Diff for /imach/src/imach.c between versions 1.51 and 1.156

version 1.51, 2002/07/19 12:22:25 version 1.156, 2014/08/25 20:10:10
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.156  2014/08/25 20:10:10  brouard
      *** empty log message ***
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.155  2014/08/25 18:32:34  brouard
   first survey ("cross") where individuals from different ages are    Summary: New compile, minor changes
   interviewed on their health status or degree of disability (in the    Author: Brouard
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.154  2014/06/20 17:32:08  brouard
   (if any) in individual health status.  Health expectancies are    Summary: Outputs now all graphs of convergence to period prevalence
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Revision 1.153  2014/06/20 16:45:46  brouard
   Maximum Likelihood of the parameters involved in the model.  The    Summary: If 3 live state, convergence to period prevalence on same graph
   simplest model is the multinomial logistic model where pij is the    Author: Brouard
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.152  2014/06/18 17:54:09  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Summary: open browser, use gnuplot on same dir than imach if not found in the path
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.151  2014/06/18 16:43:30  brouard
   where the markup *Covariates have to be included here again* invites    *** empty log message ***
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.150  2014/06/18 16:42:35  brouard
     Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
   The advantage of this computer programme, compared to a simple    Author: brouard
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.149  2014/06/18 15:51:14  brouard
   intermediate interview, the information is lost, but taken into    Summary: Some fixes in parameter files errors
   account using an interpolation or extrapolation.      Author: Nicolas Brouard
   
   hPijx is the probability to be observed in state i at age x+h    Revision 1.148  2014/06/17 17:38:48  brouard
   conditional to the observed state i at age x. The delay 'h' can be    Summary: Nothing new
   split into an exact number (nh*stepm) of unobserved intermediate    Author: Brouard
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Just a new packaging for OS/X version 0.98nS
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.147  2014/06/16 10:33:11  brouard
   hPijx.    *** empty log message ***
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.146  2014/06/16 10:20:28  brouard
   of the life expectancies. It also computes the prevalence limits.    Summary: Merge
      Author: Brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Merge, before building revised version.
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.145  2014/06/10 21:23:15  brouard
   It is copyrighted identically to a GNU software product, ie programme and    Summary: Debugging with valgrind
   software can be distributed freely for non commercial use. Latest version    Author: Nicolas Brouard
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Lot of changes in order to output the results with some covariates
      After the Edimburgh REVES conference 2014, it seems mandatory to
 #include <math.h>    improve the code.
 #include <stdio.h>    No more memory valgrind error but a lot has to be done in order to
 #include <stdlib.h>    continue the work of splitting the code into subroutines.
 #include <unistd.h>    Also, decodemodel has been improved. Tricode is still not
     optimal. nbcode should be improved. Documentation has been added in
 #define MAXLINE 256    the source code.
 #define GNUPLOTPROGRAM "gnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.143  2014/01/26 09:45:38  brouard
 #define FILENAMELENGTH 80    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
 /*#define DEBUG*/  
 #define windows    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
     Revision 1.142  2014/01/26 03:57:36  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #define NINTERVMAX 8  
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Revision 1.141  2014/01/26 02:42:01  brouard
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.140  2011/09/02 10:37:54  brouard
 #define YEARM 12. /* Number of months per year */    Summary: times.h is ok with mingw32 now.
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.139  2010/06/14 07:50:17  brouard
 #ifdef windows    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
 #define DIRSEPARATOR '\\'    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 #define ODIRSEPARATOR '/'  
 #else    Revision 1.138  2010/04/30 18:19:40  brouard
 #define DIRSEPARATOR '/'    *** empty log message ***
 #define ODIRSEPARATOR '\\'  
 #endif    Revision 1.137  2010/04/29 18:11:38  brouard
     (Module): Checking covariates for more complex models
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    than V1+V2. A lot of change to be done. Unstable.
 int erreur; /* Error number */  
 int nvar;    Revision 1.136  2010/04/26 20:30:53  brouard
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    (Module): merging some libgsl code. Fixing computation
 int npar=NPARMAX;    of likelione (using inter/intrapolation if mle = 0) in order to
 int nlstate=2; /* Number of live states */    get same likelihood as if mle=1.
 int ndeath=1; /* Number of dead states */    Some cleaning of code and comments added.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.135  2009/10/29 15:33:14  brouard
     (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.134  2009/10/29 13:18:53  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.133  2009/07/06 10:21:25  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    just nforces
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Revision 1.132  2009/07/06 08:22:05  brouard
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Many tings
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficlog;    Revision 1.131  2009/06/20 16:22:47  brouard
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Some dimensions resccaled
 FILE *ficresprobmorprev;  
 FILE *fichtm; /* Html File */    Revision 1.130  2009/05/26 06:44:34  brouard
 FILE *ficreseij;    (Module): Max Covariate is now set to 20 instead of 8. A
 char filerese[FILENAMELENGTH];    lot of cleaning with variables initialized to 0. Trying to make
 FILE  *ficresvij;    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 char fileresv[FILENAMELENGTH];  
 FILE  *ficresvpl;    Revision 1.129  2007/08/31 13:49:27  lievre
 char fileresvpl[FILENAMELENGTH];    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 char title[MAXLINE];  
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Revision 1.128  2006/06/30 13:02:05  brouard
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    (Module): Clarifications on computing e.j
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Revision 1.127  2006/04/28 18:11:50  brouard
 char filelog[FILENAMELENGTH]; /* Log file */    (Module): Yes the sum of survivors was wrong since
 char filerest[FILENAMELENGTH];    imach-114 because nhstepm was no more computed in the age
 char fileregp[FILENAMELENGTH];    loop. Now we define nhstepma in the age loop.
 char popfile[FILENAMELENGTH];    (Module): In order to speed up (in case of numerous covariates) we
     compute health expectancies (without variances) in a first step
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    and then all the health expectancies with variances or standard
     deviation (needs data from the Hessian matrices) which slows the
 #define NR_END 1    computation.
 #define FREE_ARG char*    In the future we should be able to stop the program is only health
 #define FTOL 1.0e-10    expectancies and graph are needed without standard deviations.
   
 #define NRANSI    Revision 1.126  2006/04/28 17:23:28  brouard
 #define ITMAX 200    (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
 #define TOL 2.0e-4    loop. Now we define nhstepma in the age loop.
     Version 0.98h
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.125  2006/04/04 15:20:31  lievre
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Errors in calculation of health expectancies. Age was not initialized.
     Forecasting file added.
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Revision 1.124  2006/03/22 17:13:53  lievre
 #define TINY 1.0e-20    Parameters are printed with %lf instead of %f (more numbers after the comma).
     The log-likelihood is printed in the log file
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.123  2006/03/20 10:52:43  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    * imach.c (Module): <title> changed, corresponds to .htm file
      name. <head> headers where missing.
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)    * imach.c (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
 static double sqrarg;    otherwise the weight is truncated).
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Modification of warning when the covariates values are not 0 or
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    1.
     Version 0.98g
 int imx;  
 int stepm;    Revision 1.122  2006/03/20 09:45:41  brouard
 /* Stepm, step in month: minimum step interpolation*/    (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
 int estepm;    otherwise the weight is truncated).
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Modification of warning when the covariates values are not 0 or
     1.
 int m,nb;    Version 0.98g
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.121  2006/03/16 17:45:01  lievre
 double **pmmij, ***probs, ***mobaverage;    * imach.c (Module): Comments concerning covariates added
 double dateintmean=0;  
     * imach.c (Module): refinements in the computation of lli if
 double *weight;    status=-2 in order to have more reliable computation if stepm is
 int **s; /* Status */    not 1 month. Version 0.98f
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.120  2006/03/16 15:10:38  lievre
     (Module): refinements in the computation of lli if
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    status=-2 in order to have more reliable computation if stepm is
 double ftolhess; /* Tolerance for computing hessian */    not 1 month. Version 0.98f
   
 /**************** split *************************/    Revision 1.119  2006/03/15 17:42:26  brouard
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    (Module): Bug if status = -2, the loglikelihood was
 {    computed as likelihood omitting the logarithm. Version O.98e
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
    l1 = strlen( path );                 /* length of path */    table of variances if popbased=1 .
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    (Module): Function pstamp added
    if ( s == NULL ) {                   /* no directory, so use current */    (Module): Version 0.98d
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)  
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    Revision 1.117  2006/03/14 17:16:22  brouard
 #if     defined(__bsd__)                /* get current working directory */    (Module): varevsij Comments added explaining the second
       extern char       *getwd( );    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
       if ( getwd( dirc ) == NULL ) {    (Module): Function pstamp added
 #else    (Module): Version 0.98d
       extern char       *getcwd( );  
     Revision 1.116  2006/03/06 10:29:27  brouard
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    (Module): Variance-covariance wrong links and
 #endif    varian-covariance of ej. is needed (Saito).
          return( GLOCK_ERROR_GETCWD );  
       }    Revision 1.115  2006/02/27 12:17:45  brouard
       strcpy( name, path );             /* we've got it */    (Module): One freematrix added in mlikeli! 0.98c
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */    Revision 1.114  2006/02/26 12:57:58  brouard
       l2 = strlen( s );                 /* length of filename */    (Module): Some improvements in processing parameter
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    filename with strsep.
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Revision 1.113  2006/02/24 14:20:24  brouard
       dirc[l1-l2] = 0;                  /* add zero */    (Module): Memory leaks checks with valgrind and:
    }    datafile was not closed, some imatrix were not freed and on matrix
    l1 = strlen( dirc );                 /* length of directory */    allocation too.
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Revision 1.112  2006/01/30 09:55:26  brouard
 #else    (Module): Back to gnuplot.exe instead of wgnuplot.exe
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif    Revision 1.111  2006/01/25 20:38:18  brouard
    s = strrchr( name, '.' );            /* find last / */    (Module): Lots of cleaning and bugs added (Gompertz)
    s++;    (Module): Comments can be added in data file. Missing date values
    strcpy(ext,s);                       /* save extension */    can be a simple dot '.'.
    l1= strlen( name);  
    l2= strlen( s)+1;    Revision 1.110  2006/01/25 00:51:50  brouard
    strncpy( finame, name, l1-l2);    (Module): Lots of cleaning and bugs added (Gompertz)
    finame[l1-l2]= 0;  
    return( 0 );                         /* we're done */    Revision 1.109  2006/01/24 19:37:15  brouard
 }    (Module): Comments (lines starting with a #) are allowed in data.
   
     Revision 1.108  2006/01/19 18:05:42  lievre
 /******************************************/    Gnuplot problem appeared...
     To be fixed
 void replace(char *s, char*t)  
 {    Revision 1.107  2006/01/19 16:20:37  brouard
   int i;    Test existence of gnuplot in imach path
   int lg=20;  
   i=0;    Revision 1.106  2006/01/19 13:24:36  brouard
   lg=strlen(t);    Some cleaning and links added in html output
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    Revision 1.105  2006/01/05 20:23:19  lievre
     if (t[i]== '\\') s[i]='/';    *** empty log message ***
   }  
 }    Revision 1.104  2005/09/30 16:11:43  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
 int nbocc(char *s, char occ)    (Module): If the status is missing at the last wave but we know
 {    that the person is alive, then we can code his/her status as -2
   int i,j=0;    (instead of missing=-1 in earlier versions) and his/her
   int lg=20;    contributions to the likelihood is 1 - Prob of dying from last
   i=0;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   lg=strlen(s);    the healthy state at last known wave). Version is 0.98
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;    Revision 1.103  2005/09/30 15:54:49  lievre
   }    (Module): sump fixed, loop imx fixed, and simplifications.
   return j;  
 }    Revision 1.102  2004/09/15 17:31:30  brouard
     Add the possibility to read data file including tab characters.
 void cutv(char *u,char *v, char*t, char occ)  
 {    Revision 1.101  2004/09/15 10:38:38  brouard
   /* cuts string t into u and v where u is ended by char occ excluding it    Fix on curr_time
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  
      gives u="abcedf" and v="ghi2j" */    Revision 1.100  2004/07/12 18:29:06  brouard
   int i,lg,j,p=0;    Add version for Mac OS X. Just define UNIX in Makefile
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {    Revision 1.99  2004/06/05 08:57:40  brouard
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    *** empty log message ***
   }  
     Revision 1.98  2004/05/16 15:05:56  brouard
   lg=strlen(t);    New version 0.97 . First attempt to estimate force of mortality
   for(j=0; j<p; j++) {    directly from the data i.e. without the need of knowing the health
     (u[j] = t[j]);    state at each age, but using a Gompertz model: log u =a + b*age .
   }    This is the basic analysis of mortality and should be done before any
      u[p]='\0';    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
    for(j=0; j<= lg; j++) {    from other sources like vital statistic data.
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    The same imach parameter file can be used but the option for mle should be -3.
 }  
     Agnès, who wrote this part of the code, tried to keep most of the
 /********************** nrerror ********************/    former routines in order to include the new code within the former code.
   
 void nrerror(char error_text[])    The output is very simple: only an estimate of the intercept and of
 {    the slope with 95% confident intervals.
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);    Current limitations:
   exit(1);    A) Even if you enter covariates, i.e. with the
 }    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 /*********************** vector *******************/    B) There is no computation of Life Expectancy nor Life Table.
 double *vector(int nl, int nh)  
 {    Revision 1.97  2004/02/20 13:25:42  lievre
   double *v;    Version 0.96d. Population forecasting command line is (temporarily)
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    suppressed.
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;    Revision 1.96  2003/07/15 15:38:55  brouard
 }    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
     rewritten within the same printf. Workaround: many printfs.
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)    Revision 1.95  2003/07/08 07:54:34  brouard
 {    * imach.c (Repository):
   free((FREE_ARG)(v+nl-NR_END));    (Repository): Using imachwizard code to output a more meaningful covariance
 }    matrix (cov(a12,c31) instead of numbers.
   
 /************************ivector *******************************/    Revision 1.94  2003/06/27 13:00:02  brouard
 int *ivector(long nl,long nh)    Just cleaning
 {  
   int *v;    Revision 1.93  2003/06/25 16:33:55  brouard
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    (Module): On windows (cygwin) function asctime_r doesn't
   if (!v) nrerror("allocation failure in ivector");    exist so I changed back to asctime which exists.
   return v-nl+NR_END;    (Module): Version 0.96b
 }  
     Revision 1.92  2003/06/25 16:30:45  brouard
 /******************free ivector **************************/    (Module): On windows (cygwin) function asctime_r doesn't
 void free_ivector(int *v, long nl, long nh)    exist so I changed back to asctime which exists.
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.91  2003/06/25 15:30:29  brouard
 }    * imach.c (Repository): Duplicated warning errors corrected.
     (Repository): Elapsed time after each iteration is now output. It
 /******************* imatrix *******************************/    helps to forecast when convergence will be reached. Elapsed time
 int **imatrix(long nrl, long nrh, long ncl, long nch)    is stamped in powell.  We created a new html file for the graphs
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    concerning matrix of covariance. It has extension -cov.htm.
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    Revision 1.90  2003/06/24 12:34:15  brouard
   int **m;    (Module): Some bugs corrected for windows. Also, when
      mle=-1 a template is output in file "or"mypar.txt with the design
   /* allocate pointers to rows */    of the covariance matrix to be input.
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.89  2003/06/24 12:30:52  brouard
   m += NR_END;    (Module): Some bugs corrected for windows. Also, when
   m -= nrl;    mle=-1 a template is output in file "or"mypar.txt with the design
      of the covariance matrix to be input.
    
   /* allocate rows and set pointers to them */    Revision 1.88  2003/06/23 17:54:56  brouard
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.87  2003/06/18 12:26:01  brouard
   m[nrl] -= ncl;    Version 0.96
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    Revision 1.86  2003/06/17 20:04:08  brouard
      (Module): Change position of html and gnuplot routines and added
   /* return pointer to array of pointers to rows */    routine fileappend.
   return m;  
 }    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
 /****************** free_imatrix *************************/    current date of interview. It may happen when the death was just
 void free_imatrix(m,nrl,nrh,ncl,nch)    prior to the death. In this case, dh was negative and likelihood
       int **m;    was wrong (infinity). We still send an "Error" but patch by
       long nch,ncl,nrh,nrl;    assuming that the date of death was just one stepm after the
      /* free an int matrix allocated by imatrix() */    interview.
 {    (Repository): Because some people have very long ID (first column)
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    we changed int to long in num[] and we added a new lvector for
   free((FREE_ARG) (m+nrl-NR_END));    memory allocation. But we also truncated to 8 characters (left
 }    truncation)
     (Repository): No more line truncation errors.
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)    Revision 1.84  2003/06/13 21:44:43  brouard
 {    * imach.c (Repository): Replace "freqsummary" at a correct
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    place. It differs from routine "prevalence" which may be called
   double **m;    many times. Probs is memory consuming and must be used with
     parcimony.
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.83  2003/06/10 13:39:11  lievre
   m -= nrl;    *** empty log message ***
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Revision 1.82  2003/06/05 15:57:20  brouard
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Add log in  imach.c and  fullversion number is now printed.
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  */
   /*
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;     Interpolated Markov Chain
   return m;  
 }    Short summary of the programme:
     
 /*************************free matrix ************************/    This program computes Healthy Life Expectancies from
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 {    first survey ("cross") where individuals from different ages are
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    interviewed on their health status or degree of disability (in the
   free((FREE_ARG)(m+nrl-NR_END));    case of a health survey which is our main interest) -2- at least a
 }    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
 /******************* ma3x *******************************/    computed from the time spent in each health state according to a
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    model. More health states you consider, more time is necessary to reach the
 {    Maximum Likelihood of the parameters involved in the model.  The
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    simplest model is the multinomial logistic model where pij is the
   double ***m;    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   if (!m) nrerror("allocation failure 1 in matrix()");    'age' is age and 'sex' is a covariate. If you want to have a more
   m += NR_END;    complex model than "constant and age", you should modify the program
   m -= nrl;    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    convergence.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    The advantage of this computer programme, compared to a simple
   m[nrl] -= ncl;    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    hPijx is the probability to be observed in state i at age x+h
   m[nrl][ncl] += NR_END;    conditional to the observed state i at age x. The delay 'h' can be
   m[nrl][ncl] -= nll;    split into an exact number (nh*stepm) of unobserved intermediate
   for (j=ncl+1; j<=nch; j++)    states. This elementary transition (by month, quarter,
     m[nrl][j]=m[nrl][j-1]+nlay;    semester or year) is modelled as a multinomial logistic.  The hPx
      matrix is simply the matrix product of nh*stepm elementary matrices
   for (i=nrl+1; i<=nrh; i++) {    and the contribution of each individual to the likelihood is simply
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    hPijx.
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;    Also this programme outputs the covariance matrix of the parameters but also
   }    of the life expectancies. It also computes the period (stable) prevalence. 
   return m;    
 }    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 /*************************free ma3x ************************/    This software have been partly granted by Euro-REVES, a concerted action
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    from the European Union.
 {    It is copyrighted identically to a GNU software product, ie programme and
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    software can be distributed freely for non commercial use. Latest version
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    can be accessed at http://euroreves.ined.fr/imach .
   free((FREE_ARG)(m+nrl-NR_END));  
 }    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 /***************** f1dim *************************/    
 extern int ncom;    **********************************************************************/
 extern double *pcom,*xicom;  /*
 extern double (*nrfunc)(double []);    main
      read parameterfile
 double f1dim(double x)    read datafile
 {    concatwav
   int j;    freqsummary
   double f;    if (mle >= 1)
   double *xt;      mlikeli
      print results files
   xt=vector(1,ncom);    if mle==1 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];       computes hessian
   f=(*nrfunc)(xt);    read end of parameter file: agemin, agemax, bage, fage, estepm
   free_vector(xt,1,ncom);        begin-prev-date,...
   return f;    open gnuplot file
 }    open html file
     period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
 /*****************brent *************************/     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
 {      freexexit2 possible for memory heap.
   int iter;  
   double a,b,d,etemp;    h Pij x                         | pij_nom  ficrestpij
   double fu,fv,fw,fx;     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
   double ftemp;         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
   double p,q,r,tol1,tol2,u,v,w,x,xm;         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
   double e=0.0;  
           1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
   a=(ax < cx ? ax : cx);         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
   b=(ax > cx ? ax : cx);    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
   x=w=v=bx;     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
   fw=fv=fx=(*f)(x);     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);    forecasting if prevfcast==1 prevforecast call prevalence()
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    health expectancies
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    Variance-covariance of DFLE
     printf(".");fflush(stdout);    prevalence()
     fprintf(ficlog,".");fflush(ficlog);     movingaverage()
 #ifdef DEBUG    varevsij() 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    if popbased==1 varevsij(,popbased)
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    total life expectancies
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    Variance of period (stable) prevalence
 #endif   end
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  */
       *xmin=x;  
       return fx;  
     }  
     ftemp=fu;   
     if (fabs(e) > tol1) {  #include <math.h>
       r=(x-w)*(fx-fv);  #include <stdio.h>
       q=(x-v)*(fx-fw);  #include <stdlib.h>
       p=(x-v)*q-(x-w)*r;  #include <string.h>
       q=2.0*(q-r);  #include <unistd.h>
       if (q > 0.0) p = -p;  
       q=fabs(q);  #include <limits.h>
       etemp=e;  #include <sys/types.h>
       e=d;  #include <sys/stat.h>
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  #include <errno.h>
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  extern int errno;
       else {  
         d=p/q;  #ifdef LINUX
         u=x+d;  #include <time.h>
         if (u-a < tol2 || b-u < tol2)  #include "timeval.h"
           d=SIGN(tol1,xm-x);  #else
       }  #include <sys/time.h>
     } else {  #endif
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  
     }  #ifdef GSL
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #include <gsl/gsl_errno.h>
     fu=(*f)(u);  #include <gsl/gsl_multimin.h>
     if (fu <= fx) {  #endif
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  /* #include <libintl.h> */
         SHFT(fv,fw,fx,fu)  /* #define _(String) gettext (String) */
         } else {  
           if (u < x) a=u; else b=u;  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
           if (fu <= fw || w == x) {  
             v=w;  #define GNUPLOTPROGRAM "gnuplot"
             w=u;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
             fv=fw;  #define FILENAMELENGTH 132
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
             v=u;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
             fv=fu;  
           }  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
         }  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
   }  
   nrerror("Too many iterations in brent");  #define NINTERVMAX 8
   *xmin=x;  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
   return fx;  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
 }  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
   #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
 /****************** mnbrak ***********************/  #define MAXN 20000
   #define YEARM 12. /**< Number of months per year */
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  #define AGESUP 130
             double (*func)(double))  #define AGEBASE 40
 {  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
   double ulim,u,r,q, dum;  #ifdef UNIX
   double fu;  #define DIRSEPARATOR '/'
    #define CHARSEPARATOR "/"
   *fa=(*func)(*ax);  #define ODIRSEPARATOR '\\'
   *fb=(*func)(*bx);  #else
   if (*fb > *fa) {  #define DIRSEPARATOR '\\'
     SHFT(dum,*ax,*bx,dum)  #define CHARSEPARATOR "\\"
       SHFT(dum,*fb,*fa,dum)  #define ODIRSEPARATOR '/'
       }  #endif
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);  /* $Id$ */
   while (*fb > *fc) {  /* $State$ */
     r=(*bx-*ax)*(*fb-*fc);  
     q=(*bx-*cx)*(*fb-*fa);  char version[]="Imach version 0.98nV, August 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  char fullversion[]="$Revision$ $Date$"; 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  char strstart[80];
     ulim=(*bx)+GLIMIT*(*cx-*bx);  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
     if ((*bx-u)*(u-*cx) > 0.0) {  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       fu=(*func)(u);  int nvar=0, nforce=0; /* Number of variables, number of forces */
     } else if ((*cx-u)*(u-ulim) > 0.0) {  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
       fu=(*func)(u);  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
       if (fu < *fc) {  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
           SHFT(*fb,*fc,fu,(*func)(u))  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
           }  int cptcovprodnoage=0; /**< Number of covariate products without age */   
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  int cptcoveff=0; /* Total number of covariates to vary for printing results */
       u=ulim;  int cptcov=0; /* Working variable */
       fu=(*func)(u);  int npar=NPARMAX;
     } else {  int nlstate=2; /* Number of live states */
       u=(*cx)+GOLD*(*cx-*bx);  int ndeath=1; /* Number of dead states */
       fu=(*func)(u);  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
     }  int popbased=0;
     SHFT(*ax,*bx,*cx,u)  
       SHFT(*fa,*fb,*fc,fu)  int *wav; /* Number of waves for this individuual 0 is possible */
       }  int maxwav=0; /* Maxim number of waves */
 }  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
 /*************** linmin ************************/  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
                      to the likelihood and the sum of weights (done by funcone)*/
 int ncom;  int mle=1, weightopt=0;
 double *pcom,*xicom;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 double (*nrfunc)(double []);  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
    int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 {  double jmean=1; /* Mean space between 2 waves */
   double brent(double ax, double bx, double cx,  double **matprod2(); /* test */
                double (*f)(double), double tol, double *xmin);  double **oldm, **newm, **savm; /* Working pointers to matrices */
   double f1dim(double x);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  /*FILE *fic ; */ /* Used in readdata only */
               double *fc, double (*func)(double));  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   int j;  FILE *ficlog, *ficrespow;
   double xx,xmin,bx,ax;  int globpr=0; /* Global variable for printing or not */
   double fx,fb,fa;  double fretone; /* Only one call to likelihood */
    long ipmx=0; /* Number of contributions */
   ncom=n;  double sw; /* Sum of weights */
   pcom=vector(1,n);  char filerespow[FILENAMELENGTH];
   xicom=vector(1,n);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   nrfunc=func;  FILE *ficresilk;
   for (j=1;j<=n;j++) {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     pcom[j]=p[j];  FILE *ficresprobmorprev;
     xicom[j]=xi[j];  FILE *fichtm, *fichtmcov; /* Html File */
   }  FILE *ficreseij;
   ax=0.0;  char filerese[FILENAMELENGTH];
   xx=1.0;  FILE *ficresstdeij;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  char fileresstde[FILENAMELENGTH];
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  FILE *ficrescveij;
 #ifdef DEBUG  char filerescve[FILENAMELENGTH];
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  FILE  *ficresvij;
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  char fileresv[FILENAMELENGTH];
 #endif  FILE  *ficresvpl;
   for (j=1;j<=n;j++) {  char fileresvpl[FILENAMELENGTH];
     xi[j] *= xmin;  char title[MAXLINE];
     p[j] += xi[j];  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   }  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   free_vector(xicom,1,n);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   free_vector(pcom,1,n);  char command[FILENAMELENGTH];
 }  int  outcmd=0;
   
 /*************** powell ************************/  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  
             double (*func)(double []))  char filelog[FILENAMELENGTH]; /* Log file */
 {  char filerest[FILENAMELENGTH];
   void linmin(double p[], double xi[], int n, double *fret,  char fileregp[FILENAMELENGTH];
               double (*func)(double []));  char popfile[FILENAMELENGTH];
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   double fp,fptt;  
   double *xits;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   pt=vector(1,n);  struct timezone tzp;
   ptt=vector(1,n);  extern int gettimeofday();
   xit=vector(1,n);  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   xits=vector(1,n);  long time_value;
   *fret=(*func)(p);  extern long time();
   for (j=1;j<=n;j++) pt[j]=p[j];  char strcurr[80], strfor[80];
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  char *endptr;
     ibig=0;  long lval;
     del=0.0;  double dval;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  #define NR_END 1
     for (i=1;i<=n;i++)  #define FREE_ARG char*
       printf(" %d %.12f",i, p[i]);  #define FTOL 1.0e-10
     fprintf(ficlog," %d %.12f",i, p[i]);  
     printf("\n");  #define NRANSI 
     fprintf(ficlog,"\n");  #define ITMAX 200 
     for (i=1;i<=n;i++) {  
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  #define TOL 2.0e-4 
       fptt=(*fret);  
 #ifdef DEBUG  #define CGOLD 0.3819660 
       printf("fret=%lf \n",*fret);  #define ZEPS 1.0e-10 
       fprintf(ficlog,"fret=%lf \n",*fret);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 #endif  
       printf("%d",i);fflush(stdout);  #define GOLD 1.618034 
       fprintf(ficlog,"%d",i);fflush(ficlog);  #define GLIMIT 100.0 
       linmin(p,xit,n,fret,func);  #define TINY 1.0e-20 
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));  static double maxarg1,maxarg2;
         ibig=i;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 #ifdef DEBUG    
       printf("%d %.12e",i,(*fret));  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       fprintf(ficlog,"%d %.12e",i,(*fret));  #define rint(a) floor(a+0.5)
       for (j=1;j<=n;j++) {  
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  static double sqrarg;
         printf(" x(%d)=%.12e",j,xit[j]);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       }  int agegomp= AGEGOMP;
       for(j=1;j<=n;j++) {  
         printf(" p=%.12e",p[j]);  int imx; 
         fprintf(ficlog," p=%.12e",p[j]);  int stepm=1;
       }  /* Stepm, step in month: minimum step interpolation*/
       printf("\n");  
       fprintf(ficlog,"\n");  int estepm;
 #endif  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  int m,nb;
 #ifdef DEBUG  long *num;
       int k[2],l;  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       k[0]=1;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       k[1]=-1;  double **pmmij, ***probs;
       printf("Max: %.12e",(*func)(p));  double *ageexmed,*agecens;
       fprintf(ficlog,"Max: %.12e",(*func)(p));  double dateintmean=0;
       for (j=1;j<=n;j++) {  
         printf(" %.12e",p[j]);  double *weight;
         fprintf(ficlog," %.12e",p[j]);  int **s; /* Status */
       }  double *agedc;
       printf("\n");  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
       fprintf(ficlog,"\n");                    * covar=matrix(0,NCOVMAX,1,n); 
       for(l=0;l<=1;l++) {                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
         for (j=1;j<=n;j++) {  double  idx; 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  int *Ndum; /** Freq of modality (tricode */
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  int **codtab; /**< codtab=imatrix(1,100,1,10); */
         }  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  double *lsurv, *lpop, *tpop;
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
 #endif  double ftolhess; /**< Tolerance for computing hessian */
   
   /**************** split *************************/
       free_vector(xit,1,n);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       free_vector(xits,1,n);  {
       free_vector(ptt,1,n);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       free_vector(pt,1,n);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
       return;    */ 
     }    char  *ss;                            /* pointer */
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    int   l1, l2;                         /* length counters */
     for (j=1;j<=n;j++) {  
       ptt[j]=2.0*p[j]-pt[j];    l1 = strlen(path );                   /* length of path */
       xit[j]=p[j]-pt[j];    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       pt[j]=p[j];    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     }    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     fptt=(*func)(ptt);      strcpy( name, path );               /* we got the fullname name because no directory */
     if (fptt < fp) {      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       if (t < 0.0) {      /* get current working directory */
         linmin(p,xit,n,fret,func);      /*    extern  char* getcwd ( char *buf , int len);*/
         for (j=1;j<=n;j++) {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
           xi[j][ibig]=xi[j][n];        return( GLOCK_ERROR_GETCWD );
           xi[j][n]=xit[j];      }
         }      /* got dirc from getcwd*/
 #ifdef DEBUG      printf(" DIRC = %s \n",dirc);
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    } else {                              /* strip direcotry from path */
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);      ss++;                               /* after this, the filename */
         for(j=1;j<=n;j++){      l2 = strlen( ss );                  /* length of filename */
           printf(" %.12e",xit[j]);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
           fprintf(ficlog," %.12e",xit[j]);      strcpy( name, ss );         /* save file name */
         }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
         printf("\n");      dirc[l1-l2] = 0;                    /* add zero */
         fprintf(ficlog,"\n");      printf(" DIRC2 = %s \n",dirc);
 #endif    }
       }    /* We add a separator at the end of dirc if not exists */
     }    l1 = strlen( dirc );                  /* length of directory */
   }    if( dirc[l1-1] != DIRSEPARATOR ){
 }      dirc[l1] =  DIRSEPARATOR;
       dirc[l1+1] = 0; 
 /**** Prevalence limit ****************/      printf(" DIRC3 = %s \n",dirc);
     }
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    ss = strrchr( name, '.' );            /* find last / */
 {    if (ss >0){
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      ss++;
      matrix by transitions matrix until convergence is reached */      strcpy(ext,ss);                     /* save extension */
       l1= strlen( name);
   int i, ii,j,k;      l2= strlen(ss)+1;
   double min, max, maxmin, maxmax,sumnew=0.;      strncpy( finame, name, l1-l2);
   double **matprod2();      finame[l1-l2]= 0;
   double **out, cov[NCOVMAX], **pmij();    }
   double **newm;  
   double agefin, delaymax=50 ; /* Max number of years to converge */    return( 0 );                          /* we're done */
   }
   for (ii=1;ii<=nlstate+ndeath;ii++)  
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /******************************************/
     }  
   void replace_back_to_slash(char *s, char*t)
    cov[1]=1.;  {
      int i;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    int lg=0;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    i=0;
     newm=savm;    lg=strlen(t);
     /* Covariates have to be included here again */    for(i=0; i<= lg; i++) {
      cov[2]=agefin;      (s[i] = t[i]);
        if (t[i]== '\\') s[i]='/';
       for (k=1; k<=cptcovn;k++) {    }
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  }
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  
       }  char *trimbb(char *out, char *in)
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
       for (k=1; k<=cptcovprod;k++)    char *s;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    s=out;
     while (*in != '\0'){
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        in++;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      }
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      *out++ = *in++;
     }
     savm=oldm;    *out='\0';
     oldm=newm;    return s;
     maxmax=0.;  }
     for(j=1;j<=nlstate;j++){  
       min=1.;  char *cutl(char *blocc, char *alocc, char *in, char occ)
       max=0.;  {
       for(i=1; i<=nlstate; i++) {    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
         sumnew=0;       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];       gives blocc="abcdef2ghi" and alocc="j".
         prlim[i][j]= newm[i][j]/(1-sumnew);       If occ is not found blocc is null and alocc is equal to in. Returns blocc
         max=FMAX(max,prlim[i][j]);    */
         min=FMIN(min,prlim[i][j]);    char *s, *t, *bl;
       }    t=in;s=in;
       maxmin=max-min;    while ((*in != occ) && (*in != '\0')){
       maxmax=FMAX(maxmax,maxmin);      *alocc++ = *in++;
     }    }
     if(maxmax < ftolpl){    if( *in == occ){
       return prlim;      *(alocc)='\0';
     }      s=++in;
   }    }
 }   
     if (s == t) {/* occ not found */
 /*************** transition probabilities ***************/      *(alocc-(in-s))='\0';
       in=s;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    }
 {    while ( *in != '\0'){
   double s1, s2;      *blocc++ = *in++;
   /*double t34;*/    }
   int i,j,j1, nc, ii, jj;  
     *blocc='\0';
     for(i=1; i<= nlstate; i++){    return t;
     for(j=1; j<i;j++){  }
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  char *cutv(char *blocc, char *alocc, char *in, char occ)
         /*s2 += param[i][j][nc]*cov[nc];*/  {
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
       }       gives blocc="abcdef2ghi" and alocc="j".
       ps[i][j]=s2;       If occ is not found blocc is null and alocc is equal to in. Returns alocc
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    */
     }    char *s, *t;
     for(j=i+1; j<=nlstate+ndeath;j++){    t=in;s=in;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    while (*in != '\0'){
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      while( *in == occ){
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        *blocc++ = *in++;
       }        s=in;
       ps[i][j]=s2;      }
     }      *blocc++ = *in++;
   }    }
     /*ps[3][2]=1;*/    if (s == t) /* occ not found */
       *(blocc-(in-s))='\0';
   for(i=1; i<= nlstate; i++){    else
      s1=0;      *(blocc-(in-s)-1)='\0';
     for(j=1; j<i; j++)    in=s;
       s1+=exp(ps[i][j]);    while ( *in != '\0'){
     for(j=i+1; j<=nlstate+ndeath; j++)      *alocc++ = *in++;
       s1+=exp(ps[i][j]);    }
     ps[i][i]=1./(s1+1.);  
     for(j=1; j<i; j++)    *alocc='\0';
       ps[i][j]= exp(ps[i][j])*ps[i][i];    return s;
     for(j=i+1; j<=nlstate+ndeath; j++)  }
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  int nbocc(char *s, char occ)
   } /* end i */  {
     int i,j=0;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    int lg=20;
     for(jj=1; jj<= nlstate+ndeath; jj++){    i=0;
       ps[ii][jj]=0;    lg=strlen(s);
       ps[ii][ii]=1;    for(i=0; i<= lg; i++) {
     }    if  (s[i] == occ ) j++;
   }    }
     return j;
   }
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){  /* void cutv(char *u,char *v, char*t, char occ) */
      printf("%lf ",ps[ii][jj]);  /* { */
    }  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
     printf("\n ");  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
     }  /*      gives u="abcdef2ghi" and v="j" *\/ */
     printf("\n ");printf("%lf ",cov[2]);*/  /*   int i,lg,j,p=0; */
 /*  /*   i=0; */
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  /*   lg=strlen(t); */
   goto end;*/  /*   for(j=0; j<=lg-1; j++) { */
     return ps;  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
 }  /*   } */
   
 /**************** Product of 2 matrices ******************/  /*   for(j=0; j<p; j++) { */
   /*     (u[j] = t[j]); */
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  /*   } */
 {  /*      u[p]='\0'; */
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  /*    for(j=0; j<= lg; j++) { */
   /* in, b, out are matrice of pointers which should have been initialized  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
      before: only the contents of out is modified. The function returns  /*   } */
      a pointer to pointers identical to out */  /* } */
   long i, j, k;  
   for(i=nrl; i<= nrh; i++)  /********************** nrerror ********************/
     for(k=ncolol; k<=ncoloh; k++)  
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  void nrerror(char error_text[])
         out[i][k] +=in[i][j]*b[j][k];  {
     fprintf(stderr,"ERREUR ...\n");
   return out;    fprintf(stderr,"%s\n",error_text);
 }    exit(EXIT_FAILURE);
   }
   /*********************** vector *******************/
 /************* Higher Matrix Product ***************/  double *vector(int nl, int nh)
   {
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    double *v;
 {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    if (!v) nrerror("allocation failure in vector");
      duration (i.e. until    return v-nl+NR_END;
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  }
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  
      (typically every 2 years instead of every month which is too big).  /************************ free vector ******************/
      Model is determined by parameters x and covariates have to be  void free_vector(double*v, int nl, int nh)
      included manually here.  {
     free((FREE_ARG)(v+nl-NR_END));
      */  }
   
   int i, j, d, h, k;  /************************ivector *******************************/
   double **out, cov[NCOVMAX];  int *ivector(long nl,long nh)
   double **newm;  {
     int *v;
   /* Hstepm could be zero and should return the unit matrix */    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   for (i=1;i<=nlstate+ndeath;i++)    if (!v) nrerror("allocation failure in ivector");
     for (j=1;j<=nlstate+ndeath;j++){    return v-nl+NR_END;
       oldm[i][j]=(i==j ? 1.0 : 0.0);  }
       po[i][j][0]=(i==j ? 1.0 : 0.0);  
     }  /******************free ivector **************************/
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  void free_ivector(int *v, long nl, long nh)
   for(h=1; h <=nhstepm; h++){  {
     for(d=1; d <=hstepm; d++){    free((FREE_ARG)(v+nl-NR_END));
       newm=savm;  }
       /* Covariates have to be included here again */  
       cov[1]=1.;  /************************lvector *******************************/
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  long *lvector(long nl,long nh)
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  {
       for (k=1; k<=cptcovage;k++)    long *v;
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       for (k=1; k<=cptcovprod;k++)    if (!v) nrerror("allocation failure in ivector");
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    return v-nl+NR_END;
   }
   
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  /******************free lvector **************************/
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  void free_lvector(long *v, long nl, long nh)
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  {
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    free((FREE_ARG)(v+nl-NR_END));
       savm=oldm;  }
       oldm=newm;  
     }  /******************* imatrix *******************************/
     for(i=1; i<=nlstate+ndeath; i++)  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       for(j=1;j<=nlstate+ndeath;j++) {       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         po[i][j][h]=newm[i][j];  { 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
          */    int **m; 
       }    
   } /* end h */    /* allocate pointers to rows */ 
   return po;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 }    if (!m) nrerror("allocation failure 1 in matrix()"); 
     m += NR_END; 
     m -= nrl; 
 /*************** log-likelihood *************/    
 double func( double *x)    
 {    /* allocate rows and set pointers to them */ 
   int i, ii, j, k, mi, d, kk;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   double **out;    m[nrl] += NR_END; 
   double sw; /* Sum of weights */    m[nrl] -= ncl; 
   double lli; /* Individual log likelihood */    
   long ipmx;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   /*extern weight */    
   /* We are differentiating ll according to initial status */    /* return pointer to array of pointers to rows */ 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    return m; 
   /*for(i=1;i<imx;i++)  } 
     printf(" %d\n",s[4][i]);  
   */  /****************** free_imatrix *************************/
   cov[1]=1.;  void free_imatrix(m,nrl,nrh,ncl,nch)
         int **m;
   for(k=1; k<=nlstate; k++) ll[k]=0.;        long nch,ncl,nrh,nrl; 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){       /* free an int matrix allocated by imatrix() */ 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  { 
     for(mi=1; mi<= wav[i]-1; mi++){    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       for (ii=1;ii<=nlstate+ndeath;ii++)    free((FREE_ARG) (m+nrl-NR_END)); 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  } 
       for(d=0; d<dh[mi][i]; d++){  
         newm=savm;  /******************* matrix *******************************/
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  double **matrix(long nrl, long nrh, long ncl, long nch)
         for (kk=1; kk<=cptcovage;kk++) {  {
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
         }    double **m;
          
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    if (!m) nrerror("allocation failure 1 in matrix()");
         savm=oldm;    m += NR_END;
         oldm=newm;    m -= nrl;
          
            m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       } /* end mult */    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
          m[nrl] += NR_END;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    m[nrl] -= ncl;
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  
       ipmx +=1;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       sw += weight[i];    return m;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
     } /* end of wave */  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
   } /* end of individual */  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
      */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  }
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  /*************************free matrix ************************/
   return -l;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
 }  {
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
 /*********** Maximum Likelihood Estimation ***************/  }
   
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  /******************* ma3x *******************************/
 {  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   int i,j, iter;  {
   double **xi,*delti;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   double fret;    double ***m;
   xi=matrix(1,npar,1,npar);  
   for (i=1;i<=npar;i++)    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     for (j=1;j<=npar;j++)    if (!m) nrerror("allocation failure 1 in matrix()");
       xi[i][j]=(i==j ? 1.0 : 0.0);    m += NR_END;
   printf("Powell\n");  fprintf(ficlog,"Powell\n");    m -= nrl;
   powell(p,xi,npar,ftol,&iter,&fret,func);  
     m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    m[nrl] += NR_END;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    m[nrl] -= ncl;
   
 }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   
 /**** Computes Hessian and covariance matrix ***/    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 {    m[nrl][ncl] += NR_END;
   double  **a,**y,*x,pd;    m[nrl][ncl] -= nll;
   double **hess;    for (j=ncl+1; j<=nch; j++) 
   int i, j,jk;      m[nrl][j]=m[nrl][j-1]+nlay;
   int *indx;    
     for (i=nrl+1; i<=nrh; i++) {
   double hessii(double p[], double delta, int theta, double delti[]);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   double hessij(double p[], double delti[], int i, int j);      for (j=ncl+1; j<=nch; j++) 
   void lubksb(double **a, int npar, int *indx, double b[]) ;        m[i][j]=m[i][j-1]+nlay;
   void ludcmp(double **a, int npar, int *indx, double *d) ;    }
     return m; 
   hess=matrix(1,npar,1,npar);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   printf("\nCalculation of the hessian matrix. Wait...\n");    */
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");  }
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);  /*************************free ma3x ************************/
     fprintf(ficlog,"%d",i);fflush(ficlog);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     hess[i][i]=hessii(p,ftolhess,i,delti);  {
     /*printf(" %f ",p[i]);*/    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     /*printf(" %lf ",hess[i][i]);*/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   }    free((FREE_ARG)(m+nrl-NR_END));
    }
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++)  {  /*************** function subdirf ***********/
       if (j>i) {  char *subdirf(char fileres[])
         printf(".%d%d",i,j);fflush(stdout);  {
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);    /* Caution optionfilefiname is hidden */
         hess[i][j]=hessij(p,delti,i,j);    strcpy(tmpout,optionfilefiname);
         hess[j][i]=hess[i][j];        strcat(tmpout,"/"); /* Add to the right */
         /*printf(" %lf ",hess[i][j]);*/    strcat(tmpout,fileres);
       }    return tmpout;
     }  }
   }  
   printf("\n");  /*************** function subdirf2 ***********/
   fprintf(ficlog,"\n");  char *subdirf2(char fileres[], char *preop)
   {
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");    /* Caution optionfilefiname is hidden */
      strcpy(tmpout,optionfilefiname);
   a=matrix(1,npar,1,npar);    strcat(tmpout,"/");
   y=matrix(1,npar,1,npar);    strcat(tmpout,preop);
   x=vector(1,npar);    strcat(tmpout,fileres);
   indx=ivector(1,npar);    return tmpout;
   for (i=1;i<=npar;i++)  }
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  
   ludcmp(a,npar,indx,&pd);  /*************** function subdirf3 ***********/
   char *subdirf3(char fileres[], char *preop, char *preop2)
   for (j=1;j<=npar;j++) {  {
     for (i=1;i<=npar;i++) x[i]=0;    
     x[j]=1;    /* Caution optionfilefiname is hidden */
     lubksb(a,npar,indx,x);    strcpy(tmpout,optionfilefiname);
     for (i=1;i<=npar;i++){    strcat(tmpout,"/");
       matcov[i][j]=x[i];    strcat(tmpout,preop);
     }    strcat(tmpout,preop2);
   }    strcat(tmpout,fileres);
     return tmpout;
   printf("\n#Hessian matrix#\n");  }
   fprintf(ficlog,"\n#Hessian matrix#\n");  
   for (i=1;i<=npar;i++) {  /***************** f1dim *************************/
     for (j=1;j<=npar;j++) {  extern int ncom; 
       printf("%.3e ",hess[i][j]);  extern double *pcom,*xicom;
       fprintf(ficlog,"%.3e ",hess[i][j]);  extern double (*nrfunc)(double []); 
     }   
     printf("\n");  double f1dim(double x) 
     fprintf(ficlog,"\n");  { 
   }    int j; 
     double f;
   /* Recompute Inverse */    double *xt; 
   for (i=1;i<=npar;i++)   
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    xt=vector(1,ncom); 
   ludcmp(a,npar,indx,&pd);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     f=(*nrfunc)(xt); 
   /*  printf("\n#Hessian matrix recomputed#\n");    free_vector(xt,1,ncom); 
     return f; 
   for (j=1;j<=npar;j++) {  } 
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;  /*****************brent *************************/
     lubksb(a,npar,indx,x);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     for (i=1;i<=npar;i++){  { 
       y[i][j]=x[i];    int iter; 
       printf("%.3e ",y[i][j]);    double a,b,d,etemp;
       fprintf(ficlog,"%.3e ",y[i][j]);    double fu,fv,fw,fx;
     }    double ftemp;
     printf("\n");    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     fprintf(ficlog,"\n");    double e=0.0; 
   }   
   */    a=(ax < cx ? ax : cx); 
     b=(ax > cx ? ax : cx); 
   free_matrix(a,1,npar,1,npar);    x=w=v=bx; 
   free_matrix(y,1,npar,1,npar);    fw=fv=fx=(*f)(x); 
   free_vector(x,1,npar);    for (iter=1;iter<=ITMAX;iter++) { 
   free_ivector(indx,1,npar);      xm=0.5*(a+b); 
   free_matrix(hess,1,npar,1,npar);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(".");fflush(stdout);
 }      fprintf(ficlog,".");fflush(ficlog);
   #ifdef DEBUG
 /*************** hessian matrix ****************/      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 double hessii( double x[], double delta, int theta, double delti[])      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 {      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   int i;  #endif
   int l=1, lmax=20;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   double k1,k2;        *xmin=x; 
   double p2[NPARMAX+1];        return fx; 
   double res;      } 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      ftemp=fu;
   double fx;      if (fabs(e) > tol1) { 
   int k=0,kmax=10;        r=(x-w)*(fx-fv); 
   double l1;        q=(x-v)*(fx-fw); 
         p=(x-v)*q-(x-w)*r; 
   fx=func(x);        q=2.0*(q-r); 
   for (i=1;i<=npar;i++) p2[i]=x[i];        if (q > 0.0) p = -p; 
   for(l=0 ; l <=lmax; l++){        q=fabs(q); 
     l1=pow(10,l);        etemp=e; 
     delts=delt;        e=d; 
     for(k=1 ; k <kmax; k=k+1){        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       delt = delta*(l1*k);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       p2[theta]=x[theta] +delt;        else { 
       k1=func(p2)-fx;          d=p/q; 
       p2[theta]=x[theta]-delt;          u=x+d; 
       k2=func(p2)-fx;          if (u-a < tol2 || b-u < tol2) 
       /*res= (k1-2.0*fx+k2)/delt/delt; */            d=SIGN(tol1,xm-x); 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        } 
            } else { 
 #ifdef DEBUG        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      } 
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 #endif      fu=(*f)(u); 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      if (fu <= fx) { 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        if (u >= x) a=x; else b=x; 
         k=kmax;        SHFT(v,w,x,u) 
       }          SHFT(fv,fw,fx,fu) 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          } else { 
         k=kmax; l=lmax*10.;            if (u < x) a=u; else b=u; 
       }            if (fu <= fw || w == x) { 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){              v=w; 
         delts=delt;              w=u; 
       }              fv=fw; 
     }              fw=fu; 
   }            } else if (fu <= fv || v == x || v == w) { 
   delti[theta]=delts;              v=u; 
   return res;              fv=fu; 
              } 
 }          } 
     } 
 double hessij( double x[], double delti[], int thetai,int thetaj)    nrerror("Too many iterations in brent"); 
 {    *xmin=x; 
   int i;    return fx; 
   int l=1, l1, lmax=20;  } 
   double k1,k2,k3,k4,res,fx;  
   double p2[NPARMAX+1];  /****************** mnbrak ***********************/
   int k;  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   fx=func(x);              double (*func)(double)) 
   for (k=1; k<=2; k++) {  { 
     for (i=1;i<=npar;i++) p2[i]=x[i];    double ulim,u,r,q, dum;
     p2[thetai]=x[thetai]+delti[thetai]/k;    double fu; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;   
     k1=func(p2)-fx;    *fa=(*func)(*ax); 
      *fb=(*func)(*bx); 
     p2[thetai]=x[thetai]+delti[thetai]/k;    if (*fb > *fa) { 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      SHFT(dum,*ax,*bx,dum) 
     k2=func(p2)-fx;        SHFT(dum,*fb,*fa,dum) 
          } 
     p2[thetai]=x[thetai]-delti[thetai]/k;    *cx=(*bx)+GOLD*(*bx-*ax); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    *fc=(*func)(*cx); 
     k3=func(p2)-fx;    while (*fb > *fc) { 
        r=(*bx-*ax)*(*fb-*fc); 
     p2[thetai]=x[thetai]-delti[thetai]/k;      q=(*bx-*cx)*(*fb-*fa); 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     k4=func(p2)-fx;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      ulim=(*bx)+GLIMIT*(*cx-*bx); 
 #ifdef DEBUG      if ((*bx-u)*(u-*cx) > 0.0) { 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        fu=(*func)(u); 
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
 #endif        fu=(*func)(u); 
   }        if (fu < *fc) { 
   return res;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 }            SHFT(*fb,*fc,fu,(*func)(u)) 
             } 
 /************** Inverse of matrix **************/      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
 void ludcmp(double **a, int n, int *indx, double *d)        u=ulim; 
 {        fu=(*func)(u); 
   int i,imax,j,k;      } else { 
   double big,dum,sum,temp;        u=(*cx)+GOLD*(*cx-*bx); 
   double *vv;        fu=(*func)(u); 
        } 
   vv=vector(1,n);      SHFT(*ax,*bx,*cx,u) 
   *d=1.0;        SHFT(*fa,*fb,*fc,fu) 
   for (i=1;i<=n;i++) {        } 
     big=0.0;  } 
     for (j=1;j<=n;j++)  
       if ((temp=fabs(a[i][j])) > big) big=temp;  /*************** linmin ************************/
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  
     vv[i]=1.0/big;  int ncom; 
   }  double *pcom,*xicom;
   for (j=1;j<=n;j++) {  double (*nrfunc)(double []); 
     for (i=1;i<j;i++) {   
       sum=a[i][j];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  { 
       a[i][j]=sum;    double brent(double ax, double bx, double cx, 
     }                 double (*f)(double), double tol, double *xmin); 
     big=0.0;    double f1dim(double x); 
     for (i=j;i<=n;i++) {    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       sum=a[i][j];                double *fc, double (*func)(double)); 
       for (k=1;k<j;k++)    int j; 
         sum -= a[i][k]*a[k][j];    double xx,xmin,bx,ax; 
       a[i][j]=sum;    double fx,fb,fa;
       if ( (dum=vv[i]*fabs(sum)) >= big) {   
         big=dum;    ncom=n; 
         imax=i;    pcom=vector(1,n); 
       }    xicom=vector(1,n); 
     }    nrfunc=func; 
     if (j != imax) {    for (j=1;j<=n;j++) { 
       for (k=1;k<=n;k++) {      pcom[j]=p[j]; 
         dum=a[imax][k];      xicom[j]=xi[j]; 
         a[imax][k]=a[j][k];    } 
         a[j][k]=dum;    ax=0.0; 
       }    xx=1.0; 
       *d = -(*d);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       vv[imax]=vv[j];    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     }  #ifdef DEBUG
     indx[j]=imax;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     if (a[j][j] == 0.0) a[j][j]=TINY;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     if (j != n) {  #endif
       dum=1.0/(a[j][j]);    for (j=1;j<=n;j++) { 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      xi[j] *= xmin; 
     }      p[j] += xi[j]; 
   }    } 
   free_vector(vv,1,n);  /* Doesn't work */    free_vector(xicom,1,n); 
 ;    free_vector(pcom,1,n); 
 }  } 
   
 void lubksb(double **a, int n, int *indx, double b[])  char *asc_diff_time(long time_sec, char ascdiff[])
 {  {
   int i,ii=0,ip,j;    long sec_left, days, hours, minutes;
   double sum;    days = (time_sec) / (60*60*24);
      sec_left = (time_sec) % (60*60*24);
   for (i=1;i<=n;i++) {    hours = (sec_left) / (60*60) ;
     ip=indx[i];    sec_left = (sec_left) %(60*60);
     sum=b[ip];    minutes = (sec_left) /60;
     b[ip]=b[i];    sec_left = (sec_left) % (60);
     if (ii)    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    return ascdiff;
     else if (sum) ii=i;  }
     b[i]=sum;  
   }  /*************** powell ************************/
   for (i=n;i>=1;i--) {  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     sum=b[i];              double (*func)(double [])) 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  { 
     b[i]=sum/a[i][i];    void linmin(double p[], double xi[], int n, double *fret, 
   }                double (*func)(double [])); 
 }    int i,ibig,j; 
     double del,t,*pt,*ptt,*xit;
 /************ Frequencies ********************/    double fp,fptt;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    double *xits;
 {  /* Some frequencies */    int niterf, itmp;
    
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    pt=vector(1,n); 
   int first;    ptt=vector(1,n); 
   double ***freq; /* Frequencies */    xit=vector(1,n); 
   double *pp;    xits=vector(1,n); 
   double pos, k2, dateintsum=0,k2cpt=0;    *fret=(*func)(p); 
   FILE *ficresp;    for (j=1;j<=n;j++) pt[j]=p[j]; 
   char fileresp[FILENAMELENGTH];    for (*iter=1;;++(*iter)) { 
        fp=(*fret); 
   pp=vector(1,nlstate);      ibig=0; 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      del=0.0; 
   strcpy(fileresp,"p");      last_time=curr_time;
   strcat(fileresp,fileres);      (void) gettimeofday(&curr_time,&tzp);
   if((ficresp=fopen(fileresp,"w"))==NULL) {      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
     printf("Problem with prevalence resultfile: %s\n", fileresp);      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
     exit(0);     for (i=1;i<=n;i++) {
   }        printf(" %d %.12f",i, p[i]);
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        fprintf(ficlog," %d %.12lf",i, p[i]);
   j1=0;        fprintf(ficrespow," %.12lf", p[i]);
        }
   j=cptcoveff;      printf("\n");
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");fflush(ficrespow);
   first=1;      if(*iter <=3){
         tm = *localtime(&curr_time.tv_sec);
   for(k1=1; k1<=j;k1++){        strcpy(strcurr,asctime(&tm));
     for(i1=1; i1<=ncodemax[k1];i1++){  /*       asctime_r(&tm,strcurr); */
       j1++;        forecast_time=curr_time; 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);        itmp = strlen(strcurr);
         scanf("%d", i);*/        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       for (i=-1; i<=nlstate+ndeath; i++)            strcurr[itmp-1]='\0';
         for (jk=-1; jk<=nlstate+ndeath; jk++)          printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
           for(m=agemin; m <= agemax+3; m++)        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
             freq[i][jk][m]=0;        for(niterf=10;niterf<=30;niterf+=10){
                forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
       dateintsum=0;          tmf = *localtime(&forecast_time.tv_sec);
       k2cpt=0;  /*      asctime_r(&tmf,strfor); */
       for (i=1; i<=imx; i++) {          strcpy(strfor,asctime(&tmf));
         bool=1;          itmp = strlen(strfor);
         if  (cptcovn>0) {          if(strfor[itmp-1]=='\n')
           for (z1=1; z1<=cptcoveff; z1++)          strfor[itmp-1]='\0';
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
               bool=0;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         }        }
         if (bool==1) {      }
           for(m=firstpass; m<=lastpass; m++){      for (i=1;i<=n;i++) { 
             k2=anint[m][i]+(mint[m][i]/12.);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        fptt=(*fret); 
               if(agev[m][i]==0) agev[m][i]=agemax+1;  #ifdef DEBUG
               if(agev[m][i]==1) agev[m][i]=agemax+2;        printf("fret=%lf \n",*fret);
               if (m<lastpass) {        fprintf(ficlog,"fret=%lf \n",*fret);
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  #endif
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        printf("%d",i);fflush(stdout);
               }        fprintf(ficlog,"%d",i);fflush(ficlog);
                      linmin(p,xit,n,fret,func); 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        if (fabs(fptt-(*fret)) > del) { 
                 dateintsum=dateintsum+k2;          del=fabs(fptt-(*fret)); 
                 k2cpt++;          ibig=i; 
               }        } 
             }  #ifdef DEBUG
           }        printf("%d %.12e",i,(*fret));
         }        fprintf(ficlog,"%d %.12e",i,(*fret));
       }        for (j=1;j<=n;j++) {
                  xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       if  (cptcovn>0) {        }
         fprintf(ficresp, "\n#********** Variable ");        for(j=1;j<=n;j++) {
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          printf(" p=%.12e",p[j]);
         fprintf(ficresp, "**********\n#");          fprintf(ficlog," p=%.12e",p[j]);
       }        }
       for(i=1; i<=nlstate;i++)        printf("\n");
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        fprintf(ficlog,"\n");
       fprintf(ficresp, "\n");  #endif
            } 
       for(i=(int)agemin; i <= (int)agemax+3; i++){      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         if(i==(int)agemax+3){  #ifdef DEBUG
           fprintf(ficlog,"Total");        int k[2],l;
         }else{        k[0]=1;
           if(first==1){        k[1]=-1;
             first=0;        printf("Max: %.12e",(*func)(p));
             printf("See log file for details...\n");        fprintf(ficlog,"Max: %.12e",(*func)(p));
           }        for (j=1;j<=n;j++) {
           fprintf(ficlog,"Age %d", i);          printf(" %.12e",p[j]);
         }          fprintf(ficlog," %.12e",p[j]);
         for(jk=1; jk <=nlstate ; jk++){        }
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        printf("\n");
             pp[jk] += freq[jk][m][i];        fprintf(ficlog,"\n");
         }        for(l=0;l<=1;l++) {
         for(jk=1; jk <=nlstate ; jk++){          for (j=1;j<=n;j++) {
           for(m=-1, pos=0; m <=0 ; m++)            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             pos += freq[jk][m][i];            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           if(pp[jk]>=1.e-10){            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             if(first==1){          }
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
             }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        }
           }else{  #endif
             if(first==1)  
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        free_vector(xit,1,n); 
           }        free_vector(xits,1,n); 
         }        free_vector(ptt,1,n); 
         free_vector(pt,1,n); 
         for(jk=1; jk <=nlstate ; jk++){        return; 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      } 
             pp[jk] += freq[jk][m][i];      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
         }      for (j=1;j<=n;j++) { 
         ptt[j]=2.0*p[j]-pt[j]; 
         for(jk=1,pos=0; jk <=nlstate ; jk++)        xit[j]=p[j]-pt[j]; 
           pos += pp[jk];        pt[j]=p[j]; 
         for(jk=1; jk <=nlstate ; jk++){      } 
           if(pos>=1.e-5){      fptt=(*func)(ptt); 
             if(first==1)      if (fptt < fp) { 
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        if (t < 0.0) { 
           }else{          linmin(p,xit,n,fret,func); 
             if(first==1)          for (j=1;j<=n;j++) { 
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            xi[j][ibig]=xi[j][n]; 
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);            xi[j][n]=xit[j]; 
           }          }
           if( i <= (int) agemax){  #ifdef DEBUG
             if(pos>=1.e-5){          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
               probs[i][jk][j1]= pp[jk]/pos;          for(j=1;j<=n;j++){
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/            printf(" %.12e",xit[j]);
             }            fprintf(ficlog," %.12e",xit[j]);
             else          }
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          printf("\n");
           }          fprintf(ficlog,"\n");
         }  #endif
                }
         for(jk=-1; jk <=nlstate+ndeath; jk++)      } 
           for(m=-1; m <=nlstate+ndeath; m++)    } 
             if(freq[jk][m][i] !=0 ) {  } 
             if(first==1)  
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  /**** Prevalence limit (stable or period prevalence)  ****************/
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);  
             }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
         if(i <= (int) agemax)  {
           fprintf(ficresp,"\n");    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         if(first==1)       matrix by transitions matrix until convergence is reached */
           printf("Others in log...\n");  
         fprintf(ficlog,"\n");    int i, ii,j,k;
       }    double min, max, maxmin, maxmax,sumnew=0.;
     }    /* double **matprod2(); */ /* test */
   }    double **out, cov[NCOVMAX+1], **pmij();
   dateintmean=dateintsum/k2cpt;    double **newm;
      double agefin, delaymax=50 ; /* Max number of years to converge */
   fclose(ficresp);  
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    for (ii=1;ii<=nlstate+ndeath;ii++)
   free_vector(pp,1,nlstate);      for (j=1;j<=nlstate+ndeath;j++){
          oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* End of Freq */      }
 }  
      cov[1]=1.;
 /************ Prevalence ********************/   
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 {  /* Some frequencies */    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
        newm=savm;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      /* Covariates have to be included here again */
   double ***freq; /* Frequencies */      cov[2]=agefin;
   double *pp;      
   double pos, k2;      for (k=1; k<=cptcovn;k++) {
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   pp=vector(1,nlstate);        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      }
        /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
   j1=0;      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
        
   j=cptcoveff;      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   for(k1=1; k1<=j;k1++){      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
     for(i1=1; i1<=ncodemax[k1];i1++){      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
       j1++;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
            
       for (i=-1; i<=nlstate+ndeath; i++)        savm=oldm;
         for (jk=-1; jk<=nlstate+ndeath; jk++)        oldm=newm;
           for(m=agemin; m <= agemax+3; m++)      maxmax=0.;
             freq[i][jk][m]=0;      for(j=1;j<=nlstate;j++){
              min=1.;
       for (i=1; i<=imx; i++) {        max=0.;
         bool=1;        for(i=1; i<=nlstate; i++) {
         if  (cptcovn>0) {          sumnew=0;
           for (z1=1; z1<=cptcoveff; z1++)          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          prlim[i][j]= newm[i][j]/(1-sumnew);
               bool=0;          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
         }          max=FMAX(max,prlim[i][j]);
         if (bool==1) {          min=FMIN(min,prlim[i][j]);
           for(m=firstpass; m<=lastpass; m++){        }
             k2=anint[m][i]+(mint[m][i]/12.);        maxmin=max-min;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        maxmax=FMAX(maxmax,maxmin);
               if(agev[m][i]==0) agev[m][i]=agemax+1;      }
               if(agev[m][i]==1) agev[m][i]=agemax+2;      if(maxmax < ftolpl){
               if (m<lastpass) {        return prlim;
                 if (calagedate>0)      }
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    }
                 else  }
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];  /*************** transition probabilities ***************/ 
               }  
             }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
           }  {
         }    /* According to parameters values stored in x and the covariate's values stored in cov,
       }       computes the probability to be observed in state j being in state i by appying the
       for(i=(int)agemin; i <= (int)agemax+3; i++){       model to the ncovmodel covariates (including constant and age).
         for(jk=1; jk <=nlstate ; jk++){       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
             pp[jk] += freq[jk][m][i];       ncth covariate in the global vector x is given by the formula:
         }       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
         for(jk=1; jk <=nlstate ; jk++){       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
           for(m=-1, pos=0; m <=0 ; m++)       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
             pos += freq[jk][m][i];       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
         }       Outputs ps[i][j] the probability to be observed in j being in j according to
               the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
         for(jk=1; jk <=nlstate ; jk++){    */
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    double s1, lnpijopii;
             pp[jk] += freq[jk][m][i];    /*double t34;*/
         }    int i,j,j1, nc, ii, jj;
          
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];      for(i=1; i<= nlstate; i++){
                for(j=1; j<i;j++){
         for(jk=1; jk <=nlstate ; jk++){              for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
           if( i <= (int) agemax){            /*lnpijopii += param[i][j][nc]*cov[nc];*/
             if(pos>=1.e-5){            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
               probs[i][jk][j1]= pp[jk]/pos;  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
             }          }
           }          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         }/* end jk */  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
       }/* end i */        }
     } /* end i1 */        for(j=i+1; j<=nlstate+ndeath;j++){
   } /* end k1 */          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
             /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
              lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
   free_vector(pp,1,nlstate);          }
            ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 }  /* End of Freq */        }
       }
 /************* Waves Concatenation ***************/      
       for(i=1; i<= nlstate; i++){
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        s1=0;
 {        for(j=1; j<i; j++){
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
      Death is a valid wave (if date is known).          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        }
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        for(j=i+1; j<=nlstate+ndeath; j++){
      and mw[mi+1][i]. dh depends on stepm.          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
      */          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         }
   int i, mi, m;        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        ps[i][i]=1./(s1+1.);
      double sum=0., jmean=0.;*/        /* Computing other pijs */
   int first;        for(j=1; j<i; j++)
   int j, k=0,jk, ju, jl;          ps[i][j]= exp(ps[i][j])*ps[i][i];
   double sum=0.;        for(j=i+1; j<=nlstate+ndeath; j++)
   first=0;          ps[i][j]= exp(ps[i][j])*ps[i][i];
   jmin=1e+5;        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   jmax=-1;      } /* end i */
   jmean=0.;      
   for(i=1; i<=imx; i++){      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     mi=0;        for(jj=1; jj<= nlstate+ndeath; jj++){
     m=firstpass;          ps[ii][jj]=0;
     while(s[m][i] <= nlstate){          ps[ii][ii]=1;
       if(s[m][i]>=1)        }
         mw[++mi][i]=m;      }
       if(m >=lastpass)      
         break;      
       else      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
         m++;      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
     }/* end while */      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
     if (s[m][i] > nlstate){      /*   } */
       mi++;     /* Death is another wave */      /*   printf("\n "); */
       /* if(mi==0)  never been interviewed correctly before death */      /* } */
          /* Only death is a correct wave */      /* printf("\n ");printf("%lf ",cov[2]);*/
       mw[mi][i]=m;      /*
     }        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         goto end;*/
     wav[i]=mi;      return ps;
     if(mi==0){  }
       if(first==0){  
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);  /**************** Product of 2 matrices ******************/
         first=1;  
       }  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
       if(first==1){  {
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     } /* end mi==0 */    /* in, b, out are matrice of pointers which should have been initialized 
   }       before: only the contents of out is modified. The function returns
        a pointer to pointers identical to out */
   for(i=1; i<=imx; i++){    int i, j, k;
     for(mi=1; mi<wav[i];mi++){    for(i=nrl; i<= nrh; i++)
       if (stepm <=0)      for(k=ncolol; k<=ncoloh; k++){
         dh[mi][i]=1;        out[i][k]=0.;
       else{        for(j=ncl; j<=nch; j++)
         if (s[mw[mi+1][i]][i] > nlstate) {          out[i][k] +=in[i][j]*b[j][k];
           if (agedc[i] < 2*AGESUP) {      }
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);    return out;
           if(j==0) j=1;  /* Survives at least one month after exam */  }
           k=k+1;  
           if (j >= jmax) jmax=j;  
           if (j <= jmin) jmin=j;  /************* Higher Matrix Product ***************/
           sum=sum+j;  
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
           }  {
         }    /* Computes the transition matrix starting at age 'age' over 
         else{       'nhstepm*hstepm*stepm' months (i.e. until
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
           k=k+1;       nhstepm*hstepm matrices. 
           if (j >= jmax) jmax=j;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
           else if (j <= jmin)jmin=j;       (typically every 2 years instead of every month which is too big 
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */       for the memory).
           sum=sum+j;       Model is determined by parameters x and covariates have to be 
         }       included manually here. 
         jk= j/stepm;  
         jl= j -jk*stepm;       */
         ju= j -(jk+1)*stepm;  
         if(jl <= -ju)    int i, j, d, h, k;
           dh[mi][i]=jk;    double **out, cov[NCOVMAX+1];
         else    double **newm;
           dh[mi][i]=jk+1;  
         if(dh[mi][i]==0)    /* Hstepm could be zero and should return the unit matrix */
           dh[mi][i]=1; /* At least one step */    for (i=1;i<=nlstate+ndeath;i++)
       }      for (j=1;j<=nlstate+ndeath;j++){
     }        oldm[i][j]=(i==j ? 1.0 : 0.0);
   }        po[i][j][0]=(i==j ? 1.0 : 0.0);
   jmean=sum/k;      }
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    for(h=1; h <=nhstepm; h++){
  }      for(d=1; d <=hstepm; d++){
         newm=savm;
 /*********** Tricode ****************************/        /* Covariates have to be included here again */
 void tricode(int *Tvar, int **nbcode, int imx)        cov[1]=1.;
 {        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   int Ndum[20],ij=1, k, j, i;        for (k=1; k<=cptcovn;k++) 
   int cptcode=0;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   cptcoveff=0;        for (k=1; k<=cptcovage;k++)
            cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   for (k=0; k<19; k++) Ndum[k]=0;        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
   for (k=1; k<=7; k++) ncodemax[k]=0;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  
     for (i=1; i<=imx; i++) {        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       ij=(int)(covar[Tvar[j]][i]);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       Ndum[ij]++;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       if (ij > cptcode) cptcode=ij;        savm=oldm;
     }        oldm=newm;
       }
     for (i=0; i<=cptcode; i++) {      for(i=1; i<=nlstate+ndeath; i++)
       if(Ndum[i]!=0) ncodemax[j]++;        for(j=1;j<=nlstate+ndeath;j++) {
     }          po[i][j][h]=newm[i][j];
     ij=1;          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
         }
       /*printf("h=%d ",h);*/
     for (i=1; i<=ncodemax[j]; i++) {    } /* end h */
       for (k=0; k<=19; k++) {  /*     printf("\n H=%d \n",h); */
         if (Ndum[k] != 0) {    return po;
           nbcode[Tvar[j]][ij]=k;  }
            
           ij++;  
         }  /*************** log-likelihood *************/
         if (ij > ncodemax[j]) break;  double func( double *x)
       }    {
     }    int i, ii, j, k, mi, d, kk;
   }      double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     double **out;
  for (k=0; k<19; k++) Ndum[k]=0;    double sw; /* Sum of weights */
     double lli; /* Individual log likelihood */
  for (i=1; i<=ncovmodel-2; i++) {    int s1, s2;
    ij=Tvar[i];    double bbh, survp;
    Ndum[ij]++;    long ipmx;
  }    /*extern weight */
     /* We are differentiating ll according to initial status */
  ij=1;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
  for (i=1; i<=10; i++) {    /*for(i=1;i<imx;i++) 
    if((Ndum[i]!=0) && (i<=ncovcol)){      printf(" %d\n",s[4][i]);
      Tvaraff[ij]=i;    */
      ij++;    cov[1]=1.;
    }  
  }    for(k=1; k<=nlstate; k++) ll[k]=0.;
    
  cptcoveff=ij-1;    if(mle==1){
 }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         /* Computes the values of the ncovmodel covariates of the model
 /*********** Health Expectancies ****************/           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
            Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )           to be observed in j being in i according to the model.
          */
 {        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
   /* Health expectancies */          cov[2+k]=covar[Tvar[k]][i];
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;        }
   double age, agelim, hf;        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
   double ***p3mat,***varhe;           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
   double **dnewm,**doldm;           has been calculated etc */
   double *xp;        for(mi=1; mi<= wav[i]-1; mi++){
   double **gp, **gm;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double ***gradg, ***trgradg;            for (j=1;j<=nlstate+ndeath;j++){
   int theta;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);            }
   xp=vector(1,npar);          for(d=0; d<dh[mi][i]; d++){
   dnewm=matrix(1,nlstate*2,1,npar);            newm=savm;
   doldm=matrix(1,nlstate*2,1,nlstate*2);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
   fprintf(ficreseij,"# Health expectancies\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
   fprintf(ficreseij,"# Age");            }
   for(i=1; i<=nlstate;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(j=1; j<=nlstate;j++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficreseij," %1d-%1d (SE)",i,j);            savm=oldm;
   fprintf(ficreseij,"\n");            oldm=newm;
           } /* end mult */
   if(estepm < stepm){        
     printf ("Problem %d lower than %d\n",estepm, stepm);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   }          /* But now since version 0.9 we anticipate for bias at large stepm.
   else  hstepm=estepm;             * If stepm is larger than one month (smallest stepm) and if the exact delay 
   /* We compute the life expectancy from trapezoids spaced every estepm months           * (in months) between two waves is not a multiple of stepm, we rounded to 
    * This is mainly to measure the difference between two models: for example           * the nearest (and in case of equal distance, to the lowest) interval but now
    * if stepm=24 months pijx are given only every 2 years and by summing them           * we keep into memory the bias bh[mi][i] and also the previous matrix product
    * we are calculating an estimate of the Life Expectancy assuming a linear           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
    * progression inbetween and thus overestimating or underestimating according           * probability in order to take into account the bias as a fraction of the way
    * to the curvature of the survival function. If, for the same date, we           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
    * estimate the model with stepm=1 month, we can keep estepm to 24 months           * -stepm/2 to stepm/2 .
    * to compare the new estimate of Life expectancy with the same linear           * For stepm=1 the results are the same as for previous versions of Imach.
    * hypothesis. A more precise result, taking into account a more precise           * For stepm > 1 the results are less biased than in previous versions. 
    * curvature will be obtained if estepm is as small as stepm. */           */
           s1=s[mw[mi][i]][i];
   /* For example we decided to compute the life expectancy with the smallest unit */          s2=s[mw[mi+1][i]][i];
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          bbh=(double)bh[mi][i]/(double)stepm; 
      nhstepm is the number of hstepm from age to agelim          /* bias bh is positive if real duration
      nstepm is the number of stepm from age to agelin.           * is higher than the multiple of stepm and negative otherwise.
      Look at hpijx to understand the reason of that which relies in memory size           */
      and note for a fixed period like estepm months */          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          if( s2 > nlstate){ 
      survival function given by stepm (the optimization length). Unfortunately it            /* i.e. if s2 is a death state and if the date of death is known 
      means that if the survival funtion is printed only each two years of age and if               then the contribution to the likelihood is the probability to 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same               die between last step unit time and current  step unit time, 
      results. So we changed our mind and took the option of the best precision.               which is also equal to probability to die before dh 
   */               minus probability to die before dh-stepm . 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */               In version up to 0.92 likelihood was computed
           as if date of death was unknown. Death was treated as any other
   agelim=AGESUP;          health state: the date of the interview describes the actual state
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          and not the date of a change in health state. The former idea was
     /* nhstepm age range expressed in number of stepm */          to consider that at each interview the state was recorded
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          (healthy, disable or death) and IMaCh was corrected; but when we
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          introduced the exact date of death then we should have modified
     /* if (stepm >= YEARM) hstepm=1;*/          the contribution of an exact death to the likelihood. This new
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          contribution is smaller and very dependent of the step unit
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          stepm. It is no more the probability to die between last interview
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);          and month of death but the probability to survive from last
     gp=matrix(0,nhstepm,1,nlstate*2);          interview up to one month before death multiplied by the
     gm=matrix(0,nhstepm,1,nlstate*2);          probability to die within a month. Thanks to Chris
           Jackson for correcting this bug.  Former versions increased
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          mortality artificially. The bad side is that we add another loop
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          which slows down the processing. The difference can be up to 10%
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            lower mortality.
              */
             lli=log(out[s1][s2] - savm[s1][s2]);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
   
     /* Computing Variances of health expectancies */          } else if  (s2==-2) {
             for (j=1,survp=0. ; j<=nlstate; j++) 
      for(theta=1; theta <=npar; theta++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       for(i=1; i<=npar; i++){            /*survp += out[s1][j]; */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            lli= log(survp);
       }          }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            
            else if  (s2==-4) { 
       cptj=0;            for (j=3,survp=0. ; j<=nlstate; j++)  
       for(j=1; j<= nlstate; j++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         for(i=1; i<=nlstate; i++){            lli= log(survp); 
           cptj=cptj+1;          } 
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){  
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          else if  (s2==-5) { 
           }            for (j=1,survp=0. ; j<=2; j++)  
         }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       }            lli= log(survp); 
                } 
                
       for(i=1; i<=npar; i++)          else{
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
                } 
       cptj=0;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       for(j=1; j<= nlstate; j++){          /*if(lli ==000.0)*/
         for(i=1;i<=nlstate;i++){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           cptj=cptj+1;          ipmx +=1;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          sw += weight[i];
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           }        } /* end of wave */
         }      } /* end of individual */
       }    }  else if(mle==2){
       for(j=1; j<= nlstate*2; j++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(h=0; h<=nhstepm-1; h++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
      }            for (j=1;j<=nlstate+ndeath;j++){
                  oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /* End theta */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);          for(d=0; d<=dh[mi][i]; d++){
             newm=savm;
      for(h=0; h<=nhstepm-1; h++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for(j=1; j<=nlstate*2;j++)            for (kk=1; kk<=cptcovage;kk++) {
         for(theta=1; theta <=npar; theta++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           trgradg[h][j][theta]=gradg[h][theta][j];            }
                  out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      for(i=1;i<=nlstate*2;i++)            savm=oldm;
       for(j=1;j<=nlstate*2;j++)            oldm=newm;
         varhe[i][j][(int)age] =0.;          } /* end mult */
         
      printf("%d|",(int)age);fflush(stdout);          s1=s[mw[mi][i]][i];
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);          s2=s[mw[mi+1][i]][i];
      for(h=0;h<=nhstepm-1;h++){          bbh=(double)bh[mi][i]/(double)stepm; 
       for(k=0;k<=nhstepm-1;k++){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);          ipmx +=1;
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          sw += weight[i];
         for(i=1;i<=nlstate*2;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(j=1;j<=nlstate*2;j++)        } /* end of wave */
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      } /* end of individual */
       }    }  else if(mle==3){  /* exponential inter-extrapolation */
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     /* Computing expectancies */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(i=1; i<=nlstate;i++)        for(mi=1; mi<= wav[i]-1; mi++){
       for(j=1; j<=nlstate;j++)          for (ii=1;ii<=nlstate+ndeath;ii++)
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){            for (j=1;j<=nlstate+ndeath;j++){
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                        savm[ii][j]=(ii==j ? 1.0 : 0.0);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/            }
           for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     fprintf(ficreseij,"%3.0f",age );            for (kk=1; kk<=cptcovage;kk++) {
     cptj=0;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for(i=1; i<=nlstate;i++)            }
       for(j=1; j<=nlstate;j++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         cptj++;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );            savm=oldm;
       }            oldm=newm;
     fprintf(ficreseij,"\n");          } /* end mult */
            
     free_matrix(gm,0,nhstepm,1,nlstate*2);          s1=s[mw[mi][i]][i];
     free_matrix(gp,0,nhstepm,1,nlstate*2);          s2=s[mw[mi+1][i]][i];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);          bbh=(double)bh[mi][i]/(double)stepm; 
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          ipmx +=1;
   }          sw += weight[i];
   printf("\n");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fprintf(ficlog,"\n");        } /* end of wave */
       } /* end of individual */
   free_vector(xp,1,npar);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   free_matrix(dnewm,1,nlstate*2,1,npar);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);        for(mi=1; mi<= wav[i]-1; mi++){
 }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 /************ Variance ******************/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 {            }
   /* Variance of health expectancies */          for(d=0; d<dh[mi][i]; d++){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            newm=savm;
   /* double **newm;*/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double **dnewm,**doldm;            for (kk=1; kk<=cptcovage;kk++) {
   double **dnewmp,**doldmp;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int i, j, nhstepm, hstepm, h, nstepm ;            }
   int k, cptcode;          
   double *xp;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double **gp, **gm;  /* for var eij */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double ***gradg, ***trgradg; /*for var eij */            savm=oldm;
   double **gradgp, **trgradgp; /* for var p point j */            oldm=newm;
   double *gpp, *gmp; /* for var p point j */          } /* end mult */
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */        
   double ***p3mat;          s1=s[mw[mi][i]][i];
   double age,agelim, hf;          s2=s[mw[mi+1][i]][i];
   int theta;          if( s2 > nlstate){ 
   char digit[4];            lli=log(out[s1][s2] - savm[s1][s2]);
   char digitp[16];          }else{
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   char fileresprobmorprev[FILENAMELENGTH];          }
           ipmx +=1;
   if(popbased==1)          sw += weight[i];
     strcpy(digitp,"-populbased-");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   else  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     strcpy(digitp,"-stablbased-");        } /* end of wave */
       } /* end of individual */
   strcpy(fileresprobmorprev,"prmorprev");    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   sprintf(digit,"%-d",ij);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   strcat(fileresprobmorprev,digit); /* Tvar to be done */        for(mi=1; mi<= wav[i]-1; mi++){
   strcat(fileresprobmorprev,digitp); /* Popbased or not */          for (ii=1;ii<=nlstate+ndeath;ii++)
   strcat(fileresprobmorprev,fileres);            for (j=1;j<=nlstate+ndeath;j++){
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     printf("Problem with resultfile: %s\n", fileresprobmorprev);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);            }
   }          for(d=0; d<dh[mi][i]; d++){
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);            newm=savm;
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");            for (kk=1; kk<=cptcovage;kk++) {
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){            }
     fprintf(ficresprobmorprev," p.%-d SE",j);          
     for(i=1; i<=nlstate;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }              savm=oldm;
   fprintf(ficresprobmorprev,"\n");            oldm=newm;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          } /* end mult */
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);        
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);          s1=s[mw[mi][i]][i];
     exit(0);          s2=s[mw[mi+1][i]][i];
   }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   else{          ipmx +=1;
     fprintf(ficgp,"\n# Routine varevsij");          sw += weight[i];
   }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     printf("Problem with html file: %s\n", optionfilehtm);        } /* end of wave */
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);      } /* end of individual */
     exit(0);    } /* End of if */
   }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   else{    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   }    return -l;
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  }
   
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");  /*************** log-likelihood *************/
   fprintf(ficresvij,"# Age");  double funcone( double *x)
   for(i=1; i<=nlstate;i++)  {
     for(j=1; j<=nlstate;j++)    /* Same as likeli but slower because of a lot of printf and if */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    int i, ii, j, k, mi, d, kk;
   fprintf(ficresvij,"\n");    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     double **out;
   xp=vector(1,npar);    double lli; /* Individual log likelihood */
   dnewm=matrix(1,nlstate,1,npar);    double llt;
   doldm=matrix(1,nlstate,1,nlstate);    int s1, s2;
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);    double bbh, survp;
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    /*extern weight */
     /* We are differentiating ll according to initial status */
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   gpp=vector(nlstate+1,nlstate+ndeath);    /*for(i=1;i<imx;i++) 
   gmp=vector(nlstate+1,nlstate+ndeath);      printf(" %d\n",s[4][i]);
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    */
      cov[1]=1.;
   if(estepm < stepm){  
     printf ("Problem %d lower than %d\n",estepm, stepm);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   }  
   else  hstepm=estepm;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /* For example we decided to compute the life expectancy with the smallest unit */      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      for(mi=1; mi<= wav[i]-1; mi++){
      nhstepm is the number of hstepm from age to agelim        for (ii=1;ii<=nlstate+ndeath;ii++)
      nstepm is the number of stepm from age to agelin.          for (j=1;j<=nlstate+ndeath;j++){
      Look at hpijx to understand the reason of that which relies in memory size            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      and note for a fixed period like k years */            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          }
      survival function given by stepm (the optimization length). Unfortunately it        for(d=0; d<dh[mi][i]; d++){
      means that if the survival funtion is printed only each two years of age and if          newm=savm;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      results. So we changed our mind and took the option of the best precision.          for (kk=1; kk<=cptcovage;kk++) {
   */            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          }
   agelim = AGESUP;          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          savm=oldm;
     gp=matrix(0,nhstepm,1,nlstate);          oldm=newm;
     gm=matrix(0,nhstepm,1,nlstate);        } /* end mult */
         
         s1=s[mw[mi][i]][i];
     for(theta=1; theta <=npar; theta++){        s2=s[mw[mi+1][i]][i];
       for(i=1; i<=npar; i++){ /* Computes gradient */        bbh=(double)bh[mi][i]/(double)stepm; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        /* bias is positive if real duration
       }         * is higher than the multiple of stepm and negative otherwise.
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);           */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
       if (popbased==1) {        } else if  (s2==-2) {
         for(i=1; i<=nlstate;i++)          for (j=1,survp=0. ; j<=nlstate; j++) 
           prlim[i][i]=probs[(int)age][i][ij];            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       }          lli= log(survp);
          }else if (mle==1){
       for(j=1; j<= nlstate; j++){          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         for(h=0; h<=nhstepm; h++){        } else if(mle==2){
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        } else if(mle==3){  /* exponential inter-extrapolation */
         }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       }        } else if (mle==4){  /* mle=4 no inter-extrapolation */
       /* This for computing forces of mortality (h=1)as a weighted average */          lli=log(out[s1][s2]); /* Original formula */
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){        } else{  /* mle=0 back to 1 */
         for(i=1; i<= nlstate; i++)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           gpp[j] += prlim[i][i]*p3mat[i][j][1];          /*lli=log(out[s1][s2]); */ /* Original formula */
       }            } /* End of if */
       /* end force of mortality */        ipmx +=1;
         sw += weight[i];
       for(i=1; i<=npar; i++) /* Computes gradient */        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          if(globpr){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     %11.6f %11.6f %11.6f ", \
       if (popbased==1) {                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
         for(i=1; i<=nlstate;i++)                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           prlim[i][i]=probs[(int)age][i][ij];          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       }            llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       for(j=1; j<= nlstate; j++){          }
         for(h=0; h<=nhstepm; h++){          fprintf(ficresilk," %10.6f\n", -llt);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      } /* end of wave */
         }    } /* end of individual */
       }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       /* This for computing force of mortality (h=1)as a weighted average */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         for(i=1; i<= nlstate; i++)    if(globpr==0){ /* First time we count the contributions and weights */
           gmp[j] += prlim[i][i]*p3mat[i][j][1];      gipmx=ipmx;
       }          gsw=sw;
       /* end force of mortality */    }
     return -l;
       for(j=1; j<= nlstate; j++) /* vareij */  }
         for(h=0; h<=nhstepm; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  
         }  /*************** function likelione ***********/
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];  {
       }    /* This routine should help understanding what is done with 
        the selection of individuals/waves and
     } /* End theta */       to check the exact contribution to the likelihood.
        Plotting could be done.
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */     */
     int k;
     for(h=0; h<=nhstepm; h++) /* veij */  
       for(j=1; j<=nlstate;j++)    if(*globpri !=0){ /* Just counts and sums, no printings */
         for(theta=1; theta <=npar; theta++)      strcpy(fileresilk,"ilk"); 
           trgradg[h][j][theta]=gradg[h][theta][j];      strcat(fileresilk,fileres);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */        printf("Problem with resultfile: %s\n", fileresilk);
       for(theta=1; theta <=npar; theta++)        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
         trgradgp[j][theta]=gradgp[theta][j];      }
       fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     for(i=1;i<=nlstate;i++)      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(j=1;j<=nlstate;j++)      for(k=1; k<=nlstate; k++) 
         vareij[i][j][(int)age] =0.;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     for(h=0;h<=nhstepm;h++){    }
       for(k=0;k<=nhstepm;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    *fretone=(*funcone)(p);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    if(*globpri !=0){
         for(i=1;i<=nlstate;i++)      fclose(ficresilk);
           for(j=1;j<=nlstate;j++)      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;      fflush(fichtm); 
       }    } 
     }    return;
   }
     /* pptj */  
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);  
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);  /*********** Maximum Likelihood Estimation ***************/
     for(j=nlstate+1;j<=nlstate+ndeath;j++)  
       for(i=nlstate+1;i<=nlstate+ndeath;i++)  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         varppt[j][i]=doldmp[j][i];  {
     /* end ppptj */    int i,j, iter;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);      double **xi;
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);    double fret;
      double fretone; /* Only one call to likelihood */
     if (popbased==1) {    /*  char filerespow[FILENAMELENGTH];*/
       for(i=1; i<=nlstate;i++)    xi=matrix(1,npar,1,npar);
         prlim[i][i]=probs[(int)age][i][ij];    for (i=1;i<=npar;i++)
     }      for (j=1;j<=npar;j++)
            xi[i][j]=(i==j ? 1.0 : 0.0);
     /* This for computing force of mortality (h=1)as a weighted average */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){    strcpy(filerespow,"pow"); 
       for(i=1; i<= nlstate; i++)    strcat(filerespow,fileres);
         gmp[j] += prlim[i][i]*p3mat[i][j][1];    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     }          printf("Problem with resultfile: %s\n", filerespow);
     /* end force of mortality */      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){    for (i=1;i<=nlstate;i++)
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));      for(j=1;j<=nlstate+ndeath;j++)
       for(i=1; i<=nlstate;i++){        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);    fprintf(ficrespow,"\n");
       }  
     }    powell(p,xi,npar,ftol,&iter,&fret,func);
     fprintf(ficresprobmorprev,"\n");  
     free_matrix(xi,1,npar,1,npar);
     fprintf(ficresvij,"%.0f ",age );    fclose(ficrespow);
     for(i=1; i<=nlstate;i++)    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       for(j=1; j<=nlstate;j++){    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       }  
     fprintf(ficresvij,"\n");  }
     free_matrix(gp,0,nhstepm,1,nlstate);  
     free_matrix(gm,0,nhstepm,1,nlstate);  /**** Computes Hessian and covariance matrix ***/
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  {
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double  **a,**y,*x,pd;
   } /* End age */    double **hess;
   free_vector(gpp,nlstate+1,nlstate+ndeath);    int i, j,jk;
   free_vector(gmp,nlstate+1,nlstate+ndeath);    int *indx;
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);  
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */    void lubksb(double **a, int npar, int *indx, double b[]) ;
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");    void ludcmp(double **a, int npar, int *indx, double *d) ;
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);    double gompertz(double p[]);
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);    hess=matrix(1,npar,1,npar);
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);  
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);    printf("\nCalculation of the hessian matrix. Wait...\n");
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);    for (i=1;i<=npar;i++){
       printf("%d",i);fflush(stdout);
   free_vector(xp,1,npar);      fprintf(ficlog,"%d",i);fflush(ficlog);
   free_matrix(doldm,1,nlstate,1,nlstate);     
   free_matrix(dnewm,1,nlstate,1,npar);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);      /*  printf(" %f ",p[i]);
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   fclose(ficresprobmorprev);    }
   fclose(ficgp);    
   fclose(fichtm);    for (i=1;i<=npar;i++) {
       for (j=1;j<=npar;j++)  {
 }        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
 /************ Variance of prevlim ******************/          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          hess[i][j]=hessij(p,delti,i,j,func,npar);
 {          
   /* Variance of prevalence limit */          hess[j][i]=hess[i][j];    
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          /*printf(" %lf ",hess[i][j]);*/
   double **newm;        }
   double **dnewm,**doldm;      }
   int i, j, nhstepm, hstepm;    }
   int k, cptcode;    printf("\n");
   double *xp;    fprintf(ficlog,"\n");
   double *gp, *gm;  
   double **gradg, **trgradg;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   double age,agelim;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   int theta;    
        a=matrix(1,npar,1,npar);
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    y=matrix(1,npar,1,npar);
   fprintf(ficresvpl,"# Age");    x=vector(1,npar);
   for(i=1; i<=nlstate;i++)    indx=ivector(1,npar);
       fprintf(ficresvpl," %1d-%1d",i,i);    for (i=1;i<=npar;i++)
   fprintf(ficresvpl,"\n");      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);    for (j=1;j<=npar;j++) {
   doldm=matrix(1,nlstate,1,nlstate);      for (i=1;i<=npar;i++) x[i]=0;
        x[j]=1;
   hstepm=1*YEARM; /* Every year of age */      lubksb(a,npar,indx,x);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      for (i=1;i<=npar;i++){ 
   agelim = AGESUP;        matcov[i][j]=x[i];
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    }
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    printf("\n#Hessian matrix#\n");
     gradg=matrix(1,npar,1,nlstate);    fprintf(ficlog,"\n#Hessian matrix#\n");
     gp=vector(1,nlstate);    for (i=1;i<=npar;i++) { 
     gm=vector(1,nlstate);      for (j=1;j<=npar;j++) { 
         printf("%.3e ",hess[i][j]);
     for(theta=1; theta <=npar; theta++){        fprintf(ficlog,"%.3e ",hess[i][j]);
       for(i=1; i<=npar; i++){ /* Computes gradient */      }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      printf("\n");
       }      fprintf(ficlog,"\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    }
       for(i=1;i<=nlstate;i++)  
         gp[i] = prlim[i][i];    /* Recompute Inverse */
        for (i=1;i<=npar;i++)
       for(i=1; i<=npar; i++) /* Computes gradient */      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    ludcmp(a,npar,indx,&pd);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)    /*  printf("\n#Hessian matrix recomputed#\n");
         gm[i] = prlim[i][i];  
     for (j=1;j<=npar;j++) {
       for(i=1;i<=nlstate;i++)      for (i=1;i<=npar;i++) x[i]=0;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];      x[j]=1;
     } /* End theta */      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
     trgradg =matrix(1,nlstate,1,npar);        y[i][j]=x[i];
         printf("%.3e ",y[i][j]);
     for(j=1; j<=nlstate;j++)        fprintf(ficlog,"%.3e ",y[i][j]);
       for(theta=1; theta <=npar; theta++)      }
         trgradg[j][theta]=gradg[theta][j];      printf("\n");
       fprintf(ficlog,"\n");
     for(i=1;i<=nlstate;i++)    }
       varpl[i][(int)age] =0.;    */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    free_matrix(a,1,npar,1,npar);
     for(i=1;i<=nlstate;i++)    free_matrix(y,1,npar,1,npar);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    free_vector(x,1,npar);
     free_ivector(indx,1,npar);
     fprintf(ficresvpl,"%.0f ",age );    free_matrix(hess,1,npar,1,npar);
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  
     fprintf(ficresvpl,"\n");  }
     free_vector(gp,1,nlstate);  
     free_vector(gm,1,nlstate);  /*************** hessian matrix ****************/
     free_matrix(gradg,1,npar,1,nlstate);  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     free_matrix(trgradg,1,nlstate,1,npar);  {
   } /* End age */    int i;
     int l=1, lmax=20;
   free_vector(xp,1,npar);    double k1,k2;
   free_matrix(doldm,1,nlstate,1,npar);    double p2[MAXPARM+1]; /* identical to x */
   free_matrix(dnewm,1,nlstate,1,nlstate);    double res;
     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 }    double fx;
     int k=0,kmax=10;
 /************ Variance of one-step probabilities  ******************/    double l1;
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)  
 {    fx=func(x);
   int i, j=0,  i1, k1, l1, t, tj;    for (i=1;i<=npar;i++) p2[i]=x[i];
   int k2, l2, j1,  z1;    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
   int k=0,l, cptcode;      l1=pow(10,l);
   int first=1, first1;      delts=delt;
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;      for(k=1 ; k <kmax; k=k+1){
   double **dnewm,**doldm;        delt = delta*(l1*k);
   double *xp;        p2[theta]=x[theta] +delt;
   double *gp, *gm;        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
   double **gradg, **trgradg;        p2[theta]=x[theta]-delt;
   double **mu;        k2=func(p2)-fx;
   double age,agelim, cov[NCOVMAX];        /*res= (k1-2.0*fx+k2)/delt/delt; */
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   int theta;        
   char fileresprob[FILENAMELENGTH];  #ifdef DEBUGHESS
   char fileresprobcov[FILENAMELENGTH];        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   char fileresprobcor[FILENAMELENGTH];        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   #endif
   double ***varpij;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   strcpy(fileresprob,"prob");          k=kmax;
   strcat(fileresprob,fileres);        }
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     printf("Problem with resultfile: %s\n", fileresprob);          k=kmax; l=lmax*10.;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);        }
   }        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   strcpy(fileresprobcov,"probcov");          delts=delt;
   strcat(fileresprobcov,fileres);        }
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {      }
     printf("Problem with resultfile: %s\n", fileresprobcov);    }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);    delti[theta]=delts;
   }    return res; 
   strcpy(fileresprobcor,"probcor");    
   strcat(fileresprobcor,fileres);  }
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprobcor);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);  {
   }    int i;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    int l=1, l1, lmax=20;
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    double k1,k2,k3,k4,res,fx;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    double p2[MAXPARM+1];
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    int k;
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);  
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    fx=func(x);
      for (k=1; k<=2; k++) {
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");      for (i=1;i<=npar;i++) p2[i]=x[i];
   fprintf(ficresprob,"# Age");      p2[thetai]=x[thetai]+delti[thetai]/k;
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   fprintf(ficresprobcov,"# Age");      k1=func(p2)-fx;
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    
   fprintf(ficresprobcov,"# Age");      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k2=func(p2)-fx;
   for(i=1; i<=nlstate;i++)    
     for(j=1; j<=(nlstate+ndeath);j++){      p2[thetai]=x[thetai]-delti[thetai]/k;
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       fprintf(ficresprobcov," p%1d-%1d ",i,j);      k3=func(p2)-fx;
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    
     }        p2[thetai]=x[thetai]-delti[thetai]/k;
   fprintf(ficresprob,"\n");      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   fprintf(ficresprobcov,"\n");      k4=func(p2)-fx;
   fprintf(ficresprobcor,"\n");      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   xp=vector(1,npar);  #ifdef DEBUG
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);  #endif
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    }
   first=1;    return res;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  }
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);  
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);  /************** Inverse of matrix **************/
     exit(0);  void ludcmp(double **a, int n, int *indx, double *d) 
   }  { 
   else{    int i,imax,j,k; 
     fprintf(ficgp,"\n# Routine varprob");    double big,dum,sum,temp; 
   }    double *vv; 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {   
     printf("Problem with html file: %s\n", optionfilehtm);    vv=vector(1,n); 
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    *d=1.0; 
     exit(0);    for (i=1;i<=n;i++) { 
   }      big=0.0; 
   else{      for (j=1;j<=n;j++) 
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");        if ((temp=fabs(a[i][j])) > big) big=temp; 
     fprintf(fichtm,"\n");      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       vv[i]=1.0/big; 
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");    } 
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    for (j=1;j<=n;j++) { 
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");      for (i=1;i<j;i++) { 
         sum=a[i][j]; 
   }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
        } 
   cov[1]=1;      big=0.0; 
   tj=cptcoveff;      for (i=j;i<=n;i++) { 
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}        sum=a[i][j]; 
   j1=0;        for (k=1;k<j;k++) 
   for(t=1; t<=tj;t++){          sum -= a[i][k]*a[k][j]; 
     for(i1=1; i1<=ncodemax[t];i1++){        a[i][j]=sum; 
       j1++;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
                big=dum; 
       if  (cptcovn>0) {          imax=i; 
         fprintf(ficresprob, "\n#********** Variable ");        } 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      } 
         fprintf(ficresprob, "**********\n#");      if (j != imax) { 
         fprintf(ficresprobcov, "\n#********** Variable ");        for (k=1;k<=n;k++) { 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          dum=a[imax][k]; 
         fprintf(ficresprobcov, "**********\n#");          a[imax][k]=a[j][k]; 
                  a[j][k]=dum; 
         fprintf(ficgp, "\n#********** Variable ");        } 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        *d = -(*d); 
         fprintf(ficgp, "**********\n#");        vv[imax]=vv[j]; 
              } 
              indx[j]=imax; 
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");      if (a[j][j] == 0.0) a[j][j]=TINY; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      if (j != n) { 
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");        dum=1.0/(a[j][j]); 
                for (i=j+1;i<=n;i++) a[i][j] *= dum; 
         fprintf(ficresprobcor, "\n#********** Variable ");          } 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    } 
         fprintf(ficgp, "**********\n#");        free_vector(vv,1,n);  /* Doesn't work */
       }  ;
        } 
       for (age=bage; age<=fage; age ++){  
         cov[2]=age;  void lubksb(double **a, int n, int *indx, double b[]) 
         for (k=1; k<=cptcovn;k++) {  { 
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    int i,ii=0,ip,j; 
         }    double sum; 
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];   
         for (k=1; k<=cptcovprod;k++)    for (i=1;i<=n;i++) { 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      ip=indx[i]; 
              sum=b[ip]; 
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));      b[ip]=b[i]; 
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      if (ii) 
         gp=vector(1,(nlstate)*(nlstate+ndeath));        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         gm=vector(1,(nlstate)*(nlstate+ndeath));      else if (sum) ii=i; 
          b[i]=sum; 
         for(theta=1; theta <=npar; theta++){    } 
           for(i=1; i<=npar; i++)    for (i=n;i>=1;i--) { 
             xp[i] = x[i] + (i==theta ?delti[theta]:0);      sum=b[i]; 
                for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      b[i]=sum/a[i][i]; 
              } 
           k=0;  } 
           for(i=1; i<= (nlstate); i++){  
             for(j=1; j<=(nlstate+ndeath);j++){  void pstamp(FILE *fichier)
               k=k+1;  {
               gp[k]=pmmij[i][j];    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
             }  }
           }  
            /************ Frequencies ********************/
           for(i=1; i<=npar; i++)  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
             xp[i] = x[i] - (i==theta ?delti[theta]:0);  {  /* Some frequencies */
        
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    int i, m, jk, k1,i1, j1, bool, z1,j;
           k=0;    int first;
           for(i=1; i<=(nlstate); i++){    double ***freq; /* Frequencies */
             for(j=1; j<=(nlstate+ndeath);j++){    double *pp, **prop;
               k=k+1;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
               gm[k]=pmmij[i][j];    char fileresp[FILENAMELENGTH];
             }    
           }    pp=vector(1,nlstate);
          prop=matrix(1,nlstate,iagemin,iagemax+3);
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)    strcpy(fileresp,"p");
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      strcat(fileresp,fileres);
         }    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
           for(theta=1; theta <=npar; theta++)      exit(0);
             trgradg[j][theta]=gradg[theta][j];    }
            freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);    j1=0;
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    
            j=cptcoveff;
         pmij(pmmij,cov,ncovmodel,x,nlstate);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
          
         k=0;    first=1;
         for(i=1; i<=(nlstate); i++){  
           for(j=1; j<=(nlstate+ndeath);j++){    /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
             k=k+1;    /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
             mu[k][(int) age]=pmmij[i][j];    /*    j1++;
           }  */
         }    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)          scanf("%d", i);*/
             varpij[i][j][(int)age] = doldm[i][j];        for (i=-5; i<=nlstate+ndeath; i++)  
           for (jk=-5; jk<=nlstate+ndeath; jk++)  
         /*printf("\n%d ",(int)age);            for(m=iagemin; m <= iagemax+3; m++)
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){              freq[i][jk][m]=0;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        for (i=1; i<=nlstate; i++)  
      }*/          for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0;
         fprintf(ficresprob,"\n%d ",(int)age);        
         fprintf(ficresprobcov,"\n%d ",(int)age);        dateintsum=0;
         fprintf(ficresprobcor,"\n%d ",(int)age);        k2cpt=0;
         for (i=1; i<=imx; i++) {
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)          bool=1;
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){            for (z1=1; z1<=cptcoveff; z1++)       
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
         }                bool=0;
         i=0;                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
         for (k=1; k<=(nlstate);k++){                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
           for (l=1; l<=(nlstate+ndeath);l++){                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
             i=i++;                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);              } 
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);          }
             for (j=1; j<=i;j++){   
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);          if (bool==1){
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));            for(m=firstpass; m<=lastpass; m++){
             }              k2=anint[m][i]+(mint[m][i]/12.);
           }              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
         }/* end of loop for state */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       } /* end of loop for age */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       /* Confidence intervalle of pij  */                if (m<lastpass) {
       /*                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       fprintf(ficgp,"\nset noparametric;unset label");                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");                }
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");                
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);                  dateintsum=dateintsum+k2;
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);                  k2cpt++;
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);                }
       */                /*}*/
             }
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/          }
       first1=1;        } /* end i */
       for (k2=1; k2<=(nlstate);k2++){         
         for (l2=1; l2<=(nlstate+ndeath);l2++){        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
           if(l2==k2) continue;        pstamp(ficresp);
           j=(k2-1)*(nlstate+ndeath)+l2;        if  (cptcovn>0) {
           for (k1=1; k1<=(nlstate);k1++){          fprintf(ficresp, "\n#********** Variable "); 
             for (l1=1; l1<=(nlstate+ndeath);l1++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               if(l1==k1) continue;          fprintf(ficresp, "**********\n#");
               i=(k1-1)*(nlstate+ndeath)+l1;          fprintf(ficlog, "\n#********** Variable "); 
               if(i<=j) continue;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               for (age=bage; age<=fage; age ++){          fprintf(ficlog, "**********\n#");
                 if ((int)age %5==0){        }
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;        for(i=1; i<=nlstate;i++) 
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;        fprintf(ficresp, "\n");
                   mu1=mu[i][(int) age]/stepm*YEARM ;        
                   mu2=mu[j][(int) age]/stepm*YEARM;        for(i=iagemin; i <= iagemax+3; i++){
                   c12=cv12/sqrt(v1*v2);          if(i==iagemax+3){
                   /* Computing eigen value of matrix of covariance */            fprintf(ficlog,"Total");
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;          }else{
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;            if(first==1){
                   /* Eigen vectors */              first=0;
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));              printf("See log file for details...\n");
                   /*v21=sqrt(1.-v11*v11); *//* error */            }
                   v21=(lc1-v1)/cv12*v11;            fprintf(ficlog,"Age %d", i);
                   v12=-v21;          }
                   v22=v11;          for(jk=1; jk <=nlstate ; jk++){
                   tnalp=v21/v11;            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
                   if(first1==1){              pp[jk] += freq[jk][m][i]; 
                     first1=0;          }
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);          for(jk=1; jk <=nlstate ; jk++){
                   }            for(m=-1, pos=0; m <=0 ; m++)
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);              pos += freq[jk][m][i];
                   /*printf(fignu*/            if(pp[jk]>=1.e-10){
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */              if(first==1){
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                   if(first==1){              }
                     first=0;              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                     fprintf(ficgp,"\nset parametric;unset label");            }else{
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);              if(first==1)
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);            }
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);          }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);  
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);          for(jk=1; jk <=nlstate ; jk++){
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\              pp[jk] += freq[jk][m][i];
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));          }       
                   }else{          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
                     first=0;            pos += pp[jk];
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);            posprop += prop[jk][i];
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);          }
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\          for(jk=1; jk <=nlstate ; jk++){
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\            if(pos>=1.e-5){
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));              if(first==1)
                   }/* if first */                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                 } /* age mod 5 */              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               } /* end loop age */            }else{
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);              if(first==1)
               first=1;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             } /*l12 */              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           } /* k12 */            }
         } /*l1 */            if( i <= iagemax){
       }/* k1 */              if(pos>=1.e-5){
     } /* loop covariates */                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);                /*probs[i][jk][j1]= pp[jk]/pos;*/
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));              }
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);              else
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            }
   }          }
   free_vector(xp,1,npar);          
   fclose(ficresprob);          for(jk=-1; jk <=nlstate+ndeath; jk++)
   fclose(ficresprobcov);            for(m=-1; m <=nlstate+ndeath; m++)
   fclose(ficresprobcor);              if(freq[jk][m][i] !=0 ) {
   fclose(ficgp);              if(first==1)
   fclose(fichtm);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               }
           if(i <= iagemax)
 /******************* Printing html file ***********/            fprintf(ficresp,"\n");
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \          if(first==1)
                   int lastpass, int stepm, int weightopt, char model[],\            printf("Others in log...\n");
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\          fprintf(ficlog,"\n");
                   int popforecast, int estepm ,\        }
                   double jprev1, double mprev1,double anprev1, \        /*}*/
                   double jprev2, double mprev2,double anprev2){    }
   int jj1, k1, i1, cpt;    dateintmean=dateintsum/k2cpt; 
   /*char optionfilehtm[FILENAMELENGTH];*/   
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    fclose(ficresp);
     printf("Problem with %s \n",optionfilehtm), exit(0);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);    free_vector(pp,1,nlstate);
   }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     /* End of Freq */
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n  }
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n  
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n  /************ Prevalence ********************/
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
  - Life expectancies by age and initial health status (estepm=%2d months):  {  
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);       in each health status at the date of interview (if between dateprev1 and dateprev2).
        We still use firstpass and lastpass as another selection.
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    */
    
  m=cptcoveff;    int i, m, jk, k1, i1, j1, bool, z1,j;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    double ***freq; /* Frequencies */
     double *pp, **prop;
  jj1=0;    double pos,posprop; 
  for(k1=1; k1<=m;k1++){    double  y2; /* in fractional years */
    for(i1=1; i1<=ncodemax[k1];i1++){    int iagemin, iagemax;
      jj1++;    int first; /** to stop verbosity which is redirected to log file */
      if (cptcovn > 0) {  
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    iagemin= (int) agemin;
        for (cpt=1; cpt<=cptcoveff;cpt++)    iagemax= (int) agemax;
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    /*pp=vector(1,nlstate);*/
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    prop=matrix(1,nlstate,iagemin,iagemax+3); 
      }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
      /* Pij */    j1=0;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>    
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        /*j=cptcoveff;*/
      /* Quasi-incidences */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>    
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    first=1;
        /* Stable prevalence in each health state */    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
        for(cpt=1; cpt<nlstate;cpt++){      /*for(i1=1; i1<=ncodemax[k1];i1++){
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>        j1++;*/
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        
        }        for (i=1; i<=nlstate; i++)  
      for(cpt=1; cpt<=nlstate;cpt++) {          for(m=iagemin; m <= iagemax+3; m++)
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>            prop[i][m]=0.0;
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);       
      }        for (i=1; i<=imx; i++) { /* Each individual */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          bool=1;
 health expectancies in states (1) and (2): e%s%d.png<br>          if  (cptcovn>0) {
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            for (z1=1; z1<=cptcoveff; z1++) 
    } /* end i1 */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
  }/* End k1 */                bool=0;
  fprintf(fichtm,"</ul>");          } 
           if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n                if(agev[m][i]==0) agev[m][i]=iagemax+1;
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n                if(agev[m][i]==1) agev[m][i]=iagemax+2;
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n                if (s[m][i]>0 && s[m][i]<=nlstate) { 
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   prop[s[m][i]][iagemax+3] += weight[i]; 
  if(popforecast==1) fprintf(fichtm,"\n                } 
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n              }
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n            } /* end selection of waves */
         <br>",fileres,fileres,fileres,fileres);          }
  else        }
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);        for(i=iagemin; i <= iagemax+3; i++){  
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
  m=cptcoveff;          } 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          
           for(jk=1; jk <=nlstate ; jk++){     
  jj1=0;            if( i <=  iagemax){ 
  for(k1=1; k1<=m;k1++){              if(posprop>=1.e-5){ 
    for(i1=1; i1<=ncodemax[k1];i1++){                probs[i][jk][j1]= prop[jk][i]/posprop;
      jj1++;              } else{
      if (cptcovn > 0) {                if(first==1){
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");                  first=0;
        for (cpt=1; cpt<=cptcoveff;cpt++)                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);                }
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");              }
      }            } 
      for(cpt=1; cpt<=nlstate;cpt++) {          }/* end jk */ 
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        }/* end i */ 
 interval) in state (%d): v%s%d%d.png <br>      /*} *//* end i1 */
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      } /* end j1 */
      }    
    } /* end i1 */    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
  }/* End k1 */    /*free_vector(pp,1,nlstate);*/
  fprintf(fichtm,"</ul>");    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 fclose(fichtm);  }  /* End of prevalence */
 }  
   /************* Waves Concatenation ***************/
 /******************* Gnuplot file **************/  
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   {
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   int ng;       Death is a valid wave (if date is known).
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     printf("Problem with file %s",optionfilegnuplot);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);       and mw[mi+1][i]. dh depends on stepm.
   }       */
   
 #ifdef windows    int i, mi, m;
     fprintf(ficgp,"cd \"%s\" \n",pathc);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 #endif       double sum=0., jmean=0.;*/
 m=pow(2,cptcoveff);    int first;
      int j, k=0,jk, ju, jl;
  /* 1eme*/    double sum=0.;
   for (cpt=1; cpt<= nlstate ; cpt ++) {    first=0;
    for (k1=1; k1<= m ; k1 ++) {    jmin=1e+5;
     jmax=-1;
 #ifdef windows    jmean=0.;
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    for(i=1; i<=imx; i++){
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);      mi=0;
 #endif      m=firstpass;
 #ifdef unix      while(s[m][i] <= nlstate){
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);          mw[++mi][i]=m;
 #endif        if(m >=lastpass)
           break;
 for (i=1; i<= nlstate ; i ++) {        else
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          m++;
   else fprintf(ficgp," \%%*lf (\%%*lf)");      }/* end while */
 }      if (s[m][i] > nlstate){
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        mi++;     /* Death is another wave */
     for (i=1; i<= nlstate ; i ++) {        /* if(mi==0)  never been interviewed correctly before death */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");           /* Only death is a correct wave */
   else fprintf(ficgp," \%%*lf (\%%*lf)");        mw[mi][i]=m;
 }      }
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);  
      for (i=1; i<= nlstate ; i ++) {      wav[i]=mi;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      if(mi==0){
   else fprintf(ficgp," \%%*lf (\%%*lf)");        nbwarn++;
 }          if(first==0){
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
 #ifdef unix          first=1;
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");        }
 #endif        if(first==1){
    }          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
   }        }
   /*2 eme*/      } /* end mi==0 */
     } /* End individuals */
   for (k1=1; k1<= m ; k1 ++) {  
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    for(i=1; i<=imx; i++){
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);      for(mi=1; mi<wav[i];mi++){
            if (stepm <=0)
     for (i=1; i<= nlstate+1 ; i ++) {          dh[mi][i]=1;
       k=2*i;        else{
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       for (j=1; j<= nlstate+1 ; j ++) {            if (agedc[i] < 2*AGESUP) {
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   else fprintf(ficgp," \%%*lf (\%%*lf)");              if(j==0) j=1;  /* Survives at least one month after exam */
 }                else if(j<0){
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");                nberr++;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);                j=1; /* Temporary Dangerous patch */
       for (j=1; j<= nlstate+1 ; j ++) {                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         else fprintf(ficgp," \%%*lf (\%%*lf)");                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 }                }
       fprintf(ficgp,"\" t\"\" w l 0,");              k=k+1;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);              if (j >= jmax){
       for (j=1; j<= nlstate+1 ; j ++) {                jmax=j;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                ijmax=i;
   else fprintf(ficgp," \%%*lf (\%%*lf)");              }
 }                if (j <= jmin){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");                jmin=j;
       else fprintf(ficgp,"\" t\"\" w l 0,");                ijmin=i;
     }              }
   }              sum=sum+j;
                /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   /*3eme*/              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
   for (k1=1; k1<= m ; k1 ++) {          }
     for (cpt=1; cpt<= nlstate ; cpt ++) {          else{
       k=2+nlstate*(2*cpt-2);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);  
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            k=k+1;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            if (j >= jmax) {
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              jmax=j;
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              ijmax=i;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);            else if (j <= jmin){
               jmin=j;
 */              ijmin=i;
       for (i=1; i< nlstate ; i ++) {            }
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       }            if(j<0){
     }              nberr++;
   }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   /* CV preval stat */            }
     for (k1=1; k1<= m ; k1 ++) {            sum=sum+j;
     for (cpt=1; cpt<nlstate ; cpt ++) {          }
       k=3;          jk= j/stepm;
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          jl= j -jk*stepm;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);          ju= j -(jk+1)*stepm;
           if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       for (i=1; i< nlstate ; i ++)            if(jl==0){
         fprintf(ficgp,"+$%d",k+i+1);              dh[mi][i]=jk;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);              bh[mi][i]=0;
                  }else{ /* We want a negative bias in order to only have interpolation ie
       l=3+(nlstate+ndeath)*cpt;                    * to avoid the price of an extra matrix product in likelihood */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);              dh[mi][i]=jk+1;
       for (i=1; i< nlstate ; i ++) {              bh[mi][i]=ju;
         l=3+(nlstate+ndeath)*cpt;            }
         fprintf(ficgp,"+$%d",l+i+1);          }else{
       }            if(jl <= -ju){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                dh[mi][i]=jk;
     }              bh[mi][i]=jl;       /* bias is positive if real duration
   }                                     * is higher than the multiple of stepm and negative otherwise.
                                     */
   /* proba elementaires */            }
    for(i=1,jk=1; i <=nlstate; i++){            else{
     for(k=1; k <=(nlstate+ndeath); k++){              dh[mi][i]=jk+1;
       if (k != i) {              bh[mi][i]=ju;
         for(j=1; j <=ncovmodel; j++){            }
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);            if(dh[mi][i]==0){
           jk++;              dh[mi][i]=1; /* At least one step */
           fprintf(ficgp,"\n");              bh[mi][i]=ju; /* At least one step */
         }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       }            }
     }          } /* end if mle */
    }        }
       } /* end wave */
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    }
      for(jk=1; jk <=m; jk++) {    jmean=sum/k;
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
        if (ng==2)    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");   }
        else  
          fprintf(ficgp,"\nset title \"Probability\"\n");  /*********** Tricode ****************************/
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
        i=1;  {
        for(k2=1; k2<=nlstate; k2++) {    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
          k3=i;    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
          for(k=1; k<=(nlstate+ndeath); k++) {    /* Boring subroutine which should only output nbcode[Tvar[j]][k]
            if (k != k2){     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
              if(ng==2)    /* nbcode[Tvar[j]][1]= 
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    */
              else  
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
              ij=1;    int modmaxcovj=0; /* Modality max of covariates j */
              for(j=3; j <=ncovmodel; j++) {    int cptcode=0; /* Modality max of covariates j */
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    int modmincovj=0; /* Modality min of covariates j */
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
                  ij++;  
                }    cptcoveff=0; 
                else   
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    for (k=-1; k < maxncov; k++) Ndum[k]=0;
              }    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
              fprintf(ficgp,")/(1");  
                  /* Loop on covariates without age and products */
              for(k1=1; k1 <=nlstate; k1++){      for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
                ij=1;                                 modality of this covariate Vj*/ 
                for(j=3; j <=ncovmodel; j++){        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                                      * If product of Vn*Vm, still boolean *:
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
                    ij++;                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
                  }        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
                  else                                        modality of the nth covariate of individual i. */
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        if (ij > modmaxcovj)
                }          modmaxcovj=ij; 
                fprintf(ficgp,")");        else if (ij < modmincovj) 
              }          modmincovj=ij; 
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);        if ((ij < -1) && (ij > NCOVMAX)){
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
              i=i+ncovmodel;          exit(1);
            }        }else
          } /* end k */        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
        } /* end k2 */        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
      } /* end jk */        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
    } /* end ng */        /* getting the maximum value of the modality of the covariate
    fclose(ficgp);           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
 }  /* end gnuplot */           female is 1, then modmaxcovj=1.*/
       }
       printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
 /*************** Moving average **************/      cptcode=modmaxcovj;
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
      /*for (i=0; i<=cptcode; i++) {*/
   int i, cpt, cptcod;      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
       for (i=1; i<=nlstate;i++)        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
           mobaverage[(int)agedeb][i][cptcod]=0.;        }
            /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
       for (i=1; i<=nlstate;i++){      } /* Ndum[-1] number of undefined modalities */
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
           for (cpt=0;cpt<=4;cpt++){      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
           }      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;         modmincovj=3; modmaxcovj = 7;
         }         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
       }         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
     }         variables V1_1 and V1_2.
             nbcode[Tvar[j]][ij]=k;
 }         nbcode[Tvar[j]][1]=0;
          nbcode[Tvar[j]][2]=1;
          nbcode[Tvar[j]][3]=2;
 /************** Forecasting ******************/      */
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      ij=1; /* ij is similar to i but can jumps over null modalities */
        for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
   int *popage;          /*recode from 0 */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
   double *popeffectif,*popcount;            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
   double ***p3mat;                                       k is a modality. If we have model=V1+V1*sex 
   char fileresf[FILENAMELENGTH];                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
             ij++;
  agelim=AGESUP;          }
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;          if (ij > ncodemax[j]) break; 
         }  /* end of loop on */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      } /* end of loop on modality */ 
      } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
      
   strcpy(fileresf,"f");   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
   strcat(fileresf,fileres);    
   if((ficresf=fopen(fileresf,"w"))==NULL) {    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
     printf("Problem with forecast resultfile: %s\n", fileresf);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
   }     Ndum[ij]++; 
   printf("Computing forecasting: result on file '%s' \n", fileresf);   } 
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);  
    ij=1;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
      /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
   if (mobilav==1) {     if((Ndum[i]!=0) && (i<=ncovcol)){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
     movingaverage(agedeb, fage, ageminpar, mobaverage);       Tvaraff[ij]=i; /*For printing (unclear) */
   }       ij++;
      }else
   stepsize=(int) (stepm+YEARM-1)/YEARM;         Tvaraff[ij]=0;
   if (stepm<=12) stepsize=1;   }
     ij--;
   agelim=AGESUP;   cptcoveff=ij; /*Number of total covariates*/
    
   hstepm=1;  }
   hstepm=hstepm/stepm;  
   yp1=modf(dateintmean,&yp);  
   anprojmean=yp;  /*********** Health Expectancies ****************/
   yp2=modf((yp1*12),&yp);  
   mprojmean=yp;  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   yp1=modf((yp2*30.5),&yp);  
   jprojmean=yp;  {
   if(jprojmean==0) jprojmean=1;    /* Health expectancies, no variances */
   if(mprojmean==0) jprojmean=1;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
      int nhstepma, nstepma; /* Decreasing with age */
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    double age, agelim, hf;
      double ***p3mat;
   for(cptcov=1;cptcov<=i2;cptcov++){    double eip;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;    pstamp(ficreseij);
       fprintf(ficresf,"\n#******");    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
       for(j=1;j<=cptcoveff;j++) {    fprintf(ficreseij,"# Age");
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    for(i=1; i<=nlstate;i++){
       }      for(j=1; j<=nlstate;j++){
       fprintf(ficresf,"******\n");        fprintf(ficreseij," e%1d%1d ",i,j);
       fprintf(ficresf,"# StartingAge FinalAge");      }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      fprintf(ficreseij," e%1d. ",i);
          }
          fprintf(ficreseij,"\n");
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {  
         fprintf(ficresf,"\n");    
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    else  hstepm=estepm;   
           nhstepm = nhstepm/hstepm;    /* We compute the life expectancy from trapezoids spaced every estepm months
               * This is mainly to measure the difference between two models: for example
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     * if stepm=24 months pijx are given only every 2 years and by summing them
           oldm=oldms;savm=savms;     * we are calculating an estimate of the Life Expectancy assuming a linear 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);       * progression in between and thus overestimating or underestimating according
             * to the curvature of the survival function. If, for the same date, we 
           for (h=0; h<=nhstepm; h++){     * estimate the model with stepm=1 month, we can keep estepm to 24 months
             if (h==(int) (calagedate+YEARM*cpt)) {     * to compare the new estimate of Life expectancy with the same linear 
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);     * hypothesis. A more precise result, taking into account a more precise
             }     * curvature will be obtained if estepm is as small as stepm. */
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;    /* For example we decided to compute the life expectancy with the smallest unit */
               for(i=1; i<=nlstate;i++) {                  /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                 if (mobilav==1)       nhstepm is the number of hstepm from age to agelim 
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];       nstepm is the number of stepm from age to agelin. 
                 else {       Look at hpijx to understand the reason of that which relies in memory size
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];       and note for a fixed period like estepm months */
                 }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                       survival function given by stepm (the optimization length). Unfortunately it
               }       means that if the survival funtion is printed only each two years of age and if
               if (h==(int)(calagedate+12*cpt)){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                 fprintf(ficresf," %.3f", kk1);       results. So we changed our mind and took the option of the best precision.
                            */
               }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
             }  
           }    agelim=AGESUP;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* If stepm=6 months */
         }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
       }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     }      
   }  /* nhstepm age range expressed in number of stepm */
            nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
   fclose(ficresf);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
 }    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 /************** Forecasting ******************/  
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    for (age=bage; age<=fage; age ++){ 
        nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   int *popage;      /* if (stepm >= YEARM) hstepm=1;*/
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   double *popeffectif,*popcount;  
   double ***p3mat,***tabpop,***tabpopprev;      /* If stepm=6 months */
   char filerespop[FILENAMELENGTH];      /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   agelim=AGESUP;      
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        
   strcpy(filerespop,"pop");      /* Computing expectancies */
   strcat(filerespop,fileres);      for(i=1; i<=nlstate;i++)
   if((ficrespop=fopen(filerespop,"w"))==NULL) {        for(j=1; j<=nlstate;j++)
     printf("Problem with forecast resultfile: %s\n", filerespop);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   }            
   printf("Computing forecasting: result on file '%s' \n", filerespop);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);  
           }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  
       fprintf(ficreseij,"%3.0f",age );
   if (mobilav==1) {      for(i=1; i<=nlstate;i++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        eip=0;
     movingaverage(agedeb, fage, ageminpar, mobaverage);        for(j=1; j<=nlstate;j++){
   }          eip +=eij[i][j][(int)age];
           fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
   stepsize=(int) (stepm+YEARM-1)/YEARM;        }
   if (stepm<=12) stepsize=1;        fprintf(ficreseij,"%9.4f", eip );
        }
   agelim=AGESUP;      fprintf(ficreseij,"\n");
        
   hstepm=1;    }
   hstepm=hstepm/stepm;    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      printf("\n");
   if (popforecast==1) {    fprintf(ficlog,"\n");
     if((ficpop=fopen(popfile,"r"))==NULL) {    
       printf("Problem with population file : %s\n",popfile);exit(0);  }
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);  
     }  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
     popage=ivector(0,AGESUP);  
     popeffectif=vector(0,AGESUP);  {
     popcount=vector(0,AGESUP);    /* Covariances of health expectancies eij and of total life expectancies according
         to initial status i, ei. .
     i=1;      */
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
        int nhstepma, nstepma; /* Decreasing with age */
     imx=i;    double age, agelim, hf;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    double ***p3matp, ***p3matm, ***varhe;
   }    double **dnewm,**doldm;
     double *xp, *xm;
   for(cptcov=1;cptcov<=i2;cptcov++){    double **gp, **gm;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    double ***gradg, ***trgradg;
       k=k+1;    int theta;
       fprintf(ficrespop,"\n#******");  
       for(j=1;j<=cptcoveff;j++) {    double eip, vip;
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       fprintf(ficrespop,"******\n");    xp=vector(1,npar);
       fprintf(ficrespop,"# Age");    xm=vector(1,npar);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    dnewm=matrix(1,nlstate*nlstate,1,npar);
       if (popforecast==1)  fprintf(ficrespop," [Population]");    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
          
       for (cpt=0; cpt<=0;cpt++) {    pstamp(ficresstdeij);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
            fprintf(ficresstdeij,"# Age");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    for(i=1; i<=nlstate;i++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      for(j=1; j<=nlstate;j++)
           nhstepm = nhstepm/hstepm;        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
                fprintf(ficresstdeij," e%1d. ",i);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
           oldm=oldms;savm=savms;    fprintf(ficresstdeij,"\n");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
            pstamp(ficrescveij);
           for (h=0; h<=nhstepm; h++){    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
             if (h==(int) (calagedate+YEARM*cpt)) {    fprintf(ficrescveij,"# Age");
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    for(i=1; i<=nlstate;i++)
             }      for(j=1; j<=nlstate;j++){
             for(j=1; j<=nlstate+ndeath;j++) {        cptj= (j-1)*nlstate+i;
               kk1=0.;kk2=0;        for(i2=1; i2<=nlstate;i2++)
               for(i=1; i<=nlstate;i++) {                        for(j2=1; j2<=nlstate;j2++){
                 if (mobilav==1)            cptj2= (j2-1)*nlstate+i2;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            if(cptj2 <= cptj)
                 else {              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          }
                 }      }
               }    fprintf(ficrescveij,"\n");
               if (h==(int)(calagedate+12*cpt)){    
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    if(estepm < stepm){
                   /*fprintf(ficrespop," %.3f", kk1);      printf ("Problem %d lower than %d\n",estepm, stepm);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    }
               }    else  hstepm=estepm;   
             }    /* We compute the life expectancy from trapezoids spaced every estepm months
             for(i=1; i<=nlstate;i++){     * This is mainly to measure the difference between two models: for example
               kk1=0.;     * if stepm=24 months pijx are given only every 2 years and by summing them
                 for(j=1; j<=nlstate;j++){     * we are calculating an estimate of the Life Expectancy assuming a linear 
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];     * progression in between and thus overestimating or underestimating according
                 }     * to the curvature of the survival function. If, for the same date, we 
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];     * estimate the model with stepm=1 month, we can keep estepm to 24 months
             }     * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)     * curvature will be obtained if estepm is as small as stepm. */
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);  
           }    /* For example we decided to compute the life expectancy with the smallest unit */
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         }       nhstepm is the number of hstepm from age to agelim 
       }       nstepm is the number of stepm from age to agelin. 
         Look at hpijx to understand the reason of that which relies in memory size
   /******/       and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {       survival function given by stepm (the optimization length). Unfortunately it
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);         means that if the survival funtion is printed only each two years of age and if
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       results. So we changed our mind and took the option of the best precision.
           nhstepm = nhstepm/hstepm;    */
              hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    /* If stepm=6 months */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* nhstepm age range expressed in number of stepm */
           for (h=0; h<=nhstepm; h++){    agelim=AGESUP;
             if (h==(int) (calagedate+YEARM*cpt)) {    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
             }    /* if (stepm >= YEARM) hstepm=1;*/
             for(j=1; j<=nlstate+ndeath;j++) {    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
               kk1=0.;kk2=0;    
               for(i=1; i<=nlstate;i++) {                  p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
               }    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
             }    gp=matrix(0,nhstepm,1,nlstate*nlstate);
           }    gm=matrix(0,nhstepm,1,nlstate*nlstate);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }    for (age=bage; age<=fage; age ++){ 
       }      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
    }      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   }      /* if (stepm >= YEARM) hstepm=1;*/
        nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
       /* If stepm=6 months */
   if (popforecast==1) {      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     free_ivector(popage,0,AGESUP);         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     free_vector(popeffectif,0,AGESUP);      
     free_vector(popcount,0,AGESUP);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   }  
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      /* Computing  Variances of health expectancies */
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   fclose(ficrespop);         decrease memory allocation */
 }      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
 /***********************************************/          xp[i] = x[i] + (i==theta ?delti[theta]:0);
 /**************** Main Program *****************/          xm[i] = x[i] - (i==theta ?delti[theta]:0);
 /***********************************************/        }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
 int main(int argc, char *argv[])        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
 {    
         for(j=1; j<= nlstate; j++){
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          for(i=1; i<=nlstate; i++){
   double agedeb, agefin,hf;            for(h=0; h<=nhstepm-1; h++){
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   double fret;            }
   double **xi,tmp,delta;          }
         }
   double dum; /* Dummy variable */       
   double ***p3mat;        for(ij=1; ij<= nlstate*nlstate; ij++)
   int *indx;          for(h=0; h<=nhstepm-1; h++){
   char line[MAXLINE], linepar[MAXLINE];            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];          }
   int firstobs=1, lastobs=10;      }/* End theta */
   int sdeb, sfin; /* Status at beginning and end */      
   int c,  h , cpt,l;      
   int ju,jl, mi;      for(h=0; h<=nhstepm-1; h++)
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        for(j=1; j<=nlstate*nlstate;j++)
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          for(theta=1; theta <=npar; theta++)
   int mobilav=0,popforecast=0;            trgradg[h][j][theta]=gradg[h][theta][j];
   int hstepm, nhstepm;      
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;  
        for(ij=1;ij<=nlstate*nlstate;ij++)
   double bage, fage, age, agelim, agebase;        for(ji=1;ji<=nlstate*nlstate;ji++)
   double ftolpl=FTOL;          varhe[ij][ji][(int)age] =0.;
   double **prlim;  
   double *severity;       printf("%d|",(int)age);fflush(stdout);
   double ***param; /* Matrix of parameters */       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   double  *p;       for(h=0;h<=nhstepm-1;h++){
   double **matcov; /* Matrix of covariance */        for(k=0;k<=nhstepm-1;k++){
   double ***delti3; /* Scale */          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   double *delti; /* Scale */          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   double ***eij, ***vareij;          for(ij=1;ij<=nlstate*nlstate;ij++)
   double **varpl; /* Variances of prevalence limits by age */            for(ji=1;ji<=nlstate*nlstate;ji++)
   double *epj, vepp;              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   double kk1, kk2;        }
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      }
    
       /* Computing expectancies */
   char *alph[]={"a","a","b","c","d","e"}, str[4];      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
   char z[1]="c", occ;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 #include <sys/time.h>            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
 #include <time.h>            
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
    
   /* long total_usecs;          }
   struct timeval start_time, end_time;  
        fprintf(ficresstdeij,"%3.0f",age );
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      for(i=1; i<=nlstate;i++){
   getcwd(pathcd, size);        eip=0.;
         vip=0.;
   printf("\n%s",version);        for(j=1; j<=nlstate;j++){
   if(argc <=1){          eip += eij[i][j][(int)age];
     printf("\nEnter the parameter file name: ");          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
     scanf("%s",pathtot);            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   }          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   else{        }
     strcpy(pathtot,argv[1]);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   }      }
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/      fprintf(ficresstdeij,"\n");
   /*cygwin_split_path(pathtot,path,optionfile);  
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      fprintf(ficrescveij,"%3.0f",age );
   /* cutv(path,optionfile,pathtot,'\\');*/      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);          cptj= (j-1)*nlstate+i;
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);          for(i2=1; i2<=nlstate;i2++)
   chdir(path);            for(j2=1; j2<=nlstate;j2++){
   replace(pathc,path);              cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
 /*-------- arguments in the command line --------*/                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
   /* Log file */        }
   strcat(filelog, optionfilefiname);      fprintf(ficrescveij,"\n");
   strcat(filelog,".log");    /* */     
   if((ficlog=fopen(filelog,"w"))==NULL)    {    }
     printf("Problem with logfile %s\n",filelog);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     goto end;    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   }    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   fprintf(ficlog,"Log filename:%s\n",filelog);    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   fprintf(ficlog,"\n%s",version);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficlog,"\nEnter the parameter file name: ");    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    printf("\n");
   fflush(ficlog);    fprintf(ficlog,"\n");
   
   /* */    free_vector(xm,1,npar);
   strcpy(fileres,"r");    free_vector(xp,1,npar);
   strcat(fileres, optionfilefiname);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   strcat(fileres,".txt");    /* Other files have txt extension */    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   /*---------arguments file --------*/  }
   
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  /************ Variance ******************/
     printf("Problem with optionfile %s\n",optionfile);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);  {
     goto end;    /* Variance of health expectancies */
   }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
   strcpy(filereso,"o");    double **dnewm,**doldm;
   strcat(filereso,fileres);    double **dnewmp,**doldmp;
   if((ficparo=fopen(filereso,"w"))==NULL) {    int i, j, nhstepm, hstepm, h, nstepm ;
     printf("Problem with Output resultfile: %s\n", filereso);    int k, cptcode;
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);    double *xp;
     goto end;    double **gp, **gm;  /* for var eij */
   }    double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
   /* Reads comments: lines beginning with '#' */    double *gpp, *gmp; /* for var p point j */
   while((c=getc(ficpar))=='#' && c!= EOF){    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     ungetc(c,ficpar);    double ***p3mat;
     fgets(line, MAXLINE, ficpar);    double age,agelim, hf;
     puts(line);    double ***mobaverage;
     fputs(line,ficparo);    int theta;
   }    char digit[4];
   ungetc(c,ficpar);    char digitp[25];
   
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    char fileresprobmorprev[FILENAMELENGTH];
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);  
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    if(popbased==1){
 while((c=getc(ficpar))=='#' && c!= EOF){      if(mobilav!=0)
     ungetc(c,ficpar);        strcpy(digitp,"-populbased-mobilav-");
     fgets(line, MAXLINE, ficpar);      else strcpy(digitp,"-populbased-nomobil-");
     puts(line);    }
     fputs(line,ficparo);    else 
   }      strcpy(digitp,"-stablbased-");
   ungetc(c,ficpar);  
      if (mobilav!=0) {
          mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   covar=matrix(0,NCOVMAX,1,n);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   cptcovn=0;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
   ncovmodel=2+cptcovn;    }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  
      strcpy(fileresprobmorprev,"prmorprev"); 
   /* Read guess parameters */    sprintf(digit,"%-d",ij);
   /* Reads comments: lines beginning with '#' */    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   while((c=getc(ficpar))=='#' && c!= EOF){    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     ungetc(c,ficpar);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     fgets(line, MAXLINE, ficpar);    strcat(fileresprobmorprev,fileres);
     puts(line);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     fputs(line,ficparo);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   ungetc(c,ficpar);    }
      printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);   
     for(i=1; i <=nlstate; i++)    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     for(j=1; j <=nlstate+ndeath-1; j++){    pstamp(ficresprobmorprev);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       fprintf(ficparo,"%1d%1d",i1,j1);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       if(mle==1)    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         printf("%1d%1d",i,j);      fprintf(ficresprobmorprev," p.%-d SE",j);
       fprintf(ficlog,"%1d%1d",i,j);      for(i=1; i<=nlstate;i++)
       for(k=1; k<=ncovmodel;k++){        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
         fscanf(ficpar," %lf",&param[i][j][k]);    }  
         if(mle==1){    fprintf(ficresprobmorprev,"\n");
           printf(" %lf",param[i][j][k]);    fprintf(ficgp,"\n# Routine varevsij");
           fprintf(ficlog," %lf",param[i][j][k]);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
         }    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
         else    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
           fprintf(ficlog," %lf",param[i][j][k]);  /*   } */
         fprintf(ficparo," %lf",param[i][j][k]);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       }    pstamp(ficresvij);
       fscanf(ficpar,"\n");    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
       if(mle==1)    if(popbased==1)
         printf("\n");      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
       fprintf(ficlog,"\n");    else
       fprintf(ficparo,"\n");      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     }    fprintf(ficresvij,"# Age");
      for(i=1; i<=nlstate;i++)
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   p=param[1][1];    fprintf(ficresvij,"\n");
    
   /* Reads comments: lines beginning with '#' */    xp=vector(1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){    dnewm=matrix(1,nlstate,1,npar);
     ungetc(c,ficpar);    doldm=matrix(1,nlstate,1,nlstate);
     fgets(line, MAXLINE, ficpar);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     puts(line);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     fputs(line,ficparo);  
   }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   ungetc(c,ficpar);    gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    
   for(i=1; i <=nlstate; i++){    if(estepm < stepm){
     for(j=1; j <=nlstate+ndeath-1; j++){      printf ("Problem %d lower than %d\n",estepm, stepm);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    }
       printf("%1d%1d",i,j);    else  hstepm=estepm;   
       fprintf(ficparo,"%1d%1d",i1,j1);    /* For example we decided to compute the life expectancy with the smallest unit */
       for(k=1; k<=ncovmodel;k++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         fscanf(ficpar,"%le",&delti3[i][j][k]);       nhstepm is the number of hstepm from age to agelim 
         printf(" %le",delti3[i][j][k]);       nstepm is the number of stepm from age to agelin. 
         fprintf(ficparo," %le",delti3[i][j][k]);       Look at function hpijx to understand why (it is linked to memory size questions) */
       }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       fscanf(ficpar,"\n");       survival function given by stepm (the optimization length). Unfortunately it
       printf("\n");       means that if the survival funtion is printed every two years of age and if
       fprintf(ficparo,"\n");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     }       results. So we changed our mind and took the option of the best precision.
   }    */
   delti=delti3[1][1];    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      agelim = AGESUP;
   /* Reads comments: lines beginning with '#' */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   while((c=getc(ficpar))=='#' && c!= EOF){      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     ungetc(c,ficpar);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     fgets(line, MAXLINE, ficpar);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     puts(line);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     fputs(line,ficparo);      gp=matrix(0,nhstepm,1,nlstate);
   }      gm=matrix(0,nhstepm,1,nlstate);
   ungetc(c,ficpar);  
    
   matcov=matrix(1,npar,1,npar);      for(theta=1; theta <=npar; theta++){
   for(i=1; i <=npar; i++){        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     fscanf(ficpar,"%s",&str);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     if(mle==1)        }
       printf("%s",str);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     fprintf(ficlog,"%s",str);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     fprintf(ficparo,"%s",str);  
     for(j=1; j <=i; j++){        if (popbased==1) {
       fscanf(ficpar," %le",&matcov[i][j]);          if(mobilav ==0){
       if(mle==1){            for(i=1; i<=nlstate;i++)
         printf(" %.5le",matcov[i][j]);              prlim[i][i]=probs[(int)age][i][ij];
         fprintf(ficlog," %.5le",matcov[i][j]);          }else{ /* mobilav */ 
       }            for(i=1; i<=nlstate;i++)
       else              prlim[i][i]=mobaverage[(int)age][i][ij];
         fprintf(ficlog," %.5le",matcov[i][j]);          }
       fprintf(ficparo," %.5le",matcov[i][j]);        }
     }    
     fscanf(ficpar,"\n");        for(j=1; j<= nlstate; j++){
     if(mle==1)          for(h=0; h<=nhstepm; h++){
       printf("\n");            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     fprintf(ficlog,"\n");              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     fprintf(ficparo,"\n");          }
   }        }
   for(i=1; i <=npar; i++)        /* This for computing probability of death (h=1 means
     for(j=i+1;j<=npar;j++)           computed over hstepm matrices product = hstepm*stepm months) 
       matcov[i][j]=matcov[j][i];           as a weighted average of prlim.
            */
   if(mle==1)        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     printf("\n");          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   fprintf(ficlog,"\n");            gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
     /*-------- Rewriting paramater file ----------*/  
      strcpy(rfileres,"r");    /* "Rparameterfile */        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
      strcat(rfileres,".");    /* */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
      strcat(rfileres,optionfilext);    /* Other files have txt extension */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     if((ficres =fopen(rfileres,"w"))==NULL) {   
       printf("Problem writing new parameter file: %s\n", fileres);goto end;        if (popbased==1) {
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;          if(mobilav ==0){
     }            for(i=1; i<=nlstate;i++)
     fprintf(ficres,"#%s\n",version);              prlim[i][i]=probs[(int)age][i][ij];
              }else{ /* mobilav */ 
     /*-------- data file ----------*/            for(i=1; i<=nlstate;i++)
     if((fic=fopen(datafile,"r"))==NULL)    {              prlim[i][i]=mobaverage[(int)age][i][ij];
       printf("Problem with datafile: %s\n", datafile);goto end;          }
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;        }
     }  
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
     n= lastobs;          for(h=0; h<=nhstepm; h++){
     severity = vector(1,maxwav);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     outcome=imatrix(1,maxwav+1,1,n);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     num=ivector(1,n);          }
     moisnais=vector(1,n);        }
     annais=vector(1,n);        /* This for computing probability of death (h=1 means
     moisdc=vector(1,n);           computed over hstepm matrices product = hstepm*stepm months) 
     andc=vector(1,n);           as a weighted average of prlim.
     agedc=vector(1,n);        */
     cod=ivector(1,n);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     weight=vector(1,n);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     mint=matrix(1,maxwav,1,n);        }    
     anint=matrix(1,maxwav,1,n);        /* end probability of death */
     s=imatrix(1,maxwav+1,1,n);  
     adl=imatrix(1,maxwav+1,1,n);            for(j=1; j<= nlstate; j++) /* vareij */
     tab=ivector(1,NCOVMAX);          for(h=0; h<=nhstepm; h++){
     ncodemax=ivector(1,8);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
     i=1;  
     while (fgets(line, MAXLINE, fic) != NULL)    {        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
       if ((i >= firstobs) && (i <=lastobs)) {          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
                }
         for (j=maxwav;j>=1;j--){  
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      } /* End theta */
           strcpy(line,stra);  
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }      for(h=0; h<=nhstepm; h++) /* veij */
                for(j=1; j<=nlstate;j++)
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          for(theta=1; theta <=npar; theta++)
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);            trgradg[h][j][theta]=gradg[h][theta][j];
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    
         for (j=ncovcol;j>=1;j--){  
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         }      for(i=1;i<=nlstate;i++)
         num[i]=atol(stra);        for(j=1;j<=nlstate;j++)
                  vareij[i][j][(int)age] =0.;
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
         i=i+1;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
     }          for(i=1;i<=nlstate;i++)
     /* printf("ii=%d", ij);            for(j=1;j<=nlstate;j++)
        scanf("%d",i);*/              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   imx=i-1; /* Number of individuals */        }
       }
   /* for (i=1; i<=imx; i++){    
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      /* pptj */
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
     }*/      for(j=nlstate+1;j<=nlstate+ndeath;j++)
    /*  for (i=1; i<=imx; i++){        for(i=nlstate+1;i<=nlstate+ndeath;i++)
      if (s[4][i]==9)  s[4][i]=-1;          varppt[j][i]=doldmp[j][i];
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      /* end ppptj */
        /*  x centered again */
        hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   /* Calculation of the number of parameter from char model*/      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */   
   Tprod=ivector(1,15);      if (popbased==1) {
   Tvaraff=ivector(1,15);        if(mobilav ==0){
   Tvard=imatrix(1,15,1,2);          for(i=1; i<=nlstate;i++)
   Tage=ivector(1,15);                  prlim[i][i]=probs[(int)age][i][ij];
            }else{ /* mobilav */ 
   if (strlen(model) >1){          for(i=1; i<=nlstate;i++)
     j=0, j1=0, k1=1, k2=1;            prlim[i][i]=mobaverage[(int)age][i][ij];
     j=nbocc(model,'+');        }
     j1=nbocc(model,'*');      }
     cptcovn=j+1;               
     cptcovprod=j1;      /* This for computing probability of death (h=1 means
             computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     strcpy(modelsav,model);         as a weighted average of prlim.
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      */
       printf("Error. Non available option model=%s ",model);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
       fprintf(ficlog,"Error. Non available option model=%s ",model);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       goto end;          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     }      }    
          /* end probability of death */
     for(i=(j+1); i>=1;i--){  
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
       /*scanf("%d",i);*/        for(i=1; i<=nlstate;i++){
       if (strchr(strb,'*')) {  /* Model includes a product */          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/        }
         if (strcmp(strc,"age")==0) { /* Vn*age */      } 
           cptcovprod--;      fprintf(ficresprobmorprev,"\n");
           cutv(strb,stre,strd,'V');  
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/      fprintf(ficresvij,"%.0f ",age );
           cptcovage++;      for(i=1; i<=nlstate;i++)
             Tage[cptcovage]=i;        for(j=1; j<=nlstate;j++){
             /*printf("stre=%s ", stre);*/          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }        }
         else if (strcmp(strd,"age")==0) { /* or age*Vn */      fprintf(ficresvij,"\n");
           cptcovprod--;      free_matrix(gp,0,nhstepm,1,nlstate);
           cutv(strb,stre,strc,'V');      free_matrix(gm,0,nhstepm,1,nlstate);
           Tvar[i]=atoi(stre);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
           cptcovage++;      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
           Tage[cptcovage]=i;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }    } /* End age */
         else {  /* Age is not in the model */    free_vector(gpp,nlstate+1,nlstate+ndeath);
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/    free_vector(gmp,nlstate+1,nlstate+ndeath);
           Tvar[i]=ncovcol+k1;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           Tprod[k1]=i;    fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
           Tvard[k1][1]=atoi(strc); /* m*/    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
           Tvard[k1][2]=atoi(stre); /* n */    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
           Tvar[cptcovn+k2]=Tvard[k1][1];  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
           Tvar[cptcovn+k2+1]=Tvard[k1][2];  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
           for (k=1; k<=lastobs;k++)  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
           k1++;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
           k2=k2+2;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
         }    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
       }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       else { /* no more sum */    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/  */
        /*  scanf("%d",i);*/  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
       cutv(strd,strc,strb,'V');    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       Tvar[i]=atoi(strc);  
       }    free_vector(xp,1,npar);
       strcpy(modelsav,stra);      free_matrix(doldm,1,nlstate,1,nlstate);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    free_matrix(dnewm,1,nlstate,1,npar);
         scanf("%d",i);*/    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     } /* end of loop + */    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
   } /* end model */    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    fclose(ficresprobmorprev);
   printf("cptcovprod=%d ", cptcovprod);    fflush(ficgp);
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    fflush(fichtm); 
   scanf("%d ",i);*/  }  /* end varevsij */
     fclose(fic);  
   /************ Variance of prevlim ******************/
     /*  if(mle==1){*/  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
     if (weightopt != 1) { /* Maximisation without weights*/  {
       for(i=1;i<=n;i++) weight[i]=1.0;    /* Variance of prevalence limit */
     }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     /*-calculation of age at interview from date of interview and age at death -*/    double **newm;
     agev=matrix(1,maxwav,1,imx);    double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     for (i=1; i<=imx; i++) {    int k, cptcode;
       for(m=2; (m<= maxwav); m++) {    double *xp;
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    double *gp, *gm;
          anint[m][i]=9999;    double **gradg, **trgradg;
          s[m][i]=-1;    double age,agelim;
        }    int theta;
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    
       }    pstamp(ficresvpl);
     }    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for (i=1; i<=imx; i++)  {    for(i=1; i<=nlstate;i++)
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        fprintf(ficresvpl," %1d-%1d",i,i);
       for(m=1; (m<= maxwav); m++){    fprintf(ficresvpl,"\n");
         if(s[m][i] >0){  
           if (s[m][i] >= nlstate+1) {    xp=vector(1,npar);
             if(agedc[i]>0)    dnewm=matrix(1,nlstate,1,npar);
               if(moisdc[i]!=99 && andc[i]!=9999)    doldm=matrix(1,nlstate,1,nlstate);
                 agev[m][i]=agedc[i];    
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    hstepm=1*YEARM; /* Every year of age */
            else {    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
               if (andc[i]!=9999){    agelim = AGESUP;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
               agev[m][i]=-1;      if (stepm >= YEARM) hstepm=1;
               }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
             }      gradg=matrix(1,npar,1,nlstate);
           }      gp=vector(1,nlstate);
           else if(s[m][i] !=9){ /* Should no more exist */      gm=vector(1,nlstate);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);  
             if(mint[m][i]==99 || anint[m][i]==9999)      for(theta=1; theta <=npar; theta++){
               agev[m][i]=1;        for(i=1; i<=npar; i++){ /* Computes gradient */
             else if(agev[m][i] <agemin){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
               agemin=agev[m][i];        }
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
             }        for(i=1;i<=nlstate;i++)
             else if(agev[m][i] >agemax){          gp[i] = prlim[i][i];
               agemax=agev[m][i];      
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        for(i=1; i<=npar; i++) /* Computes gradient */
             }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
             /*agev[m][i]=anint[m][i]-annais[i];*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
             /*   agev[m][i] = age[i]+2*m;*/        for(i=1;i<=nlstate;i++)
           }          gm[i] = prlim[i][i];
           else { /* =9 */  
             agev[m][i]=1;        for(i=1;i<=nlstate;i++)
             s[m][i]=-1;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
           }      } /* End theta */
         }  
         else /*= 0 Unknown */      trgradg =matrix(1,nlstate,1,npar);
           agev[m][i]=1;  
       }      for(j=1; j<=nlstate;j++)
            for(theta=1; theta <=npar; theta++)
     }          trgradg[j][theta]=gradg[theta][j];
     for (i=1; i<=imx; i++)  {  
       for(m=1; (m<= maxwav); m++){      for(i=1;i<=nlstate;i++)
         if (s[m][i] > (nlstate+ndeath)) {        varpl[i][(int)age] =0.;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);        matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);        matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
           goto end;      for(i=1;i<=nlstate;i++)
         }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
       }  
     }      fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
     free_vector(severity,1,maxwav);      free_vector(gm,1,nlstate);
     free_imatrix(outcome,1,maxwav+1,1,n);      free_matrix(gradg,1,npar,1,nlstate);
     free_vector(moisnais,1,n);      free_matrix(trgradg,1,nlstate,1,npar);
     free_vector(annais,1,n);    } /* End age */
     /* free_matrix(mint,1,maxwav,1,n);  
        free_matrix(anint,1,maxwav,1,n);*/    free_vector(xp,1,npar);
     free_vector(moisdc,1,n);    free_matrix(doldm,1,nlstate,1,npar);
     free_vector(andc,1,n);    free_matrix(dnewm,1,nlstate,1,nlstate);
   
      }
     wav=ivector(1,imx);  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  /************ Variance of one-step probabilities  ******************/
     mw=imatrix(1,lastpass-firstpass+1,1,imx);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
      {
     /* Concatenates waves */    int i, j=0,  i1, k1, l1, t, tj;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1, first2;
       Tcode=ivector(1,100);    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    double **dnewm,**doldm;
       ncodemax[1]=1;    double *xp;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    double *gp, *gm;
          double **gradg, **trgradg;
    codtab=imatrix(1,100,1,10);    double **mu;
    h=0;    double age,agelim, cov[NCOVMAX+1];
    m=pow(2,cptcoveff);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
      int theta;
    for(k=1;k<=cptcoveff; k++){    char fileresprob[FILENAMELENGTH];
      for(i=1; i <=(m/pow(2,k));i++){    char fileresprobcov[FILENAMELENGTH];
        for(j=1; j <= ncodemax[k]; j++){    char fileresprobcor[FILENAMELENGTH];
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    double ***varpij;
            h++;  
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    strcpy(fileresprob,"prob"); 
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    strcat(fileresprob,fileres);
          }    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
        }      printf("Problem with resultfile: %s\n", fileresprob);
      }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
    }    }
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    strcpy(fileresprobcov,"probcov"); 
       codtab[1][2]=1;codtab[2][2]=2; */    strcat(fileresprobcov,fileres);
    /* for(i=1; i <=m ;i++){    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       for(k=1; k <=cptcovn; k++){      printf("Problem with resultfile: %s\n", fileresprobcov);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
       }    }
       printf("\n");    strcpy(fileresprobcor,"probcor"); 
       }    strcat(fileresprobcor,fileres);
       scanf("%d",i);*/    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
          printf("Problem with resultfile: %s\n", fileresprobcor);
    /* Calculates basic frequencies. Computes observed prevalence at single age      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
        and prints on file fileres'p'. */    }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
        fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
        printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    pstamp(ficresprob);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
          fprintf(ficresprob,"# Age");
     /* For Powell, parameters are in a vector p[] starting at p[1]    pstamp(ficresprobcov);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     if(mle==1){    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    fprintf(ficresprobcor,"# Age");
     }  
      
     /*--------- results files --------------*/    for(i=1; i<=nlstate;i++)
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      for(j=1; j<=(nlstate+ndeath);j++){
          fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
    jk=1;        fprintf(ficresprobcor," p%1d-%1d ",i,j);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      }  
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");   /* fprintf(ficresprob,"\n");
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    fprintf(ficresprobcov,"\n");
    for(i=1,jk=1; i <=nlstate; i++){    fprintf(ficresprobcor,"\n");
      for(k=1; k <=(nlstate+ndeath); k++){   */
        if (k != i)    xp=vector(1,npar);
          {    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
            printf("%d%d ",i,k);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
            fprintf(ficlog,"%d%d ",i,k);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
            fprintf(ficres,"%1d%1d ",i,k);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
            for(j=1; j <=ncovmodel; j++){    first=1;
              printf("%f ",p[jk]);    fprintf(ficgp,"\n# Routine varprob");
              fprintf(ficlog,"%f ",p[jk]);    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
              fprintf(ficres,"%f ",p[jk]);    fprintf(fichtm,"\n");
              jk++;  
            }    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
            printf("\n");    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
            fprintf(ficlog,"\n");    file %s<br>\n",optionfilehtmcov);
            fprintf(ficres,"\n");    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
          }  and drawn. It helps understanding how is the covariance between two incidences.\
      }   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
    }    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
    if(mle==1){  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
      /* Computing hessian and covariance matrix */  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
      ftolhess=ftol; /* Usually correct */  standard deviations wide on each axis. <br>\
      hesscov(matcov, p, npar, delti, ftolhess, func);   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    }   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
    printf("# Scales (for hessian or gradient estimation)\n");  
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");    cov[1]=1;
    for(i=1,jk=1; i <=nlstate; i++){    /* tj=cptcoveff; */
      for(j=1; j <=nlstate+ndeath; j++){    tj = (int) pow(2,cptcoveff);
        if (j!=i) {    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
          fprintf(ficres,"%1d%1d",i,j);    j1=0;
          printf("%1d%1d",i,j);    for(j1=1; j1<=tj;j1++){
          fprintf(ficlog,"%1d%1d",i,j);      /*for(i1=1; i1<=ncodemax[t];i1++){ */
          for(k=1; k<=ncovmodel;k++){      /*j1++;*/
            printf(" %.5e",delti[jk]);        if  (cptcovn>0) {
            fprintf(ficlog," %.5e",delti[jk]);          fprintf(ficresprob, "\n#********** Variable "); 
            fprintf(ficres," %.5e",delti[jk]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            jk++;          fprintf(ficresprob, "**********\n#\n");
          }          fprintf(ficresprobcov, "\n#********** Variable "); 
          printf("\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
          fprintf(ficlog,"\n");          fprintf(ficresprobcov, "**********\n#\n");
          fprintf(ficres,"\n");          
        }          fprintf(ficgp, "\n#********** Variable "); 
      }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    }          fprintf(ficgp, "**********\n#\n");
              
    k=1;          
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
    if(mle==1)          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          
    for(i=1;i<=npar;i++){          fprintf(ficresprobcor, "\n#********** Variable ");    
      /*  if (k>nlstate) k=1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
          i1=(i-1)/(ncovmodel*nlstate)+1;          fprintf(ficresprobcor, "**********\n#");    
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        }
          printf("%s%d%d",alph[k],i1,tab[i]);*/        
      fprintf(ficres,"%3d",i);        gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
      if(mle==1)        trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
        printf("%3d",i);        gp=vector(1,(nlstate)*(nlstate+ndeath));
      fprintf(ficlog,"%3d",i);        gm=vector(1,(nlstate)*(nlstate+ndeath));
      for(j=1; j<=i;j++){        for (age=bage; age<=fage; age ++){ 
        fprintf(ficres," %.5e",matcov[i][j]);          cov[2]=age;
        if(mle==1)          for (k=1; k<=cptcovn;k++) {
          printf(" %.5e",matcov[i][j]);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
        fprintf(ficlog," %.5e",matcov[i][j]);                                                           * 1  1 1 1 1
      }                                                           * 2  2 1 1 1
      fprintf(ficres,"\n");                                                           * 3  1 2 1 1
      if(mle==1)                                                           */
        printf("\n");            /* nbcode[1][1]=0 nbcode[1][2]=1;*/
      fprintf(ficlog,"\n");          }
      k++;          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
    }          for (k=1; k<=cptcovprod;k++)
                cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
    while((c=getc(ficpar))=='#' && c!= EOF){          
      ungetc(c,ficpar);      
      fgets(line, MAXLINE, ficpar);          for(theta=1; theta <=npar; theta++){
      puts(line);            for(i=1; i<=npar; i++)
      fputs(line,ficparo);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
    }            
    ungetc(c,ficpar);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
    estepm=0;            
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);            k=0;
    if (estepm==0 || estepm < stepm) estepm=stepm;            for(i=1; i<= (nlstate); i++){
    if (fage <= 2) {              for(j=1; j<=(nlstate+ndeath);j++){
      bage = ageminpar;                k=k+1;
      fage = agemaxpar;                gp[k]=pmmij[i][j];
    }              }
                }
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");            
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);            for(i=1; i<=npar; i++)
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
          
    while((c=getc(ficpar))=='#' && c!= EOF){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
      ungetc(c,ficpar);            k=0;
      fgets(line, MAXLINE, ficpar);            for(i=1; i<=(nlstate); i++){
      puts(line);              for(j=1; j<=(nlstate+ndeath);j++){
      fputs(line,ficparo);                k=k+1;
    }                gm[k]=pmmij[i][j];
    ungetc(c,ficpar);              }
              }
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);       
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
              }
    while((c=getc(ficpar))=='#' && c!= EOF){  
      ungetc(c,ficpar);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
      fgets(line, MAXLINE, ficpar);            for(theta=1; theta <=npar; theta++)
      puts(line);              trgradg[j][theta]=gradg[theta][j];
      fputs(line,ficparo);          
    }          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
    ungetc(c,ficpar);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
    
           pmij(pmmij,cov,ncovmodel,x,nlstate);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;          
    dateprev2=anprev2+mprev2/12.+jprev2/365.;          k=0;
           for(i=1; i<=(nlstate); i++){
   fscanf(ficpar,"pop_based=%d\n",&popbased);            for(j=1; j<=(nlstate+ndeath);j++){
   fprintf(ficparo,"pop_based=%d\n",popbased);                k=k+1;
   fprintf(ficres,"pop_based=%d\n",popbased);                mu[k][(int) age]=pmmij[i][j];
              }
   while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
     fgets(line, MAXLINE, ficpar);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     puts(line);              varpij[i][j][(int)age] = doldm[i][j];
     fputs(line,ficparo);  
   }          /*printf("\n%d ",(int)age);
   ungetc(c,ficpar);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            }*/
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
 while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficresprobcor,"\n%d ",(int)age);
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     puts(line);            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
     fputs(line,ficparo);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   }            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   ungetc(c,ficpar);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);          i=0;
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          for (k=1; k<=(nlstate);k++){
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 /*------------ gnuplot -------------*/              for (j=1; j<=i;j++){
   strcpy(optionfilegnuplot,optionfilefiname);                /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
   strcat(optionfilegnuplot,".gp");                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
     printf("Problem with file %s",optionfilegnuplot);              }
   }            }
   fclose(ficgp);          }/* end of loop for state */
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);        } /* end of loop for age */
 /*--------- index.htm --------*/        free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   strcpy(optionfilehtm,optionfile);        free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   strcat(optionfilehtm,".htm");        free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        
     printf("Problem with %s \n",optionfilehtm), exit(0);        /* Confidence intervalle of pij  */
   }        /*
           fprintf(ficgp,"\nunset parametric;unset label");
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 \n          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
 Total number of observations=%d <br>\n          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
 <hr  size=\"2\" color=\"#EC5E5E\">          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
  <ul><li><h4>Parameter files</h4>\n        */
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n  
  - Log file of the run: <a href=\"%s\">%s</a><br>\n        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);        first1=1;first2=2;
   fclose(fichtm);        for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);            if(l2==k2) continue;
              j=(k2-1)*(nlstate+ndeath)+l2;
 /*------------ free_vector  -------------*/            for (k1=1; k1<=(nlstate);k1++){
  chdir(path);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                  if(l1==k1) continue;
  free_ivector(wav,1,imx);                i=(k1-1)*(nlstate+ndeath)+l1;
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                if(i<=j) continue;
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                  for (age=bage; age<=fage; age ++){ 
  free_ivector(num,1,n);                  if ((int)age %5==0){
  free_vector(agedc,1,n);                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
  /*free_matrix(covar,1,NCOVMAX,1,n);*/                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
  fclose(ficparo);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
  fclose(ficres);                    mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
   /*--------------- Prevalence limit --------------*/                    /* Computing eigen value of matrix of covariance */
                      lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   strcpy(filerespl,"pl");                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   strcat(filerespl,fileres);                    if ((lc2 <0) || (lc1 <0) ){
   if((ficrespl=fopen(filerespl,"w"))==NULL) {                      if(first2==1){
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                        first1=0;
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;                      printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
   }                      }
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                      fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);                      /* lc1=fabs(lc1); */ /* If we want to have them positive */
   fprintf(ficrespl,"#Prevalence limit\n");                      /* lc2=fabs(lc2); */
   fprintf(ficrespl,"#Age ");                    }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);  
   fprintf(ficrespl,"\n");                    /* Eigen vectors */
                      v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   prlim=matrix(1,nlstate,1,nlstate);                    /*v21=sqrt(1.-v11*v11); *//* error */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    v21=(lc1-v1)/cv12*v11;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    v12=-v21;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    v22=v11;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    tnalp=v21/v11;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                    if(first1==1){
   k=0;                      first1=0;
   agebase=ageminpar;                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   agelim=agemaxpar;                    }
   ftolpl=1.e-10;                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   i1=cptcoveff;                    /*printf(fignu*/
   if (cptcovn < 1){i1=1;}                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   for(cptcov=1;cptcov<=i1;cptcov++){                    if(first==1){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                      first=0;
         k=k+1;                      fprintf(ficgp,"\nset parametric;unset label");
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
         fprintf(ficrespl,"\n#******");                      fprintf(ficgp,"\nset ter png small size 320, 240");
         printf("\n#******");                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
         fprintf(ficlog,"\n#******");   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
         for(j=1;j<=cptcoveff;j++) {  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         }                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
         fprintf(ficrespl,"******\n");                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
         printf("******\n");                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         fprintf(ficlog,"******\n");                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                              fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
         for (age=agebase; age<=agelim; age++){                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           fprintf(ficrespl,"%.0f",age );                    }else{
           for(i=1; i<=nlstate;i++)                      first=0;
           fprintf(ficrespl," %.5f", prlim[i][i]);                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
           fprintf(ficrespl,"\n");                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       }                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   fclose(ficrespl);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
   /*------------- h Pij x at various ages ------------*/                  } /* age mod 5 */
                  } /* end loop age */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                first=1;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;              } /*l12 */
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;            } /* k12 */
   }          } /*l1 */
   printf("Computing pij: result on file '%s' \n", filerespij);        }/* k1 */
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);        /* } /* loop covariates */
      }
   stepsize=(int) (stepm+YEARM-1)/YEARM;    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   /*if (stepm<=24) stepsize=2;*/    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   agelim=AGESUP;    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
   hstepm=stepsize*YEARM; /* Every year of age */    free_vector(xp,1,npar);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    fclose(ficresprob);
     fclose(ficresprobcov);
   /* hstepm=1;   aff par mois*/    fclose(ficresprobcor);
     fflush(ficgp);
   k=0;    fflush(fichtmcov);
   for(cptcov=1;cptcov<=i1;cptcov++){  }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;  
         fprintf(ficrespij,"\n#****** ");  /******************* Printing html file ***********/
         for(j=1;j<=cptcoveff;j++)  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    int lastpass, int stepm, int weightopt, char model[],\
         fprintf(ficrespij,"******\n");                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                            int popforecast, int estepm ,\
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                    double jprev1, double mprev1,double anprev1, \
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                    double jprev2, double mprev2,double anprev2){
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    int jj1, k1, i1, cpt;
   
           /*      nhstepm=nhstepm*YEARM; aff par mois*/     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  </ul>");
           oldm=oldms;savm=savms;     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);     - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
           fprintf(ficrespij,"# Age");             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
           for(i=1; i<=nlstate;i++)     fprintf(fichtm,"\
             for(j=1; j<=nlstate+ndeath;j++)   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
               fprintf(ficrespij," %1d-%1d",i,j);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
           fprintf(ficrespij,"\n");     fprintf(fichtm,"\
            for (h=0; h<=nhstepm; h++){   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
             for(i=1; i<=nlstate;i++)     fprintf(fichtm,"\
               for(j=1; j<=nlstate+ndeath;j++)   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);     <a href=\"%s\">%s</a> <br>\n",
             fprintf(ficrespij,"\n");             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
              }     fprintf(fichtm,"\
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   - Population projections by age and states: \
           fprintf(ficrespij,"\n");     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
         }  
     }  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   }  
    m=pow(2,cptcoveff);
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
   fclose(ficrespij);   jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
   /*---------- Forecasting ------------------*/       jj1++;
   if((stepm == 1) && (strcmp(model,".")==0)){       if (cptcovn > 0) {
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);         for (cpt=1; cpt<=cptcoveff;cpt++) 
   }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   else{         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     erreur=108;       }
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);       /* Pij */
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   }  <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
         /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
   /*---------- Health expectancies and variances ------------*/   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
   strcpy(filerest,"t");         /* Period (stable) prevalence in each health state */
   strcat(filerest,fileres);         for(cpt=1; cpt<=nlstate;cpt++){
   if((ficrest=fopen(filerest,"w"))==NULL) {           fprintf(fichtm,"<br>- Convergence from each state (1 to %d) to period (stable) prevalence in state %d <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  <img src=\"%s%d_%d.png\">",nlstate, cpt, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;         }
   }       for(cpt=1; cpt<=nlstate;cpt++) {
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);  <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
   strcpy(filerese,"e");   }/* End k1 */
   strcat(filerese,fileres);   fprintf(fichtm,"</ul>");
   if((ficreseij=fopen(filerese,"w"))==NULL) {  
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);   fprintf(fichtm,"\
   }  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);  
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   strcpy(fileresv,"v");           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   strcat(fileresv,fileres);   fprintf(fichtm,"\
   if((ficresvij=fopen(fileresv,"w"))==NULL) {   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);  
   }   fprintf(fichtm,"\
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   calagedate=-1;   fprintf(fichtm,"\
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
   k=0;             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
   for(cptcov=1;cptcov<=i1;cptcov++){   fprintf(fichtm,"\
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
       k=k+1;     <a href=\"%s\">%s</a> <br>\n</li>",
       fprintf(ficrest,"\n#****** ");             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
       for(j=1;j<=cptcoveff;j++)   fprintf(fichtm,"\
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
       fprintf(ficrest,"******\n");           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
       fprintf(ficreseij,"\n#****** ");   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
       for(j=1;j<=cptcoveff;j++)           estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   fprintf(fichtm,"\
       fprintf(ficreseij,"******\n");   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
       fprintf(ficresvij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)  /*  if(popforecast==1) fprintf(fichtm,"\n */
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
       fprintf(ficresvij,"******\n");  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  /*  else  */
       oldm=oldms;savm=savms;  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);     fflush(fichtm);
     fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;   m=pow(2,cptcoveff);
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
       if(popbased==1){  
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);   jj1=0;
        }   for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
         jj1++;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");       if (cptcovn > 0) {
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       fprintf(ficrest,"\n");         for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       epj=vector(1,nlstate+1);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       for(age=bage; age <=fage ;age++){       }
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);       for(cpt=1; cpt<=nlstate;cpt++) {
         if (popbased==1) {         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
           for(i=1; i<=nlstate;i++)  prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
             prlim[i][i]=probs[(int)age][i][k];  <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
         }       }
               fprintf(fichtm,"\n<br>- Total life expectancy by age and \
         fprintf(ficrest," %4.0f",age);  health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  true period expectancies (those weighted with period prevalences are also\
           for(i=1, epj[j]=0.;i <=nlstate;i++) {   drawn in addition to the population based expectancies computed using\
             epj[j] += prlim[i][i]*eij[i][j][(int)age];   observed and cahotic prevalences: %s%d.png<br>\
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
           }     } /* end i1 */
           epj[nlstate+1] +=epj[j];   }/* End k1 */
         }   fprintf(fichtm,"</ul>");
    fflush(fichtm);
         for(i=1, vepp=0.;i <=nlstate;i++)  }
           for(j=1;j <=nlstate;j++)  
             vepp += vareij[i][j][(int)age];  /******************* Gnuplot file **************/
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
         for(j=1;j <=nlstate;j++){  
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    char dirfileres[132],optfileres[132];
         }    int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
         fprintf(ficrest,"\n");    int ng=0;
       }  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     }  /*     printf("Problem with file %s",optionfilegnuplot); */
   }  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
 free_matrix(mint,1,maxwav,1,n);  /*   } */
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);  
     free_vector(weight,1,n);    /*#ifdef windows */
   fclose(ficreseij);    fprintf(ficgp,"cd \"%s\" \n",pathc);
   fclose(ficresvij);      /*#endif */
   fclose(ficrest);    m=pow(2,cptcoveff);
   fclose(ficpar);  
   free_vector(epj,1,nlstate+1);    strcpy(dirfileres,optionfilefiname);
      strcpy(optfileres,"vpl");
   /*------- Variance limit prevalence------*/     /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
   strcpy(fileresvpl,"vpl");    for (cpt=1; cpt<= nlstate ; cpt ++) {
   strcat(fileresvpl,fileres);      for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {       fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);       fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
     exit(0);       fprintf(ficgp,"set xlabel \"Age\" \n\
   }  set ylabel \"Probability\" \n\
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){       for (i=1; i<= nlstate ; i ++) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       k=k+1;         else        fprintf(ficgp," \%%*lf (\%%*lf)");
       fprintf(ficresvpl,"\n#****** ");       }
       for(j=1;j<=cptcoveff;j++)       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       for (i=1; i<= nlstate ; i ++) {
       fprintf(ficresvpl,"******\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
               else fprintf(ficgp," \%%*lf (\%%*lf)");
       varpl=matrix(1,nlstate,(int) bage, (int) fage);       } 
       oldm=oldms;savm=savms;       fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);       for (i=1; i<= nlstate ; i ++) {
     }         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
  }         else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
   fclose(ficresvpl);       fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
   /*---------- End : free ----------------*/    }
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    /*2 eme*/
      fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    for (k1=1; k1<= m ; k1 ++) { 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
        fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
        
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      for (i=1; i<= nlstate+1 ; i ++) {
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        k=2*i;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        for (j=1; j<= nlstate+1 ; j ++) {
            if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   free_matrix(matcov,1,npar,1,npar);          else fprintf(ficgp," \%%*lf (\%%*lf)");
   free_vector(delti,1,npar);        }   
   free_matrix(agev,1,maxwav,1,imx);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   fprintf(fichtm,"\n</body>");        for (j=1; j<= nlstate+1 ; j ++) {
   fclose(fichtm);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   fclose(ficgp);          else fprintf(ficgp," \%%*lf (\%%*lf)");
          }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
   if(erreur >0){        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
     printf("End of Imach with error or warning %d\n",erreur);        for (j=1; j<= nlstate+1 ; j ++) {
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   }else{          else fprintf(ficgp," \%%*lf (\%%*lf)");
    printf("End of Imach\n");        }   
    fprintf(ficlog,"End of Imach\n");        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
   }        else fprintf(ficgp,"\" t\"\" w l lt 0,");
   printf("See log file on %s\n",filelog);      }
   fclose(ficlog);    }
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    
      /*3eme*/
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    
   /*printf("Total time was %d uSec.\n", total_usecs);*/    for (k1=1; k1<= m ; k1 ++) { 
   /*------ End -----------*/      for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
  end:        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
 #ifdef windows        fprintf(ficgp,"set ter png small size 320, 240\n\
   /* chdir(pathcd);*/  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
 #endif        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
  /*system("wgnuplot graph.plt");*/          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
  /*system("../gp37mgw/wgnuplot graph.plt");*/          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
  /*system("cd ../gp37mgw");*/          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
  strcpy(plotcmd,GNUPLOTPROGRAM);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
  strcat(plotcmd," ");          
  strcat(plotcmd,optionfilegnuplot);        */
  system(plotcmd);        for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
 #ifdef windows          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
   while (z[0] != 'q') {          
     /* chdir(path); */        } 
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
     scanf("%s",z);      }
     if (z[0] == 'c') system("./imach");    }
     else if (z[0] == 'e') system(optionfilehtm);    
     else if (z[0] == 'g') system(plotcmd);    /* CV preval stable (period) */
     else if (z[0] == 'q') exit(0);    for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
   }      for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
 #endif        k=3;
 }        fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    avoid:
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.", dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ = *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int i1, j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: %s, err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successul, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef OSX
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.51  
changed lines
  Added in v.1.156


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>