);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
           fprintf(ficrespl,"\n");             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
         }     fprintf(fichtm,"\
       }   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
     }             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   fclose(ficrespl);     fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
   /*------------- h Pij x at various ages ------------*/             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
       fprintf(fichtm,"\
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
   if((ficrespij=fopen(filerespij,"w"))==NULL) {     <a href=\"%s\">%s</a> <br>\n",
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;     fprintf(fichtm,"\
   }   - Population projections by age and states: \
   printf("Computing pij: result on file '%s' \n", filerespij);     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);  
    fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   /*if (stepm<=24) stepsize=2;*/   m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   agelim=AGESUP;  
   hstepm=stepsize*YEARM; /* Every year of age */   jj1=0;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */   for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
   /* hstepm=1;   aff par mois*/       jj1++;
        if (cptcovn > 0) {
   k=0;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   for(cptcov=1;cptcov<=i1;cptcov++){         for (cpt=1; cpt<=cptcoveff;cpt++) 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       k=k+1;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         fprintf(ficrespij,"\n#****** ");       }
         for(j=1;j<=cptcoveff;j++)       /* Pij */
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
         fprintf(ficrespij,"******\n");  <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
               /* Quasi-incidences */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
           /*      nhstepm=nhstepm*YEARM; aff par mois*/         for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  <img src=\"%s%d_%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
           oldm=oldms;savm=savms;         }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);         for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(ficrespij,"# Age");          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
           for(i=1; i<=nlstate;i++)  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
             for(j=1; j<=nlstate+ndeath;j++)       }
               fprintf(ficrespij," %1d-%1d",i,j);     } /* end i1 */
           fprintf(ficrespij,"\n");   }/* End k1 */
            for (h=0; h<=nhstepm; h++){   fprintf(fichtm,"</ul>");
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  
             for(i=1; i<=nlstate;i++)  
               for(j=1; j<=nlstate+ndeath;j++)   fprintf(fichtm,"\
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
             fprintf(ficrespij,"\n");   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
              }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
           fprintf(ficrespij,"\n");           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
         }   fprintf(fichtm,"\
     }   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   }           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);   fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   fclose(ficrespij);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
   /*---------- Forecasting ------------------*/     <a href=\"%s\">%s</a> <br>\n</li>",
   if((stepm == 1) && (strcmp(model,".")==0)){             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);   fprintf(fichtm,"\
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
   }     <a href=\"%s\">%s</a> <br>\n</li>",
   else{             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
     erreur=108;   fprintf(fichtm,"\
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
   }   fprintf(fichtm,"\
     - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   /*---------- Health expectancies and variances ------------*/   fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
   strcpy(filerest,"t");           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   strcat(filerest,fileres);  
   if((ficrest=fopen(filerest,"w"))==NULL) {  /*  if(popforecast==1) fprintf(fichtm,"\n */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   }  /*      <br>",fileres,fileres,fileres,fileres); */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  /*  else  */
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   strcpy(filerese,"e");  
   strcat(filerese,fileres);   m=pow(2,cptcoveff);
   if((ficreseij=fopen(filerese,"w"))==NULL) {   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);   jj1=0;
   }   for(k1=1; k1<=m;k1++){
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);     for(i1=1; i1<=ncodemax[k1];i1++){
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);       jj1++;
        if (cptcovn > 0) {
   strcpy(fileresv,"v");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   strcat(fileresv,fileres);         for (cpt=1; cpt<=cptcoveff;cpt++) 
   if((ficresvij=fopen(fileresv,"w"))==NULL) {           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);       }
   }       for(cpt=1; cpt<=nlstate;cpt++) {
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   calagedate=-1;  <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);       }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   k=0;  health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   for(cptcov=1;cptcov<=i1;cptcov++){  true period expectancies (those weighted with period prevalences are also\
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   drawn in addition to the population based expectancies computed using\
       k=k+1;   observed and cahotic prevalences: %s%d.png<br>\
       fprintf(ficrest,"\n#****** ");  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
       for(j=1;j<=cptcoveff;j++)     } /* end i1 */
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   }/* End k1 */
       fprintf(ficrest,"******\n");   fprintf(fichtm,"</ul>");
    fflush(fichtm);
       fprintf(ficreseij,"\n#****** ");  }
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /******************* Gnuplot file **************/
       fprintf(ficreseij,"******\n");  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
       fprintf(ficresvij,"\n#****** ");    char dirfileres[132],optfileres[132];
       for(j=1;j<=cptcoveff;j++)    int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int ng=0;
       fprintf(ficresvij,"******\n");  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
       oldm=oldms;savm=savms;  /*   } */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);    
      /*#ifdef windows */
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    fprintf(ficgp,"cd \"%s\" \n",pathc);
       oldm=oldms;savm=savms;      /*#endif */
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);    m=pow(2,cptcoveff);
       if(popbased==1){  
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);    strcpy(dirfileres,optionfilefiname);
        }    strcpy(optfileres,"vpl");
    /* 1eme*/
      for (cpt=1; cpt<= nlstate ; cpt ++) {
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);       fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
       fprintf(ficrest,"\n");       fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
       epj=vector(1,nlstate+1);  set ylabel \"Probability\" \n\
       for(age=bage; age <=fage ;age++){  set ter png small size 320, 240\n\
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
         if (popbased==1) {  
           for(i=1; i<=nlstate;i++)       for (i=1; i<= nlstate ; i ++) {
             prlim[i][i]=probs[(int)age][i][k];         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         }         else        fprintf(ficgp," \%%*lf (\%%*lf)");
               }
         fprintf(ficrest," %4.0f",age);       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){       for (i=1; i<= nlstate ; i ++) {
           for(i=1, epj[j]=0.;i <=nlstate;i++) {         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
             epj[j] += prlim[i][i]*eij[i][j][(int)age];         else fprintf(ficgp," \%%*lf (\%%*lf)");
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/       } 
           }       fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
           epj[nlstate+1] +=epj[j];       for (i=1; i<= nlstate ; i ++) {
         }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
         for(i=1, vepp=0.;i <=nlstate;i++)       }  
           for(j=1;j <=nlstate;j++)       fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
             vepp += vareij[i][j][(int)age];     }
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    }
         for(j=1;j <=nlstate;j++){    /*2 eme*/
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    
         }    for (k1=1; k1<= m ; k1 ++) { 
         fprintf(ficrest,"\n");      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       }      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
     }      
   }      for (i=1; i<= nlstate+1 ; i ++) {
 free_matrix(mint,1,maxwav,1,n);        k=2*i;
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     free_vector(weight,1,n);        for (j=1; j<= nlstate+1 ; j ++) {
   fclose(ficreseij);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   fclose(ficresvij);          else fprintf(ficgp," \%%*lf (\%%*lf)");
   fclose(ficrest);        }   
   fclose(ficpar);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   free_vector(epj,1,nlstate+1);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   /*------- Variance limit prevalence------*/          for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   strcpy(fileresvpl,"vpl");          else fprintf(ficgp," \%%*lf (\%%*lf)");
   strcat(fileresvpl,fileres);        }   
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        fprintf(ficgp,"\" t\"\" w l lt 0,");
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     exit(0);        for (j=1; j<= nlstate+1 ; j ++) {
   }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
   k=0;        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
   for(cptcov=1;cptcov<=i1;cptcov++){        else fprintf(ficgp,"\" t\"\" w l lt 0,");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      }
       k=k+1;    }
       fprintf(ficresvpl,"\n#****** ");    
       for(j=1;j<=cptcoveff;j++)    /*3eme*/
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    
       fprintf(ficresvpl,"******\n");    for (k1=1; k1<= m ; k1 ++) { 
            for (cpt=1; cpt<= nlstate ; cpt ++) {
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        /*       k=2+nlstate*(2*cpt-2); */
       oldm=oldms;savm=savms;        k=2+(nlstate+1)*(cpt-1);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
     }        fprintf(ficgp,"set ter png small size 320, 240\n\
  }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   fclose(ficresvpl);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   /*---------- End : free ----------------*/          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
            fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        */
          for (i=1; i< nlstate ; i ++) {
            fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        } 
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
        }
   free_matrix(matcov,1,npar,1,npar);    }
   free_vector(delti,1,npar);    
   free_matrix(agev,1,maxwav,1,imx);    /* CV preval stable (period) */
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
   fprintf(fichtm,"\n</body>");        k=3;
   fclose(fichtm);        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   fclose(ficgp);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
    set ter png small size 320, 240\n\
   unset log y\n\
   if(erreur >0){  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
     printf("End of Imach with error or warning %d\n",erreur);        
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);        for (i=1; i< nlstate ; i ++)
   }else{          fprintf(ficgp,"+$%d",k+i+1);
    printf("End of Imach\n");        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
    fprintf(ficlog,"End of Imach\n");        
   }        l=3+(nlstate+ndeath)*cpt;
   printf("See log file on %s\n",filelog);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
   fclose(ficlog);        for (i=1; i< nlstate ; i ++) {
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          l=3+(nlstate+ndeath)*cpt;
            fprintf(ficgp,"+$%d",l+i+1);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        }
   /*printf("Total time was %d uSec.\n", total_usecs);*/        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
   /*------ End -----------*/      } 
     }  
     
  end:    /* proba elementaires */
 #ifdef windows    for(i=1,jk=1; i <=nlstate; i++){
   /* chdir(pathcd);*/      for(k=1; k <=(nlstate+ndeath); k++){
 #endif        if (k != i) {
  /*system("wgnuplot graph.plt");*/          for(j=1; j <=ncovmodel; j++){
  /*system("../gp37mgw/wgnuplot graph.plt");*/            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
  /*system("cd ../gp37mgw");*/            jk++; 
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/            fprintf(ficgp,"\n");
  strcpy(plotcmd,GNUPLOTPROGRAM);          }
  strcat(plotcmd," ");        }
  strcat(plotcmd,optionfilegnuplot);      }
  system(plotcmd);     }
     /*goto avoid;*/
 #ifdef windows     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   while (z[0] != 'q') {       for(jk=1; jk <=m; jk++) {
     /* chdir(path); */         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");         if (ng==2)
     scanf("%s",z);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
     if (z[0] == 'c') system("./imach");         else
     else if (z[0] == 'e') system(optionfilehtm);           fprintf(ficgp,"\nset title \"Probability\"\n");
     else if (z[0] == 'g') system(plotcmd);         fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
     else if (z[0] == 'q') exit(0);         i=1;
   }         for(k2=1; k2<=nlstate; k2++) {
 #endif           k3=i;
 }           for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    avoid:
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.", dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ = *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int i1, j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.51  
changed lines
  Added in v.1.145


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>