Diff for /imach/src/imach.c between versions 1.51 and 1.148

version 1.51, 2002/07/19 12:22:25 version 1.148, 2014/06/17 17:38:48
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.148  2014/06/17 17:38:48  brouard
      Summary: Nothing new
   This program computes Healthy Life Expectancies from    Author: Brouard
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Just a new packaging for OS/X version 0.98nS
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.147  2014/06/16 10:33:11  brouard
   second wave of interviews ("longitudinal") which measure each change    *** empty log message ***
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.146  2014/06/16 10:20:28  brouard
   model. More health states you consider, more time is necessary to reach the    Summary: Merge
   Maximum Likelihood of the parameters involved in the model.  The    Author: Brouard
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Merge, before building revised version.
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.145  2014/06/10 21:23:15  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    Summary: Debugging with valgrind
   complex model than "constant and age", you should modify the program    Author: Nicolas Brouard
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Lot of changes in order to output the results with some covariates
   convergence.    After the Edimburgh REVES conference 2014, it seems mandatory to
     improve the code.
   The advantage of this computer programme, compared to a simple    No more memory valgrind error but a lot has to be done in order to
   multinomial logistic model, is clear when the delay between waves is not    continue the work of splitting the code into subroutines.
   identical for each individual. Also, if a individual missed an    Also, decodemodel has been improved. Tricode is still not
   intermediate interview, the information is lost, but taken into    optimal. nbcode should be improved. Documentation has been added in
   account using an interpolation or extrapolation.      the source code.
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.143  2014/01/26 09:45:38  brouard
   conditional to the observed state i at age x. The delay 'h' can be    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   semester or year) is model as a multinomial logistic.  The hPx    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.142  2014/01/26 03:57:36  brouard
   hPijx.    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   
   Also this programme outputs the covariance matrix of the parameters but also    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.141  2014/01/26 02:42:01  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.140  2011/09/02 10:37:54  brouard
   from the European Union.    Summary: times.h is ok with mingw32 now.
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.139  2010/06/14 07:50:17  brouard
   can be accessed at http://euroreves.ined.fr/imach .    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
   **********************************************************************/    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
    
 #include <math.h>    Revision 1.138  2010/04/30 18:19:40  brouard
 #include <stdio.h>    *** empty log message ***
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.137  2010/04/29 18:11:38  brouard
     (Module): Checking covariates for more complex models
 #define MAXLINE 256    than V1+V2. A lot of change to be done. Unstable.
 #define GNUPLOTPROGRAM "gnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.136  2010/04/26 20:30:53  brouard
 #define FILENAMELENGTH 80    (Module): merging some libgsl code. Fixing computation
 /*#define DEBUG*/    of likelione (using inter/intrapolation if mle = 0) in order to
 #define windows    get same likelihood as if mle=1.
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Some cleaning of code and comments added.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.135  2009/10/29 15:33:14  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.134  2009/10/29 13:18:53  brouard
 #define NINTERVMAX 8    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.133  2009/07/06 10:21:25  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    just nforces
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.132  2009/07/06 08:22:05  brouard
 #define AGESUP 130    Many tings
 #define AGEBASE 40  
 #ifdef windows    Revision 1.131  2009/06/20 16:22:47  brouard
 #define DIRSEPARATOR '\\'    Some dimensions resccaled
 #define ODIRSEPARATOR '/'  
 #else    Revision 1.130  2009/05/26 06:44:34  brouard
 #define DIRSEPARATOR '/'    (Module): Max Covariate is now set to 20 instead of 8. A
 #define ODIRSEPARATOR '\\'    lot of cleaning with variables initialized to 0. Trying to make
 #endif    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    Revision 1.129  2007/08/31 13:49:27  lievre
 int erreur; /* Error number */    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 int nvar;  
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.128  2006/06/30 13:02:05  brouard
 int npar=NPARMAX;    (Module): Clarifications on computing e.j
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.127  2006/04/28 18:11:50  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): Yes the sum of survivors was wrong since
 int popbased=0;    imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
 int *wav; /* Number of waves for this individuual 0 is possible */    (Module): In order to speed up (in case of numerous covariates) we
 int maxwav; /* Maxim number of waves */    compute health expectancies (without variances) in a first step
 int jmin, jmax; /* min, max spacing between 2 waves */    and then all the health expectancies with variances or standard
 int mle, weightopt;    deviation (needs data from the Hessian matrices) which slows the
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    computation.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    In the future we should be able to stop the program is only health
 double jmean; /* Mean space between 2 waves */    expectancies and graph are needed without standard deviations.
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.126  2006/04/28 17:23:28  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    (Module): Yes the sum of survivors was wrong since
 FILE *ficlog;    imach-114 because nhstepm was no more computed in the age
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    loop. Now we define nhstepma in the age loop.
 FILE *ficresprobmorprev;    Version 0.98h
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;    Revision 1.125  2006/04/04 15:20:31  lievre
 char filerese[FILENAMELENGTH];    Errors in calculation of health expectancies. Age was not initialized.
 FILE  *ficresvij;    Forecasting file added.
 char fileresv[FILENAMELENGTH];  
 FILE  *ficresvpl;    Revision 1.124  2006/03/22 17:13:53  lievre
 char fileresvpl[FILENAMELENGTH];    Parameters are printed with %lf instead of %f (more numbers after the comma).
 char title[MAXLINE];    The log-likelihood is printed in the log file
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    Revision 1.123  2006/03/20 10:52:43  brouard
     * imach.c (Module): <title> changed, corresponds to .htm file
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    name. <head> headers where missing.
 char filelog[FILENAMELENGTH]; /* Log file */  
 char filerest[FILENAMELENGTH];    * imach.c (Module): Weights can have a decimal point as for
 char fileregp[FILENAMELENGTH];    English (a comma might work with a correct LC_NUMERIC environment,
 char popfile[FILENAMELENGTH];    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    1.
     Version 0.98g
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.122  2006/03/20 09:45:41  brouard
 #define FTOL 1.0e-10    (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
 #define NRANSI    otherwise the weight is truncated).
 #define ITMAX 200    Modification of warning when the covariates values are not 0 or
     1.
 #define TOL 2.0e-4    Version 0.98g
   
 #define CGOLD 0.3819660    Revision 1.121  2006/03/16 17:45:01  lievre
 #define ZEPS 1.0e-10    * imach.c (Module): Comments concerning covariates added
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     * imach.c (Module): refinements in the computation of lli if
 #define GOLD 1.618034    status=-2 in order to have more reliable computation if stepm is
 #define GLIMIT 100.0    not 1 month. Version 0.98f
 #define TINY 1.0e-20  
     Revision 1.120  2006/03/16 15:10:38  lievre
 static double maxarg1,maxarg2;    (Module): refinements in the computation of lli if
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    status=-2 in order to have more reliable computation if stepm is
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    not 1 month. Version 0.98f
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.119  2006/03/15 17:42:26  brouard
 #define rint(a) floor(a+0.5)    (Module): Bug if status = -2, the loglikelihood was
     computed as likelihood omitting the logarithm. Version O.98e
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Revision 1.118  2006/03/14 18:20:07  brouard
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
 int imx;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int stepm;    (Module): Function pstamp added
 /* Stepm, step in month: minimum step interpolation*/    (Module): Version 0.98d
   
 int estepm;    Revision 1.117  2006/03/14 17:16:22  brouard
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
 int m,nb;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    (Module): Function pstamp added
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    (Module): Version 0.98d
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Revision 1.116  2006/03/06 10:29:27  brouard
     (Module): Variance-covariance wrong links and
 double *weight;    varian-covariance of ej. is needed (Saito).
 int **s; /* Status */  
 double *agedc, **covar, idx;    Revision 1.115  2006/02/27 12:17:45  brouard
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    (Module): One freematrix added in mlikeli! 0.98c
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.114  2006/02/26 12:57:58  brouard
 double ftolhess; /* Tolerance for computing hessian */    (Module): Some improvements in processing parameter
     filename with strsep.
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Revision 1.113  2006/02/24 14:20:24  brouard
 {    (Module): Memory leaks checks with valgrind and:
    char *s;                             /* pointer */    datafile was not closed, some imatrix were not freed and on matrix
    int  l1, l2;                         /* length counters */    allocation too.
   
    l1 = strlen( path );                 /* length of path */    Revision 1.112  2006/01/30 09:55:26  brouard
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): Back to gnuplot.exe instead of wgnuplot.exe
    s= strrchr( path, DIRSEPARATOR );            /* find last / */  
    if ( s == NULL ) {                   /* no directory, so use current */    Revision 1.111  2006/01/25 20:38:18  brouard
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    (Module): Lots of cleaning and bugs added (Gompertz)
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    (Module): Comments can be added in data file. Missing date values
 #if     defined(__bsd__)                /* get current working directory */    can be a simple dot '.'.
       extern char       *getwd( );  
     Revision 1.110  2006/01/25 00:51:50  brouard
       if ( getwd( dirc ) == NULL ) {    (Module): Lots of cleaning and bugs added (Gompertz)
 #else  
       extern char       *getcwd( );    Revision 1.109  2006/01/24 19:37:15  brouard
     (Module): Comments (lines starting with a #) are allowed in data.
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    Revision 1.108  2006/01/19 18:05:42  lievre
          return( GLOCK_ERROR_GETCWD );    Gnuplot problem appeared...
       }    To be fixed
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Revision 1.107  2006/01/19 16:20:37  brouard
       s++;                              /* after this, the filename */    Test existence of gnuplot in imach path
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.106  2006/01/19 13:24:36  brouard
       strcpy( name, s );                /* save file name */    Some cleaning and links added in html output
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */    Revision 1.105  2006/01/05 20:23:19  lievre
    }    *** empty log message ***
    l1 = strlen( dirc );                 /* length of directory */  
 #ifdef windows    Revision 1.104  2005/09/30 16:11:43  lievre
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    (Module): sump fixed, loop imx fixed, and simplifications.
 #else    (Module): If the status is missing at the last wave but we know
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    that the person is alive, then we can code his/her status as -2
 #endif    (instead of missing=-1 in earlier versions) and his/her
    s = strrchr( name, '.' );            /* find last / */    contributions to the likelihood is 1 - Prob of dying from last
    s++;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
    strcpy(ext,s);                       /* save extension */    the healthy state at last known wave). Version is 0.98
    l1= strlen( name);  
    l2= strlen( s)+1;    Revision 1.103  2005/09/30 15:54:49  lievre
    strncpy( finame, name, l1-l2);    (Module): sump fixed, loop imx fixed, and simplifications.
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.102  2004/09/15 17:31:30  brouard
 }    Add the possibility to read data file including tab characters.
   
     Revision 1.101  2004/09/15 10:38:38  brouard
 /******************************************/    Fix on curr_time
   
 void replace(char *s, char*t)    Revision 1.100  2004/07/12 18:29:06  brouard
 {    Add version for Mac OS X. Just define UNIX in Makefile
   int i;  
   int lg=20;    Revision 1.99  2004/06/05 08:57:40  brouard
   i=0;    *** empty log message ***
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Revision 1.98  2004/05/16 15:05:56  brouard
     (s[i] = t[i]);    New version 0.97 . First attempt to estimate force of mortality
     if (t[i]== '\\') s[i]='/';    directly from the data i.e. without the need of knowing the health
   }    state at each age, but using a Gompertz model: log u =a + b*age .
 }    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
 int nbocc(char *s, char occ)    cross-longitudinal survey is different from the mortality estimated
 {    from other sources like vital statistic data.
   int i,j=0;  
   int lg=20;    The same imach parameter file can be used but the option for mle should be -3.
   i=0;  
   lg=strlen(s);    Agnès, who wrote this part of the code, tried to keep most of the
   for(i=0; i<= lg; i++) {    former routines in order to include the new code within the former code.
   if  (s[i] == occ ) j++;  
   }    The output is very simple: only an estimate of the intercept and of
   return j;    the slope with 95% confident intervals.
 }  
     Current limitations:
 void cutv(char *u,char *v, char*t, char occ)    A) Even if you enter covariates, i.e. with the
 {    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   /* cuts string t into u and v where u is ended by char occ excluding it    B) There is no computation of Life Expectancy nor Life Table.
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  
      gives u="abcedf" and v="ghi2j" */    Revision 1.97  2004/02/20 13:25:42  lievre
   int i,lg,j,p=0;    Version 0.96d. Population forecasting command line is (temporarily)
   i=0;    suppressed.
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Revision 1.96  2003/07/15 15:38:55  brouard
   }    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
   lg=strlen(t);  
   for(j=0; j<p; j++) {    Revision 1.95  2003/07/08 07:54:34  brouard
     (u[j] = t[j]);    * imach.c (Repository):
   }    (Repository): Using imachwizard code to output a more meaningful covariance
      u[p]='\0';    matrix (cov(a12,c31) instead of numbers.
   
    for(j=0; j<= lg; j++) {    Revision 1.94  2003/06/27 13:00:02  brouard
     if (j>=(p+1))(v[j-p-1] = t[j]);    Just cleaning
   }  
 }    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 /********************** nrerror ********************/    exist so I changed back to asctime which exists.
     (Module): Version 0.96b
 void nrerror(char error_text[])  
 {    Revision 1.92  2003/06/25 16:30:45  brouard
   fprintf(stderr,"ERREUR ...\n");    (Module): On windows (cygwin) function asctime_r doesn't
   fprintf(stderr,"%s\n",error_text);    exist so I changed back to asctime which exists.
   exit(1);  
 }    Revision 1.91  2003/06/25 15:30:29  brouard
 /*********************** vector *******************/    * imach.c (Repository): Duplicated warning errors corrected.
 double *vector(int nl, int nh)    (Repository): Elapsed time after each iteration is now output. It
 {    helps to forecast when convergence will be reached. Elapsed time
   double *v;    is stamped in powell.  We created a new html file for the graphs
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    concerning matrix of covariance. It has extension -cov.htm.
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;    Revision 1.90  2003/06/24 12:34:15  brouard
 }    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 /************************ free vector ******************/    of the covariance matrix to be input.
 void free_vector(double*v, int nl, int nh)  
 {    Revision 1.89  2003/06/24 12:30:52  brouard
   free((FREE_ARG)(v+nl-NR_END));    (Module): Some bugs corrected for windows. Also, when
 }    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)    Revision 1.88  2003/06/23 17:54:56  brouard
 {    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Revision 1.87  2003/06/18 12:26:01  brouard
   if (!v) nrerror("allocation failure in ivector");    Version 0.96
   return v-nl+NR_END;  
 }    Revision 1.86  2003/06/17 20:04:08  brouard
     (Module): Change position of html and gnuplot routines and added
 /******************free ivector **************************/    routine fileappend.
 void free_ivector(int *v, long nl, long nh)  
 {    Revision 1.85  2003/06/17 13:12:43  brouard
   free((FREE_ARG)(v+nl-NR_END));    * imach.c (Repository): Check when date of death was earlier that
 }    current date of interview. It may happen when the death was just
     prior to the death. In this case, dh was negative and likelihood
 /******************* imatrix *******************************/    was wrong (infinity). We still send an "Error" but patch by
 int **imatrix(long nrl, long nrh, long ncl, long nch)    assuming that the date of death was just one stepm after the
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    interview.
 {    (Repository): Because some people have very long ID (first column)
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    we changed int to long in num[] and we added a new lvector for
   int **m;    memory allocation. But we also truncated to 8 characters (left
      truncation)
   /* allocate pointers to rows */    (Repository): No more line truncation errors.
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.84  2003/06/13 21:44:43  brouard
   m += NR_END;    * imach.c (Repository): Replace "freqsummary" at a correct
   m -= nrl;    place. It differs from routine "prevalence" which may be called
      many times. Probs is memory consuming and must be used with
      parcimony.
   /* allocate rows and set pointers to them */    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.83  2003/06/10 13:39:11  lievre
   m[nrl] += NR_END;    *** empty log message ***
   m[nrl] -= ncl;  
      Revision 1.82  2003/06/05 15:57:20  brouard
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    Add log in  imach.c and  fullversion number is now printed.
    
   /* return pointer to array of pointers to rows */  */
   return m;  /*
 }     Interpolated Markov Chain
   
 /****************** free_imatrix *************************/    Short summary of the programme:
 void free_imatrix(m,nrl,nrh,ncl,nch)    
       int **m;    This program computes Healthy Life Expectancies from
       long nch,ncl,nrh,nrl;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
      /* free an int matrix allocated by imatrix() */    first survey ("cross") where individuals from different ages are
 {    interviewed on their health status or degree of disability (in the
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    case of a health survey which is our main interest) -2- at least a
   free((FREE_ARG) (m+nrl-NR_END));    second wave of interviews ("longitudinal") which measure each change
 }    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
 /******************* matrix *******************************/    model. More health states you consider, more time is necessary to reach the
 double **matrix(long nrl, long nrh, long ncl, long nch)    Maximum Likelihood of the parameters involved in the model.  The
 {    simplest model is the multinomial logistic model where pij is the
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    probability to be observed in state j at the second wave
   double **m;    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    'age' is age and 'sex' is a covariate. If you want to have a more
   if (!m) nrerror("allocation failure 1 in matrix()");    complex model than "constant and age", you should modify the program
   m += NR_END;    where the markup *Covariates have to be included here again* invites
   m -= nrl;    you to do it.  More covariates you add, slower the
     convergence.
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    The advantage of this computer programme, compared to a simple
   m[nrl] += NR_END;    multinomial logistic model, is clear when the delay between waves is not
   m[nrl] -= ncl;    identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    account using an interpolation or extrapolation.  
   return m;  
 }    hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
 /*************************free matrix ************************/    split into an exact number (nh*stepm) of unobserved intermediate
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    states. This elementary transition (by month, quarter,
 {    semester or year) is modelled as a multinomial logistic.  The hPx
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    matrix is simply the matrix product of nh*stepm elementary matrices
   free((FREE_ARG)(m+nrl-NR_END));    and the contribution of each individual to the likelihood is simply
 }    hPijx.
   
 /******************* ma3x *******************************/    Also this programme outputs the covariance matrix of the parameters but also
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    of the life expectancies. It also computes the period (stable) prevalence. 
 {    
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   double ***m;             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    from the European Union.
   if (!m) nrerror("allocation failure 1 in matrix()");    It is copyrighted identically to a GNU software product, ie programme and
   m += NR_END;    software can be distributed freely for non commercial use. Latest version
   m -= nrl;    can be accessed at http://euroreves.ined.fr/imach .
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   m[nrl] += NR_END;    
   m[nrl] -= ncl;    **********************************************************************/
   /*
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    main
     read parameterfile
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    read datafile
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    concatwav
   m[nrl][ncl] += NR_END;    freqsummary
   m[nrl][ncl] -= nll;    if (mle >= 1)
   for (j=ncl+1; j<=nch; j++)      mlikeli
     m[nrl][j]=m[nrl][j-1]+nlay;    print results files
      if mle==1 
   for (i=nrl+1; i<=nrh; i++) {       computes hessian
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    read end of parameter file: agemin, agemax, bage, fage, estepm
     for (j=ncl+1; j<=nch; j++)        begin-prev-date,...
       m[i][j]=m[i][j-1]+nlay;    open gnuplot file
   }    open html file
   return m;    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
 }     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
                                     | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
 /*************************free ma3x ************************/      freexexit2 possible for memory heap.
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {    h Pij x                         | pij_nom  ficrestpij
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
   free((FREE_ARG)(m[nrl]+ncl-NR_END));         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
   free((FREE_ARG)(m+nrl-NR_END));         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
 }  
          1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
 /***************** f1dim *************************/         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
 extern int ncom;    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
 extern double *pcom,*xicom;     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
 extern double (*nrfunc)(double []);     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
    
 double f1dim(double x)    forecasting if prevfcast==1 prevforecast call prevalence()
 {    health expectancies
   int j;    Variance-covariance of DFLE
   double f;    prevalence()
   double *xt;     movingaverage()
      varevsij() 
   xt=vector(1,ncom);    if popbased==1 varevsij(,popbased)
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    total life expectancies
   f=(*nrfunc)(xt);    Variance of period (stable) prevalence
   free_vector(xt,1,ncom);   end
   return f;  */
 }  
   
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)   
 {  #include <math.h>
   int iter;  #include <stdio.h>
   double a,b,d,etemp;  #include <stdlib.h>
   double fu,fv,fw,fx;  #include <string.h>
   double ftemp;  #include <unistd.h>
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;  #include <limits.h>
    #include <sys/types.h>
   a=(ax < cx ? ax : cx);  #include <sys/stat.h>
   b=(ax > cx ? ax : cx);  #include <errno.h>
   x=w=v=bx;  extern int errno;
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {  #ifdef LINUX
     xm=0.5*(a+b);  #include <time.h>
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  #include "timeval.h"
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  #else
     printf(".");fflush(stdout);  #include <sys/time.h>
     fprintf(ficlog,".");fflush(ficlog);  #endif
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  #ifdef GSL
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  #include <gsl/gsl_errno.h>
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  #include <gsl/gsl_multimin.h>
 #endif  #endif
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  /* #include <libintl.h> */
       return fx;  /* #define _(String) gettext (String) */
     }  
     ftemp=fu;  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);  #define GNUPLOTPROGRAM "gnuplot"
       q=(x-v)*(fx-fw);  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
       p=(x-v)*q-(x-w)*r;  #define FILENAMELENGTH 132
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
       q=fabs(q);  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
       etemp=e;  
       e=d;  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {  #define NINTERVMAX 8
         d=p/q;  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
         u=x+d;  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
         if (u-a < tol2 || b-u < tol2)  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
           d=SIGN(tol1,xm-x);  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
       }  #define MAXN 20000
     } else {  #define YEARM 12. /**< Number of months per year */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define AGESUP 130
     }  #define AGEBASE 40
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
     fu=(*f)(u);  #ifdef UNIX
     if (fu <= fx) {  #define DIRSEPARATOR '/'
       if (u >= x) a=x; else b=x;  #define CHARSEPARATOR "/"
       SHFT(v,w,x,u)  #define ODIRSEPARATOR '\\'
         SHFT(fv,fw,fx,fu)  #else
         } else {  #define DIRSEPARATOR '\\'
           if (u < x) a=u; else b=u;  #define CHARSEPARATOR "\\"
           if (fu <= fw || w == x) {  #define ODIRSEPARATOR '/'
             v=w;  #endif
             w=u;  
             fv=fw;  /* $Id$ */
             fw=fu;  /* $State$ */
           } else if (fu <= fv || v == x || v == w) {  
             v=u;  char version[]="Imach version 0.98nS, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
             fv=fu;  char fullversion[]="$Revision$ $Date$"; 
           }  char strstart[80];
         }  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   }  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   nrerror("Too many iterations in brent");  int nvar=0, nforce=0; /* Number of variables, number of forces */
   *xmin=x;  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
   return fx;  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
 }  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
   int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
 /****************** mnbrak ***********************/  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
   int cptcovprodnoage=0; /**< Number of covariate products without age */   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  int cptcoveff=0; /* Total number of covariates to vary for printing results */
             double (*func)(double))  int cptcov=0; /* Working variable */
 {  int npar=NPARMAX;
   double ulim,u,r,q, dum;  int nlstate=2; /* Number of live states */
   double fu;  int ndeath=1; /* Number of dead states */
    int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   *fa=(*func)(*ax);  int popbased=0;
   *fb=(*func)(*bx);  
   if (*fb > *fa) {  int *wav; /* Number of waves for this individuual 0 is possible */
     SHFT(dum,*ax,*bx,dum)  int maxwav=0; /* Maxim number of waves */
       SHFT(dum,*fb,*fa,dum)  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
       }  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   *cx=(*bx)+GOLD*(*bx-*ax);  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
   *fc=(*func)(*cx);                     to the likelihood and the sum of weights (done by funcone)*/
   while (*fb > *fc) {  int mle=1, weightopt=0;
     r=(*bx-*ax)*(*fb-*fc);  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
     q=(*bx-*cx)*(*fb-*fa);  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));             * wave mi and wave mi+1 is not an exact multiple of stepm. */
     ulim=(*bx)+GLIMIT*(*cx-*bx);  double jmean=1; /* Mean space between 2 waves */
     if ((*bx-u)*(u-*cx) > 0.0) {  double **matprod2(); /* test */
       fu=(*func)(u);  double **oldm, **newm, **savm; /* Working pointers to matrices */
     } else if ((*cx-u)*(u-ulim) > 0.0) {  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       fu=(*func)(u);  /*FILE *fic ; */ /* Used in readdata only */
       if (fu < *fc) {  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  FILE *ficlog, *ficrespow;
           SHFT(*fb,*fc,fu,(*func)(u))  int globpr=0; /* Global variable for printing or not */
           }  double fretone; /* Only one call to likelihood */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  long ipmx=0; /* Number of contributions */
       u=ulim;  double sw; /* Sum of weights */
       fu=(*func)(u);  char filerespow[FILENAMELENGTH];
     } else {  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
       u=(*cx)+GOLD*(*cx-*bx);  FILE *ficresilk;
       fu=(*func)(u);  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     }  FILE *ficresprobmorprev;
     SHFT(*ax,*bx,*cx,u)  FILE *fichtm, *fichtmcov; /* Html File */
       SHFT(*fa,*fb,*fc,fu)  FILE *ficreseij;
       }  char filerese[FILENAMELENGTH];
 }  FILE *ficresstdeij;
   char fileresstde[FILENAMELENGTH];
 /*************** linmin ************************/  FILE *ficrescveij;
   char filerescve[FILENAMELENGTH];
 int ncom;  FILE  *ficresvij;
 double *pcom,*xicom;  char fileresv[FILENAMELENGTH];
 double (*nrfunc)(double []);  FILE  *ficresvpl;
    char fileresvpl[FILENAMELENGTH];
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  char title[MAXLINE];
 {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   double brent(double ax, double bx, double cx,  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
                double (*f)(double), double tol, double *xmin);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   double f1dim(double x);  char command[FILENAMELENGTH];
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  int  outcmd=0;
               double *fc, double (*func)(double));  
   int j;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   double xx,xmin,bx,ax;  
   double fx,fb,fa;  char filelog[FILENAMELENGTH]; /* Log file */
    char filerest[FILENAMELENGTH];
   ncom=n;  char fileregp[FILENAMELENGTH];
   pcom=vector(1,n);  char popfile[FILENAMELENGTH];
   xicom=vector(1,n);  
   nrfunc=func;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
     xicom[j]=xi[j];  struct timezone tzp;
   }  extern int gettimeofday();
   ax=0.0;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   xx=1.0;  long time_value;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  extern long time();
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  char strcurr[80], strfor[80];
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  char *endptr;
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  long lval;
 #endif  double dval;
   for (j=1;j<=n;j++) {  
     xi[j] *= xmin;  #define NR_END 1
     p[j] += xi[j];  #define FREE_ARG char*
   }  #define FTOL 1.0e-10
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);  #define NRANSI 
 }  #define ITMAX 200 
   
 /*************** powell ************************/  #define TOL 2.0e-4 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  
             double (*func)(double []))  #define CGOLD 0.3819660 
 {  #define ZEPS 1.0e-10 
   void linmin(double p[], double xi[], int n, double *fret,  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
               double (*func)(double []));  
   int i,ibig,j;  #define GOLD 1.618034 
   double del,t,*pt,*ptt,*xit;  #define GLIMIT 100.0 
   double fp,fptt;  #define TINY 1.0e-20 
   double *xits;  
   pt=vector(1,n);  static double maxarg1,maxarg2;
   ptt=vector(1,n);  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   xit=vector(1,n);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   xits=vector(1,n);    
   *fret=(*func)(p);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   for (j=1;j<=n;j++) pt[j]=p[j];  #define rint(a) floor(a+0.5)
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  static double sqrarg;
     ibig=0;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     del=0.0;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  int agegomp= AGEGOMP;
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)  int imx; 
       printf(" %d %.12f",i, p[i]);  int stepm=1;
     fprintf(ficlog," %d %.12f",i, p[i]);  /* Stepm, step in month: minimum step interpolation*/
     printf("\n");  
     fprintf(ficlog,"\n");  int estepm;
     for (i=1;i<=n;i++) {  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  
       fptt=(*fret);  int m,nb;
 #ifdef DEBUG  long *num;
       printf("fret=%lf \n",*fret);  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       fprintf(ficlog,"fret=%lf \n",*fret);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 #endif  double **pmmij, ***probs;
       printf("%d",i);fflush(stdout);  double *ageexmed,*agecens;
       fprintf(ficlog,"%d",i);fflush(ficlog);  double dateintmean=0;
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  double *weight;
         del=fabs(fptt-(*fret));  int **s; /* Status */
         ibig=i;  double *agedc;
       }  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
 #ifdef DEBUG                    * covar=matrix(0,NCOVMAX,1,n); 
       printf("%d %.12e",i,(*fret));                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
       fprintf(ficlog,"%d %.12e",i,(*fret));  double  idx; 
       for (j=1;j<=n;j++) {  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  int *Ndum; /** Freq of modality (tricode */
         printf(" x(%d)=%.12e",j,xit[j]);  int **codtab; /**< codtab=imatrix(1,100,1,10); */
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
       }  double *lsurv, *lpop, *tpop;
       for(j=1;j<=n;j++) {  
         printf(" p=%.12e",p[j]);  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
         fprintf(ficlog," p=%.12e",p[j]);  double ftolhess; /**< Tolerance for computing hessian */
       }  
       printf("\n");  /**************** split *************************/
       fprintf(ficlog,"\n");  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 #endif  {
     }    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {       the name of the file (name), its extension only (ext) and its first part of the name (finame)
 #ifdef DEBUG    */ 
       int k[2],l;    char  *ss;                            /* pointer */
       k[0]=1;    int   l1, l2;                         /* length counters */
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));    l1 = strlen(path );                   /* length of path */
       fprintf(ficlog,"Max: %.12e",(*func)(p));    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       for (j=1;j<=n;j++) {    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
         printf(" %.12e",p[j]);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
         fprintf(ficlog," %.12e",p[j]);      strcpy( name, path );               /* we got the fullname name because no directory */
       }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       printf("\n");        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       fprintf(ficlog,"\n");      /* get current working directory */
       for(l=0;l<=1;l++) {      /*    extern  char* getcwd ( char *buf , int len);*/
         for (j=1;j<=n;j++) {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];        return( GLOCK_ERROR_GETCWD );
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      }
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      /* got dirc from getcwd*/
         }      printf(" DIRC = %s \n",dirc);
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    } else {                              /* strip direcotry from path */
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      ss++;                               /* after this, the filename */
       }      l2 = strlen( ss );                  /* length of filename */
 #endif      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
       strncpy( dirc, path, l1 - l2 );     /* now the directory */
       free_vector(xit,1,n);      dirc[l1-l2] = 0;                    /* add zero */
       free_vector(xits,1,n);      printf(" DIRC2 = %s \n",dirc);
       free_vector(ptt,1,n);    }
       free_vector(pt,1,n);    /* We add a separator at the end of dirc if not exists */
       return;    l1 = strlen( dirc );                  /* length of directory */
     }    if( dirc[l1-1] != DIRSEPARATOR ){
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      dirc[l1] =  DIRSEPARATOR;
     for (j=1;j<=n;j++) {      dirc[l1+1] = 0; 
       ptt[j]=2.0*p[j]-pt[j];      printf(" DIRC3 = %s \n",dirc);
       xit[j]=p[j]-pt[j];    }
       pt[j]=p[j];    ss = strrchr( name, '.' );            /* find last / */
     }    if (ss >0){
     fptt=(*func)(ptt);      ss++;
     if (fptt < fp) {      strcpy(ext,ss);                     /* save extension */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      l1= strlen( name);
       if (t < 0.0) {      l2= strlen(ss)+1;
         linmin(p,xit,n,fret,func);      strncpy( finame, name, l1-l2);
         for (j=1;j<=n;j++) {      finame[l1-l2]= 0;
           xi[j][ibig]=xi[j][n];    }
           xi[j][n]=xit[j];  
         }    return( 0 );                          /* we're done */
 #ifdef DEBUG  }
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++){  /******************************************/
           printf(" %.12e",xit[j]);  
           fprintf(ficlog," %.12e",xit[j]);  void replace_back_to_slash(char *s, char*t)
         }  {
         printf("\n");    int i;
         fprintf(ficlog,"\n");    int lg=0;
 #endif    i=0;
       }    lg=strlen(t);
     }    for(i=0; i<= lg; i++) {
   }      (s[i] = t[i]);
 }      if (t[i]== '\\') s[i]='/';
     }
 /**** Prevalence limit ****************/  }
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  char *trimbb(char *out, char *in)
 {  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    char *s;
      matrix by transitions matrix until convergence is reached */    s=out;
     while (*in != '\0'){
   int i, ii,j,k;      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
   double min, max, maxmin, maxmax,sumnew=0.;        in++;
   double **matprod2();      }
   double **out, cov[NCOVMAX], **pmij();      *out++ = *in++;
   double **newm;    }
   double agefin, delaymax=50 ; /* Max number of years to converge */    *out='\0';
     return s;
   for (ii=1;ii<=nlstate+ndeath;ii++)  }
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  char *cutl(char *blocc, char *alocc, char *in, char occ)
     }  {
     /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
    cov[1]=1.;       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
         gives blocc="abcdef2ghi" and alocc="j".
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */       If occ is not found blocc is null and alocc is equal to in. Returns blocc
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    */
     newm=savm;    char *s, *t, *bl;
     /* Covariates have to be included here again */    t=in;s=in;
      cov[2]=agefin;    while ((*in != occ) && (*in != '\0')){
        *alocc++ = *in++;
       for (k=1; k<=cptcovn;k++) {    }
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    if( *in == occ){
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/      *(alocc)='\0';
       }      s=++in;
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    }
       for (k=1; k<=cptcovprod;k++)   
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    if (s == t) {/* occ not found */
       *(alocc-(in-s))='\0';
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      in=s;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    }
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    while ( *in != '\0'){
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      *blocc++ = *in++;
     }
     savm=oldm;  
     oldm=newm;    *blocc='\0';
     maxmax=0.;    return t;
     for(j=1;j<=nlstate;j++){  }
       min=1.;  char *cutv(char *blocc, char *alocc, char *in, char occ)
       max=0.;  {
       for(i=1; i<=nlstate; i++) {    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
         sumnew=0;       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];       gives blocc="abcdef2ghi" and alocc="j".
         prlim[i][j]= newm[i][j]/(1-sumnew);       If occ is not found blocc is null and alocc is equal to in. Returns alocc
         max=FMAX(max,prlim[i][j]);    */
         min=FMIN(min,prlim[i][j]);    char *s, *t;
       }    t=in;s=in;
       maxmin=max-min;    while (*in != '\0'){
       maxmax=FMAX(maxmax,maxmin);      while( *in == occ){
     }        *blocc++ = *in++;
     if(maxmax < ftolpl){        s=in;
       return prlim;      }
     }      *blocc++ = *in++;
   }    }
 }    if (s == t) /* occ not found */
       *(blocc-(in-s))='\0';
 /*************** transition probabilities ***************/    else
       *(blocc-(in-s)-1)='\0';
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    in=s;
 {    while ( *in != '\0'){
   double s1, s2;      *alocc++ = *in++;
   /*double t34;*/    }
   int i,j,j1, nc, ii, jj;  
     *alocc='\0';
     for(i=1; i<= nlstate; i++){    return s;
     for(j=1; j<i;j++){  }
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         /*s2 += param[i][j][nc]*cov[nc];*/  int nbocc(char *s, char occ)
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  {
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    int i,j=0;
       }    int lg=20;
       ps[i][j]=s2;    i=0;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    lg=strlen(s);
     }    for(i=0; i<= lg; i++) {
     for(j=i+1; j<=nlstate+ndeath;j++){    if  (s[i] == occ ) j++;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    }
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    return j;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  }
       }  
       ps[i][j]=s2;  /* void cutv(char *u,char *v, char*t, char occ) */
     }  /* { */
   }  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
     /*ps[3][2]=1;*/  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   /*      gives u="abcdef2ghi" and v="j" *\/ */
   for(i=1; i<= nlstate; i++){  /*   int i,lg,j,p=0; */
      s1=0;  /*   i=0; */
     for(j=1; j<i; j++)  /*   lg=strlen(t); */
       s1+=exp(ps[i][j]);  /*   for(j=0; j<=lg-1; j++) { */
     for(j=i+1; j<=nlstate+ndeath; j++)  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
       s1+=exp(ps[i][j]);  /*   } */
     ps[i][i]=1./(s1+1.);  
     for(j=1; j<i; j++)  /*   for(j=0; j<p; j++) { */
       ps[i][j]= exp(ps[i][j])*ps[i][i];  /*     (u[j] = t[j]); */
     for(j=i+1; j<=nlstate+ndeath; j++)  /*   } */
       ps[i][j]= exp(ps[i][j])*ps[i][i];  /*      u[p]='\0'; */
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  
   } /* end i */  /*    for(j=0; j<= lg; j++) { */
   /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  /*   } */
     for(jj=1; jj<= nlstate+ndeath; jj++){  /* } */
       ps[ii][jj]=0;  
       ps[ii][ii]=1;  /********************** nrerror ********************/
     }  
   }  void nrerror(char error_text[])
   {
     fprintf(stderr,"ERREUR ...\n");
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    fprintf(stderr,"%s\n",error_text);
     for(jj=1; jj<= nlstate+ndeath; jj++){    exit(EXIT_FAILURE);
      printf("%lf ",ps[ii][jj]);  }
    }  /*********************** vector *******************/
     printf("\n ");  double *vector(int nl, int nh)
     }  {
     printf("\n ");printf("%lf ",cov[2]);*/    double *v;
 /*    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    if (!v) nrerror("allocation failure in vector");
   goto end;*/    return v-nl+NR_END;
     return ps;  }
 }  
   /************************ free vector ******************/
 /**************** Product of 2 matrices ******************/  void free_vector(double*v, int nl, int nh)
   {
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    free((FREE_ARG)(v+nl-NR_END));
 {  }
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  /************************ivector *******************************/
   /* in, b, out are matrice of pointers which should have been initialized  int *ivector(long nl,long nh)
      before: only the contents of out is modified. The function returns  {
      a pointer to pointers identical to out */    int *v;
   long i, j, k;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   for(i=nrl; i<= nrh; i++)    if (!v) nrerror("allocation failure in ivector");
     for(k=ncolol; k<=ncoloh; k++)    return v-nl+NR_END;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  }
         out[i][k] +=in[i][j]*b[j][k];  
   /******************free ivector **************************/
   return out;  void free_ivector(int *v, long nl, long nh)
 }  {
     free((FREE_ARG)(v+nl-NR_END));
   }
 /************* Higher Matrix Product ***************/  
   /************************lvector *******************************/
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  long *lvector(long nl,long nh)
 {  {
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    long *v;
      duration (i.e. until    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    if (!v) nrerror("allocation failure in ivector");
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    return v-nl+NR_END;
      (typically every 2 years instead of every month which is too big).  }
      Model is determined by parameters x and covariates have to be  
      included manually here.  /******************free lvector **************************/
   void free_lvector(long *v, long nl, long nh)
      */  {
     free((FREE_ARG)(v+nl-NR_END));
   int i, j, d, h, k;  }
   double **out, cov[NCOVMAX];  
   double **newm;  /******************* imatrix *******************************/
   int **imatrix(long nrl, long nrh, long ncl, long nch) 
   /* Hstepm could be zero and should return the unit matrix */       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   for (i=1;i<=nlstate+ndeath;i++)  { 
     for (j=1;j<=nlstate+ndeath;j++){    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       oldm[i][j]=(i==j ? 1.0 : 0.0);    int **m; 
       po[i][j][0]=(i==j ? 1.0 : 0.0);    
     }    /* allocate pointers to rows */ 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   for(h=1; h <=nhstepm; h++){    if (!m) nrerror("allocation failure 1 in matrix()"); 
     for(d=1; d <=hstepm; d++){    m += NR_END; 
       newm=savm;    m -= nrl; 
       /* Covariates have to be included here again */    
       cov[1]=1.;    
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    /* allocate rows and set pointers to them */ 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       for (k=1; k<=cptcovage;k++)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    m[nrl] += NR_END; 
       for (k=1; k<=cptcovprod;k++)    m[nrl] -= ncl; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    
     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    /* return pointer to array of pointers to rows */ 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    return m; 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  } 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;  /****************** free_imatrix *************************/
       oldm=newm;  void free_imatrix(m,nrl,nrh,ncl,nch)
     }        int **m;
     for(i=1; i<=nlstate+ndeath; i++)        long nch,ncl,nrh,nrl; 
       for(j=1;j<=nlstate+ndeath;j++) {       /* free an int matrix allocated by imatrix() */ 
         po[i][j][h]=newm[i][j];  { 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
          */    free((FREE_ARG) (m+nrl-NR_END)); 
       }  } 
   } /* end h */  
   return po;  /******************* matrix *******************************/
 }  double **matrix(long nrl, long nrh, long ncl, long nch)
   {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 /*************** log-likelihood *************/    double **m;
 double func( double *x)  
 {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   int i, ii, j, k, mi, d, kk;    if (!m) nrerror("allocation failure 1 in matrix()");
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    m += NR_END;
   double **out;    m -= nrl;
   double sw; /* Sum of weights */  
   double lli; /* Individual log likelihood */    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   long ipmx;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   /*extern weight */    m[nrl] += NR_END;
   /* We are differentiating ll according to initial status */    m[nrl] -= ncl;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  
   /*for(i=1;i<imx;i++)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     printf(" %d\n",s[4][i]);    return m;
   */    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
   cov[1]=1.;  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
   that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
   for(k=1; k<=nlstate; k++) ll[k]=0.;     */
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  }
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
     for(mi=1; mi<= wav[i]-1; mi++){  /*************************free matrix ************************/
       for (ii=1;ii<=nlstate+ndeath;ii++)  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  {
       for(d=0; d<dh[mi][i]; d++){    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         newm=savm;    free((FREE_ARG)(m+nrl-NR_END));
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  }
         for (kk=1; kk<=cptcovage;kk++) {  
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  /******************* ma3x *******************************/
         }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
          {
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    double ***m;
         savm=oldm;  
         oldm=newm;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
            if (!m) nrerror("allocation failure 1 in matrix()");
            m += NR_END;
       } /* end mult */    m -= nrl;
        
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       ipmx +=1;    m[nrl] += NR_END;
       sw += weight[i];    m[nrl] -= ncl;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
     } /* end of wave */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   } /* end of individual */  
     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    m[nrl][ncl] += NR_END;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    m[nrl][ncl] -= nll;
   return -l;    for (j=ncl+1; j<=nch; j++) 
 }      m[nrl][j]=m[nrl][j-1]+nlay;
     
     for (i=nrl+1; i<=nrh; i++) {
 /*********** Maximum Likelihood Estimation ***************/      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (j=ncl+1; j<=nch; j++) 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        m[i][j]=m[i][j-1]+nlay;
 {    }
   int i,j, iter;    return m; 
   double **xi,*delti;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   double fret;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   xi=matrix(1,npar,1,npar);    */
   for (i=1;i<=npar;i++)  }
     for (j=1;j<=npar;j++)  
       xi[i][j]=(i==j ? 1.0 : 0.0);  /*************************free ma3x ************************/
   printf("Powell\n");  fprintf(ficlog,"Powell\n");  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   powell(p,xi,npar,ftol,&iter,&fret,func);  {
     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    free((FREE_ARG)(m+nrl-NR_END));
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  }
   
 }  /*************** function subdirf ***********/
   char *subdirf(char fileres[])
 /**** Computes Hessian and covariance matrix ***/  {
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    /* Caution optionfilefiname is hidden */
 {    strcpy(tmpout,optionfilefiname);
   double  **a,**y,*x,pd;    strcat(tmpout,"/"); /* Add to the right */
   double **hess;    strcat(tmpout,fileres);
   int i, j,jk;    return tmpout;
   int *indx;  }
   
   double hessii(double p[], double delta, int theta, double delti[]);  /*************** function subdirf2 ***********/
   double hessij(double p[], double delti[], int i, int j);  char *subdirf2(char fileres[], char *preop)
   void lubksb(double **a, int npar, int *indx, double b[]) ;  {
   void ludcmp(double **a, int npar, int *indx, double *d) ;    
     /* Caution optionfilefiname is hidden */
   hess=matrix(1,npar,1,npar);    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
   printf("\nCalculation of the hessian matrix. Wait...\n");    strcat(tmpout,preop);
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    strcat(tmpout,fileres);
   for (i=1;i<=npar;i++){    return tmpout;
     printf("%d",i);fflush(stdout);  }
     fprintf(ficlog,"%d",i);fflush(ficlog);  
     hess[i][i]=hessii(p,ftolhess,i,delti);  /*************** function subdirf3 ***********/
     /*printf(" %f ",p[i]);*/  char *subdirf3(char fileres[], char *preop, char *preop2)
     /*printf(" %lf ",hess[i][i]);*/  {
   }    
      /* Caution optionfilefiname is hidden */
   for (i=1;i<=npar;i++) {    strcpy(tmpout,optionfilefiname);
     for (j=1;j<=npar;j++)  {    strcat(tmpout,"/");
       if (j>i) {    strcat(tmpout,preop);
         printf(".%d%d",i,j);fflush(stdout);    strcat(tmpout,preop2);
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);    strcat(tmpout,fileres);
         hess[i][j]=hessij(p,delti,i,j);    return tmpout;
         hess[j][i]=hess[i][j];      }
         /*printf(" %lf ",hess[i][j]);*/  
       }  /***************** f1dim *************************/
     }  extern int ncom; 
   }  extern double *pcom,*xicom;
   printf("\n");  extern double (*nrfunc)(double []); 
   fprintf(ficlog,"\n");   
   double f1dim(double x) 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  { 
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");    int j; 
      double f;
   a=matrix(1,npar,1,npar);    double *xt; 
   y=matrix(1,npar,1,npar);   
   x=vector(1,npar);    xt=vector(1,ncom); 
   indx=ivector(1,npar);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   for (i=1;i<=npar;i++)    f=(*nrfunc)(xt); 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    free_vector(xt,1,ncom); 
   ludcmp(a,npar,indx,&pd);    return f; 
   } 
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;  /*****************brent *************************/
     x[j]=1;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     lubksb(a,npar,indx,x);  { 
     for (i=1;i<=npar;i++){    int iter; 
       matcov[i][j]=x[i];    double a,b,d,etemp;
     }    double fu,fv,fw,fx;
   }    double ftemp;
     double p,q,r,tol1,tol2,u,v,w,x,xm; 
   printf("\n#Hessian matrix#\n");    double e=0.0; 
   fprintf(ficlog,"\n#Hessian matrix#\n");   
   for (i=1;i<=npar;i++) {    a=(ax < cx ? ax : cx); 
     for (j=1;j<=npar;j++) {    b=(ax > cx ? ax : cx); 
       printf("%.3e ",hess[i][j]);    x=w=v=bx; 
       fprintf(ficlog,"%.3e ",hess[i][j]);    fw=fv=fx=(*f)(x); 
     }    for (iter=1;iter<=ITMAX;iter++) { 
     printf("\n");      xm=0.5*(a+b); 
     fprintf(ficlog,"\n");      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(".");fflush(stdout);
   /* Recompute Inverse */      fprintf(ficlog,".");fflush(ficlog);
   for (i=1;i<=npar;i++)  #ifdef DEBUG
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   ludcmp(a,npar,indx,&pd);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   /*  printf("\n#Hessian matrix recomputed#\n");  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   for (j=1;j<=npar;j++) {        *xmin=x; 
     for (i=1;i<=npar;i++) x[i]=0;        return fx; 
     x[j]=1;      } 
     lubksb(a,npar,indx,x);      ftemp=fu;
     for (i=1;i<=npar;i++){      if (fabs(e) > tol1) { 
       y[i][j]=x[i];        r=(x-w)*(fx-fv); 
       printf("%.3e ",y[i][j]);        q=(x-v)*(fx-fw); 
       fprintf(ficlog,"%.3e ",y[i][j]);        p=(x-v)*q-(x-w)*r; 
     }        q=2.0*(q-r); 
     printf("\n");        if (q > 0.0) p = -p; 
     fprintf(ficlog,"\n");        q=fabs(q); 
   }        etemp=e; 
   */        e=d; 
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   free_matrix(a,1,npar,1,npar);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   free_matrix(y,1,npar,1,npar);        else { 
   free_vector(x,1,npar);          d=p/q; 
   free_ivector(indx,1,npar);          u=x+d; 
   free_matrix(hess,1,npar,1,npar);          if (u-a < tol2 || b-u < tol2) 
             d=SIGN(tol1,xm-x); 
         } 
 }      } else { 
         d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 /*************** hessian matrix ****************/      } 
 double hessii( double x[], double delta, int theta, double delti[])      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 {      fu=(*f)(u); 
   int i;      if (fu <= fx) { 
   int l=1, lmax=20;        if (u >= x) a=x; else b=x; 
   double k1,k2;        SHFT(v,w,x,u) 
   double p2[NPARMAX+1];          SHFT(fv,fw,fx,fu) 
   double res;          } else { 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;            if (u < x) a=u; else b=u; 
   double fx;            if (fu <= fw || w == x) { 
   int k=0,kmax=10;              v=w; 
   double l1;              w=u; 
               fv=fw; 
   fx=func(x);              fw=fu; 
   for (i=1;i<=npar;i++) p2[i]=x[i];            } else if (fu <= fv || v == x || v == w) { 
   for(l=0 ; l <=lmax; l++){              v=u; 
     l1=pow(10,l);              fv=fu; 
     delts=delt;            } 
     for(k=1 ; k <kmax; k=k+1){          } 
       delt = delta*(l1*k);    } 
       p2[theta]=x[theta] +delt;    nrerror("Too many iterations in brent"); 
       k1=func(p2)-fx;    *xmin=x; 
       p2[theta]=x[theta]-delt;    return fx; 
       k2=func(p2)-fx;  } 
       /*res= (k1-2.0*fx+k2)/delt/delt; */  
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  /****************** mnbrak ***********************/
        
 #ifdef DEBUG  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);              double (*func)(double)) 
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  { 
 #endif    double ulim,u,r,q, dum;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    double fu; 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){   
         k=kmax;    *fa=(*func)(*ax); 
       }    *fb=(*func)(*bx); 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    if (*fb > *fa) { 
         k=kmax; l=lmax*10.;      SHFT(dum,*ax,*bx,dum) 
       }        SHFT(dum,*fb,*fa,dum) 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        } 
         delts=delt;    *cx=(*bx)+GOLD*(*bx-*ax); 
       }    *fc=(*func)(*cx); 
     }    while (*fb > *fc) { 
   }      r=(*bx-*ax)*(*fb-*fc); 
   delti[theta]=delts;      q=(*bx-*cx)*(*fb-*fa); 
   return res;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
          (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 }      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       if ((*bx-u)*(u-*cx) > 0.0) { 
 double hessij( double x[], double delti[], int thetai,int thetaj)        fu=(*func)(u); 
 {      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   int i;        fu=(*func)(u); 
   int l=1, l1, lmax=20;        if (fu < *fc) { 
   double k1,k2,k3,k4,res,fx;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   double p2[NPARMAX+1];            SHFT(*fb,*fc,fu,(*func)(u)) 
   int k;            } 
       } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   fx=func(x);        u=ulim; 
   for (k=1; k<=2; k++) {        fu=(*func)(u); 
     for (i=1;i<=npar;i++) p2[i]=x[i];      } else { 
     p2[thetai]=x[thetai]+delti[thetai]/k;        u=(*cx)+GOLD*(*cx-*bx); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        fu=(*func)(u); 
     k1=func(p2)-fx;      } 
        SHFT(*ax,*bx,*cx,u) 
     p2[thetai]=x[thetai]+delti[thetai]/k;        SHFT(*fa,*fb,*fc,fu) 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        } 
     k2=func(p2)-fx;  } 
    
     p2[thetai]=x[thetai]-delti[thetai]/k;  /*************** linmin ************************/
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k3=func(p2)-fx;  int ncom; 
    double *pcom,*xicom;
     p2[thetai]=x[thetai]-delti[thetai]/k;  double (*nrfunc)(double []); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;   
     k4=func(p2)-fx;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  { 
 #ifdef DEBUG    double brent(double ax, double bx, double cx, 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);                 double (*f)(double), double tol, double *xmin); 
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    double f1dim(double x); 
 #endif    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   }                double *fc, double (*func)(double)); 
   return res;    int j; 
 }    double xx,xmin,bx,ax; 
     double fx,fb,fa;
 /************** Inverse of matrix **************/   
 void ludcmp(double **a, int n, int *indx, double *d)    ncom=n; 
 {    pcom=vector(1,n); 
   int i,imax,j,k;    xicom=vector(1,n); 
   double big,dum,sum,temp;    nrfunc=func; 
   double *vv;    for (j=1;j<=n;j++) { 
        pcom[j]=p[j]; 
   vv=vector(1,n);      xicom[j]=xi[j]; 
   *d=1.0;    } 
   for (i=1;i<=n;i++) {    ax=0.0; 
     big=0.0;    xx=1.0; 
     for (j=1;j<=n;j++)    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       if ((temp=fabs(a[i][j])) > big) big=temp;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  #ifdef DEBUG
     vv[i]=1.0/big;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   for (j=1;j<=n;j++) {  #endif
     for (i=1;i<j;i++) {    for (j=1;j<=n;j++) { 
       sum=a[i][j];      xi[j] *= xmin; 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      p[j] += xi[j]; 
       a[i][j]=sum;    } 
     }    free_vector(xicom,1,n); 
     big=0.0;    free_vector(pcom,1,n); 
     for (i=j;i<=n;i++) {  } 
       sum=a[i][j];  
       for (k=1;k<j;k++)  char *asc_diff_time(long time_sec, char ascdiff[])
         sum -= a[i][k]*a[k][j];  {
       a[i][j]=sum;    long sec_left, days, hours, minutes;
       if ( (dum=vv[i]*fabs(sum)) >= big) {    days = (time_sec) / (60*60*24);
         big=dum;    sec_left = (time_sec) % (60*60*24);
         imax=i;    hours = (sec_left) / (60*60) ;
       }    sec_left = (sec_left) %(60*60);
     }    minutes = (sec_left) /60;
     if (j != imax) {    sec_left = (sec_left) % (60);
       for (k=1;k<=n;k++) {    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
         dum=a[imax][k];    return ascdiff;
         a[imax][k]=a[j][k];  }
         a[j][k]=dum;  
       }  /*************** powell ************************/
       *d = -(*d);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       vv[imax]=vv[j];              double (*func)(double [])) 
     }  { 
     indx[j]=imax;    void linmin(double p[], double xi[], int n, double *fret, 
     if (a[j][j] == 0.0) a[j][j]=TINY;                double (*func)(double [])); 
     if (j != n) {    int i,ibig,j; 
       dum=1.0/(a[j][j]);    double del,t,*pt,*ptt,*xit;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    double fp,fptt;
     }    double *xits;
   }    int niterf, itmp;
   free_vector(vv,1,n);  /* Doesn't work */  
 ;    pt=vector(1,n); 
 }    ptt=vector(1,n); 
     xit=vector(1,n); 
 void lubksb(double **a, int n, int *indx, double b[])    xits=vector(1,n); 
 {    *fret=(*func)(p); 
   int i,ii=0,ip,j;    for (j=1;j<=n;j++) pt[j]=p[j]; 
   double sum;    for (*iter=1;;++(*iter)) { 
        fp=(*fret); 
   for (i=1;i<=n;i++) {      ibig=0; 
     ip=indx[i];      del=0.0; 
     sum=b[ip];      last_time=curr_time;
     b[ip]=b[i];      (void) gettimeofday(&curr_time,&tzp);
     if (ii)      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
     else if (sum) ii=i;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
     b[i]=sum;     for (i=1;i<=n;i++) {
   }        printf(" %d %.12f",i, p[i]);
   for (i=n;i>=1;i--) {        fprintf(ficlog," %d %.12lf",i, p[i]);
     sum=b[i];        fprintf(ficrespow," %.12lf", p[i]);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      }
     b[i]=sum/a[i][i];      printf("\n");
   }      fprintf(ficlog,"\n");
 }      fprintf(ficrespow,"\n");fflush(ficrespow);
       if(*iter <=3){
 /************ Frequencies ********************/        tm = *localtime(&curr_time.tv_sec);
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        strcpy(strcurr,asctime(&tm));
 {  /* Some frequencies */  /*       asctime_r(&tm,strcurr); */
          forecast_time=curr_time; 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        itmp = strlen(strcurr);
   int first;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   double ***freq; /* Frequencies */          strcurr[itmp-1]='\0';
   double *pp;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   double pos, k2, dateintsum=0,k2cpt=0;        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   FILE *ficresp;        for(niterf=10;niterf<=30;niterf+=10){
   char fileresp[FILENAMELENGTH];          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
            tmf = *localtime(&forecast_time.tv_sec);
   pp=vector(1,nlstate);  /*      asctime_r(&tmf,strfor); */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          strcpy(strfor,asctime(&tmf));
   strcpy(fileresp,"p");          itmp = strlen(strfor);
   strcat(fileresp,fileres);          if(strfor[itmp-1]=='\n')
   if((ficresp=fopen(fileresp,"w"))==NULL) {          strfor[itmp-1]='\0';
     printf("Problem with prevalence resultfile: %s\n", fileresp);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     exit(0);        }
   }      }
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      for (i=1;i<=n;i++) { 
   j1=0;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
          fptt=(*fret); 
   j=cptcoveff;  #ifdef DEBUG
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
   first=1;  #endif
         printf("%d",i);fflush(stdout);
   for(k1=1; k1<=j;k1++){        fprintf(ficlog,"%d",i);fflush(ficlog);
     for(i1=1; i1<=ncodemax[k1];i1++){        linmin(p,xit,n,fret,func); 
       j1++;        if (fabs(fptt-(*fret)) > del) { 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          del=fabs(fptt-(*fret)); 
         scanf("%d", i);*/          ibig=i; 
       for (i=-1; i<=nlstate+ndeath; i++)          } 
         for (jk=-1; jk<=nlstate+ndeath; jk++)    #ifdef DEBUG
           for(m=agemin; m <= agemax+3; m++)        printf("%d %.12e",i,(*fret));
             freq[i][jk][m]=0;        fprintf(ficlog,"%d %.12e",i,(*fret));
              for (j=1;j<=n;j++) {
       dateintsum=0;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       k2cpt=0;          printf(" x(%d)=%.12e",j,xit[j]);
       for (i=1; i<=imx; i++) {          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         bool=1;        }
         if  (cptcovn>0) {        for(j=1;j<=n;j++) {
           for (z1=1; z1<=cptcoveff; z1++)          printf(" p=%.12e",p[j]);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          fprintf(ficlog," p=%.12e",p[j]);
               bool=0;        }
         }        printf("\n");
         if (bool==1) {        fprintf(ficlog,"\n");
           for(m=firstpass; m<=lastpass; m++){  #endif
             k2=anint[m][i]+(mint[m][i]/12.);      } 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
               if(agev[m][i]==0) agev[m][i]=agemax+1;  #ifdef DEBUG
               if(agev[m][i]==1) agev[m][i]=agemax+2;        int k[2],l;
               if (m<lastpass) {        k[0]=1;
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        k[1]=-1;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        printf("Max: %.12e",(*func)(p));
               }        fprintf(ficlog,"Max: %.12e",(*func)(p));
                      for (j=1;j<=n;j++) {
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {          printf(" %.12e",p[j]);
                 dateintsum=dateintsum+k2;          fprintf(ficlog," %.12e",p[j]);
                 k2cpt++;        }
               }        printf("\n");
             }        fprintf(ficlog,"\n");
           }        for(l=0;l<=1;l++) {
         }          for (j=1;j<=n;j++) {
       }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
                    printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }
       if  (cptcovn>0) {          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         fprintf(ficresp, "\n#********** Variable ");          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        }
         fprintf(ficresp, "**********\n#");  #endif
       }  
       for(i=1; i<=nlstate;i++)  
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        free_vector(xit,1,n); 
       fprintf(ficresp, "\n");        free_vector(xits,1,n); 
              free_vector(ptt,1,n); 
       for(i=(int)agemin; i <= (int)agemax+3; i++){        free_vector(pt,1,n); 
         if(i==(int)agemax+3){        return; 
           fprintf(ficlog,"Total");      } 
         }else{      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
           if(first==1){      for (j=1;j<=n;j++) { 
             first=0;        ptt[j]=2.0*p[j]-pt[j]; 
             printf("See log file for details...\n");        xit[j]=p[j]-pt[j]; 
           }        pt[j]=p[j]; 
           fprintf(ficlog,"Age %d", i);      } 
         }      fptt=(*func)(ptt); 
         for(jk=1; jk <=nlstate ; jk++){      if (fptt < fp) { 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
             pp[jk] += freq[jk][m][i];        if (t < 0.0) { 
         }          linmin(p,xit,n,fret,func); 
         for(jk=1; jk <=nlstate ; jk++){          for (j=1;j<=n;j++) { 
           for(m=-1, pos=0; m <=0 ; m++)            xi[j][ibig]=xi[j][n]; 
             pos += freq[jk][m][i];            xi[j][n]=xit[j]; 
           if(pp[jk]>=1.e-10){          }
             if(first==1){  #ifdef DEBUG
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
             }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          for(j=1;j<=n;j++){
           }else{            printf(" %.12e",xit[j]);
             if(first==1)            fprintf(ficlog," %.12e",xit[j]);
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          }
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          printf("\n");
           }          fprintf(ficlog,"\n");
         }  #endif
         }
         for(jk=1; jk <=nlstate ; jk++){      } 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    } 
             pp[jk] += freq[jk][m][i];  } 
         }  
   /**** Prevalence limit (stable or period prevalence)  ****************/
         for(jk=1,pos=0; jk <=nlstate ; jk++)  
           pos += pp[jk];  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
         for(jk=1; jk <=nlstate ; jk++){  {
           if(pos>=1.e-5){    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
             if(first==1)       matrix by transitions matrix until convergence is reached */
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    int i, ii,j,k;
           }else{    double min, max, maxmin, maxmax,sumnew=0.;
             if(first==1)    /* double **matprod2(); */ /* test */
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    double **out, cov[NCOVMAX+1], **pmij();
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    double **newm;
           }    double agefin, delaymax=50 ; /* Max number of years to converge */
           if( i <= (int) agemax){  
             if(pos>=1.e-5){    for (ii=1;ii<=nlstate+ndeath;ii++)
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      for (j=1;j<=nlstate+ndeath;j++){
               probs[i][jk][j1]= pp[jk]/pos;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      }
             }  
             else     cov[1]=1.;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);   
           }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
              newm=savm;
         for(jk=-1; jk <=nlstate+ndeath; jk++)      /* Covariates have to be included here again */
           for(m=-1; m <=nlstate+ndeath; m++)      cov[2]=agefin;
             if(freq[jk][m][i] !=0 ) {      
             if(first==1)      for (k=1; k<=cptcovn;k++) {
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
             }      }
         if(i <= (int) agemax)      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           fprintf(ficresp,"\n");      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
         if(first==1)      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
           printf("Others in log...\n");      
         fprintf(ficlog,"\n");      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       }      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     }      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   }      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   dateintmean=dateintsum/k2cpt;      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
        out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
   fclose(ficresp);      
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      savm=oldm;
   free_vector(pp,1,nlstate);      oldm=newm;
        maxmax=0.;
   /* End of Freq */      for(j=1;j<=nlstate;j++){
 }        min=1.;
         max=0.;
 /************ Prevalence ********************/        for(i=1; i<=nlstate; i++) {
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          sumnew=0;
 {  /* Some frequencies */          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
            prlim[i][j]= newm[i][j]/(1-sumnew);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
   double ***freq; /* Frequencies */          max=FMAX(max,prlim[i][j]);
   double *pp;          min=FMIN(min,prlim[i][j]);
   double pos, k2;        }
         maxmin=max-min;
   pp=vector(1,nlstate);        maxmax=FMAX(maxmax,maxmin);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      }
        if(maxmax < ftolpl){
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        return prlim;
   j1=0;      }
      }
   j=cptcoveff;  }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
    /*************** transition probabilities ***************/ 
   for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       j1++;  {
          /* According to parameters values stored in x and the covariate's values stored in cov,
       for (i=-1; i<=nlstate+ndeath; i++)         computes the probability to be observed in state j being in state i by appying the
         for (jk=-1; jk<=nlstate+ndeath; jk++)         model to the ncovmodel covariates (including constant and age).
           for(m=agemin; m <= agemax+3; m++)       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
             freq[i][jk][m]=0;       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
             ncth covariate in the global vector x is given by the formula:
       for (i=1; i<=imx; i++) {       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
         bool=1;       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
         if  (cptcovn>0) {       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
           for (z1=1; z1<=cptcoveff; z1++)       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])       Outputs ps[i][j] the probability to be observed in j being in j according to
               bool=0;       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
         }    */
         if (bool==1) {    double s1, lnpijopii;
           for(m=firstpass; m<=lastpass; m++){    /*double t34;*/
             k2=anint[m][i]+(mint[m][i]/12.);    int i,j,j1, nc, ii, jj;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  
               if(agev[m][i]==0) agev[m][i]=agemax+1;      for(i=1; i<= nlstate; i++){
               if(agev[m][i]==1) agev[m][i]=agemax+2;        for(j=1; j<i;j++){
               if (m<lastpass) {          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                 if (calagedate>0)            /*lnpijopii += param[i][j][nc]*cov[nc];*/
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
                 else  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          }
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
               }  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
             }        }
           }        for(j=i+1; j<=nlstate+ndeath;j++){
         }          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
       }            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
       for(i=(int)agemin; i <= (int)agemax+3; i++){            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
         for(jk=1; jk <=nlstate ; jk++){  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          }
             pp[jk] += freq[jk][m][i];          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         }        }
         for(jk=1; jk <=nlstate ; jk++){      }
           for(m=-1, pos=0; m <=0 ; m++)      
             pos += freq[jk][m][i];      for(i=1; i<= nlstate; i++){
         }        s1=0;
                for(j=1; j<i; j++){
         for(jk=1; jk <=nlstate ; jk++){          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
             pp[jk] += freq[jk][m][i];        }
         }        for(j=i+1; j<=nlstate+ndeath; j++){
                  s1+=exp(ps[i][j]); /* In fact sums pij/pii */
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
                }
         for(jk=1; jk <=nlstate ; jk++){            /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
           if( i <= (int) agemax){        ps[i][i]=1./(s1+1.);
             if(pos>=1.e-5){        /* Computing other pijs */
               probs[i][jk][j1]= pp[jk]/pos;        for(j=1; j<i; j++)
             }          ps[i][j]= exp(ps[i][j])*ps[i][i];
           }        for(j=i+1; j<=nlstate+ndeath; j++)
         }/* end jk */          ps[i][j]= exp(ps[i][j])*ps[i][i];
       }/* end i */        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     } /* end i1 */      } /* end i */
   } /* end k1 */      
       for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
          for(jj=1; jj<= nlstate+ndeath; jj++){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          ps[ii][jj]=0;
   free_vector(pp,1,nlstate);          ps[ii][ii]=1;
          }
 }  /* End of Freq */      }
       
 /************* Waves Concatenation ***************/      
       /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
 {      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      /*   } */
      Death is a valid wave (if date is known).      /*   printf("\n "); */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      /* } */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      /* printf("\n ");printf("%lf ",cov[2]);*/
      and mw[mi+1][i]. dh depends on stepm.      /*
      */        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         goto end;*/
   int i, mi, m;      return ps;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  }
      double sum=0., jmean=0.;*/  
   int first;  /**************** Product of 2 matrices ******************/
   int j, k=0,jk, ju, jl;  
   double sum=0.;  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
   first=0;  {
   jmin=1e+5;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   jmax=-1;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   jmean=0.;    /* in, b, out are matrice of pointers which should have been initialized 
   for(i=1; i<=imx; i++){       before: only the contents of out is modified. The function returns
     mi=0;       a pointer to pointers identical to out */
     m=firstpass;    int i, j, k;
     while(s[m][i] <= nlstate){    for(i=nrl; i<= nrh; i++)
       if(s[m][i]>=1)      for(k=ncolol; k<=ncoloh; k++){
         mw[++mi][i]=m;        out[i][k]=0.;
       if(m >=lastpass)        for(j=ncl; j<=nch; j++)
         break;          out[i][k] +=in[i][j]*b[j][k];
       else      }
         m++;    return out;
     }/* end while */  }
     if (s[m][i] > nlstate){  
       mi++;     /* Death is another wave */  
       /* if(mi==0)  never been interviewed correctly before death */  /************* Higher Matrix Product ***************/
          /* Only death is a correct wave */  
       mw[mi][i]=m;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     }  {
     /* Computes the transition matrix starting at age 'age' over 
     wav[i]=mi;       'nhstepm*hstepm*stepm' months (i.e. until
     if(mi==0){       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       if(first==0){       nhstepm*hstepm matrices. 
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
         first=1;       (typically every 2 years instead of every month which is too big 
       }       for the memory).
       if(first==1){       Model is determined by parameters x and covariates have to be 
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);       included manually here. 
       }  
     } /* end mi==0 */       */
   }  
     int i, j, d, h, k;
   for(i=1; i<=imx; i++){    double **out, cov[NCOVMAX+1];
     for(mi=1; mi<wav[i];mi++){    double **newm;
       if (stepm <=0)  
         dh[mi][i]=1;    /* Hstepm could be zero and should return the unit matrix */
       else{    for (i=1;i<=nlstate+ndeath;i++)
         if (s[mw[mi+1][i]][i] > nlstate) {      for (j=1;j<=nlstate+ndeath;j++){
           if (agedc[i] < 2*AGESUP) {        oldm[i][j]=(i==j ? 1.0 : 0.0);
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        po[i][j][0]=(i==j ? 1.0 : 0.0);
           if(j==0) j=1;  /* Survives at least one month after exam */      }
           k=k+1;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           if (j >= jmax) jmax=j;    for(h=1; h <=nhstepm; h++){
           if (j <= jmin) jmin=j;      for(d=1; d <=hstepm; d++){
           sum=sum+j;        newm=savm;
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        /* Covariates have to be included here again */
           }        cov[1]=1.;
         }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         else{        for (k=1; k<=cptcovn;k++) 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           k=k+1;        for (k=1; k<=cptcovage;k++)
           if (j >= jmax) jmax=j;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           else if (j <= jmin)jmin=j;        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           sum=sum+j;  
         }  
         jk= j/stepm;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         jl= j -jk*stepm;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         ju= j -(jk+1)*stepm;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         if(jl <= -ju)                     pmij(pmmij,cov,ncovmodel,x,nlstate));
           dh[mi][i]=jk;        savm=oldm;
         else        oldm=newm;
           dh[mi][i]=jk+1;      }
         if(dh[mi][i]==0)      for(i=1; i<=nlstate+ndeath; i++)
           dh[mi][i]=1; /* At least one step */        for(j=1;j<=nlstate+ndeath;j++) {
       }          po[i][j][h]=newm[i][j];
     }          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   }        }
   jmean=sum/k;      /*printf("h=%d ",h);*/
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    } /* end h */
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  /*     printf("\n H=%d \n",h); */
  }    return po;
   }
 /*********** Tricode ****************************/  
 void tricode(int *Tvar, int **nbcode, int imx)  
 {  /*************** log-likelihood *************/
   int Ndum[20],ij=1, k, j, i;  double func( double *x)
   int cptcode=0;  {
   cptcoveff=0;    int i, ii, j, k, mi, d, kk;
      double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   for (k=0; k<19; k++) Ndum[k]=0;    double **out;
   for (k=1; k<=7; k++) ncodemax[k]=0;    double sw; /* Sum of weights */
     double lli; /* Individual log likelihood */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    int s1, s2;
     for (i=1; i<=imx; i++) {    double bbh, survp;
       ij=(int)(covar[Tvar[j]][i]);    long ipmx;
       Ndum[ij]++;    /*extern weight */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    /* We are differentiating ll according to initial status */
       if (ij > cptcode) cptcode=ij;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     }    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
     for (i=0; i<=cptcode; i++) {    */
       if(Ndum[i]!=0) ncodemax[j]++;    cov[1]=1.;
     }  
     ij=1;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
     if(mle==1){
     for (i=1; i<=ncodemax[j]; i++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=0; k<=19; k++) {        /* Computes the values of the ncovmodel covariates of the model
         if (Ndum[k] != 0) {           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
           nbcode[Tvar[j]][ij]=k;           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
                     to be observed in j being in i according to the model.
           ij++;         */
         }        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
         if (ij > ncodemax[j]) break;          cov[2+k]=covar[Tvar[k]][i];
       }          }
     }        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
   }             is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
            has been calculated etc */
  for (k=0; k<19; k++) Ndum[k]=0;        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
  for (i=1; i<=ncovmodel-2; i++) {            for (j=1;j<=nlstate+ndeath;j++){
    ij=Tvar[i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
    Ndum[ij]++;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
  }            }
           for(d=0; d<dh[mi][i]; d++){
  ij=1;            newm=savm;
  for (i=1; i<=10; i++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
    if((Ndum[i]!=0) && (i<=ncovcol)){            for (kk=1; kk<=cptcovage;kk++) {
      Tvaraff[ij]=i;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
      ij++;            }
    }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
  }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
  cptcoveff=ij-1;            oldm=newm;
 }          } /* end mult */
         
 /*********** Health Expectancies ****************/          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias at large stepm.
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )           * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
 {           * the nearest (and in case of equal distance, to the lowest) interval but now
   /* Health expectancies */           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   double age, agelim, hf;           * probability in order to take into account the bias as a fraction of the way
   double ***p3mat,***varhe;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   double **dnewm,**doldm;           * -stepm/2 to stepm/2 .
   double *xp;           * For stepm=1 the results are the same as for previous versions of Imach.
   double **gp, **gm;           * For stepm > 1 the results are less biased than in previous versions. 
   double ***gradg, ***trgradg;           */
   int theta;          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);          bbh=(double)bh[mi][i]/(double)stepm; 
   xp=vector(1,npar);          /* bias bh is positive if real duration
   dnewm=matrix(1,nlstate*2,1,npar);           * is higher than the multiple of stepm and negative otherwise.
   doldm=matrix(1,nlstate*2,1,nlstate*2);           */
            /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   fprintf(ficreseij,"# Health expectancies\n");          if( s2 > nlstate){ 
   fprintf(ficreseij,"# Age");            /* i.e. if s2 is a death state and if the date of death is known 
   for(i=1; i<=nlstate;i++)               then the contribution to the likelihood is the probability to 
     for(j=1; j<=nlstate;j++)               die between last step unit time and current  step unit time, 
       fprintf(ficreseij," %1d-%1d (SE)",i,j);               which is also equal to probability to die before dh 
   fprintf(ficreseij,"\n");               minus probability to die before dh-stepm . 
                In version up to 0.92 likelihood was computed
   if(estepm < stepm){          as if date of death was unknown. Death was treated as any other
     printf ("Problem %d lower than %d\n",estepm, stepm);          health state: the date of the interview describes the actual state
   }          and not the date of a change in health state. The former idea was
   else  hstepm=estepm;            to consider that at each interview the state was recorded
   /* We compute the life expectancy from trapezoids spaced every estepm months          (healthy, disable or death) and IMaCh was corrected; but when we
    * This is mainly to measure the difference between two models: for example          introduced the exact date of death then we should have modified
    * if stepm=24 months pijx are given only every 2 years and by summing them          the contribution of an exact death to the likelihood. This new
    * we are calculating an estimate of the Life Expectancy assuming a linear          contribution is smaller and very dependent of the step unit
    * progression inbetween and thus overestimating or underestimating according          stepm. It is no more the probability to die between last interview
    * to the curvature of the survival function. If, for the same date, we          and month of death but the probability to survive from last
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          interview up to one month before death multiplied by the
    * to compare the new estimate of Life expectancy with the same linear          probability to die within a month. Thanks to Chris
    * hypothesis. A more precise result, taking into account a more precise          Jackson for correcting this bug.  Former versions increased
    * curvature will be obtained if estepm is as small as stepm. */          mortality artificially. The bad side is that we add another loop
           which slows down the processing. The difference can be up to 10%
   /* For example we decided to compute the life expectancy with the smallest unit */          lower mortality.
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.            */
      nhstepm is the number of hstepm from age to agelim            lli=log(out[s1][s2] - savm[s1][s2]);
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like estepm months */          } else if  (s2==-2) {
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            for (j=1,survp=0. ; j<=nlstate; j++) 
      survival function given by stepm (the optimization length). Unfortunately it              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      means that if the survival funtion is printed only each two years of age and if            /*survp += out[s1][j]; */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same            lli= log(survp);
      results. So we changed our mind and took the option of the best precision.          }
   */          
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          else if  (s2==-4) { 
             for (j=3,survp=0. ; j<=nlstate; j++)  
   agelim=AGESUP;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            lli= log(survp); 
     /* nhstepm age range expressed in number of stepm */          } 
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          else if  (s2==-5) { 
     /* if (stepm >= YEARM) hstepm=1;*/            for (j=1,survp=0. ; j<=2; j++)  
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            lli= log(survp); 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);          } 
     gp=matrix(0,nhstepm,1,nlstate*2);          
     gm=matrix(0,nhstepm,1,nlstate*2);          else{
             lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          } 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
            /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          ipmx +=1;
           sw += weight[i];
     /* Computing Variances of health expectancies */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
      for(theta=1; theta <=npar; theta++){      } /* end of individual */
       for(i=1; i<=npar; i++){    }  else if(mle==2){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
       cptj=0;            for (j=1;j<=nlstate+ndeath;j++){
       for(j=1; j<= nlstate; j++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         for(i=1; i<=nlstate; i++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           cptj=cptj+1;            }
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){          for(d=0; d<=dh[mi][i]; d++){
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;            newm=savm;
           }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                  }
                  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(i=1; i<=npar; i++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            savm=oldm;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              oldm=newm;
                } /* end mult */
       cptj=0;        
       for(j=1; j<= nlstate; j++){          s1=s[mw[mi][i]][i];
         for(i=1;i<=nlstate;i++){          s2=s[mw[mi+1][i]][i];
           cptj=cptj+1;          bbh=(double)bh[mi][i]/(double)stepm; 
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          ipmx +=1;
           }          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }        } /* end of wave */
       for(j=1; j<= nlstate*2; j++)      } /* end of individual */
         for(h=0; h<=nhstepm-1; h++){    }  else if(mle==3){  /* exponential inter-extrapolation */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
      }        for(mi=1; mi<= wav[i]-1; mi++){
              for (ii=1;ii<=nlstate+ndeath;ii++)
 /* End theta */            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
      for(h=0; h<=nhstepm-1; h++)          for(d=0; d<dh[mi][i]; d++){
       for(j=1; j<=nlstate*2;j++)            newm=savm;
         for(theta=1; theta <=npar; theta++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           trgradg[h][j][theta]=gradg[h][theta][j];            for (kk=1; kk<=cptcovage;kk++) {
                    cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
      for(i=1;i<=nlstate*2;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(j=1;j<=nlstate*2;j++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         varhe[i][j][(int)age] =0.;            savm=oldm;
             oldm=newm;
      printf("%d|",(int)age);fflush(stdout);          } /* end mult */
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);        
      for(h=0;h<=nhstepm-1;h++){          s1=s[mw[mi][i]][i];
       for(k=0;k<=nhstepm-1;k++){          s2=s[mw[mi+1][i]][i];
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);          bbh=(double)bh[mi][i]/(double)stepm; 
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         for(i=1;i<=nlstate*2;i++)          ipmx +=1;
           for(j=1;j<=nlstate*2;j++)          sw += weight[i];
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }        } /* end of wave */
     }      } /* end of individual */
     /* Computing expectancies */    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     for(i=1; i<=nlstate;i++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(j=1; j<=nlstate;j++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        for(mi=1; mi<= wav[i]-1; mi++){
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          for (ii=1;ii<=nlstate+ndeath;ii++)
                      for (j=1;j<=nlstate+ndeath;j++){
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
           for(d=0; d<dh[mi][i]; d++){
     fprintf(ficreseij,"%3.0f",age );            newm=savm;
     cptj=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(i=1; i<=nlstate;i++)            for (kk=1; kk<=cptcovage;kk++) {
       for(j=1; j<=nlstate;j++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         cptj++;            }
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );          
       }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     fprintf(ficreseij,"\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                savm=oldm;
     free_matrix(gm,0,nhstepm,1,nlstate*2);            oldm=newm;
     free_matrix(gp,0,nhstepm,1,nlstate*2);          } /* end mult */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);        
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);          s1=s[mw[mi][i]][i];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          s2=s[mw[mi+1][i]][i];
   }          if( s2 > nlstate){ 
   printf("\n");            lli=log(out[s1][s2] - savm[s1][s2]);
   fprintf(ficlog,"\n");          }else{
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   free_vector(xp,1,npar);          }
   free_matrix(dnewm,1,nlstate*2,1,npar);          ipmx +=1;
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);          sw += weight[i];
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 }  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         } /* end of wave */
 /************ Variance ******************/      } /* end of individual */
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
 {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /* Variance of health expectancies */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        for(mi=1; mi<= wav[i]-1; mi++){
   /* double **newm;*/          for (ii=1;ii<=nlstate+ndeath;ii++)
   double **dnewm,**doldm;            for (j=1;j<=nlstate+ndeath;j++){
   double **dnewmp,**doldmp;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, j, nhstepm, hstepm, h, nstepm ;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int k, cptcode;            }
   double *xp;          for(d=0; d<dh[mi][i]; d++){
   double **gp, **gm;  /* for var eij */            newm=savm;
   double ***gradg, ***trgradg; /*for var eij */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double **gradgp, **trgradgp; /* for var p point j */            for (kk=1; kk<=cptcovage;kk++) {
   double *gpp, *gmp; /* for var p point j */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */            }
   double ***p3mat;          
   double age,agelim, hf;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int theta;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   char digit[4];            savm=oldm;
   char digitp[16];            oldm=newm;
           } /* end mult */
   char fileresprobmorprev[FILENAMELENGTH];        
           s1=s[mw[mi][i]][i];
   if(popbased==1)          s2=s[mw[mi+1][i]][i];
     strcpy(digitp,"-populbased-");          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   else          ipmx +=1;
     strcpy(digitp,"-stablbased-");          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   strcpy(fileresprobmorprev,"prmorprev");          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   sprintf(digit,"%-d",ij);        } /* end of wave */
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/      } /* end of individual */
   strcat(fileresprobmorprev,digit); /* Tvar to be done */    } /* End of if */
   strcat(fileresprobmorprev,digitp); /* Popbased or not */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   strcat(fileresprobmorprev,fileres);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    return -l;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);  }
   }  
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);  /*************** log-likelihood *************/
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);  double funcone( double *x)
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");  {
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);    /* Same as likeli but slower because of a lot of printf and if */
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){    int i, ii, j, k, mi, d, kk;
     fprintf(ficresprobmorprev," p.%-d SE",j);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     for(i=1; i<=nlstate;i++)    double **out;
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);    double lli; /* Individual log likelihood */
   }      double llt;
   fprintf(ficresprobmorprev,"\n");    int s1, s2;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    double bbh, survp;
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    /*extern weight */
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);    /* We are differentiating ll according to initial status */
     exit(0);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   }    /*for(i=1;i<imx;i++) 
   else{      printf(" %d\n",s[4][i]);
     fprintf(ficgp,"\n# Routine varevsij");    */
   }    cov[1]=1.;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {  
     printf("Problem with html file: %s\n", optionfilehtm);    for(k=1; k<=nlstate; k++) ll[k]=0.;
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);  
     exit(0);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   else{      for(mi=1; mi<= wav[i]-1; mi++){
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");        for (ii=1;ii<=nlstate+ndeath;ii++)
   }          for (j=1;j<=nlstate+ndeath;j++){
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");          }
   fprintf(ficresvij,"# Age");        for(d=0; d<dh[mi][i]; d++){
   for(i=1; i<=nlstate;i++)          newm=savm;
     for(j=1; j<=nlstate;j++)          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          for (kk=1; kk<=cptcovage;kk++) {
   fprintf(ficresvij,"\n");            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }
   xp=vector(1,npar);          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   dnewm=matrix(1,nlstate,1,npar);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   doldm=matrix(1,nlstate,1,nlstate);                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
           savm=oldm;
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);          oldm=newm;
   gpp=vector(nlstate+1,nlstate+ndeath);        } /* end mult */
   gmp=vector(nlstate+1,nlstate+ndeath);        
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/        s1=s[mw[mi][i]][i];
          s2=s[mw[mi+1][i]][i];
   if(estepm < stepm){        bbh=(double)bh[mi][i]/(double)stepm; 
     printf ("Problem %d lower than %d\n",estepm, stepm);        /* bias is positive if real duration
   }         * is higher than the multiple of stepm and negative otherwise.
   else  hstepm=estepm;           */
   /* For example we decided to compute the life expectancy with the smallest unit */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          lli=log(out[s1][s2] - savm[s1][s2]);
      nhstepm is the number of hstepm from age to agelim        } else if  (s2==-2) {
      nstepm is the number of stepm from age to agelin.          for (j=1,survp=0. ; j<=nlstate; j++) 
      Look at hpijx to understand the reason of that which relies in memory size            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      and note for a fixed period like k years */          lli= log(survp);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        }else if (mle==1){
      survival function given by stepm (the optimization length). Unfortunately it          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
      means that if the survival funtion is printed only each two years of age and if        } else if(mle==2){
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
      results. So we changed our mind and took the option of the best precision.        } else if(mle==3){  /* exponential inter-extrapolation */
   */          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   agelim = AGESUP;          lli=log(out[s1][s2]); /* Original formula */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        } else{  /* mle=0 back to 1 */
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          /*lli=log(out[s1][s2]); */ /* Original formula */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        } /* End of if */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        ipmx +=1;
     gp=matrix(0,nhstepm,1,nlstate);        sw += weight[i];
     gm=matrix(0,nhstepm,1,nlstate);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
     for(theta=1; theta <=npar; theta++){          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
       for(i=1; i<=npar; i++){ /* Computes gradient */   %11.6f %11.6f %11.6f ", \
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       }                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       if (popbased==1) {          }
         for(i=1; i<=nlstate;i++)          fprintf(ficresilk," %10.6f\n", -llt);
           prlim[i][i]=probs[(int)age][i][ij];        }
       }      } /* end of wave */
      } /* end of individual */
       for(j=1; j<= nlstate; j++){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         for(h=0; h<=nhstepm; h++){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    if(globpr==0){ /* First time we count the contributions and weights */
         }      gipmx=ipmx;
       }      gsw=sw;
       /* This for computing forces of mortality (h=1)as a weighted average */    }
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){    return -l;
         for(i=1; i<= nlstate; i++)  }
           gpp[j] += prlim[i][i]*p3mat[i][j][1];  
       }      
       /* end force of mortality */  /*************** function likelione ***********/
   void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       for(i=1; i<=npar; i++) /* Computes gradient */  {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    /* This routine should help understanding what is done with 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);         the selection of individuals/waves and
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);       to check the exact contribution to the likelihood.
         Plotting could be done.
       if (popbased==1) {     */
         for(i=1; i<=nlstate;i++)    int k;
           prlim[i][i]=probs[(int)age][i][ij];  
       }    if(*globpri !=0){ /* Just counts and sums, no printings */
       strcpy(fileresilk,"ilk"); 
       for(j=1; j<= nlstate; j++){      strcat(fileresilk,fileres);
         for(h=0; h<=nhstepm; h++){      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        printf("Problem with resultfile: %s\n", fileresilk);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
         }      }
       }      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       /* This for computing force of mortality (h=1)as a weighted average */      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
         for(i=1; i<= nlstate; i++)      for(k=1; k<=nlstate; k++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1];        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       }          fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       /* end force of mortality */    }
   
       for(j=1; j<= nlstate; j++) /* vareij */    *fretone=(*funcone)(p);
         for(h=0; h<=nhstepm; h++){    if(*globpri !=0){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      fclose(ficresilk);
         }      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */      fflush(fichtm); 
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];    } 
       }    return;
   }
     } /* End theta */  
   
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */  /*********** Maximum Likelihood Estimation ***************/
   
     for(h=0; h<=nhstepm; h++) /* veij */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       for(j=1; j<=nlstate;j++)  {
         for(theta=1; theta <=npar; theta++)    int i,j, iter;
           trgradg[h][j][theta]=gradg[h][theta][j];    double **xi;
     double fret;
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */    double fretone; /* Only one call to likelihood */
       for(theta=1; theta <=npar; theta++)    /*  char filerespow[FILENAMELENGTH];*/
         trgradgp[j][theta]=gradgp[theta][j];    xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++)
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      for (j=1;j<=npar;j++)
     for(i=1;i<=nlstate;i++)        xi[i][j]=(i==j ? 1.0 : 0.0);
       for(j=1;j<=nlstate;j++)    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         vareij[i][j][(int)age] =0.;    strcpy(filerespow,"pow"); 
     strcat(filerespow,fileres);
     for(h=0;h<=nhstepm;h++){    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       for(k=0;k<=nhstepm;k++){      printf("Problem with resultfile: %s\n", filerespow);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    }
         for(i=1;i<=nlstate;i++)    fprintf(ficrespow,"# Powell\n# iter -2*LL");
           for(j=1;j<=nlstate;j++)    for (i=1;i<=nlstate;i++)
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      for(j=1;j<=nlstate+ndeath;j++)
       }        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     }    fprintf(ficrespow,"\n");
   
     /* pptj */    powell(p,xi,npar,ftol,&iter,&fret,func);
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);  
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);    free_matrix(xi,1,npar,1,npar);
     for(j=nlstate+1;j<=nlstate+ndeath;j++)    fclose(ficrespow);
       for(i=nlstate+1;i<=nlstate+ndeath;i++)    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         varppt[j][i]=doldmp[j][i];    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     /* end ppptj */    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);    
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);  }
    
     if (popbased==1) {  /**** Computes Hessian and covariance matrix ***/
       for(i=1; i<=nlstate;i++)  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
         prlim[i][i]=probs[(int)age][i][ij];  {
     }    double  **a,**y,*x,pd;
        double **hess;
     /* This for computing force of mortality (h=1)as a weighted average */    int i, j,jk;
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){    int *indx;
       for(i=1; i<= nlstate; i++)  
         gmp[j] += prlim[i][i]*p3mat[i][j][1];    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     }        double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     /* end force of mortality */    void lubksb(double **a, int npar, int *indx, double b[]) ;
     void ludcmp(double **a, int npar, int *indx, double *d) ;
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);    double gompertz(double p[]);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){    hess=matrix(1,npar,1,npar);
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));  
       for(i=1; i<=nlstate;i++){    printf("\nCalculation of the hessian matrix. Wait...\n");
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       }    for (i=1;i<=npar;i++){
     }      printf("%d",i);fflush(stdout);
     fprintf(ficresprobmorprev,"\n");      fprintf(ficlog,"%d",i);fflush(ficlog);
      
     fprintf(ficresvij,"%.0f ",age );       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     for(i=1; i<=nlstate;i++)      
       for(j=1; j<=nlstate;j++){      /*  printf(" %f ",p[i]);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
       }    }
     fprintf(ficresvij,"\n");    
     free_matrix(gp,0,nhstepm,1,nlstate);    for (i=1;i<=npar;i++) {
     free_matrix(gm,0,nhstepm,1,nlstate);      for (j=1;j<=npar;j++)  {
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        if (j>i) { 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          printf(".%d%d",i,j);fflush(stdout);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   } /* End age */          hess[i][j]=hessij(p,delti,i,j,func,npar);
   free_vector(gpp,nlstate+1,nlstate+ndeath);          
   free_vector(gmp,nlstate+1,nlstate+ndeath);          hess[j][i]=hess[i][j];    
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);          /*printf(" %lf ",hess[i][j]);*/
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/        }
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");      }
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */    }
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");    printf("\n");
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);    fprintf(ficlog,"\n");
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);  
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);    
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
   free_vector(xp,1,npar);    x=vector(1,npar);
   free_matrix(doldm,1,nlstate,1,nlstate);    indx=ivector(1,npar);
   free_matrix(dnewm,1,nlstate,1,npar);    for (i=1;i<=npar;i++)
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);    ludcmp(a,npar,indx,&pd);
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  
   fclose(ficresprobmorprev);    for (j=1;j<=npar;j++) {
   fclose(ficgp);      for (i=1;i<=npar;i++) x[i]=0;
   fclose(fichtm);      x[j]=1;
       lubksb(a,npar,indx,x);
 }      for (i=1;i<=npar;i++){ 
         matcov[i][j]=x[i];
 /************ Variance of prevlim ******************/      }
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    }
 {  
   /* Variance of prevalence limit */    printf("\n#Hessian matrix#\n");
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    fprintf(ficlog,"\n#Hessian matrix#\n");
   double **newm;    for (i=1;i<=npar;i++) { 
   double **dnewm,**doldm;      for (j=1;j<=npar;j++) { 
   int i, j, nhstepm, hstepm;        printf("%.3e ",hess[i][j]);
   int k, cptcode;        fprintf(ficlog,"%.3e ",hess[i][j]);
   double *xp;      }
   double *gp, *gm;      printf("\n");
   double **gradg, **trgradg;      fprintf(ficlog,"\n");
   double age,agelim;    }
   int theta;  
        /* Recompute Inverse */
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    for (i=1;i<=npar;i++)
   fprintf(ficresvpl,"# Age");      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   for(i=1; i<=nlstate;i++)    ludcmp(a,npar,indx,&pd);
       fprintf(ficresvpl," %1d-%1d",i,i);  
   fprintf(ficresvpl,"\n");    /*  printf("\n#Hessian matrix recomputed#\n");
   
   xp=vector(1,npar);    for (j=1;j<=npar;j++) {
   dnewm=matrix(1,nlstate,1,npar);      for (i=1;i<=npar;i++) x[i]=0;
   doldm=matrix(1,nlstate,1,nlstate);      x[j]=1;
        lubksb(a,npar,indx,x);
   hstepm=1*YEARM; /* Every year of age */      for (i=1;i<=npar;i++){ 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        y[i][j]=x[i];
   agelim = AGESUP;        printf("%.3e ",y[i][j]);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        fprintf(ficlog,"%.3e ",y[i][j]);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      }
     if (stepm >= YEARM) hstepm=1;      printf("\n");
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      fprintf(ficlog,"\n");
     gradg=matrix(1,npar,1,nlstate);    }
     gp=vector(1,nlstate);    */
     gm=vector(1,nlstate);  
     free_matrix(a,1,npar,1,npar);
     for(theta=1; theta <=npar; theta++){    free_matrix(y,1,npar,1,npar);
       for(i=1; i<=npar; i++){ /* Computes gradient */    free_vector(x,1,npar);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    free_ivector(indx,1,npar);
       }    free_matrix(hess,1,npar,1,npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)  
         gp[i] = prlim[i][i];  }
      
       for(i=1; i<=npar; i++) /* Computes gradient */  /*************** hessian matrix ****************/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  {
       for(i=1;i<=nlstate;i++)    int i;
         gm[i] = prlim[i][i];    int l=1, lmax=20;
     double k1,k2;
       for(i=1;i<=nlstate;i++)    double p2[MAXPARM+1]; /* identical to x */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    double res;
     } /* End theta */    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
     trgradg =matrix(1,nlstate,1,npar);    int k=0,kmax=10;
     double l1;
     for(j=1; j<=nlstate;j++)  
       for(theta=1; theta <=npar; theta++)    fx=func(x);
         trgradg[j][theta]=gradg[theta][j];    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
     for(i=1;i<=nlstate;i++)      l1=pow(10,l);
       varpl[i][(int)age] =0.;      delts=delt;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      for(k=1 ; k <kmax; k=k+1){
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        delt = delta*(l1*k);
     for(i=1;i<=nlstate;i++)        p2[theta]=x[theta] +delt;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
         p2[theta]=x[theta]-delt;
     fprintf(ficresvpl,"%.0f ",age );        k2=func(p2)-fx;
     for(i=1; i<=nlstate;i++)        /*res= (k1-2.0*fx+k2)/delt/delt; */
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     fprintf(ficresvpl,"\n");        
     free_vector(gp,1,nlstate);  #ifdef DEBUGHESS
     free_vector(gm,1,nlstate);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     free_matrix(gradg,1,npar,1,nlstate);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     free_matrix(trgradg,1,nlstate,1,npar);  #endif
   } /* End age */        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   free_vector(xp,1,npar);          k=kmax;
   free_matrix(doldm,1,nlstate,1,npar);        }
   free_matrix(dnewm,1,nlstate,1,nlstate);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10.;
 }        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 /************ Variance of one-step probabilities  ******************/          delts=delt;
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        }
 {      }
   int i, j=0,  i1, k1, l1, t, tj;    }
   int k2, l2, j1,  z1;    delti[theta]=delts;
   int k=0,l, cptcode;    return res; 
   int first=1, first1;    
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;  }
   double **dnewm,**doldm;  
   double *xp;  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   double *gp, *gm;  {
   double **gradg, **trgradg;    int i;
   double **mu;    int l=1, l1, lmax=20;
   double age,agelim, cov[NCOVMAX];    double k1,k2,k3,k4,res,fx;
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    double p2[MAXPARM+1];
   int theta;    int k;
   char fileresprob[FILENAMELENGTH];  
   char fileresprobcov[FILENAMELENGTH];    fx=func(x);
   char fileresprobcor[FILENAMELENGTH];    for (k=1; k<=2; k++) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
   double ***varpij;      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   strcpy(fileresprob,"prob");      k1=func(p2)-fx;
   strcat(fileresprob,fileres);    
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      p2[thetai]=x[thetai]+delti[thetai]/k;
     printf("Problem with resultfile: %s\n", fileresprob);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);      k2=func(p2)-fx;
   }    
   strcpy(fileresprobcov,"probcov");      p2[thetai]=x[thetai]-delti[thetai]/k;
   strcat(fileresprobcov,fileres);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {      k3=func(p2)-fx;
     printf("Problem with resultfile: %s\n", fileresprobcov);    
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);      p2[thetai]=x[thetai]-delti[thetai]/k;
   }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   strcpy(fileresprobcor,"probcor");      k4=func(p2)-fx;
   strcat(fileresprobcor,fileres);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {  #ifdef DEBUG
     printf("Problem with resultfile: %s\n", fileresprobcor);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   }  #endif
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    }
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    return res;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);  }
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);  
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);  /************** Inverse of matrix **************/
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);  void ludcmp(double **a, int n, int *indx, double *d) 
    { 
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");    int i,imax,j,k; 
   fprintf(ficresprob,"# Age");    double big,dum,sum,temp; 
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    double *vv; 
   fprintf(ficresprobcov,"# Age");   
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    vv=vector(1,n); 
   fprintf(ficresprobcov,"# Age");    *d=1.0; 
     for (i=1;i<=n;i++) { 
       big=0.0; 
   for(i=1; i<=nlstate;i++)      for (j=1;j<=n;j++) 
     for(j=1; j<=(nlstate+ndeath);j++){        if ((temp=fabs(a[i][j])) > big) big=temp; 
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       fprintf(ficresprobcov," p%1d-%1d ",i,j);      vv[i]=1.0/big; 
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    } 
     }      for (j=1;j<=n;j++) { 
   fprintf(ficresprob,"\n");      for (i=1;i<j;i++) { 
   fprintf(ficresprobcov,"\n");        sum=a[i][j]; 
   fprintf(ficresprobcor,"\n");        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   xp=vector(1,npar);        a[i][j]=sum; 
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      } 
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      big=0.0; 
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);      for (i=j;i<=n;i++) { 
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);        sum=a[i][j]; 
   first=1;        for (k=1;k<j;k++) 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          sum -= a[i][k]*a[k][j]; 
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);        a[i][j]=sum; 
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     exit(0);          big=dum; 
   }          imax=i; 
   else{        } 
     fprintf(ficgp,"\n# Routine varprob");      } 
   }      if (j != imax) { 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {        for (k=1;k<=n;k++) { 
     printf("Problem with html file: %s\n", optionfilehtm);          dum=a[imax][k]; 
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);          a[imax][k]=a[j][k]; 
     exit(0);          a[j][k]=dum; 
   }        } 
   else{        *d = -(*d); 
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");        vv[imax]=vv[j]; 
     fprintf(fichtm,"\n");      } 
       indx[j]=imax; 
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");      if (a[j][j] == 0.0) a[j][j]=TINY; 
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");      if (j != n) { 
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");        dum=1.0/(a[j][j]); 
         for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   }      } 
     } 
      free_vector(vv,1,n);  /* Doesn't work */
   cov[1]=1;  ;
   tj=cptcoveff;  } 
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}  
   j1=0;  void lubksb(double **a, int n, int *indx, double b[]) 
   for(t=1; t<=tj;t++){  { 
     for(i1=1; i1<=ncodemax[t];i1++){    int i,ii=0,ip,j; 
       j1++;    double sum; 
         
       if  (cptcovn>0) {    for (i=1;i<=n;i++) { 
         fprintf(ficresprob, "\n#********** Variable ");      ip=indx[i]; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      sum=b[ip]; 
         fprintf(ficresprob, "**********\n#");      b[ip]=b[i]; 
         fprintf(ficresprobcov, "\n#********** Variable ");      if (ii) 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         fprintf(ficresprobcov, "**********\n#");      else if (sum) ii=i; 
              b[i]=sum; 
         fprintf(ficgp, "\n#********** Variable ");    } 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    for (i=n;i>=1;i--) { 
         fprintf(ficgp, "**********\n#");      sum=b[i]; 
              for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
              b[i]=sum/a[i][i]; 
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");    } 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  } 
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");  
          void pstamp(FILE *fichier)
         fprintf(ficresprobcor, "\n#********** Variable ");      {
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
         fprintf(ficgp, "**********\n#");      }
       }  
        /************ Frequencies ********************/
       for (age=bage; age<=fage; age ++){  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
         cov[2]=age;  {  /* Some frequencies */
         for (k=1; k<=cptcovn;k++) {    
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    int i, m, jk, k1,i1, j1, bool, z1,j;
         }    int first;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double ***freq; /* Frequencies */
         for (k=1; k<=cptcovprod;k++)    double *pp, **prop;
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    double pos,posprop, k2, dateintsum=0,k2cpt=0;
            char fileresp[FILENAMELENGTH];
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    pp=vector(1,nlstate);
         gp=vector(1,(nlstate)*(nlstate+ndeath));    prop=matrix(1,nlstate,iagemin,iagemax+3);
         gm=vector(1,(nlstate)*(nlstate+ndeath));    strcpy(fileresp,"p");
        strcat(fileresp,fileres);
         for(theta=1; theta <=npar; theta++){    if((ficresp=fopen(fileresp,"w"))==NULL) {
           for(i=1; i<=npar; i++)      printf("Problem with prevalence resultfile: %s\n", fileresp);
             xp[i] = x[i] + (i==theta ?delti[theta]:0);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
                exit(0);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    }
              freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
           k=0;    j1=0;
           for(i=1; i<= (nlstate); i++){    
             for(j=1; j<=(nlstate+ndeath);j++){    j=cptcoveff;
               k=k+1;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
               gp[k]=pmmij[i][j];  
             }    first=1;
           }  
              /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
           for(i=1; i<=npar; i++)    /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    /*    j1++;
      */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
           k=0;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           for(i=1; i<=(nlstate); i++){          scanf("%d", i);*/
             for(j=1; j<=(nlstate+ndeath);j++){        for (i=-5; i<=nlstate+ndeath; i++)  
               k=k+1;          for (jk=-5; jk<=nlstate+ndeath; jk++)  
               gm[k]=pmmij[i][j];            for(m=iagemin; m <= iagemax+3; m++)
             }              freq[i][jk][m]=0;
           }        
              for (i=1; i<=nlstate; i++)  
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)          for(m=iagemin; m <= iagemax+3; m++)
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];              prop[i][m]=0;
         }        
         dateintsum=0;
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)        k2cpt=0;
           for(theta=1; theta <=npar; theta++)        for (i=1; i<=imx; i++) {
             trgradg[j][theta]=gradg[theta][j];          bool=1;
                  if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);            for (z1=1; z1<=cptcoveff; z1++)       
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
                          /* Tests if the value of each of the covariates of i is equal to filter j1 */
         pmij(pmmij,cov,ncovmodel,x,nlstate);                bool=0;
                        /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
         k=0;                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
         for(i=1; i<=(nlstate); i++){                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
           for(j=1; j<=(nlstate+ndeath);j++){                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
             k=k+1;              } 
             mu[k][(int) age]=pmmij[i][j];          }
           }   
         }          if (bool==1){
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)            for(m=firstpass; m<=lastpass; m++){
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)              k2=anint[m][i]+(mint[m][i]/12.);
             varpij[i][j][(int)age] = doldm[i][j];              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
         /*printf("\n%d ",(int)age);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));                if (m<lastpass) {
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
      }*/                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                 }
         fprintf(ficresprob,"\n%d ",(int)age);                
         fprintf(ficresprobcov,"\n%d ",(int)age);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         fprintf(ficresprobcor,"\n%d ",(int)age);                  dateintsum=dateintsum+k2;
                   k2cpt++;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)                }
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));                /*}*/
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){            }
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);          }
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);        } /* end i */
         }         
         i=0;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         for (k=1; k<=(nlstate);k++){        pstamp(ficresp);
           for (l=1; l<=(nlstate+ndeath);l++){        if  (cptcovn>0) {
             i=i++;          fprintf(ficresp, "\n#********** Variable "); 
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);          fprintf(ficresp, "**********\n#");
             for (j=1; j<=i;j++){          fprintf(ficlog, "\n#********** Variable "); 
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));          fprintf(ficlog, "**********\n#");
             }        }
           }        for(i=1; i<=nlstate;i++) 
         }/* end of loop for state */          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       } /* end of loop for age */        fprintf(ficresp, "\n");
         
       /* Confidence intervalle of pij  */        for(i=iagemin; i <= iagemax+3; i++){
       /*          if(i==iagemax+3){
       fprintf(ficgp,"\nset noparametric;unset label");            fprintf(ficlog,"Total");
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");          }else{
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");            if(first==1){
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);              first=0;
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);              printf("See log file for details...\n");
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);            }
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);            fprintf(ficlog,"Age %d", i);
       */          }
           for(jk=1; jk <=nlstate ; jk++){
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       first1=1;              pp[jk] += freq[jk][m][i]; 
       for (k2=1; k2<=(nlstate);k2++){          }
         for (l2=1; l2<=(nlstate+ndeath);l2++){          for(jk=1; jk <=nlstate ; jk++){
           if(l2==k2) continue;            for(m=-1, pos=0; m <=0 ; m++)
           j=(k2-1)*(nlstate+ndeath)+l2;              pos += freq[jk][m][i];
           for (k1=1; k1<=(nlstate);k1++){            if(pp[jk]>=1.e-10){
             for (l1=1; l1<=(nlstate+ndeath);l1++){              if(first==1){
               if(l1==k1) continue;                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               i=(k1-1)*(nlstate+ndeath)+l1;              }
               if(i<=j) continue;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               for (age=bage; age<=fage; age ++){            }else{
                 if ((int)age %5==0){              if(first==1)
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;            }
                   mu1=mu[i][(int) age]/stepm*YEARM ;          }
                   mu2=mu[j][(int) age]/stepm*YEARM;  
                   c12=cv12/sqrt(v1*v2);          for(jk=1; jk <=nlstate ; jk++){
                   /* Computing eigen value of matrix of covariance */            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;              pp[jk] += freq[jk][m][i];
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;          }       
                   /* Eigen vectors */          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));            pos += pp[jk];
                   /*v21=sqrt(1.-v11*v11); *//* error */            posprop += prop[jk][i];
                   v21=(lc1-v1)/cv12*v11;          }
                   v12=-v21;          for(jk=1; jk <=nlstate ; jk++){
                   v22=v11;            if(pos>=1.e-5){
                   tnalp=v21/v11;              if(first==1)
                   if(first1==1){                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                     first1=0;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);            }else{
                   }              if(first==1)
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                   /*printf(fignu*/              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */            }
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */            if( i <= iagemax){
                   if(first==1){              if(pos>=1.e-5){
                     first=0;                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                     fprintf(ficgp,"\nset parametric;unset label");                /*probs[i][jk][j1]= pp[jk]/pos;*/
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");              }
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);              else
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);            }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);          }
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);          
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\          for(jk=-1; jk <=nlstate+ndeath; jk++)
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\            for(m=-1; m <=nlstate+ndeath; m++)
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));              if(freq[jk][m][i] !=0 ) {
                   }else{              if(first==1)
                     first=0;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);              }
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\          if(i <= iagemax)
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\            fprintf(ficresp,"\n");
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));          if(first==1)
                   }/* if first */            printf("Others in log...\n");
                 } /* age mod 5 */          fprintf(ficlog,"\n");
               } /* end loop age */        }
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);        /*}*/
               first=1;    }
             } /*l12 */    dateintmean=dateintsum/k2cpt; 
           } /* k12 */   
         } /*l1 */    fclose(ficresp);
       }/* k1 */    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     } /* loop covariates */    free_vector(pp,1,nlstate);
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    /* End of Freq */
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));  }
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);  
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  /************ Prevalence ********************/
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   }  {  
   free_vector(xp,1,npar);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   fclose(ficresprob);       in each health status at the date of interview (if between dateprev1 and dateprev2).
   fclose(ficresprobcov);       We still use firstpass and lastpass as another selection.
   fclose(ficresprobcor);    */
   fclose(ficgp);   
   fclose(fichtm);    int i, m, jk, k1, i1, j1, bool, z1,j;
 }    double ***freq; /* Frequencies */
     double *pp, **prop;
     double pos,posprop; 
 /******************* Printing html file ***********/    double  y2; /* in fractional years */
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    int iagemin, iagemax;
                   int lastpass, int stepm, int weightopt, char model[],\    int first; /** to stop verbosity which is redirected to log file */
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\  
                   int popforecast, int estepm ,\    iagemin= (int) agemin;
                   double jprev1, double mprev1,double anprev1, \    iagemax= (int) agemax;
                   double jprev2, double mprev2,double anprev2){    /*pp=vector(1,nlstate);*/
   int jj1, k1, i1, cpt;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   /*char optionfilehtm[FILENAMELENGTH];*/    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    j1=0;
     printf("Problem with %s \n",optionfilehtm), exit(0);    
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);    /*j=cptcoveff;*/
   }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n    first=1;
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n      /*for(i1=1; i1<=ncodemax[k1];i1++){
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n        j1++;*/
  - Life expectancies by age and initial health status (estepm=%2d months):        
    <a href=\"e%s\">e%s</a> <br>\n</li>", \        for (i=1; i<=nlstate; i++)  
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);          for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0.0;
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");       
         for (i=1; i<=imx; i++) { /* Each individual */
  m=cptcoveff;          bool=1;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
  jj1=0;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
  for(k1=1; k1<=m;k1++){                bool=0;
    for(i1=1; i1<=ncodemax[k1];i1++){          } 
      jj1++;          if (bool==1) { 
      if (cptcovn > 0) {            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
        for (cpt=1; cpt<=cptcoveff;cpt++)              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
      }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
      /* Pij */                if (s[m][i]>0 && s[m][i]<=nlstate) { 
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                      prop[s[m][i]][(int)agev[m][i]] += weight[i];
      /* Quasi-incidences */                  prop[s[m][i]][iagemax+3] += weight[i]; 
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>                } 
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              }
        /* Stable prevalence in each health state */            } /* end selection of waves */
        for(cpt=1; cpt<nlstate;cpt++){          }
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>        }
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        for(i=iagemin; i <= iagemax+3; i++){  
        }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
      for(cpt=1; cpt<=nlstate;cpt++) {            posprop += prop[jk][i]; 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>          } 
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          
      }          for(jk=1; jk <=nlstate ; jk++){     
      fprintf(fichtm,"\n<br>- Total life expectancy by age and            if( i <=  iagemax){ 
 health expectancies in states (1) and (2): e%s%d.png<br>              if(posprop>=1.e-5){ 
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                probs[i][jk][j1]= prop[jk][i]/posprop;
    } /* end i1 */              } else{
  }/* End k1 */                if(first==1){
  fprintf(fichtm,"</ul>");                  first=0;
                   printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
                 }
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n              }
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n            } 
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n          }/* end jk */ 
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n        }/* end i */ 
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n      /*} *//* end i1 */
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    } /* end j1 */
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     /*free_vector(pp,1,nlstate);*/
  if(popforecast==1) fprintf(fichtm,"\n    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n  }  /* End of prevalence */
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n  
         <br>",fileres,fileres,fileres,fileres);  /************* Waves Concatenation ***************/
  else  
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");  {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
  m=cptcoveff;       Death is a valid wave (if date is known).
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
  jj1=0;       and mw[mi+1][i]. dh depends on stepm.
  for(k1=1; k1<=m;k1++){       */
    for(i1=1; i1<=ncodemax[k1];i1++){  
      jj1++;    int i, mi, m;
      if (cptcovn > 0) {    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");       double sum=0., jmean=0.;*/
        for (cpt=1; cpt<=cptcoveff;cpt++)    int first;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    int j, k=0,jk, ju, jl;
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    double sum=0.;
      }    first=0;
      for(cpt=1; cpt<=nlstate;cpt++) {    jmin=1e+5;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    jmax=-1;
 interval) in state (%d): v%s%d%d.png <br>    jmean=0.;
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      for(i=1; i<=imx; i++){
      }      mi=0;
    } /* end i1 */      m=firstpass;
  }/* End k1 */      while(s[m][i] <= nlstate){
  fprintf(fichtm,"</ul>");        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
 fclose(fichtm);          mw[++mi][i]=m;
 }        if(m >=lastpass)
           break;
 /******************* Gnuplot file **************/        else
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){          m++;
       }/* end while */
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;      if (s[m][i] > nlstate){
   int ng;        mi++;     /* Death is another wave */
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        /* if(mi==0)  never been interviewed correctly before death */
     printf("Problem with file %s",optionfilegnuplot);           /* Only death is a correct wave */
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);        mw[mi][i]=m;
   }      }
   
 #ifdef windows      wav[i]=mi;
     fprintf(ficgp,"cd \"%s\" \n",pathc);      if(mi==0){
 #endif        nbwarn++;
 m=pow(2,cptcoveff);        if(first==0){
            printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
  /* 1eme*/          first=1;
   for (cpt=1; cpt<= nlstate ; cpt ++) {        }
    for (k1=1; k1<= m ; k1 ++) {        if(first==1){
           fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
 #ifdef windows        }
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      } /* end mi==0 */
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    } /* End individuals */
 #endif  
 #ifdef unix    for(i=1; i<=imx; i++){
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      for(mi=1; mi<wav[i];mi++){
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);        if (stepm <=0)
 #endif          dh[mi][i]=1;
         else{
 for (i=1; i<= nlstate ; i ++) {          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            if (agedc[i] < 2*AGESUP) {
   else fprintf(ficgp," \%%*lf (\%%*lf)");              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 }              if(j==0) j=1;  /* Survives at least one month after exam */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);              else if(j<0){
     for (i=1; i<= nlstate ; i ++) {                nberr++;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   else fprintf(ficgp," \%%*lf (\%%*lf)");                j=1; /* Temporary Dangerous patch */
 }                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      for (i=1; i<= nlstate ; i ++) {                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              }
   else fprintf(ficgp," \%%*lf (\%%*lf)");              k=k+1;
 }                if (j >= jmax){
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));                jmax=j;
 #ifdef unix                ijmax=i;
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");              }
 #endif              if (j <= jmin){
    }                jmin=j;
   }                ijmin=i;
   /*2 eme*/              }
               sum=sum+j;
   for (k1=1; k1<= m ; k1 ++) {              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);            }
              }
     for (i=1; i<= nlstate+1 ; i ++) {          else{
       k=2*i;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            k=k+1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");            if (j >= jmax) {
 }                jmax=j;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");              ijmax=i;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);            }
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            else if (j <= jmin){
       for (j=1; j<= nlstate+1 ; j ++) {              jmin=j;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              ijmin=i;
         else fprintf(ficgp," \%%*lf (\%%*lf)");            }
 }              /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       fprintf(ficgp,"\" t\"\" w l 0,");            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);            if(j<0){
       for (j=1; j<= nlstate+1 ; j ++) {              nberr++;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   else fprintf(ficgp," \%%*lf (\%%*lf)");              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 }              }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            sum=sum+j;
       else fprintf(ficgp,"\" t\"\" w l 0,");          }
     }          jk= j/stepm;
   }          jl= j -jk*stepm;
            ju= j -(jk+1)*stepm;
   /*3eme*/          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             if(jl==0){
   for (k1=1; k1<= m ; k1 ++) {              dh[mi][i]=jk;
     for (cpt=1; cpt<= nlstate ; cpt ++) {              bh[mi][i]=0;
       k=2+nlstate*(2*cpt-2);            }else{ /* We want a negative bias in order to only have interpolation ie
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);                    * to avoid the price of an extra matrix product in likelihood */
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);              dh[mi][i]=jk+1;
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              bh[mi][i]=ju;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          }else{
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            if(jl <= -ju){
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              dh[mi][i]=jk;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              bh[mi][i]=jl;       /* bias is positive if real duration
                                    * is higher than the multiple of stepm and negative otherwise.
 */                                   */
       for (i=1; i< nlstate ; i ++) {            }
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);            else{
               dh[mi][i]=jk+1;
       }              bh[mi][i]=ju;
     }            }
   }            if(dh[mi][i]==0){
                dh[mi][i]=1; /* At least one step */
   /* CV preval stat */              bh[mi][i]=ju; /* At least one step */
     for (k1=1; k1<= m ; k1 ++) {              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     for (cpt=1; cpt<nlstate ; cpt ++) {            }
       k=3;          } /* end if mle */
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);      } /* end wave */
     }
       for (i=1; i< nlstate ; i ++)    jmean=sum/k;
         fprintf(ficgp,"+$%d",k+i+1);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
         }
       l=3+(nlstate+ndeath)*cpt;  
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  /*********** Tricode ****************************/
       for (i=1; i< nlstate ; i ++) {  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
         l=3+(nlstate+ndeath)*cpt;  {
         fprintf(ficgp,"+$%d",l+i+1);    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
       }    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      /* Boring subroutine which should only output nbcode[Tvar[j]][k]
     }     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
   }      /* nbcode[Tvar[j]][1]= 
      */
   /* proba elementaires */  
    for(i=1,jk=1; i <=nlstate; i++){    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     for(k=1; k <=(nlstate+ndeath); k++){    int modmaxcovj=0; /* Modality max of covariates j */
       if (k != i) {    int cptcode=0; /* Modality max of covariates j */
         for(j=1; j <=ncovmodel; j++){    int modmincovj=0; /* Modality min of covariates j */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  
           jk++;  
           fprintf(ficgp,"\n");    cptcoveff=0; 
         }   
       }    for (k=-1; k < maxncov; k++) Ndum[k]=0;
     }    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
    }  
     /* Loop on covariates without age and products */
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
      for(jk=1; jk <=m; jk++) {      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);                                 modality of this covariate Vj*/ 
        if (ng==2)        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");                                      * If product of Vn*Vm, still boolean *:
        else                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
          fprintf(ficgp,"\nset title \"Probability\"\n");                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
        i=1;                                        modality of the nth covariate of individual i. */
        for(k2=1; k2<=nlstate; k2++) {        if (ij > modmaxcovj)
          k3=i;          modmaxcovj=ij; 
          for(k=1; k<=(nlstate+ndeath); k++) {        else if (ij < modmincovj) 
            if (k != k2){          modmincovj=ij; 
              if(ng==2)        if ((ij < -1) && (ij > NCOVMAX)){
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
              else          exit(1);
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        }else
              ij=1;        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
              for(j=3; j <=ncovmodel; j++) {        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        /* getting the maximum value of the modality of the covariate
                  ij++;           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
                }           female is 1, then modmaxcovj=1.*/
                else      }
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
              }      cptcode=modmaxcovj;
              fprintf(ficgp,")/(1");      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
                   /*for (i=0; i<=cptcode; i++) {*/
              for(k1=1; k1 <=nlstate; k1++){        for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
                ij=1;        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
                for(j=3; j <=ncovmodel; j++){          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        }
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
                    ij++;           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
                  }      } /* Ndum[-1] number of undefined modalities */
                  else  
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
                }      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
                fprintf(ficgp,")");      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
              }         modmincovj=3; modmaxcovj = 7;
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
              i=i+ncovmodel;         variables V1_1 and V1_2.
            }         nbcode[Tvar[j]][ij]=k;
          } /* end k */         nbcode[Tvar[j]][1]=0;
        } /* end k2 */         nbcode[Tvar[j]][2]=1;
      } /* end jk */         nbcode[Tvar[j]][3]=2;
    } /* end ng */      */
    fclose(ficgp);      ij=1; /* ij is similar to i but can jumps over null modalities */
 }  /* end gnuplot */      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
         for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
           /*recode from 0 */
 /*************** Moving average **************/          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
                                        k is a modality. If we have model=V1+V1*sex 
   int i, cpt, cptcod;                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)            ij++;
       for (i=1; i<=nlstate;i++)          }
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)          if (ij > ncodemax[j]) break; 
           mobaverage[(int)agedeb][i][cptcod]=0.;        }  /* end of loop on */
          } /* end of loop on modality */ 
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
       for (i=1; i<=nlstate;i++){    
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
           for (cpt=0;cpt<=4;cpt++){    
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
           }     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
         }     Ndum[ij]++; 
       }   } 
     }  
       ij=1;
 }   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
      /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
      if((Ndum[i]!=0) && (i<=ncovcol)){
 /************** Forecasting ******************/       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){       Tvaraff[ij]=i; /*For printing (unclear) */
         ij++;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;     }else
   int *popage;         Tvaraff[ij]=0;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;   }
   double *popeffectif,*popcount;   ij--;
   double ***p3mat;   cptcoveff=ij; /*Number of total covariates*/
   char fileresf[FILENAMELENGTH];  
   }
  agelim=AGESUP;  
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;  
   /*********** Health Expectancies ****************/
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
    void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
    
   strcpy(fileresf,"f");  {
   strcat(fileresf,fileres);    /* Health expectancies, no variances */
   if((ficresf=fopen(fileresf,"w"))==NULL) {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     printf("Problem with forecast resultfile: %s\n", fileresf);    int nhstepma, nstepma; /* Decreasing with age */
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    double age, agelim, hf;
   }    double ***p3mat;
   printf("Computing forecasting: result on file '%s' \n", fileresf);    double eip;
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);  
     pstamp(ficreseij);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
   if (mobilav==1) {    for(i=1; i<=nlstate;i++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(j=1; j<=nlstate;j++){
     movingaverage(agedeb, fage, ageminpar, mobaverage);        fprintf(ficreseij," e%1d%1d ",i,j);
   }      }
       fprintf(ficreseij," e%1d. ",i);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    }
   if (stepm<=12) stepsize=1;    fprintf(ficreseij,"\n");
    
   agelim=AGESUP;    
      if(estepm < stepm){
   hstepm=1;      printf ("Problem %d lower than %d\n",estepm, stepm);
   hstepm=hstepm/stepm;    }
   yp1=modf(dateintmean,&yp);    else  hstepm=estepm;   
   anprojmean=yp;    /* We compute the life expectancy from trapezoids spaced every estepm months
   yp2=modf((yp1*12),&yp);     * This is mainly to measure the difference between two models: for example
   mprojmean=yp;     * if stepm=24 months pijx are given only every 2 years and by summing them
   yp1=modf((yp2*30.5),&yp);     * we are calculating an estimate of the Life Expectancy assuming a linear 
   jprojmean=yp;     * progression in between and thus overestimating or underestimating according
   if(jprojmean==0) jprojmean=1;     * to the curvature of the survival function. If, for the same date, we 
   if(mprojmean==0) jprojmean=1;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       * to compare the new estimate of Life expectancy with the same linear 
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);     * hypothesis. A more precise result, taking into account a more precise
       * curvature will be obtained if estepm is as small as stepm. */
   for(cptcov=1;cptcov<=i2;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    /* For example we decided to compute the life expectancy with the smallest unit */
       k=k+1;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       fprintf(ficresf,"\n#******");       nhstepm is the number of hstepm from age to agelim 
       for(j=1;j<=cptcoveff;j++) {       nstepm is the number of stepm from age to agelin. 
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       Look at hpijx to understand the reason of that which relies in memory size
       }       and note for a fixed period like estepm months */
       fprintf(ficresf,"******\n");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       fprintf(ficresf,"# StartingAge FinalAge");       survival function given by stepm (the optimization length). Unfortunately it
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);       means that if the survival funtion is printed only each two years of age and if
             you sum them up and add 1 year (area under the trapezoids) you won't get the same 
             results. So we changed our mind and took the option of the best precision.
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    */
         fprintf(ficresf,"\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);    
     agelim=AGESUP;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
           nhstepm = nhstepm/hstepm;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
                
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /* nhstepm age range expressed in number of stepm */
           oldm=oldms;savm=savms;    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
            /* if (stepm >= YEARM) hstepm=1;*/
           for (h=0; h<=nhstepm; h++){    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
             if (h==(int) (calagedate+YEARM*cpt)) {    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);  
             }    for (age=bage; age<=fage; age ++){ 
             for(j=1; j<=nlstate+ndeath;j++) {      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
               kk1=0.;kk2=0;      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
               for(i=1; i<=nlstate;i++) {                    /* if (stepm >= YEARM) hstepm=1;*/
                 if (mobilav==1)      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  
                 else {      /* If stepm=6 months */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      /* Computed by stepm unit matrices, product of hstepma matrices, stored
                 }         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
                      
               }      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
               if (h==(int)(calagedate+12*cpt)){      
                 fprintf(ficresf," %.3f", kk1);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                              
               }      printf("%d|",(int)age);fflush(stdout);
             }      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           }      
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* Computing expectancies */
         }      for(i=1; i<=nlstate;i++)
       }        for(j=1; j<=nlstate;j++)
     }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                    
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
   fclose(ficresf);          }
 }  
 /************** Forecasting ******************/      fprintf(ficreseij,"%3.0f",age );
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      for(i=1; i<=nlstate;i++){
          eip=0;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        for(j=1; j<=nlstate;j++){
   int *popage;          eip +=eij[i][j][(int)age];
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   double *popeffectif,*popcount;        }
   double ***p3mat,***tabpop,***tabpopprev;        fprintf(ficreseij,"%9.4f", eip );
   char filerespop[FILENAMELENGTH];      }
       fprintf(ficreseij,"\n");
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
   agelim=AGESUP;    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    printf("\n");
      fprintf(ficlog,"\n");
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    
    }
    
   strcpy(filerespop,"pop");  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   strcat(filerespop,fileres);  
   if((ficrespop=fopen(filerespop,"w"))==NULL) {  {
     printf("Problem with forecast resultfile: %s\n", filerespop);    /* Covariances of health expectancies eij and of total life expectancies according
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);     to initial status i, ei. .
   }    */
   printf("Computing forecasting: result on file '%s' \n", filerespop);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);    int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    double ***p3matp, ***p3matm, ***varhe;
     double **dnewm,**doldm;
   if (mobilav==1) {    double *xp, *xm;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double **gp, **gm;
     movingaverage(agedeb, fage, ageminpar, mobaverage);    double ***gradg, ***trgradg;
   }    int theta;
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double eip, vip;
   if (stepm<=12) stepsize=1;  
      varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   agelim=AGESUP;    xp=vector(1,npar);
      xm=vector(1,npar);
   hstepm=1;    dnewm=matrix(1,nlstate*nlstate,1,npar);
   hstepm=hstepm/stepm;    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
      
   if (popforecast==1) {    pstamp(ficresstdeij);
     if((ficpop=fopen(popfile,"r"))==NULL) {    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
       printf("Problem with population file : %s\n",popfile);exit(0);    fprintf(ficresstdeij,"# Age");
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);    for(i=1; i<=nlstate;i++){
     }      for(j=1; j<=nlstate;j++)
     popage=ivector(0,AGESUP);        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
     popeffectif=vector(0,AGESUP);      fprintf(ficresstdeij," e%1d. ",i);
     popcount=vector(0,AGESUP);    }
        fprintf(ficresstdeij,"\n");
     i=1;    
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    pstamp(ficrescveij);
        fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     imx=i;    fprintf(ficrescveij,"# Age");
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    for(i=1; i<=nlstate;i++)
   }      for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
   for(cptcov=1;cptcov<=i2;cptcov++){        for(i2=1; i2<=nlstate;i2++)
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          for(j2=1; j2<=nlstate;j2++){
       k=k+1;            cptj2= (j2-1)*nlstate+i2;
       fprintf(ficrespop,"\n#******");            if(cptj2 <= cptj)
       for(j=1;j<=cptcoveff;j++) {              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          }
       }      }
       fprintf(ficrespop,"******\n");    fprintf(ficrescveij,"\n");
       fprintf(ficrespop,"# Age");    
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    if(estepm < stepm){
       if (popforecast==1)  fprintf(ficrespop," [Population]");      printf ("Problem %d lower than %d\n",estepm, stepm);
          }
       for (cpt=0; cpt<=0;cpt++) {    else  hstepm=estepm;   
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      /* We compute the life expectancy from trapezoids spaced every estepm months
             * This is mainly to measure the difference between two models: for example
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){     * if stepm=24 months pijx are given only every 2 years and by summing them
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);     * we are calculating an estimate of the Life Expectancy assuming a linear 
           nhstepm = nhstepm/hstepm;     * progression in between and thus overestimating or underestimating according
               * to the curvature of the survival function. If, for the same date, we 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
           oldm=oldms;savm=savms;     * to compare the new estimate of Life expectancy with the same linear 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);       * hypothesis. A more precise result, taking into account a more precise
             * curvature will be obtained if estepm is as small as stepm. */
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {    /* For example we decided to compute the life expectancy with the smallest unit */
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
             }       nhstepm is the number of hstepm from age to agelim 
             for(j=1; j<=nlstate+ndeath;j++) {       nstepm is the number of stepm from age to agelin. 
               kk1=0.;kk2=0;       Look at hpijx to understand the reason of that which relies in memory size
               for(i=1; i<=nlstate;i++) {                     and note for a fixed period like estepm months */
                 if (mobilav==1)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];       survival function given by stepm (the optimization length). Unfortunately it
                 else {       means that if the survival funtion is printed only each two years of age and if
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                 }       results. So we changed our mind and took the option of the best precision.
               }    */
               if (h==(int)(calagedate+12*cpt)){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;  
                   /*fprintf(ficrespop," %.3f", kk1);    /* If stepm=6 months */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    /* nhstepm age range expressed in number of stepm */
               }    agelim=AGESUP;
             }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
             for(i=1; i<=nlstate;i++){    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
               kk1=0.;    /* if (stepm >= YEARM) hstepm=1;*/
                 for(j=1; j<=nlstate;j++){    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    
                 }    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             }    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    gp=matrix(0,nhstepm,1,nlstate*nlstate);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (age=bage; age<=fage; age ++){ 
         }      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
        /* if (stepm >= YEARM) hstepm=1;*/
   /******/      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      /* If stepm=6 months */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        /* Computed by stepm unit matrices, product of hstepma matrices, stored
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      
           nhstepm = nhstepm/hstepm;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* Computing  Variances of health expectancies */
           oldm=oldms;savm=savms;      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);           decrease memory allocation */
           for (h=0; h<=nhstepm; h++){      for(theta=1; theta <=npar; theta++){
             if (h==(int) (calagedate+YEARM*cpt)) {        for(i=1; i<=npar; i++){ 
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
             }          xm[i] = x[i] - (i==theta ?delti[theta]:0);
             for(j=1; j<=nlstate+ndeath;j++) {        }
               kk1=0.;kk2=0;        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
               for(i=1; i<=nlstate;i++) {                      hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        
               }        for(j=1; j<= nlstate; j++){
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);          for(i=1; i<=nlstate; i++){
             }            for(h=0; h<=nhstepm-1; h++){
           }              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
         }            }
       }          }
    }        }
   }       
          for(ij=1; ij<= nlstate*nlstate; ij++)
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   if (popforecast==1) {          }
     free_ivector(popage,0,AGESUP);      }/* End theta */
     free_vector(popeffectif,0,AGESUP);      
     free_vector(popcount,0,AGESUP);      
   }      for(h=0; h<=nhstepm-1; h++)
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=1; j<=nlstate*nlstate;j++)
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(theta=1; theta <=npar; theta++)
   fclose(ficrespop);            trgradg[h][j][theta]=gradg[h][theta][j];
 }      
   
 /***********************************************/       for(ij=1;ij<=nlstate*nlstate;ij++)
 /**************** Main Program *****************/        for(ji=1;ji<=nlstate*nlstate;ji++)
 /***********************************************/          varhe[ij][ji][(int)age] =0.;
   
 int main(int argc, char *argv[])       printf("%d|",(int)age);fflush(stdout);
 {       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;        for(k=0;k<=nhstepm-1;k++){
   double agedeb, agefin,hf;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
   double fret;            for(ji=1;ji<=nlstate*nlstate;ji++)
   double **xi,tmp,delta;              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
   double dum; /* Dummy variable */      }
   double ***p3mat;  
   int *indx;      /* Computing expectancies */
   char line[MAXLINE], linepar[MAXLINE];      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];      for(i=1; i<=nlstate;i++)
   int firstobs=1, lastobs=10;        for(j=1; j<=nlstate;j++)
   int sdeb, sfin; /* Status at beginning and end */          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   int c,  h , cpt,l;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   int ju,jl, mi;            
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;  
   int mobilav=0,popforecast=0;          }
   int hstepm, nhstepm;  
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
   double bage, fage, age, agelim, agebase;        eip=0.;
   double ftolpl=FTOL;        vip=0.;
   double **prlim;        for(j=1; j<=nlstate;j++){
   double *severity;          eip += eij[i][j][(int)age];
   double ***param; /* Matrix of parameters */          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   double  *p;            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   double **matcov; /* Matrix of covariance */          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   double ***delti3; /* Scale */        }
   double *delti; /* Scale */        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   double ***eij, ***vareij;      }
   double **varpl; /* Variances of prevalence limits by age */      fprintf(ficresstdeij,"\n");
   double *epj, vepp;  
   double kk1, kk2;      fprintf(ficrescveij,"%3.0f",age );
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      for(i=1; i<=nlstate;i++)
          for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
   char *alph[]={"a","a","b","c","d","e"}, str[4];          for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
   char z[1]="c", occ;              if(cptj2 <= cptj)
 #include <sys/time.h>                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
 #include <time.h>            }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        }
        fprintf(ficrescveij,"\n");
   /* long total_usecs;     
   struct timeval start_time, end_time;    }
      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   getcwd(pathcd, size);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   printf("\n%s",version);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if(argc <=1){    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\nEnter the parameter file name: ");    printf("\n");
     scanf("%s",pathtot);    fprintf(ficlog,"\n");
   }  
   else{    free_vector(xm,1,npar);
     strcpy(pathtot,argv[1]);    free_vector(xp,1,npar);
   }    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   /*cygwin_split_path(pathtot,path,optionfile);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  }
   /* cutv(path,optionfile,pathtot,'\\');*/  
   /************ Variance ******************/
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  {
   chdir(path);    /* Variance of health expectancies */
   replace(pathc,path);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
 /*-------- arguments in the command line --------*/    double **dnewm,**doldm;
     double **dnewmp,**doldmp;
   /* Log file */    int i, j, nhstepm, hstepm, h, nstepm ;
   strcat(filelog, optionfilefiname);    int k, cptcode;
   strcat(filelog,".log");    /* */    double *xp;
   if((ficlog=fopen(filelog,"w"))==NULL)    {    double **gp, **gm;  /* for var eij */
     printf("Problem with logfile %s\n",filelog);    double ***gradg, ***trgradg; /*for var eij */
     goto end;    double **gradgp, **trgradgp; /* for var p point j */
   }    double *gpp, *gmp; /* for var p point j */
   fprintf(ficlog,"Log filename:%s\n",filelog);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   fprintf(ficlog,"\n%s",version);    double ***p3mat;
   fprintf(ficlog,"\nEnter the parameter file name: ");    double age,agelim, hf;
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    double ***mobaverage;
   fflush(ficlog);    int theta;
     char digit[4];
   /* */    char digitp[25];
   strcpy(fileres,"r");  
   strcat(fileres, optionfilefiname);    char fileresprobmorprev[FILENAMELENGTH];
   strcat(fileres,".txt");    /* Other files have txt extension */  
     if(popbased==1){
   /*---------arguments file --------*/      if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      else strcpy(digitp,"-populbased-nomobil-");
     printf("Problem with optionfile %s\n",optionfile);    }
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);    else 
     goto end;      strcpy(digitp,"-stablbased-");
   }  
     if (mobilav!=0) {
   strcpy(filereso,"o");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcat(filereso,fileres);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   if((ficparo=fopen(filereso,"w"))==NULL) {        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     printf("Problem with Output resultfile: %s\n", filereso);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);      }
     goto end;    }
   }  
     strcpy(fileresprobmorprev,"prmorprev"); 
   /* Reads comments: lines beginning with '#' */    sprintf(digit,"%-d",ij);
   while((c=getc(ficpar))=='#' && c!= EOF){    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     ungetc(c,ficpar);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     fgets(line, MAXLINE, ficpar);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     puts(line);    strcat(fileresprobmorprev,fileres);
     fputs(line,ficparo);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   ungetc(c,ficpar);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);   
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
 while((c=getc(ficpar))=='#' && c!= EOF){    pstamp(ficresprobmorprev);
     ungetc(c,ficpar);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fgets(line, MAXLINE, ficpar);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     puts(line);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     fputs(line,ficparo);      fprintf(ficresprobmorprev," p.%-d SE",j);
   }      for(i=1; i<=nlstate;i++)
   ungetc(c,ficpar);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
      }  
        fprintf(ficresprobmorprev,"\n");
   covar=matrix(0,NCOVMAX,1,n);    fprintf(ficgp,"\n# Routine varevsij");
   cptcovn=0;    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   ncovmodel=2+cptcovn;  /*   } */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      pstamp(ficresvij);
   /* Read guess parameters */    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   /* Reads comments: lines beginning with '#' */    if(popbased==1)
   while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     ungetc(c,ficpar);    else
     fgets(line, MAXLINE, ficpar);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     puts(line);    fprintf(ficresvij,"# Age");
     fputs(line,ficparo);    for(i=1; i<=nlstate;i++)
   }      for(j=1; j<=nlstate;j++)
   ungetc(c,ficpar);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
      fprintf(ficresvij,"\n");
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
     for(i=1; i <=nlstate; i++)    xp=vector(1,npar);
     for(j=1; j <=nlstate+ndeath-1; j++){    dnewm=matrix(1,nlstate,1,npar);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    doldm=matrix(1,nlstate,1,nlstate);
       fprintf(ficparo,"%1d%1d",i1,j1);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       if(mle==1)    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         printf("%1d%1d",i,j);  
       fprintf(ficlog,"%1d%1d",i,j);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       for(k=1; k<=ncovmodel;k++){    gpp=vector(nlstate+1,nlstate+ndeath);
         fscanf(ficpar," %lf",&param[i][j][k]);    gmp=vector(nlstate+1,nlstate+ndeath);
         if(mle==1){    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           printf(" %lf",param[i][j][k]);    
           fprintf(ficlog," %lf",param[i][j][k]);    if(estepm < stepm){
         }      printf ("Problem %d lower than %d\n",estepm, stepm);
         else    }
           fprintf(ficlog," %lf",param[i][j][k]);    else  hstepm=estepm;   
         fprintf(ficparo," %lf",param[i][j][k]);    /* For example we decided to compute the life expectancy with the smallest unit */
       }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       fscanf(ficpar,"\n");       nhstepm is the number of hstepm from age to agelim 
       if(mle==1)       nstepm is the number of stepm from age to agelin. 
         printf("\n");       Look at function hpijx to understand why (it is linked to memory size questions) */
       fprintf(ficlog,"\n");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       fprintf(ficparo,"\n");       survival function given by stepm (the optimization length). Unfortunately it
     }       means that if the survival funtion is printed every two years of age and if
         you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;       results. So we changed our mind and took the option of the best precision.
     */
   p=param[1][1];    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      agelim = AGESUP;
   /* Reads comments: lines beginning with '#' */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   while((c=getc(ficpar))=='#' && c!= EOF){      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     ungetc(c,ficpar);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     fgets(line, MAXLINE, ficpar);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     puts(line);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     fputs(line,ficparo);      gp=matrix(0,nhstepm,1,nlstate);
   }      gm=matrix(0,nhstepm,1,nlstate);
   ungetc(c,ficpar);  
   
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      for(theta=1; theta <=npar; theta++){
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   for(i=1; i <=nlstate; i++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     for(j=1; j <=nlstate+ndeath-1; j++){        }
       fscanf(ficpar,"%1d%1d",&i1,&j1);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       printf("%1d%1d",i,j);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       fprintf(ficparo,"%1d%1d",i1,j1);  
       for(k=1; k<=ncovmodel;k++){        if (popbased==1) {
         fscanf(ficpar,"%le",&delti3[i][j][k]);          if(mobilav ==0){
         printf(" %le",delti3[i][j][k]);            for(i=1; i<=nlstate;i++)
         fprintf(ficparo," %le",delti3[i][j][k]);              prlim[i][i]=probs[(int)age][i][ij];
       }          }else{ /* mobilav */ 
       fscanf(ficpar,"\n");            for(i=1; i<=nlstate;i++)
       printf("\n");              prlim[i][i]=mobaverage[(int)age][i][ij];
       fprintf(ficparo,"\n");          }
     }        }
   }    
   delti=delti3[1][1];        for(j=1; j<= nlstate; j++){
            for(h=0; h<=nhstepm; h++){
   /* Reads comments: lines beginning with '#' */            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   while((c=getc(ficpar))=='#' && c!= EOF){              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     ungetc(c,ficpar);          }
     fgets(line, MAXLINE, ficpar);        }
     puts(line);        /* This for computing probability of death (h=1 means
     fputs(line,ficparo);           computed over hstepm matrices product = hstepm*stepm months) 
   }           as a weighted average of prlim.
   ungetc(c,ficpar);        */
          for(j=nlstate+1;j<=nlstate+ndeath;j++){
   matcov=matrix(1,npar,1,npar);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   for(i=1; i <=npar; i++){            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     fscanf(ficpar,"%s",&str);        }    
     if(mle==1)        /* end probability of death */
       printf("%s",str);  
     fprintf(ficlog,"%s",str);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     fprintf(ficparo,"%s",str);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     for(j=1; j <=i; j++){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       fscanf(ficpar," %le",&matcov[i][j]);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       if(mle==1){   
         printf(" %.5le",matcov[i][j]);        if (popbased==1) {
         fprintf(ficlog," %.5le",matcov[i][j]);          if(mobilav ==0){
       }            for(i=1; i<=nlstate;i++)
       else              prlim[i][i]=probs[(int)age][i][ij];
         fprintf(ficlog," %.5le",matcov[i][j]);          }else{ /* mobilav */ 
       fprintf(ficparo," %.5le",matcov[i][j]);            for(i=1; i<=nlstate;i++)
     }              prlim[i][i]=mobaverage[(int)age][i][ij];
     fscanf(ficpar,"\n");          }
     if(mle==1)        }
       printf("\n");  
     fprintf(ficlog,"\n");        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
     fprintf(ficparo,"\n");          for(h=0; h<=nhstepm; h++){
   }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   for(i=1; i <=npar; i++)              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     for(j=i+1;j<=npar;j++)          }
       matcov[i][j]=matcov[j][i];        }
            /* This for computing probability of death (h=1 means
   if(mle==1)           computed over hstepm matrices product = hstepm*stepm months) 
     printf("\n");           as a weighted average of prlim.
   fprintf(ficlog,"\n");        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
     /*-------- Rewriting paramater file ----------*/           gmp[j] += prlim[i][i]*p3mat[i][j][1];
      strcpy(rfileres,"r");    /* "Rparameterfile */        }    
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        /* end probability of death */
      strcat(rfileres,".");    /* */  
      strcat(rfileres,optionfilext);    /* Other files have txt extension */        for(j=1; j<= nlstate; j++) /* vareij */
     if((ficres =fopen(rfileres,"w"))==NULL) {          for(h=0; h<=nhstepm; h++){
       printf("Problem writing new parameter file: %s\n", fileres);goto end;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;          }
     }  
     fprintf(ficres,"#%s\n",version);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
              gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     /*-------- data file ----------*/        }
     if((fic=fopen(datafile,"r"))==NULL)    {  
       printf("Problem with datafile: %s\n", datafile);goto end;      } /* End theta */
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;  
     }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
     n= lastobs;      for(h=0; h<=nhstepm; h++) /* veij */
     severity = vector(1,maxwav);        for(j=1; j<=nlstate;j++)
     outcome=imatrix(1,maxwav+1,1,n);          for(theta=1; theta <=npar; theta++)
     num=ivector(1,n);            trgradg[h][j][theta]=gradg[h][theta][j];
     moisnais=vector(1,n);  
     annais=vector(1,n);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     moisdc=vector(1,n);        for(theta=1; theta <=npar; theta++)
     andc=vector(1,n);          trgradgp[j][theta]=gradgp[theta][j];
     agedc=vector(1,n);    
     cod=ivector(1,n);  
     weight=vector(1,n);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      for(i=1;i<=nlstate;i++)
     mint=matrix(1,maxwav,1,n);        for(j=1;j<=nlstate;j++)
     anint=matrix(1,maxwav,1,n);          vareij[i][j][(int)age] =0.;
     s=imatrix(1,maxwav+1,1,n);  
     adl=imatrix(1,maxwav+1,1,n);          for(h=0;h<=nhstepm;h++){
     tab=ivector(1,NCOVMAX);        for(k=0;k<=nhstepm;k++){
     ncodemax=ivector(1,8);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     i=1;          for(i=1;i<=nlstate;i++)
     while (fgets(line, MAXLINE, fic) != NULL)    {            for(j=1;j<=nlstate;j++)
       if ((i >= firstobs) && (i <=lastobs)) {              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
                }
         for (j=maxwav;j>=1;j--){      }
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    
           strcpy(line,stra);      /* pptj */
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         }      for(j=nlstate+1;j<=nlstate+ndeath;j++)
                for(i=nlstate+1;i<=nlstate+ndeath;i++)
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          varppt[j][i]=doldmp[j][i];
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      /* end ppptj */
       /*  x centered again */
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      if (popbased==1) {
         for (j=ncovcol;j>=1;j--){        if(mobilav ==0){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for(i=1; i<=nlstate;i++)
         }            prlim[i][i]=probs[(int)age][i][ij];
         num[i]=atol(stra);        }else{ /* mobilav */ 
                  for(i=1; i<=nlstate;i++)
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){            prlim[i][i]=mobaverage[(int)age][i][ij];
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        }
       }
         i=i+1;               
       }      /* This for computing probability of death (h=1 means
     }         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     /* printf("ii=%d", ij);         as a weighted average of prlim.
        scanf("%d",i);*/      */
   imx=i-1; /* Number of individuals */      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   /* for (i=1; i<=imx; i++){          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      }    
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      /* end probability of death */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  
     }*/      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
    /*  for (i=1; i<=imx; i++){      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
      if (s[4][i]==9)  s[4][i]=-1;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        for(i=1; i<=nlstate;i++){
            fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
          }
   /* Calculation of the number of parameter from char model*/      } 
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */      fprintf(ficresprobmorprev,"\n");
   Tprod=ivector(1,15);  
   Tvaraff=ivector(1,15);      fprintf(ficresvij,"%.0f ",age );
   Tvard=imatrix(1,15,1,2);      for(i=1; i<=nlstate;i++)
   Tage=ivector(1,15);              for(j=1; j<=nlstate;j++){
              fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   if (strlen(model) >1){        }
     j=0, j1=0, k1=1, k2=1;      fprintf(ficresvij,"\n");
     j=nbocc(model,'+');      free_matrix(gp,0,nhstepm,1,nlstate);
     j1=nbocc(model,'*');      free_matrix(gm,0,nhstepm,1,nlstate);
     cptcovn=j+1;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
     cptcovprod=j1;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
          free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     strcpy(modelsav,model);    } /* End age */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    free_vector(gpp,nlstate+1,nlstate+ndeath);
       printf("Error. Non available option model=%s ",model);    free_vector(gmp,nlstate+1,nlstate+ndeath);
       fprintf(ficlog,"Error. Non available option model=%s ",model);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       goto end;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     }    fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
        /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     for(i=(j+1); i>=1;i--){    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
       /*scanf("%d",i);*/    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
       if (strchr(strb,'*')) {  /* Model includes a product */    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
         if (strcmp(strc,"age")==0) { /* Vn*age */    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
           cptcovprod--;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           cutv(strb,stre,strd,'V');    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/  */
           cptcovage++;  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
             Tage[cptcovage]=i;    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
             /*printf("stre=%s ", stre);*/  
         }    free_vector(xp,1,npar);
         else if (strcmp(strd,"age")==0) { /* or age*Vn */    free_matrix(doldm,1,nlstate,1,nlstate);
           cptcovprod--;    free_matrix(dnewm,1,nlstate,1,npar);
           cutv(strb,stre,strc,'V');    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           Tvar[i]=atoi(stre);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
           cptcovage++;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           Tage[cptcovage]=i;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         }    fclose(ficresprobmorprev);
         else {  /* Age is not in the model */    fflush(ficgp);
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/    fflush(fichtm); 
           Tvar[i]=ncovcol+k1;  }  /* end varevsij */
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */  
           Tprod[k1]=i;  /************ Variance of prevlim ******************/
           Tvard[k1][1]=atoi(strc); /* m*/  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
           Tvard[k1][2]=atoi(stre); /* n */  {
           Tvar[cptcovn+k2]=Tvard[k1][1];    /* Variance of prevalence limit */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
           for (k=1; k<=lastobs;k++)    double **newm;
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    double **dnewm,**doldm;
           k1++;    int i, j, nhstepm, hstepm;
           k2=k2+2;    int k, cptcode;
         }    double *xp;
       }    double *gp, *gm;
       else { /* no more sum */    double **gradg, **trgradg;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    double age,agelim;
        /*  scanf("%d",i);*/    int theta;
       cutv(strd,strc,strb,'V');    
       Tvar[i]=atoi(strc);    pstamp(ficresvpl);
       }    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
       strcpy(modelsav,stra);      fprintf(ficresvpl,"# Age");
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    for(i=1; i<=nlstate;i++)
         scanf("%d",i);*/        fprintf(ficresvpl," %1d-%1d",i,i);
     } /* end of loop + */    fprintf(ficresvpl,"\n");
   } /* end model */  
      xp=vector(1,npar);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    dnewm=matrix(1,nlstate,1,npar);
   printf("cptcovprod=%d ", cptcovprod);    doldm=matrix(1,nlstate,1,nlstate);
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    
   scanf("%d ",i);*/    hstepm=1*YEARM; /* Every year of age */
     fclose(fic);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     /*  if(mle==1){*/    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     if (weightopt != 1) { /* Maximisation without weights*/      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       for(i=1;i<=n;i++) weight[i]=1.0;      if (stepm >= YEARM) hstepm=1;
     }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     /*-calculation of age at interview from date of interview and age at death -*/      gradg=matrix(1,npar,1,nlstate);
     agev=matrix(1,maxwav,1,imx);      gp=vector(1,nlstate);
       gm=vector(1,nlstate);
     for (i=1; i<=imx; i++) {  
       for(m=2; (m<= maxwav); m++) {      for(theta=1; theta <=npar; theta++){
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        for(i=1; i<=npar; i++){ /* Computes gradient */
          anint[m][i]=9999;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          s[m][i]=-1;        }
        }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;        for(i=1;i<=nlstate;i++)
       }          gp[i] = prlim[i][i];
     }      
         for(i=1; i<=npar; i++) /* Computes gradient */
     for (i=1; i<=imx; i++)  {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       for(m=1; (m<= maxwav); m++){        for(i=1;i<=nlstate;i++)
         if(s[m][i] >0){          gm[i] = prlim[i][i];
           if (s[m][i] >= nlstate+1) {  
             if(agedc[i]>0)        for(i=1;i<=nlstate;i++)
               if(moisdc[i]!=99 && andc[i]!=9999)          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
                 agev[m][i]=agedc[i];      } /* End theta */
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  
            else {      trgradg =matrix(1,nlstate,1,npar);
               if (andc[i]!=9999){  
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      for(j=1; j<=nlstate;j++)
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);        for(theta=1; theta <=npar; theta++)
               agev[m][i]=-1;          trgradg[j][theta]=gradg[theta][j];
               }  
             }      for(i=1;i<=nlstate;i++)
           }        varpl[i][(int)age] =0.;
           else if(s[m][i] !=9){ /* Should no more exist */      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
             if(mint[m][i]==99 || anint[m][i]==9999)      for(i=1;i<=nlstate;i++)
               agev[m][i]=1;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
             else if(agev[m][i] <agemin){  
               agemin=agev[m][i];      fprintf(ficresvpl,"%.0f ",age );
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      for(i=1; i<=nlstate;i++)
             }        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
             else if(agev[m][i] >agemax){      fprintf(ficresvpl,"\n");
               agemax=agev[m][i];      free_vector(gp,1,nlstate);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      free_vector(gm,1,nlstate);
             }      free_matrix(gradg,1,npar,1,nlstate);
             /*agev[m][i]=anint[m][i]-annais[i];*/      free_matrix(trgradg,1,nlstate,1,npar);
             /*   agev[m][i] = age[i]+2*m;*/    } /* End age */
           }  
           else { /* =9 */    free_vector(xp,1,npar);
             agev[m][i]=1;    free_matrix(doldm,1,nlstate,1,npar);
             s[m][i]=-1;    free_matrix(dnewm,1,nlstate,1,nlstate);
           }  
         }  }
         else /*= 0 Unknown */  
           agev[m][i]=1;  /************ Variance of one-step probabilities  ******************/
       }  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
      {
     }    int i, j=0,  i1, k1, l1, t, tj;
     for (i=1; i<=imx; i++)  {    int k2, l2, j1,  z1;
       for(m=1; (m<= maxwav); m++){    int k=0,l, cptcode;
         if (s[m][i] > (nlstate+ndeath)) {    int first=1, first1, first2;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      double **dnewm,**doldm;
           goto end;    double *xp;
         }    double *gp, *gm;
       }    double **gradg, **trgradg;
     }    double **mu;
     double age,agelim, cov[NCOVMAX+1];
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    int theta;
     char fileresprob[FILENAMELENGTH];
     free_vector(severity,1,maxwav);    char fileresprobcov[FILENAMELENGTH];
     free_imatrix(outcome,1,maxwav+1,1,n);    char fileresprobcor[FILENAMELENGTH];
     free_vector(moisnais,1,n);    double ***varpij;
     free_vector(annais,1,n);  
     /* free_matrix(mint,1,maxwav,1,n);    strcpy(fileresprob,"prob"); 
        free_matrix(anint,1,maxwav,1,n);*/    strcat(fileresprob,fileres);
     free_vector(moisdc,1,n);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     free_vector(andc,1,n);      printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
        }
     wav=ivector(1,imx);    strcpy(fileresprobcov,"probcov"); 
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    strcat(fileresprobcov,fileres);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
          printf("Problem with resultfile: %s\n", fileresprobcov);
     /* Concatenates waves */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
       Tcode=ivector(1,100);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      printf("Problem with resultfile: %s\n", fileresprobcor);
       ncodemax[1]=1;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    }
          printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
    codtab=imatrix(1,100,1,10);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
    h=0;    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
    m=pow(2,cptcoveff);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
      printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
    for(k=1;k<=cptcoveff; k++){    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
      for(i=1; i <=(m/pow(2,k));i++){    pstamp(ficresprob);
        for(j=1; j <= ncodemax[k]; j++){    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    fprintf(ficresprob,"# Age");
            h++;    pstamp(ficresprobcov);
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    fprintf(ficresprobcov,"# Age");
          }    pstamp(ficresprobcor);
        }    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
      }    fprintf(ficresprobcor,"# Age");
    }  
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);  
       codtab[1][2]=1;codtab[2][2]=2; */    for(i=1; i<=nlstate;i++)
    /* for(i=1; i <=m ;i++){      for(j=1; j<=(nlstate+ndeath);j++){
       for(k=1; k <=cptcovn; k++){        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
       }        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       printf("\n");      }  
       }   /* fprintf(ficresprob,"\n");
       scanf("%d",i);*/    fprintf(ficresprobcov,"\n");
        fprintf(ficresprobcor,"\n");
    /* Calculates basic frequencies. Computes observed prevalence at single age   */
        and prints on file fileres'p'. */    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
        doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
        mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    first=1;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficgp,"\n# Routine varprob");
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    fprintf(fichtm,"\n");
        
     /* For Powell, parameters are in a vector p[] starting at p[1]    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
     if(mle==1){  and drawn. It helps understanding how is the covariance between two incidences.\
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     }    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
      It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     /*--------- results files --------------*/  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  standard deviations wide on each axis. <br>\
     Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
    jk=1;  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    cov[1]=1;
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    /* tj=cptcoveff; */
    for(i=1,jk=1; i <=nlstate; i++){    tj = (int) pow(2,cptcoveff);
      for(k=1; k <=(nlstate+ndeath); k++){    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
        if (k != i)    j1=0;
          {    for(j1=1; j1<=tj;j1++){
            printf("%d%d ",i,k);      /*for(i1=1; i1<=ncodemax[t];i1++){ */
            fprintf(ficlog,"%d%d ",i,k);      /*j1++;*/
            fprintf(ficres,"%1d%1d ",i,k);        if  (cptcovn>0) {
            for(j=1; j <=ncovmodel; j++){          fprintf(ficresprob, "\n#********** Variable "); 
              printf("%f ",p[jk]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
              fprintf(ficlog,"%f ",p[jk]);          fprintf(ficresprob, "**********\n#\n");
              fprintf(ficres,"%f ",p[jk]);          fprintf(ficresprobcov, "\n#********** Variable "); 
              jk++;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            }          fprintf(ficresprobcov, "**********\n#\n");
            printf("\n");          
            fprintf(ficlog,"\n");          fprintf(ficgp, "\n#********** Variable "); 
            fprintf(ficres,"\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
          }          fprintf(ficgp, "**********\n#\n");
      }          
    }          
    if(mle==1){          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
      /* Computing hessian and covariance matrix */          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      ftolhess=ftol; /* Usually correct */          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
      hesscov(matcov, p, npar, delti, ftolhess, func);          
    }          fprintf(ficresprobcor, "\n#********** Variable ");    
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    printf("# Scales (for hessian or gradient estimation)\n");          fprintf(ficresprobcor, "**********\n#");    
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");        }
    for(i=1,jk=1; i <=nlstate; i++){        
      for(j=1; j <=nlstate+ndeath; j++){        gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
        if (j!=i) {        trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
          fprintf(ficres,"%1d%1d",i,j);        gp=vector(1,(nlstate)*(nlstate+ndeath));
          printf("%1d%1d",i,j);        gm=vector(1,(nlstate)*(nlstate+ndeath));
          fprintf(ficlog,"%1d%1d",i,j);        for (age=bage; age<=fage; age ++){ 
          for(k=1; k<=ncovmodel;k++){          cov[2]=age;
            printf(" %.5e",delti[jk]);          for (k=1; k<=cptcovn;k++) {
            fprintf(ficlog," %.5e",delti[jk]);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
            fprintf(ficres," %.5e",delti[jk]);                                                           * 1  1 1 1 1
            jk++;                                                           * 2  2 1 1 1
          }                                                           * 3  1 2 1 1
          printf("\n");                                                           */
          fprintf(ficlog,"\n");            /* nbcode[1][1]=0 nbcode[1][2]=1;*/
          fprintf(ficres,"\n");          }
        }          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
      }          for (k=1; k<=cptcovprod;k++)
    }            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
              
    k=1;      
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          for(theta=1; theta <=npar; theta++){
    if(mle==1)            for(i=1; i<=npar; i++)
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");            
    for(i=1;i<=npar;i++){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
      /*  if (k>nlstate) k=1;            
          i1=(i-1)/(ncovmodel*nlstate)+1;            k=0;
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);            for(i=1; i<= (nlstate); i++){
          printf("%s%d%d",alph[k],i1,tab[i]);*/              for(j=1; j<=(nlstate+ndeath);j++){
      fprintf(ficres,"%3d",i);                k=k+1;
      if(mle==1)                gp[k]=pmmij[i][j];
        printf("%3d",i);              }
      fprintf(ficlog,"%3d",i);            }
      for(j=1; j<=i;j++){            
        fprintf(ficres," %.5e",matcov[i][j]);            for(i=1; i<=npar; i++)
        if(mle==1)              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
          printf(" %.5e",matcov[i][j]);      
        fprintf(ficlog," %.5e",matcov[i][j]);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
      }            k=0;
      fprintf(ficres,"\n");            for(i=1; i<=(nlstate); i++){
      if(mle==1)              for(j=1; j<=(nlstate+ndeath);j++){
        printf("\n");                k=k+1;
      fprintf(ficlog,"\n");                gm[k]=pmmij[i][j];
      k++;              }
    }            }
           
    while((c=getc(ficpar))=='#' && c!= EOF){            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
      ungetc(c,ficpar);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
      fgets(line, MAXLINE, ficpar);          }
      puts(line);  
      fputs(line,ficparo);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
    }            for(theta=1; theta <=npar; theta++)
    ungetc(c,ficpar);              trgradg[j][theta]=gradg[theta][j];
    estepm=0;          
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
    if (estepm==0 || estepm < stepm) estepm=stepm;          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
    if (fage <= 2) {  
      bage = ageminpar;          pmij(pmmij,cov,ncovmodel,x,nlstate);
      fage = agemaxpar;          
    }          k=0;
              for(i=1; i<=(nlstate); i++){
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");            for(j=1; j<=(nlstate+ndeath);j++){
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);              k=k+1;
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);              mu[k][(int) age]=pmmij[i][j];
                }
    while((c=getc(ficpar))=='#' && c!= EOF){          }
      ungetc(c,ficpar);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
      fgets(line, MAXLINE, ficpar);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
      puts(line);              varpij[i][j][(int)age] = doldm[i][j];
      fputs(line,ficparo);  
    }          /*printf("\n%d ",(int)age);
    ungetc(c,ficpar);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
              printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            }*/
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
              fprintf(ficresprob,"\n%d ",(int)age);
    while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficresprobcov,"\n%d ",(int)age);
      ungetc(c,ficpar);          fprintf(ficresprobcor,"\n%d ",(int)age);
      fgets(line, MAXLINE, ficpar);  
      puts(line);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
      fputs(line,ficparo);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
    }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
    ungetc(c,ficpar);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
              fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
    dateprev1=anprev1+mprev1/12.+jprev1/365.;          i=0;
    dateprev2=anprev2+mprev2/12.+jprev2/365.;          for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
   fscanf(ficpar,"pop_based=%d\n",&popbased);              i++;
   fprintf(ficparo,"pop_based=%d\n",popbased);                fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   fprintf(ficres,"pop_based=%d\n",popbased);                fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
                for (j=1; j<=i;j++){
   while((c=getc(ficpar))=='#' && c!= EOF){                /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
     ungetc(c,ficpar);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
     fgets(line, MAXLINE, ficpar);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
     puts(line);              }
     fputs(line,ficparo);            }
   }          }/* end of loop for state */
   ungetc(c,ficpar);        } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);        free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
 while((c=getc(ficpar))=='#' && c!= EOF){        /*
     ungetc(c,ficpar);          fprintf(ficgp,"\nunset parametric;unset label");
     fgets(line, MAXLINE, ficpar);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
     puts(line);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     fputs(line,ficparo);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   }          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   ungetc(c,ficpar);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);        */
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
 /*------------ gnuplot -------------*/            if(l2==k2) continue;
   strcpy(optionfilegnuplot,optionfilefiname);            j=(k2-1)*(nlstate+ndeath)+l2;
   strcat(optionfilegnuplot,".gp");            for (k1=1; k1<=(nlstate);k1++){
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     printf("Problem with file %s",optionfilegnuplot);                if(l1==k1) continue;
   }                i=(k1-1)*(nlstate+ndeath)+l1;
   fclose(ficgp);                if(i<=j) continue;
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);                for (age=bage; age<=fage; age ++){ 
 /*--------- index.htm --------*/                  if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   strcpy(optionfilehtm,optionfile);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   strcat(optionfilehtm,".htm");                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {                    mu1=mu[i][(int) age]/stepm*YEARM ;
     printf("Problem with %s \n",optionfilehtm), exit(0);                    mu2=mu[j][(int) age]/stepm*YEARM;
   }                    c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
 \n                    if ((lc2 <0) || (lc1 <0) ){
 Total number of observations=%d <br>\n                      if(first2==1){
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n                        first1=0;
 <hr  size=\"2\" color=\"#EC5E5E\">                      printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
  <ul><li><h4>Parameter files</h4>\n                      }
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n                      fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
  - Log file of the run: <a href=\"%s\">%s</a><br>\n                      /* lc1=fabs(lc1); */ /* If we want to have them positive */
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);                      /* lc2=fabs(lc2); */
   fclose(fichtm);                    }
   
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);                    /* Eigen vectors */
                      v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
 /*------------ free_vector  -------------*/                    /*v21=sqrt(1.-v11*v11); *//* error */
  chdir(path);                    v21=(lc1-v1)/cv12*v11;
                      v12=-v21;
  free_ivector(wav,1,imx);                    v22=v11;
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                    tnalp=v21/v11;
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                      if(first1==1){
  free_ivector(num,1,n);                      first1=0;
  free_vector(agedc,1,n);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/                    }
  fclose(ficparo);                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
  fclose(ficres);                    /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   /*--------------- Prevalence limit --------------*/                    if(first==1){
                        first=0;
   strcpy(filerespl,"pl");                      fprintf(ficgp,"\nset parametric;unset label");
   strcat(filerespl,fileres);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {                      fprintf(ficgp,"\nset ter png small size 320, 240");
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   }  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   fprintf(ficrespl,"#Prevalence limit\n");                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   fprintf(ficrespl,"#Age ");                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   fprintf(ficrespl,"\n");                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                        fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   prlim=matrix(1,nlstate,1,nlstate);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    }else{
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                      first=0;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   k=0;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   agebase=ageminpar;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   agelim=agemaxpar;                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   ftolpl=1.e-10;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   i1=cptcoveff;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   if (cptcovn < 1){i1=1;}                    }/* if first */
                   } /* age mod 5 */
   for(cptcov=1;cptcov<=i1;cptcov++){                } /* end loop age */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         k=k+1;                first=1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/              } /*l12 */
         fprintf(ficrespl,"\n#******");            } /* k12 */
         printf("\n#******");          } /*l1 */
         fprintf(ficlog,"\n#******");        }/* k1 */
         for(j=1;j<=cptcoveff;j++) {        /* } /* loop covariates */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
         }    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
         fprintf(ficrespl,"******\n");    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
         printf("******\n");    free_vector(xp,1,npar);
         fprintf(ficlog,"******\n");    fclose(ficresprob);
            fclose(ficresprobcov);
         for (age=agebase; age<=agelim; age++){    fclose(ficresprobcor);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    fflush(ficgp);
           fprintf(ficrespl,"%.0f",age );    fflush(fichtmcov);
           for(i=1; i<=nlstate;i++)  }
           fprintf(ficrespl," %.5f", prlim[i][i]);  
           fprintf(ficrespl,"\n");  
         }  /******************* Printing html file ***********/
       }  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
     }                    int lastpass, int stepm, int weightopt, char model[],\
   fclose(ficrespl);                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
   /*------------- h Pij x at various ages ------------*/                    double jprev1, double mprev1,double anprev1, \
                      double jprev2, double mprev2,double anprev2){
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    int jj1, k1, i1, cpt;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   }  </ul>");
   printf("Computing pij: result on file '%s' \n", filerespij);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
               jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   stepsize=(int) (stepm+YEARM-1)/YEARM;     fprintf(fichtm,"\
   /*if (stepm<=24) stepsize=2;*/   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   agelim=AGESUP;     fprintf(fichtm,"\
   hstepm=stepsize*YEARM; /* Every year of age */   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
   /* hstepm=1;   aff par mois*/   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
   k=0;             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   for(cptcov=1;cptcov<=i1;cptcov++){     fprintf(fichtm,"\
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   - Population projections by age and states: \
       k=k+1;     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
         fprintf(ficrespij,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespij,"******\n");   m=pow(2,cptcoveff);
           if (cptcovn < 1) {m=1;ncodemax[1]=1;}
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */   jj1=0;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */   for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
           /*      nhstepm=nhstepm*YEARM; aff par mois*/       jj1++;
        if (cptcovn > 0) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           oldm=oldms;savm=savms;         for (cpt=1; cpt<=cptcoveff;cpt++) 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);             fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           fprintf(ficrespij,"# Age");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
           for(i=1; i<=nlstate;i++)       }
             for(j=1; j<=nlstate+ndeath;j++)       /* Pij */
               fprintf(ficrespij," %1d-%1d",i,j);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
           fprintf(ficrespij,"\n");  <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
            for (h=0; h<=nhstepm; h++){       /* Quasi-incidences */
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
             for(i=1; i<=nlstate;i++)   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
               for(j=1; j<=nlstate+ndeath;j++)  <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);         /* Period (stable) prevalence in each health state */
             fprintf(ficrespij,"\n");         for(cpt=1; cpt<nlstate;cpt++){
              }           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  <img src=\"%s%d_%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
           fprintf(ficrespij,"\n");         }
         }       for(cpt=1; cpt<=nlstate;cpt++) {
     }          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);     } /* end i1 */
    }/* End k1 */
   fclose(ficrespij);   fprintf(fichtm,"</ul>");
   
   
   /*---------- Forecasting ------------------*/   fprintf(fichtm,"\
   if((stepm == 1) && (strcmp(model,".")==0)){  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);  
   }   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   else{           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
     erreur=108;   fprintf(fichtm,"\
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   }  
     fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   /*---------- Health expectancies and variances ------------*/           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
   strcpy(filerest,"t");   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
   strcat(filerest,fileres);     <a href=\"%s\">%s</a> <br>\n</li>",
   if((ficrest=fopen(filerest,"w"))==NULL) {             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;   fprintf(fichtm,"\
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
   }     <a href=\"%s\">%s</a> <br>\n</li>",
   printf("Computing Total LEs with variances: file '%s' \n", filerest);             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);   fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
   strcpy(filerese,"e");   fprintf(fichtm,"\
   strcat(filerese,fileres);   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
   if((ficreseij=fopen(filerese,"w"))==NULL) {           estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);   fprintf(fichtm,"\
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
   }           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);  /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   strcpy(fileresv,"v");  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   strcat(fileresv,fileres);  /*      <br>",fileres,fileres,fileres,fileres); */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  /*  else  */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);   fflush(fichtm);
   }   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);   m=pow(2,cptcoveff);
   calagedate=-1;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
    jj1=0;
   k=0;   for(k1=1; k1<=m;k1++){
   for(cptcov=1;cptcov<=i1;cptcov++){     for(i1=1; i1<=ncodemax[k1];i1++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       jj1++;
       k=k+1;       if (cptcovn > 0) {
       fprintf(ficrest,"\n#****** ");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       for(j=1;j<=cptcoveff;j++)         for (cpt=1; cpt<=cptcoveff;cpt++) 
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       fprintf(ficrest,"******\n");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
       fprintf(ficreseij,"\n#****** ");       for(cpt=1; cpt<=nlstate;cpt++) {
       for(j=1;j<=cptcoveff;j++)         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
       fprintf(ficreseij,"******\n");  <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
       fprintf(ficresvij,"\n#****** ");       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
       for(j=1;j<=cptcoveff;j++)  health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  true period expectancies (those weighted with period prevalences are also\
       fprintf(ficresvij,"******\n");   drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
       oldm=oldms;savm=savms;     } /* end i1 */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);     }/* End k1 */
     fprintf(fichtm,"</ul>");
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);   fflush(fichtm);
       oldm=oldms;savm=savms;  }
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);  
       if(popbased==1){  /******************* Gnuplot file **************/
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
        }  
     char dirfileres[132],optfileres[132];
      int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    int ng=0;
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
       fprintf(ficrest,"\n");  /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
       epj=vector(1,nlstate+1);  /*   } */
       for(age=bage; age <=fage ;age++){  
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    /*#ifdef windows */
         if (popbased==1) {    fprintf(ficgp,"cd \"%s\" \n",pathc);
           for(i=1; i<=nlstate;i++)      /*#endif */
             prlim[i][i]=probs[(int)age][i][k];    m=pow(2,cptcoveff);
         }  
            strcpy(dirfileres,optionfilefiname);
         fprintf(ficrest," %4.0f",age);    strcpy(optfileres,"vpl");
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){   /* 1eme*/
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    for (cpt=1; cpt<= nlstate ; cpt ++) {
             epj[j] += prlim[i][i]*eij[i][j][(int)age];      for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/       fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
           }       fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
           epj[nlstate+1] +=epj[j];       fprintf(ficgp,"set xlabel \"Age\" \n\
         }  set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
         for(i=1, vepp=0.;i <=nlstate;i++)  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
           for(j=1;j <=nlstate;j++)  
             vepp += vareij[i][j][(int)age];       for (i=1; i<= nlstate ; i ++) {
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         for(j=1;j <=nlstate;j++){         else        fprintf(ficgp," \%%*lf (\%%*lf)");
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));       }
         }       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
         fprintf(ficrest,"\n");       for (i=1; i<= nlstate ; i ++) {
       }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     }         else fprintf(ficgp," \%%*lf (\%%*lf)");
   }       } 
 free_matrix(mint,1,maxwav,1,n);       fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);       for (i=1; i<= nlstate ; i ++) {
     free_vector(weight,1,n);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   fclose(ficreseij);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   fclose(ficresvij);       }  
   fclose(ficrest);       fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   fclose(ficpar);     }
   free_vector(epj,1,nlstate+1);    }
      /*2 eme*/
   /*------- Variance limit prevalence------*/      
     for (k1=1; k1<= m ; k1 ++) { 
   strcpy(fileresvpl,"vpl");      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   strcat(fileresvpl,fileres);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);      for (i=1; i<= nlstate+1 ; i ++) {
     exit(0);        k=2*i;
   }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   k=0;          else fprintf(ficgp," \%%*lf (\%%*lf)");
   for(cptcov=1;cptcov<=i1;cptcov++){        }   
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
       k=k+1;        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
       fprintf(ficresvpl,"\n#****** ");        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       for(j=1;j<=cptcoveff;j++)        for (j=1; j<= nlstate+1 ; j ++) {
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       fprintf(ficresvpl,"******\n");          else fprintf(ficgp," \%%*lf (\%%*lf)");
              }   
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        fprintf(ficgp,"\" t\"\" w l lt 0,");
       oldm=oldms;savm=savms;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        for (j=1; j<= nlstate+1 ; j ++) {
     }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
  }          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
   fclose(ficresvpl);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
   /*---------- End : free ----------------*/      }
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    }
      
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    /*3eme*/
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    
      for (k1=1; k1<= m ; k1 ++) { 
        for (cpt=1; cpt<= nlstate ; cpt ++) {
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        /*       k=2+nlstate*(2*cpt-2); */
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        k=2+(nlstate+1)*(cpt-1);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        fprintf(ficgp,"set ter png small size 320, 240\n\
    plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   free_matrix(matcov,1,npar,1,npar);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   free_vector(delti,1,npar);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   free_matrix(agev,1,maxwav,1,imx);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   fprintf(fichtm,"\n</body>");          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   fclose(fichtm);          
   fclose(ficgp);        */
          for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
   if(erreur >0){          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
     printf("End of Imach with error or warning %d\n",erreur);          
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);        } 
   }else{        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
    printf("End of Imach\n");      }
    fprintf(ficlog,"End of Imach\n");    }
   }    
   printf("See log file on %s\n",filelog);    /* CV preval stable (period) */
   fclose(ficlog);    for (k1=1; k1<= m ; k1 ++) { 
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      for (cpt=1; cpt<=nlstate ; cpt ++) {
          k=3;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
   /*printf("Total time was %d uSec.\n", total_usecs);*/        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   /*------ End -----------*/  set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
  end:        
 #ifdef windows        for (i=1; i< nlstate ; i ++)
   /* chdir(pathcd);*/          fprintf(ficgp,"+$%d",k+i+1);
 #endif        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
  /*system("wgnuplot graph.plt");*/        
  /*system("../gp37mgw/wgnuplot graph.plt");*/        l=3+(nlstate+ndeath)*cpt;
  /*system("cd ../gp37mgw");*/        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/        for (i=1; i< nlstate ; i ++) {
  strcpy(plotcmd,GNUPLOTPROGRAM);          l=3+(nlstate+ndeath)*cpt;
  strcat(plotcmd," ");          fprintf(ficgp,"+$%d",l+i+1);
  strcat(plotcmd,optionfilegnuplot);        }
  system(plotcmd);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
 #ifdef windows    }  
   while (z[0] != 'q') {    
     /* chdir(path); */    /* proba elementaires */
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    for(i=1,jk=1; i <=nlstate; i++){
     scanf("%s",z);      for(k=1; k <=(nlstate+ndeath); k++){
     if (z[0] == 'c') system("./imach");        if (k != i) {
     else if (z[0] == 'e') system(optionfilehtm);          for(j=1; j <=ncovmodel; j++){
     else if (z[0] == 'g') system(plotcmd);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
     else if (z[0] == 'q') exit(0);            jk++; 
   }            fprintf(ficgp,"\n");
 #endif          }
 }        }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    avoid:
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.", dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ = *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int i1, j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.51  
changed lines
  Added in v.1.148


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>