Diff for /imach/src/imach.c between versions 1.51 and 1.150

version 1.51, 2002/07/19 12:22:25 version 1.150, 2014/06/18 16:42:35
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.150  2014/06/18 16:42:35  brouard
      Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
   This program computes Healthy Life Expectancies from    Author: brouard
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.149  2014/06/18 15:51:14  brouard
   interviewed on their health status or degree of disability (in the    Summary: Some fixes in parameter files errors
   case of a health survey which is our main interest) -2- at least a    Author: Nicolas Brouard
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.148  2014/06/17 17:38:48  brouard
   computed from the time spent in each health state according to a    Summary: Nothing new
   model. More health states you consider, more time is necessary to reach the    Author: Brouard
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Just a new packaging for OS/X version 0.98nS
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.147  2014/06/16 10:33:11  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    *** empty log message ***
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.146  2014/06/16 10:20:28  brouard
   where the markup *Covariates have to be included here again* invites    Summary: Merge
   you to do it.  More covariates you add, slower the    Author: Brouard
   convergence.  
     Merge, before building revised version.
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.145  2014/06/10 21:23:15  brouard
   identical for each individual. Also, if a individual missed an    Summary: Debugging with valgrind
   intermediate interview, the information is lost, but taken into    Author: Nicolas Brouard
   account using an interpolation or extrapolation.    
     Lot of changes in order to output the results with some covariates
   hPijx is the probability to be observed in state i at age x+h    After the Edimburgh REVES conference 2014, it seems mandatory to
   conditional to the observed state i at age x. The delay 'h' can be    improve the code.
   split into an exact number (nh*stepm) of unobserved intermediate    No more memory valgrind error but a lot has to be done in order to
   states. This elementary transition (by month or quarter trimester,    continue the work of splitting the code into subroutines.
   semester or year) is model as a multinomial logistic.  The hPx    Also, decodemodel has been improved. Tricode is still not
   matrix is simply the matrix product of nh*stepm elementary matrices    optimal. nbcode should be improved. Documentation has been added in
   and the contribution of each individual to the likelihood is simply    the source code.
   hPijx.  
     Revision 1.143  2014/01/26 09:45:38  brouard
   Also this programme outputs the covariance matrix of the parameters but also    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   of the life expectancies. It also computes the prevalence limits.  
      * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.142  2014/01/26 03:57:36  brouard
   from the European Union.    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.141  2014/01/26 02:42:01  brouard
      * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #include <math.h>  
 #include <stdio.h>    Revision 1.140  2011/09/02 10:37:54  brouard
 #include <stdlib.h>    Summary: times.h is ok with mingw32 now.
 #include <unistd.h>  
     Revision 1.139  2010/06/14 07:50:17  brouard
 #define MAXLINE 256    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
 #define GNUPLOTPROGRAM "gnuplot"    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.138  2010/04/30 18:19:40  brouard
 /*#define DEBUG*/    *** empty log message ***
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.137  2010/04/29 18:11:38  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (Module): Checking covariates for more complex models
     than V1+V2. A lot of change to be done. Unstable.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.136  2010/04/26 20:30:53  brouard
     (Module): merging some libgsl code. Fixing computation
 #define NINTERVMAX 8    of likelione (using inter/intrapolation if mle = 0) in order to
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    get same likelihood as if mle=1.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Some cleaning of code and comments added.
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.135  2009/10/29 15:33:14  brouard
 #define YEARM 12. /* Number of months per year */    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.134  2009/10/29 13:18:53  brouard
 #ifdef windows    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 #define DIRSEPARATOR '\\'  
 #define ODIRSEPARATOR '/'    Revision 1.133  2009/07/06 10:21:25  brouard
 #else    just nforces
 #define DIRSEPARATOR '/'  
 #define ODIRSEPARATOR '\\'    Revision 1.132  2009/07/06 08:22:05  brouard
 #endif    Many tings
   
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    Revision 1.131  2009/06/20 16:22:47  brouard
 int erreur; /* Error number */    Some dimensions resccaled
 int nvar;  
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.130  2009/05/26 06:44:34  brouard
 int npar=NPARMAX;    (Module): Max Covariate is now set to 20 instead of 8. A
 int nlstate=2; /* Number of live states */    lot of cleaning with variables initialized to 0. Trying to make
 int ndeath=1; /* Number of dead states */    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.129  2007/08/31 13:49:27  lievre
     Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.128  2006/06/30 13:02:05  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    (Module): Clarifications on computing e.j
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.127  2006/04/28 18:11:50  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    (Module): Yes the sum of survivors was wrong since
 double jmean; /* Mean space between 2 waves */    imach-114 because nhstepm was no more computed in the age
 double **oldm, **newm, **savm; /* Working pointers to matrices */    loop. Now we define nhstepma in the age loop.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    (Module): In order to speed up (in case of numerous covariates) we
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    compute health expectancies (without variances) in a first step
 FILE *ficlog;    and then all the health expectancies with variances or standard
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    deviation (needs data from the Hessian matrices) which slows the
 FILE *ficresprobmorprev;    computation.
 FILE *fichtm; /* Html File */    In the future we should be able to stop the program is only health
 FILE *ficreseij;    expectancies and graph are needed without standard deviations.
 char filerese[FILENAMELENGTH];  
 FILE  *ficresvij;    Revision 1.126  2006/04/28 17:23:28  brouard
 char fileresv[FILENAMELENGTH];    (Module): Yes the sum of survivors was wrong since
 FILE  *ficresvpl;    imach-114 because nhstepm was no more computed in the age
 char fileresvpl[FILENAMELENGTH];    loop. Now we define nhstepma in the age loop.
 char title[MAXLINE];    Version 0.98h
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    Revision 1.125  2006/04/04 15:20:31  lievre
     Errors in calculation of health expectancies. Age was not initialized.
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Forecasting file added.
 char filelog[FILENAMELENGTH]; /* Log file */  
 char filerest[FILENAMELENGTH];    Revision 1.124  2006/03/22 17:13:53  lievre
 char fileregp[FILENAMELENGTH];    Parameters are printed with %lf instead of %f (more numbers after the comma).
 char popfile[FILENAMELENGTH];    The log-likelihood is printed in the log file
   
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    Revision 1.123  2006/03/20 10:52:43  brouard
     * imach.c (Module): <title> changed, corresponds to .htm file
 #define NR_END 1    name. <head> headers where missing.
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    * imach.c (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
 #define NRANSI    otherwise the weight is truncated).
 #define ITMAX 200    Modification of warning when the covariates values are not 0 or
     1.
 #define TOL 2.0e-4    Version 0.98g
   
 #define CGOLD 0.3819660    Revision 1.122  2006/03/20 09:45:41  brouard
 #define ZEPS 1.0e-10    (Module): Weights can have a decimal point as for
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
 #define GOLD 1.618034    Modification of warning when the covariates values are not 0 or
 #define GLIMIT 100.0    1.
 #define TINY 1.0e-20    Version 0.98g
   
 static double maxarg1,maxarg2;    Revision 1.121  2006/03/16 17:45:01  lievre
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    * imach.c (Module): Comments concerning covariates added
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      * imach.c (Module): refinements in the computation of lli if
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    status=-2 in order to have more reliable computation if stepm is
 #define rint(a) floor(a+0.5)    not 1 month. Version 0.98f
   
 static double sqrarg;    Revision 1.120  2006/03/16 15:10:38  lievre
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    (Module): refinements in the computation of lli if
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
 int imx;  
 int stepm;    Revision 1.119  2006/03/15 17:42:26  brouard
 /* Stepm, step in month: minimum step interpolation*/    (Module): Bug if status = -2, the loglikelihood was
     computed as likelihood omitting the logarithm. Version O.98e
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
 int m,nb;    table of variances if popbased=1 .
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    (Module): Function pstamp added
 double **pmmij, ***probs, ***mobaverage;    (Module): Version 0.98d
 double dateintmean=0;  
     Revision 1.117  2006/03/14 17:16:22  brouard
 double *weight;    (Module): varevsij Comments added explaining the second
 int **s; /* Status */    table of variances if popbased=1 .
 double *agedc, **covar, idx;    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    (Module): Function pstamp added
     (Module): Version 0.98d
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.116  2006/03/06 10:29:27  brouard
     (Module): Variance-covariance wrong links and
 /**************** split *************************/    varian-covariance of ej. is needed (Saito).
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {    Revision 1.115  2006/02/27 12:17:45  brouard
    char *s;                             /* pointer */    (Module): One freematrix added in mlikeli! 0.98c
    int  l1, l2;                         /* length counters */  
     Revision 1.114  2006/02/26 12:57:58  brouard
    l1 = strlen( path );                 /* length of path */    (Module): Some improvements in processing parameter
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    filename with strsep.
    s= strrchr( path, DIRSEPARATOR );            /* find last / */  
    if ( s == NULL ) {                   /* no directory, so use current */    Revision 1.113  2006/02/24 14:20:24  brouard
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    (Module): Memory leaks checks with valgrind and:
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    datafile was not closed, some imatrix were not freed and on matrix
 #if     defined(__bsd__)                /* get current working directory */    allocation too.
       extern char       *getwd( );  
     Revision 1.112  2006/01/30 09:55:26  brouard
       if ( getwd( dirc ) == NULL ) {    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 #else  
       extern char       *getcwd( );    Revision 1.111  2006/01/25 20:38:18  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    (Module): Comments can be added in data file. Missing date values
 #endif    can be a simple dot '.'.
          return( GLOCK_ERROR_GETCWD );  
       }    Revision 1.110  2006/01/25 00:51:50  brouard
       strcpy( name, path );             /* we've got it */    (Module): Lots of cleaning and bugs added (Gompertz)
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Revision 1.109  2006/01/24 19:37:15  brouard
       l2 = strlen( s );                 /* length of filename */    (Module): Comments (lines starting with a #) are allowed in data.
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    Revision 1.108  2006/01/19 18:05:42  lievre
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Gnuplot problem appeared...
       dirc[l1-l2] = 0;                  /* add zero */    To be fixed
    }  
    l1 = strlen( dirc );                 /* length of directory */    Revision 1.107  2006/01/19 16:20:37  brouard
 #ifdef windows    Test existence of gnuplot in imach path
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else    Revision 1.106  2006/01/19 13:24:36  brouard
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Some cleaning and links added in html output
 #endif  
    s = strrchr( name, '.' );            /* find last / */    Revision 1.105  2006/01/05 20:23:19  lievre
    s++;    *** empty log message ***
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);    Revision 1.104  2005/09/30 16:11:43  lievre
    l2= strlen( s)+1;    (Module): sump fixed, loop imx fixed, and simplifications.
    strncpy( finame, name, l1-l2);    (Module): If the status is missing at the last wave but we know
    finame[l1-l2]= 0;    that the person is alive, then we can code his/her status as -2
    return( 0 );                         /* we're done */    (instead of missing=-1 in earlier versions) and his/her
 }    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
     the healthy state at last known wave). Version is 0.98
 /******************************************/  
     Revision 1.103  2005/09/30 15:54:49  lievre
 void replace(char *s, char*t)    (Module): sump fixed, loop imx fixed, and simplifications.
 {  
   int i;    Revision 1.102  2004/09/15 17:31:30  brouard
   int lg=20;    Add the possibility to read data file including tab characters.
   i=0;  
   lg=strlen(t);    Revision 1.101  2004/09/15 10:38:38  brouard
   for(i=0; i<= lg; i++) {    Fix on curr_time
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.100  2004/07/12 18:29:06  brouard
   }    Add version for Mac OS X. Just define UNIX in Makefile
 }  
     Revision 1.99  2004/06/05 08:57:40  brouard
 int nbocc(char *s, char occ)    *** empty log message ***
 {  
   int i,j=0;    Revision 1.98  2004/05/16 15:05:56  brouard
   int lg=20;    New version 0.97 . First attempt to estimate force of mortality
   i=0;    directly from the data i.e. without the need of knowing the health
   lg=strlen(s);    state at each age, but using a Gompertz model: log u =a + b*age .
   for(i=0; i<= lg; i++) {    This is the basic analysis of mortality and should be done before any
   if  (s[i] == occ ) j++;    other analysis, in order to test if the mortality estimated from the
   }    cross-longitudinal survey is different from the mortality estimated
   return j;    from other sources like vital statistic data.
 }  
     The same imach parameter file can be used but the option for mle should be -3.
 void cutv(char *u,char *v, char*t, char occ)  
 {    Agnès, who wrote this part of the code, tried to keep most of the
   /* cuts string t into u and v where u is ended by char occ excluding it    former routines in order to include the new code within the former code.
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  
      gives u="abcedf" and v="ghi2j" */    The output is very simple: only an estimate of the intercept and of
   int i,lg,j,p=0;    the slope with 95% confident intervals.
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {    Current limitations:
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    A) Even if you enter covariates, i.e. with the
   }    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
   lg=strlen(t);  
   for(j=0; j<p; j++) {    Revision 1.97  2004/02/20 13:25:42  lievre
     (u[j] = t[j]);    Version 0.96d. Population forecasting command line is (temporarily)
   }    suppressed.
      u[p]='\0';  
     Revision 1.96  2003/07/15 15:38:55  brouard
    for(j=0; j<= lg; j++) {    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     if (j>=(p+1))(v[j-p-1] = t[j]);    rewritten within the same printf. Workaround: many printfs.
   }  
 }    Revision 1.95  2003/07/08 07:54:34  brouard
     * imach.c (Repository):
 /********************** nrerror ********************/    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
 void nrerror(char error_text[])  
 {    Revision 1.94  2003/06/27 13:00:02  brouard
   fprintf(stderr,"ERREUR ...\n");    Just cleaning
   fprintf(stderr,"%s\n",error_text);  
   exit(1);    Revision 1.93  2003/06/25 16:33:55  brouard
 }    (Module): On windows (cygwin) function asctime_r doesn't
 /*********************** vector *******************/    exist so I changed back to asctime which exists.
 double *vector(int nl, int nh)    (Module): Version 0.96b
 {  
   double *v;    Revision 1.92  2003/06/25 16:30:45  brouard
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    (Module): On windows (cygwin) function asctime_r doesn't
   if (!v) nrerror("allocation failure in vector");    exist so I changed back to asctime which exists.
   return v-nl+NR_END;  
 }    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
 /************************ free vector ******************/    (Repository): Elapsed time after each iteration is now output. It
 void free_vector(double*v, int nl, int nh)    helps to forecast when convergence will be reached. Elapsed time
 {    is stamped in powell.  We created a new html file for the graphs
   free((FREE_ARG)(v+nl-NR_END));    concerning matrix of covariance. It has extension -cov.htm.
 }  
     Revision 1.90  2003/06/24 12:34:15  brouard
 /************************ivector *******************************/    (Module): Some bugs corrected for windows. Also, when
 int *ivector(long nl,long nh)    mle=-1 a template is output in file "or"mypar.txt with the design
 {    of the covariance matrix to be input.
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Revision 1.89  2003/06/24 12:30:52  brouard
   if (!v) nrerror("allocation failure in ivector");    (Module): Some bugs corrected for windows. Also, when
   return v-nl+NR_END;    mle=-1 a template is output in file "or"mypar.txt with the design
 }    of the covariance matrix to be input.
   
 /******************free ivector **************************/    Revision 1.88  2003/06/23 17:54:56  brouard
 void free_ivector(int *v, long nl, long nh)    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.87  2003/06/18 12:26:01  brouard
 }    Version 0.96
   
 /******************* imatrix *******************************/    Revision 1.86  2003/06/17 20:04:08  brouard
 int **imatrix(long nrl, long nrh, long ncl, long nch)    (Module): Change position of html and gnuplot routines and added
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    routine fileappend.
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    Revision 1.85  2003/06/17 13:12:43  brouard
   int **m;    * imach.c (Repository): Check when date of death was earlier that
      current date of interview. It may happen when the death was just
   /* allocate pointers to rows */    prior to the death. In this case, dh was negative and likelihood
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    was wrong (infinity). We still send an "Error" but patch by
   if (!m) nrerror("allocation failure 1 in matrix()");    assuming that the date of death was just one stepm after the
   m += NR_END;    interview.
   m -= nrl;    (Repository): Because some people have very long ID (first column)
      we changed int to long in num[] and we added a new lvector for
      memory allocation. But we also truncated to 8 characters (left
   /* allocate rows and set pointers to them */    truncation)
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    (Repository): No more line truncation errors.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.84  2003/06/13 21:44:43  brouard
   m[nrl] -= ncl;    * imach.c (Repository): Replace "freqsummary" at a correct
      place. It differs from routine "prevalence" which may be called
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    many times. Probs is memory consuming and must be used with
      parcimony.
   /* return pointer to array of pointers to rows */    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   return m;  
 }    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)    Revision 1.82  2003/06/05 15:57:20  brouard
       int **m;    Add log in  imach.c and  fullversion number is now printed.
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */  */
 {  /*
   free((FREE_ARG) (m[nrl]+ncl-NR_END));     Interpolated Markov Chain
   free((FREE_ARG) (m+nrl-NR_END));  
 }    Short summary of the programme:
     
 /******************* matrix *******************************/    This program computes Healthy Life Expectancies from
 double **matrix(long nrl, long nrh, long ncl, long nch)    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 {    first survey ("cross") where individuals from different ages are
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    interviewed on their health status or degree of disability (in the
   double **m;    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    (if any) in individual health status.  Health expectancies are
   if (!m) nrerror("allocation failure 1 in matrix()");    computed from the time spent in each health state according to a
   m += NR_END;    model. More health states you consider, more time is necessary to reach the
   m -= nrl;    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    probability to be observed in state j at the second wave
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    conditional to be observed in state i at the first wave. Therefore
   m[nrl] += NR_END;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   m[nrl] -= ncl;    'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    where the markup *Covariates have to be included here again* invites
   return m;    you to do it.  More covariates you add, slower the
 }    convergence.
   
 /*************************free matrix ************************/    The advantage of this computer programme, compared to a simple
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    multinomial logistic model, is clear when the delay between waves is not
 {    identical for each individual. Also, if a individual missed an
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    intermediate interview, the information is lost, but taken into
   free((FREE_ARG)(m+nrl-NR_END));    account using an interpolation or extrapolation.  
 }  
     hPijx is the probability to be observed in state i at age x+h
 /******************* ma3x *******************************/    conditional to the observed state i at age x. The delay 'h' can be
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    split into an exact number (nh*stepm) of unobserved intermediate
 {    states. This elementary transition (by month, quarter,
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    semester or year) is modelled as a multinomial logistic.  The hPx
   double ***m;    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    hPijx.
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Also this programme outputs the covariance matrix of the parameters but also
   m -= nrl;    of the life expectancies. It also computes the period (stable) prevalence. 
     
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");             Institut national d'études démographiques, Paris.
   m[nrl] += NR_END;    This software have been partly granted by Euro-REVES, a concerted action
   m[nrl] -= ncl;    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   m[nrl][ncl] += NR_END;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   m[nrl][ncl] -= nll;    
   for (j=ncl+1; j<=nch; j++)    **********************************************************************/
     m[nrl][j]=m[nrl][j-1]+nlay;  /*
      main
   for (i=nrl+1; i<=nrh; i++) {    read parameterfile
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    read datafile
     for (j=ncl+1; j<=nch; j++)    concatwav
       m[i][j]=m[i][j-1]+nlay;    freqsummary
   }    if (mle >= 1)
   return m;      mlikeli
 }    print results files
     if mle==1 
 /*************************free ma3x ************************/       computes hessian
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    read end of parameter file: agemin, agemax, bage, fage, estepm
 {        begin-prev-date,...
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    open gnuplot file
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    open html file
   free((FREE_ARG)(m+nrl-NR_END));    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
 }     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
                                     | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
 /***************** f1dim *************************/      freexexit2 possible for memory heap.
 extern int ncom;  
 extern double *pcom,*xicom;    h Pij x                         | pij_nom  ficrestpij
 extern double (*nrfunc)(double []);     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
           1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
 double f1dim(double x)         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
 {  
   int j;         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
   double f;         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
   double *xt;    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
       Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
   xt=vector(1,ncom);     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);    forecasting if prevfcast==1 prevforecast call prevalence()
   free_vector(xt,1,ncom);    health expectancies
   return f;    Variance-covariance of DFLE
 }    prevalence()
      movingaverage()
 /*****************brent *************************/    varevsij() 
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    if popbased==1 varevsij(,popbased)
 {    total life expectancies
   int iter;    Variance of period (stable) prevalence
   double a,b,d,etemp;   end
   double fu,fv,fw,fx;  */
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;  
     
   a=(ax < cx ? ax : cx);  #include <math.h>
   b=(ax > cx ? ax : cx);  #include <stdio.h>
   x=w=v=bx;  #include <stdlib.h>
   fw=fv=fx=(*f)(x);  #include <string.h>
   for (iter=1;iter<=ITMAX;iter++) {  #include <unistd.h>
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  #include <limits.h>
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  #include <sys/types.h>
     printf(".");fflush(stdout);  #include <sys/stat.h>
     fprintf(ficlog,".");fflush(ficlog);  #include <errno.h>
 #ifdef DEBUG  extern int errno;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  #ifdef LINUX
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  #include <time.h>
 #endif  #include "timeval.h"
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  #else
       *xmin=x;  #include <sys/time.h>
       return fx;  #endif
     }  
     ftemp=fu;  #ifdef GSL
     if (fabs(e) > tol1) {  #include <gsl/gsl_errno.h>
       r=(x-w)*(fx-fv);  #include <gsl/gsl_multimin.h>
       q=(x-v)*(fx-fw);  #endif
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  /* #include <libintl.h> */
       if (q > 0.0) p = -p;  /* #define _(String) gettext (String) */
       q=fabs(q);  
       etemp=e;  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  #define GNUPLOTPROGRAM "gnuplot"
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
       else {  #define FILENAMELENGTH 132
         d=p/q;  
         u=x+d;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
         if (u-a < tol2 || b-u < tol2)  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
           d=SIGN(tol1,xm-x);  
       }  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
     } else {  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  
     }  #define NINTERVMAX 8
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
     fu=(*f)(u);  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
     if (fu <= fx) {  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
       if (u >= x) a=x; else b=x;  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
       SHFT(v,w,x,u)  #define MAXN 20000
         SHFT(fv,fw,fx,fu)  #define YEARM 12. /**< Number of months per year */
         } else {  #define AGESUP 130
           if (u < x) a=u; else b=u;  #define AGEBASE 40
           if (fu <= fw || w == x) {  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
             v=w;  #ifdef UNIX
             w=u;  #define DIRSEPARATOR '/'
             fv=fw;  #define CHARSEPARATOR "/"
             fw=fu;  #define ODIRSEPARATOR '\\'
           } else if (fu <= fv || v == x || v == w) {  #else
             v=u;  #define DIRSEPARATOR '\\'
             fv=fu;  #define CHARSEPARATOR "\\"
           }  #define ODIRSEPARATOR '/'
         }  #endif
   }  
   nrerror("Too many iterations in brent");  /* $Id$ */
   *xmin=x;  /* $State$ */
   return fx;  
 }  char version[]="Imach version 0.98nT, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
   char fullversion[]="$Revision$ $Date$"; 
 /****************** mnbrak ***********************/  char strstart[80];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
             double (*func)(double))  int nvar=0, nforce=0; /* Number of variables, number of forces */
 {  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
   double ulim,u,r,q, dum;  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
   double fu;  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
    int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
   *fa=(*func)(*ax);  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
   *fb=(*func)(*bx);  int cptcovprodnoage=0; /**< Number of covariate products without age */   
   if (*fb > *fa) {  int cptcoveff=0; /* Total number of covariates to vary for printing results */
     SHFT(dum,*ax,*bx,dum)  int cptcov=0; /* Working variable */
       SHFT(dum,*fb,*fa,dum)  int npar=NPARMAX;
       }  int nlstate=2; /* Number of live states */
   *cx=(*bx)+GOLD*(*bx-*ax);  int ndeath=1; /* Number of dead states */
   *fc=(*func)(*cx);  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   while (*fb > *fc) {  int popbased=0;
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);  int *wav; /* Number of waves for this individuual 0 is possible */
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  int maxwav=0; /* Maxim number of waves */
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
     ulim=(*bx)+GLIMIT*(*cx-*bx);  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
     if ((*bx-u)*(u-*cx) > 0.0) {  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
       fu=(*func)(u);                     to the likelihood and the sum of weights (done by funcone)*/
     } else if ((*cx-u)*(u-ulim) > 0.0) {  int mle=1, weightopt=0;
       fu=(*func)(u);  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
       if (fu < *fc) {  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
           SHFT(*fb,*fc,fu,(*func)(u))             * wave mi and wave mi+1 is not an exact multiple of stepm. */
           }  double jmean=1; /* Mean space between 2 waves */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  double **matprod2(); /* test */
       u=ulim;  double **oldm, **newm, **savm; /* Working pointers to matrices */
       fu=(*func)(u);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     } else {  /*FILE *fic ; */ /* Used in readdata only */
       u=(*cx)+GOLD*(*cx-*bx);  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       fu=(*func)(u);  FILE *ficlog, *ficrespow;
     }  int globpr=0; /* Global variable for printing or not */
     SHFT(*ax,*bx,*cx,u)  double fretone; /* Only one call to likelihood */
       SHFT(*fa,*fb,*fc,fu)  long ipmx=0; /* Number of contributions */
       }  double sw; /* Sum of weights */
 }  char filerespow[FILENAMELENGTH];
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 /*************** linmin ************************/  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 int ncom;  FILE *ficresprobmorprev;
 double *pcom,*xicom;  FILE *fichtm, *fichtmcov; /* Html File */
 double (*nrfunc)(double []);  FILE *ficreseij;
    char filerese[FILENAMELENGTH];
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  FILE *ficresstdeij;
 {  char fileresstde[FILENAMELENGTH];
   double brent(double ax, double bx, double cx,  FILE *ficrescveij;
                double (*f)(double), double tol, double *xmin);  char filerescve[FILENAMELENGTH];
   double f1dim(double x);  FILE  *ficresvij;
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  char fileresv[FILENAMELENGTH];
               double *fc, double (*func)(double));  FILE  *ficresvpl;
   int j;  char fileresvpl[FILENAMELENGTH];
   double xx,xmin,bx,ax;  char title[MAXLINE];
   double fx,fb,fa;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
    char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   ncom=n;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   pcom=vector(1,n);  char command[FILENAMELENGTH];
   xicom=vector(1,n);  int  outcmd=0;
   nrfunc=func;  
   for (j=1;j<=n;j++) {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     pcom[j]=p[j];  
     xicom[j]=xi[j];  char filelog[FILENAMELENGTH]; /* Log file */
   }  char filerest[FILENAMELENGTH];
   ax=0.0;  char fileregp[FILENAMELENGTH];
   xx=1.0;  char popfile[FILENAMELENGTH];
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 #ifdef DEBUG  
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  struct timezone tzp;
 #endif  extern int gettimeofday();
   for (j=1;j<=n;j++) {  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     xi[j] *= xmin;  long time_value;
     p[j] += xi[j];  extern long time();
   }  char strcurr[80], strfor[80];
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);  char *endptr;
 }  long lval;
   double dval;
 /*************** powell ************************/  
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  #define NR_END 1
             double (*func)(double []))  #define FREE_ARG char*
 {  #define FTOL 1.0e-10
   void linmin(double p[], double xi[], int n, double *fret,  
               double (*func)(double []));  #define NRANSI 
   int i,ibig,j;  #define ITMAX 200 
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;  #define TOL 2.0e-4 
   double *xits;  
   pt=vector(1,n);  #define CGOLD 0.3819660 
   ptt=vector(1,n);  #define ZEPS 1.0e-10 
   xit=vector(1,n);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   xits=vector(1,n);  
   *fret=(*func)(p);  #define GOLD 1.618034 
   for (j=1;j<=n;j++) pt[j]=p[j];  #define GLIMIT 100.0 
   for (*iter=1;;++(*iter)) {  #define TINY 1.0e-20 
     fp=(*fret);  
     ibig=0;  static double maxarg1,maxarg2;
     del=0.0;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    
     for (i=1;i<=n;i++)  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       printf(" %d %.12f",i, p[i]);  #define rint(a) floor(a+0.5)
     fprintf(ficlog," %d %.12f",i, p[i]);  
     printf("\n");  static double sqrarg;
     fprintf(ficlog,"\n");  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     for (i=1;i<=n;i++) {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  int agegomp= AGEGOMP;
       fptt=(*fret);  
 #ifdef DEBUG  int imx; 
       printf("fret=%lf \n",*fret);  int stepm=1;
       fprintf(ficlog,"fret=%lf \n",*fret);  /* Stepm, step in month: minimum step interpolation*/
 #endif  
       printf("%d",i);fflush(stdout);  int estepm;
       fprintf(ficlog,"%d",i);fflush(ficlog);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  int m,nb;
         del=fabs(fptt-(*fret));  long *num;
         ibig=i;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       }  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 #ifdef DEBUG  double **pmmij, ***probs;
       printf("%d %.12e",i,(*fret));  double *ageexmed,*agecens;
       fprintf(ficlog,"%d %.12e",i,(*fret));  double dateintmean=0;
       for (j=1;j<=n;j++) {  
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  double *weight;
         printf(" x(%d)=%.12e",j,xit[j]);  int **s; /* Status */
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  double *agedc;
       }  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
       for(j=1;j<=n;j++) {                    * covar=matrix(0,NCOVMAX,1,n); 
         printf(" p=%.12e",p[j]);                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
         fprintf(ficlog," p=%.12e",p[j]);  double  idx; 
       }  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
       printf("\n");  int *Ndum; /** Freq of modality (tricode */
       fprintf(ficlog,"\n");  int **codtab; /**< codtab=imatrix(1,100,1,10); */
 #endif  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
     }  double *lsurv, *lpop, *tpop;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
       int k[2],l;  double ftolhess; /**< Tolerance for computing hessian */
       k[0]=1;  
       k[1]=-1;  /**************** split *************************/
       printf("Max: %.12e",(*func)(p));  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       fprintf(ficlog,"Max: %.12e",(*func)(p));  {
       for (j=1;j<=n;j++) {    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
         printf(" %.12e",p[j]);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
         fprintf(ficlog," %.12e",p[j]);    */ 
       }    char  *ss;                            /* pointer */
       printf("\n");    int   l1, l2;                         /* length counters */
       fprintf(ficlog,"\n");  
       for(l=0;l<=1;l++) {    l1 = strlen(path );                   /* length of path */
         for (j=1;j<=n;j++) {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      strcpy( name, path );               /* we got the fullname name because no directory */
         }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      /* get current working directory */
       }      /*    extern  char* getcwd ( char *buf , int len);*/
 #endif      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         return( GLOCK_ERROR_GETCWD );
       }
       free_vector(xit,1,n);      /* got dirc from getcwd*/
       free_vector(xits,1,n);      printf(" DIRC = %s \n",dirc);
       free_vector(ptt,1,n);    } else {                              /* strip direcotry from path */
       free_vector(pt,1,n);      ss++;                               /* after this, the filename */
       return;      l2 = strlen( ss );                  /* length of filename */
     }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      strcpy( name, ss );         /* save file name */
     for (j=1;j<=n;j++) {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       ptt[j]=2.0*p[j]-pt[j];      dirc[l1-l2] = 0;                    /* add zero */
       xit[j]=p[j]-pt[j];      printf(" DIRC2 = %s \n",dirc);
       pt[j]=p[j];    }
     }    /* We add a separator at the end of dirc if not exists */
     fptt=(*func)(ptt);    l1 = strlen( dirc );                  /* length of directory */
     if (fptt < fp) {    if( dirc[l1-1] != DIRSEPARATOR ){
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      dirc[l1] =  DIRSEPARATOR;
       if (t < 0.0) {      dirc[l1+1] = 0; 
         linmin(p,xit,n,fret,func);      printf(" DIRC3 = %s \n",dirc);
         for (j=1;j<=n;j++) {    }
           xi[j][ibig]=xi[j][n];    ss = strrchr( name, '.' );            /* find last / */
           xi[j][n]=xit[j];    if (ss >0){
         }      ss++;
 #ifdef DEBUG      strcpy(ext,ss);                     /* save extension */
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      l1= strlen( name);
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      l2= strlen(ss)+1;
         for(j=1;j<=n;j++){      strncpy( finame, name, l1-l2);
           printf(" %.12e",xit[j]);      finame[l1-l2]= 0;
           fprintf(ficlog," %.12e",xit[j]);    }
         }  
         printf("\n");    return( 0 );                          /* we're done */
         fprintf(ficlog,"\n");  }
 #endif  
       }  
     }  /******************************************/
   }  
 }  void replace_back_to_slash(char *s, char*t)
   {
 /**** Prevalence limit ****************/    int i;
     int lg=0;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    i=0;
 {    lg=strlen(t);
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    for(i=0; i<= lg; i++) {
      matrix by transitions matrix until convergence is reached */      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
   int i, ii,j,k;    }
   double min, max, maxmin, maxmax,sumnew=0.;  }
   double **matprod2();  
   double **out, cov[NCOVMAX], **pmij();  char *trimbb(char *out, char *in)
   double **newm;  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
   double agefin, delaymax=50 ; /* Max number of years to converge */    char *s;
     s=out;
   for (ii=1;ii<=nlstate+ndeath;ii++)    while (*in != '\0'){
     for (j=1;j<=nlstate+ndeath;j++){      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        in++;
     }      }
       *out++ = *in++;
    cov[1]=1.;    }
      *out='\0';
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    return s;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  }
     newm=savm;  
     /* Covariates have to be included here again */  char *cutl(char *blocc, char *alocc, char *in, char occ)
      cov[2]=agefin;  {
      /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
       for (k=1; k<=cptcovn;k++) {       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];       gives blocc="abcdef2ghi" and alocc="j".
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/       If occ is not found blocc is null and alocc is equal to in. Returns blocc
       }    */
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    char *s, *t, *bl;
       for (k=1; k<=cptcovprod;k++)    t=in;s=in;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    while ((*in != occ) && (*in != '\0')){
       *alocc++ = *in++;
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    }
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    if( *in == occ){
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      *(alocc)='\0';
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      s=++in;
     }
     savm=oldm;   
     oldm=newm;    if (s == t) {/* occ not found */
     maxmax=0.;      *(alocc-(in-s))='\0';
     for(j=1;j<=nlstate;j++){      in=s;
       min=1.;    }
       max=0.;    while ( *in != '\0'){
       for(i=1; i<=nlstate; i++) {      *blocc++ = *in++;
         sumnew=0;    }
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  
         prlim[i][j]= newm[i][j]/(1-sumnew);    *blocc='\0';
         max=FMAX(max,prlim[i][j]);    return t;
         min=FMIN(min,prlim[i][j]);  }
       }  char *cutv(char *blocc, char *alocc, char *in, char occ)
       maxmin=max-min;  {
       maxmax=FMAX(maxmax,maxmin);    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
     }       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
     if(maxmax < ftolpl){       gives blocc="abcdef2ghi" and alocc="j".
       return prlim;       If occ is not found blocc is null and alocc is equal to in. Returns alocc
     }    */
   }    char *s, *t;
 }    t=in;s=in;
     while (*in != '\0'){
 /*************** transition probabilities ***************/      while( *in == occ){
         *blocc++ = *in++;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        s=in;
 {      }
   double s1, s2;      *blocc++ = *in++;
   /*double t34;*/    }
   int i,j,j1, nc, ii, jj;    if (s == t) /* occ not found */
       *(blocc-(in-s))='\0';
     for(i=1; i<= nlstate; i++){    else
     for(j=1; j<i;j++){      *(blocc-(in-s)-1)='\0';
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    in=s;
         /*s2 += param[i][j][nc]*cov[nc];*/    while ( *in != '\0'){
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      *alocc++ = *in++;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    }
       }  
       ps[i][j]=s2;    *alocc='\0';
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    return s;
     }  }
     for(j=i+1; j<=nlstate+ndeath;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  int nbocc(char *s, char occ)
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  {
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    int i,j=0;
       }    int lg=20;
       ps[i][j]=s2;    i=0;
     }    lg=strlen(s);
   }    for(i=0; i<= lg; i++) {
     /*ps[3][2]=1;*/    if  (s[i] == occ ) j++;
     }
   for(i=1; i<= nlstate; i++){    return j;
      s1=0;  }
     for(j=1; j<i; j++)  
       s1+=exp(ps[i][j]);  /* void cutv(char *u,char *v, char*t, char occ) */
     for(j=i+1; j<=nlstate+ndeath; j++)  /* { */
       s1+=exp(ps[i][j]);  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
     ps[i][i]=1./(s1+1.);  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
     for(j=1; j<i; j++)  /*      gives u="abcdef2ghi" and v="j" *\/ */
       ps[i][j]= exp(ps[i][j])*ps[i][i];  /*   int i,lg,j,p=0; */
     for(j=i+1; j<=nlstate+ndeath; j++)  /*   i=0; */
       ps[i][j]= exp(ps[i][j])*ps[i][i];  /*   lg=strlen(t); */
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  /*   for(j=0; j<=lg-1; j++) { */
   } /* end i */  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   /*   } */
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){  /*   for(j=0; j<p; j++) { */
       ps[ii][jj]=0;  /*     (u[j] = t[j]); */
       ps[ii][ii]=1;  /*   } */
     }  /*      u[p]='\0'; */
   }  
   /*    for(j=0; j<= lg; j++) { */
   /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  /*   } */
     for(jj=1; jj<= nlstate+ndeath; jj++){  /* } */
      printf("%lf ",ps[ii][jj]);  
    }  /********************** nrerror ********************/
     printf("\n ");  
     }  void nrerror(char error_text[])
     printf("\n ");printf("%lf ",cov[2]);*/  {
 /*    fprintf(stderr,"ERREUR ...\n");
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    fprintf(stderr,"%s\n",error_text);
   goto end;*/    exit(EXIT_FAILURE);
     return ps;  }
 }  /*********************** vector *******************/
   double *vector(int nl, int nh)
 /**************** Product of 2 matrices ******************/  {
     double *v;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 {    if (!v) nrerror("allocation failure in vector");
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    return v-nl+NR_END;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  }
   /* in, b, out are matrice of pointers which should have been initialized  
      before: only the contents of out is modified. The function returns  /************************ free vector ******************/
      a pointer to pointers identical to out */  void free_vector(double*v, int nl, int nh)
   long i, j, k;  {
   for(i=nrl; i<= nrh; i++)    free((FREE_ARG)(v+nl-NR_END));
     for(k=ncolol; k<=ncoloh; k++)  }
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  
         out[i][k] +=in[i][j]*b[j][k];  /************************ivector *******************************/
   int *ivector(long nl,long nh)
   return out;  {
 }    int *v;
     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (!v) nrerror("allocation failure in ivector");
 /************* Higher Matrix Product ***************/    return v-nl+NR_END;
   }
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  
 {  /******************free ivector **************************/
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  void free_ivector(int *v, long nl, long nh)
      duration (i.e. until  {
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    free((FREE_ARG)(v+nl-NR_END));
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  }
      (typically every 2 years instead of every month which is too big).  
      Model is determined by parameters x and covariates have to be  /************************lvector *******************************/
      included manually here.  long *lvector(long nl,long nh)
   {
      */    long *v;
     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   int i, j, d, h, k;    if (!v) nrerror("allocation failure in ivector");
   double **out, cov[NCOVMAX];    return v-nl+NR_END;
   double **newm;  }
   
   /* Hstepm could be zero and should return the unit matrix */  /******************free lvector **************************/
   for (i=1;i<=nlstate+ndeath;i++)  void free_lvector(long *v, long nl, long nh)
     for (j=1;j<=nlstate+ndeath;j++){  {
       oldm[i][j]=(i==j ? 1.0 : 0.0);    free((FREE_ARG)(v+nl-NR_END));
       po[i][j][0]=(i==j ? 1.0 : 0.0);  }
     }  
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /******************* imatrix *******************************/
   for(h=1; h <=nhstepm; h++){  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     for(d=1; d <=hstepm; d++){       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
       newm=savm;  { 
       /* Covariates have to be included here again */    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       cov[1]=1.;    int **m; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    /* allocate pointers to rows */ 
       for (k=1; k<=cptcovage;k++)    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    if (!m) nrerror("allocation failure 1 in matrix()"); 
       for (k=1; k<=cptcovprod;k++)    m += NR_END; 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    m -= nrl; 
     
     
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    /* allocate rows and set pointers to them */ 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    m[nrl] += NR_END; 
       savm=oldm;    m[nrl] -= ncl; 
       oldm=newm;    
     }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     for(i=1; i<=nlstate+ndeath; i++)    
       for(j=1;j<=nlstate+ndeath;j++) {    /* return pointer to array of pointers to rows */ 
         po[i][j][h]=newm[i][j];    return m; 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  } 
          */  
       }  /****************** free_imatrix *************************/
   } /* end h */  void free_imatrix(m,nrl,nrh,ncl,nch)
   return po;        int **m;
 }        long nch,ncl,nrh,nrl; 
        /* free an int matrix allocated by imatrix() */ 
   { 
 /*************** log-likelihood *************/    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 double func( double *x)    free((FREE_ARG) (m+nrl-NR_END)); 
 {  } 
   int i, ii, j, k, mi, d, kk;  
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  /******************* matrix *******************************/
   double **out;  double **matrix(long nrl, long nrh, long ncl, long nch)
   double sw; /* Sum of weights */  {
   double lli; /* Individual log likelihood */    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   long ipmx;    double **m;
   /*extern weight */  
   /* We are differentiating ll according to initial status */    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    if (!m) nrerror("allocation failure 1 in matrix()");
   /*for(i=1;i<imx;i++)    m += NR_END;
     printf(" %d\n",s[4][i]);    m -= nrl;
   */  
   cov[1]=1.;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   for(k=1; k<=nlstate; k++) ll[k]=0.;    m[nrl] += NR_END;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    m[nrl] -= ncl;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
     for(mi=1; mi<= wav[i]-1; mi++){    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       for (ii=1;ii<=nlstate+ndeath;ii++)    return m;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
       for(d=0; d<dh[mi][i]; d++){  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
         newm=savm;  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;     */
         for (kk=1; kk<=cptcovage;kk++) {  }
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
         }  /*************************free matrix ************************/
          void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  {
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         savm=oldm;    free((FREE_ARG)(m+nrl-NR_END));
         oldm=newm;  }
          
          /******************* ma3x *******************************/
       } /* end mult */  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
        {
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    double ***m;
       ipmx +=1;  
       sw += weight[i];    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    if (!m) nrerror("allocation failure 1 in matrix()");
     } /* end of wave */    m += NR_END;
   } /* end of individual */    m -= nrl;
   
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    m[nrl] += NR_END;
   return -l;    m[nrl] -= ncl;
 }  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   
 /*********** Maximum Likelihood Estimation ***************/    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    m[nrl][ncl] += NR_END;
 {    m[nrl][ncl] -= nll;
   int i,j, iter;    for (j=ncl+1; j<=nch; j++) 
   double **xi,*delti;      m[nrl][j]=m[nrl][j-1]+nlay;
   double fret;    
   xi=matrix(1,npar,1,npar);    for (i=nrl+1; i<=nrh; i++) {
   for (i=1;i<=npar;i++)      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     for (j=1;j<=npar;j++)      for (j=ncl+1; j<=nch; j++) 
       xi[i][j]=(i==j ? 1.0 : 0.0);        m[i][j]=m[i][j-1]+nlay;
   printf("Powell\n");  fprintf(ficlog,"Powell\n");    }
   powell(p,xi,npar,ftol,&iter,&fret,func);    return m; 
     /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    */
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  }
   
 }  /*************************free ma3x ************************/
   void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 /**** Computes Hessian and covariance matrix ***/  {
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double  **a,**y,*x,pd;    free((FREE_ARG)(m+nrl-NR_END));
   double **hess;  }
   int i, j,jk;  
   int *indx;  /*************** function subdirf ***********/
   char *subdirf(char fileres[])
   double hessii(double p[], double delta, int theta, double delti[]);  {
   double hessij(double p[], double delti[], int i, int j);    /* Caution optionfilefiname is hidden */
   void lubksb(double **a, int npar, int *indx, double b[]) ;    strcpy(tmpout,optionfilefiname);
   void ludcmp(double **a, int npar, int *indx, double *d) ;    strcat(tmpout,"/"); /* Add to the right */
     strcat(tmpout,fileres);
   hess=matrix(1,npar,1,npar);    return tmpout;
   }
   printf("\nCalculation of the hessian matrix. Wait...\n");  
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");  /*************** function subdirf2 ***********/
   for (i=1;i<=npar;i++){  char *subdirf2(char fileres[], char *preop)
     printf("%d",i);fflush(stdout);  {
     fprintf(ficlog,"%d",i);fflush(ficlog);    
     hess[i][i]=hessii(p,ftolhess,i,delti);    /* Caution optionfilefiname is hidden */
     /*printf(" %f ",p[i]);*/    strcpy(tmpout,optionfilefiname);
     /*printf(" %lf ",hess[i][i]);*/    strcat(tmpout,"/");
   }    strcat(tmpout,preop);
      strcat(tmpout,fileres);
   for (i=1;i<=npar;i++) {    return tmpout;
     for (j=1;j<=npar;j++)  {  }
       if (j>i) {  
         printf(".%d%d",i,j);fflush(stdout);  /*************** function subdirf3 ***********/
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);  char *subdirf3(char fileres[], char *preop, char *preop2)
         hess[i][j]=hessij(p,delti,i,j);  {
         hess[j][i]=hess[i][j];        
         /*printf(" %lf ",hess[i][j]);*/    /* Caution optionfilefiname is hidden */
       }    strcpy(tmpout,optionfilefiname);
     }    strcat(tmpout,"/");
   }    strcat(tmpout,preop);
   printf("\n");    strcat(tmpout,preop2);
   fprintf(ficlog,"\n");    strcat(tmpout,fileres);
     return tmpout;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  }
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");  
    /***************** f1dim *************************/
   a=matrix(1,npar,1,npar);  extern int ncom; 
   y=matrix(1,npar,1,npar);  extern double *pcom,*xicom;
   x=vector(1,npar);  extern double (*nrfunc)(double []); 
   indx=ivector(1,npar);   
   for (i=1;i<=npar;i++)  double f1dim(double x) 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  { 
   ludcmp(a,npar,indx,&pd);    int j; 
     double f;
   for (j=1;j<=npar;j++) {    double *xt; 
     for (i=1;i<=npar;i++) x[i]=0;   
     x[j]=1;    xt=vector(1,ncom); 
     lubksb(a,npar,indx,x);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     for (i=1;i<=npar;i++){    f=(*nrfunc)(xt); 
       matcov[i][j]=x[i];    free_vector(xt,1,ncom); 
     }    return f; 
   }  } 
   
   printf("\n#Hessian matrix#\n");  /*****************brent *************************/
   fprintf(ficlog,"\n#Hessian matrix#\n");  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   for (i=1;i<=npar;i++) {  { 
     for (j=1;j<=npar;j++) {    int iter; 
       printf("%.3e ",hess[i][j]);    double a,b,d,etemp;
       fprintf(ficlog,"%.3e ",hess[i][j]);    double fu,fv,fw,fx;
     }    double ftemp;
     printf("\n");    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     fprintf(ficlog,"\n");    double e=0.0; 
   }   
     a=(ax < cx ? ax : cx); 
   /* Recompute Inverse */    b=(ax > cx ? ax : cx); 
   for (i=1;i<=npar;i++)    x=w=v=bx; 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    fw=fv=fx=(*f)(x); 
   ludcmp(a,npar,indx,&pd);    for (iter=1;iter<=ITMAX;iter++) { 
       xm=0.5*(a+b); 
   /*  printf("\n#Hessian matrix recomputed#\n");      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   for (j=1;j<=npar;j++) {      printf(".");fflush(stdout);
     for (i=1;i<=npar;i++) x[i]=0;      fprintf(ficlog,".");fflush(ficlog);
     x[j]=1;  #ifdef DEBUG
     lubksb(a,npar,indx,x);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     for (i=1;i<=npar;i++){      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       y[i][j]=x[i];      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       printf("%.3e ",y[i][j]);  #endif
       fprintf(ficlog,"%.3e ",y[i][j]);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     }        *xmin=x; 
     printf("\n");        return fx; 
     fprintf(ficlog,"\n");      } 
   }      ftemp=fu;
   */      if (fabs(e) > tol1) { 
         r=(x-w)*(fx-fv); 
   free_matrix(a,1,npar,1,npar);        q=(x-v)*(fx-fw); 
   free_matrix(y,1,npar,1,npar);        p=(x-v)*q-(x-w)*r; 
   free_vector(x,1,npar);        q=2.0*(q-r); 
   free_ivector(indx,1,npar);        if (q > 0.0) p = -p; 
   free_matrix(hess,1,npar,1,npar);        q=fabs(q); 
         etemp=e; 
         e=d; 
 }        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 /*************** hessian matrix ****************/        else { 
 double hessii( double x[], double delta, int theta, double delti[])          d=p/q; 
 {          u=x+d; 
   int i;          if (u-a < tol2 || b-u < tol2) 
   int l=1, lmax=20;            d=SIGN(tol1,xm-x); 
   double k1,k2;        } 
   double p2[NPARMAX+1];      } else { 
   double res;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      } 
   double fx;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   int k=0,kmax=10;      fu=(*f)(u); 
   double l1;      if (fu <= fx) { 
         if (u >= x) a=x; else b=x; 
   fx=func(x);        SHFT(v,w,x,u) 
   for (i=1;i<=npar;i++) p2[i]=x[i];          SHFT(fv,fw,fx,fu) 
   for(l=0 ; l <=lmax; l++){          } else { 
     l1=pow(10,l);            if (u < x) a=u; else b=u; 
     delts=delt;            if (fu <= fw || w == x) { 
     for(k=1 ; k <kmax; k=k+1){              v=w; 
       delt = delta*(l1*k);              w=u; 
       p2[theta]=x[theta] +delt;              fv=fw; 
       k1=func(p2)-fx;              fw=fu; 
       p2[theta]=x[theta]-delt;            } else if (fu <= fv || v == x || v == w) { 
       k2=func(p2)-fx;              v=u; 
       /*res= (k1-2.0*fx+k2)/delt/delt; */              fv=fu; 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */            } 
                } 
 #ifdef DEBUG    } 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    nrerror("Too many iterations in brent"); 
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    *xmin=x; 
 #endif    return fx; 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  } 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;  /****************** mnbrak ***********************/
       }  
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         k=kmax; l=lmax*10.;              double (*func)(double)) 
       }  { 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    double ulim,u,r,q, dum;
         delts=delt;    double fu; 
       }   
     }    *fa=(*func)(*ax); 
   }    *fb=(*func)(*bx); 
   delti[theta]=delts;    if (*fb > *fa) { 
   return res;      SHFT(dum,*ax,*bx,dum) 
          SHFT(dum,*fb,*fa,dum) 
 }        } 
     *cx=(*bx)+GOLD*(*bx-*ax); 
 double hessij( double x[], double delti[], int thetai,int thetaj)    *fc=(*func)(*cx); 
 {    while (*fb > *fc) { 
   int i;      r=(*bx-*ax)*(*fb-*fc); 
   int l=1, l1, lmax=20;      q=(*bx-*cx)*(*fb-*fa); 
   double k1,k2,k3,k4,res,fx;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   double p2[NPARMAX+1];        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   int k;      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       if ((*bx-u)*(u-*cx) > 0.0) { 
   fx=func(x);        fu=(*func)(u); 
   for (k=1; k<=2; k++) {      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     for (i=1;i<=npar;i++) p2[i]=x[i];        fu=(*func)(u); 
     p2[thetai]=x[thetai]+delti[thetai]/k;        if (fu < *fc) { 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     k1=func(p2)-fx;            SHFT(*fb,*fc,fu,(*func)(u)) 
              } 
     p2[thetai]=x[thetai]+delti[thetai]/k;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        u=ulim; 
     k2=func(p2)-fx;        fu=(*func)(u); 
        } else { 
     p2[thetai]=x[thetai]-delti[thetai]/k;        u=(*cx)+GOLD*(*cx-*bx); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        fu=(*func)(u); 
     k3=func(p2)-fx;      } 
        SHFT(*ax,*bx,*cx,u) 
     p2[thetai]=x[thetai]-delti[thetai]/k;        SHFT(*fa,*fb,*fc,fu) 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        } 
     k4=func(p2)-fx;  } 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  
 #ifdef DEBUG  /*************** linmin ************************/
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  int ncom; 
 #endif  double *pcom,*xicom;
   }  double (*nrfunc)(double []); 
   return res;   
 }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
 /************** Inverse of matrix **************/    double brent(double ax, double bx, double cx, 
 void ludcmp(double **a, int n, int *indx, double *d)                 double (*f)(double), double tol, double *xmin); 
 {    double f1dim(double x); 
   int i,imax,j,k;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   double big,dum,sum,temp;                double *fc, double (*func)(double)); 
   double *vv;    int j; 
      double xx,xmin,bx,ax; 
   vv=vector(1,n);    double fx,fb,fa;
   *d=1.0;   
   for (i=1;i<=n;i++) {    ncom=n; 
     big=0.0;    pcom=vector(1,n); 
     for (j=1;j<=n;j++)    xicom=vector(1,n); 
       if ((temp=fabs(a[i][j])) > big) big=temp;    nrfunc=func; 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    for (j=1;j<=n;j++) { 
     vv[i]=1.0/big;      pcom[j]=p[j]; 
   }      xicom[j]=xi[j]; 
   for (j=1;j<=n;j++) {    } 
     for (i=1;i<j;i++) {    ax=0.0; 
       sum=a[i][j];    xx=1.0; 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       a[i][j]=sum;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     }  #ifdef DEBUG
     big=0.0;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for (i=j;i<=n;i++) {    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       sum=a[i][j];  #endif
       for (k=1;k<j;k++)    for (j=1;j<=n;j++) { 
         sum -= a[i][k]*a[k][j];      xi[j] *= xmin; 
       a[i][j]=sum;      p[j] += xi[j]; 
       if ( (dum=vv[i]*fabs(sum)) >= big) {    } 
         big=dum;    free_vector(xicom,1,n); 
         imax=i;    free_vector(pcom,1,n); 
       }  } 
     }  
     if (j != imax) {  char *asc_diff_time(long time_sec, char ascdiff[])
       for (k=1;k<=n;k++) {  {
         dum=a[imax][k];    long sec_left, days, hours, minutes;
         a[imax][k]=a[j][k];    days = (time_sec) / (60*60*24);
         a[j][k]=dum;    sec_left = (time_sec) % (60*60*24);
       }    hours = (sec_left) / (60*60) ;
       *d = -(*d);    sec_left = (sec_left) %(60*60);
       vv[imax]=vv[j];    minutes = (sec_left) /60;
     }    sec_left = (sec_left) % (60);
     indx[j]=imax;    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
     if (a[j][j] == 0.0) a[j][j]=TINY;    return ascdiff;
     if (j != n) {  }
       dum=1.0/(a[j][j]);  
       for (i=j+1;i<=n;i++) a[i][j] *= dum;  /*************** powell ************************/
     }  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   }              double (*func)(double [])) 
   free_vector(vv,1,n);  /* Doesn't work */  { 
 ;    void linmin(double p[], double xi[], int n, double *fret, 
 }                double (*func)(double [])); 
     int i,ibig,j; 
 void lubksb(double **a, int n, int *indx, double b[])    double del,t,*pt,*ptt,*xit;
 {    double fp,fptt;
   int i,ii=0,ip,j;    double *xits;
   double sum;    int niterf, itmp;
    
   for (i=1;i<=n;i++) {    pt=vector(1,n); 
     ip=indx[i];    ptt=vector(1,n); 
     sum=b[ip];    xit=vector(1,n); 
     b[ip]=b[i];    xits=vector(1,n); 
     if (ii)    *fret=(*func)(p); 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    for (j=1;j<=n;j++) pt[j]=p[j]; 
     else if (sum) ii=i;    for (*iter=1;;++(*iter)) { 
     b[i]=sum;      fp=(*fret); 
   }      ibig=0; 
   for (i=n;i>=1;i--) {      del=0.0; 
     sum=b[i];      last_time=curr_time;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      (void) gettimeofday(&curr_time,&tzp);
     b[i]=sum/a[i][i];      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
 }  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
      for (i=1;i<=n;i++) {
 /************ Frequencies ********************/        printf(" %d %.12f",i, p[i]);
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        fprintf(ficlog," %d %.12lf",i, p[i]);
 {  /* Some frequencies */        fprintf(ficrespow," %.12lf", p[i]);
        }
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      printf("\n");
   int first;      fprintf(ficlog,"\n");
   double ***freq; /* Frequencies */      fprintf(ficrespow,"\n");fflush(ficrespow);
   double *pp;      if(*iter <=3){
   double pos, k2, dateintsum=0,k2cpt=0;        tm = *localtime(&curr_time.tv_sec);
   FILE *ficresp;        strcpy(strcurr,asctime(&tm));
   char fileresp[FILENAMELENGTH];  /*       asctime_r(&tm,strcurr); */
          forecast_time=curr_time; 
   pp=vector(1,nlstate);        itmp = strlen(strcurr);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   strcpy(fileresp,"p");          strcurr[itmp-1]='\0';
   strcat(fileresp,fileres);        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   if((ficresp=fopen(fileresp,"w"))==NULL) {        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     printf("Problem with prevalence resultfile: %s\n", fileresp);        for(niterf=10;niterf<=30;niterf+=10){
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     exit(0);          tmf = *localtime(&forecast_time.tv_sec);
   }  /*      asctime_r(&tmf,strfor); */
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          strcpy(strfor,asctime(&tmf));
   j1=0;          itmp = strlen(strfor);
            if(strfor[itmp-1]=='\n')
   j=cptcoveff;          strfor[itmp-1]='\0';
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   first=1;        }
       }
   for(k1=1; k1<=j;k1++){      for (i=1;i<=n;i++) { 
     for(i1=1; i1<=ncodemax[k1];i1++){        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       j1++;        fptt=(*fret); 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  #ifdef DEBUG
         scanf("%d", i);*/        printf("fret=%lf \n",*fret);
       for (i=-1; i<=nlstate+ndeath; i++)          fprintf(ficlog,"fret=%lf \n",*fret);
         for (jk=-1; jk<=nlstate+ndeath; jk++)    #endif
           for(m=agemin; m <= agemax+3; m++)        printf("%d",i);fflush(stdout);
             freq[i][jk][m]=0;        fprintf(ficlog,"%d",i);fflush(ficlog);
              linmin(p,xit,n,fret,func); 
       dateintsum=0;        if (fabs(fptt-(*fret)) > del) { 
       k2cpt=0;          del=fabs(fptt-(*fret)); 
       for (i=1; i<=imx; i++) {          ibig=i; 
         bool=1;        } 
         if  (cptcovn>0) {  #ifdef DEBUG
           for (z1=1; z1<=cptcoveff; z1++)        printf("%d %.12e",i,(*fret));
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        fprintf(ficlog,"%d %.12e",i,(*fret));
               bool=0;        for (j=1;j<=n;j++) {
         }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         if (bool==1) {          printf(" x(%d)=%.12e",j,xit[j]);
           for(m=firstpass; m<=lastpass; m++){          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
             k2=anint[m][i]+(mint[m][i]/12.);        }
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        for(j=1;j<=n;j++) {
               if(agev[m][i]==0) agev[m][i]=agemax+1;          printf(" p=%.12e",p[j]);
               if(agev[m][i]==1) agev[m][i]=agemax+2;          fprintf(ficlog," p=%.12e",p[j]);
               if (m<lastpass) {        }
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        printf("\n");
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        fprintf(ficlog,"\n");
               }  #endif
                    } 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
                 dateintsum=dateintsum+k2;  #ifdef DEBUG
                 k2cpt++;        int k[2],l;
               }        k[0]=1;
             }        k[1]=-1;
           }        printf("Max: %.12e",(*func)(p));
         }        fprintf(ficlog,"Max: %.12e",(*func)(p));
       }        for (j=1;j<=n;j++) {
                  printf(" %.12e",p[j]);
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          fprintf(ficlog," %.12e",p[j]);
         }
       if  (cptcovn>0) {        printf("\n");
         fprintf(ficresp, "\n#********** Variable ");        fprintf(ficlog,"\n");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(l=0;l<=1;l++) {
         fprintf(ficresp, "**********\n#");          for (j=1;j<=n;j++) {
       }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       for(i=1; i<=nlstate;i++)            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       fprintf(ficresp, "\n");          }
                printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       for(i=(int)agemin; i <= (int)agemax+3; i++){          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         if(i==(int)agemax+3){        }
           fprintf(ficlog,"Total");  #endif
         }else{  
           if(first==1){  
             first=0;        free_vector(xit,1,n); 
             printf("See log file for details...\n");        free_vector(xits,1,n); 
           }        free_vector(ptt,1,n); 
           fprintf(ficlog,"Age %d", i);        free_vector(pt,1,n); 
         }        return; 
         for(jk=1; jk <=nlstate ; jk++){      } 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
             pp[jk] += freq[jk][m][i];      for (j=1;j<=n;j++) { 
         }        ptt[j]=2.0*p[j]-pt[j]; 
         for(jk=1; jk <=nlstate ; jk++){        xit[j]=p[j]-pt[j]; 
           for(m=-1, pos=0; m <=0 ; m++)        pt[j]=p[j]; 
             pos += freq[jk][m][i];      } 
           if(pp[jk]>=1.e-10){      fptt=(*func)(ptt); 
             if(first==1){      if (fptt < fp) { 
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
             }        if (t < 0.0) { 
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          linmin(p,xit,n,fret,func); 
           }else{          for (j=1;j<=n;j++) { 
             if(first==1)            xi[j][ibig]=xi[j][n]; 
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            xi[j][n]=xit[j]; 
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          }
           }  #ifdef DEBUG
         }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         for(jk=1; jk <=nlstate ; jk++){          for(j=1;j<=n;j++){
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            printf(" %.12e",xit[j]);
             pp[jk] += freq[jk][m][i];            fprintf(ficlog," %.12e",xit[j]);
         }          }
           printf("\n");
         for(jk=1,pos=0; jk <=nlstate ; jk++)          fprintf(ficlog,"\n");
           pos += pp[jk];  #endif
         for(jk=1; jk <=nlstate ; jk++){        }
           if(pos>=1.e-5){      } 
             if(first==1)    } 
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  } 
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  
           }else{  /**** Prevalence limit (stable or period prevalence)  ****************/
             if(first==1)  
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  {
           }    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
           if( i <= (int) agemax){       matrix by transitions matrix until convergence is reached */
             if(pos>=1.e-5){  
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    int i, ii,j,k;
               probs[i][jk][j1]= pp[jk]/pos;    double min, max, maxmin, maxmax,sumnew=0.;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    /* double **matprod2(); */ /* test */
             }    double **out, cov[NCOVMAX+1], **pmij();
             else    double **newm;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    double agefin, delaymax=50 ; /* Max number of years to converge */
           }  
         }    for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
         for(jk=-1; jk <=nlstate+ndeath; jk++)        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=-1; m <=nlstate+ndeath; m++)      }
             if(freq[jk][m][i] !=0 ) {  
             if(first==1)     cov[1]=1.;
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);   
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
             }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         if(i <= (int) agemax)      newm=savm;
           fprintf(ficresp,"\n");      /* Covariates have to be included here again */
         if(first==1)      cov[2]=agefin;
           printf("Others in log...\n");      
         fprintf(ficlog,"\n");      for (k=1; k<=cptcovn;k++) {
       }        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     }        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
   }      }
   dateintmean=dateintsum/k2cpt;      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
        /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
   fclose(ficresp);      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      
   free_vector(pp,1,nlstate);      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   /* End of Freq */      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 }      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
       /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
 /************ Prevalence ********************/      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)      
 {  /* Some frequencies */      savm=oldm;
        oldm=newm;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      maxmax=0.;
   double ***freq; /* Frequencies */      for(j=1;j<=nlstate;j++){
   double *pp;        min=1.;
   double pos, k2;        max=0.;
         for(i=1; i<=nlstate; i++) {
   pp=vector(1,nlstate);          sumnew=0;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
            prlim[i][j]= newm[i][j]/(1-sumnew);
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
   j1=0;          max=FMAX(max,prlim[i][j]);
            min=FMIN(min,prlim[i][j]);
   j=cptcoveff;        }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        maxmin=max-min;
          maxmax=FMAX(maxmax,maxmin);
   for(k1=1; k1<=j;k1++){      }
     for(i1=1; i1<=ncodemax[k1];i1++){      if(maxmax < ftolpl){
       j1++;        return prlim;
            }
       for (i=-1; i<=nlstate+ndeath; i++)      }
         for (jk=-1; jk<=nlstate+ndeath; jk++)    }
           for(m=agemin; m <= agemax+3; m++)  
             freq[i][jk][m]=0;  /*************** transition probabilities ***************/ 
        
       for (i=1; i<=imx; i++) {  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
         bool=1;  {
         if  (cptcovn>0) {    /* According to parameters values stored in x and the covariate's values stored in cov,
           for (z1=1; z1<=cptcoveff; z1++)       computes the probability to be observed in state j being in state i by appying the
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])       model to the ncovmodel covariates (including constant and age).
               bool=0;       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
         }       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
         if (bool==1) {       ncth covariate in the global vector x is given by the formula:
           for(m=firstpass; m<=lastpass; m++){       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
             k2=anint[m][i]+(mint[m][i]/12.);       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
             if ((k2>=dateprev1) && (k2<=dateprev2)) {       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
               if(agev[m][i]==0) agev[m][i]=agemax+1;       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
               if(agev[m][i]==1) agev[m][i]=agemax+2;       Outputs ps[i][j] the probability to be observed in j being in j according to
               if (m<lastpass) {       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
                 if (calagedate>0)    */
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    double s1, lnpijopii;
                 else    /*double t34;*/
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    int i,j,j1, nc, ii, jj;
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];  
               }      for(i=1; i<= nlstate; i++){
             }        for(j=1; j<i;j++){
           }          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
         }            /*lnpijopii += param[i][j][nc]*cov[nc];*/
       }            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
       for(i=(int)agemin; i <= (int)agemax+3; i++){  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         for(jk=1; jk <=nlstate ; jk++){          }
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
             pp[jk] += freq[jk][m][i];  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         }        }
         for(jk=1; jk <=nlstate ; jk++){        for(j=i+1; j<=nlstate+ndeath;j++){
           for(m=-1, pos=0; m <=0 ; m++)          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
             pos += freq[jk][m][i];            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
         }            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
          /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
         for(jk=1; jk <=nlstate ; jk++){          }
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
             pp[jk] += freq[jk][m][i];        }
         }      }
              
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];      for(i=1; i<= nlstate; i++){
                s1=0;
         for(jk=1; jk <=nlstate ; jk++){            for(j=1; j<i; j++){
           if( i <= (int) agemax){          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
             if(pos>=1.e-5){          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
               probs[i][jk][j1]= pp[jk]/pos;        }
             }        for(j=i+1; j<=nlstate+ndeath; j++){
           }          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
         }/* end jk */          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
       }/* end i */        }
     } /* end i1 */        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
   } /* end k1 */        ps[i][i]=1./(s1+1.);
         /* Computing other pijs */
          for(j=1; j<i; j++)
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          ps[i][j]= exp(ps[i][j])*ps[i][i];
   free_vector(pp,1,nlstate);        for(j=i+1; j<=nlstate+ndeath; j++)
            ps[i][j]= exp(ps[i][j])*ps[i][i];
 }  /* End of Freq */        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       } /* end i */
 /************* Waves Concatenation ***************/      
       for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        for(jj=1; jj<= nlstate+ndeath; jj++){
 {          ps[ii][jj]=0;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          ps[ii][ii]=1;
      Death is a valid wave (if date is known).        }
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      }
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      
      and mw[mi+1][i]. dh depends on stepm.      
      */      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
       /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
   int i, mi, m;      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      /*   } */
      double sum=0., jmean=0.;*/      /*   printf("\n "); */
   int first;      /* } */
   int j, k=0,jk, ju, jl;      /* printf("\n ");printf("%lf ",cov[2]);*/
   double sum=0.;      /*
   first=0;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   jmin=1e+5;        goto end;*/
   jmax=-1;      return ps;
   jmean=0.;  }
   for(i=1; i<=imx; i++){  
     mi=0;  /**************** Product of 2 matrices ******************/
     m=firstpass;  
     while(s[m][i] <= nlstate){  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
       if(s[m][i]>=1)  {
         mw[++mi][i]=m;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       if(m >=lastpass)       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         break;    /* in, b, out are matrice of pointers which should have been initialized 
       else       before: only the contents of out is modified. The function returns
         m++;       a pointer to pointers identical to out */
     }/* end while */    int i, j, k;
     if (s[m][i] > nlstate){    for(i=nrl; i<= nrh; i++)
       mi++;     /* Death is another wave */      for(k=ncolol; k<=ncoloh; k++){
       /* if(mi==0)  never been interviewed correctly before death */        out[i][k]=0.;
          /* Only death is a correct wave */        for(j=ncl; j<=nch; j++)
       mw[mi][i]=m;          out[i][k] +=in[i][j]*b[j][k];
     }      }
     return out;
     wav[i]=mi;  }
     if(mi==0){  
       if(first==0){  
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);  /************* Higher Matrix Product ***************/
         first=1;  
       }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       if(first==1){  {
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);    /* Computes the transition matrix starting at age 'age' over 
       }       'nhstepm*hstepm*stepm' months (i.e. until
     } /* end mi==0 */       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   }       nhstepm*hstepm matrices. 
        Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   for(i=1; i<=imx; i++){       (typically every 2 years instead of every month which is too big 
     for(mi=1; mi<wav[i];mi++){       for the memory).
       if (stepm <=0)       Model is determined by parameters x and covariates have to be 
         dh[mi][i]=1;       included manually here. 
       else{  
         if (s[mw[mi+1][i]][i] > nlstate) {       */
           if (agedc[i] < 2*AGESUP) {  
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    int i, j, d, h, k;
           if(j==0) j=1;  /* Survives at least one month after exam */    double **out, cov[NCOVMAX+1];
           k=k+1;    double **newm;
           if (j >= jmax) jmax=j;  
           if (j <= jmin) jmin=j;    /* Hstepm could be zero and should return the unit matrix */
           sum=sum+j;    for (i=1;i<=nlstate+ndeath;i++)
           /*if (j<0) printf("j=%d num=%d \n",j,i); */      for (j=1;j<=nlstate+ndeath;j++){
           }        oldm[i][j]=(i==j ? 1.0 : 0.0);
         }        po[i][j][0]=(i==j ? 1.0 : 0.0);
         else{      }
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           k=k+1;    for(h=1; h <=nhstepm; h++){
           if (j >= jmax) jmax=j;      for(d=1; d <=hstepm; d++){
           else if (j <= jmin)jmin=j;        newm=savm;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        /* Covariates have to be included here again */
           sum=sum+j;        cov[1]=1.;
         }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         jk= j/stepm;        for (k=1; k<=cptcovn;k++) 
         jl= j -jk*stepm;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         ju= j -(jk+1)*stepm;        for (k=1; k<=cptcovage;k++)
         if(jl <= -ju)          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           dh[mi][i]=jk;        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
         else          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           dh[mi][i]=jk+1;  
         if(dh[mi][i]==0)  
           dh[mi][i]=1; /* At least one step */        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   jmean=sum/k;        savm=oldm;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        oldm=newm;
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      }
  }      for(i=1; i<=nlstate+ndeath; i++)
         for(j=1;j<=nlstate+ndeath;j++) {
 /*********** Tricode ****************************/          po[i][j][h]=newm[i][j];
 void tricode(int *Tvar, int **nbcode, int imx)          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
 {        }
   int Ndum[20],ij=1, k, j, i;      /*printf("h=%d ",h);*/
   int cptcode=0;    } /* end h */
   cptcoveff=0;  /*     printf("\n H=%d \n",h); */
      return po;
   for (k=0; k<19; k++) Ndum[k]=0;  }
   for (k=1; k<=7; k++) ncodemax[k]=0;  
   
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  /*************** log-likelihood *************/
     for (i=1; i<=imx; i++) {  double func( double *x)
       ij=(int)(covar[Tvar[j]][i]);  {
       Ndum[ij]++;    int i, ii, j, k, mi, d, kk;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
       if (ij > cptcode) cptcode=ij;    double **out;
     }    double sw; /* Sum of weights */
     double lli; /* Individual log likelihood */
     for (i=0; i<=cptcode; i++) {    int s1, s2;
       if(Ndum[i]!=0) ncodemax[j]++;    double bbh, survp;
     }    long ipmx;
     ij=1;    /*extern weight */
     /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     for (i=1; i<=ncodemax[j]; i++) {    /*for(i=1;i<imx;i++) 
       for (k=0; k<=19; k++) {      printf(" %d\n",s[4][i]);
         if (Ndum[k] != 0) {    */
           nbcode[Tvar[j]][ij]=k;    cov[1]=1.;
            
           ij++;    for(k=1; k<=nlstate; k++) ll[k]=0.;
         }  
         if (ij > ncodemax[j]) break;    if(mle==1){
       }        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        /* Computes the values of the ncovmodel covariates of the model
   }             depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
            Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
  for (k=0; k<19; k++) Ndum[k]=0;           to be observed in j being in i according to the model.
          */
  for (i=1; i<=ncovmodel-2; i++) {        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
    ij=Tvar[i];          cov[2+k]=covar[Tvar[k]][i];
    Ndum[ij]++;        }
  }        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
            is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
  ij=1;           has been calculated etc */
  for (i=1; i<=10; i++) {        for(mi=1; mi<= wav[i]-1; mi++){
    if((Ndum[i]!=0) && (i<=ncovcol)){          for (ii=1;ii<=nlstate+ndeath;ii++)
      Tvaraff[ij]=i;            for (j=1;j<=nlstate+ndeath;j++){
      ij++;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
    }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
  }            }
            for(d=0; d<dh[mi][i]; d++){
  cptcoveff=ij-1;            newm=savm;
 }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
 /*********** Health Expectancies ****************/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
             }
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 {            savm=oldm;
   /* Health expectancies */            oldm=newm;
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;          } /* end mult */
   double age, agelim, hf;        
   double ***p3mat,***varhe;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   double **dnewm,**doldm;          /* But now since version 0.9 we anticipate for bias at large stepm.
   double *xp;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   double **gp, **gm;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   double ***gradg, ***trgradg;           * the nearest (and in case of equal distance, to the lowest) interval but now
   int theta;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);           * probability in order to take into account the bias as a fraction of the way
   xp=vector(1,npar);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   dnewm=matrix(1,nlstate*2,1,npar);           * -stepm/2 to stepm/2 .
   doldm=matrix(1,nlstate*2,1,nlstate*2);           * For stepm=1 the results are the same as for previous versions of Imach.
             * For stepm > 1 the results are less biased than in previous versions. 
   fprintf(ficreseij,"# Health expectancies\n");           */
   fprintf(ficreseij,"# Age");          s1=s[mw[mi][i]][i];
   for(i=1; i<=nlstate;i++)          s2=s[mw[mi+1][i]][i];
     for(j=1; j<=nlstate;j++)          bbh=(double)bh[mi][i]/(double)stepm; 
       fprintf(ficreseij," %1d-%1d (SE)",i,j);          /* bias bh is positive if real duration
   fprintf(ficreseij,"\n");           * is higher than the multiple of stepm and negative otherwise.
            */
   if(estepm < stepm){          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     printf ("Problem %d lower than %d\n",estepm, stepm);          if( s2 > nlstate){ 
   }            /* i.e. if s2 is a death state and if the date of death is known 
   else  hstepm=estepm;                 then the contribution to the likelihood is the probability to 
   /* We compute the life expectancy from trapezoids spaced every estepm months               die between last step unit time and current  step unit time, 
    * This is mainly to measure the difference between two models: for example               which is also equal to probability to die before dh 
    * if stepm=24 months pijx are given only every 2 years and by summing them               minus probability to die before dh-stepm . 
    * we are calculating an estimate of the Life Expectancy assuming a linear               In version up to 0.92 likelihood was computed
    * progression inbetween and thus overestimating or underestimating according          as if date of death was unknown. Death was treated as any other
    * to the curvature of the survival function. If, for the same date, we          health state: the date of the interview describes the actual state
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          and not the date of a change in health state. The former idea was
    * to compare the new estimate of Life expectancy with the same linear          to consider that at each interview the state was recorded
    * hypothesis. A more precise result, taking into account a more precise          (healthy, disable or death) and IMaCh was corrected; but when we
    * curvature will be obtained if estepm is as small as stepm. */          introduced the exact date of death then we should have modified
           the contribution of an exact death to the likelihood. This new
   /* For example we decided to compute the life expectancy with the smallest unit */          contribution is smaller and very dependent of the step unit
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          stepm. It is no more the probability to die between last interview
      nhstepm is the number of hstepm from age to agelim          and month of death but the probability to survive from last
      nstepm is the number of stepm from age to agelin.          interview up to one month before death multiplied by the
      Look at hpijx to understand the reason of that which relies in memory size          probability to die within a month. Thanks to Chris
      and note for a fixed period like estepm months */          Jackson for correcting this bug.  Former versions increased
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          mortality artificially. The bad side is that we add another loop
      survival function given by stepm (the optimization length). Unfortunately it          which slows down the processing. The difference can be up to 10%
      means that if the survival funtion is printed only each two years of age and if          lower mortality.
      you sum them up and add 1 year (area under the trapezoids) you won't get the same            */
      results. So we changed our mind and took the option of the best precision.            lli=log(out[s1][s2] - savm[s1][s2]);
   */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  
           } else if  (s2==-2) {
   agelim=AGESUP;            for (j=1,survp=0. ; j<=nlstate; j++) 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     /* nhstepm age range expressed in number of stepm */            /*survp += out[s1][j]; */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);            lli= log(survp);
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          }
     /* if (stepm >= YEARM) hstepm=1;*/          
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          else if  (s2==-4) { 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for (j=3,survp=0. ; j<=nlstate; j++)  
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     gp=matrix(0,nhstepm,1,nlstate*2);            lli= log(survp); 
     gm=matrix(0,nhstepm,1,nlstate*2);          } 
   
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          else if  (s2==-5) { 
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            for (j=1,survp=0. ; j<=2; j++)  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);                survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
              lli= log(survp); 
           } 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          
           else{
     /* Computing Variances of health expectancies */            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
             /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
      for(theta=1; theta <=npar; theta++){          } 
       for(i=1; i<=npar; i++){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          /*if(lli ==000.0)*/
       }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            ipmx +=1;
            sw += weight[i];
       cptj=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(j=1; j<= nlstate; j++){        } /* end of wave */
         for(i=1; i<=nlstate; i++){      } /* end of individual */
           cptj=cptj+1;    }  else if(mle==2){
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           }        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
       }            for (j=1;j<=nlstate+ndeath;j++){
                    oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                    savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(i=1; i<=npar; i++)            }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          for(d=0; d<=dh[mi][i]; d++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              newm=savm;
                  cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       cptj=0;            for (kk=1; kk<=cptcovage;kk++) {
       for(j=1; j<= nlstate; j++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for(i=1;i<=nlstate;i++){            }
           cptj=cptj+1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;            savm=oldm;
           }            oldm=newm;
         }          } /* end mult */
       }        
       for(j=1; j<= nlstate*2; j++)          s1=s[mw[mi][i]][i];
         for(h=0; h<=nhstepm-1; h++){          s2=s[mw[mi+1][i]][i];
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          bbh=(double)bh[mi][i]/(double)stepm; 
         }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
      }          ipmx +=1;
              sw += weight[i];
 /* End theta */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);      } /* end of individual */
     }  else if(mle==3){  /* exponential inter-extrapolation */
      for(h=0; h<=nhstepm-1; h++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(j=1; j<=nlstate*2;j++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(theta=1; theta <=npar; theta++)        for(mi=1; mi<= wav[i]-1; mi++){
           trgradg[h][j][theta]=gradg[h][theta][j];          for (ii=1;ii<=nlstate+ndeath;ii++)
                  for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      for(i=1;i<=nlstate*2;i++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(j=1;j<=nlstate*2;j++)            }
         varhe[i][j][(int)age] =0.;          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
      printf("%d|",(int)age);fflush(stdout);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);            for (kk=1; kk<=cptcovage;kk++) {
      for(h=0;h<=nhstepm-1;h++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(k=0;k<=nhstepm-1;k++){            }
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(i=1;i<=nlstate*2;i++)            savm=oldm;
           for(j=1;j<=nlstate*2;j++)            oldm=newm;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;          } /* end mult */
       }        
     }          s1=s[mw[mi][i]][i];
     /* Computing expectancies */          s2=s[mw[mi+1][i]][i];
     for(i=1; i<=nlstate;i++)          bbh=(double)bh[mi][i]/(double)stepm; 
       for(j=1; j<=nlstate;j++)          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          ipmx +=1;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          sw += weight[i];
                    ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        } /* end of wave */
       } /* end of individual */
         }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     fprintf(ficreseij,"%3.0f",age );        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     cptj=0;        for(mi=1; mi<= wav[i]-1; mi++){
     for(i=1; i<=nlstate;i++)          for (ii=1;ii<=nlstate+ndeath;ii++)
       for(j=1; j<=nlstate;j++){            for (j=1;j<=nlstate+ndeath;j++){
         cptj++;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
     fprintf(ficreseij,"\n");          for(d=0; d<dh[mi][i]; d++){
                newm=savm;
     free_matrix(gm,0,nhstepm,1,nlstate*2);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     free_matrix(gp,0,nhstepm,1,nlstate*2);            for (kk=1; kk<=cptcovage;kk++) {
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);            }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          
   }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   printf("\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(ficlog,"\n");            savm=oldm;
             oldm=newm;
   free_vector(xp,1,npar);          } /* end mult */
   free_matrix(dnewm,1,nlstate*2,1,npar);        
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);          s1=s[mw[mi][i]][i];
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);          s2=s[mw[mi+1][i]][i];
 }          if( s2 > nlstate){ 
             lli=log(out[s1][s2] - savm[s1][s2]);
 /************ Variance ******************/          }else{
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 {          }
   /* Variance of health expectancies */          ipmx +=1;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          sw += weight[i];
   /* double **newm;*/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double **dnewm,**doldm;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   double **dnewmp,**doldmp;        } /* end of wave */
   int i, j, nhstepm, hstepm, h, nstepm ;      } /* end of individual */
   int k, cptcode;    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   double *xp;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   double **gp, **gm;  /* for var eij */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   double ***gradg, ***trgradg; /*for var eij */        for(mi=1; mi<= wav[i]-1; mi++){
   double **gradgp, **trgradgp; /* for var p point j */          for (ii=1;ii<=nlstate+ndeath;ii++)
   double *gpp, *gmp; /* for var p point j */            for (j=1;j<=nlstate+ndeath;j++){
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double ***p3mat;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double age,agelim, hf;            }
   int theta;          for(d=0; d<dh[mi][i]; d++){
   char digit[4];            newm=savm;
   char digitp[16];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   char fileresprobmorprev[FILENAMELENGTH];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   if(popbased==1)          
     strcpy(digitp,"-populbased-");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   else                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     strcpy(digitp,"-stablbased-");            savm=oldm;
             oldm=newm;
   strcpy(fileresprobmorprev,"prmorprev");          } /* end mult */
   sprintf(digit,"%-d",ij);        
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/          s1=s[mw[mi][i]][i];
   strcat(fileresprobmorprev,digit); /* Tvar to be done */          s2=s[mw[mi+1][i]][i];
   strcat(fileresprobmorprev,digitp); /* Popbased or not */          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   strcat(fileresprobmorprev,fileres);          ipmx +=1;
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {          sw += weight[i];
     printf("Problem with resultfile: %s\n", fileresprobmorprev);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   }        } /* end of wave */
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);      } /* end of individual */
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    } /* End of if */
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     fprintf(ficresprobmorprev," p.%-d SE",j);    return -l;
     for(i=1; i<=nlstate;i++)  }
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);  
   }    /*************** log-likelihood *************/
   fprintf(ficresprobmorprev,"\n");  double funcone( double *x)
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  {
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    /* Same as likeli but slower because of a lot of printf and if */
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);    int i, ii, j, k, mi, d, kk;
     exit(0);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   }    double **out;
   else{    double lli; /* Individual log likelihood */
     fprintf(ficgp,"\n# Routine varevsij");    double llt;
   }    int s1, s2;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    double bbh, survp;
     printf("Problem with html file: %s\n", optionfilehtm);    /*extern weight */
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    /* We are differentiating ll according to initial status */
     exit(0);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   }    /*for(i=1;i<imx;i++) 
   else{      printf(" %d\n",s[4][i]);
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    */
   }    cov[1]=1.;
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");  
   fprintf(ficresvij,"# Age");    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for(i=1; i<=nlstate;i++)      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(j=1; j<=nlstate;j++)      for(mi=1; mi<= wav[i]-1; mi++){
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        for (ii=1;ii<=nlstate+ndeath;ii++)
   fprintf(ficresvij,"\n");          for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   xp=vector(1,npar);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   dnewm=matrix(1,nlstate,1,npar);          }
   doldm=matrix(1,nlstate,1,nlstate);        for(d=0; d<dh[mi][i]; d++){
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);          newm=savm;
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for (kk=1; kk<=cptcovage;kk++) {
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   gpp=vector(nlstate+1,nlstate+ndeath);          }
   gmp=vector(nlstate+1,nlstate+ndeath);          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   if(estepm < stepm){          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
     printf ("Problem %d lower than %d\n",estepm, stepm);          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
   }          savm=oldm;
   else  hstepm=estepm;            oldm=newm;
   /* For example we decided to compute the life expectancy with the smallest unit */        } /* end mult */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        
      nhstepm is the number of hstepm from age to agelim        s1=s[mw[mi][i]][i];
      nstepm is the number of stepm from age to agelin.        s2=s[mw[mi+1][i]][i];
      Look at hpijx to understand the reason of that which relies in memory size        bbh=(double)bh[mi][i]/(double)stepm; 
      and note for a fixed period like k years */        /* bias is positive if real duration
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the         * is higher than the multiple of stepm and negative otherwise.
      survival function given by stepm (the optimization length). Unfortunately it         */
      means that if the survival funtion is printed only each two years of age and if        if( s2 > nlstate && (mle <5) ){  /* Jackson */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          lli=log(out[s1][s2] - savm[s1][s2]);
      results. So we changed our mind and took the option of the best precision.        } else if  (s2==-2) {
   */          for (j=1,survp=0. ; j<=nlstate; j++) 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   agelim = AGESUP;          lli= log(survp);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        }else if (mle==1){
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        } else if(mle==2){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        } else if(mle==3){  /* exponential inter-extrapolation */
     gp=matrix(0,nhstepm,1,nlstate);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     gm=matrix(0,nhstepm,1,nlstate);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           lli=log(out[s1][s2]); /* Original formula */
         } else{  /* mle=0 back to 1 */
     for(theta=1; theta <=npar; theta++){          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       for(i=1; i<=npar; i++){ /* Computes gradient */          /*lli=log(out[s1][s2]); */ /* Original formula */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        } /* End of if */
       }        ipmx +=1;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          sw += weight[i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       if (popbased==1) {        if(globpr){
         for(i=1; i<=nlstate;i++)          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
           prlim[i][i]=probs[(int)age][i][ij];   %11.6f %11.6f %11.6f ", \
       }                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                    2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       for(j=1; j<= nlstate; j++){          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         for(h=0; h<=nhstepm; h++){            llt +=ll[k]*gipmx/gsw;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          }
         }          fprintf(ficresilk," %10.6f\n", -llt);
       }        }
       /* This for computing forces of mortality (h=1)as a weighted average */      } /* end of wave */
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){    } /* end of individual */
         for(i=1; i<= nlstate; i++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
           gpp[j] += prlim[i][i]*p3mat[i][j][1];    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       }        l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       /* end force of mortality */    if(globpr==0){ /* First time we count the contributions and weights */
       gipmx=ipmx;
       for(i=1; i<=npar; i++) /* Computes gradient */      gsw=sw;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      return -l;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  }
    
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)  /*************** function likelione ***********/
           prlim[i][i]=probs[(int)age][i][ij];  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
       }  {
     /* This routine should help understanding what is done with 
       for(j=1; j<= nlstate; j++){       the selection of individuals/waves and
         for(h=0; h<=nhstepm; h++){       to check the exact contribution to the likelihood.
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)       Plotting could be done.
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];     */
         }    int k;
       }  
       /* This for computing force of mortality (h=1)as a weighted average */    if(*globpri !=0){ /* Just counts and sums, no printings */
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){      strcpy(fileresilk,"ilk"); 
         for(i=1; i<= nlstate; i++)      strcat(fileresilk,fileres);
           gmp[j] += prlim[i][i]*p3mat[i][j][1];      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       }            printf("Problem with resultfile: %s\n", fileresilk);
       /* end force of mortality */        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       }
       for(j=1; j<= nlstate; j++) /* vareij */      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
         for(h=0; h<=nhstepm; h++){      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
         }      for(k=1; k<=nlstate; k++) 
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       }    }
   
     } /* End theta */    *fretone=(*funcone)(p);
     if(*globpri !=0){
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */      fclose(ficresilk);
       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     for(h=0; h<=nhstepm; h++) /* veij */      fflush(fichtm); 
       for(j=1; j<=nlstate;j++)    } 
         for(theta=1; theta <=npar; theta++)    return;
           trgradg[h][j][theta]=gradg[h][theta][j];  }
   
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */  
       for(theta=1; theta <=npar; theta++)  /*********** Maximum Likelihood Estimation ***************/
         trgradgp[j][theta]=gradgp[theta][j];  
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  {
     for(i=1;i<=nlstate;i++)    int i,j, iter;
       for(j=1;j<=nlstate;j++)    double **xi;
         vareij[i][j][(int)age] =0.;    double fret;
     double fretone; /* Only one call to likelihood */
     for(h=0;h<=nhstepm;h++){    /*  char filerespow[FILENAMELENGTH];*/
       for(k=0;k<=nhstepm;k++){    xi=matrix(1,npar,1,npar);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    for (i=1;i<=npar;i++)
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      for (j=1;j<=npar;j++)
         for(i=1;i<=nlstate;i++)        xi[i][j]=(i==j ? 1.0 : 0.0);
           for(j=1;j<=nlstate;j++)    printf("Powell\n");  fprintf(ficlog,"Powell\n");
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    strcpy(filerespow,"pow"); 
       }    strcat(filerespow,fileres);
     }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
     /* pptj */      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);    }
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for(j=nlstate+1;j<=nlstate+ndeath;j++)    for (i=1;i<=nlstate;i++)
       for(i=nlstate+1;i<=nlstate+ndeath;i++)      for(j=1;j<=nlstate+ndeath;j++)
         varppt[j][i]=doldmp[j][i];        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     /* end ppptj */    fprintf(ficrespow,"\n");
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);    
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);    powell(p,xi,npar,ftol,&iter,&fret,func);
    
     if (popbased==1) {    free_matrix(xi,1,npar,1,npar);
       for(i=1; i<=nlstate;i++)    fclose(ficrespow);
         prlim[i][i]=probs[(int)age][i][ij];    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
        fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     /* This for computing force of mortality (h=1)as a weighted average */  
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){  }
       for(i=1; i<= nlstate; i++)  
         gmp[j] += prlim[i][i]*p3mat[i][j][1];  /**** Computes Hessian and covariance matrix ***/
     }      void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     /* end force of mortality */  {
     double  **a,**y,*x,pd;
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);    double **hess;
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){    int i, j,jk;
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));    int *indx;
       for(i=1; i<=nlstate;i++){  
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
       }    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     }    void lubksb(double **a, int npar, int *indx, double b[]) ;
     fprintf(ficresprobmorprev,"\n");    void ludcmp(double **a, int npar, int *indx, double *d) ;
     double gompertz(double p[]);
     fprintf(ficresvij,"%.0f ",age );    hess=matrix(1,npar,1,npar);
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){    printf("\nCalculation of the hessian matrix. Wait...\n");
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       }    for (i=1;i<=npar;i++){
     fprintf(ficresvij,"\n");      printf("%d",i);fflush(stdout);
     free_matrix(gp,0,nhstepm,1,nlstate);      fprintf(ficlog,"%d",i);fflush(ficlog);
     free_matrix(gm,0,nhstepm,1,nlstate);     
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /*  printf(" %f ",p[i]);
   } /* End age */          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   free_vector(gpp,nlstate+1,nlstate+ndeath);    }
   free_vector(gmp,nlstate+1,nlstate+ndeath);    
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);    for (i=1;i<=npar;i++) {
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/      for (j=1;j<=npar;j++)  {
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");        if (j>i) { 
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */          printf(".%d%d",i,j);fflush(stdout);
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);          hess[i][j]=hessij(p,delti,i,j,func,npar);
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);          
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);          hess[j][i]=hess[i][j];    
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);          /*printf(" %lf ",hess[i][j]);*/
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);        }
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);      }
     }
   free_vector(xp,1,npar);    printf("\n");
   free_matrix(doldm,1,nlstate,1,nlstate);    fprintf(ficlog,"\n");
   free_matrix(dnewm,1,nlstate,1,npar);  
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    
   fclose(ficresprobmorprev);    a=matrix(1,npar,1,npar);
   fclose(ficgp);    y=matrix(1,npar,1,npar);
   fclose(fichtm);    x=vector(1,npar);
     indx=ivector(1,npar);
 }    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 /************ Variance of prevlim ******************/    ludcmp(a,npar,indx,&pd);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  
 {    for (j=1;j<=npar;j++) {
   /* Variance of prevalence limit */      for (i=1;i<=npar;i++) x[i]=0;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      x[j]=1;
   double **newm;      lubksb(a,npar,indx,x);
   double **dnewm,**doldm;      for (i=1;i<=npar;i++){ 
   int i, j, nhstepm, hstepm;        matcov[i][j]=x[i];
   int k, cptcode;      }
   double *xp;    }
   double *gp, *gm;  
   double **gradg, **trgradg;    printf("\n#Hessian matrix#\n");
   double age,agelim;    fprintf(ficlog,"\n#Hessian matrix#\n");
   int theta;    for (i=1;i<=npar;i++) { 
          for (j=1;j<=npar;j++) { 
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");        printf("%.3e ",hess[i][j]);
   fprintf(ficresvpl,"# Age");        fprintf(ficlog,"%.3e ",hess[i][j]);
   for(i=1; i<=nlstate;i++)      }
       fprintf(ficresvpl," %1d-%1d",i,i);      printf("\n");
   fprintf(ficresvpl,"\n");      fprintf(ficlog,"\n");
     }
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);    /* Recompute Inverse */
   doldm=matrix(1,nlstate,1,nlstate);    for (i=1;i<=npar;i++)
        for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   hstepm=1*YEARM; /* Every year of age */    ludcmp(a,npar,indx,&pd);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */  
   agelim = AGESUP;    /*  printf("\n#Hessian matrix recomputed#\n");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    for (j=1;j<=npar;j++) {
     if (stepm >= YEARM) hstepm=1;      for (i=1;i<=npar;i++) x[i]=0;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      x[j]=1;
     gradg=matrix(1,npar,1,nlstate);      lubksb(a,npar,indx,x);
     gp=vector(1,nlstate);      for (i=1;i<=npar;i++){ 
     gm=vector(1,nlstate);        y[i][j]=x[i];
         printf("%.3e ",y[i][j]);
     for(theta=1; theta <=npar; theta++){        fprintf(ficlog,"%.3e ",y[i][j]);
       for(i=1; i<=npar; i++){ /* Computes gradient */      }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      printf("\n");
       }      fprintf(ficlog,"\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    }
       for(i=1;i<=nlstate;i++)    */
         gp[i] = prlim[i][i];  
        free_matrix(a,1,npar,1,npar);
       for(i=1; i<=npar; i++) /* Computes gradient */    free_matrix(y,1,npar,1,npar);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    free_vector(x,1,npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    free_ivector(indx,1,npar);
       for(i=1;i<=nlstate;i++)    free_matrix(hess,1,npar,1,npar);
         gm[i] = prlim[i][i];  
   
       for(i=1;i<=nlstate;i++)  }
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  
     } /* End theta */  /*************** hessian matrix ****************/
   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     trgradg =matrix(1,nlstate,1,npar);  {
     int i;
     for(j=1; j<=nlstate;j++)    int l=1, lmax=20;
       for(theta=1; theta <=npar; theta++)    double k1,k2;
         trgradg[j][theta]=gradg[theta][j];    double p2[MAXPARM+1]; /* identical to x */
     double res;
     for(i=1;i<=nlstate;i++)    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       varpl[i][(int)age] =0.;    double fx;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    int k=0,kmax=10;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    double l1;
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
     fprintf(ficresvpl,"%.0f ",age );    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
     for(i=1; i<=nlstate;i++)      l1=pow(10,l);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      delts=delt;
     fprintf(ficresvpl,"\n");      for(k=1 ; k <kmax; k=k+1){
     free_vector(gp,1,nlstate);        delt = delta*(l1*k);
     free_vector(gm,1,nlstate);        p2[theta]=x[theta] +delt;
     free_matrix(gradg,1,npar,1,nlstate);        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
     free_matrix(trgradg,1,nlstate,1,npar);        p2[theta]=x[theta]-delt;
   } /* End age */        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
   free_vector(xp,1,npar);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   free_matrix(doldm,1,nlstate,1,npar);        
   free_matrix(dnewm,1,nlstate,1,nlstate);  #ifdef DEBUGHESS
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   #endif
 /************ Variance of one-step probabilities  ******************/        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
 {          k=kmax;
   int i, j=0,  i1, k1, l1, t, tj;        }
   int k2, l2, j1,  z1;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   int k=0,l, cptcode;          k=kmax; l=lmax*10.;
   int first=1, first1;        }
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   double **dnewm,**doldm;          delts=delt;
   double *xp;        }
   double *gp, *gm;      }
   double **gradg, **trgradg;    }
   double **mu;    delti[theta]=delts;
   double age,agelim, cov[NCOVMAX];    return res; 
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    
   int theta;  }
   char fileresprob[FILENAMELENGTH];  
   char fileresprobcov[FILENAMELENGTH];  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   char fileresprobcor[FILENAMELENGTH];  {
     int i;
   double ***varpij;    int l=1, l1, lmax=20;
     double k1,k2,k3,k4,res,fx;
   strcpy(fileresprob,"prob");    double p2[MAXPARM+1];
   strcat(fileresprob,fileres);    int k;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprob);    fx=func(x);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    for (k=1; k<=2; k++) {
   }      for (i=1;i<=npar;i++) p2[i]=x[i];
   strcpy(fileresprobcov,"probcov");      p2[thetai]=x[thetai]+delti[thetai]/k;
   strcat(fileresprobcov,fileres);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {      k1=func(p2)-fx;
     printf("Problem with resultfile: %s\n", fileresprobcov);    
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);      p2[thetai]=x[thetai]+delti[thetai]/k;
   }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   strcpy(fileresprobcor,"probcor");      k2=func(p2)-fx;
   strcat(fileresprobcor,fileres);    
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {      p2[thetai]=x[thetai]-delti[thetai]/k;
     printf("Problem with resultfile: %s\n", fileresprobcor);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);      k3=func(p2)-fx;
   }    
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      p2[thetai]=x[thetai]-delti[thetai]/k;
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      k4=func(p2)-fx;
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);  #ifdef DEBUG
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
        fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");  #endif
   fprintf(ficresprob,"# Age");    }
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    return res;
   fprintf(ficresprobcov,"# Age");  }
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");  
   fprintf(ficresprobcov,"# Age");  /************** Inverse of matrix **************/
   void ludcmp(double **a, int n, int *indx, double *d) 
   { 
   for(i=1; i<=nlstate;i++)    int i,imax,j,k; 
     for(j=1; j<=(nlstate+ndeath);j++){    double big,dum,sum,temp; 
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    double *vv; 
       fprintf(ficresprobcov," p%1d-%1d ",i,j);   
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    vv=vector(1,n); 
     }      *d=1.0; 
   fprintf(ficresprob,"\n");    for (i=1;i<=n;i++) { 
   fprintf(ficresprobcov,"\n");      big=0.0; 
   fprintf(ficresprobcor,"\n");      for (j=1;j<=n;j++) 
   xp=vector(1,npar);        if ((temp=fabs(a[i][j])) > big) big=temp; 
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      vv[i]=1.0/big; 
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    } 
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    for (j=1;j<=n;j++) { 
   first=1;      for (i=1;i<j;i++) { 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        sum=a[i][j]; 
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);        a[i][j]=sum; 
     exit(0);      } 
   }      big=0.0; 
   else{      for (i=j;i<=n;i++) { 
     fprintf(ficgp,"\n# Routine varprob");        sum=a[i][j]; 
   }        for (k=1;k<j;k++) 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {          sum -= a[i][k]*a[k][j]; 
     printf("Problem with html file: %s\n", optionfilehtm);        a[i][j]=sum; 
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     exit(0);          big=dum; 
   }          imax=i; 
   else{        } 
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");      } 
     fprintf(fichtm,"\n");      if (j != imax) { 
         for (k=1;k<=n;k++) { 
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");          dum=a[imax][k]; 
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");          a[imax][k]=a[j][k]; 
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");          a[j][k]=dum; 
         } 
   }        *d = -(*d); 
         vv[imax]=vv[j]; 
        } 
   cov[1]=1;      indx[j]=imax; 
   tj=cptcoveff;      if (a[j][j] == 0.0) a[j][j]=TINY; 
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}      if (j != n) { 
   j1=0;        dum=1.0/(a[j][j]); 
   for(t=1; t<=tj;t++){        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     for(i1=1; i1<=ncodemax[t];i1++){      } 
       j1++;    } 
          free_vector(vv,1,n);  /* Doesn't work */
       if  (cptcovn>0) {  ;
         fprintf(ficresprob, "\n#********** Variable ");  } 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficresprob, "**********\n#");  void lubksb(double **a, int n, int *indx, double b[]) 
         fprintf(ficresprobcov, "\n#********** Variable ");  { 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    int i,ii=0,ip,j; 
         fprintf(ficresprobcov, "**********\n#");    double sum; 
           
         fprintf(ficgp, "\n#********** Variable ");    for (i=1;i<=n;i++) { 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      ip=indx[i]; 
         fprintf(ficgp, "**********\n#");      sum=b[ip]; 
              b[ip]=b[i]; 
              if (ii) 
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      else if (sum) ii=i; 
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");      b[i]=sum; 
            } 
         fprintf(ficresprobcor, "\n#********** Variable ");        for (i=n;i>=1;i--) { 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      sum=b[i]; 
         fprintf(ficgp, "**********\n#");          for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       }      b[i]=sum/a[i][i]; 
          } 
       for (age=bage; age<=fage; age ++){  } 
         cov[2]=age;  
         for (k=1; k<=cptcovn;k++) {  void pstamp(FILE *fichier)
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];  {
         }    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  }
         for (k=1; k<=cptcovprod;k++)  
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /************ Frequencies ********************/
          void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));  {  /* Some frequencies */
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    
         gp=vector(1,(nlstate)*(nlstate+ndeath));    int i, m, jk, k1,i1, j1, bool, z1,j;
         gm=vector(1,(nlstate)*(nlstate+ndeath));    int first;
        double ***freq; /* Frequencies */
         for(theta=1; theta <=npar; theta++){    double *pp, **prop;
           for(i=1; i<=npar; i++)    double pos,posprop, k2, dateintsum=0,k2cpt=0;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    char fileresp[FILENAMELENGTH];
              
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    pp=vector(1,nlstate);
              prop=matrix(1,nlstate,iagemin,iagemax+3);
           k=0;    strcpy(fileresp,"p");
           for(i=1; i<= (nlstate); i++){    strcat(fileresp,fileres);
             for(j=1; j<=(nlstate+ndeath);j++){    if((ficresp=fopen(fileresp,"w"))==NULL) {
               k=k+1;      printf("Problem with prevalence resultfile: %s\n", fileresp);
               gp[k]=pmmij[i][j];      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
             }      exit(0);
           }    }
              freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
           for(i=1; i<=npar; i++)    j1=0;
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    
        j=cptcoveff;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           k=0;  
           for(i=1; i<=(nlstate); i++){    first=1;
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;    /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
               gm[k]=pmmij[i][j];    /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
             }    /*    j1++;
           }  */
          for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];            scanf("%d", i);*/
         }        for (i=-5; i<=nlstate+ndeath; i++)  
           for (jk=-5; jk<=nlstate+ndeath; jk++)  
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)            for(m=iagemin; m <= iagemax+3; m++)
           for(theta=1; theta <=npar; theta++)              freq[i][jk][m]=0;
             trgradg[j][theta]=gradg[theta][j];        
                for (i=1; i<=nlstate; i++)  
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);          for(m=iagemin; m <= iagemax+3; m++)
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);            prop[i][m]=0;
                
         pmij(pmmij,cov,ncovmodel,x,nlstate);        dateintsum=0;
                k2cpt=0;
         k=0;        for (i=1; i<=imx; i++) {
         for(i=1; i<=(nlstate); i++){          bool=1;
           for(j=1; j<=(nlstate+ndeath);j++){          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
             k=k+1;            for (z1=1; z1<=cptcoveff; z1++)       
             mu[k][(int) age]=pmmij[i][j];              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
           }                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
         }                bool=0;
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
             varpij[i][j][(int)age] = doldm[i][j];                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
                 /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
         /*printf("\n%d ",(int)age);              } 
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          }
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));   
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));          if (bool==1){
      }*/            for(m=firstpass; m<=lastpass; m++){
               k2=anint[m][i]+(mint[m][i]/12.);
         fprintf(ficresprob,"\n%d ",(int)age);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
         fprintf(ficresprobcov,"\n%d ",(int)age);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         fprintf(ficresprobcor,"\n%d ",(int)age);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)                if (m<lastpass) {
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);                }
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);                
         }                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         i=0;                  dateintsum=dateintsum+k2;
         for (k=1; k<=(nlstate);k++){                  k2cpt++;
           for (l=1; l<=(nlstate+ndeath);l++){                }
             i=i++;                /*}*/
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);            }
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);          }
             for (j=1; j<=i;j++){        } /* end i */
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);         
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
             }        pstamp(ficresp);
           }        if  (cptcovn>0) {
         }/* end of loop for state */          fprintf(ficresp, "\n#********** Variable "); 
       } /* end of loop for age */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresp, "**********\n#");
       /* Confidence intervalle of pij  */          fprintf(ficlog, "\n#********** Variable "); 
       /*          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficgp,"\nset noparametric;unset label");          fprintf(ficlog, "**********\n#");
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");        }
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");        for(i=1; i<=nlstate;i++) 
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);        fprintf(ficresp, "\n");
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);        
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);        for(i=iagemin; i <= iagemax+3; i++){
       */          if(i==iagemax+3){
             fprintf(ficlog,"Total");
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/          }else{
       first1=1;            if(first==1){
       for (k2=1; k2<=(nlstate);k2++){              first=0;
         for (l2=1; l2<=(nlstate+ndeath);l2++){              printf("See log file for details...\n");
           if(l2==k2) continue;            }
           j=(k2-1)*(nlstate+ndeath)+l2;            fprintf(ficlog,"Age %d", i);
           for (k1=1; k1<=(nlstate);k1++){          }
             for (l1=1; l1<=(nlstate+ndeath);l1++){          for(jk=1; jk <=nlstate ; jk++){
               if(l1==k1) continue;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
               i=(k1-1)*(nlstate+ndeath)+l1;              pp[jk] += freq[jk][m][i]; 
               if(i<=j) continue;          }
               for (age=bage; age<=fage; age ++){          for(jk=1; jk <=nlstate ; jk++){
                 if ((int)age %5==0){            for(m=-1, pos=0; m <=0 ; m++)
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;              pos += freq[jk][m][i];
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;            if(pp[jk]>=1.e-10){
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;              if(first==1){
                   mu1=mu[i][(int) age]/stepm*YEARM ;                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                   mu2=mu[j][(int) age]/stepm*YEARM;              }
                   c12=cv12/sqrt(v1*v2);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                   /* Computing eigen value of matrix of covariance */            }else{
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;              if(first==1)
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                   /* Eigen vectors */              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));            }
                   /*v21=sqrt(1.-v11*v11); *//* error */          }
                   v21=(lc1-v1)/cv12*v11;  
                   v12=-v21;          for(jk=1; jk <=nlstate ; jk++){
                   v22=v11;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                   tnalp=v21/v11;              pp[jk] += freq[jk][m][i];
                   if(first1==1){          }       
                     first1=0;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);            pos += pp[jk];
                   }            posprop += prop[jk][i];
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);          }
                   /*printf(fignu*/          for(jk=1; jk <=nlstate ; jk++){
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */            if(pos>=1.e-5){
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */              if(first==1)
                   if(first==1){                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                     first=0;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                     fprintf(ficgp,"\nset parametric;unset label");            }else{
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);              if(first==1)
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);            }
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);            if( i <= iagemax){
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);              if(pos>=1.e-5){
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\                /*probs[i][jk][j1]= pp[jk]/pos;*/
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));              }
                   }else{              else
                     first=0;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);            }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);          }
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\          
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\          for(jk=-1; jk <=nlstate+ndeath; jk++)
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));            for(m=-1; m <=nlstate+ndeath; m++)
                   }/* if first */              if(freq[jk][m][i] !=0 ) {
                 } /* age mod 5 */              if(first==1)
               } /* end loop age */                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               first=1;              }
             } /*l12 */          if(i <= iagemax)
           } /* k12 */            fprintf(ficresp,"\n");
         } /*l1 */          if(first==1)
       }/* k1 */            printf("Others in log...\n");
     } /* loop covariates */          fprintf(ficlog,"\n");
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);        }
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));        /*}*/
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    }
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);    dateintmean=dateintsum/k2cpt; 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);   
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    fclose(ficresp);
   }    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   free_vector(xp,1,npar);    free_vector(pp,1,nlstate);
   fclose(ficresprob);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   fclose(ficresprobcov);    /* End of Freq */
   fclose(ficresprobcor);  }
   fclose(ficgp);  
   fclose(fichtm);  /************ Prevalence ********************/
 }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 /******************* Printing html file ***********/       in each health status at the date of interview (if between dateprev1 and dateprev2).
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \       We still use firstpass and lastpass as another selection.
                   int lastpass, int stepm, int weightopt, char model[],\    */
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\   
                   int popforecast, int estepm ,\    int i, m, jk, k1, i1, j1, bool, z1,j;
                   double jprev1, double mprev1,double anprev1, \    double ***freq; /* Frequencies */
                   double jprev2, double mprev2,double anprev2){    double *pp, **prop;
   int jj1, k1, i1, cpt;    double pos,posprop; 
   /*char optionfilehtm[FILENAMELENGTH];*/    double  y2; /* in fractional years */
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    int iagemin, iagemax;
     printf("Problem with %s \n",optionfilehtm), exit(0);    int first; /** to stop verbosity which is redirected to log file */
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);  
   }    iagemin= (int) agemin;
     iagemax= (int) agemax;
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n    /*pp=vector(1,nlstate);*/
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n    prop=matrix(1,nlstate,iagemin,iagemax+3); 
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n    j1=0;
  - Life expectancies by age and initial health status (estepm=%2d months):    
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    /*j=cptcoveff;*/
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    first=1;
     for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
  m=cptcoveff;      /*for(i1=1; i1<=ncodemax[k1];i1++){
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        j1++;*/
         
  jj1=0;        for (i=1; i<=nlstate; i++)  
  for(k1=1; k1<=m;k1++){          for(m=iagemin; m <= iagemax+3; m++)
    for(i1=1; i1<=ncodemax[k1];i1++){            prop[i][m]=0.0;
      jj1++;       
      if (cptcovn > 0) {        for (i=1; i<=imx; i++) { /* Each individual */
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          bool=1;
        for (cpt=1; cpt<=cptcoveff;cpt++)          if  (cptcovn>0) {
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            for (z1=1; z1<=cptcoveff; z1++) 
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
      }                bool=0;
      /* Pij */          } 
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>          if (bool==1) { 
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
      /* Quasi-incidences */              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
        /* Stable prevalence in each health state */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
        for(cpt=1; cpt<nlstate;cpt++){                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>                if (s[m][i]>0 && s[m][i]<=nlstate) { 
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
        }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
      for(cpt=1; cpt<=nlstate;cpt++) {                  prop[s[m][i]][iagemax+3] += weight[i]; 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>                } 
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              }
      }            } /* end selection of waves */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          }
 health expectancies in states (1) and (2): e%s%d.png<br>        }
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        for(i=iagemin; i <= iagemax+3; i++){  
    } /* end i1 */          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
  }/* End k1 */            posprop += prop[jk][i]; 
  fprintf(fichtm,"</ul>");          } 
           
           for(jk=1; jk <=nlstate ; jk++){     
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n            if( i <=  iagemax){ 
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n              if(posprop>=1.e-5){ 
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n                probs[i][jk][j1]= prop[jk][i]/posprop;
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n              } else{
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n                if(first==1){
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n                  first=0;
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);                }
               }
  if(popforecast==1) fprintf(fichtm,"\n            } 
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n          }/* end jk */ 
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n        }/* end i */ 
         <br>",fileres,fileres,fileres,fileres);      /*} *//* end i1 */
  else    } /* end j1 */
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     /*free_vector(pp,1,nlstate);*/
  m=cptcoveff;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  }  /* End of prevalence */
   
  jj1=0;  /************* Waves Concatenation ***************/
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
      jj1++;  {
      if (cptcovn > 0) {    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");       Death is a valid wave (if date is known).
        for (cpt=1; cpt<=cptcoveff;cpt++)       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");       and mw[mi+1][i]. dh depends on stepm.
      }       */
      for(cpt=1; cpt<=nlstate;cpt++) {  
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    int i, mi, m;
 interval) in state (%d): v%s%d%d.png <br>    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);         double sum=0., jmean=0.;*/
      }    int first;
    } /* end i1 */    int j, k=0,jk, ju, jl;
  }/* End k1 */    double sum=0.;
  fprintf(fichtm,"</ul>");    first=0;
 fclose(fichtm);    jmin=1e+5;
 }    jmax=-1;
     jmean=0.;
 /******************* Gnuplot file **************/    for(i=1; i<=imx; i++){
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){      mi=0;
       m=firstpass;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;      while(s[m][i] <= nlstate){
   int ng;        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          mw[++mi][i]=m;
     printf("Problem with file %s",optionfilegnuplot);        if(m >=lastpass)
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);          break;
   }        else
           m++;
 #ifdef windows      }/* end while */
     fprintf(ficgp,"cd \"%s\" \n",pathc);      if (s[m][i] > nlstate){
 #endif        mi++;     /* Death is another wave */
 m=pow(2,cptcoveff);        /* if(mi==0)  never been interviewed correctly before death */
             /* Only death is a correct wave */
  /* 1eme*/        mw[mi][i]=m;
   for (cpt=1; cpt<= nlstate ; cpt ++) {      }
    for (k1=1; k1<= m ; k1 ++) {  
       wav[i]=mi;
 #ifdef windows      if(mi==0){
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        nbwarn++;
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);        if(first==0){
 #endif          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 #ifdef unix          first=1;
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        }
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);        if(first==1){
 #endif          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         }
 for (i=1; i<= nlstate ; i ++) {      } /* end mi==0 */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    } /* End individuals */
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }    for(i=1; i<=imx; i++){
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      for(mi=1; mi<wav[i];mi++){
     for (i=1; i<= nlstate ; i ++) {        if (stepm <=0)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          dh[mi][i]=1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");        else{
 }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            if (agedc[i] < 2*AGESUP) {
      for (i=1; i<= nlstate ; i ++) {              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              if(j==0) j=1;  /* Survives at least one month after exam */
   else fprintf(ficgp," \%%*lf (\%%*lf)");              else if(j<0){
 }                  nberr++;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 #ifdef unix                j=1; /* Temporary Dangerous patch */
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 #endif                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
    }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   }              }
   /*2 eme*/              k=k+1;
               if (j >= jmax){
   for (k1=1; k1<= m ; k1 ++) {                jmax=j;
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);                ijmax=i;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);              }
                  if (j <= jmin){
     for (i=1; i<= nlstate+1 ; i ++) {                jmin=j;
       k=2*i;                ijmin=i;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);              }
       for (j=1; j<= nlstate+1 ; j ++) {              sum=sum+j;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 }              }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          }
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          else{
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       for (j=1; j<= nlstate+1 ; j ++) {  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");            k=k+1;
 }              if (j >= jmax) {
       fprintf(ficgp,"\" t\"\" w l 0,");              jmax=j;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);              ijmax=i;
       for (j=1; j<= nlstate+1 ; j ++) {            }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            else if (j <= jmin){
   else fprintf(ficgp," \%%*lf (\%%*lf)");              jmin=j;
 }                ijmin=i;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");            }
       else fprintf(ficgp,"\" t\"\" w l 0,");            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   }            if(j<0){
                nberr++;
   /*3eme*/              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   for (k1=1; k1<= m ; k1 ++) {            }
     for (cpt=1; cpt<= nlstate ; cpt ++) {            sum=sum+j;
       k=2+nlstate*(2*cpt-2);          }
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          jk= j/stepm;
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);          jl= j -jk*stepm;
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          ju= j -(jk+1)*stepm;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            if(jl==0){
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              dh[mi][i]=jk;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              bh[mi][i]=0;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            }else{ /* We want a negative bias in order to only have interpolation ie
                     * to avoid the price of an extra matrix product in likelihood */
 */              dh[mi][i]=jk+1;
       for (i=1; i< nlstate ; i ++) {              bh[mi][i]=ju;
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);            }
           }else{
       }            if(jl <= -ju){
     }              dh[mi][i]=jk;
   }              bh[mi][i]=jl;       /* bias is positive if real duration
                                     * is higher than the multiple of stepm and negative otherwise.
   /* CV preval stat */                                   */
     for (k1=1; k1<= m ; k1 ++) {            }
     for (cpt=1; cpt<nlstate ; cpt ++) {            else{
       k=3;              dh[mi][i]=jk+1;
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              bh[mi][i]=ju;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);            }
             if(dh[mi][i]==0){
       for (i=1; i< nlstate ; i ++)              dh[mi][i]=1; /* At least one step */
         fprintf(ficgp,"+$%d",k+i+1);              bh[mi][i]=ju; /* At least one step */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                  }
       l=3+(nlstate+ndeath)*cpt;          } /* end if mle */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        }
       for (i=1; i< nlstate ; i ++) {      } /* end wave */
         l=3+(nlstate+ndeath)*cpt;    }
         fprintf(ficgp,"+$%d",l+i+1);    jmean=sum/k;
       }    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     }   }
   }    
    /*********** Tricode ****************************/
   /* proba elementaires */  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
    for(i=1,jk=1; i <=nlstate; i++){  {
     for(k=1; k <=(nlstate+ndeath); k++){    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
       if (k != i) {    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
         for(j=1; j <=ncovmodel; j++){    /* Boring subroutine which should only output nbcode[Tvar[j]][k]
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
           jk++;    /* nbcode[Tvar[j]][1]= 
           fprintf(ficgp,"\n");    */
         }  
       }    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     }    int modmaxcovj=0; /* Modality max of covariates j */
    }    int cptcode=0; /* Modality max of covariates j */
     int modmincovj=0; /* Modality min of covariates j */
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/  
      for(jk=1; jk <=m; jk++) {  
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    cptcoveff=0; 
        if (ng==2)   
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");    for (k=-1; k < maxncov; k++) Ndum[k]=0;
        else    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
          fprintf(ficgp,"\nset title \"Probability\"\n");  
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    /* Loop on covariates without age and products */
        i=1;    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
        for(k2=1; k2<=nlstate; k2++) {      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
          k3=i;                                 modality of this covariate Vj*/ 
          for(k=1; k<=(nlstate+ndeath); k++) {        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
            if (k != k2){                                      * If product of Vn*Vm, still boolean *:
              if(ng==2)                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
              else        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);                                        modality of the nth covariate of individual i. */
              ij=1;        if (ij > modmaxcovj)
              for(j=3; j <=ncovmodel; j++) {          modmaxcovj=ij; 
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        else if (ij < modmincovj) 
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          modmincovj=ij; 
                  ij++;        if ((ij < -1) && (ij > NCOVMAX)){
                }          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
                else          exit(1);
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        }else
              }        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
              fprintf(ficgp,")/(1");        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
                      /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
              for(k1=1; k1 <=nlstate; k1++){          /* getting the maximum value of the modality of the covariate
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
                ij=1;           female is 1, then modmaxcovj=1.*/
                for(j=3; j <=ncovmodel; j++){      }
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      cptcode=modmaxcovj;
                    ij++;      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
                  }     /*for (i=0; i<=cptcode; i++) {*/
                  else      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
                }        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
                fprintf(ficgp,")");          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
              }        }
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
              i=i+ncovmodel;      } /* Ndum[-1] number of undefined modalities */
            }  
          } /* end k */      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
        } /* end k2 */      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
      } /* end jk */      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
    } /* end ng */         modmincovj=3; modmaxcovj = 7;
    fclose(ficgp);         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
 }  /* end gnuplot */         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
          variables V1_1 and V1_2.
          nbcode[Tvar[j]][ij]=k;
 /*************** Moving average **************/         nbcode[Tvar[j]][1]=0;
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){         nbcode[Tvar[j]][2]=1;
          nbcode[Tvar[j]][3]=2;
   int i, cpt, cptcod;      */
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)      ij=1; /* ij is similar to i but can jumps over null modalities */
       for (i=1; i<=nlstate;i++)      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
           mobaverage[(int)agedeb][i][cptcod]=0.;          /*recode from 0 */
              if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
       for (i=1; i<=nlstate;i++){                                       k is a modality. If we have model=V1+V1*sex 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
           for (cpt=0;cpt<=4;cpt++){            ij++;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];          }
           }          if (ij > ncodemax[j]) break; 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        }  /* end of loop on */
         }      } /* end of loop on modality */ 
       }    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
     }    
       for (k=-1; k< maxncov; k++) Ndum[k]=0; 
 }    
     for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
 /************** Forecasting ******************/     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){     Ndum[ij]++; 
     } 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;   ij=1;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
   double *popeffectif,*popcount;     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
   double ***p3mat;     if((Ndum[i]!=0) && (i<=ncovcol)){
   char fileresf[FILENAMELENGTH];       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
        Tvaraff[ij]=i; /*For printing (unclear) */
  agelim=AGESUP;       ij++;
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;     }else
          Tvaraff[ij]=0;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);   }
     ij--;
     cptcoveff=ij; /*Number of total covariates*/
   strcpy(fileresf,"f");  
   strcat(fileresf,fileres);  }
   if((ficresf=fopen(fileresf,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", fileresf);  
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);  /*********** Health Expectancies ****************/
   }  
   printf("Computing forecasting: result on file '%s' \n", fileresf);  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);  
   {
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    /* Health expectancies, no variances */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
   if (mobilav==1) {    int nhstepma, nstepma; /* Decreasing with age */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double age, agelim, hf;
     movingaverage(agedeb, fage, ageminpar, mobaverage);    double ***p3mat;
   }    double eip;
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;    pstamp(ficreseij);
   if (stepm<=12) stepsize=1;    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
      fprintf(ficreseij,"# Age");
   agelim=AGESUP;    for(i=1; i<=nlstate;i++){
        for(j=1; j<=nlstate;j++){
   hstepm=1;        fprintf(ficreseij," e%1d%1d ",i,j);
   hstepm=hstepm/stepm;      }
   yp1=modf(dateintmean,&yp);      fprintf(ficreseij," e%1d. ",i);
   anprojmean=yp;    }
   yp2=modf((yp1*12),&yp);    fprintf(ficreseij,"\n");
   mprojmean=yp;  
   yp1=modf((yp2*30.5),&yp);    
   jprojmean=yp;    if(estepm < stepm){
   if(jprojmean==0) jprojmean=1;      printf ("Problem %d lower than %d\n",estepm, stepm);
   if(mprojmean==0) jprojmean=1;    }
      else  hstepm=estepm;   
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    /* We compute the life expectancy from trapezoids spaced every estepm months
       * This is mainly to measure the difference between two models: for example
   for(cptcov=1;cptcov<=i2;cptcov++){     * if stepm=24 months pijx are given only every 2 years and by summing them
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){     * we are calculating an estimate of the Life Expectancy assuming a linear 
       k=k+1;     * progression in between and thus overestimating or underestimating according
       fprintf(ficresf,"\n#******");     * to the curvature of the survival function. If, for the same date, we 
       for(j=1;j<=cptcoveff;j++) {     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     * to compare the new estimate of Life expectancy with the same linear 
       }     * hypothesis. A more precise result, taking into account a more precise
       fprintf(ficresf,"******\n");     * curvature will be obtained if estepm is as small as stepm. */
       fprintf(ficresf,"# StartingAge FinalAge");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    /* For example we decided to compute the life expectancy with the smallest unit */
          /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
             nhstepm is the number of hstepm from age to agelim 
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {       nstepm is the number of stepm from age to agelin. 
         fprintf(ficresf,"\n");       Look at hpijx to understand the reason of that which relies in memory size
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);         and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){       survival function given by stepm (the optimization length). Unfortunately it
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       means that if the survival funtion is printed only each two years of age and if
           nhstepm = nhstepm/hstepm;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                 results. So we changed our mind and took the option of the best precision.
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    */
           oldm=oldms;savm=savms;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
            agelim=AGESUP;
           for (h=0; h<=nhstepm; h++){    /* If stepm=6 months */
             if (h==(int) (calagedate+YEARM*cpt)) {      /* Computed by stepm unit matrices, product of hstepm matrices, stored
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
             }      
             for(j=1; j<=nlstate+ndeath;j++) {  /* nhstepm age range expressed in number of stepm */
               kk1=0.;kk2=0;    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
               for(i=1; i<=nlstate;i++) {                  /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                 if (mobilav==1)    /* if (stepm >= YEARM) hstepm=1;*/
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                 else {    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }    for (age=bage; age<=fage; age ++){ 
                      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
               }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
               if (h==(int)(calagedate+12*cpt)){      /* if (stepm >= YEARM) hstepm=1;*/
                 fprintf(ficresf," %.3f", kk1);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
                          
               }      /* If stepm=6 months */
             }      /* Computed by stepm unit matrices, product of hstepma matrices, stored
           }         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      
         }      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       }      
     }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   }      
              printf("%d|",(int)age);fflush(stdout);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       
   fclose(ficresf);      /* Computing expectancies */
 }      for(i=1; i<=nlstate;i++)
 /************** Forecasting ******************/        for(j=1; j<=nlstate;j++)
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
              eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;            
   int *popage;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  
   double *popeffectif,*popcount;          }
   double ***p3mat,***tabpop,***tabpopprev;  
   char filerespop[FILENAMELENGTH];      fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        eip=0;
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(j=1; j<=nlstate;j++){
   agelim=AGESUP;          eip +=eij[i][j][(int)age];
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
          }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        fprintf(ficreseij,"%9.4f", eip );
        }
        fprintf(ficreseij,"\n");
   strcpy(filerespop,"pop");      
   strcat(filerespop,fileres);    }
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("Problem with forecast resultfile: %s\n", filerespop);    printf("\n");
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);    fprintf(ficlog,"\n");
   }    
   printf("Computing forecasting: result on file '%s' \n", filerespop);  }
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);  
   void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
   {
   if (mobilav==1) {    /* Covariances of health expectancies eij and of total life expectancies according
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     to initial status i, ei. .
     movingaverage(agedeb, fage, ageminpar, mobaverage);    */
   }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     int nhstepma, nstepma; /* Decreasing with age */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double age, agelim, hf;
   if (stepm<=12) stepsize=1;    double ***p3matp, ***p3matm, ***varhe;
      double **dnewm,**doldm;
   agelim=AGESUP;    double *xp, *xm;
      double **gp, **gm;
   hstepm=1;    double ***gradg, ***trgradg;
   hstepm=hstepm/stepm;    int theta;
    
   if (popforecast==1) {    double eip, vip;
     if((ficpop=fopen(popfile,"r"))==NULL) {  
       printf("Problem with population file : %s\n",popfile);exit(0);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);    xp=vector(1,npar);
     }    xm=vector(1,npar);
     popage=ivector(0,AGESUP);    dnewm=matrix(1,nlstate*nlstate,1,npar);
     popeffectif=vector(0,AGESUP);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     popcount=vector(0,AGESUP);    
        pstamp(ficresstdeij);
     i=1;      fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    fprintf(ficresstdeij,"# Age");
        for(i=1; i<=nlstate;i++){
     imx=i;      for(j=1; j<=nlstate;j++)
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
   }      fprintf(ficresstdeij," e%1d. ",i);
     }
   for(cptcov=1;cptcov<=i2;cptcov++){    fprintf(ficresstdeij,"\n");
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;    pstamp(ficrescveij);
       fprintf(ficrespop,"\n#******");    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
       for(j=1;j<=cptcoveff;j++) {    fprintf(ficrescveij,"# Age");
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for(i=1; i<=nlstate;i++)
       }      for(j=1; j<=nlstate;j++){
       fprintf(ficrespop,"******\n");        cptj= (j-1)*nlstate+i;
       fprintf(ficrespop,"# Age");        for(i2=1; i2<=nlstate;i2++)
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);          for(j2=1; j2<=nlstate;j2++){
       if (popforecast==1)  fprintf(ficrespop," [Population]");            cptj2= (j2-1)*nlstate+i2;
                  if(cptj2 <= cptj)
       for (cpt=0; cpt<=0;cpt++) {              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            }
              }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    fprintf(ficrescveij,"\n");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    
           nhstepm = nhstepm/hstepm;    if(estepm < stepm){
                printf ("Problem %d lower than %d\n",estepm, stepm);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
           oldm=oldms;savm=savms;    else  hstepm=estepm;   
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* We compute the life expectancy from trapezoids spaced every estepm months
             * This is mainly to measure the difference between two models: for example
           for (h=0; h<=nhstepm; h++){     * if stepm=24 months pijx are given only every 2 years and by summing them
             if (h==(int) (calagedate+YEARM*cpt)) {     * we are calculating an estimate of the Life Expectancy assuming a linear 
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);     * progression in between and thus overestimating or underestimating according
             }     * to the curvature of the survival function. If, for the same date, we 
             for(j=1; j<=nlstate+ndeath;j++) {     * estimate the model with stepm=1 month, we can keep estepm to 24 months
               kk1=0.;kk2=0;     * to compare the new estimate of Life expectancy with the same linear 
               for(i=1; i<=nlstate;i++) {                   * hypothesis. A more precise result, taking into account a more precise
                 if (mobilav==1)     * curvature will be obtained if estepm is as small as stepm. */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  
                 else {    /* For example we decided to compute the life expectancy with the smallest unit */
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                 }       nhstepm is the number of hstepm from age to agelim 
               }       nstepm is the number of stepm from age to agelin. 
               if (h==(int)(calagedate+12*cpt)){       Look at hpijx to understand the reason of that which relies in memory size
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;       and note for a fixed period like estepm months */
                   /*fprintf(ficrespop," %.3f", kk1);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/       survival function given by stepm (the optimization length). Unfortunately it
               }       means that if the survival funtion is printed only each two years of age and if
             }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
             for(i=1; i<=nlstate;i++){       results. So we changed our mind and took the option of the best precision.
               kk1=0.;    */
                 for(j=1; j<=nlstate;j++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  
                 }    /* If stepm=6 months */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    /* nhstepm age range expressed in number of stepm */
             }    agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    /* if (stepm >= YEARM) hstepm=1;*/
           }    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
         }    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   /******/    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    gm=matrix(0,nhstepm,1,nlstate*nlstate);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    for (age=bage; age<=fage; age ++){ 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
           nhstepm = nhstepm/hstepm;      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                /* if (stepm >= YEARM) hstepm=1;*/
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        /* If stepm=6 months */
           for (h=0; h<=nhstepm; h++){      /* Computed by stepm unit matrices, product of hstepma matrices, stored
             if (h==(int) (calagedate+YEARM*cpt)) {         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);      
             }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;      /* Computing  Variances of health expectancies */
               for(i=1; i<=nlstate;i++) {                    /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];             decrease memory allocation */
               }      for(theta=1; theta <=npar; theta++){
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);        for(i=1; i<=npar; i++){ 
             }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           }          xm[i] = x[i] - (i==theta ?delti[theta]:0);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
         }        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
       }        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
    }    
   }        for(j=1; j<= nlstate; j++){
            for(i=1; i<=nlstate; i++){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   if (popforecast==1) {              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
     free_ivector(popage,0,AGESUP);            }
     free_vector(popeffectif,0,AGESUP);          }
     free_vector(popcount,0,AGESUP);        }
   }       
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(ij=1; ij<= nlstate*nlstate; ij++)
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(h=0; h<=nhstepm-1; h++){
   fclose(ficrespop);            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
 }          }
       }/* End theta */
 /***********************************************/      
 /**************** Main Program *****************/      
 /***********************************************/      for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
 int main(int argc, char *argv[])          for(theta=1; theta <=npar; theta++)
 {            trgradg[h][j][theta]=gradg[h][theta][j];
       
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;  
   double agedeb, agefin,hf;       for(ij=1;ij<=nlstate*nlstate;ij++)
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;        for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   double fret;  
   double **xi,tmp,delta;       printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   double dum; /* Dummy variable */       for(h=0;h<=nhstepm-1;h++){
   double ***p3mat;        for(k=0;k<=nhstepm-1;k++){
   int *indx;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   char line[MAXLINE], linepar[MAXLINE];          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];          for(ij=1;ij<=nlstate*nlstate;ij++)
   int firstobs=1, lastobs=10;            for(ji=1;ji<=nlstate*nlstate;ji++)
   int sdeb, sfin; /* Status at beginning and end */              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   int c,  h , cpt,l;        }
   int ju,jl, mi;      }
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      /* Computing expectancies */
   int mobilav=0,popforecast=0;      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   int hstepm, nhstepm;      for(i=1; i<=nlstate;i++)
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;        for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   double bage, fage, age, agelim, agebase;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
   double ftolpl=FTOL;            
   double **prlim;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   double *severity;  
   double ***param; /* Matrix of parameters */          }
   double  *p;  
   double **matcov; /* Matrix of covariance */      fprintf(ficresstdeij,"%3.0f",age );
   double ***delti3; /* Scale */      for(i=1; i<=nlstate;i++){
   double *delti; /* Scale */        eip=0.;
   double ***eij, ***vareij;        vip=0.;
   double **varpl; /* Variances of prevalence limits by age */        for(j=1; j<=nlstate;j++){
   double *epj, vepp;          eip += eij[i][j][(int)age];
   double kk1, kk2;          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
            fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
   char *alph[]={"a","a","b","c","d","e"}, str[4];        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   char z[1]="c", occ;  
 #include <sys/time.h>      fprintf(ficrescveij,"%3.0f",age );
 #include <time.h>      for(i=1; i<=nlstate;i++)
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        for(j=1; j<=nlstate;j++){
            cptj= (j-1)*nlstate+i;
   /* long total_usecs;          for(i2=1; i2<=nlstate;i2++)
   struct timeval start_time, end_time;            for(j2=1; j2<=nlstate;j2++){
                cptj2= (j2-1)*nlstate+i2;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */              if(cptj2 <= cptj)
   getcwd(pathcd, size);                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
   printf("\n%s",version);        }
   if(argc <=1){      fprintf(ficrescveij,"\n");
     printf("\nEnter the parameter file name: ");     
     scanf("%s",pathtot);    }
   }    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   else{    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     strcpy(pathtot,argv[1]);    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   }    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /*cygwin_split_path(pathtot,path,optionfile);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    printf("\n");
   /* cutv(path,optionfile,pathtot,'\\');*/    fprintf(ficlog,"\n");
   
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    free_vector(xm,1,npar);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    free_vector(xp,1,npar);
   chdir(path);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   replace(pathc,path);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 /*-------- arguments in the command line --------*/  }
   
   /* Log file */  /************ Variance ******************/
   strcat(filelog, optionfilefiname);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   strcat(filelog,".log");    /* */  {
   if((ficlog=fopen(filelog,"w"))==NULL)    {    /* Variance of health expectancies */
     printf("Problem with logfile %s\n",filelog);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     goto end;    /* double **newm;*/
   }    double **dnewm,**doldm;
   fprintf(ficlog,"Log filename:%s\n",filelog);    double **dnewmp,**doldmp;
   fprintf(ficlog,"\n%s",version);    int i, j, nhstepm, hstepm, h, nstepm ;
   fprintf(ficlog,"\nEnter the parameter file name: ");    int k, cptcode;
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    double *xp;
   fflush(ficlog);    double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
   /* */    double **gradgp, **trgradgp; /* for var p point j */
   strcpy(fileres,"r");    double *gpp, *gmp; /* for var p point j */
   strcat(fileres, optionfilefiname);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   strcat(fileres,".txt");    /* Other files have txt extension */    double ***p3mat;
     double age,agelim, hf;
   /*---------arguments file --------*/    double ***mobaverage;
     int theta;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    char digit[4];
     printf("Problem with optionfile %s\n",optionfile);    char digitp[25];
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);  
     goto end;    char fileresprobmorprev[FILENAMELENGTH];
   }  
     if(popbased==1){
   strcpy(filereso,"o");      if(mobilav!=0)
   strcat(filereso,fileres);        strcpy(digitp,"-populbased-mobilav-");
   if((ficparo=fopen(filereso,"w"))==NULL) {      else strcpy(digitp,"-populbased-nomobil-");
     printf("Problem with Output resultfile: %s\n", filereso);    }
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);    else 
     goto end;      strcpy(digitp,"-stablbased-");
   }  
     if (mobilav!=0) {
   /* Reads comments: lines beginning with '#' */      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   while((c=getc(ficpar))=='#' && c!= EOF){      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     ungetc(c,ficpar);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     fgets(line, MAXLINE, ficpar);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     puts(line);      }
     fputs(line,ficparo);    }
   }  
   ungetc(c,ficpar);    strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 while((c=getc(ficpar))=='#' && c!= EOF){    strcat(fileresprobmorprev,fileres);
     ungetc(c,ficpar);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     fgets(line, MAXLINE, ficpar);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     puts(line);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     fputs(line,ficparo);    }
   }    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   ungetc(c,ficpar);   
      fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
        pstamp(ficresprobmorprev);
   covar=matrix(0,NCOVMAX,1,n);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   cptcovn=0;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
   ncovmodel=2+cptcovn;      for(i=1; i<=nlstate;i++)
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
      }  
   /* Read guess parameters */    fprintf(ficresprobmorprev,"\n");
   /* Reads comments: lines beginning with '#' */    fprintf(ficgp,"\n# Routine varevsij");
   while((c=getc(ficpar))=='#' && c!= EOF){    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     ungetc(c,ficpar);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fgets(line, MAXLINE, ficpar);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     puts(line);  /*   } */
     fputs(line,ficparo);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }    pstamp(ficresvij);
   ungetc(c,ficpar);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
      if(popbased==1)
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     for(i=1; i <=nlstate; i++)    else
     for(j=1; j <=nlstate+ndeath-1; j++){      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
       fscanf(ficpar,"%1d%1d",&i1,&j1);    fprintf(ficresvij,"# Age");
       fprintf(ficparo,"%1d%1d",i1,j1);    for(i=1; i<=nlstate;i++)
       if(mle==1)      for(j=1; j<=nlstate;j++)
         printf("%1d%1d",i,j);        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
       fprintf(ficlog,"%1d%1d",i,j);    fprintf(ficresvij,"\n");
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar," %lf",&param[i][j][k]);    xp=vector(1,npar);
         if(mle==1){    dnewm=matrix(1,nlstate,1,npar);
           printf(" %lf",param[i][j][k]);    doldm=matrix(1,nlstate,1,nlstate);
           fprintf(ficlog," %lf",param[i][j][k]);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
         }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         else  
           fprintf(ficlog," %lf",param[i][j][k]);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
         fprintf(ficparo," %lf",param[i][j][k]);    gpp=vector(nlstate+1,nlstate+ndeath);
       }    gmp=vector(nlstate+1,nlstate+ndeath);
       fscanf(ficpar,"\n");    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       if(mle==1)    
         printf("\n");    if(estepm < stepm){
       fprintf(ficlog,"\n");      printf ("Problem %d lower than %d\n",estepm, stepm);
       fprintf(ficparo,"\n");    }
     }    else  hstepm=estepm;   
      /* For example we decided to compute the life expectancy with the smallest unit */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
   p=param[1][1];       nstepm is the number of stepm from age to agelin. 
         Look at function hpijx to understand why (it is linked to memory size questions) */
   /* Reads comments: lines beginning with '#' */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   while((c=getc(ficpar))=='#' && c!= EOF){       survival function given by stepm (the optimization length). Unfortunately it
     ungetc(c,ficpar);       means that if the survival funtion is printed every two years of age and if
     fgets(line, MAXLINE, ficpar);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     puts(line);       results. So we changed our mind and took the option of the best precision.
     fputs(line,ficparo);    */
   }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   ungetc(c,ficpar);    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   for(i=1; i <=nlstate; i++){      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(j=1; j <=nlstate+ndeath-1; j++){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       fscanf(ficpar,"%1d%1d",&i1,&j1);      gp=matrix(0,nhstepm,1,nlstate);
       printf("%1d%1d",i,j);      gm=matrix(0,nhstepm,1,nlstate);
       fprintf(ficparo,"%1d%1d",i1,j1);  
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar,"%le",&delti3[i][j][k]);      for(theta=1; theta <=npar; theta++){
         printf(" %le",delti3[i][j][k]);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
         fprintf(ficparo," %le",delti3[i][j][k]);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       }        }
       fscanf(ficpar,"\n");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       printf("\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       fprintf(ficparo,"\n");  
     }        if (popbased==1) {
   }          if(mobilav ==0){
   delti=delti3[1][1];            for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
   /* Reads comments: lines beginning with '#' */          }else{ /* mobilav */ 
   while((c=getc(ficpar))=='#' && c!= EOF){            for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);              prlim[i][i]=mobaverage[(int)age][i][ij];
     fgets(line, MAXLINE, ficpar);          }
     puts(line);        }
     fputs(line,ficparo);    
   }        for(j=1; j<= nlstate; j++){
   ungetc(c,ficpar);          for(h=0; h<=nhstepm; h++){
              for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   matcov=matrix(1,npar,1,npar);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   for(i=1; i <=npar; i++){          }
     fscanf(ficpar,"%s",&str);        }
     if(mle==1)        /* This for computing probability of death (h=1 means
       printf("%s",str);           computed over hstepm matrices product = hstepm*stepm months) 
     fprintf(ficlog,"%s",str);           as a weighted average of prlim.
     fprintf(ficparo,"%s",str);        */
     for(j=1; j <=i; j++){        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       fscanf(ficpar," %le",&matcov[i][j]);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
       if(mle==1){            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         printf(" %.5le",matcov[i][j]);        }    
         fprintf(ficlog," %.5le",matcov[i][j]);        /* end probability of death */
       }  
       else        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
         fprintf(ficlog," %.5le",matcov[i][j]);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       fprintf(ficparo," %.5le",matcov[i][j]);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     fscanf(ficpar,"\n");   
     if(mle==1)        if (popbased==1) {
       printf("\n");          if(mobilav ==0){
     fprintf(ficlog,"\n");            for(i=1; i<=nlstate;i++)
     fprintf(ficparo,"\n");              prlim[i][i]=probs[(int)age][i][ij];
   }          }else{ /* mobilav */ 
   for(i=1; i <=npar; i++)            for(i=1; i<=nlstate;i++)
     for(j=i+1;j<=npar;j++)              prlim[i][i]=mobaverage[(int)age][i][ij];
       matcov[i][j]=matcov[j][i];          }
            }
   if(mle==1)  
     printf("\n");        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
   fprintf(ficlog,"\n");          for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     /*-------- Rewriting paramater file ----------*/          }
      strcpy(rfileres,"r");    /* "Rparameterfile */        }
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        /* This for computing probability of death (h=1 means
      strcat(rfileres,".");    /* */           computed over hstepm matrices product = hstepm*stepm months) 
      strcat(rfileres,optionfilext);    /* Other files have txt extension */           as a weighted average of prlim.
     if((ficres =fopen(rfileres,"w"))==NULL) {        */
       printf("Problem writing new parameter file: %s\n", fileres);goto end;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     fprintf(ficres,"#%s\n",version);        }    
            /* end probability of death */
     /*-------- data file ----------*/  
     if((fic=fopen(datafile,"r"))==NULL)    {        for(j=1; j<= nlstate; j++) /* vareij */
       printf("Problem with datafile: %s\n", datafile);goto end;          for(h=0; h<=nhstepm; h++){
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     }          }
   
     n= lastobs;        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     severity = vector(1,maxwav);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     outcome=imatrix(1,maxwav+1,1,n);        }
     num=ivector(1,n);  
     moisnais=vector(1,n);      } /* End theta */
     annais=vector(1,n);  
     moisdc=vector(1,n);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     andc=vector(1,n);  
     agedc=vector(1,n);      for(h=0; h<=nhstepm; h++) /* veij */
     cod=ivector(1,n);        for(j=1; j<=nlstate;j++)
     weight=vector(1,n);          for(theta=1; theta <=npar; theta++)
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */            trgradg[h][j][theta]=gradg[h][theta][j];
     mint=matrix(1,maxwav,1,n);  
     anint=matrix(1,maxwav,1,n);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     s=imatrix(1,maxwav+1,1,n);        for(theta=1; theta <=npar; theta++)
     adl=imatrix(1,maxwav+1,1,n);              trgradgp[j][theta]=gradgp[theta][j];
     tab=ivector(1,NCOVMAX);    
     ncodemax=ivector(1,8);  
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     i=1;      for(i=1;i<=nlstate;i++)
     while (fgets(line, MAXLINE, fic) != NULL)    {        for(j=1;j<=nlstate;j++)
       if ((i >= firstobs) && (i <=lastobs)) {          vareij[i][j][(int)age] =0.;
          
         for (j=maxwav;j>=1;j--){      for(h=0;h<=nhstepm;h++){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        for(k=0;k<=nhstepm;k++){
           strcpy(line,stra);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for(i=1;i<=nlstate;i++)
         }            for(j=1;j<=nlstate;j++)
                      vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        }
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      }
     
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      /* pptj */
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for (j=ncovcol;j>=1;j--){        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          varppt[j][i]=doldmp[j][i];
         }      /* end ppptj */
         num[i]=atol(stra);      /*  x centered again */
              hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/   
       if (popbased==1) {
         i=i+1;        if(mobilav ==0){
       }          for(i=1; i<=nlstate;i++)
     }            prlim[i][i]=probs[(int)age][i][ij];
     /* printf("ii=%d", ij);        }else{ /* mobilav */ 
        scanf("%d",i);*/          for(i=1; i<=nlstate;i++)
   imx=i-1; /* Number of individuals */            prlim[i][i]=mobaverage[(int)age][i][ij];
         }
   /* for (i=1; i<=imx; i++){      }
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;               
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      /* This for computing probability of death (h=1 means
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     }*/         as a weighted average of prlim.
    /*  for (i=1; i<=imx; i++){      */
      if (s[4][i]==9)  s[4][i]=-1;      for(j=nlstate+1;j<=nlstate+ndeath;j++){
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
            gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
        }    
   /* Calculation of the number of parameter from char model*/      /* end probability of death */
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */  
   Tprod=ivector(1,15);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   Tvaraff=ivector(1,15);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   Tvard=imatrix(1,15,1,2);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   Tage=ivector(1,15);              for(i=1; i<=nlstate;i++){
              fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   if (strlen(model) >1){        }
     j=0, j1=0, k1=1, k2=1;      } 
     j=nbocc(model,'+');      fprintf(ficresprobmorprev,"\n");
     j1=nbocc(model,'*');  
     cptcovn=j+1;      fprintf(ficresvij,"%.0f ",age );
     cptcovprod=j1;      for(i=1; i<=nlstate;i++)
            for(j=1; j<=nlstate;j++){
     strcpy(modelsav,model);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){        }
       printf("Error. Non available option model=%s ",model);      fprintf(ficresvij,"\n");
       fprintf(ficlog,"Error. Non available option model=%s ",model);      free_matrix(gp,0,nhstepm,1,nlstate);
       goto end;      free_matrix(gm,0,nhstepm,1,nlstate);
     }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
          free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     for(i=(j+1); i>=1;i--){      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */    } /* End age */
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */    free_vector(gpp,nlstate+1,nlstate+ndeath);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    free_vector(gmp,nlstate+1,nlstate+ndeath);
       /*scanf("%d",i);*/    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       if (strchr(strb,'*')) {  /* Model includes a product */    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/    fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
         if (strcmp(strc,"age")==0) { /* Vn*age */    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
           cptcovprod--;    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
           cutv(strb,stre,strd,'V');  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
           cptcovage++;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
             Tage[cptcovage]=i;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
             /*printf("stre=%s ", stre);*/    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
         }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
         else if (strcmp(strd,"age")==0) { /* or age*Vn */    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
           cptcovprod--;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           cutv(strb,stre,strc,'V');    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
           Tvar[i]=atoi(stre);  */
           cptcovage++;  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
           Tage[cptcovage]=i;    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         }  
         else {  /* Age is not in the model */    free_vector(xp,1,npar);
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/    free_matrix(doldm,1,nlstate,1,nlstate);
           Tvar[i]=ncovcol+k1;    free_matrix(dnewm,1,nlstate,1,npar);
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           Tprod[k1]=i;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
           Tvard[k1][1]=atoi(strc); /* m*/    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           Tvard[k1][2]=atoi(stre); /* n */    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           Tvar[cptcovn+k2]=Tvard[k1][1];    fclose(ficresprobmorprev);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    fflush(ficgp);
           for (k=1; k<=lastobs;k++)    fflush(fichtm); 
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  }  /* end varevsij */
           k1++;  
           k2=k2+2;  /************ Variance of prevlim ******************/
         }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
       }  {
       else { /* no more sum */    /* Variance of prevalence limit */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
        /*  scanf("%d",i);*/    double **newm;
       cutv(strd,strc,strb,'V');    double **dnewm,**doldm;
       Tvar[i]=atoi(strc);    int i, j, nhstepm, hstepm;
       }    int k, cptcode;
       strcpy(modelsav,stra);      double *xp;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    double *gp, *gm;
         scanf("%d",i);*/    double **gradg, **trgradg;
     } /* end of loop + */    double age,agelim;
   } /* end model */    int theta;
      
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    pstamp(ficresvpl);
   printf("cptcovprod=%d ", cptcovprod);    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    fprintf(ficresvpl,"# Age");
   scanf("%d ",i);*/    for(i=1; i<=nlstate;i++)
     fclose(fic);        fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
     /*  if(mle==1){*/  
     if (weightopt != 1) { /* Maximisation without weights*/    xp=vector(1,npar);
       for(i=1;i<=n;i++) weight[i]=1.0;    dnewm=matrix(1,nlstate,1,npar);
     }    doldm=matrix(1,nlstate,1,nlstate);
     /*-calculation of age at interview from date of interview and age at death -*/    
     agev=matrix(1,maxwav,1,imx);    hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     for (i=1; i<=imx; i++) {    agelim = AGESUP;
       for(m=2; (m<= maxwav); m++) {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
          anint[m][i]=9999;      if (stepm >= YEARM) hstepm=1;
          s[m][i]=-1;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
        }      gradg=matrix(1,npar,1,nlstate);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;      gp=vector(1,nlstate);
       }      gm=vector(1,nlstate);
     }  
       for(theta=1; theta <=npar; theta++){
     for (i=1; i<=imx; i++)  {        for(i=1; i<=npar; i++){ /* Computes gradient */
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       for(m=1; (m<= maxwav); m++){        }
         if(s[m][i] >0){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           if (s[m][i] >= nlstate+1) {        for(i=1;i<=nlstate;i++)
             if(agedc[i]>0)          gp[i] = prlim[i][i];
               if(moisdc[i]!=99 && andc[i]!=9999)      
                 agev[m][i]=agedc[i];        for(i=1; i<=npar; i++) /* Computes gradient */
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
            else {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
               if (andc[i]!=9999){        for(i=1;i<=nlstate;i++)
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          gm[i] = prlim[i][i];
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);  
               agev[m][i]=-1;        for(i=1;i<=nlstate;i++)
               }          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
             }      } /* End theta */
           }  
           else if(s[m][i] !=9){ /* Should no more exist */      trgradg =matrix(1,nlstate,1,npar);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  
             if(mint[m][i]==99 || anint[m][i]==9999)      for(j=1; j<=nlstate;j++)
               agev[m][i]=1;        for(theta=1; theta <=npar; theta++)
             else if(agev[m][i] <agemin){          trgradg[j][theta]=gradg[theta][j];
               agemin=agev[m][i];  
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      for(i=1;i<=nlstate;i++)
             }        varpl[i][(int)age] =0.;
             else if(agev[m][i] >agemax){      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
               agemax=agev[m][i];      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      for(i=1;i<=nlstate;i++)
             }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
             /*agev[m][i]=anint[m][i]-annais[i];*/  
             /*   agev[m][i] = age[i]+2*m;*/      fprintf(ficresvpl,"%.0f ",age );
           }      for(i=1; i<=nlstate;i++)
           else { /* =9 */        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
             agev[m][i]=1;      fprintf(ficresvpl,"\n");
             s[m][i]=-1;      free_vector(gp,1,nlstate);
           }      free_vector(gm,1,nlstate);
         }      free_matrix(gradg,1,npar,1,nlstate);
         else /*= 0 Unknown */      free_matrix(trgradg,1,nlstate,1,npar);
           agev[m][i]=1;    } /* End age */
       }  
        free_vector(xp,1,npar);
     }    free_matrix(doldm,1,nlstate,1,npar);
     for (i=1; i<=imx; i++)  {    free_matrix(dnewm,1,nlstate,1,nlstate);
       for(m=1; (m<= maxwav); m++){  
         if (s[m][i] > (nlstate+ndeath)) {  }
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    /************ Variance of one-step probabilities  ******************/
           goto end;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
         }  {
       }    int i, j=0,  i1, k1, l1, t, tj;
     }    int k2, l2, j1,  z1;
     int k=0,l, cptcode;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    int first=1, first1, first2;
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     free_vector(severity,1,maxwav);    double *xp;
     free_imatrix(outcome,1,maxwav+1,1,n);    double *gp, *gm;
     free_vector(moisnais,1,n);    double **gradg, **trgradg;
     free_vector(annais,1,n);    double **mu;
     /* free_matrix(mint,1,maxwav,1,n);    double age,agelim, cov[NCOVMAX+1];
        free_matrix(anint,1,maxwav,1,n);*/    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     free_vector(moisdc,1,n);    int theta;
     free_vector(andc,1,n);    char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
        char fileresprobcor[FILENAMELENGTH];
     wav=ivector(1,imx);    double ***varpij;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    strcpy(fileresprob,"prob"); 
        strcat(fileresprob,fileres);
     /* Concatenates waves */    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
       Tcode=ivector(1,100);    strcpy(fileresprobcov,"probcov"); 
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    strcat(fileresprobcov,fileres);
       ncodemax[1]=1;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      printf("Problem with resultfile: %s\n", fileresprobcov);
            fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
    codtab=imatrix(1,100,1,10);    }
    h=0;    strcpy(fileresprobcor,"probcor"); 
    m=pow(2,cptcoveff);    strcat(fileresprobcor,fileres);
      if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
    for(k=1;k<=cptcoveff; k++){      printf("Problem with resultfile: %s\n", fileresprobcor);
      for(i=1; i <=(m/pow(2,k));i++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
        for(j=1; j <= ncodemax[k]; j++){    }
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
            h++;    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
          }    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
        }    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
      }    pstamp(ficresprob);
    }    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    fprintf(ficresprob,"# Age");
       codtab[1][2]=1;codtab[2][2]=2; */    pstamp(ficresprobcov);
    /* for(i=1; i <=m ;i++){    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       for(k=1; k <=cptcovn; k++){    fprintf(ficresprobcov,"# Age");
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    pstamp(ficresprobcor);
       }    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
       printf("\n");    fprintf(ficresprobcor,"# Age");
       }  
       scanf("%d",i);*/  
        for(i=1; i<=nlstate;i++)
    /* Calculates basic frequencies. Computes observed prevalence at single age      for(j=1; j<=(nlstate+ndeath);j++){
        and prints on file fileres'p'. */        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
            fprintf(ficresprobcor," p%1d-%1d ",i,j);
          }  
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   /* fprintf(ficresprob,"\n");
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficresprobcov,"\n");
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficresprobcor,"\n");
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    xp=vector(1,npar);
          dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     /* For Powell, parameters are in a vector p[] starting at p[1]    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     if(mle==1){    fprintf(ficgp,"\n# Routine varprob");
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     }    fprintf(fichtm,"\n");
      
     /*--------- results files --------------*/    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
      file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
    jk=1;  and drawn. It helps understanding how is the covariance between two incidences.\
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
    for(i=1,jk=1; i <=nlstate; i++){  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
      for(k=1; k <=(nlstate+ndeath); k++){  standard deviations wide on each axis. <br>\
        if (k != i)   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
          {   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
            printf("%d%d ",i,k);  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
            fprintf(ficlog,"%d%d ",i,k);  
            fprintf(ficres,"%1d%1d ",i,k);    cov[1]=1;
            for(j=1; j <=ncovmodel; j++){    /* tj=cptcoveff; */
              printf("%f ",p[jk]);    tj = (int) pow(2,cptcoveff);
              fprintf(ficlog,"%f ",p[jk]);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
              fprintf(ficres,"%f ",p[jk]);    j1=0;
              jk++;    for(j1=1; j1<=tj;j1++){
            }      /*for(i1=1; i1<=ncodemax[t];i1++){ */
            printf("\n");      /*j1++;*/
            fprintf(ficlog,"\n");        if  (cptcovn>0) {
            fprintf(ficres,"\n");          fprintf(ficresprob, "\n#********** Variable "); 
          }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      }          fprintf(ficresprob, "**********\n#\n");
    }          fprintf(ficresprobcov, "\n#********** Variable "); 
    if(mle==1){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      /* Computing hessian and covariance matrix */          fprintf(ficresprobcov, "**********\n#\n");
      ftolhess=ftol; /* Usually correct */          
      hesscov(matcov, p, npar, delti, ftolhess, func);          fprintf(ficgp, "\n#********** Variable "); 
    }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");          fprintf(ficgp, "**********\n#\n");
    printf("# Scales (for hessian or gradient estimation)\n");          
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");          
    for(i=1,jk=1; i <=nlstate; i++){          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
      for(j=1; j <=nlstate+ndeath; j++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        if (j!=i) {          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
          fprintf(ficres,"%1d%1d",i,j);          
          printf("%1d%1d",i,j);          fprintf(ficresprobcor, "\n#********** Variable ");    
          fprintf(ficlog,"%1d%1d",i,j);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
          for(k=1; k<=ncovmodel;k++){          fprintf(ficresprobcor, "**********\n#");    
            printf(" %.5e",delti[jk]);        }
            fprintf(ficlog," %.5e",delti[jk]);        
            fprintf(ficres," %.5e",delti[jk]);        gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
            jk++;        trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
          }        gp=vector(1,(nlstate)*(nlstate+ndeath));
          printf("\n");        gm=vector(1,(nlstate)*(nlstate+ndeath));
          fprintf(ficlog,"\n");        for (age=bage; age<=fage; age ++){ 
          fprintf(ficres,"\n");          cov[2]=age;
        }          for (k=1; k<=cptcovn;k++) {
      }            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
    }                                                           * 1  1 1 1 1
                                                               * 2  2 1 1 1
    k=1;                                                           * 3  1 2 1 1
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");                                                           */
    if(mle==1)            /* nbcode[1][1]=0 nbcode[1][2]=1;*/
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          }
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
    for(i=1;i<=npar;i++){          for (k=1; k<=cptcovprod;k++)
      /*  if (k>nlstate) k=1;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
          i1=(i-1)/(ncovmodel*nlstate)+1;          
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);      
          printf("%s%d%d",alph[k],i1,tab[i]);*/          for(theta=1; theta <=npar; theta++){
      fprintf(ficres,"%3d",i);            for(i=1; i<=npar; i++)
      if(mle==1)              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
        printf("%3d",i);            
      fprintf(ficlog,"%3d",i);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
      for(j=1; j<=i;j++){            
        fprintf(ficres," %.5e",matcov[i][j]);            k=0;
        if(mle==1)            for(i=1; i<= (nlstate); i++){
          printf(" %.5e",matcov[i][j]);              for(j=1; j<=(nlstate+ndeath);j++){
        fprintf(ficlog," %.5e",matcov[i][j]);                k=k+1;
      }                gp[k]=pmmij[i][j];
      fprintf(ficres,"\n");              }
      if(mle==1)            }
        printf("\n");            
      fprintf(ficlog,"\n");            for(i=1; i<=npar; i++)
      k++;              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
    }      
                pmij(pmmij,cov,ncovmodel,xp,nlstate);
    while((c=getc(ficpar))=='#' && c!= EOF){            k=0;
      ungetc(c,ficpar);            for(i=1; i<=(nlstate); i++){
      fgets(line, MAXLINE, ficpar);              for(j=1; j<=(nlstate+ndeath);j++){
      puts(line);                k=k+1;
      fputs(line,ficparo);                gm[k]=pmmij[i][j];
    }              }
    ungetc(c,ficpar);            }
    estepm=0;       
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
    if (estepm==0 || estepm < stepm) estepm=stepm;              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
    if (fage <= 2) {          }
      bage = ageminpar;  
      fage = agemaxpar;          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
    }            for(theta=1; theta <=npar; theta++)
                  trgradg[j][theta]=gradg[theta][j];
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
      
    while((c=getc(ficpar))=='#' && c!= EOF){          pmij(pmmij,cov,ncovmodel,x,nlstate);
      ungetc(c,ficpar);          
      fgets(line, MAXLINE, ficpar);          k=0;
      puts(line);          for(i=1; i<=(nlstate); i++){
      fputs(line,ficparo);            for(j=1; j<=(nlstate+ndeath);j++){
    }              k=k+1;
    ungetc(c,ficpar);              mu[k][(int) age]=pmmij[i][j];
              }
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);          }
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                  varpij[i][j][(int)age] = doldm[i][j];
    while((c=getc(ficpar))=='#' && c!= EOF){  
      ungetc(c,ficpar);          /*printf("\n%d ",(int)age);
      fgets(line, MAXLINE, ficpar);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
      puts(line);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
      fputs(line,ficparo);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
    }            }*/
    ungetc(c,ficpar);  
            fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;          fprintf(ficresprobcor,"\n%d ",(int)age);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;  
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   fscanf(ficpar,"pop_based=%d\n",&popbased);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   fprintf(ficparo,"pop_based=%d\n",popbased);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   fprintf(ficres,"pop_based=%d\n",popbased);              fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
              fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);          i=0;
     fgets(line, MAXLINE, ficpar);          for (k=1; k<=(nlstate);k++){
     puts(line);            for (l=1; l<=(nlstate+ndeath);l++){ 
     fputs(line,ficparo);              i++;
   }              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   ungetc(c,ficpar);              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);                /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
 while((c=getc(ficpar))=='#' && c!= EOF){          }/* end of loop for state */
     ungetc(c,ficpar);        } /* end of loop for age */
     fgets(line, MAXLINE, ficpar);        free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     puts(line);        free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     fputs(line,ficparo);        free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   }        free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   ungetc(c,ficpar);        
         /* Confidence intervalle of pij  */
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);        /*
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          fprintf(ficgp,"\nunset parametric;unset label");
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
 /*------------ gnuplot -------------*/          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   strcpy(optionfilegnuplot,optionfilefiname);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   strcat(optionfilegnuplot,".gp");        */
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  
     printf("Problem with file %s",optionfilegnuplot);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   }        first1=1;first2=2;
   fclose(ficgp);        for (k2=1; k2<=(nlstate);k2++){
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
 /*--------- index.htm --------*/            if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
   strcpy(optionfilehtm,optionfile);            for (k1=1; k1<=(nlstate);k1++){
   strcat(optionfilehtm,".htm");              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {                if(l1==k1) continue;
     printf("Problem with %s \n",optionfilehtm), exit(0);                i=(k1-1)*(nlstate+ndeath)+l1;
   }                if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n                  if ((int)age %5==0){
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
 \n                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
 Total number of observations=%d <br>\n                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n                    mu1=mu[i][(int) age]/stepm*YEARM ;
 <hr  size=\"2\" color=\"#EC5E5E\">                    mu2=mu[j][(int) age]/stepm*YEARM;
  <ul><li><h4>Parameter files</h4>\n                    c12=cv12/sqrt(v1*v2);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n                    /* Computing eigen value of matrix of covariance */
  - Log file of the run: <a href=\"%s\">%s</a><br>\n                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   fclose(fichtm);                    if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);                        first1=0;
                        printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
 /*------------ free_vector  -------------*/                      }
  chdir(path);                      fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                        /* lc1=fabs(lc1); */ /* If we want to have them positive */
  free_ivector(wav,1,imx);                      /* lc2=fabs(lc2); */
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                    }
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);    
  free_ivector(num,1,n);                    /* Eigen vectors */
  free_vector(agedc,1,n);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
  /*free_matrix(covar,1,NCOVMAX,1,n);*/                    /*v21=sqrt(1.-v11*v11); *//* error */
  fclose(ficparo);                    v21=(lc1-v1)/cv12*v11;
  fclose(ficres);                    v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
   /*--------------- Prevalence limit --------------*/                    if(first1==1){
                        first1=0;
   strcpy(filerespl,"pl");                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   strcat(filerespl,fileres);                    }
   if((ficrespl=fopen(filerespl,"w"))==NULL) {                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                    /*printf(fignu*/
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   }                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                    if(first==1){
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);                      first=0;
   fprintf(ficrespl,"#Prevalence limit\n");                      fprintf(ficgp,"\nset parametric;unset label");
   fprintf(ficrespl,"#Age ");                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                      fprintf(ficgp,"\nset ter png small size 320, 240");
   fprintf(ficrespl,"\n");                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   prlim=matrix(1,nlstate,1,nlstate);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   k=0;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   agebase=ageminpar;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   agelim=agemaxpar;                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   ftolpl=1.e-10;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   i1=cptcoveff;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   if (cptcovn < 1){i1=1;}                    }else{
                       first=0;
   for(cptcov=1;cptcov<=i1;cptcov++){                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         k=k+1;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
         fprintf(ficrespl,"\n#******");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         printf("\n#******");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
         fprintf(ficlog,"\n#******");                    }/* if first */
         for(j=1;j<=cptcoveff;j++) {                  } /* age mod 5 */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                } /* end loop age */
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                first=1;
         }              } /*l12 */
         fprintf(ficrespl,"******\n");            } /* k12 */
         printf("******\n");          } /*l1 */
         fprintf(ficlog,"******\n");        }/* k1 */
                /* } /* loop covariates */
         for (age=agebase; age<=agelim; age++){    }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
           fprintf(ficrespl,"%.0f",age );    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
           for(i=1; i<=nlstate;i++)    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
           fprintf(ficrespl," %.5f", prlim[i][i]);    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
           fprintf(ficrespl,"\n");    free_vector(xp,1,npar);
         }    fclose(ficresprob);
       }    fclose(ficresprobcov);
     }    fclose(ficresprobcor);
   fclose(ficrespl);    fflush(ficgp);
     fflush(fichtmcov);
   /*------------- h Pij x at various ages ------------*/  }
    
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  /******************* Printing html file ***********/
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;                    int lastpass, int stepm, int weightopt, char model[],\
   }                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   printf("Computing pij: result on file '%s' \n", filerespij);                    int popforecast, int estepm ,\
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);                    double jprev1, double mprev1,double anprev1, \
                      double jprev2, double mprev2,double anprev2){
   stepsize=(int) (stepm+YEARM-1)/YEARM;    int jj1, k1, i1, cpt;
   /*if (stepm<=24) stepsize=2;*/  
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   agelim=AGESUP;     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   hstepm=stepsize*YEARM; /* Every year of age */  </ul>");
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   /* hstepm=1;   aff par mois*/             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
   k=0;   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
   for(cptcov=1;cptcov<=i1;cptcov++){             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     fprintf(fichtm,"\
       k=k+1;   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
         fprintf(ficrespij,"\n#****** ");             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
         for(j=1;j<=cptcoveff;j++)     fprintf(fichtm,"\
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
         fprintf(ficrespij,"******\n");     <a href=\"%s\">%s</a> <br>\n",
                     estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */     fprintf(fichtm,"\
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */   - Population projections by age and states: \
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
           /*      nhstepm=nhstepm*YEARM; aff par mois*/  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   m=pow(2,cptcoveff);
           oldm=oldms;savm=savms;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           fprintf(ficrespij,"# Age");   jj1=0;
           for(i=1; i<=nlstate;i++)   for(k1=1; k1<=m;k1++){
             for(j=1; j<=nlstate+ndeath;j++)     for(i1=1; i1<=ncodemax[k1];i1++){
               fprintf(ficrespij," %1d-%1d",i,j);       jj1++;
           fprintf(ficrespij,"\n");       if (cptcovn > 0) {
            for (h=0; h<=nhstepm; h++){         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );         for (cpt=1; cpt<=cptcoveff;cpt++) 
             for(i=1; i<=nlstate;i++)           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
               for(j=1; j<=nlstate+ndeath;j++)         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);       }
             fprintf(ficrespij,"\n");       /* Pij */
              }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
           fprintf(ficrespij,"\n");       /* Quasi-incidences */
         }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
     }   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   }  <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);         for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   fclose(ficrespij);  <img src=\"%s%d_%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
   /*---------- Forecasting ------------------*/          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   if((stepm == 1) && (strcmp(model,".")==0)){  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);       }
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);     } /* end i1 */
   }   }/* End k1 */
   else{   fprintf(fichtm,"</ul>");
     erreur=108;  
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);  
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);   fprintf(fichtm,"\
   }  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
     - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
   /*---------- Health expectancies and variances ------------*/   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   strcpy(filerest,"t");   fprintf(fichtm,"\
   strcat(filerest,fileres);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   if((ficrest=fopen(filerest,"w"))==NULL) {           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;   fprintf(fichtm,"\
   }   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   printf("Computing Total LEs with variances: file '%s' \n", filerest);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);   fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
   strcpy(filerese,"e");             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
   strcat(filerese,fileres);   fprintf(fichtm,"\
   if((ficreseij=fopen(filerese,"w"))==NULL) {   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);     <a href=\"%s\">%s</a> <br>\n</li>",
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
   }   fprintf(fichtm,"\
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
   strcpy(fileresv,"v");   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
   strcat(fileresv,fileres);           estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
   if((ficresvij=fopen(fileresv,"w"))==NULL) {   fprintf(fichtm,"\
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   }  
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  /*  if(popforecast==1) fprintf(fichtm,"\n */
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   calagedate=-1;  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   k=0;  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   for(cptcov=1;cptcov<=i1;cptcov++){   fflush(fichtm);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
       k=k+1;  
       fprintf(ficrest,"\n#****** ");   m=pow(2,cptcoveff);
       for(j=1;j<=cptcoveff;j++)   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");   jj1=0;
    for(k1=1; k1<=m;k1++){
       fprintf(ficreseij,"\n#****** ");     for(i1=1; i1<=ncodemax[k1];i1++){
       for(j=1;j<=cptcoveff;j++)       jj1++;
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       if (cptcovn > 0) {
       fprintf(ficreseij,"******\n");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
       fprintf(ficresvij,"\n#****** ");           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       for(j=1;j<=cptcoveff;j++)         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       }
       fprintf(ficresvij,"******\n");       for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
       oldm=oldms;savm=savms;  <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);         }
         fprintf(fichtm,"\n<br>- Total life expectancy by age and \
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
       oldm=oldms;savm=savms;  true period expectancies (those weighted with period prevalences are also\
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);   drawn in addition to the population based expectancies computed using\
       if(popbased==1){   observed and cahotic prevalences: %s%d.png<br>\
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
        }     } /* end i1 */
    }/* End k1 */
     fprintf(fichtm,"</ul>");
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");   fflush(fichtm);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  }
       fprintf(ficrest,"\n");  
   /******************* Gnuplot file **************/
       epj=vector(1,nlstate+1);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
       for(age=bage; age <=fage ;age++){  
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    char dirfileres[132],optfileres[132];
         if (popbased==1) {    int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
           for(i=1; i<=nlstate;i++)    int ng=0;
             prlim[i][i]=probs[(int)age][i][k];  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
         }  /*     printf("Problem with file %s",optionfilegnuplot); */
          /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
         fprintf(ficrest," %4.0f",age);  /*   } */
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    /*#ifdef windows */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    fprintf(ficgp,"cd \"%s\" \n",pathc);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      /*#endif */
           }    m=pow(2,cptcoveff);
           epj[nlstate+1] +=epj[j];  
         }    strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
         for(i=1, vepp=0.;i <=nlstate;i++)   /* 1eme*/
           for(j=1;j <=nlstate;j++)    for (cpt=1; cpt<= nlstate ; cpt ++) {
             vepp += vareij[i][j][(int)age];      for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));       fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
         for(j=1;j <=nlstate;j++){       fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));       fprintf(ficgp,"set xlabel \"Age\" \n\
         }  set ylabel \"Probability\" \n\
         fprintf(ficrest,"\n");  set ter png small size 320, 240\n\
       }  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
     }  
   }       for (i=1; i<= nlstate ; i ++) {
 free_matrix(mint,1,maxwav,1,n);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);         else        fprintf(ficgp," \%%*lf (\%%*lf)");
     free_vector(weight,1,n);       }
   fclose(ficreseij);       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   fclose(ficresvij);       for (i=1; i<= nlstate ; i ++) {
   fclose(ficrest);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   fclose(ficpar);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   free_vector(epj,1,nlstate+1);       } 
         fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
   /*------- Variance limit prevalence------*/         for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   strcpy(fileresvpl,"vpl");         else fprintf(ficgp," \%%*lf (\%%*lf)");
   strcat(fileresvpl,fileres);       }  
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {       fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);     }
     exit(0);    }
   }    /*2 eme*/
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    
     for (k1=1; k1<= m ; k1 ++) { 
   k=0;      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   for(cptcov=1;cptcov<=i1;cptcov++){      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      
       k=k+1;      for (i=1; i<= nlstate+1 ; i ++) {
       fprintf(ficresvpl,"\n#****** ");        k=2*i;
       for(j=1;j<=cptcoveff;j++)        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        for (j=1; j<= nlstate+1 ; j ++) {
       fprintf(ficresvpl,"******\n");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                else fprintf(ficgp," \%%*lf (\%%*lf)");
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        }   
       oldm=oldms;savm=savms;        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
     }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
  }        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   fclose(ficresvpl);          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
   /*---------- End : free ----------------*/        fprintf(ficgp,"\" t\"\" w l lt 0,");
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
          for (j=1; j<= nlstate+1 ; j ++) {
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          else fprintf(ficgp," \%%*lf (\%%*lf)");
          }   
          if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        else fprintf(ficgp,"\" t\"\" w l lt 0,");
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      }
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    }
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    
      /*3eme*/
   free_matrix(matcov,1,npar,1,npar);    
   free_vector(delti,1,npar);    for (k1=1; k1<= m ; k1 ++) { 
   free_matrix(agev,1,maxwav,1,imx);      for (cpt=1; cpt<= nlstate ; cpt ++) {
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
   fprintf(fichtm,"\n</body>");        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
   fclose(fichtm);        fprintf(ficgp,"set ter png small size 320, 240\n\
   fclose(ficgp);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
          /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   if(erreur >0){          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     printf("End of Imach with error or warning %d\n",erreur);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   }else{          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
    printf("End of Imach\n");          
    fprintf(ficlog,"End of Imach\n");        */
   }        for (i=1; i< nlstate ; i ++) {
   printf("See log file on %s\n",filelog);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
   fclose(ficlog);          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          
          } 
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
   /*printf("Total time was %d uSec.\n", total_usecs);*/      }
   /*------ End -----------*/    }
     
     /* CV preval stable (period) */
  end:    for (k1=1; k1<= m ; k1 ++) { 
 #ifdef windows      for (cpt=1; cpt<=nlstate ; cpt ++) {
   /* chdir(pathcd);*/        k=3;
 #endif        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
  /*system("wgnuplot graph.plt");*/        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
  /*system("../gp37mgw/wgnuplot graph.plt");*/  set ter png small size 320, 240\n\
  /*system("cd ../gp37mgw");*/  unset log y\n\
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
  strcpy(plotcmd,GNUPLOTPROGRAM);        
  strcat(plotcmd," ");        for (i=1; i< nlstate ; i ++)
  strcat(plotcmd,optionfilegnuplot);          fprintf(ficgp,"+$%d",k+i+1);
  system(plotcmd);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
 #ifdef windows        l=3+(nlstate+ndeath)*cpt;
   while (z[0] != 'q') {        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
     /* chdir(path); */        for (i=1; i< nlstate ; i ++) {
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");          l=3+(nlstate+ndeath)*cpt;
     scanf("%s",z);          fprintf(ficgp,"+$%d",l+i+1);
     if (z[0] == 'c') system("./imach");        }
     else if (z[0] == 'e') system(optionfilehtm);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
     else if (z[0] == 'g') system(plotcmd);      } 
     else if (z[0] == 'q') exit(0);    }  
   }    
 #endif    /* proba elementaires */
 }    for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    avoid:
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.", dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ = *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int i1, j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s with errno=%s\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile %s with errno=%s\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot command %s\n"plotcmd);
       printf("\n Trying on same directory\n");
       sprintf(plotcmd,"./gnuplot %s", optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s\n", plotcmd);
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.51  
changed lines
  Added in v.1.150


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>