Diff for /imach/src/imach.c between versions 1.51 and 1.185

version 1.51, 2002/07/19 12:22:25 version 1.185, 2015/03/11 13:26:42
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.185  2015/03/11 13:26:42  brouard
      Summary: Inclusion of compile and links command line for Intel Compiler
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.184  2015/03/11 11:52:39  brouard
   first survey ("cross") where individuals from different ages are    Summary: Back from Windows 8. Intel Compiler
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.183  2015/03/10 20:34:32  brouard
   second wave of interviews ("longitudinal") which measure each change    Summary: 0.98q0, trying with directest, mnbrak fixed
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    We use directest instead of original Powell test; probably no
   model. More health states you consider, more time is necessary to reach the    incidence on the results, but better justifications;
   Maximum Likelihood of the parameters involved in the model.  The    We fixed Numerical Recipes mnbrak routine which was wrong and gave
   simplest model is the multinomial logistic model where pij is the    wrong results.
   probability to be observed in state j at the second wave  
   conditional to be observed in state i at the first wave. Therefore    Revision 1.182  2015/02/12 08:19:57  brouard
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Summary: Trying to keep directest which seems simpler and more general
   'age' is age and 'sex' is a covariate. If you want to have a more    Author: Nicolas Brouard
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.181  2015/02/11 23:22:24  brouard
   you to do it.  More covariates you add, slower the    Summary: Comments on Powell added
   convergence.  
     Author:
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.180  2015/02/11 17:33:45  brouard
   identical for each individual. Also, if a individual missed an    Summary: Finishing move from main to function (hpijx and prevalence_limit)
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.179  2015/01/04 09:57:06  brouard
     Summary: back to OS/X
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    Revision 1.178  2015/01/04 09:35:48  brouard
   split into an exact number (nh*stepm) of unobserved intermediate    *** empty log message ***
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    Revision 1.177  2015/01/03 18:40:56  brouard
   matrix is simply the matrix product of nh*stepm elementary matrices    Summary: Still testing ilc32 on OSX
   and the contribution of each individual to the likelihood is simply  
   hPijx.    Revision 1.176  2015/01/03 16:45:04  brouard
     *** empty log message ***
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.175  2015/01/03 16:33:42  brouard
      *** empty log message ***
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.174  2015/01/03 16:15:49  brouard
   This software have been partly granted by Euro-REVES, a concerted action    Summary: Still in cross-compilation
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.173  2015/01/03 12:06:26  brouard
   software can be distributed freely for non commercial use. Latest version    Summary: trying to detect cross-compilation
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.172  2014/12/27 12:07:47  brouard
      Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
 #include <math.h>  
 #include <stdio.h>    Revision 1.171  2014/12/23 13:26:59  brouard
 #include <stdlib.h>    Summary: Back from Visual C
 #include <unistd.h>  
     Still problem with utsname.h on Windows
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "gnuplot"    Revision 1.170  2014/12/23 11:17:12  brouard
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Summary: Cleaning some \%% back to %%
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    The escape was mandatory for a specific compiler (which one?), but too many warnings.
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.169  2014/12/22 23:08:31  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Summary: 0.98p
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Outputs some informations on compiler used, OS etc. Testing on different platforms.
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.168  2014/12/22 15:17:42  brouard
 #define NINTERVMAX 8    Summary: update
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.167  2014/12/22 13:50:56  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    Summary: Testing uname and compiler version and if compiled 32 or 64
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Testing on Linux 64
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.166  2014/12/22 11:40:47  brouard
 #ifdef windows    *** empty log message ***
 #define DIRSEPARATOR '\\'  
 #define ODIRSEPARATOR '/'    Revision 1.165  2014/12/16 11:20:36  brouard
 #else    Summary: After compiling on Visual C
 #define DIRSEPARATOR '/'  
 #define ODIRSEPARATOR '\\'    * imach.c (Module): Merging 1.61 to 1.162
 #endif  
     Revision 1.164  2014/12/16 10:52:11  brouard
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
 int erreur; /* Error number */  
 int nvar;    * imach.c (Module): Merging 1.61 to 1.162
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.163  2014/12/16 10:30:11  brouard
 int nlstate=2; /* Number of live states */    * imach.c (Module): Merging 1.61 to 1.162
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Revision 1.162  2014/09/25 11:43:39  brouard
 int popbased=0;    Summary: temporary backup 0.99!
   
 int *wav; /* Number of waves for this individuual 0 is possible */    Revision 1.1  2014/09/16 11:06:58  brouard
 int maxwav; /* Maxim number of waves */    Summary: With some code (wrong) for nlopt
 int jmin, jmax; /* min, max spacing between 2 waves */  
 int mle, weightopt;    Author:
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.161  2014/09/15 20:41:41  brouard
 double jmean; /* Mean space between 2 waves */    Summary: Problem with macro SQR on Intel compiler
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.160  2014/09/02 09:24:05  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    *** empty log message ***
 FILE *ficlog;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Revision 1.159  2014/09/01 10:34:10  brouard
 FILE *ficresprobmorprev;    Summary: WIN32
 FILE *fichtm; /* Html File */    Author: Brouard
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    Revision 1.158  2014/08/27 17:11:51  brouard
 FILE  *ficresvij;    *** empty log message ***
 char fileresv[FILENAMELENGTH];  
 FILE  *ficresvpl;    Revision 1.157  2014/08/27 16:26:55  brouard
 char fileresvpl[FILENAMELENGTH];    Summary: Preparing windows Visual studio version
 char title[MAXLINE];    Author: Brouard
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    In order to compile on Visual studio, time.h is now correct and time_t
     and tm struct should be used. difftime should be used but sometimes I
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    just make the differences in raw time format (time(&now).
 char filelog[FILENAMELENGTH]; /* Log file */    Trying to suppress #ifdef LINUX
 char filerest[FILENAMELENGTH];    Add xdg-open for __linux in order to open default browser.
 char fileregp[FILENAMELENGTH];  
 char popfile[FILENAMELENGTH];    Revision 1.156  2014/08/25 20:10:10  brouard
     *** empty log message ***
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  
     Revision 1.155  2014/08/25 18:32:34  brouard
 #define NR_END 1    Summary: New compile, minor changes
 #define FREE_ARG char*    Author: Brouard
 #define FTOL 1.0e-10  
     Revision 1.154  2014/06/20 17:32:08  brouard
 #define NRANSI    Summary: Outputs now all graphs of convergence to period prevalence
 #define ITMAX 200  
     Revision 1.153  2014/06/20 16:45:46  brouard
 #define TOL 2.0e-4    Summary: If 3 live state, convergence to period prevalence on same graph
     Author: Brouard
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.152  2014/06/18 17:54:09  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Summary: open browser, use gnuplot on same dir than imach if not found in the path
   
 #define GOLD 1.618034    Revision 1.151  2014/06/18 16:43:30  brouard
 #define GLIMIT 100.0    *** empty log message ***
 #define TINY 1.0e-20  
     Revision 1.150  2014/06/18 16:42:35  brouard
 static double maxarg1,maxarg2;    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Author: brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
      Revision 1.149  2014/06/18 15:51:14  brouard
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Summary: Some fixes in parameter files errors
 #define rint(a) floor(a+0.5)    Author: Nicolas Brouard
   
 static double sqrarg;    Revision 1.148  2014/06/17 17:38:48  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Summary: Nothing new
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    Author: Brouard
   
 int imx;    Just a new packaging for OS/X version 0.98nS
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.147  2014/06/16 10:33:11  brouard
     *** empty log message ***
 int estepm;  
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    Revision 1.146  2014/06/16 10:20:28  brouard
     Summary: Merge
 int m,nb;    Author: Brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Merge, before building revised version.
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    Revision 1.145  2014/06/10 21:23:15  brouard
     Summary: Debugging with valgrind
 double *weight;    Author: Nicolas Brouard
 int **s; /* Status */  
 double *agedc, **covar, idx;    Lot of changes in order to output the results with some covariates
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    After the Edimburgh REVES conference 2014, it seems mandatory to
     improve the code.
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    No more memory valgrind error but a lot has to be done in order to
 double ftolhess; /* Tolerance for computing hessian */    continue the work of splitting the code into subroutines.
     Also, decodemodel has been improved. Tricode is still not
 /**************** split *************************/    optimal. nbcode should be improved. Documentation has been added in
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    the source code.
 {  
    char *s;                             /* pointer */    Revision 1.143  2014/01/26 09:45:38  brouard
    int  l1, l2;                         /* length counters */    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   
    l1 = strlen( path );                 /* length of path */    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
    s= strrchr( path, DIRSEPARATOR );            /* find last / */  
    if ( s == NULL ) {                   /* no directory, so use current */    Revision 1.142  2014/01/26 03:57:36  brouard
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  
 #if     defined(__bsd__)                /* get current working directory */    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
       extern char       *getwd( );  
     Revision 1.141  2014/01/26 02:42:01  brouard
       if ( getwd( dirc ) == NULL ) {    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #else  
       extern char       *getcwd( );    Revision 1.140  2011/09/02 10:37:54  brouard
     Summary: times.h is ok with mingw32 now.
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    Revision 1.139  2010/06/14 07:50:17  brouard
          return( GLOCK_ERROR_GETCWD );    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
       }    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Revision 1.138  2010/04/30 18:19:40  brouard
       s++;                              /* after this, the filename */    *** empty log message ***
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.137  2010/04/29 18:11:38  brouard
       strcpy( name, s );                /* save file name */    (Module): Checking covariates for more complex models
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    than V1+V2. A lot of change to be done. Unstable.
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.136  2010/04/26 20:30:53  brouard
    l1 = strlen( dirc );                 /* length of directory */    (Module): merging some libgsl code. Fixing computation
 #ifdef windows    of likelione (using inter/intrapolation if mle = 0) in order to
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    get same likelihood as if mle=1.
 #else    Some cleaning of code and comments added.
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  
 #endif    Revision 1.135  2009/10/29 15:33:14  brouard
    s = strrchr( name, '.' );            /* find last / */    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
    s++;  
    strcpy(ext,s);                       /* save extension */    Revision 1.134  2009/10/29 13:18:53  brouard
    l1= strlen( name);    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);    Revision 1.133  2009/07/06 10:21:25  brouard
    finame[l1-l2]= 0;    just nforces
    return( 0 );                         /* we're done */  
 }    Revision 1.132  2009/07/06 08:22:05  brouard
     Many tings
   
 /******************************************/    Revision 1.131  2009/06/20 16:22:47  brouard
     Some dimensions resccaled
 void replace(char *s, char*t)  
 {    Revision 1.130  2009/05/26 06:44:34  brouard
   int i;    (Module): Max Covariate is now set to 20 instead of 8. A
   int lg=20;    lot of cleaning with variables initialized to 0. Trying to make
   i=0;    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Revision 1.129  2007/08/31 13:49:27  lievre
     (s[i] = t[i]);    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
     if (t[i]== '\\') s[i]='/';  
   }    Revision 1.128  2006/06/30 13:02:05  brouard
 }    (Module): Clarifications on computing e.j
   
 int nbocc(char *s, char occ)    Revision 1.127  2006/04/28 18:11:50  brouard
 {    (Module): Yes the sum of survivors was wrong since
   int i,j=0;    imach-114 because nhstepm was no more computed in the age
   int lg=20;    loop. Now we define nhstepma in the age loop.
   i=0;    (Module): In order to speed up (in case of numerous covariates) we
   lg=strlen(s);    compute health expectancies (without variances) in a first step
   for(i=0; i<= lg; i++) {    and then all the health expectancies with variances or standard
   if  (s[i] == occ ) j++;    deviation (needs data from the Hessian matrices) which slows the
   }    computation.
   return j;    In the future we should be able to stop the program is only health
 }    expectancies and graph are needed without standard deviations.
   
 void cutv(char *u,char *v, char*t, char occ)    Revision 1.126  2006/04/28 17:23:28  brouard
 {    (Module): Yes the sum of survivors was wrong since
   /* cuts string t into u and v where u is ended by char occ excluding it    imach-114 because nhstepm was no more computed in the age
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)    loop. Now we define nhstepma in the age loop.
      gives u="abcedf" and v="ghi2j" */    Version 0.98h
   int i,lg,j,p=0;  
   i=0;    Revision 1.125  2006/04/04 15:20:31  lievre
   for(j=0; j<=strlen(t)-1; j++) {    Errors in calculation of health expectancies. Age was not initialized.
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Forecasting file added.
   }  
     Revision 1.124  2006/03/22 17:13:53  lievre
   lg=strlen(t);    Parameters are printed with %lf instead of %f (more numbers after the comma).
   for(j=0; j<p; j++) {    The log-likelihood is printed in the log file
     (u[j] = t[j]);  
   }    Revision 1.123  2006/03/20 10:52:43  brouard
      u[p]='\0';    * imach.c (Module): <title> changed, corresponds to .htm file
     name. <head> headers where missing.
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);    * imach.c (Module): Weights can have a decimal point as for
   }    English (a comma might work with a correct LC_NUMERIC environment,
 }    otherwise the weight is truncated).
     Modification of warning when the covariates values are not 0 or
 /********************** nrerror ********************/    1.
     Version 0.98g
 void nrerror(char error_text[])  
 {    Revision 1.122  2006/03/20 09:45:41  brouard
   fprintf(stderr,"ERREUR ...\n");    (Module): Weights can have a decimal point as for
   fprintf(stderr,"%s\n",error_text);    English (a comma might work with a correct LC_NUMERIC environment,
   exit(1);    otherwise the weight is truncated).
 }    Modification of warning when the covariates values are not 0 or
 /*********************** vector *******************/    1.
 double *vector(int nl, int nh)    Version 0.98g
 {  
   double *v;    Revision 1.121  2006/03/16 17:45:01  lievre
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    * imach.c (Module): Comments concerning covariates added
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;    * imach.c (Module): refinements in the computation of lli if
 }    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)    Revision 1.120  2006/03/16 15:10:38  lievre
 {    (Module): refinements in the computation of lli if
   free((FREE_ARG)(v+nl-NR_END));    status=-2 in order to have more reliable computation if stepm is
 }    not 1 month. Version 0.98f
   
 /************************ivector *******************************/    Revision 1.119  2006/03/15 17:42:26  brouard
 int *ivector(long nl,long nh)    (Module): Bug if status = -2, the loglikelihood was
 {    computed as likelihood omitting the logarithm. Version O.98e
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Revision 1.118  2006/03/14 18:20:07  brouard
   if (!v) nrerror("allocation failure in ivector");    (Module): varevsij Comments added explaining the second
   return v-nl+NR_END;    table of variances if popbased=1 .
 }    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
 /******************free ivector **************************/    (Module): Version 0.98d
 void free_ivector(int *v, long nl, long nh)  
 {    Revision 1.117  2006/03/14 17:16:22  brouard
   free((FREE_ARG)(v+nl-NR_END));    (Module): varevsij Comments added explaining the second
 }    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 /******************* imatrix *******************************/    (Module): Function pstamp added
 int **imatrix(long nrl, long nrh, long ncl, long nch)    (Module): Version 0.98d
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {    Revision 1.116  2006/03/06 10:29:27  brouard
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    (Module): Variance-covariance wrong links and
   int **m;    varian-covariance of ej. is needed (Saito).
    
   /* allocate pointers to rows */    Revision 1.115  2006/02/27 12:17:45  brouard
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    (Module): One freematrix added in mlikeli! 0.98c
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.114  2006/02/26 12:57:58  brouard
   m -= nrl;    (Module): Some improvements in processing parameter
      filename with strsep.
    
   /* allocate rows and set pointers to them */    Revision 1.113  2006/02/24 14:20:24  brouard
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    (Module): Memory leaks checks with valgrind and:
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    datafile was not closed, some imatrix were not freed and on matrix
   m[nrl] += NR_END;    allocation too.
   m[nrl] -= ncl;  
      Revision 1.112  2006/01/30 09:55:26  brouard
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    (Module): Back to gnuplot.exe instead of wgnuplot.exe
    
   /* return pointer to array of pointers to rows */    Revision 1.111  2006/01/25 20:38:18  brouard
   return m;    (Module): Lots of cleaning and bugs added (Gompertz)
 }    (Module): Comments can be added in data file. Missing date values
     can be a simple dot '.'.
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)    Revision 1.110  2006/01/25 00:51:50  brouard
       int **m;    (Module): Lots of cleaning and bugs added (Gompertz)
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */    Revision 1.109  2006/01/24 19:37:15  brouard
 {    (Module): Comments (lines starting with a #) are allowed in data.
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));    Revision 1.108  2006/01/19 18:05:42  lievre
 }    Gnuplot problem appeared...
     To be fixed
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)    Revision 1.107  2006/01/19 16:20:37  brouard
 {    Test existence of gnuplot in imach path
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;    Revision 1.106  2006/01/19 13:24:36  brouard
     Some cleaning and links added in html output
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.105  2006/01/05 20:23:19  lievre
   m += NR_END;    *** empty log message ***
   m -= nrl;  
     Revision 1.104  2005/09/30 16:11:43  lievre
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    (Module): sump fixed, loop imx fixed, and simplifications.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    (Module): If the status is missing at the last wave but we know
   m[nrl] += NR_END;    that the person is alive, then we can code his/her status as -2
   m[nrl] -= ncl;    (instead of missing=-1 in earlier versions) and his/her
     contributions to the likelihood is 1 - Prob of dying from last
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   return m;    the healthy state at last known wave). Version is 0.98
 }  
     Revision 1.103  2005/09/30 15:54:49  lievre
 /*************************free matrix ************************/    (Module): sump fixed, loop imx fixed, and simplifications.
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {    Revision 1.102  2004/09/15 17:31:30  brouard
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    Add the possibility to read data file including tab characters.
   free((FREE_ARG)(m+nrl-NR_END));  
 }    Revision 1.101  2004/09/15 10:38:38  brouard
     Fix on curr_time
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    Revision 1.100  2004/07/12 18:29:06  brouard
 {    Add version for Mac OS X. Just define UNIX in Makefile
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;    Revision 1.99  2004/06/05 08:57:40  brouard
     *** empty log message ***
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.98  2004/05/16 15:05:56  brouard
   m += NR_END;    New version 0.97 . First attempt to estimate force of mortality
   m -= nrl;    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    This is the basic analysis of mortality and should be done before any
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    other analysis, in order to test if the mortality estimated from the
   m[nrl] += NR_END;    cross-longitudinal survey is different from the mortality estimated
   m[nrl] -= ncl;    from other sources like vital statistic data.
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    The same imach parameter file can be used but the option for mle should be -3.
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    Agnès, who wrote this part of the code, tried to keep most of the
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    former routines in order to include the new code within the former code.
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;    The output is very simple: only an estimate of the intercept and of
   for (j=ncl+1; j<=nch; j++)    the slope with 95% confident intervals.
     m[nrl][j]=m[nrl][j-1]+nlay;  
      Current limitations:
   for (i=nrl+1; i<=nrh; i++) {    A) Even if you enter covariates, i.e. with the
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     for (j=ncl+1; j<=nch; j++)    B) There is no computation of Life Expectancy nor Life Table.
       m[i][j]=m[i][j-1]+nlay;  
   }    Revision 1.97  2004/02/20 13:25:42  lievre
   return m;    Version 0.96d. Population forecasting command line is (temporarily)
 }    suppressed.
   
 /*************************free ma3x ************************/    Revision 1.96  2003/07/15 15:38:55  brouard
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 {    rewritten within the same printf. Workaround: many printfs.
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    Revision 1.95  2003/07/08 07:54:34  brouard
   free((FREE_ARG)(m+nrl-NR_END));    * imach.c (Repository):
 }    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
 /***************** f1dim *************************/  
 extern int ncom;    Revision 1.94  2003/06/27 13:00:02  brouard
 extern double *pcom,*xicom;    Just cleaning
 extern double (*nrfunc)(double []);  
      Revision 1.93  2003/06/25 16:33:55  brouard
 double f1dim(double x)    (Module): On windows (cygwin) function asctime_r doesn't
 {    exist so I changed back to asctime which exists.
   int j;    (Module): Version 0.96b
   double f;  
   double *xt;    Revision 1.92  2003/06/25 16:30:45  brouard
      (Module): On windows (cygwin) function asctime_r doesn't
   xt=vector(1,ncom);    exist so I changed back to asctime which exists.
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);    Revision 1.91  2003/06/25 15:30:29  brouard
   free_vector(xt,1,ncom);    * imach.c (Repository): Duplicated warning errors corrected.
   return f;    (Repository): Elapsed time after each iteration is now output. It
 }    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
 /*****************brent *************************/    concerning matrix of covariance. It has extension -cov.htm.
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {    Revision 1.90  2003/06/24 12:34:15  brouard
   int iter;    (Module): Some bugs corrected for windows. Also, when
   double a,b,d,etemp;    mle=-1 a template is output in file "or"mypar.txt with the design
   double fu,fv,fw,fx;    of the covariance matrix to be input.
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;    Revision 1.89  2003/06/24 12:30:52  brouard
   double e=0.0;    (Module): Some bugs corrected for windows. Also, when
      mle=-1 a template is output in file "or"mypar.txt with the design
   a=(ax < cx ? ax : cx);    of the covariance matrix to be input.
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;    Revision 1.88  2003/06/23 17:54:56  brouard
   fw=fv=fx=(*f)(x);    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);    Revision 1.87  2003/06/18 12:26:01  brouard
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    Version 0.96
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  
     printf(".");fflush(stdout);    Revision 1.86  2003/06/17 20:04:08  brouard
     fprintf(ficlog,".");fflush(ficlog);    (Module): Change position of html and gnuplot routines and added
 #ifdef DEBUG    routine fileappend.
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    Revision 1.85  2003/06/17 13:12:43  brouard
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    * imach.c (Repository): Check when date of death was earlier that
 #endif    current date of interview. It may happen when the death was just
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    prior to the death. In this case, dh was negative and likelihood
       *xmin=x;    was wrong (infinity). We still send an "Error" but patch by
       return fx;    assuming that the date of death was just one stepm after the
     }    interview.
     ftemp=fu;    (Repository): Because some people have very long ID (first column)
     if (fabs(e) > tol1) {    we changed int to long in num[] and we added a new lvector for
       r=(x-w)*(fx-fv);    memory allocation. But we also truncated to 8 characters (left
       q=(x-v)*(fx-fw);    truncation)
       p=(x-v)*q-(x-w)*r;    (Repository): No more line truncation errors.
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;    Revision 1.84  2003/06/13 21:44:43  brouard
       q=fabs(q);    * imach.c (Repository): Replace "freqsummary" at a correct
       etemp=e;    place. It differs from routine "prevalence" which may be called
       e=d;    many times. Probs is memory consuming and must be used with
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    parcimony.
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
       else {  
         d=p/q;    Revision 1.83  2003/06/10 13:39:11  lievre
         u=x+d;    *** empty log message ***
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);    Revision 1.82  2003/06/05 15:57:20  brouard
       }    Add log in  imach.c and  fullversion number is now printed.
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  */
     }  /*
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));     Interpolated Markov Chain
     fu=(*f)(u);  
     if (fu <= fx) {    Short summary of the programme:
       if (u >= x) a=x; else b=x;    
       SHFT(v,w,x,u)    This program computes Healthy Life Expectancies from
         SHFT(fv,fw,fx,fu)    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
         } else {    first survey ("cross") where individuals from different ages are
           if (u < x) a=u; else b=u;    interviewed on their health status or degree of disability (in the
           if (fu <= fw || w == x) {    case of a health survey which is our main interest) -2- at least a
             v=w;    second wave of interviews ("longitudinal") which measure each change
             w=u;    (if any) in individual health status.  Health expectancies are
             fv=fw;    computed from the time spent in each health state according to a
             fw=fu;    model. More health states you consider, more time is necessary to reach the
           } else if (fu <= fv || v == x || v == w) {    Maximum Likelihood of the parameters involved in the model.  The
             v=u;    simplest model is the multinomial logistic model where pij is the
             fv=fu;    probability to be observed in state j at the second wave
           }    conditional to be observed in state i at the first wave. Therefore
         }    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   }    'age' is age and 'sex' is a covariate. If you want to have a more
   nrerror("Too many iterations in brent");    complex model than "constant and age", you should modify the program
   *xmin=x;    where the markup *Covariates have to be included here again* invites
   return fx;    you to do it.  More covariates you add, slower the
 }    convergence.
   
 /****************** mnbrak ***********************/    The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    identical for each individual. Also, if a individual missed an
             double (*func)(double))    intermediate interview, the information is lost, but taken into
 {    account using an interpolation or extrapolation.  
   double ulim,u,r,q, dum;  
   double fu;    hPijx is the probability to be observed in state i at age x+h
      conditional to the observed state i at age x. The delay 'h' can be
   *fa=(*func)(*ax);    split into an exact number (nh*stepm) of unobserved intermediate
   *fb=(*func)(*bx);    states. This elementary transition (by month, quarter,
   if (*fb > *fa) {    semester or year) is modelled as a multinomial logistic.  The hPx
     SHFT(dum,*ax,*bx,dum)    matrix is simply the matrix product of nh*stepm elementary matrices
       SHFT(dum,*fb,*fa,dum)    and the contribution of each individual to the likelihood is simply
       }    hPijx.
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);    Also this programme outputs the covariance matrix of the parameters but also
   while (*fb > *fc) {    of the life expectancies. It also computes the period (stable) prevalence. 
     r=(*bx-*ax)*(*fb-*fc);    
     q=(*bx-*cx)*(*fb-*fa);    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/             Institut national d'études démographiques, Paris.
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    This software have been partly granted by Euro-REVES, a concerted action
     ulim=(*bx)+GLIMIT*(*cx-*bx);    from the European Union.
     if ((*bx-u)*(u-*cx) > 0.0) {    It is copyrighted identically to a GNU software product, ie programme and
       fu=(*func)(u);    software can be distributed freely for non commercial use. Latest version
     } else if ((*cx-u)*(u-ulim) > 0.0) {    can be accessed at http://euroreves.ined.fr/imach .
       fu=(*func)(u);  
       if (fu < *fc) {    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
           SHFT(*fb,*fc,fu,(*func)(u))    
           }    **********************************************************************/
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  /*
       u=ulim;    main
       fu=(*func)(u);    read parameterfile
     } else {    read datafile
       u=(*cx)+GOLD*(*cx-*bx);    concatwav
       fu=(*func)(u);    freqsummary
     }    if (mle >= 1)
     SHFT(*ax,*bx,*cx,u)      mlikeli
       SHFT(*fa,*fb,*fc,fu)    print results files
       }    if mle==1 
 }       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
 /*************** linmin ************************/        begin-prev-date,...
     open gnuplot file
 int ncom;    open html file
 double *pcom,*xicom;    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
 double (*nrfunc)(double []);     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
                                      | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))      freexexit2 possible for memory heap.
 {  
   double brent(double ax, double bx, double cx,    h Pij x                         | pij_nom  ficrestpij
                double (*f)(double), double tol, double *xmin);     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
   double f1dim(double x);         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
               double *fc, double (*func)(double));  
   int j;         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
   double xx,xmin,bx,ax;         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
   double fx,fb,fa;    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
       Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
   ncom=n;     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
   pcom=vector(1,n);  
   xicom=vector(1,n);    forecasting if prevfcast==1 prevforecast call prevalence()
   nrfunc=func;    health expectancies
   for (j=1;j<=n;j++) {    Variance-covariance of DFLE
     pcom[j]=p[j];    prevalence()
     xicom[j]=xi[j];     movingaverage()
   }    varevsij() 
   ax=0.0;    if popbased==1 varevsij(,popbased)
   xx=1.0;    total life expectancies
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    Variance of period (stable) prevalence
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);   end
 #ifdef DEBUG  */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  #define POWELL /* Instead of NLOPT */
 #endif  /* #define POWELLORIGINAL */ /* Don't use Directest to decide new direction but original Powell test */
   for (j=1;j<=n;j++) {  /* #define MNBRAKORIGINAL */ /* Don't use mnbrak fix */
     xi[j] *= xmin;  
     p[j] += xi[j];  #include <math.h>
   }  #include <stdio.h>
   free_vector(xicom,1,n);  #include <stdlib.h>
   free_vector(pcom,1,n);  #include <string.h>
 }  
   #ifdef _WIN32
 /*************** powell ************************/  #include <io.h>
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  #include <windows.h>
             double (*func)(double []))  #include <tchar.h>
 {  #else
   void linmin(double p[], double xi[], int n, double *fret,  #include <unistd.h>
               double (*func)(double []));  #endif
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  #include <limits.h>
   double fp,fptt;  #include <sys/types.h>
   double *xits;  
   pt=vector(1,n);  #if defined(__GNUC__)
   ptt=vector(1,n);  #include <sys/utsname.h> /* Doesn't work on Windows */
   xit=vector(1,n);  #endif
   xits=vector(1,n);  
   *fret=(*func)(p);  #include <sys/stat.h>
   for (j=1;j<=n;j++) pt[j]=p[j];  #include <errno.h>
   for (*iter=1;;++(*iter)) {  /* extern int errno; */
     fp=(*fret);  
     ibig=0;  /* #ifdef LINUX */
     del=0.0;  /* #include <time.h> */
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  /* #include "timeval.h" */
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  /* #else */
     for (i=1;i<=n;i++)  /* #include <sys/time.h> */
       printf(" %d %.12f",i, p[i]);  /* #endif */
     fprintf(ficlog," %d %.12f",i, p[i]);  
     printf("\n");  #include <time.h>
     fprintf(ficlog,"\n");  
     for (i=1;i<=n;i++) {  #ifdef GSL
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  #include <gsl/gsl_errno.h>
       fptt=(*fret);  #include <gsl/gsl_multimin.h>
 #ifdef DEBUG  #endif
       printf("fret=%lf \n",*fret);  
       fprintf(ficlog,"fret=%lf \n",*fret);  
 #endif  #ifdef NLOPT
       printf("%d",i);fflush(stdout);  #include <nlopt.h>
       fprintf(ficlog,"%d",i);fflush(ficlog);  typedef struct {
       linmin(p,xit,n,fret,func);    double (* function)(double [] );
       if (fabs(fptt-(*fret)) > del) {  } myfunc_data ;
         del=fabs(fptt-(*fret));  #endif
         ibig=i;  
       }  /* #include <libintl.h> */
 #ifdef DEBUG  /* #define _(String) gettext (String) */
       printf("%d %.12e",i,(*fret));  
       fprintf(ficlog,"%d %.12e",i,(*fret));  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
       for (j=1;j<=n;j++) {  
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  #define GNUPLOTPROGRAM "gnuplot"
         printf(" x(%d)=%.12e",j,xit[j]);  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  #define FILENAMELENGTH 132
       }  
       for(j=1;j<=n;j++) {  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
         printf(" p=%.12e",p[j]);  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
         fprintf(ficlog," p=%.12e",p[j]);  
       }  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
       printf("\n");  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
       fprintf(ficlog,"\n");  
 #endif  #define NINTERVMAX 8
     }  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
 #ifdef DEBUG  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
       int k[2],l;  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
       k[0]=1;  #define MAXN 20000
       k[1]=-1;  #define YEARM 12. /**< Number of months per year */
       printf("Max: %.12e",(*func)(p));  #define AGESUP 130
       fprintf(ficlog,"Max: %.12e",(*func)(p));  #define AGEBASE 40
       for (j=1;j<=n;j++) {  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
         printf(" %.12e",p[j]);  #ifdef _WIN32
         fprintf(ficlog," %.12e",p[j]);  #define DIRSEPARATOR '\\'
       }  #define CHARSEPARATOR "\\"
       printf("\n");  #define ODIRSEPARATOR '/'
       fprintf(ficlog,"\n");  #else
       for(l=0;l<=1;l++) {  #define DIRSEPARATOR '/'
         for (j=1;j<=n;j++) {  #define CHARSEPARATOR "/"
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  #define ODIRSEPARATOR '\\'
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  #endif
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
         }  /* $Id$ */
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  /* $State$ */
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }  char version[]="Imach version 0.98q0, March 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
 #endif  char fullversion[]="$Revision$ $Date$"; 
   char strstart[80];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH];
       free_vector(xit,1,n);  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       free_vector(xits,1,n);  int nvar=0, nforce=0; /* Number of variables, number of forces */
       free_vector(ptt,1,n);  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
       free_vector(pt,1,n);  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
       return;  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
     }  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
     for (j=1;j<=n;j++) {  int cptcovprodnoage=0; /**< Number of covariate products without age */   
       ptt[j]=2.0*p[j]-pt[j];  int cptcoveff=0; /* Total number of covariates to vary for printing results */
       xit[j]=p[j]-pt[j];  int cptcov=0; /* Working variable */
       pt[j]=p[j];  int npar=NPARMAX;
     }  int nlstate=2; /* Number of live states */
     fptt=(*func)(ptt);  int ndeath=1; /* Number of dead states */
     if (fptt < fp) {  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  int popbased=0;
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);  int *wav; /* Number of waves for this individuual 0 is possible */
         for (j=1;j<=n;j++) {  int maxwav=0; /* Maxim number of waves */
           xi[j][ibig]=xi[j][n];  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
           xi[j][n]=xit[j];  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
         }  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
 #ifdef DEBUG                     to the likelihood and the sum of weights (done by funcone)*/
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  int mle=1, weightopt=0;
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
         for(j=1;j<=n;j++){  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
           printf(" %.12e",xit[j]);  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
           fprintf(ficlog," %.12e",xit[j]);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
         }  int countcallfunc=0;  /* Count the number of calls to func */
         printf("\n");  double jmean=1; /* Mean space between 2 waves */
         fprintf(ficlog,"\n");  double **matprod2(); /* test */
 #endif  double **oldm, **newm, **savm; /* Working pointers to matrices */
       }  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     }  /*FILE *fic ; */ /* Used in readdata only */
   }  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 }  FILE *ficlog, *ficrespow;
   int globpr=0; /* Global variable for printing or not */
 /**** Prevalence limit ****************/  double fretone; /* Only one call to likelihood */
   long ipmx=0; /* Number of contributions */
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  double sw; /* Sum of weights */
 {  char filerespow[FILENAMELENGTH];
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
      matrix by transitions matrix until convergence is reached */  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   int i, ii,j,k;  FILE *ficresprobmorprev;
   double min, max, maxmin, maxmax,sumnew=0.;  FILE *fichtm, *fichtmcov; /* Html File */
   double **matprod2();  FILE *ficreseij;
   double **out, cov[NCOVMAX], **pmij();  char filerese[FILENAMELENGTH];
   double **newm;  FILE *ficresstdeij;
   double agefin, delaymax=50 ; /* Max number of years to converge */  char fileresstde[FILENAMELENGTH];
   FILE *ficrescveij;
   for (ii=1;ii<=nlstate+ndeath;ii++)  char filerescve[FILENAMELENGTH];
     for (j=1;j<=nlstate+ndeath;j++){  FILE  *ficresvij;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  char fileresv[FILENAMELENGTH];
     }  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
    cov[1]=1.;  char title[MAXLINE];
    char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
     newm=savm;  char command[FILENAMELENGTH];
     /* Covariates have to be included here again */  int  outcmd=0;
      cov[2]=agefin;  
    char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       for (k=1; k<=cptcovn;k++) {  
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  char filelog[FILENAMELENGTH]; /* Log file */
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  char filerest[FILENAMELENGTH];
       }  char fileregp[FILENAMELENGTH];
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  char popfile[FILENAMELENGTH];
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  /* struct timezone tzp; */
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  /* extern int gettimeofday(); */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  struct tm tml, *gmtime(), *localtime();
   
     savm=oldm;  extern time_t time();
     oldm=newm;  
     maxmax=0.;  struct tm start_time, end_time, curr_time, last_time, forecast_time;
     for(j=1;j<=nlstate;j++){  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
       min=1.;  struct tm tm;
       max=0.;  
       for(i=1; i<=nlstate; i++) {  char strcurr[80], strfor[80];
         sumnew=0;  
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  char *endptr;
         prlim[i][j]= newm[i][j]/(1-sumnew);  long lval;
         max=FMAX(max,prlim[i][j]);  double dval;
         min=FMIN(min,prlim[i][j]);  
       }  #define NR_END 1
       maxmin=max-min;  #define FREE_ARG char*
       maxmax=FMAX(maxmax,maxmin);  #define FTOL 1.0e-10
     }  
     if(maxmax < ftolpl){  #define NRANSI 
       return prlim;  #define ITMAX 200 
     }  
   }  #define TOL 2.0e-4 
 }  
   #define CGOLD 0.3819660 
 /*************** transition probabilities ***************/  #define ZEPS 1.0e-10 
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  
 {  #define GOLD 1.618034 
   double s1, s2;  #define GLIMIT 100.0 
   /*double t34;*/  #define TINY 1.0e-20 
   int i,j,j1, nc, ii, jj;  
   static double maxarg1,maxarg2;
     for(i=1; i<= nlstate; i++){  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     for(j=1; j<i;j++){  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    
         /*s2 += param[i][j][nc]*cov[nc];*/  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  #define rint(a) floor(a+0.5)
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
       }  #define mytinydouble 1.0e-16
       ps[i][j]=s2;  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
     }  /* static double dsqrarg; */
     for(j=i+1; j<=nlstate+ndeath;j++){  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  static double sqrarg;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       }  int agegomp= AGEGOMP;
       ps[i][j]=s2;  
     }  int imx; 
   }  int stepm=1;
     /*ps[3][2]=1;*/  /* Stepm, step in month: minimum step interpolation*/
   
   for(i=1; i<= nlstate; i++){  int estepm;
      s1=0;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     for(j=1; j<i; j++)  
       s1+=exp(ps[i][j]);  int m,nb;
     for(j=i+1; j<=nlstate+ndeath; j++)  long *num;
       s1+=exp(ps[i][j]);  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     ps[i][i]=1./(s1+1.);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     for(j=1; j<i; j++)  double **pmmij, ***probs;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  double *ageexmed,*agecens;
     for(j=i+1; j<=nlstate+ndeath; j++)  double dateintmean=0;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  double *weight;
   } /* end i */  int **s; /* Status */
   double *agedc;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
     for(jj=1; jj<= nlstate+ndeath; jj++){                    * covar=matrix(0,NCOVMAX,1,n); 
       ps[ii][jj]=0;                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
       ps[ii][ii]=1;  double  idx; 
     }  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
   }  int *Ndum; /** Freq of modality (tricode */
   int **codtab; /**< codtab=imatrix(1,100,1,10); */
   int **Tvard, *Tprod, cptcovprod, *Tvaraff;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  double *lsurv, *lpop, *tpop;
     for(jj=1; jj<= nlstate+ndeath; jj++){  
      printf("%lf ",ps[ii][jj]);  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
    }  double ftolhess; /**< Tolerance for computing hessian */
     printf("\n ");  
     }  /**************** split *************************/
     printf("\n ");printf("%lf ",cov[2]);*/  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 /*  {
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   goto end;*/       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     return ps;    */ 
 }    char  *ss;                            /* pointer */
     int   l1, l2;                         /* length counters */
 /**************** Product of 2 matrices ******************/  
     l1 = strlen(path );                   /* length of path */
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 {    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    if ( ss == NULL ) {                   /* no directory, so determine current directory */
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      strcpy( name, path );               /* we got the fullname name because no directory */
   /* in, b, out are matrice of pointers which should have been initialized      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
      before: only the contents of out is modified. The function returns        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
      a pointer to pointers identical to out */      /* get current working directory */
   long i, j, k;      /*    extern  char* getcwd ( char *buf , int len);*/
   for(i=nrl; i<= nrh; i++)  #ifdef WIN32
     for(k=ncolol; k<=ncoloh; k++)      if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  #else
         out[i][k] +=in[i][j]*b[j][k];          if (getcwd(dirc, FILENAME_MAX) == NULL) {
   #endif
   return out;        return( GLOCK_ERROR_GETCWD );
 }      }
       /* got dirc from getcwd*/
       printf(" DIRC = %s \n",dirc);
 /************* Higher Matrix Product ***************/    } else {                              /* strip direcotry from path */
       ss++;                               /* after this, the filename */
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      l2 = strlen( ss );                  /* length of filename */
 {      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      strcpy( name, ss );         /* save file name */
      duration (i.e. until      strncpy( dirc, path, l1 - l2 );     /* now the directory */
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      dirc[l1-l2] = 0;                    /* add zero */
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      printf(" DIRC2 = %s \n",dirc);
      (typically every 2 years instead of every month which is too big).    }
      Model is determined by parameters x and covariates have to be    /* We add a separator at the end of dirc if not exists */
      included manually here.    l1 = strlen( dirc );                  /* length of directory */
     if( dirc[l1-1] != DIRSEPARATOR ){
      */      dirc[l1] =  DIRSEPARATOR;
       dirc[l1+1] = 0; 
   int i, j, d, h, k;      printf(" DIRC3 = %s \n",dirc);
   double **out, cov[NCOVMAX];    }
   double **newm;    ss = strrchr( name, '.' );            /* find last / */
     if (ss >0){
   /* Hstepm could be zero and should return the unit matrix */      ss++;
   for (i=1;i<=nlstate+ndeath;i++)      strcpy(ext,ss);                     /* save extension */
     for (j=1;j<=nlstate+ndeath;j++){      l1= strlen( name);
       oldm[i][j]=(i==j ? 1.0 : 0.0);      l2= strlen(ss)+1;
       po[i][j][0]=(i==j ? 1.0 : 0.0);      strncpy( finame, name, l1-l2);
     }      finame[l1-l2]= 0;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    }
   for(h=1; h <=nhstepm; h++){  
     for(d=1; d <=hstepm; d++){    return( 0 );                          /* we're done */
       newm=savm;  }
       /* Covariates have to be included here again */  
       cov[1]=1.;  
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  /******************************************/
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  
       for (k=1; k<=cptcovage;k++)  void replace_back_to_slash(char *s, char*t)
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  {
       for (k=1; k<=cptcovprod;k++)    int i;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    int lg=0;
     i=0;
     lg=strlen(t);
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    for(i=0; i<= lg; i++) {
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      (s[i] = t[i]);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      if (t[i]== '\\') s[i]='/';
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    }
       savm=oldm;  }
       oldm=newm;  
     }  char *trimbb(char *out, char *in)
     for(i=1; i<=nlstate+ndeath; i++)  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
       for(j=1;j<=nlstate+ndeath;j++) {    char *s;
         po[i][j][h]=newm[i][j];    s=out;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    while (*in != '\0'){
          */      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
       }        in++;
   } /* end h */      }
   return po;      *out++ = *in++;
 }    }
     *out='\0';
     return s;
 /*************** log-likelihood *************/  }
 double func( double *x)  
 {  char *cutl(char *blocc, char *alocc, char *in, char occ)
   int i, ii, j, k, mi, d, kk;  {
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
   double **out;       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   double sw; /* Sum of weights */       gives blocc="abcdef2ghi" and alocc="j".
   double lli; /* Individual log likelihood */       If occ is not found blocc is null and alocc is equal to in. Returns blocc
   long ipmx;    */
   /*extern weight */    char *s, *t;
   /* We are differentiating ll according to initial status */    t=in;s=in;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    while ((*in != occ) && (*in != '\0')){
   /*for(i=1;i<imx;i++)      *alocc++ = *in++;
     printf(" %d\n",s[4][i]);    }
   */    if( *in == occ){
   cov[1]=1.;      *(alocc)='\0';
       s=++in;
   for(k=1; k<=nlstate; k++) ll[k]=0.;    }
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){   
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    if (s == t) {/* occ not found */
     for(mi=1; mi<= wav[i]-1; mi++){      *(alocc-(in-s))='\0';
       for (ii=1;ii<=nlstate+ndeath;ii++)      in=s;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    }
       for(d=0; d<dh[mi][i]; d++){    while ( *in != '\0'){
         newm=savm;      *blocc++ = *in++;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    }
         for (kk=1; kk<=cptcovage;kk++) {  
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    *blocc='\0';
         }    return t;
          }
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  char *cutv(char *blocc, char *alocc, char *in, char occ)
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  {
         savm=oldm;    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
         oldm=newm;       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
               gives blocc="abcdef2ghi" and alocc="j".
               If occ is not found blocc is null and alocc is equal to in. Returns alocc
       } /* end mult */    */
          char *s, *t;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    t=in;s=in;
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    while (*in != '\0'){
       ipmx +=1;      while( *in == occ){
       sw += weight[i];        *blocc++ = *in++;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        s=in;
     } /* end of wave */      }
   } /* end of individual */      *blocc++ = *in++;
     }
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    if (s == t) /* occ not found */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      *(blocc-(in-s))='\0';
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    else
   return -l;      *(blocc-(in-s)-1)='\0';
 }    in=s;
     while ( *in != '\0'){
       *alocc++ = *in++;
 /*********** Maximum Likelihood Estimation ***************/    }
   
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    *alocc='\0';
 {    return s;
   int i,j, iter;  }
   double **xi,*delti;  
   double fret;  int nbocc(char *s, char occ)
   xi=matrix(1,npar,1,npar);  {
   for (i=1;i<=npar;i++)    int i,j=0;
     for (j=1;j<=npar;j++)    int lg=20;
       xi[i][j]=(i==j ? 1.0 : 0.0);    i=0;
   printf("Powell\n");  fprintf(ficlog,"Powell\n");    lg=strlen(s);
   powell(p,xi,npar,ftol,&iter,&fret,func);    for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    }
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    return j;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  }
   
 }  /* void cutv(char *u,char *v, char*t, char occ) */
   /* { */
 /**** Computes Hessian and covariance matrix ***/  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
 {  /*      gives u="abcdef2ghi" and v="j" *\/ */
   double  **a,**y,*x,pd;  /*   int i,lg,j,p=0; */
   double **hess;  /*   i=0; */
   int i, j,jk;  /*   lg=strlen(t); */
   int *indx;  /*   for(j=0; j<=lg-1; j++) { */
   /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   double hessii(double p[], double delta, int theta, double delti[]);  /*   } */
   double hessij(double p[], double delti[], int i, int j);  
   void lubksb(double **a, int npar, int *indx, double b[]) ;  /*   for(j=0; j<p; j++) { */
   void ludcmp(double **a, int npar, int *indx, double *d) ;  /*     (u[j] = t[j]); */
   /*   } */
   hess=matrix(1,npar,1,npar);  /*      u[p]='\0'; */
   
   printf("\nCalculation of the hessian matrix. Wait...\n");  /*    for(j=0; j<= lg; j++) { */
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   for (i=1;i<=npar;i++){  /*   } */
     printf("%d",i);fflush(stdout);  /* } */
     fprintf(ficlog,"%d",i);fflush(ficlog);  
     hess[i][i]=hessii(p,ftolhess,i,delti);  #ifdef _WIN32
     /*printf(" %f ",p[i]);*/  char * strsep(char **pp, const char *delim)
     /*printf(" %lf ",hess[i][i]);*/  {
   }    char *p, *q;
             
   for (i=1;i<=npar;i++) {    if ((p = *pp) == NULL)
     for (j=1;j<=npar;j++)  {      return 0;
       if (j>i) {    if ((q = strpbrk (p, delim)) != NULL)
         printf(".%d%d",i,j);fflush(stdout);    {
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);      *pp = q + 1;
         hess[i][j]=hessij(p,delti,i,j);      *q = '\0';
         hess[j][i]=hess[i][j];        }
         /*printf(" %lf ",hess[i][j]);*/    else
       }      *pp = 0;
     }    return p;
   }  }
   printf("\n");  #endif
   fprintf(ficlog,"\n");  
   /********************** nrerror ********************/
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");  void nrerror(char error_text[])
    {
   a=matrix(1,npar,1,npar);    fprintf(stderr,"ERREUR ...\n");
   y=matrix(1,npar,1,npar);    fprintf(stderr,"%s\n",error_text);
   x=vector(1,npar);    exit(EXIT_FAILURE);
   indx=ivector(1,npar);  }
   for (i=1;i<=npar;i++)  /*********************** vector *******************/
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  double *vector(int nl, int nh)
   ludcmp(a,npar,indx,&pd);  {
     double *v;
   for (j=1;j<=npar;j++) {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     for (i=1;i<=npar;i++) x[i]=0;    if (!v) nrerror("allocation failure in vector");
     x[j]=1;    return v-nl+NR_END;
     lubksb(a,npar,indx,x);  }
     for (i=1;i<=npar;i++){  
       matcov[i][j]=x[i];  /************************ free vector ******************/
     }  void free_vector(double*v, int nl, int nh)
   }  {
     free((FREE_ARG)(v+nl-NR_END));
   printf("\n#Hessian matrix#\n");  }
   fprintf(ficlog,"\n#Hessian matrix#\n");  
   for (i=1;i<=npar;i++) {  /************************ivector *******************************/
     for (j=1;j<=npar;j++) {  int *ivector(long nl,long nh)
       printf("%.3e ",hess[i][j]);  {
       fprintf(ficlog,"%.3e ",hess[i][j]);    int *v;
     }    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     printf("\n");    if (!v) nrerror("allocation failure in ivector");
     fprintf(ficlog,"\n");    return v-nl+NR_END;
   }  }
   
   /* Recompute Inverse */  /******************free ivector **************************/
   for (i=1;i<=npar;i++)  void free_ivector(int *v, long nl, long nh)
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  {
   ludcmp(a,npar,indx,&pd);    free((FREE_ARG)(v+nl-NR_END));
   }
   /*  printf("\n#Hessian matrix recomputed#\n");  
   /************************lvector *******************************/
   for (j=1;j<=npar;j++) {  long *lvector(long nl,long nh)
     for (i=1;i<=npar;i++) x[i]=0;  {
     x[j]=1;    long *v;
     lubksb(a,npar,indx,x);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     for (i=1;i<=npar;i++){    if (!v) nrerror("allocation failure in ivector");
       y[i][j]=x[i];    return v-nl+NR_END;
       printf("%.3e ",y[i][j]);  }
       fprintf(ficlog,"%.3e ",y[i][j]);  
     }  /******************free lvector **************************/
     printf("\n");  void free_lvector(long *v, long nl, long nh)
     fprintf(ficlog,"\n");  {
   }    free((FREE_ARG)(v+nl-NR_END));
   */  }
   
   free_matrix(a,1,npar,1,npar);  /******************* imatrix *******************************/
   free_matrix(y,1,npar,1,npar);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   free_vector(x,1,npar);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   free_ivector(indx,1,npar);  { 
   free_matrix(hess,1,npar,1,npar);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     int **m; 
     
 }    /* allocate pointers to rows */ 
     m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 /*************** hessian matrix ****************/    if (!m) nrerror("allocation failure 1 in matrix()"); 
 double hessii( double x[], double delta, int theta, double delti[])    m += NR_END; 
 {    m -= nrl; 
   int i;    
   int l=1, lmax=20;    
   double k1,k2;    /* allocate rows and set pointers to them */ 
   double p2[NPARMAX+1];    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   double res;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    m[nrl] += NR_END; 
   double fx;    m[nrl] -= ncl; 
   int k=0,kmax=10;    
   double l1;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     
   fx=func(x);    /* return pointer to array of pointers to rows */ 
   for (i=1;i<=npar;i++) p2[i]=x[i];    return m; 
   for(l=0 ; l <=lmax; l++){  } 
     l1=pow(10,l);  
     delts=delt;  /****************** free_imatrix *************************/
     for(k=1 ; k <kmax; k=k+1){  void free_imatrix(m,nrl,nrh,ncl,nch)
       delt = delta*(l1*k);        int **m;
       p2[theta]=x[theta] +delt;        long nch,ncl,nrh,nrl; 
       k1=func(p2)-fx;       /* free an int matrix allocated by imatrix() */ 
       p2[theta]=x[theta]-delt;  { 
       k2=func(p2)-fx;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       /*res= (k1-2.0*fx+k2)/delt/delt; */    free((FREE_ARG) (m+nrl-NR_END)); 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  } 
        
 #ifdef DEBUG  /******************* matrix *******************************/
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  double **matrix(long nrl, long nrh, long ncl, long nch)
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  {
 #endif    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    double **m;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       }    if (!m) nrerror("allocation failure 1 in matrix()");
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    m += NR_END;
         k=kmax; l=lmax*10.;    m -= nrl;
       }  
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         delts=delt;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       }    m[nrl] += NR_END;
     }    m[nrl] -= ncl;
   }  
   delti[theta]=delts;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   return res;    return m;
      /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
 }  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
   that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
 double hessij( double x[], double delti[], int thetai,int thetaj)     */
 {  }
   int i;  
   int l=1, l1, lmax=20;  /*************************free matrix ************************/
   double k1,k2,k3,k4,res,fx;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   double p2[NPARMAX+1];  {
   int k;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
   fx=func(x);  }
   for (k=1; k<=2; k++) {  
     for (i=1;i<=npar;i++) p2[i]=x[i];  /******************* ma3x *******************************/
     p2[thetai]=x[thetai]+delti[thetai]/k;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  {
     k1=func(p2)-fx;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
      double ***m;
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     k2=func(p2)-fx;    if (!m) nrerror("allocation failure 1 in matrix()");
      m += NR_END;
     p2[thetai]=x[thetai]-delti[thetai]/k;    m -= nrl;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  
     k3=func(p2)-fx;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
      if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     p2[thetai]=x[thetai]-delti[thetai]/k;    m[nrl] += NR_END;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    m[nrl] -= ncl;
     k4=func(p2)-fx;  
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 #ifdef DEBUG  
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 #endif    m[nrl][ncl] += NR_END;
   }    m[nrl][ncl] -= nll;
   return res;    for (j=ncl+1; j<=nch; j++) 
 }      m[nrl][j]=m[nrl][j-1]+nlay;
     
 /************** Inverse of matrix **************/    for (i=nrl+1; i<=nrh; i++) {
 void ludcmp(double **a, int n, int *indx, double *d)      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 {      for (j=ncl+1; j<=nch; j++) 
   int i,imax,j,k;        m[i][j]=m[i][j-1]+nlay;
   double big,dum,sum,temp;    }
   double *vv;    return m; 
      /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   vv=vector(1,n);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   *d=1.0;    */
   for (i=1;i<=n;i++) {  }
     big=0.0;  
     for (j=1;j<=n;j++)  /*************************free ma3x ************************/
       if ((temp=fabs(a[i][j])) > big) big=temp;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  {
     vv[i]=1.0/big;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   for (j=1;j<=n;j++) {    free((FREE_ARG)(m+nrl-NR_END));
     for (i=1;i<j;i++) {  }
       sum=a[i][j];  
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  /*************** function subdirf ***********/
       a[i][j]=sum;  char *subdirf(char fileres[])
     }  {
     big=0.0;    /* Caution optionfilefiname is hidden */
     for (i=j;i<=n;i++) {    strcpy(tmpout,optionfilefiname);
       sum=a[i][j];    strcat(tmpout,"/"); /* Add to the right */
       for (k=1;k<j;k++)    strcat(tmpout,fileres);
         sum -= a[i][k]*a[k][j];    return tmpout;
       a[i][j]=sum;  }
       if ( (dum=vv[i]*fabs(sum)) >= big) {  
         big=dum;  /*************** function subdirf2 ***********/
         imax=i;  char *subdirf2(char fileres[], char *preop)
       }  {
     }    
     if (j != imax) {    /* Caution optionfilefiname is hidden */
       for (k=1;k<=n;k++) {    strcpy(tmpout,optionfilefiname);
         dum=a[imax][k];    strcat(tmpout,"/");
         a[imax][k]=a[j][k];    strcat(tmpout,preop);
         a[j][k]=dum;    strcat(tmpout,fileres);
       }    return tmpout;
       *d = -(*d);  }
       vv[imax]=vv[j];  
     }  /*************** function subdirf3 ***********/
     indx[j]=imax;  char *subdirf3(char fileres[], char *preop, char *preop2)
     if (a[j][j] == 0.0) a[j][j]=TINY;  {
     if (j != n) {    
       dum=1.0/(a[j][j]);    /* Caution optionfilefiname is hidden */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    strcpy(tmpout,optionfilefiname);
     }    strcat(tmpout,"/");
   }    strcat(tmpout,preop);
   free_vector(vv,1,n);  /* Doesn't work */    strcat(tmpout,preop2);
 ;    strcat(tmpout,fileres);
 }    return tmpout;
   }
 void lubksb(double **a, int n, int *indx, double b[])  
 {  char *asc_diff_time(long time_sec, char ascdiff[])
   int i,ii=0,ip,j;  {
   double sum;    long sec_left, days, hours, minutes;
      days = (time_sec) / (60*60*24);
   for (i=1;i<=n;i++) {    sec_left = (time_sec) % (60*60*24);
     ip=indx[i];    hours = (sec_left) / (60*60) ;
     sum=b[ip];    sec_left = (sec_left) %(60*60);
     b[ip]=b[i];    minutes = (sec_left) /60;
     if (ii)    sec_left = (sec_left) % (60);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
     else if (sum) ii=i;    return ascdiff;
     b[i]=sum;  }
   }  
   for (i=n;i>=1;i--) {  /***************** f1dim *************************/
     sum=b[i];  extern int ncom; 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  extern double *pcom,*xicom;
     b[i]=sum/a[i][i];  extern double (*nrfunc)(double []); 
   }   
 }  double f1dim(double x) 
   { 
 /************ Frequencies ********************/    int j; 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    double f;
 {  /* Some frequencies */    double *xt; 
     
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    xt=vector(1,ncom); 
   int first;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   double ***freq; /* Frequencies */    f=(*nrfunc)(xt); 
   double *pp;    free_vector(xt,1,ncom); 
   double pos, k2, dateintsum=0,k2cpt=0;    return f; 
   FILE *ficresp;  } 
   char fileresp[FILENAMELENGTH];  
    /*****************brent *************************/
   pp=vector(1,nlstate);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  { 
   strcpy(fileresp,"p");    int iter; 
   strcat(fileresp,fileres);    double a,b,d,etemp;
   if((ficresp=fopen(fileresp,"w"))==NULL) {    double fu=0,fv,fw,fx;
     printf("Problem with prevalence resultfile: %s\n", fileresp);    double ftemp=0.;
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     exit(0);    double e=0.0; 
   }   
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    a=(ax < cx ? ax : cx); 
   j1=0;    b=(ax > cx ? ax : cx); 
      x=w=v=bx; 
   j=cptcoveff;    fw=fv=fx=(*f)(x); 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    for (iter=1;iter<=ITMAX;iter++) { 
       xm=0.5*(a+b); 
   first=1;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   for(k1=1; k1<=j;k1++){      printf(".");fflush(stdout);
     for(i1=1; i1<=ncodemax[k1];i1++){      fprintf(ficlog,".");fflush(ficlog);
       j1++;  #ifdef DEBUGBRENT
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         scanf("%d", i);*/      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       for (i=-1; i<=nlstate+ndeath; i++)        /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         for (jk=-1; jk<=nlstate+ndeath; jk++)    #endif
           for(m=agemin; m <= agemax+3; m++)      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
             freq[i][jk][m]=0;        *xmin=x; 
              return fx; 
       dateintsum=0;      } 
       k2cpt=0;      ftemp=fu;
       for (i=1; i<=imx; i++) {      if (fabs(e) > tol1) { 
         bool=1;        r=(x-w)*(fx-fv); 
         if  (cptcovn>0) {        q=(x-v)*(fx-fw); 
           for (z1=1; z1<=cptcoveff; z1++)        p=(x-v)*q-(x-w)*r; 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        q=2.0*(q-r); 
               bool=0;        if (q > 0.0) p = -p; 
         }        q=fabs(q); 
         if (bool==1) {        etemp=e; 
           for(m=firstpass; m<=lastpass; m++){        e=d; 
             k2=anint[m][i]+(mint[m][i]/12.);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
               if(agev[m][i]==0) agev[m][i]=agemax+1;        else { 
               if(agev[m][i]==1) agev[m][i]=agemax+2;          d=p/q; 
               if (m<lastpass) {          u=x+d; 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          if (u-a < tol2 || b-u < tol2) 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];            d=SIGN(tol1,xm-x); 
               }        } 
                    } else { 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
                 dateintsum=dateintsum+k2;      } 
                 k2cpt++;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
               }      fu=(*f)(u); 
             }      if (fu <= fx) { 
           }        if (u >= x) a=x; else b=x; 
         }        SHFT(v,w,x,u) 
       }        SHFT(fv,fw,fx,fu) 
              } else { 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        if (u < x) a=u; else b=u; 
         if (fu <= fw || w == x) { 
       if  (cptcovn>0) {          v=w; 
         fprintf(ficresp, "\n#********** Variable ");          w=u; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          fv=fw; 
         fprintf(ficresp, "**********\n#");          fw=fu; 
       }        } else if (fu <= fv || v == x || v == w) { 
       for(i=1; i<=nlstate;i++)          v=u; 
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          fv=fu; 
       fprintf(ficresp, "\n");        } 
            } 
       for(i=(int)agemin; i <= (int)agemax+3; i++){    } 
         if(i==(int)agemax+3){    nrerror("Too many iterations in brent"); 
           fprintf(ficlog,"Total");    *xmin=x; 
         }else{    return fx; 
           if(first==1){  } 
             first=0;  
             printf("See log file for details...\n");  /****************** mnbrak ***********************/
           }  
           fprintf(ficlog,"Age %d", i);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         }              double (*func)(double)) 
         for(jk=1; jk <=nlstate ; jk++){  { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  the downhill direction (defined by the function as evaluated at the initial points) and returns
             pp[jk] += freq[jk][m][i];  new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
         }  values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
         for(jk=1; jk <=nlstate ; jk++){     */
           for(m=-1, pos=0; m <=0 ; m++)    double ulim,u,r,q, dum;
             pos += freq[jk][m][i];    double fu; 
           if(pp[jk]>=1.e-10){   
             if(first==1){    *fa=(*func)(*ax); 
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    *fb=(*func)(*bx); 
             }    if (*fb > *fa) { 
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      SHFT(dum,*ax,*bx,dum) 
           }else{      SHFT(dum,*fb,*fa,dum) 
             if(first==1)    } 
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    *cx=(*bx)+GOLD*(*bx-*ax); 
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    *fc=(*func)(*cx); 
           }  #ifdef DEBUG
         }    printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
     fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc);
         for(jk=1; jk <=nlstate ; jk++){  #endif
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */
             pp[jk] += freq[jk][m][i];      r=(*bx-*ax)*(*fb-*fc); 
         }      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         for(jk=1,pos=0; jk <=nlstate ; jk++)        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
           pos += pp[jk];      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
         for(jk=1; jk <=nlstate ; jk++){      if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
           if(pos>=1.e-5){        fu=(*func)(u); 
             if(first==1)  #ifdef DEBUG
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        /* f(x)=A(x-u)**2+f(u) */
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        double A, fparabu; 
           }else{        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
             if(first==1)        fparabu= *fa - A*(*ax-u)*(*ax-u);
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
           }        /* And thus,it can be that fu > *fc even if fparabu < *fc */
           if( i <= (int) agemax){        /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
             if(pos>=1.e-5){          (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
               probs[i][jk][j1]= pp[jk]/pos;  #endif 
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  #ifdef MNBRAKORIGINAL
             }  #else
             else        if (fu > *fc) {
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  #ifdef DEBUG
           }        printf("mnbrak4  fu > fc \n");
         }        fprintf(ficlog, "mnbrak4 fu > fc\n");
          #endif
         for(jk=-1; jk <=nlstate+ndeath; jk++)          /* SHFT(u,*cx,*cx,u) /\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\/  */
           for(m=-1; m <=nlstate+ndeath; m++)          /* SHFT(*fa,*fc,fu,*fc) /\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\/ */
             if(freq[jk][m][i] !=0 ) {          dum=u; /* Shifting c and u */
             if(first==1)          u = *cx;
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          *cx = dum;
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);          dum = fu;
             }          fu = *fc;
         if(i <= (int) agemax)          *fc =dum;
           fprintf(ficresp,"\n");        } else { /* end */
         if(first==1)  #ifdef DEBUG
           printf("Others in log...\n");        printf("mnbrak3  fu < fc \n");
         fprintf(ficlog,"\n");        fprintf(ficlog, "mnbrak3 fu < fc\n");
       }  #endif
     }          dum=u; /* Shifting c and u */
   }          u = *cx;
   dateintmean=dateintsum/k2cpt;          *cx = dum;
            dum = fu;
   fclose(ficresp);          fu = *fc;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          *fc =dum;
   free_vector(pp,1,nlstate);        }
    #endif
   /* End of Freq */      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
 }  #ifdef DEBUG
         printf("mnbrak2  u after c but before ulim\n");
 /************ Prevalence ********************/        fprintf(ficlog, "mnbrak2 u after c but before ulim\n");
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  #endif
 {  /* Some frequencies */        fu=(*func)(u); 
          if (fu < *fc) { 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  #ifdef DEBUG
   double ***freq; /* Frequencies */        printf("mnbrak2  u after c but before ulim AND fu < fc\n");
   double *pp;        fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n");
   double pos, k2;  #endif
           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   pp=vector(1,nlstate);          SHFT(*fb,*fc,fu,(*func)(u)) 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        } 
        } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  #ifdef DEBUG
   j1=0;        printf("mnbrak2  u outside ulim (verifying that ulim is beyond c)\n");
          fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n");
   j=cptcoveff;  #endif
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        u=ulim; 
          fu=(*func)(u); 
   for(k1=1; k1<=j;k1++){      } else { /* u could be left to b (if r > q parabola has a maximum) */
     for(i1=1; i1<=ncodemax[k1];i1++){  #ifdef DEBUG
       j1++;        printf("mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
              fprintf(ficlog, "mnbrak2  u could be left to b (if r > q parabola has a maximum)\n");
       for (i=-1; i<=nlstate+ndeath; i++)    #endif
         for (jk=-1; jk<=nlstate+ndeath; jk++)          u=(*cx)+GOLD*(*cx-*bx); 
           for(m=agemin; m <= agemax+3; m++)        fu=(*func)(u); 
             freq[i][jk][m]=0;      } /* end tests */
            SHFT(*ax,*bx,*cx,u) 
       for (i=1; i<=imx; i++) {      SHFT(*fa,*fb,*fc,fu) 
         bool=1;  #ifdef DEBUG
         if  (cptcovn>0) {        printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
           for (z1=1; z1<=cptcoveff; z1++)        fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  #endif
               bool=0;    } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
         }  } 
         if (bool==1) {  
           for(m=firstpass; m<=lastpass; m++){  /*************** linmin ************************/
             k2=anint[m][i]+(mint[m][i]/12.);  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
               if(agev[m][i]==0) agev[m][i]=agemax+1;  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
               if(agev[m][i]==1) agev[m][i]=agemax+2;  the value of func at the returned location p . This is actually all accomplished by calling the
               if (m<lastpass) {  routines mnbrak and brent .*/
                 if (calagedate>0)  int ncom; 
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];  double *pcom,*xicom;
                 else  double (*nrfunc)(double []); 
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];   
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
               }  { 
             }    double brent(double ax, double bx, double cx, 
           }                 double (*f)(double), double tol, double *xmin); 
         }    double f1dim(double x); 
       }    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       for(i=(int)agemin; i <= (int)agemax+3; i++){                double *fc, double (*func)(double)); 
         for(jk=1; jk <=nlstate ; jk++){    int j; 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    double xx,xmin,bx,ax; 
             pp[jk] += freq[jk][m][i];    double fx,fb,fa;
         }   
         for(jk=1; jk <=nlstate ; jk++){    ncom=n; 
           for(m=-1, pos=0; m <=0 ; m++)    pcom=vector(1,n); 
             pos += freq[jk][m][i];    xicom=vector(1,n); 
         }    nrfunc=func; 
            for (j=1;j<=n;j++) { 
         for(jk=1; jk <=nlstate ; jk++){      pcom[j]=p[j]; 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      xicom[j]=xi[j]; 
             pp[jk] += freq[jk][m][i];    } 
         }    ax=0.0; 
            xx=1.0; 
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */
            *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */
         for(jk=1; jk <=nlstate ; jk++){      #ifdef DEBUG
           if( i <= (int) agemax){    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
             if(pos>=1.e-5){    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
               probs[i][jk][j1]= pp[jk]/pos;  #endif
             }    for (j=1;j<=n;j++) { 
           }      xi[j] *= xmin; 
         }/* end jk */      p[j] += xi[j]; 
       }/* end i */    } 
     } /* end i1 */    free_vector(xicom,1,n); 
   } /* end k1 */    free_vector(pcom,1,n); 
   } 
    
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  
   free_vector(pp,1,nlstate);  /*************** powell ************************/
    /*
 }  /* End of Freq */  Minimization of a function func of n variables. Input consists of an initial starting point
   p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
 /************* Waves Concatenation ***************/  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
   such that failure to decrease by more than this amount on one iteration signals doneness. On
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  output, p is set to the best point found, xi is the then-current direction set, fret is the returned
 {  function value at p , and iter is the number of iterations taken. The routine linmin is used.
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.   */
      Death is a valid wave (if date is known).  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i              double (*func)(double [])) 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  { 
      and mw[mi+1][i]. dh depends on stepm.    void linmin(double p[], double xi[], int n, double *fret, 
      */                double (*func)(double [])); 
     int i,ibig,j; 
   int i, mi, m;    double del,t,*pt,*ptt,*xit;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    double directest;
      double sum=0., jmean=0.;*/    double fp,fptt;
   int first;    double *xits;
   int j, k=0,jk, ju, jl;    int niterf, itmp;
   double sum=0.;  
   first=0;    pt=vector(1,n); 
   jmin=1e+5;    ptt=vector(1,n); 
   jmax=-1;    xit=vector(1,n); 
   jmean=0.;    xits=vector(1,n); 
   for(i=1; i<=imx; i++){    *fret=(*func)(p); 
     mi=0;    for (j=1;j<=n;j++) pt[j]=p[j]; 
     m=firstpass;      rcurr_time = time(NULL);  
     while(s[m][i] <= nlstate){    for (*iter=1;;++(*iter)) { 
       if(s[m][i]>=1)      fp=(*fret); 
         mw[++mi][i]=m;      ibig=0; 
       if(m >=lastpass)      del=0.0; 
         break;      rlast_time=rcurr_time;
       else      /* (void) gettimeofday(&curr_time,&tzp); */
         m++;      rcurr_time = time(NULL);  
     }/* end while */      curr_time = *localtime(&rcurr_time);
     if (s[m][i] > nlstate){      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
       mi++;     /* Death is another wave */      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
       /* if(mi==0)  never been interviewed correctly before death */  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
          /* Only death is a correct wave */     for (i=1;i<=n;i++) {
       mw[mi][i]=m;        printf(" %d %.12f",i, p[i]);
     }        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
     wav[i]=mi;      }
     if(mi==0){      printf("\n");
       if(first==0){      fprintf(ficlog,"\n");
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);      fprintf(ficrespow,"\n");fflush(ficrespow);
         first=1;      if(*iter <=3){
       }        tml = *localtime(&rcurr_time);
       if(first==1){        strcpy(strcurr,asctime(&tml));
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);        rforecast_time=rcurr_time; 
       }        itmp = strlen(strcurr);
     } /* end mi==0 */        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
   }          strcurr[itmp-1]='\0';
         printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
   for(i=1; i<=imx; i++){        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
     for(mi=1; mi<wav[i];mi++){        for(niterf=10;niterf<=30;niterf+=10){
       if (stepm <=0)          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
         dh[mi][i]=1;          forecast_time = *localtime(&rforecast_time);
       else{          strcpy(strfor,asctime(&forecast_time));
         if (s[mw[mi+1][i]][i] > nlstate) {          itmp = strlen(strfor);
           if (agedc[i] < 2*AGESUP) {          if(strfor[itmp-1]=='\n')
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          strfor[itmp-1]='\0';
           if(j==0) j=1;  /* Survives at least one month after exam */          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
           k=k+1;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
           if (j >= jmax) jmax=j;        }
           if (j <= jmin) jmin=j;      }
           sum=sum+j;      for (i=1;i<=n;i++) { 
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
           }        fptt=(*fret); 
         }  #ifdef DEBUG
         else{            printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
           k=k+1;  #endif
           if (j >= jmax) jmax=j;        printf("%d",i);fflush(stdout);
           else if (j <= jmin)jmin=j;        fprintf(ficlog,"%d",i);fflush(ficlog);
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        linmin(p,xit,n,fret,func); /* xit[n] has been loaded for direction i */
           sum=sum+j;        if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions 
         }                                         because that direction will be replaced unless the gain del is small
         jk= j/stepm;                                        in comparison with the 'probable' gain, mu^2, with the last average direction.
         jl= j -jk*stepm;                                        Unless the n directions are conjugate some gain in the determinant may be obtained
         ju= j -(jk+1)*stepm;                                        with the new direction.
         if(jl <= -ju)                                        */
           dh[mi][i]=jk;          del=fabs(fptt-(*fret)); 
         else          ibig=i; 
           dh[mi][i]=jk+1;        } 
         if(dh[mi][i]==0)  #ifdef DEBUG
           dh[mi][i]=1; /* At least one step */        printf("%d %.12e",i,(*fret));
       }        fprintf(ficlog,"%d %.12e",i,(*fret));
     }        for (j=1;j<=n;j++) {
   }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   jmean=sum/k;          printf(" x(%d)=%.12e",j,xit[j]);
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        }
  }        for(j=1;j<=n;j++) {
           printf(" p(%d)=%.12e",j,p[j]);
 /*********** Tricode ****************************/          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
 void tricode(int *Tvar, int **nbcode, int imx)        }
 {        printf("\n");
   int Ndum[20],ij=1, k, j, i;        fprintf(ficlog,"\n");
   int cptcode=0;  #endif
   cptcoveff=0;      } /* end i */
        if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
   for (k=0; k<19; k++) Ndum[k]=0;  #ifdef DEBUG
   for (k=1; k<=7; k++) ncodemax[k]=0;        int k[2],l;
         k[0]=1;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {        k[1]=-1;
     for (i=1; i<=imx; i++) {        printf("Max: %.12e",(*func)(p));
       ij=(int)(covar[Tvar[j]][i]);        fprintf(ficlog,"Max: %.12e",(*func)(p));
       Ndum[ij]++;        for (j=1;j<=n;j++) {
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          printf(" %.12e",p[j]);
       if (ij > cptcode) cptcode=ij;          fprintf(ficlog," %.12e",p[j]);
     }        }
         printf("\n");
     for (i=0; i<=cptcode; i++) {        fprintf(ficlog,"\n");
       if(Ndum[i]!=0) ncodemax[j]++;        for(l=0;l<=1;l++) {
     }          for (j=1;j<=n;j++) {
     ij=1;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for (i=1; i<=ncodemax[j]; i++) {          }
       for (k=0; k<=19; k++) {          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         if (Ndum[k] != 0) {          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           nbcode[Tvar[j]][ij]=k;        }
            #endif
           ij++;  
         }  
         if (ij > ncodemax[j]) break;        free_vector(xit,1,n); 
       }          free_vector(xits,1,n); 
     }        free_vector(ptt,1,n); 
   }          free_vector(pt,1,n); 
         return; 
  for (k=0; k<19; k++) Ndum[k]=0;      } 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
  for (i=1; i<=ncovmodel-2; i++) {      for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
    ij=Tvar[i];        ptt[j]=2.0*p[j]-pt[j]; 
    Ndum[ij]++;        xit[j]=p[j]-pt[j]; 
  }        pt[j]=p[j]; 
       } 
  ij=1;      fptt=(*func)(ptt); /* f_3 */
  for (i=1; i<=10; i++) {      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
    if((Ndum[i]!=0) && (i<=ncovcol)){        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
      Tvaraff[ij]=i;        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
      ij++;        /* Let f"(x2) be the 2nd derivative equal everywhere.  */
    }        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
  }        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
          /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */
  cptcoveff=ij-1;        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
 }  #ifdef NRCORIGINAL
         t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
 /*********** Health Expectancies ****************/  #else
         t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        t= t- del*SQR(fp-fptt);
   #endif
 {        directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If del was big enough we change it for a new direction */
   /* Health expectancies */  #ifdef DEBUG
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;        printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
   double age, agelim, hf;        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
   double ***p3mat,***varhe;        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
   double **dnewm,**doldm;               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
   double *xp;        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
   double **gp, **gm;               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
   double ***gradg, ***trgradg;        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
   int theta;        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
   #endif
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  #ifdef POWELLORIGINAL
   xp=vector(1,npar);        if (t < 0.0) { /* Then we use it for new direction */
   dnewm=matrix(1,nlstate*2,1,npar);  #else
   doldm=matrix(1,nlstate*2,1,nlstate*2);        if (directest*t < 0.0) { /* Contradiction between both tests */
          printf("directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
   fprintf(ficreseij,"# Health expectancies\n");        printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
   fprintf(ficreseij,"# Age");        fprintf(ficlog,"directest= %.12lf, t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
   for(i=1; i<=nlstate;i++)        fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
     for(j=1; j<=nlstate;j++)      } 
       fprintf(ficreseij," %1d-%1d (SE)",i,j);        if (directest < 0.0) { /* Then we use it for new direction */
   fprintf(ficreseij,"\n");  #endif
           linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction.*/
   if(estepm < stepm){          for (j=1;j<=n;j++) { 
     printf ("Problem %d lower than %d\n",estepm, stepm);            xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
   }            xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
   else  hstepm=estepm;            }
   /* We compute the life expectancy from trapezoids spaced every estepm months          printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
    * This is mainly to measure the difference between two models: for example          fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
    * if stepm=24 months pijx are given only every 2 years and by summing them  
    * we are calculating an estimate of the Life Expectancy assuming a linear  #ifdef DEBUG
    * progression inbetween and thus overestimating or underestimating according          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
    * to the curvature of the survival function. If, for the same date, we          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          for(j=1;j<=n;j++){
    * to compare the new estimate of Life expectancy with the same linear            printf(" %.12e",xit[j]);
    * hypothesis. A more precise result, taking into account a more precise            fprintf(ficlog," %.12e",xit[j]);
    * curvature will be obtained if estepm is as small as stepm. */          }
           printf("\n");
   /* For example we decided to compute the life expectancy with the smallest unit */          fprintf(ficlog,"\n");
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  #endif
      nhstepm is the number of hstepm from age to agelim        } /* end of t negative */
      nstepm is the number of stepm from age to agelin.      } /* end if (fptt < fp)  */
      Look at hpijx to understand the reason of that which relies in memory size    } 
      and note for a fixed period like estepm months */  } 
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it  /**** Prevalence limit (stable or period prevalence)  ****************/
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
      results. So we changed our mind and took the option of the best precision.  {
   */    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */       matrix by transitions matrix until convergence is reached */
     
   agelim=AGESUP;    int i, ii,j,k;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double min, max, maxmin, maxmax,sumnew=0.;
     /* nhstepm age range expressed in number of stepm */    /* double **matprod2(); */ /* test */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);    double **out, cov[NCOVMAX+1], **pmij();
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */    double **newm;
     /* if (stepm >= YEARM) hstepm=1;*/    double agefin, delaymax=50 ; /* Max number of years to converge */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for (ii=1;ii<=nlstate+ndeath;ii++)
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);      for (j=1;j<=nlstate+ndeath;j++){
     gp=matrix(0,nhstepm,1,nlstate*2);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     gm=matrix(0,nhstepm,1,nlstate*2);      }
     
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    cov[1]=1.;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      /* Even if hstepm = 1, at least one multiplication by the unit matrix */
      for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       newm=savm;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      /* Covariates have to be included here again */
       cov[2]=agefin;
     /* Computing Variances of health expectancies */      
       for (k=1; k<=cptcovn;k++) {
      for(theta=1; theta <=npar; theta++){        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       for(i=1; i<=npar; i++){        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      }
       }      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
        /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
       cptj=0;      
       for(j=1; j<= nlstate; j++){      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         for(i=1; i<=nlstate; i++){      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
           cptj=cptj+1;      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
           }      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
         }      
       }      savm=oldm;
            oldm=newm;
            maxmax=0.;
       for(i=1; i<=npar; i++)      for(j=1;j<=nlstate;j++){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        min=1.;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          max=0.;
              for(i=1; i<=nlstate; i++) {
       cptj=0;          sumnew=0;
       for(j=1; j<= nlstate; j++){          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
         for(i=1;i<=nlstate;i++){          prlim[i][j]= newm[i][j]/(1-sumnew);
           cptj=cptj+1;          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          max=FMAX(max,prlim[i][j]);
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          min=FMIN(min,prlim[i][j]);
           }        }
         }        maxmin=max-min;
       }        maxmax=FMAX(maxmax,maxmin);
       for(j=1; j<= nlstate*2; j++)      } /* j loop */
         for(h=0; h<=nhstepm-1; h++){      if(maxmax < ftolpl){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        return prlim;
         }      }
      }    } /* age loop */
        return prlim; /* should not reach here */
 /* End theta */  }
   
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);  /*************** transition probabilities ***************/ 
   
      for(h=0; h<=nhstepm-1; h++)  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       for(j=1; j<=nlstate*2;j++)  {
         for(theta=1; theta <=npar; theta++)    /* According to parameters values stored in x and the covariate's values stored in cov,
           trgradg[h][j][theta]=gradg[h][theta][j];       computes the probability to be observed in state j being in state i by appying the
             model to the ncovmodel covariates (including constant and age).
        lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
      for(i=1;i<=nlstate*2;i++)       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
       for(j=1;j<=nlstate*2;j++)       ncth covariate in the global vector x is given by the formula:
         varhe[i][j][(int)age] =0.;       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
        j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
      printf("%d|",(int)age);fflush(stdout);       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
      for(h=0;h<=nhstepm-1;h++){       Outputs ps[i][j] the probability to be observed in j being in j according to
       for(k=0;k<=nhstepm-1;k++){       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    */
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    double s1, lnpijopii;
         for(i=1;i<=nlstate*2;i++)    /*double t34;*/
           for(j=1;j<=nlstate*2;j++)    int i,j, nc, ii, jj;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;  
       }      for(i=1; i<= nlstate; i++){
     }        for(j=1; j<i;j++){
     /* Computing expectancies */          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
     for(i=1; i<=nlstate;i++)            /*lnpijopii += param[i][j][nc]*cov[nc];*/
       for(j=1; j<=nlstate;j++)            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          }
                    ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         }
         }        for(j=i+1; j<=nlstate+ndeath;j++){
           for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
     fprintf(ficreseij,"%3.0f",age );            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
     cptj=0;            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
     for(i=1; i<=nlstate;i++)  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
       for(j=1; j<=nlstate;j++){          }
         cptj++;          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        }
       }      }
     fprintf(ficreseij,"\n");      
          for(i=1; i<= nlstate; i++){
     free_matrix(gm,0,nhstepm,1,nlstate*2);        s1=0;
     free_matrix(gp,0,nhstepm,1,nlstate*2);        for(j=1; j<i; j++){
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
   }        for(j=i+1; j<=nlstate+ndeath; j++){
   printf("\n");          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   fprintf(ficlog,"\n");          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         }
   free_vector(xp,1,npar);        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
   free_matrix(dnewm,1,nlstate*2,1,npar);        ps[i][i]=1./(s1+1.);
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        /* Computing other pijs */
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);        for(j=1; j<i; j++)
 }          ps[i][j]= exp(ps[i][j])*ps[i][i];
         for(j=i+1; j<=nlstate+ndeath; j++)
 /************ Variance ******************/          ps[i][j]= exp(ps[i][j])*ps[i][i];
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 {      } /* end i */
   /* Variance of health expectancies */      
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   /* double **newm;*/        for(jj=1; jj<= nlstate+ndeath; jj++){
   double **dnewm,**doldm;          ps[ii][jj]=0;
   double **dnewmp,**doldmp;          ps[ii][ii]=1;
   int i, j, nhstepm, hstepm, h, nstepm ;        }
   int k, cptcode;      }
   double *xp;      
   double **gp, **gm;  /* for var eij */      
   double ***gradg, ***trgradg; /*for var eij */      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
   double **gradgp, **trgradgp; /* for var p point j */      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
   double *gpp, *gmp; /* for var p point j */      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */      /*   } */
   double ***p3mat;      /*   printf("\n "); */
   double age,agelim, hf;      /* } */
   int theta;      /* printf("\n ");printf("%lf ",cov[2]);*/
   char digit[4];      /*
   char digitp[16];        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         goto end;*/
   char fileresprobmorprev[FILENAMELENGTH];      return ps;
   }
   if(popbased==1)  
     strcpy(digitp,"-populbased-");  /**************** Product of 2 matrices ******************/
   else  
     strcpy(digitp,"-stablbased-");  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
   {
   strcpy(fileresprobmorprev,"prmorprev");    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   sprintf(digit,"%-d",ij);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/    /* in, b, out are matrice of pointers which should have been initialized 
   strcat(fileresprobmorprev,digit); /* Tvar to be done */       before: only the contents of out is modified. The function returns
   strcat(fileresprobmorprev,digitp); /* Popbased or not */       a pointer to pointers identical to out */
   strcat(fileresprobmorprev,fileres);    int i, j, k;
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {    for(i=nrl; i<= nrh; i++)
     printf("Problem with resultfile: %s\n", fileresprobmorprev);      for(k=ncolol; k<=ncoloh; k++){
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);        out[i][k]=0.;
   }        for(j=ncl; j<=nch; j++)
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);          out[i][k] +=in[i][j]*b[j][k];
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);      }
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");    return out;
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);  }
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){  
     fprintf(ficresprobmorprev," p.%-d SE",j);  
     for(i=1; i<=nlstate;i++)  /************* Higher Matrix Product ***************/
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);  
   }    double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   fprintf(ficresprobmorprev,"\n");  {
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    /* Computes the transition matrix starting at age 'age' over 
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);       'nhstepm*hstepm*stepm' months (i.e. until
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     exit(0);       nhstepm*hstepm matrices. 
   }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   else{       (typically every 2 years instead of every month which is too big 
     fprintf(ficgp,"\n# Routine varevsij");       for the memory).
   }       Model is determined by parameters x and covariates have to be 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {       included manually here. 
     printf("Problem with html file: %s\n", optionfilehtm);  
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);       */
     exit(0);  
   }    int i, j, d, h, k;
   else{    double **out, cov[NCOVMAX+1];
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");    double **newm;
   }  
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=nlstate+ndeath;i++)
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");      for (j=1;j<=nlstate+ndeath;j++){
   fprintf(ficresvij,"# Age");        oldm[i][j]=(i==j ? 1.0 : 0.0);
   for(i=1; i<=nlstate;i++)        po[i][j][0]=(i==j ? 1.0 : 0.0);
     for(j=1; j<=nlstate;j++)      }
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   fprintf(ficresvij,"\n");    for(h=1; h <=nhstepm; h++){
       for(d=1; d <=hstepm; d++){
   xp=vector(1,npar);        newm=savm;
   dnewm=matrix(1,nlstate,1,npar);        /* Covariates have to be included here again */
   doldm=matrix(1,nlstate,1,nlstate);        cov[1]=1.;
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);        for (k=1; k<=cptcovn;k++) 
           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);        for (k=1; k<=cptcovage;k++)
   gpp=vector(nlstate+1,nlstate+ndeath);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   gmp=vector(nlstate+1,nlstate+ndeath);        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
    
   if(estepm < stepm){  
     printf ("Problem %d lower than %d\n",estepm, stepm);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   else  hstepm=estepm;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   /* For example we decided to compute the life expectancy with the smallest unit */                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        savm=oldm;
      nhstepm is the number of hstepm from age to agelim        oldm=newm;
      nstepm is the number of stepm from age to agelin.      }
      Look at hpijx to understand the reason of that which relies in memory size      for(i=1; i<=nlstate+ndeath; i++)
      and note for a fixed period like k years */        for(j=1;j<=nlstate+ndeath;j++) {
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          po[i][j][h]=newm[i][j];
      survival function given by stepm (the optimization length). Unfortunately it          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
      means that if the survival funtion is printed only each two years of age and if        }
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      /*printf("h=%d ",h);*/
      results. So we changed our mind and took the option of the best precision.    } /* end h */
   */  /*     printf("\n H=%d \n",h); */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    return po;
   agelim = AGESUP;  }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  #ifdef NLOPT
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double fret;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    double *xt;
     gp=matrix(0,nhstepm,1,nlstate);    int j;
     gm=matrix(0,nhstepm,1,nlstate);    myfunc_data *d2 = (myfunc_data *) pd;
   /* xt = (p1-1); */
     xt=vector(1,n); 
     for(theta=1; theta <=npar; theta++){    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
       }    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      printf("Function = %.12lf ",fret);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
     printf("\n");
       if (popbased==1) {   free_vector(xt,1,n);
         for(i=1; i<=nlstate;i++)    return fret;
           prlim[i][i]=probs[(int)age][i][ij];  }
       }  #endif
    
       for(j=1; j<= nlstate; j++){  /*************** log-likelihood *************/
         for(h=0; h<=nhstepm; h++){  double func( double *x)
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  {
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    int i, ii, j, k, mi, d, kk;
         }    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
       }    double **out;
       /* This for computing forces of mortality (h=1)as a weighted average */    double sw; /* Sum of weights */
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){    double lli; /* Individual log likelihood */
         for(i=1; i<= nlstate; i++)    int s1, s2;
           gpp[j] += prlim[i][i]*p3mat[i][j][1];    double bbh, survp;
       }        long ipmx;
       /* end force of mortality */    /*extern weight */
     /* We are differentiating ll according to initial status */
       for(i=1; i<=npar; i++) /* Computes gradient */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    /*for(i=1;i<imx;i++) 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        printf(" %d\n",s[4][i]);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    */
    
       if (popbased==1) {    ++countcallfunc;
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];    cov[1]=1.;
       }  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){    if(mle==1){
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        /* Computes the values of the ncovmodel covariates of the model
         }           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
       }           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
       /* This for computing force of mortality (h=1)as a weighted average */           to be observed in j being in i according to the model.
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){         */
         for(i=1; i<= nlstate; i++)        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
           gmp[j] += prlim[i][i]*p3mat[i][j][1];          cov[2+k]=covar[Tvar[k]][i];
       }            }
       /* end force of mortality */        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
            is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
       for(j=1; j<= nlstate; j++) /* vareij */           has been calculated etc */
         for(h=0; h<=nhstepm; h++){        for(mi=1; mi<= wav[i]-1; mi++){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
           for(d=0; d<dh[mi][i]; d++){
     } /* End theta */            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
     for(h=0; h<=nhstepm; h++) /* veij */            }
       for(j=1; j<=nlstate;j++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(theta=1; theta <=npar; theta++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           trgradg[h][j][theta]=gradg[h][theta][j];            savm=oldm;
             oldm=newm;
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */          } /* end mult */
       for(theta=1; theta <=npar; theta++)        
         trgradgp[j][theta]=gradgp[theta][j];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias at large stepm.
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     for(i=1;i<=nlstate;i++)           * (in months) between two waves is not a multiple of stepm, we rounded to 
       for(j=1;j<=nlstate;j++)           * the nearest (and in case of equal distance, to the lowest) interval but now
         vareij[i][j][(int)age] =0.;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
     for(h=0;h<=nhstepm;h++){           * probability in order to take into account the bias as a fraction of the way
       for(k=0;k<=nhstepm;k++){           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);           * -stepm/2 to stepm/2 .
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);           * For stepm=1 the results are the same as for previous versions of Imach.
         for(i=1;i<=nlstate;i++)           * For stepm > 1 the results are less biased than in previous versions. 
           for(j=1;j<=nlstate;j++)           */
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;          s1=s[mw[mi][i]][i];
       }          s2=s[mw[mi+1][i]][i];
     }          bbh=(double)bh[mi][i]/(double)stepm; 
           /* bias bh is positive if real duration
     /* pptj */           * is higher than the multiple of stepm and negative otherwise.
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);           */
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     for(j=nlstate+1;j<=nlstate+ndeath;j++)          if( s2 > nlstate){ 
       for(i=nlstate+1;i<=nlstate+ndeath;i++)            /* i.e. if s2 is a death state and if the date of death is known 
         varppt[j][i]=doldmp[j][i];               then the contribution to the likelihood is the probability to 
     /* end ppptj */               die between last step unit time and current  step unit time, 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);                 which is also equal to probability to die before dh 
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);               minus probability to die before dh-stepm . 
                 In version up to 0.92 likelihood was computed
     if (popbased==1) {          as if date of death was unknown. Death was treated as any other
       for(i=1; i<=nlstate;i++)          health state: the date of the interview describes the actual state
         prlim[i][i]=probs[(int)age][i][ij];          and not the date of a change in health state. The former idea was
     }          to consider that at each interview the state was recorded
              (healthy, disable or death) and IMaCh was corrected; but when we
     /* This for computing force of mortality (h=1)as a weighted average */          introduced the exact date of death then we should have modified
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){          the contribution of an exact death to the likelihood. This new
       for(i=1; i<= nlstate; i++)          contribution is smaller and very dependent of the step unit
         gmp[j] += prlim[i][i]*p3mat[i][j][1];          stepm. It is no more the probability to die between last interview
     }              and month of death but the probability to survive from last
     /* end force of mortality */          interview up to one month before death multiplied by the
           probability to die within a month. Thanks to Chris
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);          Jackson for correcting this bug.  Former versions increased
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){          mortality artificially. The bad side is that we add another loop
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));          which slows down the processing. The difference can be up to 10%
       for(i=1; i<=nlstate;i++){          lower mortality.
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);            */
       }          /* If, at the beginning of the maximization mostly, the
     }             cumulative probability or probability to be dead is
     fprintf(ficresprobmorprev,"\n");             constant (ie = 1) over time d, the difference is equal to
              0.  out[s1][3] = savm[s1][3]: probability, being at state
     fprintf(ficresvij,"%.0f ",age );             s1 at precedent wave, to be dead a month before current
     for(i=1; i<=nlstate;i++)             wave is equal to probability, being at state s1 at
       for(j=1; j<=nlstate;j++){             precedent wave, to be dead at mont of the current
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);             wave. Then the observed probability (that this person died)
       }             is null according to current estimated parameter. In fact,
     fprintf(ficresvij,"\n");             it should be very low but not zero otherwise the log go to
     free_matrix(gp,0,nhstepm,1,nlstate);             infinity.
     free_matrix(gm,0,nhstepm,1,nlstate);          */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  /* #ifdef INFINITYORIGINAL */
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /* #else */
   } /* End age */  /*        if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
   free_vector(gpp,nlstate+1,nlstate+ndeath);  /*          lli=log(mytinydouble); */
   free_vector(gmp,nlstate+1,nlstate+ndeath);  /*        else */
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);  /*          lli=log(out[s1][s2] - savm[s1][s2]); */
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/  /* #endif */
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");              lli=log(out[s1][s2] - savm[s1][s2]);
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */  
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");          } else if  (s2==-2) {
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);            for (j=1,survp=0. ; j<=nlstate; j++) 
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);            /*survp += out[s1][j]; */
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);            lli= log(survp);
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);          }
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);          
           else if  (s2==-4) { 
   free_vector(xp,1,npar);            for (j=3,survp=0. ; j<=nlstate; j++)  
   free_matrix(doldm,1,nlstate,1,nlstate);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   free_matrix(dnewm,1,nlstate,1,npar);            lli= log(survp); 
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          } 
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);  
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          else if  (s2==-5) { 
   fclose(ficresprobmorprev);            for (j=1,survp=0. ; j<=2; j++)  
   fclose(ficgp);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   fclose(fichtm);            lli= log(survp); 
           } 
 }          
           else{
 /************ Variance of prevlim ******************/            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
 {          } 
   /* Variance of prevalence limit */          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          /*if(lli ==000.0)*/
   double **newm;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   double **dnewm,**doldm;          ipmx +=1;
   int i, j, nhstepm, hstepm;          sw += weight[i];
   int k, cptcode;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double *xp;          /* if (lli < log(mytinydouble)){ */
   double *gp, *gm;          /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
   double **gradg, **trgradg;          /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
   double age,agelim;          /* } */
   int theta;        } /* end of wave */
          } /* end of individual */
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    }  else if(mle==2){
   fprintf(ficresvpl,"# Age");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for(i=1; i<=nlstate;i++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       fprintf(ficresvpl," %1d-%1d",i,i);        for(mi=1; mi<= wav[i]-1; mi++){
   fprintf(ficresvpl,"\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   xp=vector(1,npar);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   dnewm=matrix(1,nlstate,1,npar);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   doldm=matrix(1,nlstate,1,nlstate);            }
            for(d=0; d<=dh[mi][i]; d++){
   hstepm=1*YEARM; /* Every year of age */            newm=savm;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   agelim = AGESUP;            for (kk=1; kk<=cptcovage;kk++) {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            }
     if (stepm >= YEARM) hstepm=1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     gradg=matrix(1,npar,1,nlstate);            savm=oldm;
     gp=vector(1,nlstate);            oldm=newm;
     gm=vector(1,nlstate);          } /* end mult */
         
     for(theta=1; theta <=npar; theta++){          s1=s[mw[mi][i]][i];
       for(i=1; i<=npar; i++){ /* Computes gradient */          s2=s[mw[mi+1][i]][i];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          bbh=(double)bh[mi][i]/(double)stepm; 
       }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          ipmx +=1;
       for(i=1;i<=nlstate;i++)          sw += weight[i];
         gp[i] = prlim[i][i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
            } /* end of wave */
       for(i=1; i<=npar; i++) /* Computes gradient */      } /* end of individual */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    }  else if(mle==3){  /* exponential inter-extrapolation */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(i=1;i<=nlstate;i++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         gm[i] = prlim[i][i];        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
       for(i=1;i<=nlstate;i++)            for (j=1;j<=nlstate+ndeath;j++){
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     } /* End theta */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
     trgradg =matrix(1,nlstate,1,npar);          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
     for(j=1; j<=nlstate;j++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for(theta=1; theta <=npar; theta++)            for (kk=1; kk<=cptcovage;kk++) {
         trgradg[j][theta]=gradg[theta][j];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
     for(i=1;i<=nlstate;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       varpl[i][(int)age] =0.;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);            savm=oldm;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);            oldm=newm;
     for(i=1;i<=nlstate;i++)          } /* end mult */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        
           s1=s[mw[mi][i]][i];
     fprintf(ficresvpl,"%.0f ",age );          s2=s[mw[mi+1][i]][i];
     for(i=1; i<=nlstate;i++)          bbh=(double)bh[mi][i]/(double)stepm; 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     fprintf(ficresvpl,"\n");          ipmx +=1;
     free_vector(gp,1,nlstate);          sw += weight[i];
     free_vector(gm,1,nlstate);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     free_matrix(gradg,1,npar,1,nlstate);        } /* end of wave */
     free_matrix(trgradg,1,nlstate,1,npar);      } /* end of individual */
   } /* End age */    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   free_vector(xp,1,npar);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   free_matrix(doldm,1,nlstate,1,npar);        for(mi=1; mi<= wav[i]-1; mi++){
   free_matrix(dnewm,1,nlstate,1,nlstate);          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
 /************ Variance of one-step probabilities  ******************/            }
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)          for(d=0; d<dh[mi][i]; d++){
 {            newm=savm;
   int i, j=0,  i1, k1, l1, t, tj;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int k2, l2, j1,  z1;            for (kk=1; kk<=cptcovage;kk++) {
   int k=0,l, cptcode;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int first=1, first1;            }
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;          
   double **dnewm,**doldm;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double *xp;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double *gp, *gm;            savm=oldm;
   double **gradg, **trgradg;            oldm=newm;
   double **mu;          } /* end mult */
   double age,agelim, cov[NCOVMAX];        
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */          s1=s[mw[mi][i]][i];
   int theta;          s2=s[mw[mi+1][i]][i];
   char fileresprob[FILENAMELENGTH];          if( s2 > nlstate){ 
   char fileresprobcov[FILENAMELENGTH];            lli=log(out[s1][s2] - savm[s1][s2]);
   char fileresprobcor[FILENAMELENGTH];          }else{
             lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   double ***varpij;          }
           ipmx +=1;
   strcpy(fileresprob,"prob");          sw += weight[i];
   strcat(fileresprob,fileres);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     printf("Problem with resultfile: %s\n", fileresprob);        } /* end of wave */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);      } /* end of individual */
   }    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   strcpy(fileresprobcov,"probcov");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   strcat(fileresprobcov,fileres);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {        for(mi=1; mi<= wav[i]-1; mi++){
     printf("Problem with resultfile: %s\n", fileresprobcov);          for (ii=1;ii<=nlstate+ndeath;ii++)
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);            for (j=1;j<=nlstate+ndeath;j++){
   }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   strcpy(fileresprobcor,"probcor");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   strcat(fileresprobcor,fileres);            }
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {          for(d=0; d<dh[mi][i]; d++){
     printf("Problem with resultfile: %s\n", fileresprobcor);            newm=savm;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);            }
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);            savm=oldm;
              oldm=newm;
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");          } /* end mult */
   fprintf(ficresprob,"# Age");        
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");          s1=s[mw[mi][i]][i];
   fprintf(ficresprobcov,"# Age");          s2=s[mw[mi+1][i]][i];
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   fprintf(ficresprobcov,"# Age");          ipmx +=1;
           sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for(i=1; i<=nlstate;i++)          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     for(j=1; j<=(nlstate+ndeath);j++){        } /* end of wave */
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      } /* end of individual */
       fprintf(ficresprobcov," p%1d-%1d ",i,j);    } /* End of if */
       fprintf(ficresprobcor," p%1d-%1d ",i,j);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     }      /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   fprintf(ficresprob,"\n");    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   fprintf(ficresprobcov,"\n");    return -l;
   fprintf(ficresprobcor,"\n");  }
   xp=vector(1,npar);  
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  /*************** log-likelihood *************/
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));  double funcone( double *x)
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);  {
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    /* Same as likeli but slower because of a lot of printf and if */
   first=1;    int i, ii, j, k, mi, d, kk;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    double **out;
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);    double lli; /* Individual log likelihood */
     exit(0);    double llt;
   }    int s1, s2;
   else{    double bbh, survp;
     fprintf(ficgp,"\n# Routine varprob");    /*extern weight */
   }    /* We are differentiating ll according to initial status */
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     printf("Problem with html file: %s\n", optionfilehtm);    /*for(i=1;i<imx;i++) 
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);      printf(" %d\n",s[4][i]);
     exit(0);    */
   }    cov[1]=1.;
   else{  
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");    for(k=1; k<=nlstate; k++) ll[k]=0.;
     fprintf(fichtm,"\n");  
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");      for(mi=1; mi<= wav[i]-1; mi++){
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");        for (ii=1;ii<=nlstate+ndeath;ii++)
           for (j=1;j<=nlstate+ndeath;j++){
   }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);
            }
   cov[1]=1;        for(d=0; d<dh[mi][i]; d++){
   tj=cptcoveff;          newm=savm;
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   j1=0;          for (kk=1; kk<=cptcovage;kk++) {
   for(t=1; t<=tj;t++){            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for(i1=1; i1<=ncodemax[t];i1++){          }
       j1++;          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
                out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       if  (cptcovn>0) {                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         fprintf(ficresprob, "\n#********** Variable ");          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
         fprintf(ficresprob, "**********\n#");          savm=oldm;
         fprintf(ficresprobcov, "\n#********** Variable ");          oldm=newm;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        } /* end mult */
         fprintf(ficresprobcov, "**********\n#");        
                s1=s[mw[mi][i]][i];
         fprintf(ficgp, "\n#********** Variable ");        s2=s[mw[mi+1][i]][i];
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        bbh=(double)bh[mi][i]/(double)stepm; 
         fprintf(ficgp, "**********\n#");        /* bias is positive if real duration
                 * is higher than the multiple of stepm and negative otherwise.
                 */
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");        if( s2 > nlstate && (mle <5) ){  /* Jackson */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          lli=log(out[s1][s2] - savm[s1][s2]);
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");        } else if  (s2==-2) {
                  for (j=1,survp=0. ; j<=nlstate; j++) 
         fprintf(ficresprobcor, "\n#********** Variable ");                survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          lli= log(survp);
         fprintf(ficgp, "**********\n#");            }else if (mle==1){
       }          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
              } else if(mle==2){
       for (age=bage; age<=fage; age ++){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         cov[2]=age;        } else if(mle==3){  /* exponential inter-extrapolation */
         for (k=1; k<=cptcovn;k++) {          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         }          lli=log(out[s1][s2]); /* Original formula */
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        } else{  /* mle=0 back to 1 */
         for (k=1; k<=cptcovprod;k++)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          /*lli=log(out[s1][s2]); */ /* Original formula */
                } /* End of if */
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));        ipmx +=1;
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        sw += weight[i];
         gp=vector(1,(nlstate)*(nlstate+ndeath));        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         gm=vector(1,(nlstate)*(nlstate+ndeath));        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
            if(globpr){
         for(theta=1; theta <=npar; theta++){          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
           for(i=1; i<=npar; i++)   %11.6f %11.6f %11.6f ", \
             xp[i] = x[i] + (i==theta ?delti[theta]:0);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                            2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
                      llt +=ll[k]*gipmx/gsw;
           k=0;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           for(i=1; i<= (nlstate); i++){          }
             for(j=1; j<=(nlstate+ndeath);j++){          fprintf(ficresilk," %10.6f\n", -llt);
               k=k+1;        }
               gp[k]=pmmij[i][j];      } /* end of wave */
             }    } /* end of individual */
           }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
              /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           for(i=1; i<=npar; i++)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    if(globpr==0){ /* First time we count the contributions and weights */
          gipmx=ipmx;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      gsw=sw;
           k=0;    }
           for(i=1; i<=(nlstate); i++){    return -l;
             for(j=1; j<=(nlstate+ndeath);j++){  }
               k=k+1;  
               gm[k]=pmmij[i][j];  
             }  /*************** function likelione ***********/
           }  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
        {
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)    /* This routine should help understanding what is done with 
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];         the selection of individuals/waves and
         }       to check the exact contribution to the likelihood.
        Plotting could be done.
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)     */
           for(theta=1; theta <=npar; theta++)    int k;
             trgradg[j][theta]=gradg[theta][j];  
            if(*globpri !=0){ /* Just counts and sums, no printings */
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);      strcpy(fileresilk,"ilk"); 
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);      strcat(fileresilk,fileres);
              if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         pmij(pmmij,cov,ncovmodel,x,nlstate);        printf("Problem with resultfile: %s\n", fileresilk);
                fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
         k=0;      }
         for(i=1; i<=(nlstate); i++){      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
           for(j=1; j<=(nlstate+ndeath);j++){      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
             k=k+1;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
             mu[k][(int) age]=pmmij[i][j];      for(k=1; k<=nlstate; k++) 
           }        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
         }      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    }
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)  
             varpij[i][j][(int)age] = doldm[i][j];    *fretone=(*funcone)(p);
     if(*globpri !=0){
         /*printf("\n%d ",(int)age);      fclose(ficresilk);
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      fflush(fichtm); 
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    } 
      }*/    return;
   }
         fprintf(ficresprob,"\n%d ",(int)age);  
         fprintf(ficresprobcov,"\n%d ",(int)age);  
         fprintf(ficresprobcor,"\n%d ",(int)age);  /*********** Maximum Likelihood Estimation ***************/
   
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));  {
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    int i,j, iter=0;
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);    double **xi;
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);    double fret;
         }    double fretone; /* Only one call to likelihood */
         i=0;    /*  char filerespow[FILENAMELENGTH];*/
         for (k=1; k<=(nlstate);k++){  
           for (l=1; l<=(nlstate+ndeath);l++){  #ifdef NLOPT
             i=i++;    int creturn;
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    nlopt_opt opt;
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
             for (j=1; j<=i;j++){    double *lb;
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);    double minf; /* the minimum objective value, upon return */
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));    double * p1; /* Shifted parameters from 0 instead of 1 */
             }    myfunc_data dinst, *d = &dinst;
           }  #endif
         }/* end of loop for state */  
       } /* end of loop for age */  
     xi=matrix(1,npar,1,npar);
       /* Confidence intervalle of pij  */    for (i=1;i<=npar;i++)
       /*      for (j=1;j<=npar;j++)
       fprintf(ficgp,"\nset noparametric;unset label");        xi[i][j]=(i==j ? 1.0 : 0.0);
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    strcpy(filerespow,"pow"); 
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);    strcat(filerespow,fileres);
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       */    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    for (i=1;i<=nlstate;i++)
       first1=1;      for(j=1;j<=nlstate+ndeath;j++)
       for (k2=1; k2<=(nlstate);k2++){        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         for (l2=1; l2<=(nlstate+ndeath);l2++){    fprintf(ficrespow,"\n");
           if(l2==k2) continue;  #ifdef POWELL
           j=(k2-1)*(nlstate+ndeath)+l2;    powell(p,xi,npar,ftol,&iter,&fret,func);
           for (k1=1; k1<=(nlstate);k1++){  #endif
             for (l1=1; l1<=(nlstate+ndeath);l1++){  
               if(l1==k1) continue;  #ifdef NLOPT
               i=(k1-1)*(nlstate+ndeath)+l1;  #ifdef NEWUOA
               if(i<=j) continue;    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
               for (age=bage; age<=fage; age ++){  #else
                 if ((int)age %5==0){    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;  #endif
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    lb=vector(0,npar-1);
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
                   mu1=mu[i][(int) age]/stepm*YEARM ;    nlopt_set_lower_bounds(opt, lb);
                   mu2=mu[j][(int) age]/stepm*YEARM;    nlopt_set_initial_step1(opt, 0.1);
                   c12=cv12/sqrt(v1*v2);    
                   /* Computing eigen value of matrix of covariance */    p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    d->function = func;
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
                   /* Eigen vectors */    nlopt_set_min_objective(opt, myfunc, d);
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    nlopt_set_xtol_rel(opt, ftol);
                   /*v21=sqrt(1.-v11*v11); *//* error */    if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
                   v21=(lc1-v1)/cv12*v11;      printf("nlopt failed! %d\n",creturn); 
                   v12=-v21;    }
                   v22=v11;    else {
                   tnalp=v21/v11;      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
                   if(first1==1){      printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
                     first1=0;      iter=1; /* not equal */
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    }
                   }    nlopt_destroy(opt);
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);  #endif
                   /*printf(fignu*/    free_matrix(xi,1,npar,1,npar);
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    fclose(ficrespow);
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */    printf("#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
                   if(first==1){    fprintf(ficlog,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
                     first=0;    fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
                     fprintf(ficgp,"\nset parametric;unset label");  
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);  }
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");  
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);  /**** Computes Hessian and covariance matrix ***/
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);  {
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    double  **a,**y,*x,pd;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    double **hess;
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    int i, j;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    int *indx;
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));  
                   }else{    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
                     first=0;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    void lubksb(double **a, int npar, int *indx, double b[]) ;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    void ludcmp(double **a, int npar, int *indx, double *d) ;
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    double gompertz(double p[]);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    hess=matrix(1,npar,1,npar);
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));  
                   }/* if first */    printf("\nCalculation of the hessian matrix. Wait...\n");
                 } /* age mod 5 */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
               } /* end loop age */    for (i=1;i<=npar;i++){
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);      printf("%d",i);fflush(stdout);
               first=1;      fprintf(ficlog,"%d",i);fflush(ficlog);
             } /*l12 */     
           } /* k12 */       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
         } /*l1 */      
       }/* k1 */      /*  printf(" %f ",p[i]);
     } /* loop covariates */          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    }
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    for (i=1;i<=npar;i++) {
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);      for (j=1;j<=npar;j++)  {
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        if (j>i) { 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          printf(".%d%d",i,j);fflush(stdout);
   }          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   free_vector(xp,1,npar);          hess[i][j]=hessij(p,delti,i,j,func,npar);
   fclose(ficresprob);          
   fclose(ficresprobcov);          hess[j][i]=hess[i][j];    
   fclose(ficresprobcor);          /*printf(" %lf ",hess[i][j]);*/
   fclose(ficgp);        }
   fclose(fichtm);      }
 }    }
     printf("\n");
     fprintf(ficlog,"\n");
 /******************* Printing html file ***********/  
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
                   int lastpass, int stepm, int weightopt, char model[],\    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\    
                   int popforecast, int estepm ,\    a=matrix(1,npar,1,npar);
                   double jprev1, double mprev1,double anprev1, \    y=matrix(1,npar,1,npar);
                   double jprev2, double mprev2,double anprev2){    x=vector(1,npar);
   int jj1, k1, i1, cpt;    indx=ivector(1,npar);
   /*char optionfilehtm[FILENAMELENGTH];*/    for (i=1;i<=npar;i++)
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     printf("Problem with %s \n",optionfilehtm), exit(0);    ludcmp(a,npar,indx,&pd);
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);  
   }    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n      x[j]=1;
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n      lubksb(a,npar,indx,x);
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n      for (i=1;i<=npar;i++){ 
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n        matcov[i][j]=x[i];
  - Life expectancies by age and initial health status (estepm=%2d months):      }
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    }
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);  
     printf("\n#Hessian matrix#\n");
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
  m=cptcoveff;      for (j=1;j<=npar;j++) { 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}        printf("%.3e ",hess[i][j]);
         fprintf(ficlog,"%.3e ",hess[i][j]);
  jj1=0;      }
  for(k1=1; k1<=m;k1++){      printf("\n");
    for(i1=1; i1<=ncodemax[k1];i1++){      fprintf(ficlog,"\n");
      jj1++;    }
      if (cptcovn > 0) {  
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    /* Recompute Inverse */
        for (cpt=1; cpt<=cptcoveff;cpt++)    for (i=1;i<=npar;i++)
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    ludcmp(a,npar,indx,&pd);
      }  
      /* Pij */    /*  printf("\n#Hessian matrix recomputed#\n");
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>  
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        for (j=1;j<=npar;j++) {
      /* Quasi-incidences */      for (i=1;i<=npar;i++) x[i]=0;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>      x[j]=1;
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      lubksb(a,npar,indx,x);
        /* Stable prevalence in each health state */      for (i=1;i<=npar;i++){ 
        for(cpt=1; cpt<nlstate;cpt++){        y[i][j]=x[i];
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>        printf("%.3e ",y[i][j]);
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        fprintf(ficlog,"%.3e ",y[i][j]);
        }      }
      for(cpt=1; cpt<=nlstate;cpt++) {      printf("\n");
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>      fprintf(ficlog,"\n");
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    }
      }    */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and  
 health expectancies in states (1) and (2): e%s%d.png<br>    free_matrix(a,1,npar,1,npar);
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    free_matrix(y,1,npar,1,npar);
    } /* end i1 */    free_vector(x,1,npar);
  }/* End k1 */    free_ivector(indx,1,npar);
  fprintf(fichtm,"</ul>");    free_matrix(hess,1,npar,1,npar);
   
   
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n  }
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n  
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n  /*************** hessian matrix ****************/
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n  {
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    int i;
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    int l=1, lmax=20;
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    double k1,k2;
     double p2[MAXPARM+1]; /* identical to x */
  if(popforecast==1) fprintf(fichtm,"\n    double res;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    double fx;
         <br>",fileres,fileres,fileres,fileres);    int k=0,kmax=10;
  else    double l1;
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);  
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
  m=cptcoveff;    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      l1=pow(10,l);
       delts=delt;
  jj1=0;      for(k=1 ; k <kmax; k=k+1){
  for(k1=1; k1<=m;k1++){        delt = delta*(l1*k);
    for(i1=1; i1<=ncodemax[k1];i1++){        p2[theta]=x[theta] +delt;
      jj1++;        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
      if (cptcovn > 0) {        p2[theta]=x[theta]-delt;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        k2=func(p2)-fx;
        for (cpt=1; cpt<=cptcoveff;cpt++)        /*res= (k1-2.0*fx+k2)/delt/delt; */
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        
      }  #ifdef DEBUGHESS
      for(cpt=1; cpt<=nlstate;cpt++) {        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 interval) in state (%d): v%s%d%d.png <br>  #endif
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
      }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
    } /* end i1 */          k=kmax;
  }/* End k1 */        }
  fprintf(fichtm,"</ul>");        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
 fclose(fichtm);          k=kmax; l=lmax*10;
 }        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
 /******************* Gnuplot file **************/          delts=delt;
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        }
       }
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    }
   int ng;    delti[theta]=delts;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    return res; 
     printf("Problem with file %s",optionfilegnuplot);    
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);  }
   }  
   double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
 #ifdef windows  {
     fprintf(ficgp,"cd \"%s\" \n",pathc);    int i;
 #endif    int l=1, lmax=20;
 m=pow(2,cptcoveff);    double k1,k2,k3,k4,res,fx;
      double p2[MAXPARM+1];
  /* 1eme*/    int k;
   for (cpt=1; cpt<= nlstate ; cpt ++) {  
    for (k1=1; k1<= m ; k1 ++) {    fx=func(x);
     for (k=1; k<=2; k++) {
 #ifdef windows      for (i=1;i<=npar;i++) p2[i]=x[i];
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      p2[thetai]=x[thetai]+delti[thetai]/k;
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 #endif      k1=func(p2)-fx;
 #ifdef unix    
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      p2[thetai]=x[thetai]+delti[thetai]/k;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 #endif      k2=func(p2)-fx;
     
 for (i=1; i<= nlstate ; i ++) {      p2[thetai]=x[thetai]-delti[thetai]/k;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   else fprintf(ficgp," \%%*lf (\%%*lf)");      k3=func(p2)-fx;
 }    
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      p2[thetai]=x[thetai]-delti[thetai]/k;
     for (i=1; i<= nlstate ; i ++) {      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      k4=func(p2)-fx;
   else fprintf(ficgp," \%%*lf (\%%*lf)");      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 }  #ifdef DEBUG
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
      for (i=1; i<= nlstate ; i ++) {      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  #endif
   else fprintf(ficgp," \%%*lf (\%%*lf)");    }
 }      return res;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  }
 #ifdef unix  
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");  /************** Inverse of matrix **************/
 #endif  void ludcmp(double **a, int n, int *indx, double *d) 
    }  { 
   }    int i,imax,j,k; 
   /*2 eme*/    double big,dum,sum,temp; 
     double *vv; 
   for (k1=1; k1<= m ; k1 ++) {   
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    vv=vector(1,n); 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);    *d=1.0; 
        for (i=1;i<=n;i++) { 
     for (i=1; i<= nlstate+1 ; i ++) {      big=0.0; 
       k=2*i;      for (j=1;j<=n;j++) 
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        if ((temp=fabs(a[i][j])) > big) big=temp; 
       for (j=1; j<= nlstate+1 ; j ++) {      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      vv[i]=1.0/big; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");    } 
 }      for (j=1;j<=n;j++) { 
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      for (i=1;i<j;i++) { 
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        sum=a[i][j]; 
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       for (j=1; j<= nlstate+1 ; j ++) {        a[i][j]=sum; 
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      } 
         else fprintf(ficgp," \%%*lf (\%%*lf)");      big=0.0; 
 }        for (i=j;i<=n;i++) { 
       fprintf(ficgp,"\" t\"\" w l 0,");        sum=a[i][j]; 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        for (k=1;k<j;k++) 
       for (j=1; j<= nlstate+1 ; j ++) {          sum -= a[i][k]*a[k][j]; 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        a[i][j]=sum; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");        if ( (dum=vv[i]*fabs(sum)) >= big) { 
 }            big=dum; 
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          imax=i; 
       else fprintf(ficgp,"\" t\"\" w l 0,");        } 
     }      } 
   }      if (j != imax) { 
          for (k=1;k<=n;k++) { 
   /*3eme*/          dum=a[imax][k]; 
           a[imax][k]=a[j][k]; 
   for (k1=1; k1<= m ; k1 ++) {          a[j][k]=dum; 
     for (cpt=1; cpt<= nlstate ; cpt ++) {        } 
       k=2+nlstate*(2*cpt-2);        *d = -(*d); 
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        vv[imax]=vv[j]; 
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);      } 
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      indx[j]=imax; 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      if (a[j][j] == 0.0) a[j][j]=TINY; 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      if (j != n) { 
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        dum=1.0/(a[j][j]); 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      } 
     } 
 */    free_vector(vv,1,n);  /* Doesn't work */
       for (i=1; i< nlstate ; i ++) {  ;
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);  } 
   
       }  void lubksb(double **a, int n, int *indx, double b[]) 
     }  { 
   }    int i,ii=0,ip,j; 
      double sum; 
   /* CV preval stat */   
     for (k1=1; k1<= m ; k1 ++) {    for (i=1;i<=n;i++) { 
     for (cpt=1; cpt<nlstate ; cpt ++) {      ip=indx[i]; 
       k=3;      sum=b[ip]; 
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      b[ip]=b[i]; 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);      if (ii) 
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       for (i=1; i< nlstate ; i ++)      else if (sum) ii=i; 
         fprintf(ficgp,"+$%d",k+i+1);      b[i]=sum; 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    } 
          for (i=n;i>=1;i--) { 
       l=3+(nlstate+ndeath)*cpt;      sum=b[i]; 
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       for (i=1; i< nlstate ; i ++) {      b[i]=sum/a[i][i]; 
         l=3+(nlstate+ndeath)*cpt;    } 
         fprintf(ficgp,"+$%d",l+i+1);  } 
       }  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    void pstamp(FILE *fichier)
     }  {
   }      fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
    }
   /* proba elementaires */  
    for(i=1,jk=1; i <=nlstate; i++){  /************ Frequencies ********************/
     for(k=1; k <=(nlstate+ndeath); k++){  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
       if (k != i) {  {  /* Some frequencies */
         for(j=1; j <=ncovmodel; j++){    
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    int i, m, jk, j1, bool, z1,j;
           jk++;    int first;
           fprintf(ficgp,"\n");    double ***freq; /* Frequencies */
         }    double *pp, **prop;
       }    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     }    char fileresp[FILENAMELENGTH];
    }    
     pp=vector(1,nlstate);
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    prop=matrix(1,nlstate,iagemin,iagemax+3);
      for(jk=1; jk <=m; jk++) {    strcpy(fileresp,"p");
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);    strcat(fileresp,fileres);
        if (ng==2)    if((ficresp=fopen(fileresp,"w"))==NULL) {
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");      printf("Problem with prevalence resultfile: %s\n", fileresp);
        else      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
          fprintf(ficgp,"\nset title \"Probability\"\n");      exit(0);
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    }
        i=1;    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
        for(k2=1; k2<=nlstate; k2++) {    j1=0;
          k3=i;    
          for(k=1; k<=(nlstate+ndeath); k++) {    j=cptcoveff;
            if (k != k2){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
              if(ng==2)  
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    first=1;
              else  
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
              ij=1;    /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
              for(j=3; j <=ncovmodel; j++) {    /*    j1++; */
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
                  ij++;          scanf("%d", i);*/
                }        for (i=-5; i<=nlstate+ndeath; i++)  
                else          for (jk=-5; jk<=nlstate+ndeath; jk++)  
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            for(m=iagemin; m <= iagemax+3; m++)
              }              freq[i][jk][m]=0;
              fprintf(ficgp,")/(1");        
                      for (i=1; i<=nlstate; i++)  
              for(k1=1; k1 <=nlstate; k1++){            for(m=iagemin; m <= iagemax+3; m++)
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);            prop[i][m]=0;
                ij=1;        
                for(j=3; j <=ncovmodel; j++){        dateintsum=0;
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        k2cpt=0;
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        for (i=1; i<=imx; i++) {
                    ij++;          bool=1;
                  }          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
                  else            for (z1=1; z1<=cptcoveff; z1++)       
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
                }                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
                fprintf(ficgp,")");                bool=0;
              }                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
              i=i+ncovmodel;                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
            }              } 
          } /* end k */          }
        } /* end k2 */   
      } /* end jk */          if (bool==1){
    } /* end ng */            for(m=firstpass; m<=lastpass; m++){
    fclose(ficgp);              k2=anint[m][i]+(mint[m][i]/12.);
 }  /* end gnuplot */              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
 /*************** Moving average **************/                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){                if (m<lastpass) {
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   int i, cpt, cptcod;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)                }
       for (i=1; i<=nlstate;i++)                
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
           mobaverage[(int)agedeb][i][cptcod]=0.;                  dateintsum=dateintsum+k2;
                      k2cpt++;
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){                }
       for (i=1; i<=nlstate;i++){                /*}*/
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            }
           for (cpt=0;cpt<=4;cpt++){          }
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];        } /* end i */
           }         
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         }        pstamp(ficresp);
       }        if  (cptcovn>0) {
     }          fprintf(ficresp, "\n#********** Variable "); 
              for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 }          fprintf(ficresp, "**********\n#");
           fprintf(ficlog, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 /************** Forecasting ******************/          fprintf(ficlog, "**********\n#");
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        }
          for(i=1; i<=nlstate;i++) 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   int *popage;        fprintf(ficresp, "\n");
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        
   double *popeffectif,*popcount;        for(i=iagemin; i <= iagemax+3; i++){
   double ***p3mat;          if(i==iagemax+3){
   char fileresf[FILENAMELENGTH];            fprintf(ficlog,"Total");
           }else{
  agelim=AGESUP;            if(first==1){
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;              first=0;
               printf("See log file for details...\n");
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            }
              fprintf(ficlog,"Age %d", i);
            }
   strcpy(fileresf,"f");          for(jk=1; jk <=nlstate ; jk++){
   strcat(fileresf,fileres);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   if((ficresf=fopen(fileresf,"w"))==NULL) {              pp[jk] += freq[jk][m][i]; 
     printf("Problem with forecast resultfile: %s\n", fileresf);          }
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);          for(jk=1; jk <=nlstate ; jk++){
   }            for(m=-1, pos=0; m <=0 ; m++)
   printf("Computing forecasting: result on file '%s' \n", fileresf);              pos += freq[jk][m][i];
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);            if(pp[jk]>=1.e-10){
               if(first==1){
   if (cptcoveff==0) ncodemax[cptcoveff]=1;                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }
   if (mobilav==1) {              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            }else{
     movingaverage(agedeb, fage, ageminpar, mobaverage);              if(first==1)
   }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   stepsize=(int) (stepm+YEARM-1)/YEARM;            }
   if (stepm<=12) stepsize=1;          }
    
   agelim=AGESUP;          for(jk=1; jk <=nlstate ; jk++){
              for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   hstepm=1;              pp[jk] += freq[jk][m][i];
   hstepm=hstepm/stepm;          }       
   yp1=modf(dateintmean,&yp);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   anprojmean=yp;            pos += pp[jk];
   yp2=modf((yp1*12),&yp);            posprop += prop[jk][i];
   mprojmean=yp;          }
   yp1=modf((yp2*30.5),&yp);          for(jk=1; jk <=nlstate ; jk++){
   jprojmean=yp;            if(pos>=1.e-5){
   if(jprojmean==0) jprojmean=1;              if(first==1)
   if(mprojmean==0) jprojmean=1;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);            }else{
                if(first==1)
   for(cptcov=1;cptcov<=i2;cptcov++){                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       k=k+1;            }
       fprintf(ficresf,"\n#******");            if( i <= iagemax){
       for(j=1;j<=cptcoveff;j++) {              if(pos>=1.e-5){
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
       }                /*probs[i][jk][j1]= pp[jk]/pos;*/
       fprintf(ficresf,"******\n");                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       fprintf(ficresf,"# StartingAge FinalAge");              }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);              else
                      fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                  }
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {          }
         fprintf(ficresf,"\n");          
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);            for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){              if(freq[jk][m][i] !=0 ) {
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);              if(first==1)
           nhstepm = nhstepm/hstepm;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                          fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              }
           oldm=oldms;savm=savms;          if(i <= iagemax)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              fprintf(ficresp,"\n");
                  if(first==1)
           for (h=0; h<=nhstepm; h++){            printf("Others in log...\n");
             if (h==(int) (calagedate+YEARM*cpt)) {          fprintf(ficlog,"\n");
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);        }
             }        /*}*/
             for(j=1; j<=nlstate+ndeath;j++) {    }
               kk1=0.;kk2=0;    dateintmean=dateintsum/k2cpt; 
               for(i=1; i<=nlstate;i++) {                 
                 if (mobilav==1)    fclose(ficresp);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
                 else {    free_vector(pp,1,nlstate);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
                 }    /* End of Freq */
                  }
               }  
               if (h==(int)(calagedate+12*cpt)){  /************ Prevalence ********************/
                 fprintf(ficresf," %.3f", kk1);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
                          {  
               }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
             }       in each health status at the date of interview (if between dateprev1 and dateprev2).
           }       We still use firstpass and lastpass as another selection.
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    */
         }   
       }    int i, m, jk, j1, bool, z1,j;
     }  
   }    double **prop;
            double posprop; 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    double  y2; /* in fractional years */
     int iagemin, iagemax;
   fclose(ficresf);    int first; /** to stop verbosity which is redirected to log file */
 }  
 /************** Forecasting ******************/    iagemin= (int) agemin;
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    iagemax= (int) agemax;
      /*pp=vector(1,nlstate);*/
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   int *popage;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    j1=0;
   double *popeffectif,*popcount;    
   double ***p3mat,***tabpop,***tabpopprev;    /*j=cptcoveff;*/
   char filerespop[FILENAMELENGTH];    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    first=1;
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
   agelim=AGESUP;      /*for(i1=1; i1<=ncodemax[k1];i1++){
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;        j1++;*/
          
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        for (i=1; i<=nlstate; i++)  
            for(m=iagemin; m <= iagemax+3; m++)
              prop[i][m]=0.0;
   strcpy(filerespop,"pop");       
   strcat(filerespop,fileres);        for (i=1; i<=imx; i++) { /* Each individual */
   if((ficrespop=fopen(filerespop,"w"))==NULL) {          bool=1;
     printf("Problem with forecast resultfile: %s\n", filerespop);          if  (cptcovn>0) {
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);            for (z1=1; z1<=cptcoveff; z1++) 
   }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   printf("Computing forecasting: result on file '%s' \n", filerespop);                bool=0;
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);          } 
           if (bool==1) { 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   if (mobilav==1) {              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     movingaverage(agedeb, fage, ageminpar, mobaverage);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
   stepsize=(int) (stepm+YEARM-1)/YEARM;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   if (stepm<=12) stepsize=1;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                    prop[s[m][i]][iagemax+3] += weight[i]; 
   agelim=AGESUP;                } 
                }
   hstepm=1;            } /* end selection of waves */
   hstepm=hstepm/stepm;          }
          }
   if (popforecast==1) {        for(i=iagemin; i <= iagemax+3; i++){  
     if((ficpop=fopen(popfile,"r"))==NULL) {          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
       printf("Problem with population file : %s\n",popfile);exit(0);            posprop += prop[jk][i]; 
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);          } 
     }          
     popage=ivector(0,AGESUP);          for(jk=1; jk <=nlstate ; jk++){     
     popeffectif=vector(0,AGESUP);            if( i <=  iagemax){ 
     popcount=vector(0,AGESUP);              if(posprop>=1.e-5){ 
                    probs[i][jk][j1]= prop[jk][i]/posprop;
     i=1;                } else{
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;                if(first==1){
                      first=0;
     imx=i;                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];                }
   }              }
             } 
   for(cptcov=1;cptcov<=i2;cptcov++){          }/* end jk */ 
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        }/* end i */ 
       k=k+1;      /*} *//* end i1 */
       fprintf(ficrespop,"\n#******");    } /* end j1 */
       for(j=1;j<=cptcoveff;j++) {    
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
       }    /*free_vector(pp,1,nlstate);*/
       fprintf(ficrespop,"******\n");    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       fprintf(ficrespop,"# Age");  }  /* End of prevalence */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  
       if (popforecast==1)  fprintf(ficrespop," [Population]");  /************* Waves Concatenation ***************/
        
       for (cpt=0; cpt<=0;cpt++) {  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    {
            /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){       Death is a valid wave (if date is known).
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           nhstepm = nhstepm/hstepm;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
                 and mw[mi+1][i]. dh depends on stepm.
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       */
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      int i, mi, m;
            /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
           for (h=0; h<=nhstepm; h++){       double sum=0., jmean=0.;*/
             if (h==(int) (calagedate+YEARM*cpt)) {    int first;
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    int j, k=0,jk, ju, jl;
             }    double sum=0.;
             for(j=1; j<=nlstate+ndeath;j++) {    first=0;
               kk1=0.;kk2=0;    jmin=100000;
               for(i=1; i<=nlstate;i++) {                  jmax=-1;
                 if (mobilav==1)    jmean=0.;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    for(i=1; i<=imx; i++){
                 else {      mi=0;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      m=firstpass;
                 }      while(s[m][i] <= nlstate){
               }        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
               if (h==(int)(calagedate+12*cpt)){          mw[++mi][i]=m;
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        if(m >=lastpass)
                   /*fprintf(ficrespop," %.3f", kk1);          break;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/        else
               }          m++;
             }      }/* end while */
             for(i=1; i<=nlstate;i++){      if (s[m][i] > nlstate){
               kk1=0.;        mi++;     /* Death is another wave */
                 for(j=1; j<=nlstate;j++){        /* if(mi==0)  never been interviewed correctly before death */
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];           /* Only death is a correct wave */
                 }        mw[mi][i]=m;
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];      }
             }  
       wav[i]=mi;
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      if(mi==0){
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        nbwarn++;
           }        if(first==0){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         }          first=1;
       }        }
          if(first==1){
   /******/          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         }
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      } /* end mi==0 */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      } /* End individuals */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    for(i=1; i<=imx; i++){
           nhstepm = nhstepm/hstepm;      for(mi=1; mi<wav[i];mi++){
                  if (stepm <=0)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          dh[mi][i]=1;
           oldm=oldms;savm=savms;        else{
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
           for (h=0; h<=nhstepm; h++){            if (agedc[i] < 2*AGESUP) {
             if (h==(int) (calagedate+YEARM*cpt)) {              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);              if(j==0) j=1;  /* Survives at least one month after exam */
             }              else if(j<0){
             for(j=1; j<=nlstate+ndeath;j++) {                nberr++;
               kk1=0.;kk2=0;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               for(i=1; i<=nlstate;i++) {                              j=1; /* Temporary Dangerous patch */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                    printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
               }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
             }              }
           }              k=k+1;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              if (j >= jmax){
         }                jmax=j;
       }                ijmax=i;
    }              }
   }              if (j <= jmin){
                  jmin=j;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                ijmin=i;
               }
   if (popforecast==1) {              sum=sum+j;
     free_ivector(popage,0,AGESUP);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     free_vector(popeffectif,0,AGESUP);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     free_vector(popcount,0,AGESUP);            }
   }          }
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          else{
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   fclose(ficrespop);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
 }  
             k=k+1;
 /***********************************************/            if (j >= jmax) {
 /**************** Main Program *****************/              jmax=j;
 /***********************************************/              ijmax=i;
             }
 int main(int argc, char *argv[])            else if (j <= jmin){
 {              jmin=j;
               ijmin=i;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;            }
   double agedeb, agefin,hf;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             if(j<0){
   double fret;              nberr++;
   double **xi,tmp,delta;              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   double dum; /* Dummy variable */            }
   double ***p3mat;            sum=sum+j;
   int *indx;          }
   char line[MAXLINE], linepar[MAXLINE];          jk= j/stepm;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];          jl= j -jk*stepm;
   int firstobs=1, lastobs=10;          ju= j -(jk+1)*stepm;
   int sdeb, sfin; /* Status at beginning and end */          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   int c,  h , cpt,l;            if(jl==0){
   int ju,jl, mi;              dh[mi][i]=jk;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;              bh[mi][i]=0;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;            }else{ /* We want a negative bias in order to only have interpolation ie
   int mobilav=0,popforecast=0;                    * to avoid the price of an extra matrix product in likelihood */
   int hstepm, nhstepm;              dh[mi][i]=jk+1;
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;              bh[mi][i]=ju;
             }
   double bage, fage, age, agelim, agebase;          }else{
   double ftolpl=FTOL;            if(jl <= -ju){
   double **prlim;              dh[mi][i]=jk;
   double *severity;              bh[mi][i]=jl;       /* bias is positive if real duration
   double ***param; /* Matrix of parameters */                                   * is higher than the multiple of stepm and negative otherwise.
   double  *p;                                   */
   double **matcov; /* Matrix of covariance */            }
   double ***delti3; /* Scale */            else{
   double *delti; /* Scale */              dh[mi][i]=jk+1;
   double ***eij, ***vareij;              bh[mi][i]=ju;
   double **varpl; /* Variances of prevalence limits by age */            }
   double *epj, vepp;            if(dh[mi][i]==0){
   double kk1, kk2;              dh[mi][i]=1; /* At least one step */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;              bh[mi][i]=ju; /* At least one step */
                /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
   char *alph[]={"a","a","b","c","d","e"}, str[4];          } /* end if mle */
         }
       } /* end wave */
   char z[1]="c", occ;    }
 #include <sys/time.h>    jmean=sum/k;
 #include <time.h>    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     }
   /* long total_usecs;  
   struct timeval start_time, end_time;  /*********** Tricode ****************************/
    void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  {
   getcwd(pathcd, size);    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
     /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
   printf("\n%s",version);     * Boring subroutine which should only output nbcode[Tvar[j]][k]
   if(argc <=1){     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
     printf("\nEnter the parameter file name: ");     * nbcode[Tvar[j]][1]= 
     scanf("%s",pathtot);    */
   }  
   else{    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     strcpy(pathtot,argv[1]);    int modmaxcovj=0; /* Modality max of covariates j */
   }    int cptcode=0; /* Modality max of covariates j */
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    int modmincovj=0; /* Modality min of covariates j */
   /*cygwin_split_path(pathtot,path,optionfile);  
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  
   /* cutv(path,optionfile,pathtot,'\\');*/    cptcoveff=0; 
    
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    for (k=-1; k < maxncov; k++) Ndum[k]=0;
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   chdir(path);  
   replace(pathc,path);    /* Loop on covariates without age and products */
     for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
 /*-------- arguments in the command line --------*/      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
                                  modality of this covariate Vj*/ 
   /* Log file */        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
   strcat(filelog, optionfilefiname);                                      * If product of Vn*Vm, still boolean *:
   strcat(filelog,".log");    /* */                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
   if((ficlog=fopen(filelog,"w"))==NULL)    {                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
     printf("Problem with logfile %s\n",filelog);        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
     goto end;                                        modality of the nth covariate of individual i. */
   }        if (ij > modmaxcovj)
   fprintf(ficlog,"Log filename:%s\n",filelog);          modmaxcovj=ij; 
   fprintf(ficlog,"\n%s",version);        else if (ij < modmincovj) 
   fprintf(ficlog,"\nEnter the parameter file name: ");          modmincovj=ij; 
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);        if ((ij < -1) && (ij > NCOVMAX)){
   fflush(ficlog);          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
           exit(1);
   /* */        }else
   strcpy(fileres,"r");        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
   strcat(fileres, optionfilefiname);        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
   strcat(fileres,".txt");    /* Other files have txt extension */        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         /* getting the maximum value of the modality of the covariate
   /*---------arguments file --------*/           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
            female is 1, then modmaxcovj=1.*/
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      }
     printf("Problem with optionfile %s\n",optionfile);      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);      cptcode=modmaxcovj;
     goto end;      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
   }     /*for (i=0; i<=cptcode; i++) {*/
       for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
   strcpy(filereso,"o");        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
   strcat(filereso,fileres);        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
   if((ficparo=fopen(filereso,"w"))==NULL) {          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
     printf("Problem with Output resultfile: %s\n", filereso);        }
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
     goto end;           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
   }      } /* Ndum[-1] number of undefined modalities */
   
   /* Reads comments: lines beginning with '#' */      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
   while((c=getc(ficpar))=='#' && c!= EOF){      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
     ungetc(c,ficpar);      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
     fgets(line, MAXLINE, ficpar);         modmincovj=3; modmaxcovj = 7;
     puts(line);         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
     fputs(line,ficparo);         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
   }         variables V1_1 and V1_2.
   ungetc(c,ficpar);         nbcode[Tvar[j]][ij]=k;
          nbcode[Tvar[j]][1]=0;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);         nbcode[Tvar[j]][2]=1;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);         nbcode[Tvar[j]][3]=2;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);      */
 while((c=getc(ficpar))=='#' && c!= EOF){      ij=1; /* ij is similar to i but can jumps over null modalities */
     ungetc(c,ficpar);      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
     fgets(line, MAXLINE, ficpar);        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
     puts(line);          /*recode from 0 */
     fputs(line,ficparo);          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
   }            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
   ungetc(c,ficpar);                                       k is a modality. If we have model=V1+V1*sex 
                                         then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
                ij++;
   covar=matrix(0,NCOVMAX,1,n);          }
   cptcovn=0;          if (ij > ncodemax[j]) break; 
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;        }  /* end of loop on */
       } /* end of loop on modality */ 
   ncovmodel=2+cptcovn;    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    
     for (k=-1; k< maxncov; k++) Ndum[k]=0; 
   /* Read guess parameters */    
   /* Reads comments: lines beginning with '#' */    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
   while((c=getc(ficpar))=='#' && c!= EOF){     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
     ungetc(c,ficpar);     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
     fgets(line, MAXLINE, ficpar);     Ndum[ij]++; 
     puts(line);   } 
     fputs(line,ficparo);  
   }   ij=1;
   ungetc(c,ficpar);   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
       /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);     if((Ndum[i]!=0) && (i<=ncovcol)){
     for(i=1; i <=nlstate; i++)       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
     for(j=1; j <=nlstate+ndeath-1; j++){       Tvaraff[ij]=i; /*For printing (unclear) */
       fscanf(ficpar,"%1d%1d",&i1,&j1);       ij++;
       fprintf(ficparo,"%1d%1d",i1,j1);     }else
       if(mle==1)         Tvaraff[ij]=0;
         printf("%1d%1d",i,j);   }
       fprintf(ficlog,"%1d%1d",i,j);   ij--;
       for(k=1; k<=ncovmodel;k++){   cptcoveff=ij; /*Number of total covariates*/
         fscanf(ficpar," %lf",&param[i][j][k]);  
         if(mle==1){  }
           printf(" %lf",param[i][j][k]);  
           fprintf(ficlog," %lf",param[i][j][k]);  
         }  /*********** Health Expectancies ****************/
         else  
           fprintf(ficlog," %lf",param[i][j][k]);  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
         fprintf(ficparo," %lf",param[i][j][k]);  
       }  {
       fscanf(ficpar,"\n");    /* Health expectancies, no variances */
       if(mle==1)    int i, j, nhstepm, hstepm, h, nstepm;
         printf("\n");    int nhstepma, nstepma; /* Decreasing with age */
       fprintf(ficlog,"\n");    double age, agelim, hf;
       fprintf(ficparo,"\n");    double ***p3mat;
     }    double eip;
    
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    pstamp(ficreseij);
     fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
   p=param[1][1];    fprintf(ficreseij,"# Age");
      for(i=1; i<=nlstate;i++){
   /* Reads comments: lines beginning with '#' */      for(j=1; j<=nlstate;j++){
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficreseij," e%1d%1d ",i,j);
     ungetc(c,ficpar);      }
     fgets(line, MAXLINE, ficpar);      fprintf(ficreseij," e%1d. ",i);
     puts(line);    }
     fputs(line,ficparo);    fprintf(ficreseij,"\n");
   }  
   ungetc(c,ficpar);    
     if(estepm < stepm){
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      printf ("Problem %d lower than %d\n",estepm, stepm);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    }
   for(i=1; i <=nlstate; i++){    else  hstepm=estepm;   
     for(j=1; j <=nlstate+ndeath-1; j++){    /* We compute the life expectancy from trapezoids spaced every estepm months
       fscanf(ficpar,"%1d%1d",&i1,&j1);     * This is mainly to measure the difference between two models: for example
       printf("%1d%1d",i,j);     * if stepm=24 months pijx are given only every 2 years and by summing them
       fprintf(ficparo,"%1d%1d",i1,j1);     * we are calculating an estimate of the Life Expectancy assuming a linear 
       for(k=1; k<=ncovmodel;k++){     * progression in between and thus overestimating or underestimating according
         fscanf(ficpar,"%le",&delti3[i][j][k]);     * to the curvature of the survival function. If, for the same date, we 
         printf(" %le",delti3[i][j][k]);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         fprintf(ficparo," %le",delti3[i][j][k]);     * to compare the new estimate of Life expectancy with the same linear 
       }     * hypothesis. A more precise result, taking into account a more precise
       fscanf(ficpar,"\n");     * curvature will be obtained if estepm is as small as stepm. */
       printf("\n");  
       fprintf(ficparo,"\n");    /* For example we decided to compute the life expectancy with the smallest unit */
     }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   }       nhstepm is the number of hstepm from age to agelim 
   delti=delti3[1][1];       nstepm is the number of stepm from age to agelin. 
         Look at hpijx to understand the reason of that which relies in memory size
   /* Reads comments: lines beginning with '#' */       and note for a fixed period like estepm months */
   while((c=getc(ficpar))=='#' && c!= EOF){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     ungetc(c,ficpar);       survival function given by stepm (the optimization length). Unfortunately it
     fgets(line, MAXLINE, ficpar);       means that if the survival funtion is printed only each two years of age and if
     puts(line);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     fputs(line,ficparo);       results. So we changed our mind and took the option of the best precision.
   }    */
   ungetc(c,ficpar);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    
   matcov=matrix(1,npar,1,npar);    agelim=AGESUP;
   for(i=1; i <=npar; i++){    /* If stepm=6 months */
     fscanf(ficpar,"%s",&str);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     if(mle==1)         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       printf("%s",str);      
     fprintf(ficlog,"%s",str);  /* nhstepm age range expressed in number of stepm */
     fprintf(ficparo,"%s",str);    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     for(j=1; j <=i; j++){    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       fscanf(ficpar," %le",&matcov[i][j]);    /* if (stepm >= YEARM) hstepm=1;*/
       if(mle==1){    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         printf(" %.5le",matcov[i][j]);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficlog," %.5le",matcov[i][j]);  
       }    for (age=bage; age<=fage; age ++){ 
       else      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
         fprintf(ficlog," %.5le",matcov[i][j]);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       fprintf(ficparo," %.5le",matcov[i][j]);      /* if (stepm >= YEARM) hstepm=1;*/
     }      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     fscanf(ficpar,"\n");  
     if(mle==1)      /* If stepm=6 months */
       printf("\n");      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     fprintf(ficlog,"\n");         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     fprintf(ficparo,"\n");      
   }      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   for(i=1; i <=npar; i++)      
     for(j=i+1;j<=npar;j++)      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       matcov[i][j]=matcov[j][i];      
          printf("%d|",(int)age);fflush(stdout);
   if(mle==1)      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     printf("\n");      
   fprintf(ficlog,"\n");      /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
     /*-------- Rewriting paramater file ----------*/          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
      strcpy(rfileres,"r");    /* "Rparameterfile */            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/            
      strcat(rfileres,".");    /* */            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
      strcat(rfileres,optionfilext);    /* Other files have txt extension */  
     if((ficres =fopen(rfileres,"w"))==NULL) {          }
       printf("Problem writing new parameter file: %s\n", fileres);goto end;  
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;      fprintf(ficreseij,"%3.0f",age );
     }      for(i=1; i<=nlstate;i++){
     fprintf(ficres,"#%s\n",version);        eip=0;
            for(j=1; j<=nlstate;j++){
     /*-------- data file ----------*/          eip +=eij[i][j][(int)age];
     if((fic=fopen(datafile,"r"))==NULL)    {          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
       printf("Problem with datafile: %s\n", datafile);goto end;        }
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;        fprintf(ficreseij,"%9.4f", eip );
     }      }
       fprintf(ficreseij,"\n");
     n= lastobs;      
     severity = vector(1,maxwav);    }
     outcome=imatrix(1,maxwav+1,1,n);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     num=ivector(1,n);    printf("\n");
     moisnais=vector(1,n);    fprintf(ficlog,"\n");
     annais=vector(1,n);    
     moisdc=vector(1,n);  }
     andc=vector(1,n);  
     agedc=vector(1,n);  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
     cod=ivector(1,n);  
     weight=vector(1,n);  {
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    /* Covariances of health expectancies eij and of total life expectancies according
     mint=matrix(1,maxwav,1,n);     to initial status i, ei. .
     anint=matrix(1,maxwav,1,n);    */
     s=imatrix(1,maxwav+1,1,n);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     adl=imatrix(1,maxwav+1,1,n);        int nhstepma, nstepma; /* Decreasing with age */
     tab=ivector(1,NCOVMAX);    double age, agelim, hf;
     ncodemax=ivector(1,8);    double ***p3matp, ***p3matm, ***varhe;
     double **dnewm,**doldm;
     i=1;    double *xp, *xm;
     while (fgets(line, MAXLINE, fic) != NULL)    {    double **gp, **gm;
       if ((i >= firstobs) && (i <=lastobs)) {    double ***gradg, ***trgradg;
            int theta;
         for (j=maxwav;j>=1;j--){  
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    double eip, vip;
           strcpy(line,stra);  
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    xp=vector(1,npar);
         }    xm=vector(1,npar);
            dnewm=matrix(1,nlstate*nlstate,1,npar);
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    
     pstamp(ficresstdeij);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    fprintf(ficresstdeij,"# Age");
     for(i=1; i<=nlstate;i++){
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      for(j=1; j<=nlstate;j++)
         for (j=ncovcol;j>=1;j--){        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficresstdeij," e%1d. ",i);
         }    }
         num[i]=atol(stra);    fprintf(ficresstdeij,"\n");
          
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    pstamp(ficrescveij);
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
         i=i+1;    for(i=1; i<=nlstate;i++)
       }      for(j=1; j<=nlstate;j++){
     }        cptj= (j-1)*nlstate+i;
     /* printf("ii=%d", ij);        for(i2=1; i2<=nlstate;i2++)
        scanf("%d",i);*/          for(j2=1; j2<=nlstate;j2++){
   imx=i-1; /* Number of individuals */            cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
   /* for (i=1; i<=imx; i++){              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          }
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      }
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    fprintf(ficrescveij,"\n");
     }*/    
    /*  for (i=1; i<=imx; i++){    if(estepm < stepm){
      if (s[4][i]==9)  s[4][i]=-1;      printf ("Problem %d lower than %d\n",estepm, stepm);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/    }
      else  hstepm=estepm;   
      /* We compute the life expectancy from trapezoids spaced every estepm months
   /* Calculation of the number of parameter from char model*/     * This is mainly to measure the difference between two models: for example
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */     * if stepm=24 months pijx are given only every 2 years and by summing them
   Tprod=ivector(1,15);     * we are calculating an estimate of the Life Expectancy assuming a linear 
   Tvaraff=ivector(1,15);     * progression in between and thus overestimating or underestimating according
   Tvard=imatrix(1,15,1,2);     * to the curvature of the survival function. If, for the same date, we 
   Tage=ivector(1,15);           * estimate the model with stepm=1 month, we can keep estepm to 24 months
         * to compare the new estimate of Life expectancy with the same linear 
   if (strlen(model) >1){     * hypothesis. A more precise result, taking into account a more precise
     j=0, j1=0, k1=1, k2=1;     * curvature will be obtained if estepm is as small as stepm. */
     j=nbocc(model,'+');  
     j1=nbocc(model,'*');    /* For example we decided to compute the life expectancy with the smallest unit */
     cptcovn=j+1;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     cptcovprod=j1;       nhstepm is the number of hstepm from age to agelim 
           nstepm is the number of stepm from age to agelin. 
     strcpy(modelsav,model);       Look at hpijx to understand the reason of that which relies in memory size
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){       and note for a fixed period like estepm months */
       printf("Error. Non available option model=%s ",model);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       fprintf(ficlog,"Error. Non available option model=%s ",model);       survival function given by stepm (the optimization length). Unfortunately it
       goto end;       means that if the survival funtion is printed only each two years of age and if
     }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           results. So we changed our mind and took the option of the best precision.
     for(i=(j+1); i>=1;i--){    */
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */  
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    /* If stepm=6 months */
       /*scanf("%d",i);*/    /* nhstepm age range expressed in number of stepm */
       if (strchr(strb,'*')) {  /* Model includes a product */    agelim=AGESUP;
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
         if (strcmp(strc,"age")==0) { /* Vn*age */    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           cptcovprod--;    /* if (stepm >= YEARM) hstepm=1;*/
           cutv(strb,stre,strd,'V');    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/    
           cptcovage++;    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             Tage[cptcovage]=i;    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             /*printf("stre=%s ", stre);*/    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
         }    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
         else if (strcmp(strd,"age")==0) { /* or age*Vn */    gp=matrix(0,nhstepm,1,nlstate*nlstate);
           cptcovprod--;    gm=matrix(0,nhstepm,1,nlstate*nlstate);
           cutv(strb,stre,strc,'V');  
           Tvar[i]=atoi(stre);    for (age=bage; age<=fage; age ++){ 
           cptcovage++;      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
           Tage[cptcovage]=i;      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         }      /* if (stepm >= YEARM) hstepm=1;*/
         else {  /* Age is not in the model */      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/  
           Tvar[i]=ncovcol+k1;      /* If stepm=6 months */
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */      /* Computed by stepm unit matrices, product of hstepma matrices, stored
           Tprod[k1]=i;         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
           Tvard[k1][1]=atoi(strc); /* m*/      
           Tvard[k1][2]=atoi(stre); /* n */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           Tvar[cptcovn+k2]=Tvard[k1][1];  
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      /* Computing  Variances of health expectancies */
           for (k=1; k<=lastobs;k++)      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];         decrease memory allocation */
           k1++;      for(theta=1; theta <=npar; theta++){
           k2=k2+2;        for(i=1; i<=npar; i++){ 
         }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       }          xm[i] = x[i] - (i==theta ?delti[theta]:0);
       else { /* no more sum */        }
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
        /*  scanf("%d",i);*/        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
       cutv(strd,strc,strb,'V');    
       Tvar[i]=atoi(strc);        for(j=1; j<= nlstate; j++){
       }          for(i=1; i<=nlstate; i++){
       strcpy(modelsav,stra);              for(h=0; h<=nhstepm-1; h++){
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
         scanf("%d",i);*/              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
     } /* end of loop + */            }
   } /* end model */          }
          }
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);       
   printf("cptcovprod=%d ", cptcovprod);        for(ij=1; ij<= nlstate*nlstate; ij++)
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);          for(h=0; h<=nhstepm-1; h++){
   scanf("%d ",i);*/            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
     fclose(fic);          }
       }/* End theta */
     /*  if(mle==1){*/      
     if (weightopt != 1) { /* Maximisation without weights*/      
       for(i=1;i<=n;i++) weight[i]=1.0;      for(h=0; h<=nhstepm-1; h++)
     }        for(j=1; j<=nlstate*nlstate;j++)
     /*-calculation of age at interview from date of interview and age at death -*/          for(theta=1; theta <=npar; theta++)
     agev=matrix(1,maxwav,1,imx);            trgradg[h][j][theta]=gradg[h][theta][j];
       
     for (i=1; i<=imx; i++) {  
       for(m=2; (m<= maxwav); m++) {       for(ij=1;ij<=nlstate*nlstate;ij++)
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){        for(ji=1;ji<=nlstate*nlstate;ji++)
          anint[m][i]=9999;          varhe[ij][ji][(int)age] =0.;
          s[m][i]=-1;  
        }       printf("%d|",(int)age);fflush(stdout);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       }       for(h=0;h<=nhstepm-1;h++){
     }        for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     for (i=1; i<=imx; i++)  {          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          for(ij=1;ij<=nlstate*nlstate;ij++)
       for(m=1; (m<= maxwav); m++){            for(ji=1;ji<=nlstate*nlstate;ji++)
         if(s[m][i] >0){              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
           if (s[m][i] >= nlstate+1) {        }
             if(agedc[i]>0)      }
               if(moisdc[i]!=99 && andc[i]!=9999)  
                 agev[m][i]=agedc[i];      /* Computing expectancies */
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
            else {      for(i=1; i<=nlstate;i++)
               if (andc[i]!=9999){        for(j=1; j<=nlstate;j++)
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
               agev[m][i]=-1;            
               }            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
             }  
           }          }
           else if(s[m][i] !=9){ /* Should no more exist */  
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      fprintf(ficresstdeij,"%3.0f",age );
             if(mint[m][i]==99 || anint[m][i]==9999)      for(i=1; i<=nlstate;i++){
               agev[m][i]=1;        eip=0.;
             else if(agev[m][i] <agemin){        vip=0.;
               agemin=agev[m][i];        for(j=1; j<=nlstate;j++){
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          eip += eij[i][j][(int)age];
             }          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             else if(agev[m][i] >agemax){            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
               agemax=agev[m][i];          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        }
             }        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
             /*agev[m][i]=anint[m][i]-annais[i];*/      }
             /*   agev[m][i] = age[i]+2*m;*/      fprintf(ficresstdeij,"\n");
           }  
           else { /* =9 */      fprintf(ficrescveij,"%3.0f",age );
             agev[m][i]=1;      for(i=1; i<=nlstate;i++)
             s[m][i]=-1;        for(j=1; j<=nlstate;j++){
           }          cptj= (j-1)*nlstate+i;
         }          for(i2=1; i2<=nlstate;i2++)
         else /*= 0 Unknown */            for(j2=1; j2<=nlstate;j2++){
           agev[m][i]=1;              cptj2= (j2-1)*nlstate+i2;
       }              if(cptj2 <= cptj)
                    fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
     }            }
     for (i=1; i<=imx; i++)  {        }
       for(m=1; (m<= maxwav); m++){      fprintf(ficrescveij,"\n");
         if (s[m][i] > (nlstate+ndeath)) {     
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      }
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
           goto end;    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
         }    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       }    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     }    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    printf("\n");
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    fprintf(ficlog,"\n");
   
     free_vector(severity,1,maxwav);    free_vector(xm,1,npar);
     free_imatrix(outcome,1,maxwav+1,1,n);    free_vector(xp,1,npar);
     free_vector(moisnais,1,n);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_vector(annais,1,n);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     /* free_matrix(mint,1,maxwav,1,n);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
        free_matrix(anint,1,maxwav,1,n);*/  }
     free_vector(moisdc,1,n);  
     free_vector(andc,1,n);  /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
      {
     wav=ivector(1,imx);    /* Variance of health expectancies */
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    /* double **newm;*/
        /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
     /* Concatenates waves */    
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    int movingaverage();
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
       Tcode=ivector(1,100);    int i, j, nhstepm, hstepm, h, nstepm ;
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    int k;
       ncodemax[1]=1;    double *xp;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    double **gp, **gm;  /* for var eij */
          double ***gradg, ***trgradg; /*for var eij */
    codtab=imatrix(1,100,1,10);    double **gradgp, **trgradgp; /* for var p point j */
    h=0;    double *gpp, *gmp; /* for var p point j */
    m=pow(2,cptcoveff);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
      double ***p3mat;
    for(k=1;k<=cptcoveff; k++){    double age,agelim, hf;
      for(i=1; i <=(m/pow(2,k));i++){    double ***mobaverage;
        for(j=1; j <= ncodemax[k]; j++){    int theta;
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    char digit[4];
            h++;    char digitp[25];
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    char fileresprobmorprev[FILENAMELENGTH];
          }  
        }    if(popbased==1){
      }      if(mobilav!=0)
    }        strcpy(digitp,"-populbased-mobilav-");
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);      else strcpy(digitp,"-populbased-nomobil-");
       codtab[1][2]=1;codtab[2][2]=2; */    }
    /* for(i=1; i <=m ;i++){    else 
       for(k=1; k <=cptcovn; k++){      strcpy(digitp,"-stablbased-");
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  
       }    if (mobilav!=0) {
       printf("\n");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
       scanf("%d",i);*/        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
            printf(" Error in movingaverage mobilav=%d\n",mobilav);
    /* Calculates basic frequencies. Computes observed prevalence at single age      }
        and prints on file fileres'p'. */    }
   
        strcpy(fileresprobmorprev,"prmorprev"); 
        sprintf(digit,"%-d",ij);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    strcat(fileresprobmorprev,fileres);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
            printf("Problem with resultfile: %s\n", fileresprobmorprev);
     /* For Powell, parameters are in a vector p[] starting at p[1]      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    }
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     if(mle==1){    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    pstamp(ficresprobmorprev);
     }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
        fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     /*--------- results files --------------*/    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      fprintf(ficresprobmorprev," p.%-d SE",j);
        for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
    jk=1;    }  
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    fprintf(ficresprobmorprev,"\n");
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    fprintf(ficgp,"\n# Routine varevsij");
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
    for(i=1,jk=1; i <=nlstate; i++){    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
      for(k=1; k <=(nlstate+ndeath); k++){    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
        if (k != i)  /*   } */
          {    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
            printf("%d%d ",i,k);    pstamp(ficresvij);
            fprintf(ficlog,"%d%d ",i,k);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
            fprintf(ficres,"%1d%1d ",i,k);    if(popbased==1)
            for(j=1; j <=ncovmodel; j++){      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
              printf("%f ",p[jk]);    else
              fprintf(ficlog,"%f ",p[jk]);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
              fprintf(ficres,"%f ",p[jk]);    fprintf(ficresvij,"# Age");
              jk++;    for(i=1; i<=nlstate;i++)
            }      for(j=1; j<=nlstate;j++)
            printf("\n");        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
            fprintf(ficlog,"\n");    fprintf(ficresvij,"\n");
            fprintf(ficres,"\n");  
          }    xp=vector(1,npar);
      }    dnewm=matrix(1,nlstate,1,npar);
    }    doldm=matrix(1,nlstate,1,nlstate);
    if(mle==1){    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
      /* Computing hessian and covariance matrix */    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      ftolhess=ftol; /* Usually correct */  
      hesscov(matcov, p, npar, delti, ftolhess, func);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
    }    gpp=vector(nlstate+1,nlstate+ndeath);
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    gmp=vector(nlstate+1,nlstate+ndeath);
    printf("# Scales (for hessian or gradient estimation)\n");    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");    
    for(i=1,jk=1; i <=nlstate; i++){    if(estepm < stepm){
      for(j=1; j <=nlstate+ndeath; j++){      printf ("Problem %d lower than %d\n",estepm, stepm);
        if (j!=i) {    }
          fprintf(ficres,"%1d%1d",i,j);    else  hstepm=estepm;   
          printf("%1d%1d",i,j);    /* For example we decided to compute the life expectancy with the smallest unit */
          fprintf(ficlog,"%1d%1d",i,j);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
          for(k=1; k<=ncovmodel;k++){       nhstepm is the number of hstepm from age to agelim 
            printf(" %.5e",delti[jk]);       nstepm is the number of stepm from age to agelin. 
            fprintf(ficlog," %.5e",delti[jk]);       Look at function hpijx to understand why (it is linked to memory size questions) */
            fprintf(ficres," %.5e",delti[jk]);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
            jk++;       survival function given by stepm (the optimization length). Unfortunately it
          }       means that if the survival funtion is printed every two years of age and if
          printf("\n");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
          fprintf(ficlog,"\n");       results. So we changed our mind and took the option of the best precision.
          fprintf(ficres,"\n");    */
        }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
      }    agelim = AGESUP;
    }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
          nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
    k=1;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    if(mle==1)      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      gp=matrix(0,nhstepm,1,nlstate);
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      gm=matrix(0,nhstepm,1,nlstate);
    for(i=1;i<=npar;i++){  
      /*  if (k>nlstate) k=1;  
          i1=(i-1)/(ncovmodel*nlstate)+1;      for(theta=1; theta <=npar; theta++){
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
          printf("%s%d%d",alph[k],i1,tab[i]);*/          xp[i] = x[i] + (i==theta ?delti[theta]:0);
      fprintf(ficres,"%3d",i);        }
      if(mle==1)        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
        printf("%3d",i);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      fprintf(ficlog,"%3d",i);  
      for(j=1; j<=i;j++){        if (popbased==1) {
        fprintf(ficres," %.5e",matcov[i][j]);          if(mobilav ==0){
        if(mle==1)            for(i=1; i<=nlstate;i++)
          printf(" %.5e",matcov[i][j]);              prlim[i][i]=probs[(int)age][i][ij];
        fprintf(ficlog," %.5e",matcov[i][j]);          }else{ /* mobilav */ 
      }            for(i=1; i<=nlstate;i++)
      fprintf(ficres,"\n");              prlim[i][i]=mobaverage[(int)age][i][ij];
      if(mle==1)          }
        printf("\n");        }
      fprintf(ficlog,"\n");    
      k++;        for(j=1; j<= nlstate; j++){
    }          for(h=0; h<=nhstepm; h++){
                for(i=1, gp[h][j]=0.;i<=nlstate;i++)
    while((c=getc(ficpar))=='#' && c!= EOF){              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
      ungetc(c,ficpar);          }
      fgets(line, MAXLINE, ficpar);        }
      puts(line);        /* This for computing probability of death (h=1 means
      fputs(line,ficparo);           computed over hstepm matrices product = hstepm*stepm months) 
    }           as a weighted average of prlim.
    ungetc(c,ficpar);        */
    estepm=0;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
    if (estepm==0 || estepm < stepm) estepm=stepm;            gpp[j] += prlim[i][i]*p3mat[i][j][1];
    if (fage <= 2) {        }    
      bage = ageminpar;        /* end probability of death */
      fage = agemaxpar;  
    }        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
              xp[i] = x[i] - (i==theta ?delti[theta]:0);
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);   
            if (popbased==1) {
    while((c=getc(ficpar))=='#' && c!= EOF){          if(mobilav ==0){
      ungetc(c,ficpar);            for(i=1; i<=nlstate;i++)
      fgets(line, MAXLINE, ficpar);              prlim[i][i]=probs[(int)age][i][ij];
      puts(line);          }else{ /* mobilav */ 
      fputs(line,ficparo);            for(i=1; i<=nlstate;i++)
    }              prlim[i][i]=mobaverage[(int)age][i][ij];
    ungetc(c,ficpar);          }
          }
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);  
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          for(h=0; h<=nhstepm; h++){
                for(i=1, gm[h][j]=0.;i<=nlstate;i++)
    while((c=getc(ficpar))=='#' && c!= EOF){              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
      ungetc(c,ficpar);          }
      fgets(line, MAXLINE, ficpar);        }
      puts(line);        /* This for computing probability of death (h=1 means
      fputs(line,ficparo);           computed over hstepm matrices product = hstepm*stepm months) 
    }           as a weighted average of prlim.
    ungetc(c,ficpar);        */
          for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
    dateprev1=anprev1+mprev1/12.+jprev1/365.;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
    dateprev2=anprev2+mprev2/12.+jprev2/365.;        }    
         /* end probability of death */
   fscanf(ficpar,"pop_based=%d\n",&popbased);  
   fprintf(ficparo,"pop_based=%d\n",popbased);          for(j=1; j<= nlstate; j++) /* vareij */
   fprintf(ficres,"pop_based=%d\n",popbased);            for(h=0; h<=nhstepm; h++){
              gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     puts(line);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     fputs(line,ficparo);        }
   }  
   ungetc(c,ficpar);      } /* End theta */
   
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
 while((c=getc(ficpar))=='#' && c!= EOF){            trgradg[h][j][theta]=gradg[h][theta][j];
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     puts(line);        for(theta=1; theta <=npar; theta++)
     fputs(line,ficparo);          trgradgp[j][theta]=gradgp[theta][j];
   }    
   ungetc(c,ficpar);  
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);      for(i=1;i<=nlstate;i++)
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        for(j=1;j<=nlstate;j++)
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          vareij[i][j][(int)age] =0.;
   
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
 /*------------ gnuplot -------------*/          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   strcpy(optionfilegnuplot,optionfilefiname);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   strcat(optionfilegnuplot,".gp");          for(i=1;i<=nlstate;i++)
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {            for(j=1;j<=nlstate;j++)
     printf("Problem with file %s",optionfilegnuplot);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   }        }
   fclose(ficgp);      }
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);    
 /*--------- index.htm --------*/      /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   strcpy(optionfilehtm,optionfile);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   strcat(optionfilehtm,".htm");      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     printf("Problem with %s \n",optionfilehtm), exit(0);          varppt[j][i]=doldmp[j][i];
   }      /* end ppptj */
       /*  x centered again */
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
 \n   
 Total number of observations=%d <br>\n      if (popbased==1) {
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n        if(mobilav ==0){
 <hr  size=\"2\" color=\"#EC5E5E\">          for(i=1; i<=nlstate;i++)
  <ul><li><h4>Parameter files</h4>\n            prlim[i][i]=probs[(int)age][i][ij];
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n        }else{ /* mobilav */ 
  - Log file of the run: <a href=\"%s\">%s</a><br>\n          for(i=1; i<=nlstate;i++)
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);            prlim[i][i]=mobaverage[(int)age][i][ij];
   fclose(fichtm);        }
       }
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);               
        /* This for computing probability of death (h=1 means
 /*------------ free_vector  -------------*/         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
  chdir(path);         as a weighted average of prlim.
        */
  free_ivector(wav,1,imx);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
  free_ivector(num,1,n);      }    
  free_vector(agedc,1,n);      /* end probability of death */
  /*free_matrix(covar,1,NCOVMAX,1,n);*/  
  fclose(ficparo);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
  fclose(ficres);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
   /*--------------- Prevalence limit --------------*/          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
          }
   strcpy(filerespl,"pl");      } 
   strcat(filerespl,fileres);      fprintf(ficresprobmorprev,"\n");
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      fprintf(ficresvij,"%.0f ",age );
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++){
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);        }
   fprintf(ficrespl,"#Prevalence limit\n");      fprintf(ficresvij,"\n");
   fprintf(ficrespl,"#Age ");      free_matrix(gp,0,nhstepm,1,nlstate);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      free_matrix(gm,0,nhstepm,1,nlstate);
   fprintf(ficrespl,"\n");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
        free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   prlim=matrix(1,nlstate,1,nlstate);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    } /* End age */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_vector(gpp,nlstate+1,nlstate+ndeath);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_vector(gmp,nlstate+1,nlstate+ndeath);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   k=0;    fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
   agebase=ageminpar;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   agelim=agemaxpar;    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   ftolpl=1.e-10;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   i1=cptcoveff;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   if (cptcovn < 1){i1=1;}  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
         k=k+1;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
         fprintf(ficrespl,"\n#******");    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
         printf("\n#******");  */
         fprintf(ficlog,"\n#******");  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
         for(j=1;j<=cptcoveff;j++) {    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_vector(xp,1,npar);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    free_matrix(doldm,1,nlstate,1,nlstate);
         }    free_matrix(dnewm,1,nlstate,1,npar);
         fprintf(ficrespl,"******\n");    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         printf("******\n");    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
         fprintf(ficlog,"******\n");    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
            if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         for (age=agebase; age<=agelim; age++){    fclose(ficresprobmorprev);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    fflush(ficgp);
           fprintf(ficrespl,"%.0f",age );    fflush(fichtm); 
           for(i=1; i<=nlstate;i++)  }  /* end varevsij */
           fprintf(ficrespl," %.5f", prlim[i][i]);  
           fprintf(ficrespl,"\n");  /************ Variance of prevlim ******************/
         }  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
       }  {
     }    /* Variance of prevalence limit */
   fclose(ficrespl);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   
   /*------------- h Pij x at various ages ------------*/    double **dnewm,**doldm;
      int i, j, nhstepm, hstepm;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    double *xp;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    double *gp, *gm;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    double **gradg, **trgradg;
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;    double age,agelim;
   }    int theta;
   printf("Computing pij: result on file '%s' \n", filerespij);    
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);    pstamp(ficresvpl);
      fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fprintf(ficresvpl,"# Age");
   /*if (stepm<=24) stepsize=2;*/    for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
   agelim=AGESUP;    fprintf(ficresvpl,"\n");
   hstepm=stepsize*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
   /* hstepm=1;   aff par mois*/    doldm=matrix(1,nlstate,1,nlstate);
     
   k=0;    hstepm=1*YEARM; /* Every year of age */
   for(cptcov=1;cptcov<=i1;cptcov++){    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    agelim = AGESUP;
       k=k+1;    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         fprintf(ficrespij,"\n#****** ");      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         for(j=1;j<=cptcoveff;j++)      if (stepm >= YEARM) hstepm=1;
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
         fprintf(ficrespij,"******\n");      gradg=matrix(1,npar,1,nlstate);
              gp=vector(1,nlstate);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      gm=vector(1,nlstate);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           /*      nhstepm=nhstepm*YEARM; aff par mois*/          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           oldm=oldms;savm=savms;        for(i=1;i<=nlstate;i++)
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            gp[i] = prlim[i][i];
           fprintf(ficrespij,"# Age");      
           for(i=1; i<=nlstate;i++)        for(i=1; i<=npar; i++) /* Computes gradient */
             for(j=1; j<=nlstate+ndeath;j++)          xp[i] = x[i] - (i==theta ?delti[theta]:0);
               fprintf(ficrespij," %1d-%1d",i,j);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           fprintf(ficrespij,"\n");        for(i=1;i<=nlstate;i++)
            for (h=0; h<=nhstepm; h++){          gm[i] = prlim[i][i];
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  
             for(i=1; i<=nlstate;i++)        for(i=1;i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      } /* End theta */
             fprintf(ficrespij,"\n");  
              }      trgradg =matrix(1,nlstate,1,npar);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           fprintf(ficrespij,"\n");      for(j=1; j<=nlstate;j++)
         }        for(theta=1; theta <=npar; theta++)
     }          trgradg[j][theta]=gradg[theta][j];
   }  
       for(i=1;i<=nlstate;i++)
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);        varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   fclose(ficrespij);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   /*---------- Forecasting ------------------*/  
   if((stepm == 1) && (strcmp(model,".")==0)){      fprintf(ficresvpl,"%.0f ",age );
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);      for(i=1; i<=nlstate;i++)
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   }      fprintf(ficresvpl,"\n");
   else{      free_vector(gp,1,nlstate);
     erreur=108;      free_vector(gm,1,nlstate);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);      free_matrix(gradg,1,npar,1,nlstate);
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);      free_matrix(trgradg,1,nlstate,1,npar);
   }    } /* End age */
    
     free_vector(xp,1,npar);
   /*---------- Health expectancies and variances ------------*/    free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   strcpy(filerest,"t");  
   strcat(filerest,fileres);  }
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  /************ Variance of one-step probabilities  ******************/
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   }  {
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    int i, j=0,  k1, l1, tj;
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);    int k2, l2, j1,  z1;
     int k=0, l;
     int first=1, first1, first2;
   strcpy(filerese,"e");    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   strcat(filerese,fileres);    double **dnewm,**doldm;
   if((ficreseij=fopen(filerese,"w"))==NULL) {    double *xp;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    double *gp, *gm;
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    double **gradg, **trgradg;
   }    double **mu;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    double age, cov[NCOVMAX+1];
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
   strcpy(fileresv,"v");    char fileresprob[FILENAMELENGTH];
   strcat(fileresv,fileres);    char fileresprobcov[FILENAMELENGTH];
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    char fileresprobcor[FILENAMELENGTH];
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    double ***varpij;
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);  
   }    strcpy(fileresprob,"prob"); 
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    strcat(fileresprob,fileres);
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   calagedate=-1;      printf("Problem with resultfile: %s\n", fileresprob);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
   k=0;    strcpy(fileresprobcov,"probcov"); 
   for(cptcov=1;cptcov<=i1;cptcov++){    strcat(fileresprobcov,fileres);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       k=k+1;      printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficrest,"\n#****** ");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
       for(j=1;j<=cptcoveff;j++)    }
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    strcpy(fileresprobcor,"probcor"); 
       fprintf(ficrest,"******\n");    strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       fprintf(ficreseij,"\n#****** ");      printf("Problem with resultfile: %s\n", fileresprobcor);
       for(j=1;j<=cptcoveff;j++)      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    }
       fprintf(ficreseij,"******\n");    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       fprintf(ficresvij,"\n#****** ");    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       for(j=1;j<=cptcoveff;j++)    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       fprintf(ficresvij,"******\n");    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       oldm=oldms;savm=savms;    fprintf(ficresprob,"# Age");
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);      pstamp(ficresprobcov);
      fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    fprintf(ficresprobcov,"# Age");
       oldm=oldms;savm=savms;    pstamp(ficresprobcor);
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
       if(popbased==1){    fprintf(ficresprobcor,"# Age");
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);  
        }  
     for(i=1; i<=nlstate;i++)
        for(j=1; j<=(nlstate+ndeath);j++){
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
       fprintf(ficrest,"\n");        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
       epj=vector(1,nlstate+1);   /* fprintf(ficresprob,"\n");
       for(age=bage; age <=fage ;age++){    fprintf(ficresprobcov,"\n");
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    fprintf(ficresprobcor,"\n");
         if (popbased==1) {   */
           for(i=1; i<=nlstate;i++)    xp=vector(1,npar);
             prlim[i][i]=probs[(int)age][i][k];    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         }    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
            mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
         fprintf(ficrest," %4.0f",age);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    first=1;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    fprintf(ficgp,"\n# Routine varprob");
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    fprintf(fichtm,"\n");
           }  
           epj[nlstate+1] +=epj[j];    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
         }    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
         for(i=1, vepp=0.;i <=nlstate;i++)    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
           for(j=1;j <=nlstate;j++)  and drawn. It helps understanding how is the covariance between two incidences.\
             vepp += vareij[i][j][(int)age];   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
         for(j=1;j <=nlstate;j++){  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
         }  standard deviations wide on each axis. <br>\
         fprintf(ficrest,"\n");   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
       }   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
     }  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   }  
 free_matrix(mint,1,maxwav,1,n);    cov[1]=1;
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    /* tj=cptcoveff; */
     free_vector(weight,1,n);    tj = (int) pow(2,cptcoveff);
   fclose(ficreseij);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   fclose(ficresvij);    j1=0;
   fclose(ficrest);    for(j1=1; j1<=tj;j1++){
   fclose(ficpar);      /*for(i1=1; i1<=ncodemax[t];i1++){ */
   free_vector(epj,1,nlstate+1);      /*j1++;*/
          if  (cptcovn>0) {
   /*------- Variance limit prevalence------*/            fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   strcpy(fileresvpl,"vpl");          fprintf(ficresprob, "**********\n#\n");
   strcat(fileresvpl,fileres);          fprintf(ficresprobcov, "\n#********** Variable "); 
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);          fprintf(ficresprobcov, "**********\n#\n");
     exit(0);          
   }          fprintf(ficgp, "\n#********** Variable "); 
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
   k=0;          
   for(cptcov=1;cptcov<=i1;cptcov++){          
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
       k=k+1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficresvpl,"\n#****** ");          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
       for(j=1;j<=cptcoveff;j++)          
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficresprobcor, "\n#********** Variable ");    
       fprintf(ficresvpl,"******\n");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                fprintf(ficresprobcor, "**********\n#");    
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        }
       oldm=oldms;savm=savms;        
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     }        trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
  }        gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
   fclose(ficresvpl);        for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
   /*---------- End : free ----------------*/          for (k=1; k<=cptcovn;k++) {
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                             * 1  1 1 1 1
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                                                           * 2  2 1 1 1
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);                                                           * 3  1 2 1 1
                                                             */
              /* nbcode[1][1]=0 nbcode[1][2]=1;*/
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          }
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);          for (k=1; k<=cptcovprod;k++)
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
            
   free_matrix(matcov,1,npar,1,npar);      
   free_vector(delti,1,npar);          for(theta=1; theta <=npar; theta++){
   free_matrix(agev,1,maxwav,1,imx);            for(i=1; i<=npar; i++)
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
   fprintf(fichtm,"\n</body>");            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   fclose(fichtm);            
   fclose(ficgp);            k=0;
              for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
   if(erreur >0){                k=k+1;
     printf("End of Imach with error or warning %d\n",erreur);                gp[k]=pmmij[i][j];
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);              }
   }else{            }
    printf("End of Imach\n");            
    fprintf(ficlog,"End of Imach\n");            for(i=1; i<=npar; i++)
   }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   printf("See log file on %s\n",filelog);      
   fclose(ficlog);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */            k=0;
              for(i=1; i<=(nlstate); i++){
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/              for(j=1; j<=(nlstate+ndeath);j++){
   /*printf("Total time was %d uSec.\n", total_usecs);*/                k=k+1;
   /*------ End -----------*/                gm[k]=pmmij[i][j];
               }
             }
  end:       
 #ifdef windows            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   /* chdir(pathcd);*/              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
 #endif          }
  /*system("wgnuplot graph.plt");*/  
  /*system("../gp37mgw/wgnuplot graph.plt");*/          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
  /*system("cd ../gp37mgw");*/            for(theta=1; theta <=npar; theta++)
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/              trgradg[j][theta]=gradg[theta][j];
  strcpy(plotcmd,GNUPLOTPROGRAM);          
  strcat(plotcmd," ");          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
  strcat(plotcmd,optionfilegnuplot);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
  system(plotcmd);  
           pmij(pmmij,cov,ncovmodel,x,nlstate);
 #ifdef windows          
   while (z[0] != 'q') {          k=0;
     /* chdir(path); */          for(i=1; i<=(nlstate); i++){
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");            for(j=1; j<=(nlstate+ndeath);j++){
     scanf("%s",z);              k=k+1;
     if (z[0] == 'c') system("./imach");              mu[k][(int) age]=pmmij[i][j];
     else if (z[0] == 'e') system(optionfilehtm);            }
     else if (z[0] == 'g') system(plotcmd);          }
     else if (z[0] == 'q') exit(0);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   }            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
 #endif              varpij[i][j][(int)age] = doldm[i][j];
 }  
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } */ /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   
   void syscompilerinfo()
    {
      /* #include "syscompilerinfo.h"*/
      /* command line Intel compiler 32bit windows, XP compatible:*/
      /* /GS /W3 /Gy
         /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
         "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
         "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
         /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch" 
         /* 64 bits */
      /*
        /GS /W3 /Gy
        /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
        /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
        /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
        "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
      /* Optimization are useless and O3 is slower than O2 */
      /*
        /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
        /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
        /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
        /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
      */
      /* Link is $/ /* /OUT:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
         /PDB:"visual studio
         2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
         "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
         "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
         "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
         /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
         /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
         uiAccess='false'"
         /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
         /NOLOGO /TLBID:1
      */
   #if defined __INTEL_COMPILER
   #if defined(__GNUC__)
           struct utsname sysInfo;  /* For Intel on Linux and OS/X */
   #endif
   #elif defined(__GNUC__) 
   #ifndef  __APPLE__
   #include <gnu/libc-version.h>  /* Only on gnu */
   #endif
      struct utsname sysInfo;
      int cross = CROSS;
      if (cross){
              printf("Cross-");
              fprintf(ficlog, "Cross-");
      }
   #endif
   
   #include <stdint.h>
   
      printf("Compiled with:");fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for ");fprintf(ficlog," for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
      if (uname(&sysInfo) != -1) {
        printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
        fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
      //#ifndef __INTEL_COMPILER 
   #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
   #endif
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
              fprintf(ficlog, "The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("The process is not running under WOW64 (i.e probably on a 64bit Windows).\n");
              fprintf(ficlog,"The programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
    }
   
   int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar){
     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     int i, j, k, i1 ;
     double ftolpl = 1.e-10;
     double age, agebase, agelim;
   
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
   
       agebase=ageminpar;
       agelim=agemaxpar;
   
       i1=pow(2,cptcoveff);
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
         //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /* to clean */
           //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtab[cptcod][cptcov]);
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
   
           fprintf(ficrespl,"#Age ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl,"V%d %d",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
           fprintf(ficrespl,"\n");
           
           for (age=agebase; age<=agelim; age++){
           /* for (age=agebase; age<=agebase; age++){ */
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           } /* Age */
           /* was end of cptcod */
       } /* cptcov */
           return 0;
   }
   
   int hPijx(double *p, int bage, int fage){
       /*------------- h Pij x at various ages ------------*/
   
     int stepsize;
     int agelim;
     int hstepm;
     int nhstepm;
     int h, i, i1, j, k;
   
     double agedeb;
     double ***p3mat;
   
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       i1= pow(2,cptcoveff);
      /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
      /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
      /*   k=k+1;  */
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
         
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
           
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
           
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
             fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
         /*}*/
       }
           return 0;
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt;
     int jl;
     int i1, j1, jk, stepsize;
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
   #ifdef WIN32
     _getcwd(pathcd, size);
   #else
     getcwd(pathcd, size);
   #endif
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   #ifdef WIN32
     _chdir(path); /* Can be a relative path */
     if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   #else
     chdir(path); /* Can be a relative path */
     if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
   #endif
     printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo();
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
   #ifdef WIN32
     _chdir(optionfilefiname); /* Move to directory named optionfile */
   #else
     chdir(optionfilefiname); /* Move to directory named optionfile */
   #endif
             
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
       /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
       prlim=matrix(1,nlstate,1,nlstate);
       prevalence_limit(p, prlim,  ageminpar, agemaxpar);
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
       /*#include "hpijx.h"*/
       hPijx(p, bage, fage);
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
   #ifdef WIN32
      if (_chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n",path);
      if(_getcwd(pathcd,MAXLINE) > 0)
   #else
      if(chdir(pathcd) != 0)
              printf("Can't move to directory %s!\n", path);
      if (getcwd(pathcd, MAXLINE) > 0)
   #endif 
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.51  
changed lines
  Added in v.1.185


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>