Diff for /imach/src/imach.c between versions 1.51 and 1.92

version 1.51, 2002/07/19 12:22:25 version 1.92, 2003/06/25 16:30:45
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.92  2003/06/25 16:30:45  brouard
      (Module): On windows (cygwin) function asctime_r doesn't
   This program computes Healthy Life Expectancies from    exist so I changed back to asctime which exists.
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.91  2003/06/25 15:30:29  brouard
   interviewed on their health status or degree of disability (in the    * imach.c (Repository): Duplicated warning errors corrected.
   case of a health survey which is our main interest) -2- at least a    (Repository): Elapsed time after each iteration is now output. It
   second wave of interviews ("longitudinal") which measure each change    helps to forecast when convergence will be reached. Elapsed time
   (if any) in individual health status.  Health expectancies are    is stamped in powell.  We created a new html file for the graphs
   computed from the time spent in each health state according to a    concerning matrix of covariance. It has extension -cov.htm.
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    Revision 1.90  2003/06/24 12:34:15  brouard
   simplest model is the multinomial logistic model where pij is the    (Module): Some bugs corrected for windows. Also, when
   probability to be observed in state j at the second wave    mle=-1 a template is output in file "or"mypar.txt with the design
   conditional to be observed in state i at the first wave. Therefore    of the covariance matrix to be input.
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.89  2003/06/24 12:30:52  brouard
   complex model than "constant and age", you should modify the program    (Module): Some bugs corrected for windows. Also, when
   where the markup *Covariates have to be included here again* invites    mle=-1 a template is output in file "or"mypar.txt with the design
   you to do it.  More covariates you add, slower the    of the covariance matrix to be input.
   convergence.  
     Revision 1.88  2003/06/23 17:54:56  brouard
   The advantage of this computer programme, compared to a simple    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.87  2003/06/18 12:26:01  brouard
   intermediate interview, the information is lost, but taken into    Version 0.96
   account using an interpolation or extrapolation.    
     Revision 1.86  2003/06/17 20:04:08  brouard
   hPijx is the probability to be observed in state i at age x+h    (Module): Change position of html and gnuplot routines and added
   conditional to the observed state i at age x. The delay 'h' can be    routine fileappend.
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.85  2003/06/17 13:12:43  brouard
   semester or year) is model as a multinomial logistic.  The hPx    * imach.c (Repository): Check when date of death was earlier that
   matrix is simply the matrix product of nh*stepm elementary matrices    current date of interview. It may happen when the death was just
   and the contribution of each individual to the likelihood is simply    prior to the death. In this case, dh was negative and likelihood
   hPijx.    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
   Also this programme outputs the covariance matrix of the parameters but also    interview.
   of the life expectancies. It also computes the prevalence limits.    (Repository): Because some people have very long ID (first column)
      we changed int to long in num[] and we added a new lvector for
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    memory allocation. But we also truncated to 8 characters (left
            Institut national d'études démographiques, Paris.    truncation)
   This software have been partly granted by Euro-REVES, a concerted action    (Repository): No more line truncation errors.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.84  2003/06/13 21:44:43  brouard
   software can be distributed freely for non commercial use. Latest version    * imach.c (Repository): Replace "freqsummary" at a correct
   can be accessed at http://euroreves.ined.fr/imach .    place. It differs from routine "prevalence" which may be called
   **********************************************************************/    many times. Probs is memory consuming and must be used with
      parcimony.
 #include <math.h>    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.83  2003/06/10 13:39:11  lievre
 #include <unistd.h>    *** empty log message ***
   
 #define MAXLINE 256    Revision 1.82  2003/06/05 15:57:20  brouard
 #define GNUPLOTPROGRAM "gnuplot"    Add log in  imach.c and  fullversion number is now printed.
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80  */
 /*#define DEBUG*/  /*
 #define windows     Interpolated Markov Chain
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Short summary of the programme:
     
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    This program computes Healthy Life Expectancies from
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 #define NINTERVMAX 8    interviewed on their health status or degree of disability (in the
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    case of a health survey which is our main interest) -2- at least a
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    second wave of interviews ("longitudinal") which measure each change
 #define NCOVMAX 8 /* Maximum number of covariates */    (if any) in individual health status.  Health expectancies are
 #define MAXN 20000    computed from the time spent in each health state according to a
 #define YEARM 12. /* Number of months per year */    model. More health states you consider, more time is necessary to reach the
 #define AGESUP 130    Maximum Likelihood of the parameters involved in the model.  The
 #define AGEBASE 40    simplest model is the multinomial logistic model where pij is the
 #ifdef windows    probability to be observed in state j at the second wave
 #define DIRSEPARATOR '\\'    conditional to be observed in state i at the first wave. Therefore
 #define ODIRSEPARATOR '/'    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #else    'age' is age and 'sex' is a covariate. If you want to have a more
 #define DIRSEPARATOR '/'    complex model than "constant and age", you should modify the program
 #define ODIRSEPARATOR '\\'    where the markup *Covariates have to be included here again* invites
 #endif    you to do it.  More covariates you add, slower the
     convergence.
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";  
 int erreur; /* Error number */    The advantage of this computer programme, compared to a simple
 int nvar;    multinomial logistic model, is clear when the delay between waves is not
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    identical for each individual. Also, if a individual missed an
 int npar=NPARMAX;    intermediate interview, the information is lost, but taken into
 int nlstate=2; /* Number of live states */    account using an interpolation or extrapolation.  
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    hPijx is the probability to be observed in state i at age x+h
 int popbased=0;    conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
 int *wav; /* Number of waves for this individuual 0 is possible */    states. This elementary transition (by month, quarter,
 int maxwav; /* Maxim number of waves */    semester or year) is modelled as a multinomial logistic.  The hPx
 int jmin, jmax; /* min, max spacing between 2 waves */    matrix is simply the matrix product of nh*stepm elementary matrices
 int mle, weightopt;    and the contribution of each individual to the likelihood is simply
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    hPijx.
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Also this programme outputs the covariance matrix of the parameters but also
 double **oldm, **newm, **savm; /* Working pointers to matrices */    of the life expectancies. It also computes the stable prevalence. 
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 FILE *ficlog;             Institut national d'études démographiques, Paris.
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    This software have been partly granted by Euro-REVES, a concerted action
 FILE *ficresprobmorprev;    from the European Union.
 FILE *fichtm; /* Html File */    It is copyrighted identically to a GNU software product, ie programme and
 FILE *ficreseij;    software can be distributed freely for non commercial use. Latest version
 char filerese[FILENAMELENGTH];    can be accessed at http://euroreves.ined.fr/imach .
 FILE  *ficresvij;  
 char fileresv[FILENAMELENGTH];    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 FILE  *ficresvpl;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 char fileresvpl[FILENAMELENGTH];    
 char title[MAXLINE];    **********************************************************************/
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  /*
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    main
     read parameterfile
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    read datafile
 char filelog[FILENAMELENGTH]; /* Log file */    concatwav
 char filerest[FILENAMELENGTH];    freqsummary
 char fileregp[FILENAMELENGTH];    if (mle >= 1)
 char popfile[FILENAMELENGTH];      mlikeli
     print results files
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    if mle==1 
        computes hessian
 #define NR_END 1    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define FREE_ARG char*        begin-prev-date,...
 #define FTOL 1.0e-10    open gnuplot file
     open html file
 #define NRANSI    stable prevalence
 #define ITMAX 200     for age prevalim()
     h Pij x
 #define TOL 2.0e-4    variance of p varprob
     forecasting if prevfcast==1 prevforecast call prevalence()
 #define CGOLD 0.3819660    health expectancies
 #define ZEPS 1.0e-10    Variance-covariance of DFLE
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    prevalence()
      movingaverage()
 #define GOLD 1.618034    varevsij() 
 #define GLIMIT 100.0    if popbased==1 varevsij(,popbased)
 #define TINY 1.0e-20    total life expectancies
     Variance of stable prevalence
 static double maxarg1,maxarg2;   end
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  */
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)   
   #include <math.h>
 static double sqrarg;  #include <stdio.h>
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #include <stdlib.h>
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  #include <unistd.h>
   
 int imx;  #include <sys/time.h>
 int stepm;  #include <time.h>
 /* Stepm, step in month: minimum step interpolation*/  #include "timeval.h"
   
 int estepm;  #define MAXLINE 256
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 int m,nb;  #define FILENAMELENGTH 132
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  /*#define DEBUG*/
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  /*#define windows*/
 double **pmmij, ***probs, ***mobaverage;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 double dateintmean=0;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 double *weight;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 int **s; /* Status */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 double ftolhess; /* Tolerance for computing hessian */  #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
 /**************** split *************************/  #define YEARM 12. /* Number of months per year */
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  #define AGESUP 130
 {  #define AGEBASE 40
    char *s;                             /* pointer */  #ifdef unix
    int  l1, l2;                         /* length counters */  #define DIRSEPARATOR '/'
   #define ODIRSEPARATOR '\\'
    l1 = strlen( path );                 /* length of path */  #else
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #define DIRSEPARATOR '\\'
    s= strrchr( path, DIRSEPARATOR );            /* find last / */  #define ODIRSEPARATOR '/'
    if ( s == NULL ) {                   /* no directory, so use current */  #endif
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)  
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  /* $Id$ */
 #if     defined(__bsd__)                /* get current working directory */  /* $State$ */
       extern char       *getwd( );  
   char version[]="Imach version 0.96a, June 2003, INED-EUROREVES ";
       if ( getwd( dirc ) == NULL ) {  char fullversion[]="$Revision$ $Date$"; 
 #else  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       extern char       *getcwd( );  int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  int npar=NPARMAX;
 #endif  int nlstate=2; /* Number of live states */
          return( GLOCK_ERROR_GETCWD );  int ndeath=1; /* Number of dead states */
       }  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       strcpy( name, path );             /* we've got it */  int popbased=0;
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */  int *wav; /* Number of waves for this individuual 0 is possible */
       l2 = strlen( s );                 /* length of filename */  int maxwav; /* Maxim number of waves */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  int jmin, jmax; /* min, max spacing between 2 waves */
       strcpy( name, s );                /* save file name */  int gipmx, gsw; /* Global variables on the number of contributions 
       strncpy( dirc, path, l1 - l2 );   /* now the directory */                     to the likelihood and the sum of weights (done by funcone)*/
       dirc[l1-l2] = 0;                  /* add zero */  int mle, weightopt;
    }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
    l1 = strlen( dirc );                 /* length of directory */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 #ifdef windows  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 #else  double jmean; /* Mean space between 2 waves */
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  double **oldm, **newm, **savm; /* Working pointers to matrices */
 #endif  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
    s = strrchr( name, '.' );            /* find last / */  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
    s++;  FILE *ficlog, *ficrespow;
    strcpy(ext,s);                       /* save extension */  int globpr; /* Global variable for printing or not */
    l1= strlen( name);  double fretone; /* Only one call to likelihood */
    l2= strlen( s)+1;  long ipmx; /* Number of contributions */
    strncpy( finame, name, l1-l2);  double sw; /* Sum of weights */
    finame[l1-l2]= 0;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
    return( 0 );                         /* we're done */  FILE *ficresilk;
 }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
   FILE *fichtm, *fichtmcov; /* Html File */
 /******************************************/  FILE *ficreseij;
   char filerese[FILENAMELENGTH];
 void replace(char *s, char*t)  FILE  *ficresvij;
 {  char fileresv[FILENAMELENGTH];
   int i;  FILE  *ficresvpl;
   int lg=20;  char fileresvpl[FILENAMELENGTH];
   i=0;  char title[MAXLINE];
   lg=strlen(t);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   for(i=0; i<= lg; i++) {  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
     (s[i] = t[i]);  char tmpout[FILENAMELENGTH]; 
     if (t[i]== '\\') s[i]='/';  char command[FILENAMELENGTH];
   }  int  outcmd=0;
 }  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 int nbocc(char *s, char occ)  char lfileres[FILENAMELENGTH];
 {  char filelog[FILENAMELENGTH]; /* Log file */
   int i,j=0;  char filerest[FILENAMELENGTH];
   int lg=20;  char fileregp[FILENAMELENGTH];
   i=0;  char popfile[FILENAMELENGTH];
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   if  (s[i] == occ ) j++;  
   }  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   return j;  struct timezone tzp;
 }  extern int gettimeofday();
   struct tm tmg, tm, tmf, *gmtime(), *localtime();
 void cutv(char *u,char *v, char*t, char occ)  long time_value;
 {  extern long time();
   /* cuts string t into u and v where u is ended by char occ excluding it  char strcurr[80], strfor[80];
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  
      gives u="abcedf" and v="ghi2j" */  #define NR_END 1
   int i,lg,j,p=0;  #define FREE_ARG char*
   i=0;  #define FTOL 1.0e-10
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #define NRANSI 
   }  #define ITMAX 200 
   
   lg=strlen(t);  #define TOL 2.0e-4 
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);  #define CGOLD 0.3819660 
   }  #define ZEPS 1.0e-10 
      u[p]='\0';  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
    for(j=0; j<= lg; j++) {  #define GOLD 1.618034 
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define GLIMIT 100.0 
   }  #define TINY 1.0e-20 
 }  
   static double maxarg1,maxarg2;
 /********************** nrerror ********************/  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 void nrerror(char error_text[])    
 {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   fprintf(stderr,"ERREUR ...\n");  #define rint(a) floor(a+0.5)
   fprintf(stderr,"%s\n",error_text);  
   exit(1);  static double sqrarg;
 }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 /*********************** vector *******************/  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 double *vector(int nl, int nh)  
 {  int imx; 
   double *v;  int stepm;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  /* Stepm, step in month: minimum step interpolation*/
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;  int estepm;
 }  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   
 /************************ free vector ******************/  int m,nb;
 void free_vector(double*v, int nl, int nh)  long *num;
 {  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   free((FREE_ARG)(v+nl-NR_END));  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 }  double **pmmij, ***probs;
   double dateintmean=0;
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)  double *weight;
 {  int **s; /* Status */
   int *v;  double *agedc, **covar, idx;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   if (!v) nrerror("allocation failure in ivector");  
   return v-nl+NR_END;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 }  double ftolhess; /* Tolerance for computing hessian */
   
 /******************free ivector **************************/  /**************** split *************************/
 void free_ivector(int *v, long nl, long nh)  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 {  {
   free((FREE_ARG)(v+nl-NR_END));    char  *ss;                            /* pointer */
 }    int   l1, l2;                         /* length counters */
   
 /******************* imatrix *******************************/    l1 = strlen(path );                   /* length of path */
 int **imatrix(long nrl, long nrh, long ncl, long nch)    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 {    if ( ss == NULL ) {                   /* no directory, so use current */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   int **m;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
        /* get current working directory */
   /* allocate pointers to rows */      /*    extern  char* getcwd ( char *buf , int len);*/
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   if (!m) nrerror("allocation failure 1 in matrix()");        return( GLOCK_ERROR_GETCWD );
   m += NR_END;      }
   m -= nrl;      strcpy( name, path );               /* we've got it */
      } else {                              /* strip direcotry from path */
        ss++;                               /* after this, the filename */
   /* allocate rows and set pointers to them */      l2 = strlen( ss );                  /* length of filename */
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      strcpy( name, ss );         /* save file name */
   m[nrl] += NR_END;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   m[nrl] -= ncl;      dirc[l1-l2] = 0;                    /* add zero */
      }
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    l1 = strlen( dirc );                  /* length of directory */
      /*#ifdef windows
   /* return pointer to array of pointers to rows */    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   return m;  #else
 }    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   #endif
 /****************** free_imatrix *************************/    */
 void free_imatrix(m,nrl,nrh,ncl,nch)    ss = strrchr( name, '.' );            /* find last / */
       int **m;    ss++;
       long nch,ncl,nrh,nrl;    strcpy(ext,ss);                       /* save extension */
      /* free an int matrix allocated by imatrix() */    l1= strlen( name);
 {    l2= strlen(ss)+1;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    strncpy( finame, name, l1-l2);
   free((FREE_ARG) (m+nrl-NR_END));    finame[l1-l2]= 0;
 }    return( 0 );                          /* we're done */
   }
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {  /******************************************/
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  void replace_back_to_slash(char *s, char*t)
   {
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    int i;
   if (!m) nrerror("allocation failure 1 in matrix()");    int lg=0;
   m += NR_END;    i=0;
   m -= nrl;    lg=strlen(t);
     for(i=0; i<= lg; i++) {
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));      (s[i] = t[i]);
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      if (t[i]== '\\') s[i]='/';
   m[nrl] += NR_END;    }
   m[nrl] -= ncl;  }
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int nbocc(char *s, char occ)
   return m;  {
 }    int i,j=0;
     int lg=20;
 /*************************free matrix ************************/    i=0;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    lg=strlen(s);
 {    for(i=0; i<= lg; i++) {
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    if  (s[i] == occ ) j++;
   free((FREE_ARG)(m+nrl-NR_END));    }
 }    return j;
   }
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  void cutv(char *u,char *v, char*t, char occ)
 {  {
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    /* cuts string t into u and v where u is ended by char occ excluding it
   double ***m;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
        gives u="abcedf" and v="ghi2j" */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    int i,lg,j,p=0;
   if (!m) nrerror("allocation failure 1 in matrix()");    i=0;
   m += NR_END;    for(j=0; j<=strlen(t)-1; j++) {
   m -= nrl;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     }
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    lg=strlen(t);
   m[nrl] += NR_END;    for(j=0; j<p; j++) {
   m[nrl] -= ncl;      (u[j] = t[j]);
     }
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;       u[p]='\0';
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));     for(j=0; j<= lg; j++) {
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");      if (j>=(p+1))(v[j-p-1] = t[j]);
   m[nrl][ncl] += NR_END;    }
   m[nrl][ncl] -= nll;  }
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;  /********************** nrerror ********************/
    
   for (i=nrl+1; i<=nrh; i++) {  void nrerror(char error_text[])
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  {
     for (j=ncl+1; j<=nch; j++)    fprintf(stderr,"ERREUR ...\n");
       m[i][j]=m[i][j-1]+nlay;    fprintf(stderr,"%s\n",error_text);
   }    exit(EXIT_FAILURE);
   return m;  }
 }  /*********************** vector *******************/
   double *vector(int nl, int nh)
 /*************************free ma3x ************************/  {
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    double *v;
 {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    if (!v) nrerror("allocation failure in vector");
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    return v-nl+NR_END;
   free((FREE_ARG)(m+nrl-NR_END));  }
 }  
   /************************ free vector ******************/
 /***************** f1dim *************************/  void free_vector(double*v, int nl, int nh)
 extern int ncom;  {
 extern double *pcom,*xicom;    free((FREE_ARG)(v+nl-NR_END));
 extern double (*nrfunc)(double []);  }
    
 double f1dim(double x)  /************************ivector *******************************/
 {  int *ivector(long nl,long nh)
   int j;  {
   double f;    int *v;
   double *xt;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
      if (!v) nrerror("allocation failure in ivector");
   xt=vector(1,ncom);    return v-nl+NR_END;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  }
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  /******************free ivector **************************/
   return f;  void free_ivector(int *v, long nl, long nh)
 }  {
     free((FREE_ARG)(v+nl-NR_END));
 /*****************brent *************************/  }
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {  /************************lvector *******************************/
   int iter;  long *lvector(long nl,long nh)
   double a,b,d,etemp;  {
   double fu,fv,fw,fx;    long *v;
   double ftemp;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   double p,q,r,tol1,tol2,u,v,w,x,xm;    if (!v) nrerror("allocation failure in ivector");
   double e=0.0;    return v-nl+NR_END;
    }
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);  /******************free lvector **************************/
   x=w=v=bx;  void free_lvector(long *v, long nl, long nh)
   fw=fv=fx=(*f)(x);  {
   for (iter=1;iter<=ITMAX;iter++) {    free((FREE_ARG)(v+nl-NR_END));
     xm=0.5*(a+b);  }
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  /******************* imatrix *******************************/
     printf(".");fflush(stdout);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     fprintf(ficlog,".");fflush(ficlog);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 #ifdef DEBUG  { 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    int **m; 
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    
 #endif    /* allocate pointers to rows */ 
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       *xmin=x;    if (!m) nrerror("allocation failure 1 in matrix()"); 
       return fx;    m += NR_END; 
     }    m -= nrl; 
     ftemp=fu;    
     if (fabs(e) > tol1) {    
       r=(x-w)*(fx-fv);    /* allocate rows and set pointers to them */ 
       q=(x-v)*(fx-fw);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       p=(x-v)*q-(x-w)*r;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
       q=2.0*(q-r);    m[nrl] += NR_END; 
       if (q > 0.0) p = -p;    m[nrl] -= ncl; 
       q=fabs(q);    
       etemp=e;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       e=d;    
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    /* return pointer to array of pointers to rows */ 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    return m; 
       else {  } 
         d=p/q;  
         u=x+d;  /****************** free_imatrix *************************/
         if (u-a < tol2 || b-u < tol2)  void free_imatrix(m,nrl,nrh,ncl,nch)
           d=SIGN(tol1,xm-x);        int **m;
       }        long nch,ncl,nrh,nrl; 
     } else {       /* free an int matrix allocated by imatrix() */ 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  { 
     }    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    free((FREE_ARG) (m+nrl-NR_END)); 
     fu=(*f)(u);  } 
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;  /******************* matrix *******************************/
       SHFT(v,w,x,u)  double **matrix(long nrl, long nrh, long ncl, long nch)
         SHFT(fv,fw,fx,fu)  {
         } else {    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
           if (u < x) a=u; else b=u;    double **m;
           if (fu <= fw || w == x) {  
             v=w;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
             w=u;    if (!m) nrerror("allocation failure 1 in matrix()");
             fv=fw;    m += NR_END;
             fw=fu;    m -= nrl;
           } else if (fu <= fv || v == x || v == w) {  
             v=u;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
             fv=fu;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
           }    m[nrl] += NR_END;
         }    m[nrl] -= ncl;
   }  
   nrerror("Too many iterations in brent");    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   *xmin=x;    return m;
   return fx;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
 }     */
   }
 /****************** mnbrak ***********************/  
   /*************************free matrix ************************/
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
             double (*func)(double))  {
 {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double ulim,u,r,q, dum;    free((FREE_ARG)(m+nrl-NR_END));
   double fu;  }
    
   *fa=(*func)(*ax);  /******************* ma3x *******************************/
   *fb=(*func)(*bx);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   if (*fb > *fa) {  {
     SHFT(dum,*ax,*bx,dum)    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       SHFT(dum,*fb,*fa,dum)    double ***m;
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   *fc=(*func)(*cx);    if (!m) nrerror("allocation failure 1 in matrix()");
   while (*fb > *fc) {    m += NR_END;
     r=(*bx-*ax)*(*fb-*fc);    m -= nrl;
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     ulim=(*bx)+GLIMIT*(*cx-*bx);    m[nrl] += NR_END;
     if ((*bx-u)*(u-*cx) > 0.0) {    m[nrl] -= ncl;
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       fu=(*func)(u);  
       if (fu < *fc) {    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
           SHFT(*fb,*fc,fu,(*func)(u))    m[nrl][ncl] += NR_END;
           }    m[nrl][ncl] -= nll;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    for (j=ncl+1; j<=nch; j++) 
       u=ulim;      m[nrl][j]=m[nrl][j-1]+nlay;
       fu=(*func)(u);    
     } else {    for (i=nrl+1; i<=nrh; i++) {
       u=(*cx)+GOLD*(*cx-*bx);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       fu=(*func)(u);      for (j=ncl+1; j<=nch; j++) 
     }        m[i][j]=m[i][j-1]+nlay;
     SHFT(*ax,*bx,*cx,u)    }
       SHFT(*fa,*fb,*fc,fu)    return m; 
       }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
 }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     */
 /*************** linmin ************************/  }
   
 int ncom;  /*************************free ma3x ************************/
 double *pcom,*xicom;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 double (*nrfunc)(double []);  {
      free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 {    free((FREE_ARG)(m+nrl-NR_END));
   double brent(double ax, double bx, double cx,  }
                double (*f)(double), double tol, double *xmin);  
   double f1dim(double x);  /***************** f1dim *************************/
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  extern int ncom; 
               double *fc, double (*func)(double));  extern double *pcom,*xicom;
   int j;  extern double (*nrfunc)(double []); 
   double xx,xmin,bx,ax;   
   double fx,fb,fa;  double f1dim(double x) 
    { 
   ncom=n;    int j; 
   pcom=vector(1,n);    double f;
   xicom=vector(1,n);    double *xt; 
   nrfunc=func;   
   for (j=1;j<=n;j++) {    xt=vector(1,ncom); 
     pcom[j]=p[j];    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     xicom[j]=xi[j];    f=(*nrfunc)(xt); 
   }    free_vector(xt,1,ncom); 
   ax=0.0;    return f; 
   xx=1.0;  } 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  /*****************brent *************************/
 #ifdef DEBUG  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  { 
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    int iter; 
 #endif    double a,b,d,etemp;
   for (j=1;j<=n;j++) {    double fu,fv,fw,fx;
     xi[j] *= xmin;    double ftemp;
     p[j] += xi[j];    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   }    double e=0.0; 
   free_vector(xicom,1,n);   
   free_vector(pcom,1,n);    a=(ax < cx ? ax : cx); 
 }    b=(ax > cx ? ax : cx); 
     x=w=v=bx; 
 /*************** powell ************************/    fw=fv=fx=(*f)(x); 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    for (iter=1;iter<=ITMAX;iter++) { 
             double (*func)(double []))      xm=0.5*(a+b); 
 {      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   void linmin(double p[], double xi[], int n, double *fret,      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
               double (*func)(double []));      printf(".");fflush(stdout);
   int i,ibig,j;      fprintf(ficlog,".");fflush(ficlog);
   double del,t,*pt,*ptt,*xit;  #ifdef DEBUG
   double fp,fptt;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double *xits;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   pt=vector(1,n);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   ptt=vector(1,n);  #endif
   xit=vector(1,n);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   xits=vector(1,n);        *xmin=x; 
   *fret=(*func)(p);        return fx; 
   for (j=1;j<=n;j++) pt[j]=p[j];      } 
   for (*iter=1;;++(*iter)) {      ftemp=fu;
     fp=(*fret);      if (fabs(e) > tol1) { 
     ibig=0;        r=(x-w)*(fx-fv); 
     del=0.0;        q=(x-v)*(fx-fw); 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);        p=(x-v)*q-(x-w)*r; 
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);        q=2.0*(q-r); 
     for (i=1;i<=n;i++)        if (q > 0.0) p = -p; 
       printf(" %d %.12f",i, p[i]);        q=fabs(q); 
     fprintf(ficlog," %d %.12f",i, p[i]);        etemp=e; 
     printf("\n");        e=d; 
     fprintf(ficlog,"\n");        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     for (i=1;i<=n;i++) {          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];        else { 
       fptt=(*fret);          d=p/q; 
 #ifdef DEBUG          u=x+d; 
       printf("fret=%lf \n",*fret);          if (u-a < tol2 || b-u < tol2) 
       fprintf(ficlog,"fret=%lf \n",*fret);            d=SIGN(tol1,xm-x); 
 #endif        } 
       printf("%d",i);fflush(stdout);      } else { 
       fprintf(ficlog,"%d",i);fflush(ficlog);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       linmin(p,xit,n,fret,func);      } 
       if (fabs(fptt-(*fret)) > del) {      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
         del=fabs(fptt-(*fret));      fu=(*f)(u); 
         ibig=i;      if (fu <= fx) { 
       }        if (u >= x) a=x; else b=x; 
 #ifdef DEBUG        SHFT(v,w,x,u) 
       printf("%d %.12e",i,(*fret));          SHFT(fv,fw,fx,fu) 
       fprintf(ficlog,"%d %.12e",i,(*fret));          } else { 
       for (j=1;j<=n;j++) {            if (u < x) a=u; else b=u; 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);            if (fu <= fw || w == x) { 
         printf(" x(%d)=%.12e",j,xit[j]);              v=w; 
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);              w=u; 
       }              fv=fw; 
       for(j=1;j<=n;j++) {              fw=fu; 
         printf(" p=%.12e",p[j]);            } else if (fu <= fv || v == x || v == w) { 
         fprintf(ficlog," p=%.12e",p[j]);              v=u; 
       }              fv=fu; 
       printf("\n");            } 
       fprintf(ficlog,"\n");          } 
 #endif    } 
     }    nrerror("Too many iterations in brent"); 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    *xmin=x; 
 #ifdef DEBUG    return fx; 
       int k[2],l;  } 
       k[0]=1;  
       k[1]=-1;  /****************** mnbrak ***********************/
       printf("Max: %.12e",(*func)(p));  
       fprintf(ficlog,"Max: %.12e",(*func)(p));  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       for (j=1;j<=n;j++) {              double (*func)(double)) 
         printf(" %.12e",p[j]);  { 
         fprintf(ficlog," %.12e",p[j]);    double ulim,u,r,q, dum;
       }    double fu; 
       printf("\n");   
       fprintf(ficlog,"\n");    *fa=(*func)(*ax); 
       for(l=0;l<=1;l++) {    *fb=(*func)(*bx); 
         for (j=1;j<=n;j++) {    if (*fb > *fa) { 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      SHFT(dum,*ax,*bx,dum) 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        SHFT(dum,*fb,*fa,dum) 
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        } 
         }    *cx=(*bx)+GOLD*(*bx-*ax); 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    *fc=(*func)(*cx); 
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    while (*fb > *fc) { 
       }      r=(*bx-*ax)*(*fb-*fc); 
 #endif      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       free_vector(xit,1,n);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       free_vector(xits,1,n);      if ((*bx-u)*(u-*cx) > 0.0) { 
       free_vector(ptt,1,n);        fu=(*func)(u); 
       free_vector(pt,1,n);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       return;        fu=(*func)(u); 
     }        if (fu < *fc) { 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     for (j=1;j<=n;j++) {            SHFT(*fb,*fc,fu,(*func)(u)) 
       ptt[j]=2.0*p[j]-pt[j];            } 
       xit[j]=p[j]-pt[j];      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       pt[j]=p[j];        u=ulim; 
     }        fu=(*func)(u); 
     fptt=(*func)(ptt);      } else { 
     if (fptt < fp) {        u=(*cx)+GOLD*(*cx-*bx); 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);        fu=(*func)(u); 
       if (t < 0.0) {      } 
         linmin(p,xit,n,fret,func);      SHFT(*ax,*bx,*cx,u) 
         for (j=1;j<=n;j++) {        SHFT(*fa,*fb,*fc,fu) 
           xi[j][ibig]=xi[j][n];        } 
           xi[j][n]=xit[j];  } 
         }  
 #ifdef DEBUG  /*************** linmin ************************/
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  int ncom; 
         for(j=1;j<=n;j++){  double *pcom,*xicom;
           printf(" %.12e",xit[j]);  double (*nrfunc)(double []); 
           fprintf(ficlog," %.12e",xit[j]);   
         }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         printf("\n");  { 
         fprintf(ficlog,"\n");    double brent(double ax, double bx, double cx, 
 #endif                 double (*f)(double), double tol, double *xmin); 
       }    double f1dim(double x); 
     }    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   }                double *fc, double (*func)(double)); 
 }    int j; 
     double xx,xmin,bx,ax; 
 /**** Prevalence limit ****************/    double fx,fb,fa;
    
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    ncom=n; 
 {    pcom=vector(1,n); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    xicom=vector(1,n); 
      matrix by transitions matrix until convergence is reached */    nrfunc=func; 
     for (j=1;j<=n;j++) { 
   int i, ii,j,k;      pcom[j]=p[j]; 
   double min, max, maxmin, maxmax,sumnew=0.;      xicom[j]=xi[j]; 
   double **matprod2();    } 
   double **out, cov[NCOVMAX], **pmij();    ax=0.0; 
   double **newm;    xx=1.0; 
   double agefin, delaymax=50 ; /* Max number of years to converge */    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   for (ii=1;ii<=nlstate+ndeath;ii++)  #ifdef DEBUG
     for (j=1;j<=nlstate+ndeath;j++){    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     }  #endif
     for (j=1;j<=n;j++) { 
    cov[1]=1.;      xi[j] *= xmin; 
        p[j] += xi[j]; 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    } 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    free_vector(xicom,1,n); 
     newm=savm;    free_vector(pcom,1,n); 
     /* Covariates have to be included here again */  } 
      cov[2]=agefin;  
    char *asc_diff_time(long time_sec, char ascdiff[])
       for (k=1; k<=cptcovn;k++) {  {
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    long sec_left, days, hours, minutes;
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/    days = (time_sec) / (60*60*24);
       }    sec_left = (time_sec) % (60*60*24);
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    hours = (sec_left) / (60*60) ;
       for (k=1; k<=cptcovprod;k++)    sec_left = (sec_left) %(60*60);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    minutes = (sec_left) /60;
     sec_left = (sec_left) % (60);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    return ascdiff;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  }
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  
   /*************** powell ************************/
     savm=oldm;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     oldm=newm;              double (*func)(double [])) 
     maxmax=0.;  { 
     for(j=1;j<=nlstate;j++){    void linmin(double p[], double xi[], int n, double *fret, 
       min=1.;                double (*func)(double [])); 
       max=0.;    int i,ibig,j; 
       for(i=1; i<=nlstate; i++) {    double del,t,*pt,*ptt,*xit;
         sumnew=0;    double fp,fptt;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    double *xits;
         prlim[i][j]= newm[i][j]/(1-sumnew);    int niterf, itmp;
         max=FMAX(max,prlim[i][j]);  
         min=FMIN(min,prlim[i][j]);    pt=vector(1,n); 
       }    ptt=vector(1,n); 
       maxmin=max-min;    xit=vector(1,n); 
       maxmax=FMAX(maxmax,maxmin);    xits=vector(1,n); 
     }    *fret=(*func)(p); 
     if(maxmax < ftolpl){    for (j=1;j<=n;j++) pt[j]=p[j]; 
       return prlim;    for (*iter=1;;++(*iter)) { 
     }      fp=(*fret); 
   }      ibig=0; 
 }      del=0.0; 
       last_time=curr_time;
 /*************** transition probabilities ***************/      (void) gettimeofday(&curr_time,&tzp);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
 {      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   double s1, s2;      for (i=1;i<=n;i++) {
   /*double t34;*/        printf(" %d %.12f",i, p[i]);
   int i,j,j1, nc, ii, jj;        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
     for(i=1; i<= nlstate; i++){      }
     for(j=1; j<i;j++){      printf("\n");
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      fprintf(ficlog,"\n");
         /*s2 += param[i][j][nc]*cov[nc];*/      fprintf(ficrespow,"\n");fflush(ficrespow);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      if(*iter <=3){
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        tm = *localtime(&curr_time.tv_sec);
       }        strcpy(strcurr,asctime(&tmf));
       ps[i][j]=s2;  /*       asctime_r(&tm,strcurr); */
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        forecast_time=curr_time;
     }        itmp = strlen(strcurr);
     for(j=i+1; j<=nlstate+ndeath;j++){        if(strcurr[itmp-1]=='\n')
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){          strcurr[itmp-1]='\0';
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       }        for(niterf=10;niterf<=30;niterf+=10){
       ps[i][j]=s2;          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     }          tmf = *localtime(&forecast_time.tv_sec);
   }  /*      asctime_r(&tmf,strfor); */
     /*ps[3][2]=1;*/          strcpy(strfor,asctime(&tmf));
           itmp = strlen(strfor);
   for(i=1; i<= nlstate; i++){          if(strfor[itmp-1]=='\n')
      s1=0;          strfor[itmp-1]='\0';
     for(j=1; j<i; j++)          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       s1+=exp(ps[i][j]);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
     for(j=i+1; j<=nlstate+ndeath; j++)        }
       s1+=exp(ps[i][j]);      }
     ps[i][i]=1./(s1+1.);      for (i=1;i<=n;i++) { 
     for(j=1; j<i; j++)        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        fptt=(*fret); 
     for(j=i+1; j<=nlstate+ndeath; j++)  #ifdef DEBUG
       ps[i][j]= exp(ps[i][j])*ps[i][i];        printf("fret=%lf \n",*fret);
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        fprintf(ficlog,"fret=%lf \n",*fret);
   } /* end i */  #endif
         printf("%d",i);fflush(stdout);
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        fprintf(ficlog,"%d",i);fflush(ficlog);
     for(jj=1; jj<= nlstate+ndeath; jj++){        linmin(p,xit,n,fret,func); 
       ps[ii][jj]=0;        if (fabs(fptt-(*fret)) > del) { 
       ps[ii][ii]=1;          del=fabs(fptt-(*fret)); 
     }          ibig=i; 
   }        } 
   #ifdef DEBUG
         printf("%d %.12e",i,(*fret));
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        fprintf(ficlog,"%d %.12e",i,(*fret));
     for(jj=1; jj<= nlstate+ndeath; jj++){        for (j=1;j<=n;j++) {
      printf("%lf ",ps[ii][jj]);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
    }          printf(" x(%d)=%.12e",j,xit[j]);
     printf("\n ");          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     }        }
     printf("\n ");printf("%lf ",cov[2]);*/        for(j=1;j<=n;j++) {
 /*          printf(" p=%.12e",p[j]);
   for(i=1; i<= npar; i++) printf("%f ",x[i]);          fprintf(ficlog," p=%.12e",p[j]);
   goto end;*/        }
     return ps;        printf("\n");
 }        fprintf(ficlog,"\n");
   #endif
 /**************** Product of 2 matrices ******************/      } 
       if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  #ifdef DEBUG
 {        int k[2],l;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        k[0]=1;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        k[1]=-1;
   /* in, b, out are matrice of pointers which should have been initialized        printf("Max: %.12e",(*func)(p));
      before: only the contents of out is modified. The function returns        fprintf(ficlog,"Max: %.12e",(*func)(p));
      a pointer to pointers identical to out */        for (j=1;j<=n;j++) {
   long i, j, k;          printf(" %.12e",p[j]);
   for(i=nrl; i<= nrh; i++)          fprintf(ficlog," %.12e",p[j]);
     for(k=ncolol; k<=ncoloh; k++)        }
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        printf("\n");
         out[i][k] +=in[i][j]*b[j][k];        fprintf(ficlog,"\n");
         for(l=0;l<=1;l++) {
   return out;          for (j=1;j<=n;j++) {
 }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 /************* Higher Matrix Product ***************/          }
           printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 {        }
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  #endif
      duration (i.e. until  
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        free_vector(xit,1,n); 
      (typically every 2 years instead of every month which is too big).        free_vector(xits,1,n); 
      Model is determined by parameters x and covariates have to be        free_vector(ptt,1,n); 
      included manually here.        free_vector(pt,1,n); 
         return; 
      */      } 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   int i, j, d, h, k;      for (j=1;j<=n;j++) { 
   double **out, cov[NCOVMAX];        ptt[j]=2.0*p[j]-pt[j]; 
   double **newm;        xit[j]=p[j]-pt[j]; 
         pt[j]=p[j]; 
   /* Hstepm could be zero and should return the unit matrix */      } 
   for (i=1;i<=nlstate+ndeath;i++)      fptt=(*func)(ptt); 
     for (j=1;j<=nlstate+ndeath;j++){      if (fptt < fp) { 
       oldm[i][j]=(i==j ? 1.0 : 0.0);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       po[i][j][0]=(i==j ? 1.0 : 0.0);        if (t < 0.0) { 
     }          linmin(p,xit,n,fret,func); 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */          for (j=1;j<=n;j++) { 
   for(h=1; h <=nhstepm; h++){            xi[j][ibig]=xi[j][n]; 
     for(d=1; d <=hstepm; d++){            xi[j][n]=xit[j]; 
       newm=savm;          }
       /* Covariates have to be included here again */  #ifdef DEBUG
       cov[1]=1.;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];          for(j=1;j<=n;j++){
       for (k=1; k<=cptcovage;k++)            printf(" %.12e",xit[j]);
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];            fprintf(ficlog," %.12e",xit[j]);
       for (k=1; k<=cptcovprod;k++)          }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          printf("\n");
           fprintf(ficlog,"\n");
   #endif
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        }
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      } 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    } 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  } 
       savm=oldm;  
       oldm=newm;  /**** Prevalence limit (stable prevalence)  ****************/
     }  
     for(i=1; i<=nlstate+ndeath; i++)  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
       for(j=1;j<=nlstate+ndeath;j++) {  {
         po[i][j][h]=newm[i][j];    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);       matrix by transitions matrix until convergence is reached */
          */  
       }    int i, ii,j,k;
   } /* end h */    double min, max, maxmin, maxmax,sumnew=0.;
   return po;    double **matprod2();
 }    double **out, cov[NCOVMAX], **pmij();
     double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
 /*************** log-likelihood *************/  
 double func( double *x)    for (ii=1;ii<=nlstate+ndeath;ii++)
 {      for (j=1;j<=nlstate+ndeath;j++){
   int i, ii, j, k, mi, d, kk;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      }
   double **out;  
   double sw; /* Sum of weights */     cov[1]=1.;
   double lli; /* Individual log likelihood */   
   long ipmx;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   /*extern weight */    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   /* We are differentiating ll according to initial status */      newm=savm;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      /* Covariates have to be included here again */
   /*for(i=1;i<imx;i++)       cov[2]=agefin;
     printf(" %d\n",s[4][i]);    
   */        for (k=1; k<=cptcovn;k++) {
   cov[1]=1.;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   for(k=1; k<=nlstate; k++) ll[k]=0.;        }
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        for (k=1; k<=cptcovprod;k++)
     for(mi=1; mi<= wav[i]-1; mi++){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       for (ii=1;ii<=nlstate+ndeath;ii++)  
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       for(d=0; d<dh[mi][i]; d++){        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         newm=savm;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
         for (kk=1; kk<=cptcovage;kk++) {  
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      savm=oldm;
         }      oldm=newm;
              maxmax=0.;
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      for(j=1;j<=nlstate;j++){
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        min=1.;
         savm=oldm;        max=0.;
         oldm=newm;        for(i=1; i<=nlstate; i++) {
                  sumnew=0;
                  for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       } /* end mult */          prlim[i][j]= newm[i][j]/(1-sumnew);
                max=FMAX(max,prlim[i][j]);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);          min=FMIN(min,prlim[i][j]);
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        }
       ipmx +=1;        maxmin=max-min;
       sw += weight[i];        maxmax=FMAX(maxmax,maxmin);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      }
     } /* end of wave */      if(maxmax < ftolpl){
   } /* end of individual */        return prlim;
       }
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    }
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  }
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  
   return -l;  /*************** transition probabilities ***************/ 
 }  
   double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
 /*********** Maximum Likelihood Estimation ***************/    double s1, s2;
     /*double t34;*/
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    int i,j,j1, nc, ii, jj;
 {  
   int i,j, iter;      for(i=1; i<= nlstate; i++){
   double **xi,*delti;      for(j=1; j<i;j++){
   double fret;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   xi=matrix(1,npar,1,npar);          /*s2 += param[i][j][nc]*cov[nc];*/
   for (i=1;i<=npar;i++)          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     for (j=1;j<=npar;j++)          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
       xi[i][j]=(i==j ? 1.0 : 0.0);        }
   printf("Powell\n");  fprintf(ficlog,"Powell\n");        ps[i][j]=s2;
   powell(p,xi,npar,ftol,&iter,&fret,func);        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
       }
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      for(j=i+1; j<=nlstate+ndeath;j++){
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
 }        }
         ps[i][j]=s2;
 /**** Computes Hessian and covariance matrix ***/      }
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    }
 {      /*ps[3][2]=1;*/
   double  **a,**y,*x,pd;  
   double **hess;    for(i=1; i<= nlstate; i++){
   int i, j,jk;       s1=0;
   int *indx;      for(j=1; j<i; j++)
         s1+=exp(ps[i][j]);
   double hessii(double p[], double delta, int theta, double delti[]);      for(j=i+1; j<=nlstate+ndeath; j++)
   double hessij(double p[], double delti[], int i, int j);        s1+=exp(ps[i][j]);
   void lubksb(double **a, int npar, int *indx, double b[]) ;      ps[i][i]=1./(s1+1.);
   void ludcmp(double **a, int npar, int *indx, double *d) ;      for(j=1; j<i; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];
   hess=matrix(1,npar,1,npar);      for(j=i+1; j<=nlstate+ndeath; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];
   printf("\nCalculation of the hessian matrix. Wait...\n");      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    } /* end i */
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     fprintf(ficlog,"%d",i);fflush(ficlog);      for(jj=1; jj<= nlstate+ndeath; jj++){
     hess[i][i]=hessii(p,ftolhess,i,delti);        ps[ii][jj]=0;
     /*printf(" %f ",p[i]);*/        ps[ii][ii]=1;
     /*printf(" %lf ",hess[i][i]);*/      }
   }    }
    
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++)  {    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
       if (j>i) {      for(jj=1; jj<= nlstate+ndeath; jj++){
         printf(".%d%d",i,j);fflush(stdout);       printf("%lf ",ps[ii][jj]);
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);     }
         hess[i][j]=hessij(p,delti,i,j);      printf("\n ");
         hess[j][i]=hess[i][j];          }
         /*printf(" %lf ",hess[i][j]);*/      printf("\n ");printf("%lf ",cov[2]);*/
       }  /*
     }    for(i=1; i<= npar; i++) printf("%f ",x[i]);
   }    goto end;*/
   printf("\n");      return ps;
   fprintf(ficlog,"\n");  }
   
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  /**************** Product of 2 matrices ******************/
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");  
    double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   a=matrix(1,npar,1,npar);  {
   y=matrix(1,npar,1,npar);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   x=vector(1,npar);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   indx=ivector(1,npar);    /* in, b, out are matrice of pointers which should have been initialized 
   for (i=1;i<=npar;i++)       before: only the contents of out is modified. The function returns
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];       a pointer to pointers identical to out */
   ludcmp(a,npar,indx,&pd);    long i, j, k;
     for(i=nrl; i<= nrh; i++)
   for (j=1;j<=npar;j++) {      for(k=ncolol; k<=ncoloh; k++)
     for (i=1;i<=npar;i++) x[i]=0;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     x[j]=1;          out[i][k] +=in[i][j]*b[j][k];
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){    return out;
       matcov[i][j]=x[i];  }
     }  
   }  
   /************* Higher Matrix Product ***************/
   printf("\n#Hessian matrix#\n");  
   fprintf(ficlog,"\n#Hessian matrix#\n");  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   for (i=1;i<=npar;i++) {  {
     for (j=1;j<=npar;j++) {    /* Computes the transition matrix starting at age 'age' over 
       printf("%.3e ",hess[i][j]);       'nhstepm*hstepm*stepm' months (i.e. until
       fprintf(ficlog,"%.3e ",hess[i][j]);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     }       nhstepm*hstepm matrices. 
     printf("\n");       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     fprintf(ficlog,"\n");       (typically every 2 years instead of every month which is too big 
   }       for the memory).
        Model is determined by parameters x and covariates have to be 
   /* Recompute Inverse */       included manually here. 
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];       */
   ludcmp(a,npar,indx,&pd);  
     int i, j, d, h, k;
   /*  printf("\n#Hessian matrix recomputed#\n");    double **out, cov[NCOVMAX];
     double **newm;
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;    /* Hstepm could be zero and should return the unit matrix */
     x[j]=1;    for (i=1;i<=nlstate+ndeath;i++)
     lubksb(a,npar,indx,x);      for (j=1;j<=nlstate+ndeath;j++){
     for (i=1;i<=npar;i++){        oldm[i][j]=(i==j ? 1.0 : 0.0);
       y[i][j]=x[i];        po[i][j][0]=(i==j ? 1.0 : 0.0);
       printf("%.3e ",y[i][j]);      }
       fprintf(ficlog,"%.3e ",y[i][j]);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     }    for(h=1; h <=nhstepm; h++){
     printf("\n");      for(d=1; d <=hstepm; d++){
     fprintf(ficlog,"\n");        newm=savm;
   }        /* Covariates have to be included here again */
   */        cov[1]=1.;
         cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   free_matrix(a,1,npar,1,npar);        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   free_matrix(y,1,npar,1,npar);        for (k=1; k<=cptcovage;k++)
   free_vector(x,1,npar);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   free_ivector(indx,1,npar);        for (k=1; k<=cptcovprod;k++)
   free_matrix(hess,1,npar,1,npar);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
   
 }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 /*************** hessian matrix ****************/        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 double hessii( double x[], double delta, int theta, double delti[])                     pmij(pmmij,cov,ncovmodel,x,nlstate));
 {        savm=oldm;
   int i;        oldm=newm;
   int l=1, lmax=20;      }
   double k1,k2;      for(i=1; i<=nlstate+ndeath; i++)
   double p2[NPARMAX+1];        for(j=1;j<=nlstate+ndeath;j++) {
   double res;          po[i][j][h]=newm[i][j];
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   double fx;           */
   int k=0,kmax=10;        }
   double l1;    } /* end h */
     return po;
   fx=func(x);  }
   for (i=1;i<=npar;i++) p2[i]=x[i];  
   for(l=0 ; l <=lmax; l++){  
     l1=pow(10,l);  /*************** log-likelihood *************/
     delts=delt;  double func( double *x)
     for(k=1 ; k <kmax; k=k+1){  {
       delt = delta*(l1*k);    int i, ii, j, k, mi, d, kk;
       p2[theta]=x[theta] +delt;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       k1=func(p2)-fx;    double **out;
       p2[theta]=x[theta]-delt;    double sw; /* Sum of weights */
       k2=func(p2)-fx;    double lli; /* Individual log likelihood */
       /*res= (k1-2.0*fx+k2)/delt/delt; */    int s1, s2;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    double bbh, survp;
          long ipmx;
 #ifdef DEBUG    /*extern weight */
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    /* We are differentiating ll according to initial status */
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 #endif    /*for(i=1;i<imx;i++) 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      printf(" %d\n",s[4][i]);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    */
         k=kmax;    cov[1]=1.;
       }  
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    for(k=1; k<=nlstate; k++) ll[k]=0.;
         k=kmax; l=lmax*10.;  
       }    if(mle==1){
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         delts=delt;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }        for(mi=1; mi<= wav[i]-1; mi++){
     }          for (ii=1;ii<=nlstate+ndeath;ii++)
   }            for (j=1;j<=nlstate+ndeath;j++){
   delti[theta]=delts;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   return res;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
 }          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
 double hessij( double x[], double delti[], int thetai,int thetaj)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 {            for (kk=1; kk<=cptcovage;kk++) {
   int i;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int l=1, l1, lmax=20;            }
   double k1,k2,k3,k4,res,fx;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double p2[NPARMAX+1];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int k;            savm=oldm;
             oldm=newm;
   fx=func(x);          } /* end mult */
   for (k=1; k<=2; k++) {        
     for (i=1;i<=npar;i++) p2[i]=x[i];          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     p2[thetai]=x[thetai]+delti[thetai]/k;          /* But now since version 0.9 we anticipate for bias and large stepm.
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     k1=func(p2)-fx;           * (in months) between two waves is not a multiple of stepm, we rounded to 
             * the nearest (and in case of equal distance, to the lowest) interval but now
     p2[thetai]=x[thetai]+delti[thetai]/k;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     k2=func(p2)-fx;           * probability in order to take into account the bias as a fraction of the way
             * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     p2[thetai]=x[thetai]-delti[thetai]/k;           * -stepm/2 to stepm/2 .
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;           * For stepm=1 the results are the same as for previous versions of Imach.
     k3=func(p2)-fx;           * For stepm > 1 the results are less biased than in previous versions. 
             */
     p2[thetai]=x[thetai]-delti[thetai]/k;          s1=s[mw[mi][i]][i];
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          s2=s[mw[mi+1][i]][i];
     k4=func(p2)-fx;          bbh=(double)bh[mi][i]/(double)stepm; 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          /* bias is positive if real duration
 #ifdef DEBUG           * is higher than the multiple of stepm and negative otherwise.
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);           */
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 #endif          if( s2 > nlstate){ 
   }            /* i.e. if s2 is a death state and if the date of death is known then the contribution
   return res;               to the likelihood is the probability to die between last step unit time and current 
 }               step unit time, which is also the differences between probability to die before dh 
                and probability to die before dh-stepm . 
 /************** Inverse of matrix **************/               In version up to 0.92 likelihood was computed
 void ludcmp(double **a, int n, int *indx, double *d)          as if date of death was unknown. Death was treated as any other
 {          health state: the date of the interview describes the actual state
   int i,imax,j,k;          and not the date of a change in health state. The former idea was
   double big,dum,sum,temp;          to consider that at each interview the state was recorded
   double *vv;          (healthy, disable or death) and IMaCh was corrected; but when we
            introduced the exact date of death then we should have modified
   vv=vector(1,n);          the contribution of an exact death to the likelihood. This new
   *d=1.0;          contribution is smaller and very dependent of the step unit
   for (i=1;i<=n;i++) {          stepm. It is no more the probability to die between last interview
     big=0.0;          and month of death but the probability to survive from last
     for (j=1;j<=n;j++)          interview up to one month before death multiplied by the
       if ((temp=fabs(a[i][j])) > big) big=temp;          probability to die within a month. Thanks to Chris
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          Jackson for correcting this bug.  Former versions increased
     vv[i]=1.0/big;          mortality artificially. The bad side is that we add another loop
   }          which slows down the processing. The difference can be up to 10%
   for (j=1;j<=n;j++) {          lower mortality.
     for (i=1;i<j;i++) {            */
       sum=a[i][j];            lli=log(out[s1][s2] - savm[s1][s2]);
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          }else{
       a[i][j]=sum;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     big=0.0;          } 
     for (i=j;i<=n;i++) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       sum=a[i][j];          /*if(lli ==000.0)*/
       for (k=1;k<j;k++)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         sum -= a[i][k]*a[k][j];          ipmx +=1;
       a[i][j]=sum;          sw += weight[i];
       if ( (dum=vv[i]*fabs(sum)) >= big) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         big=dum;        } /* end of wave */
         imax=i;      } /* end of individual */
       }    }  else if(mle==2){
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     if (j != imax) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for (k=1;k<=n;k++) {        for(mi=1; mi<= wav[i]-1; mi++){
         dum=a[imax][k];          for (ii=1;ii<=nlstate+ndeath;ii++)
         a[imax][k]=a[j][k];            for (j=1;j<=nlstate+ndeath;j++){
         a[j][k]=dum;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       *d = -(*d);            }
       vv[imax]=vv[j];          for(d=0; d<=dh[mi][i]; d++){
     }            newm=savm;
     indx[j]=imax;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     if (a[j][j] == 0.0) a[j][j]=TINY;            for (kk=1; kk<=cptcovage;kk++) {
     if (j != n) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       dum=1.0/(a[j][j]);            }
       for (i=j+1;i<=n;i++) a[i][j] *= dum;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }            savm=oldm;
   free_vector(vv,1,n);  /* Doesn't work */            oldm=newm;
 ;          } /* end mult */
 }        
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 void lubksb(double **a, int n, int *indx, double b[])          /* But now since version 0.9 we anticipate for bias and large stepm.
 {           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   int i,ii=0,ip,j;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   double sum;           * the nearest (and in case of equal distance, to the lowest) interval but now
             * we keep into memory the bias bh[mi][i] and also the previous matrix product
   for (i=1;i<=n;i++) {           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     ip=indx[i];           * probability in order to take into account the bias as a fraction of the way
     sum=b[ip];           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     b[ip]=b[i];           * -stepm/2 to stepm/2 .
     if (ii)           * For stepm=1 the results are the same as for previous versions of Imach.
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];           * For stepm > 1 the results are less biased than in previous versions. 
     else if (sum) ii=i;           */
     b[i]=sum;          s1=s[mw[mi][i]][i];
   }          s2=s[mw[mi+1][i]][i];
   for (i=n;i>=1;i--) {          bbh=(double)bh[mi][i]/(double)stepm; 
     sum=b[i];          /* bias is positive if real duration
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];           * is higher than the multiple of stepm and negative otherwise.
     b[i]=sum/a[i][i];           */
   }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
 /************ Frequencies ********************/          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          /*if(lli ==000.0)*/
 {  /* Some frequencies */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
            ipmx +=1;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          sw += weight[i];
   int first;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double ***freq; /* Frequencies */        } /* end of wave */
   double *pp;      } /* end of individual */
   double pos, k2, dateintsum=0,k2cpt=0;    }  else if(mle==3){  /* exponential inter-extrapolation */
   FILE *ficresp;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   char fileresp[FILENAMELENGTH];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          for(mi=1; mi<= wav[i]-1; mi++){
   pp=vector(1,nlstate);          for (ii=1;ii<=nlstate+ndeath;ii++)
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            for (j=1;j<=nlstate+ndeath;j++){
   strcpy(fileresp,"p");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   strcat(fileresp,fileres);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   if((ficresp=fopen(fileresp,"w"))==NULL) {            }
     printf("Problem with prevalence resultfile: %s\n", fileresp);          for(d=0; d<dh[mi][i]; d++){
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);            newm=savm;
     exit(0);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   j1=0;            }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   j=cptcoveff;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            savm=oldm;
             oldm=newm;
   first=1;          } /* end mult */
         
   for(k1=1; k1<=j;k1++){          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     for(i1=1; i1<=ncodemax[k1];i1++){          /* But now since version 0.9 we anticipate for bias and large stepm.
       j1++;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);           * (in months) between two waves is not a multiple of stepm, we rounded to 
         scanf("%d", i);*/           * the nearest (and in case of equal distance, to the lowest) interval but now
       for (i=-1; i<=nlstate+ndeath; i++)             * we keep into memory the bias bh[mi][i] and also the previous matrix product
         for (jk=-1; jk<=nlstate+ndeath; jk++)             * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
           for(m=agemin; m <= agemax+3; m++)           * probability in order to take into account the bias as a fraction of the way
             freq[i][jk][m]=0;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
                 * -stepm/2 to stepm/2 .
       dateintsum=0;           * For stepm=1 the results are the same as for previous versions of Imach.
       k2cpt=0;           * For stepm > 1 the results are less biased than in previous versions. 
       for (i=1; i<=imx; i++) {           */
         bool=1;          s1=s[mw[mi][i]][i];
         if  (cptcovn>0) {          s2=s[mw[mi+1][i]][i];
           for (z1=1; z1<=cptcoveff; z1++)          bbh=(double)bh[mi][i]/(double)stepm; 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          /* bias is positive if real duration
               bool=0;           * is higher than the multiple of stepm and negative otherwise.
         }           */
         if (bool==1) {          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
           for(m=firstpass; m<=lastpass; m++){          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
             k2=anint[m][i]+(mint[m][i]/12.);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          /*if(lli ==000.0)*/
               if(agev[m][i]==0) agev[m][i]=agemax+1;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
               if(agev[m][i]==1) agev[m][i]=agemax+2;          ipmx +=1;
               if (m<lastpass) {          sw += weight[i];
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        } /* end of wave */
               }      } /* end of individual */
                  }else if (mle==4){  /* ml=4 no inter-extrapolation */
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                 dateintsum=dateintsum+k2;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                 k2cpt++;        for(mi=1; mi<= wav[i]-1; mi++){
               }          for (ii=1;ii<=nlstate+ndeath;ii++)
             }            for (j=1;j<=nlstate+ndeath;j++){
           }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
                  for(d=0; d<dh[mi][i]; d++){
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       if  (cptcovn>0) {            for (kk=1; kk<=cptcovage;kk++) {
         fprintf(ficresp, "\n#********** Variable ");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);            }
         fprintf(ficresp, "**********\n#");          
       }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(i=1; i<=nlstate;i++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            savm=oldm;
       fprintf(ficresp, "\n");            oldm=newm;
                } /* end mult */
       for(i=(int)agemin; i <= (int)agemax+3; i++){        
         if(i==(int)agemax+3){          s1=s[mw[mi][i]][i];
           fprintf(ficlog,"Total");          s2=s[mw[mi+1][i]][i];
         }else{          if( s2 > nlstate){ 
           if(first==1){            lli=log(out[s1][s2] - savm[s1][s2]);
             first=0;          }else{
             printf("See log file for details...\n");            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           }          }
           fprintf(ficlog,"Age %d", i);          ipmx +=1;
         }          sw += weight[i];
         for(jk=1; jk <=nlstate ; jk++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
             pp[jk] += freq[jk][m][i];        } /* end of wave */
         }      } /* end of individual */
         for(jk=1; jk <=nlstate ; jk++){    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
           for(m=-1, pos=0; m <=0 ; m++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             pos += freq[jk][m][i];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           if(pp[jk]>=1.e-10){        for(mi=1; mi<= wav[i]-1; mi++){
             if(first==1){          for (ii=1;ii<=nlstate+ndeath;ii++)
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            for (j=1;j<=nlstate+ndeath;j++){
             }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }else{            }
             if(first==1)          for(d=0; d<dh[mi][i]; d++){
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            newm=savm;
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           }            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
         for(jk=1; jk <=nlstate ; jk++){          
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             pp[jk] += freq[jk][m][i];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
             oldm=newm;
         for(jk=1,pos=0; jk <=nlstate ; jk++)          } /* end mult */
           pos += pp[jk];        
         for(jk=1; jk <=nlstate ; jk++){          s1=s[mw[mi][i]][i];
           if(pos>=1.e-5){          s2=s[mw[mi+1][i]][i];
             if(first==1)          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          ipmx +=1;
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          sw += weight[i];
           }else{          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             if(first==1)          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        } /* end of wave */
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      } /* end of individual */
           }    } /* End of if */
           if( i <= (int) agemax){    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
             if(pos>=1.e-5){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
               probs[i][jk][j1]= pp[jk]/pos;    return -l;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/  }
             }  
             else  /*************** log-likelihood *************/
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  double funcone( double *x)
           }  {
         }    /* Same as likeli but slower because of a lot of printf and if */
            int i, ii, j, k, mi, d, kk;
         for(jk=-1; jk <=nlstate+ndeath; jk++)    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           for(m=-1; m <=nlstate+ndeath; m++)    double **out;
             if(freq[jk][m][i] !=0 ) {    double lli; /* Individual log likelihood */
             if(first==1)    double llt;
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    int s1, s2;
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);    double bbh, survp;
             }    /*extern weight */
         if(i <= (int) agemax)    /* We are differentiating ll according to initial status */
           fprintf(ficresp,"\n");    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         if(first==1)    /*for(i=1;i<imx;i++) 
           printf("Others in log...\n");      printf(" %d\n",s[4][i]);
         fprintf(ficlog,"\n");    */
       }    cov[1]=1.;
     }  
   }    for(k=1; k<=nlstate; k++) ll[k]=0.;
   dateintmean=dateintsum/k2cpt;  
      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   fclose(ficresp);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      for(mi=1; mi<= wav[i]-1; mi++){
   free_vector(pp,1,nlstate);        for (ii=1;ii<=nlstate+ndeath;ii++)
            for (j=1;j<=nlstate+ndeath;j++){
   /* End of Freq */            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 }            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
 /************ Prevalence ********************/        for(d=0; d<dh[mi][i]; d++){
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)          newm=savm;
 {  /* Some frequencies */          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
            for (kk=1; kk<=cptcovage;kk++) {
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double ***freq; /* Frequencies */          }
   double *pp;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double pos, k2;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           savm=oldm;
   pp=vector(1,nlstate);          oldm=newm;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        } /* end mult */
          
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        s1=s[mw[mi][i]][i];
   j1=0;        s2=s[mw[mi+1][i]][i];
          bbh=(double)bh[mi][i]/(double)stepm; 
   j=cptcoveff;        /* bias is positive if real duration
   if (cptcovn<1) {j=1;ncodemax[1]=1;}         * is higher than the multiple of stepm and negative otherwise.
           */
   for(k1=1; k1<=j;k1++){        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     for(i1=1; i1<=ncodemax[k1];i1++){          lli=log(out[s1][s2] - savm[s1][s2]);
       j1++;        } else if (mle==1){
                lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       for (i=-1; i<=nlstate+ndeath; i++)          } else if(mle==2){
         for (jk=-1; jk<=nlstate+ndeath; jk++)            lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           for(m=agemin; m <= agemax+3; m++)        } else if(mle==3){  /* exponential inter-extrapolation */
             freq[i][jk][m]=0;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
              } else if (mle==4){  /* mle=4 no inter-extrapolation */
       for (i=1; i<=imx; i++) {          lli=log(out[s1][s2]); /* Original formula */
         bool=1;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
         if  (cptcovn>0) {          lli=log(out[s1][s2]); /* Original formula */
           for (z1=1; z1<=cptcoveff; z1++)        } /* End of if */
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        ipmx +=1;
               bool=0;        sw += weight[i];
         }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         if (bool==1) {  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           for(m=firstpass; m<=lastpass; m++){        if(globpr){
             k2=anint[m][i]+(mint[m][i]/12.);          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
             if ((k2>=dateprev1) && (k2<=dateprev2)) {   %10.6f %10.6f %10.6f ", \
               if(agev[m][i]==0) agev[m][i]=agemax+1;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
               if(agev[m][i]==1) agev[m][i]=agemax+2;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
               if (m<lastpass) {          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
                 if (calagedate>0)            llt +=ll[k]*gipmx/gsw;
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
                 else          }
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          fprintf(ficresilk," %10.6f\n", -llt);
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];        }
               }      } /* end of wave */
             }    } /* end of individual */
           }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       for(i=(int)agemin; i <= (int)agemax+3; i++){    if(globpr==0){ /* First time we count the contributions and weights */
         for(jk=1; jk <=nlstate ; jk++){      gipmx=ipmx;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      gsw=sw;
             pp[jk] += freq[jk][m][i];    }
         }    return -l;
         for(jk=1; jk <=nlstate ; jk++){  }
           for(m=-1, pos=0; m <=0 ; m++)  
             pos += freq[jk][m][i];  char *subdirf(char fileres[])
         }  {
            /* Caution optionfilefiname is hidden */
         for(jk=1; jk <=nlstate ; jk++){    strcpy(tmpout,optionfilefiname);
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    strcat(tmpout,"/"); /* Add to the right */
             pp[jk] += freq[jk][m][i];    strcat(tmpout,fileres);
         }    return tmpout;
          }
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];  
          char *subdirf2(char fileres[], char *preop)
         for(jk=1; jk <=nlstate ; jk++){      {
           if( i <= (int) agemax){    
             if(pos>=1.e-5){    strcpy(tmpout,optionfilefiname);
               probs[i][jk][j1]= pp[jk]/pos;    strcat(tmpout,"/");
             }    strcat(tmpout,preop);
           }    strcat(tmpout,fileres);
         }/* end jk */    return tmpout;
       }/* end i */  }
     } /* end i1 */  char *subdirf3(char fileres[], char *preop, char *preop2)
   } /* end k1 */  {
     
      strcpy(tmpout,optionfilefiname);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    strcat(tmpout,"/");
   free_vector(pp,1,nlstate);    strcat(tmpout,preop);
      strcat(tmpout,preop2);
 }  /* End of Freq */    strcat(tmpout,fileres);
     return tmpout;
 /************* Waves Concatenation ***************/  }
   
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 {  {
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    /* This routine should help understanding what is done with 
      Death is a valid wave (if date is known).       the selection of individuals/waves and
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i       to check the exact contribution to the likelihood.
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]       Plotting could be done.
      and mw[mi+1][i]. dh depends on stepm.     */
      */    int k;
   
   int i, mi, m;    if(*globpri !=0){ /* Just counts and sums, no printings */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      strcpy(fileresilk,"ilk"); 
      double sum=0., jmean=0.;*/      strcat(fileresilk,fileres);
   int first;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   int j, k=0,jk, ju, jl;        printf("Problem with resultfile: %s\n", fileresilk);
   double sum=0.;        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   first=0;      }
   jmin=1e+5;      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   jmax=-1;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   jmean=0.;      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   for(i=1; i<=imx; i++){      for(k=1; k<=nlstate; k++) 
     mi=0;        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     m=firstpass;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     while(s[m][i] <= nlstate){    }
       if(s[m][i]>=1)  
         mw[++mi][i]=m;    *fretone=(*funcone)(p);
       if(m >=lastpass)    if(*globpri !=0){
         break;      fclose(ficresilk);
       else      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
         m++;      fflush(fichtm); 
     }/* end while */    } 
     if (s[m][i] > nlstate){    return;
       mi++;     /* Death is another wave */  }
       /* if(mi==0)  never been interviewed correctly before death */  
          /* Only death is a correct wave */  
       mw[mi][i]=m;  /*********** Maximum Likelihood Estimation ***************/
     }  
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     wav[i]=mi;  {
     if(mi==0){    int i,j, iter;
       if(first==0){    double **xi;
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);    double fret;
         first=1;    double fretone; /* Only one call to likelihood */
       }    char filerespow[FILENAMELENGTH];
       if(first==1){    xi=matrix(1,npar,1,npar);
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);    for (i=1;i<=npar;i++)
       }      for (j=1;j<=npar;j++)
     } /* end mi==0 */        xi[i][j]=(i==j ? 1.0 : 0.0);
   }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     strcpy(filerespow,"pow"); 
   for(i=1; i<=imx; i++){    strcat(filerespow,fileres);
     for(mi=1; mi<wav[i];mi++){    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       if (stepm <=0)      printf("Problem with resultfile: %s\n", filerespow);
         dh[mi][i]=1;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       else{    }
         if (s[mw[mi+1][i]][i] > nlstate) {    fprintf(ficrespow,"# Powell\n# iter -2*LL");
           if (agedc[i] < 2*AGESUP) {    for (i=1;i<=nlstate;i++)
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      for(j=1;j<=nlstate+ndeath;j++)
           if(j==0) j=1;  /* Survives at least one month after exam */        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
           k=k+1;    fprintf(ficrespow,"\n");
           if (j >= jmax) jmax=j;  
           if (j <= jmin) jmin=j;    powell(p,xi,npar,ftol,&iter,&fret,func);
           sum=sum+j;  
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    fclose(ficrespow);
           }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         else{    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  
           k=k+1;  }
           if (j >= jmax) jmax=j;  
           else if (j <= jmin)jmin=j;  /**** Computes Hessian and covariance matrix ***/
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
           sum=sum+j;  {
         }    double  **a,**y,*x,pd;
         jk= j/stepm;    double **hess;
         jl= j -jk*stepm;    int i, j,jk;
         ju= j -(jk+1)*stepm;    int *indx;
         if(jl <= -ju)  
           dh[mi][i]=jk;    double hessii(double p[], double delta, int theta, double delti[]);
         else    double hessij(double p[], double delti[], int i, int j);
           dh[mi][i]=jk+1;    void lubksb(double **a, int npar, int *indx, double b[]) ;
         if(dh[mi][i]==0)    void ludcmp(double **a, int npar, int *indx, double *d) ;
           dh[mi][i]=1; /* At least one step */  
       }    hess=matrix(1,npar,1,npar);
     }  
   }    printf("\nCalculation of the hessian matrix. Wait...\n");
   jmean=sum/k;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    for (i=1;i<=npar;i++){
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      printf("%d",i);fflush(stdout);
  }      fprintf(ficlog,"%d",i);fflush(ficlog);
       hess[i][i]=hessii(p,ftolhess,i,delti);
 /*********** Tricode ****************************/      /*printf(" %f ",p[i]);*/
 void tricode(int *Tvar, int **nbcode, int imx)      /*printf(" %lf ",hess[i][i]);*/
 {    }
   int Ndum[20],ij=1, k, j, i;    
   int cptcode=0;    for (i=1;i<=npar;i++) {
   cptcoveff=0;      for (j=1;j<=npar;j++)  {
          if (j>i) { 
   for (k=0; k<19; k++) Ndum[k]=0;          printf(".%d%d",i,j);fflush(stdout);
   for (k=1; k<=7; k++) ncodemax[k]=0;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,delti,i,j);
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          hess[j][i]=hess[i][j];    
     for (i=1; i<=imx; i++) {          /*printf(" %lf ",hess[i][j]);*/
       ij=(int)(covar[Tvar[j]][i]);        }
       Ndum[ij]++;      }
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    }
       if (ij > cptcode) cptcode=ij;    printf("\n");
     }    fprintf(ficlog,"\n");
   
     for (i=0; i<=cptcode; i++) {    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       if(Ndum[i]!=0) ncodemax[j]++;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     }    
     ij=1;    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
     x=vector(1,npar);
     for (i=1; i<=ncodemax[j]; i++) {    indx=ivector(1,npar);
       for (k=0; k<=19; k++) {    for (i=1;i<=npar;i++)
         if (Ndum[k] != 0) {      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
           nbcode[Tvar[j]][ij]=k;    ludcmp(a,npar,indx,&pd);
            
           ij++;    for (j=1;j<=npar;j++) {
         }      for (i=1;i<=npar;i++) x[i]=0;
         if (ij > ncodemax[j]) break;      x[j]=1;
       }        lubksb(a,npar,indx,x);
     }      for (i=1;i<=npar;i++){ 
   }          matcov[i][j]=x[i];
       }
  for (k=0; k<19; k++) Ndum[k]=0;    }
   
  for (i=1; i<=ncovmodel-2; i++) {    printf("\n#Hessian matrix#\n");
    ij=Tvar[i];    fprintf(ficlog,"\n#Hessian matrix#\n");
    Ndum[ij]++;    for (i=1;i<=npar;i++) { 
  }      for (j=1;j<=npar;j++) { 
         printf("%.3e ",hess[i][j]);
  ij=1;        fprintf(ficlog,"%.3e ",hess[i][j]);
  for (i=1; i<=10; i++) {      }
    if((Ndum[i]!=0) && (i<=ncovcol)){      printf("\n");
      Tvaraff[ij]=i;      fprintf(ficlog,"\n");
      ij++;    }
    }  
  }    /* Recompute Inverse */
      for (i=1;i<=npar;i++)
  cptcoveff=ij-1;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 }    ludcmp(a,npar,indx,&pd);
   
 /*********** Health Expectancies ****************/    /*  printf("\n#Hessian matrix recomputed#\n");
   
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
 {      x[j]=1;
   /* Health expectancies */      lubksb(a,npar,indx,x);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;      for (i=1;i<=npar;i++){ 
   double age, agelim, hf;        y[i][j]=x[i];
   double ***p3mat,***varhe;        printf("%.3e ",y[i][j]);
   double **dnewm,**doldm;        fprintf(ficlog,"%.3e ",y[i][j]);
   double *xp;      }
   double **gp, **gm;      printf("\n");
   double ***gradg, ***trgradg;      fprintf(ficlog,"\n");
   int theta;    }
     */
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  
   xp=vector(1,npar);    free_matrix(a,1,npar,1,npar);
   dnewm=matrix(1,nlstate*2,1,npar);    free_matrix(y,1,npar,1,npar);
   doldm=matrix(1,nlstate*2,1,nlstate*2);    free_vector(x,1,npar);
      free_ivector(indx,1,npar);
   fprintf(ficreseij,"# Health expectancies\n");    free_matrix(hess,1,npar,1,npar);
   fprintf(ficreseij,"# Age");  
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)  }
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  
   fprintf(ficreseij,"\n");  /*************** hessian matrix ****************/
   double hessii( double x[], double delta, int theta, double delti[])
   if(estepm < stepm){  {
     printf ("Problem %d lower than %d\n",estepm, stepm);    int i;
   }    int l=1, lmax=20;
   else  hstepm=estepm;      double k1,k2;
   /* We compute the life expectancy from trapezoids spaced every estepm months    double p2[NPARMAX+1];
    * This is mainly to measure the difference between two models: for example    double res;
    * if stepm=24 months pijx are given only every 2 years and by summing them    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
    * we are calculating an estimate of the Life Expectancy assuming a linear    double fx;
    * progression inbetween and thus overestimating or underestimating according    int k=0,kmax=10;
    * to the curvature of the survival function. If, for the same date, we    double l1;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  
    * to compare the new estimate of Life expectancy with the same linear    fx=func(x);
    * hypothesis. A more precise result, taking into account a more precise    for (i=1;i<=npar;i++) p2[i]=x[i];
    * curvature will be obtained if estepm is as small as stepm. */    for(l=0 ; l <=lmax; l++){
       l1=pow(10,l);
   /* For example we decided to compute the life expectancy with the smallest unit */      delts=delt;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      for(k=1 ; k <kmax; k=k+1){
      nhstepm is the number of hstepm from age to agelim        delt = delta*(l1*k);
      nstepm is the number of stepm from age to agelin.        p2[theta]=x[theta] +delt;
      Look at hpijx to understand the reason of that which relies in memory size        k1=func(p2)-fx;
      and note for a fixed period like estepm months */        p2[theta]=x[theta]-delt;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        k2=func(p2)-fx;
      survival function given by stepm (the optimization length). Unfortunately it        /*res= (k1-2.0*fx+k2)/delt/delt; */
      means that if the survival funtion is printed only each two years of age and if        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        
      results. So we changed our mind and took the option of the best precision.  #ifdef DEBUG
   */        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   #endif
   agelim=AGESUP;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     /* nhstepm age range expressed in number of stepm */          k=kmax;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        }
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     /* if (stepm >= YEARM) hstepm=1;*/          k=kmax; l=lmax*10.;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);          delts=delt;
     gp=matrix(0,nhstepm,1,nlstate*2);        }
     gm=matrix(0,nhstepm,1,nlstate*2);      }
     }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    delti[theta]=delts;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    return res; 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      
    }
   
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  double hessij( double x[], double delti[], int thetai,int thetaj)
   {
     /* Computing Variances of health expectancies */    int i;
     int l=1, l1, lmax=20;
      for(theta=1; theta <=npar; theta++){    double k1,k2,k3,k4,res,fx;
       for(i=1; i<=npar; i++){    double p2[NPARMAX+1];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    int k;
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      fx=func(x);
      for (k=1; k<=2; k++) {
       cptj=0;      for (i=1;i<=npar;i++) p2[i]=x[i];
       for(j=1; j<= nlstate; j++){      p2[thetai]=x[thetai]+delti[thetai]/k;
         for(i=1; i<=nlstate; i++){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
           cptj=cptj+1;      k1=func(p2)-fx;
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){    
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      p2[thetai]=x[thetai]+delti[thetai]/k;
           }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         }      k2=func(p2)-fx;
       }    
            p2[thetai]=x[thetai]-delti[thetai]/k;
            p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       for(i=1; i<=npar; i++)      k3=func(p2)-fx;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        p2[thetai]=x[thetai]-delti[thetai]/k;
            p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       cptj=0;      k4=func(p2)-fx;
       for(j=1; j<= nlstate; j++){      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
         for(i=1;i<=nlstate;i++){  #ifdef DEBUG
           cptj=cptj+1;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  #endif
           }    }
         }    return res;
       }  }
       for(j=1; j<= nlstate*2; j++)  
         for(h=0; h<=nhstepm-1; h++){  /************** Inverse of matrix **************/
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  void ludcmp(double **a, int n, int *indx, double *d) 
         }  { 
      }    int i,imax,j,k; 
        double big,dum,sum,temp; 
 /* End theta */    double *vv; 
    
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    vv=vector(1,n); 
     *d=1.0; 
      for(h=0; h<=nhstepm-1; h++)    for (i=1;i<=n;i++) { 
       for(j=1; j<=nlstate*2;j++)      big=0.0; 
         for(theta=1; theta <=npar; theta++)      for (j=1;j<=n;j++) 
           trgradg[h][j][theta]=gradg[h][theta][j];        if ((temp=fabs(a[i][j])) > big) big=temp; 
            if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       vv[i]=1.0/big; 
      for(i=1;i<=nlstate*2;i++)    } 
       for(j=1;j<=nlstate*2;j++)    for (j=1;j<=n;j++) { 
         varhe[i][j][(int)age] =0.;      for (i=1;i<j;i++) { 
         sum=a[i][j]; 
      printf("%d|",(int)age);fflush(stdout);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);        a[i][j]=sum; 
      for(h=0;h<=nhstepm-1;h++){      } 
       for(k=0;k<=nhstepm-1;k++){      big=0.0; 
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      for (i=j;i<=n;i++) { 
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);        sum=a[i][j]; 
         for(i=1;i<=nlstate*2;i++)        for (k=1;k<j;k++) 
           for(j=1;j<=nlstate*2;j++)          sum -= a[i][k]*a[k][j]; 
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        a[i][j]=sum; 
       }        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     }          big=dum; 
     /* Computing expectancies */          imax=i; 
     for(i=1; i<=nlstate;i++)        } 
       for(j=1; j<=nlstate;j++)      } 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){      if (j != imax) { 
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;        for (k=1;k<=n;k++) { 
                    dum=a[imax][k]; 
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          a[imax][k]=a[j][k]; 
           a[j][k]=dum; 
         }        } 
         *d = -(*d); 
     fprintf(ficreseij,"%3.0f",age );        vv[imax]=vv[j]; 
     cptj=0;      } 
     for(i=1; i<=nlstate;i++)      indx[j]=imax; 
       for(j=1; j<=nlstate;j++){      if (a[j][j] == 0.0) a[j][j]=TINY; 
         cptj++;      if (j != n) { 
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );        dum=1.0/(a[j][j]); 
       }        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     fprintf(ficreseij,"\n");      } 
        } 
     free_matrix(gm,0,nhstepm,1,nlstate*2);    free_vector(vv,1,n);  /* Doesn't work */
     free_matrix(gp,0,nhstepm,1,nlstate*2);  ;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  } 
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  void lubksb(double **a, int n, int *indx, double b[]) 
   }  { 
   printf("\n");    int i,ii=0,ip,j; 
   fprintf(ficlog,"\n");    double sum; 
    
   free_vector(xp,1,npar);    for (i=1;i<=n;i++) { 
   free_matrix(dnewm,1,nlstate*2,1,npar);      ip=indx[i]; 
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);      sum=b[ip]; 
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);      b[ip]=b[i]; 
 }      if (ii) 
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 /************ Variance ******************/      else if (sum) ii=i; 
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)      b[i]=sum; 
 {    } 
   /* Variance of health expectancies */    for (i=n;i>=1;i--) { 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      sum=b[i]; 
   /* double **newm;*/      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
   double **dnewm,**doldm;      b[i]=sum/a[i][i]; 
   double **dnewmp,**doldmp;    } 
   int i, j, nhstepm, hstepm, h, nstepm ;  } 
   int k, cptcode;  
   double *xp;  /************ Frequencies ********************/
   double **gp, **gm;  /* for var eij */  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
   double ***gradg, ***trgradg; /*for var eij */  {  /* Some frequencies */
   double **gradgp, **trgradgp; /* for var p point j */    
   double *gpp, *gmp; /* for var p point j */    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */    int first;
   double ***p3mat;    double ***freq; /* Frequencies */
   double age,agelim, hf;    double *pp, **prop;
   int theta;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   char digit[4];    FILE *ficresp;
   char digitp[16];    char fileresp[FILENAMELENGTH];
     
   char fileresprobmorprev[FILENAMELENGTH];    pp=vector(1,nlstate);
     prop=matrix(1,nlstate,iagemin,iagemax+3);
   if(popbased==1)    strcpy(fileresp,"p");
     strcpy(digitp,"-populbased-");    strcat(fileresp,fileres);
   else    if((ficresp=fopen(fileresp,"w"))==NULL) {
     strcpy(digitp,"-stablbased-");      printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   strcpy(fileresprobmorprev,"prmorprev");      exit(0);
   sprintf(digit,"%-d",ij);    }
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
   strcat(fileresprobmorprev,digit); /* Tvar to be done */    j1=0;
   strcat(fileresprobmorprev,digitp); /* Popbased or not */    
   strcat(fileresprobmorprev,fileres);    j=cptcoveff;
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     printf("Problem with resultfile: %s\n", fileresprobmorprev);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);    first=1;
   }  
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);    for(k1=1; k1<=j;k1++){
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);      for(i1=1; i1<=ncodemax[k1];i1++){
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");        j1++;
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){          scanf("%d", i);*/
     fprintf(ficresprobmorprev," p.%-d SE",j);        for (i=-1; i<=nlstate+ndeath; i++)  
     for(i=1; i<=nlstate;i++)          for (jk=-1; jk<=nlstate+ndeath; jk++)  
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);            for(m=iagemin; m <= iagemax+3; m++)
   }                freq[i][jk][m]=0;
   fprintf(ficresprobmorprev,"\n");  
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      for (i=1; i<=nlstate; i++)  
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);        for(m=iagemin; m <= iagemax+3; m++)
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);          prop[i][m]=0;
     exit(0);        
   }        dateintsum=0;
   else{        k2cpt=0;
     fprintf(ficgp,"\n# Routine varevsij");        for (i=1; i<=imx; i++) {
   }          bool=1;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {          if  (cptcovn>0) {
     printf("Problem with html file: %s\n", optionfilehtm);            for (z1=1; z1<=cptcoveff; z1++) 
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     exit(0);                bool=0;
   }          }
   else{          if (bool==1){
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");            for(m=firstpass; m<=lastpass; m++){
   }              k2=anint[m][i]+(mint[m][i]/12.);
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   fprintf(ficresvij,"# Age");                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   for(i=1; i<=nlstate;i++)                if (m<lastpass) {
     for(j=1; j<=nlstate;j++)                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   fprintf(ficresvij,"\n");                }
                 
   xp=vector(1,npar);                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   dnewm=matrix(1,nlstate,1,npar);                  dateintsum=dateintsum+k2;
   doldm=matrix(1,nlstate,1,nlstate);                  k2cpt++;
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);                }
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);                /*}*/
             }
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);          }
   gpp=vector(nlstate+1,nlstate+ndeath);        }
   gmp=vector(nlstate+1,nlstate+ndeath);         
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
    
   if(estepm < stepm){        if  (cptcovn>0) {
     printf ("Problem %d lower than %d\n",estepm, stepm);          fprintf(ficresp, "\n#********** Variable "); 
   }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   else  hstepm=estepm;            fprintf(ficresp, "**********\n#");
   /* For example we decided to compute the life expectancy with the smallest unit */        }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        for(i=1; i<=nlstate;i++) 
      nhstepm is the number of hstepm from age to agelim          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
      nstepm is the number of stepm from age to agelin.        fprintf(ficresp, "\n");
      Look at hpijx to understand the reason of that which relies in memory size        
      and note for a fixed period like k years */        for(i=iagemin; i <= iagemax+3; i++){
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          if(i==iagemax+3){
      survival function given by stepm (the optimization length). Unfortunately it            fprintf(ficlog,"Total");
      means that if the survival funtion is printed only each two years of age and if          }else{
      you sum them up and add 1 year (area under the trapezoids) you won't get the same            if(first==1){
      results. So we changed our mind and took the option of the best precision.              first=0;
   */              printf("See log file for details...\n");
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */            }
   agelim = AGESUP;            fprintf(ficlog,"Age %d", i);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          }
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          for(jk=1; jk <=nlstate ; jk++){
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              pp[jk] += freq[jk][m][i]; 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          }
     gp=matrix(0,nhstepm,1,nlstate);          for(jk=1; jk <=nlstate ; jk++){
     gm=matrix(0,nhstepm,1,nlstate);            for(m=-1, pos=0; m <=0 ; m++)
               pos += freq[jk][m][i];
             if(pp[jk]>=1.e-10){
     for(theta=1; theta <=npar; theta++){              if(first==1){
       for(i=1; i<=npar; i++){ /* Computes gradient */              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              }
       }              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              }else{
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       if (popbased==1) {              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         for(i=1; i<=nlstate;i++)            }
           prlim[i][i]=probs[(int)age][i][ij];          }
       }  
            for(jk=1; jk <=nlstate ; jk++){
       for(j=1; j<= nlstate; j++){            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
         for(h=0; h<=nhstepm; h++){              pp[jk] += freq[jk][m][i];
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          }       
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         }            pos += pp[jk];
       }            posprop += prop[jk][i];
       /* This for computing forces of mortality (h=1)as a weighted average */          }
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){          for(jk=1; jk <=nlstate ; jk++){
         for(i=1; i<= nlstate; i++)            if(pos>=1.e-5){
           gpp[j] += prlim[i][i]*p3mat[i][j][1];              if(first==1)
       }                    printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       /* end force of mortality */              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             }else{
       for(i=1; i<=npar; i++) /* Computes gradient */              if(first==1)
         xp[i] = x[i] - (i==theta ?delti[theta]:0);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            }
              if( i <= iagemax){
       if (popbased==1) {              if(pos>=1.e-5){
         for(i=1; i<=nlstate;i++)                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
           prlim[i][i]=probs[(int)age][i][ij];                /*probs[i][jk][j1]= pp[jk]/pos;*/
       }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
       for(j=1; j<= nlstate; j++){              else
         for(h=0; h<=nhstepm; h++){                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)            }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          }
         }          
       }          for(jk=-1; jk <=nlstate+ndeath; jk++)
       /* This for computing force of mortality (h=1)as a weighted average */            for(m=-1; m <=nlstate+ndeath; m++)
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){              if(freq[jk][m][i] !=0 ) {
         for(i=1; i<= nlstate; i++)              if(first==1)
           gmp[j] += prlim[i][i]*p3mat[i][j][1];                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
       }                    fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       /* end force of mortality */              }
           if(i <= iagemax)
       for(j=1; j<= nlstate; j++) /* vareij */            fprintf(ficresp,"\n");
         for(h=0; h<=nhstepm; h++){          if(first==1)
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            printf("Others in log...\n");
         }          fprintf(ficlog,"\n");
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */        }
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];      }
       }    }
     dateintmean=dateintsum/k2cpt; 
     } /* End theta */   
     fclose(ficresp);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
     free_vector(pp,1,nlstate);
     for(h=0; h<=nhstepm; h++) /* veij */    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       for(j=1; j<=nlstate;j++)    /* End of Freq */
         for(theta=1; theta <=npar; theta++)  }
           trgradg[h][j][theta]=gradg[h][theta][j];  
   /************ Prevalence ********************/
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
       for(theta=1; theta <=npar; theta++)  {  
         trgradgp[j][theta]=gradgp[theta][j];    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */       We still use firstpass and lastpass as another selection.
     for(i=1;i<=nlstate;i++)    */
       for(j=1;j<=nlstate;j++)   
         vareij[i][j][(int)age] =0.;    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     double ***freq; /* Frequencies */
     for(h=0;h<=nhstepm;h++){    double *pp, **prop;
       for(k=0;k<=nhstepm;k++){    double pos,posprop; 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    double  y2; /* in fractional years */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    int iagemin, iagemax;
         for(i=1;i<=nlstate;i++)  
           for(j=1;j<=nlstate;j++)    iagemin= (int) agemin;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    iagemax= (int) agemax;
       }    /*pp=vector(1,nlstate);*/
     }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     /* pptj */    j1=0;
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);    
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);    j=cptcoveff;
     for(j=nlstate+1;j<=nlstate+ndeath;j++)    if (cptcovn<1) {j=1;ncodemax[1]=1;}
       for(i=nlstate+1;i<=nlstate+ndeath;i++)    
         varppt[j][i]=doldmp[j][i];    for(k1=1; k1<=j;k1++){
     /* end ppptj */      for(i1=1; i1<=ncodemax[k1];i1++){
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);          j1++;
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);        
          for (i=1; i<=nlstate; i++)  
     if (popbased==1) {          for(m=iagemin; m <= iagemax+3; m++)
       for(i=1; i<=nlstate;i++)            prop[i][m]=0.0;
         prlim[i][i]=probs[(int)age][i][ij];       
     }        for (i=1; i<=imx; i++) { /* Each individual */
              bool=1;
     /* This for computing force of mortality (h=1)as a weighted average */          if  (cptcovn>0) {
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){            for (z1=1; z1<=cptcoveff; z1++) 
       for(i=1; i<= nlstate; i++)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         gmp[j] += prlim[i][i]*p3mat[i][j][1];                bool=0;
     }              } 
     /* end force of mortality */          if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       for(i=1; i<=nlstate;i++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     fprintf(ficresprobmorprev,"\n");                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   prop[s[m][i]][iagemax+3] += weight[i]; 
     fprintf(ficresvij,"%.0f ",age );                } 
     for(i=1; i<=nlstate;i++)              }
       for(j=1; j<=nlstate;j++){            } /* end selection of waves */
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);          }
       }        }
     fprintf(ficresvij,"\n");        for(i=iagemin; i <= iagemax+3; i++){  
     free_matrix(gp,0,nhstepm,1,nlstate);          
     free_matrix(gm,0,nhstepm,1,nlstate);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);            posprop += prop[jk][i]; 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          } 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   } /* End age */          for(jk=1; jk <=nlstate ; jk++){     
   free_vector(gpp,nlstate+1,nlstate+ndeath);            if( i <=  iagemax){ 
   free_vector(gmp,nlstate+1,nlstate+ndeath);              if(posprop>=1.e-5){ 
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);                probs[i][jk][j1]= prop[jk][i]/posprop;
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/              } 
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");            } 
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */          }/* end jk */ 
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");        }/* end i */ 
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);      } /* end i1 */
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);    } /* end k1 */
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);    
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);    /*free_vector(pp,1,nlstate);*/
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  /* End of prevalence */
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,nlstate);  /************* Waves Concatenation ***************/
   free_matrix(dnewm,1,nlstate,1,npar);  
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);  {
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   fclose(ficresprobmorprev);       Death is a valid wave (if date is known).
   fclose(ficgp);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   fclose(fichtm);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
 }       */
   
 /************ Variance of prevlim ******************/    int i, mi, m;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 {       double sum=0., jmean=0.;*/
   /* Variance of prevalence limit */    int first;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    int j, k=0,jk, ju, jl;
   double **newm;    double sum=0.;
   double **dnewm,**doldm;    first=0;
   int i, j, nhstepm, hstepm;    jmin=1e+5;
   int k, cptcode;    jmax=-1;
   double *xp;    jmean=0.;
   double *gp, *gm;    for(i=1; i<=imx; i++){
   double **gradg, **trgradg;      mi=0;
   double age,agelim;      m=firstpass;
   int theta;      while(s[m][i] <= nlstate){
            if(s[m][i]>=1)
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");          mw[++mi][i]=m;
   fprintf(ficresvpl,"# Age");        if(m >=lastpass)
   for(i=1; i<=nlstate;i++)          break;
       fprintf(ficresvpl," %1d-%1d",i,i);        else
   fprintf(ficresvpl,"\n");          m++;
       }/* end while */
   xp=vector(1,npar);      if (s[m][i] > nlstate){
   dnewm=matrix(1,nlstate,1,npar);        mi++;     /* Death is another wave */
   doldm=matrix(1,nlstate,1,nlstate);        /* if(mi==0)  never been interviewed correctly before death */
             /* Only death is a correct wave */
   hstepm=1*YEARM; /* Every year of age */        mw[mi][i]=m;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      }
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      wav[i]=mi;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      if(mi==0){
     if (stepm >= YEARM) hstepm=1;        nbwarn++;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        if(first==0){
     gradg=matrix(1,npar,1,nlstate);          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
     gp=vector(1,nlstate);          first=1;
     gm=vector(1,nlstate);        }
         if(first==1){
     for(theta=1; theta <=npar; theta++){          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
       for(i=1; i<=npar; i++){ /* Computes gradient */        }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      } /* end mi==0 */
       }    } /* End individuals */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)    for(i=1; i<=imx; i++){
         gp[i] = prlim[i][i];      for(mi=1; mi<wav[i];mi++){
            if (stepm <=0)
       for(i=1; i<=npar; i++) /* Computes gradient */          dh[mi][i]=1;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        else{
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       for(i=1;i<=nlstate;i++)            if (agedc[i] < 2*AGESUP) {
         gm[i] = prlim[i][i];              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
               if(j==0) j=1;  /* Survives at least one month after exam */
       for(i=1;i<=nlstate;i++)              else if(j<0){
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];                nberr++;
     } /* End theta */                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 j=1; /* Temporary Dangerous patch */
     trgradg =matrix(1,nlstate,1,npar);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
                 fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     for(j=1; j<=nlstate;j++)                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
       for(theta=1; theta <=npar; theta++)              }
         trgradg[j][theta]=gradg[theta][j];              k=k+1;
               if (j >= jmax) jmax=j;
     for(i=1;i<=nlstate;i++)              if (j <= jmin) jmin=j;
       varpl[i][(int)age] =0.;              sum=sum+j;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     for(i=1;i<=nlstate;i++)            }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          }
           else{
     fprintf(ficresvpl,"%.0f ",age );            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     for(i=1; i<=nlstate;i++)            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));            k=k+1;
     fprintf(ficresvpl,"\n");            if (j >= jmax) jmax=j;
     free_vector(gp,1,nlstate);            else if (j <= jmin)jmin=j;
     free_vector(gm,1,nlstate);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     free_matrix(gradg,1,npar,1,nlstate);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     free_matrix(trgradg,1,nlstate,1,npar);            if(j<0){
   } /* End age */              nberr++;
               printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   free_vector(xp,1,npar);              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   free_matrix(doldm,1,nlstate,1,npar);            }
   free_matrix(dnewm,1,nlstate,1,nlstate);            sum=sum+j;
           }
 }          jk= j/stepm;
           jl= j -jk*stepm;
 /************ Variance of one-step probabilities  ******************/          ju= j -(jk+1)*stepm;
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
 {            if(jl==0){
   int i, j=0,  i1, k1, l1, t, tj;              dh[mi][i]=jk;
   int k2, l2, j1,  z1;              bh[mi][i]=0;
   int k=0,l, cptcode;            }else{ /* We want a negative bias in order to only have interpolation ie
   int first=1, first1;                    * at the price of an extra matrix product in likelihood */
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;              dh[mi][i]=jk+1;
   double **dnewm,**doldm;              bh[mi][i]=ju;
   double *xp;            }
   double *gp, *gm;          }else{
   double **gradg, **trgradg;            if(jl <= -ju){
   double **mu;              dh[mi][i]=jk;
   double age,agelim, cov[NCOVMAX];              bh[mi][i]=jl;       /* bias is positive if real duration
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */                                   * is higher than the multiple of stepm and negative otherwise.
   int theta;                                   */
   char fileresprob[FILENAMELENGTH];            }
   char fileresprobcov[FILENAMELENGTH];            else{
   char fileresprobcor[FILENAMELENGTH];              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
   double ***varpij;            }
             if(dh[mi][i]==0){
   strcpy(fileresprob,"prob");              dh[mi][i]=1; /* At least one step */
   strcat(fileresprob,fileres);              bh[mi][i]=ju; /* At least one step */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     printf("Problem with resultfile: %s\n", fileresprob);            }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);          } /* end if mle */
   }        }
   strcpy(fileresprobcov,"probcov");      } /* end wave */
   strcat(fileresprobcov,fileres);    }
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    jmean=sum/k;
     printf("Problem with resultfile: %s\n", fileresprobcov);    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   }   }
   strcpy(fileresprobcor,"probcor");  
   strcat(fileresprobcor,fileres);  /*********** Tricode ****************************/
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {  void tricode(int *Tvar, int **nbcode, int imx)
     printf("Problem with resultfile: %s\n", fileresprobcor);  {
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    
   }    int Ndum[20],ij=1, k, j, i, maxncov=19;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    int cptcode=0;
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    cptcoveff=0; 
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);   
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    for (k=0; k<maxncov; k++) Ndum[k]=0;
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    for (k=1; k<=7; k++) ncodemax[k]=0;
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);  
      for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   fprintf(ficresprob,"# Age");                                 modality*/ 
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   fprintf(ficresprobcov,"# Age");        Ndum[ij]++; /*store the modality */
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   fprintf(ficresprobcov,"# Age");        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                                          Tvar[j]. If V=sex and male is 0 and 
                                          female is 1, then  cptcode=1.*/
   for(i=1; i<=nlstate;i++)      }
     for(j=1; j<=(nlstate+ndeath);j++){  
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      for (i=0; i<=cptcode; i++) {
       fprintf(ficresprobcov," p%1d-%1d ",i,j);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       fprintf(ficresprobcor," p%1d-%1d ",i,j);      }
     }    
   fprintf(ficresprob,"\n");      ij=1; 
   fprintf(ficresprobcov,"\n");      for (i=1; i<=ncodemax[j]; i++) {
   fprintf(ficresprobcor,"\n");        for (k=0; k<= maxncov; k++) {
   xp=vector(1,npar);          if (Ndum[k] != 0) {
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);            nbcode[Tvar[j]][ij]=k; 
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);            
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);            ij++;
   first=1;          }
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          if (ij > ncodemax[j]) break; 
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);        }  
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);      } 
     exit(0);    }  
   }  
   else{   for (k=0; k< maxncov; k++) Ndum[k]=0;
     fprintf(ficgp,"\n# Routine varprob");  
   }   for (i=1; i<=ncovmodel-2; i++) { 
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
     printf("Problem with html file: %s\n", optionfilehtm);     ij=Tvar[i];
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);     Ndum[ij]++;
     exit(0);   }
   }  
   else{   ij=1;
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");   for (i=1; i<= maxncov; i++) {
     fprintf(fichtm,"\n");     if((Ndum[i]!=0) && (i<=ncovcol)){
        Tvaraff[ij]=i; /*For printing */
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");       ij++;
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");     }
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");   }
    
   }   cptcoveff=ij-1; /*Number of simple covariates*/
   }
    
   cov[1]=1;  /*********** Health Expectancies ****************/
   tj=cptcoveff;  
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
   j1=0;  
   for(t=1; t<=tj;t++){  {
     for(i1=1; i1<=ncodemax[t];i1++){    /* Health expectancies */
       j1++;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
          double age, agelim, hf;
       if  (cptcovn>0) {    double ***p3mat,***varhe;
         fprintf(ficresprob, "\n#********** Variable ");    double **dnewm,**doldm;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    double *xp;
         fprintf(ficresprob, "**********\n#");    double **gp, **gm;
         fprintf(ficresprobcov, "\n#********** Variable ");    double ***gradg, ***trgradg;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    int theta;
         fprintf(ficresprobcov, "**********\n#");  
            varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
         fprintf(ficgp, "\n#********** Variable ");    xp=vector(1,npar);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    dnewm=matrix(1,nlstate*nlstate,1,npar);
         fprintf(ficgp, "**********\n#");    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
            
            fprintf(ficreseij,"# Health expectancies\n");
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");    fprintf(ficreseij,"# Age");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    for(i=1; i<=nlstate;i++)
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");      for(j=1; j<=nlstate;j++)
                fprintf(ficreseij," %1d-%1d (SE)",i,j);
         fprintf(ficresprobcor, "\n#********** Variable ");        fprintf(ficreseij,"\n");
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  
         fprintf(ficgp, "**********\n#");        if(estepm < stepm){
       }      printf ("Problem %d lower than %d\n",estepm, stepm);
          }
       for (age=bage; age<=fage; age ++){    else  hstepm=estepm;   
         cov[2]=age;    /* We compute the life expectancy from trapezoids spaced every estepm months
         for (k=1; k<=cptcovn;k++) {     * This is mainly to measure the difference between two models: for example
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];     * if stepm=24 months pijx are given only every 2 years and by summing them
         }     * we are calculating an estimate of the Life Expectancy assuming a linear 
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];     * progression in between and thus overestimating or underestimating according
         for (k=1; k<=cptcovprod;k++)     * to the curvature of the survival function. If, for the same date, we 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];     * estimate the model with stepm=1 month, we can keep estepm to 24 months
             * to compare the new estimate of Life expectancy with the same linear 
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));     * hypothesis. A more precise result, taking into account a more precise
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);     * curvature will be obtained if estepm is as small as stepm. */
         gp=vector(1,(nlstate)*(nlstate+ndeath));  
         gm=vector(1,(nlstate)*(nlstate+ndeath));    /* For example we decided to compute the life expectancy with the smallest unit */
        /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         for(theta=1; theta <=npar; theta++){       nhstepm is the number of hstepm from age to agelim 
           for(i=1; i<=npar; i++)       nstepm is the number of stepm from age to agelin. 
             xp[i] = x[i] + (i==theta ?delti[theta]:0);       Look at hpijx to understand the reason of that which relies in memory size
                 and note for a fixed period like estepm months */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                 survival function given by stepm (the optimization length). Unfortunately it
           k=0;       means that if the survival funtion is printed only each two years of age and if
           for(i=1; i<= (nlstate); i++){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
             for(j=1; j<=(nlstate+ndeath);j++){       results. So we changed our mind and took the option of the best precision.
               k=k+1;    */
               gp[k]=pmmij[i][j];    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
             }  
           }    agelim=AGESUP;
              for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           for(i=1; i<=npar; i++)      /* nhstepm age range expressed in number of stepm */
             xp[i] = x[i] - (i==theta ?delti[theta]:0);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
          /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      /* if (stepm >= YEARM) hstepm=1;*/
           k=0;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           for(i=1; i<=(nlstate); i++){      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             for(j=1; j<=(nlstate+ndeath);j++){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
               k=k+1;      gp=matrix(0,nhstepm,1,nlstate*nlstate);
               gm[k]=pmmij[i][j];      gm=matrix(0,nhstepm,1,nlstate*nlstate);
             }  
           }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
               in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];     
         }  
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)  
           for(theta=1; theta <=npar; theta++)      /* Computing Variances of health expectancies */
             trgradg[j][theta]=gradg[theta][j];  
               for(theta=1; theta <=npar; theta++){
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);        for(i=1; i<=npar; i++){ 
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                }
         pmij(pmmij,cov,ncovmodel,x,nlstate);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
            
         k=0;        cptj=0;
         for(i=1; i<=(nlstate); i++){        for(j=1; j<= nlstate; j++){
           for(j=1; j<=(nlstate+ndeath);j++){          for(i=1; i<=nlstate; i++){
             k=k+1;            cptj=cptj+1;
             mu[k][(int) age]=pmmij[i][j];            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
           }              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
         }            }
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)          }
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)        }
             varpij[i][j][(int)age] = doldm[i][j];       
        
         /*printf("\n%d ",(int)age);        for(i=1; i<=npar; i++) 
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        
      }*/        cptj=0;
         for(j=1; j<= nlstate; j++){
         fprintf(ficresprob,"\n%d ",(int)age);          for(i=1;i<=nlstate;i++){
         fprintf(ficresprobcov,"\n%d ",(int)age);            cptj=cptj+1;
         fprintf(ficresprobcor,"\n%d ",(int)age);            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));            }
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          }
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);        }
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);        for(j=1; j<= nlstate*nlstate; j++)
         }          for(h=0; h<=nhstepm-1; h++){
         i=0;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         for (k=1; k<=(nlstate);k++){          }
           for (l=1; l<=(nlstate+ndeath);l++){       } 
             i=i++;     
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);  /* End theta */
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);  
             for (j=1; j<=i;j++){       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);  
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));       for(h=0; h<=nhstepm-1; h++)
             }        for(j=1; j<=nlstate*nlstate;j++)
           }          for(theta=1; theta <=npar; theta++)
         }/* end of loop for state */            trgradg[h][j][theta]=gradg[h][theta][j];
       } /* end of loop for age */       
   
       /* Confidence intervalle of pij  */       for(i=1;i<=nlstate*nlstate;i++)
       /*        for(j=1;j<=nlstate*nlstate;j++)
       fprintf(ficgp,"\nset noparametric;unset label");          varhe[i][j][(int)age] =0.;
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");  
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");       printf("%d|",(int)age);fflush(stdout);
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);       for(h=0;h<=nhstepm-1;h++){
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);        for(k=0;k<=nhstepm-1;k++){
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       */          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(i=1;i<=nlstate*nlstate;i++)
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/            for(j=1;j<=nlstate*nlstate;j++)
       first1=1;              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
       for (k2=1; k2<=(nlstate);k2++){        }
         for (l2=1; l2<=(nlstate+ndeath);l2++){      }
           if(l2==k2) continue;      /* Computing expectancies */
           j=(k2-1)*(nlstate+ndeath)+l2;      for(i=1; i<=nlstate;i++)
           for (k1=1; k1<=(nlstate);k1++){        for(j=1; j<=nlstate;j++)
             for (l1=1; l1<=(nlstate+ndeath);l1++){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
               if(l1==k1) continue;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
               i=(k1-1)*(nlstate+ndeath)+l1;            
               if(i<=j) continue;  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
               for (age=bage; age<=fage; age ++){  
                 if ((int)age %5==0){          }
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;  
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;      fprintf(ficreseij,"%3.0f",age );
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;      cptj=0;
                   mu1=mu[i][(int) age]/stepm*YEARM ;      for(i=1; i<=nlstate;i++)
                   mu2=mu[j][(int) age]/stepm*YEARM;        for(j=1; j<=nlstate;j++){
                   c12=cv12/sqrt(v1*v2);          cptj++;
                   /* Computing eigen value of matrix of covariance */          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;        }
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;      fprintf(ficreseij,"\n");
                   /* Eigen vectors */     
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
                   /*v21=sqrt(1.-v11*v11); *//* error */      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
                   v21=(lc1-v1)/cv12*v11;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
                   v12=-v21;      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
                   v22=v11;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   tnalp=v21/v11;    }
                   if(first1==1){    printf("\n");
                     first1=0;    fprintf(ficlog,"\n");
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);  
                   }    free_vector(xp,1,npar);
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
                   /*printf(fignu*/    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */  }
                   if(first==1){  
                     first=0;  /************ Variance ******************/
                     fprintf(ficgp,"\nset parametric;unset label");  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);  {
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    /* Variance of health expectancies */
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);    /* double **newm;*/
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);    double **dnewm,**doldm;
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    double **dnewmp,**doldmp;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    int i, j, nhstepm, hstepm, h, nstepm ;
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    int k, cptcode;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    double *xp;
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    double **gp, **gm;  /* for var eij */
                   }else{    double ***gradg, ***trgradg; /*for var eij */
                     first=0;    double **gradgp, **trgradgp; /* for var p point j */
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    double *gpp, *gmp; /* for var p point j */
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    double ***p3mat;
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    double age,agelim, hf;
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));    double ***mobaverage;
                   }/* if first */    int theta;
                 } /* age mod 5 */    char digit[4];
               } /* end loop age */    char digitp[25];
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);  
               first=1;    char fileresprobmorprev[FILENAMELENGTH];
             } /*l12 */  
           } /* k12 */    if(popbased==1){
         } /*l1 */      if(mobilav!=0)
       }/* k1 */        strcpy(digitp,"-populbased-mobilav-");
     } /* loop covariates */      else strcpy(digitp,"-populbased-nomobil-");
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    }
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    else 
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      strcpy(digitp,"-stablbased-");
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);  
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    if (mobilav!=0) {
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   free_vector(xp,1,npar);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   fclose(ficresprob);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   fclose(ficresprobcov);      }
   fclose(ficresprobcor);    }
   fclose(ficgp);  
   fclose(fichtm);    strcpy(fileresprobmorprev,"prmorprev"); 
 }    sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
 /******************* Printing html file ***********/    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    strcat(fileresprobmorprev,fileres);
                   int lastpass, int stepm, int weightopt, char model[],\    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\      printf("Problem with resultfile: %s\n", fileresprobmorprev);
                   int popforecast, int estepm ,\      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
                   double jprev1, double mprev1,double anprev1, \    }
                   double jprev2, double mprev2,double anprev2){    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   int jj1, k1, i1, cpt;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   /*char optionfilehtm[FILENAMELENGTH];*/    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     printf("Problem with %s \n",optionfilehtm), exit(0);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);      fprintf(ficresprobmorprev," p.%-d SE",j);
   }      for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n    }  
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n    fprintf(ficresprobmorprev,"\n");
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    fprintf(ficgp,"\n# Routine varevsij");
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
  - Life expectancies by age and initial health status (estepm=%2d months):    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
    <a href=\"e%s\">e%s</a> <br>\n</li>", \  /*   } */
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
     fprintf(ficresvij,"# Age");
  m=cptcoveff;    for(i=1; i<=nlstate;i++)
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
  jj1=0;    fprintf(ficresvij,"\n");
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){    xp=vector(1,npar);
      jj1++;    dnewm=matrix(1,nlstate,1,npar);
      if (cptcovn > 0) {    doldm=matrix(1,nlstate,1,nlstate);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
        for (cpt=1; cpt<=cptcoveff;cpt++)    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
      }    gpp=vector(nlstate+1,nlstate+ndeath);
      /* Pij */    gmp=vector(nlstate+1,nlstate+ndeath);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        
      /* Quasi-incidences */    if(estepm < stepm){
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>      printf ("Problem %d lower than %d\n",estepm, stepm);
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    }
        /* Stable prevalence in each health state */    else  hstepm=estepm;   
        for(cpt=1; cpt<nlstate;cpt++){    /* For example we decided to compute the life expectancy with the smallest unit */
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);       nhstepm is the number of hstepm from age to agelim 
        }       nstepm is the number of stepm from age to agelin. 
      for(cpt=1; cpt<=nlstate;cpt++) {       Look at hpijx to understand the reason of that which relies in memory size
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>       and note for a fixed period like k years */
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
      }       survival function given by stepm (the optimization length). Unfortunately it
      fprintf(fichtm,"\n<br>- Total life expectancy by age and       means that if the survival funtion is printed every two years of age and if
 health expectancies in states (1) and (2): e%s%d.png<br>       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);       results. So we changed our mind and took the option of the best precision.
    } /* end i1 */    */
  }/* End k1 */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
  fprintf(fichtm,"</ul>");    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n      gp=matrix(0,nhstepm,1,nlstate);
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n      gm=matrix(0,nhstepm,1,nlstate);
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n  
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n  
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);      for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
  if(popforecast==1) fprintf(fichtm,"\n          xp[i] = x[i] + (i==theta ?delti[theta]:0);
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n        }
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         <br>",fileres,fileres,fileres,fileres);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
  else  
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);        if (popbased==1) {
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
  m=cptcoveff;              prlim[i][i]=probs[(int)age][i][ij];
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
  jj1=0;              prlim[i][i]=mobaverage[(int)age][i][ij];
  for(k1=1; k1<=m;k1++){          }
    for(i1=1; i1<=ncodemax[k1];i1++){        }
      jj1++;    
      if (cptcovn > 0) {        for(j=1; j<= nlstate; j++){
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          for(h=0; h<=nhstepm; h++){
        for (cpt=1; cpt<=cptcoveff;cpt++)            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          }
      }        }
      for(cpt=1; cpt<=nlstate;cpt++) {        /* This for computing probability of death (h=1 means
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident           computed over hstepm matrices product = hstepm*stepm months) 
 interval) in state (%d): v%s%d%d.png <br>           as a weighted average of prlim.
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          */
      }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
    } /* end i1 */          for(i=1,gpp[j]=0.; i<= nlstate; i++)
  }/* End k1 */            gpp[j] += prlim[i][i]*p3mat[i][j][1];
  fprintf(fichtm,"</ul>");        }    
 fclose(fichtm);        /* end probability of death */
 }  
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 /******************* Gnuplot file **************/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;   
   int ng;        if (popbased==1) {
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          if(mobilav ==0){
     printf("Problem with file %s",optionfilegnuplot);            for(i=1; i<=nlstate;i++)
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);              prlim[i][i]=probs[(int)age][i][ij];
   }          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
 #ifdef windows              prlim[i][i]=mobaverage[(int)age][i][ij];
     fprintf(ficgp,"cd \"%s\" \n",pathc);          }
 #endif        }
 m=pow(2,cptcoveff);  
          for(j=1; j<= nlstate; j++){
  /* 1eme*/          for(h=0; h<=nhstepm; h++){
   for (cpt=1; cpt<= nlstate ; cpt ++) {            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
    for (k1=1; k1<= m ; k1 ++) {              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
 #ifdef windows        }
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        /* This for computing probability of death (h=1 means
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);           computed over hstepm matrices product = hstepm*stepm months) 
 #endif           as a weighted average of prlim.
 #ifdef unix        */
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
 #endif           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
 for (i=1; i<= nlstate ; i ++) {        /* end probability of death */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(j=1; j<= nlstate; j++) /* vareij */
 }          for(h=0; h<=nhstepm; h++){
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     for (i=1; i<= nlstate ; i ++) {          }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        }
      for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      } /* End theta */
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }        trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  
 #ifdef unix      for(h=0; h<=nhstepm; h++) /* veij */
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");        for(j=1; j<=nlstate;j++)
 #endif          for(theta=1; theta <=npar; theta++)
    }            trgradg[h][j][theta]=gradg[h][theta][j];
   }  
   /*2 eme*/      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
   for (k1=1; k1<= m ; k1 ++) {          trgradgp[j][theta]=gradgp[theta][j];
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);  
          hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     for (i=1; i<= nlstate+1 ; i ++) {      for(i=1;i<=nlstate;i++)
       k=2*i;        for(j=1;j<=nlstate;j++)
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          vareij[i][j][(int)age] =0.;
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      for(h=0;h<=nhstepm;h++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(k=0;k<=nhstepm;k++){
 }            matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          for(i=1;i<=nlstate;i++)
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            for(j=1;j<=nlstate;j++)
       for (j=1; j<= nlstate+1 ; j ++) {              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        }
         else fprintf(ficgp," \%%*lf (\%%*lf)");      }
 }      
       fprintf(ficgp,"\" t\"\" w l 0,");      /* pptj */
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       for (j=1; j<= nlstate+1 ; j ++) {      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(i=nlstate+1;i<=nlstate+ndeath;i++)
 }            varppt[j][i]=doldmp[j][i];
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      /* end ppptj */
       else fprintf(ficgp,"\" t\"\" w l 0,");      /*  x centered again */
     }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   }      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     
   /*3eme*/      if (popbased==1) {
         if(mobilav ==0){
   for (k1=1; k1<= m ; k1 ++) {          for(i=1; i<=nlstate;i++)
     for (cpt=1; cpt<= nlstate ; cpt ++) {            prlim[i][i]=probs[(int)age][i][ij];
       k=2+nlstate*(2*cpt-2);        }else{ /* mobilav */ 
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          for(i=1; i<=nlstate;i++)
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);            prlim[i][i]=mobaverage[(int)age][i][ij];
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);        }
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      }
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);               
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      /* This for computing probability of death (h=1 means
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);         as a weighted average of prlim.
       */
 */      for(j=nlstate+1;j<=nlstate+ndeath;j++){
       for (i=1; i< nlstate ; i ++) {        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       }      /* end probability of death */
     }  
   }      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
        for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   /* CV preval stat */        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
     for (k1=1; k1<= m ; k1 ++) {        for(i=1; i<=nlstate;i++){
     for (cpt=1; cpt<nlstate ; cpt ++) {          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
       k=3;        }
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      } 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);      fprintf(ficresprobmorprev,"\n");
   
       for (i=1; i< nlstate ; i ++)      fprintf(ficresvij,"%.0f ",age );
         fprintf(ficgp,"+$%d",k+i+1);      for(i=1; i<=nlstate;i++)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        for(j=1; j<=nlstate;j++){
                fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
       l=3+(nlstate+ndeath)*cpt;        }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      fprintf(ficresvij,"\n");
       for (i=1; i< nlstate ; i ++) {      free_matrix(gp,0,nhstepm,1,nlstate);
         l=3+(nlstate+ndeath)*cpt;      free_matrix(gm,0,nhstepm,1,nlstate);
         fprintf(ficgp,"+$%d",l+i+1);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }    } /* End age */
   }      free_vector(gpp,nlstate+1,nlstate+ndeath);
      free_vector(gmp,nlstate+1,nlstate+ndeath);
   /* proba elementaires */    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
    for(i=1,jk=1; i <=nlstate; i++){    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     for(k=1; k <=(nlstate+ndeath); k++){    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
       if (k != i) {    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
         for(j=1; j <=ncovmodel; j++){    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
           jk++;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
           fprintf(ficgp,"\n");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
         }    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
       }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
    }    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
      for(jk=1; jk <=m; jk++) {  */
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
        if (ng==2)    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");  
        else    free_vector(xp,1,npar);
          fprintf(ficgp,"\nset title \"Probability\"\n");    free_matrix(doldm,1,nlstate,1,nlstate);
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    free_matrix(dnewm,1,nlstate,1,npar);
        i=1;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
        for(k2=1; k2<=nlstate; k2++) {    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
          k3=i;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
          for(k=1; k<=(nlstate+ndeath); k++) {    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
            if (k != k2){    fclose(ficresprobmorprev);
              if(ng==2)    fflush(ficgp);
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);    fflush(fichtm); 
              else  }  /* end varevsij */
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  
              ij=1;  /************ Variance of prevlim ******************/
              for(j=3; j <=ncovmodel; j++) {  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  {
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    /* Variance of prevalence limit */
                  ij++;    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
                }    double **newm;
                else    double **dnewm,**doldm;
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    int i, j, nhstepm, hstepm;
              }    int k, cptcode;
              fprintf(ficgp,")/(1");    double *xp;
                  double *gp, *gm;
              for(k1=1; k1 <=nlstate; k1++){      double **gradg, **trgradg;
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    double age,agelim;
                ij=1;    int theta;
                for(j=3; j <=ncovmodel; j++){     
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    fprintf(ficresvpl,"# Age");
                    ij++;    for(i=1; i<=nlstate;i++)
                  }        fprintf(ficresvpl," %1d-%1d",i,i);
                  else    fprintf(ficresvpl,"\n");
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
                }    xp=vector(1,npar);
                fprintf(ficgp,")");    dnewm=matrix(1,nlstate,1,npar);
              }    doldm=matrix(1,nlstate,1,nlstate);
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    hstepm=1*YEARM; /* Every year of age */
              i=i+ncovmodel;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
            }    agelim = AGESUP;
          } /* end k */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        } /* end k2 */      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
      } /* end jk */      if (stepm >= YEARM) hstepm=1;
    } /* end ng */      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
    fclose(ficgp);      gradg=matrix(1,npar,1,nlstate);
 }  /* end gnuplot */      gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
 /*************** Moving average **************/      for(theta=1; theta <=npar; theta++){
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){        for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   int i, cpt, cptcod;        }
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       for (i=1; i<=nlstate;i++)        for(i=1;i<=nlstate;i++)
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)          gp[i] = prlim[i][i];
           mobaverage[(int)agedeb][i][cptcod]=0.;      
            for(i=1; i<=npar; i++) /* Computes gradient */
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       for (i=1; i<=nlstate;i++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        for(i=1;i<=nlstate;i++)
           for (cpt=0;cpt<=4;cpt++){          gm[i] = prlim[i][i];
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];  
           }        for(i=1;i<=nlstate;i++)
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
         }      } /* End theta */
       }  
     }      trgradg =matrix(1,nlstate,1,npar);
      
 }      for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
 /************** Forecasting ******************/  
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){      for(i=1;i<=nlstate;i++)
          varpl[i][(int)age] =0.;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   int *popage;      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      for(i=1;i<=nlstate;i++)
   double *popeffectif,*popcount;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   double ***p3mat;  
   char fileresf[FILENAMELENGTH];      fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
  agelim=AGESUP;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      free_vector(gm,1,nlstate);
        free_matrix(gradg,1,npar,1,nlstate);
        free_matrix(trgradg,1,nlstate,1,npar);
   strcpy(fileresf,"f");    } /* End age */
   strcat(fileresf,fileres);  
   if((ficresf=fopen(fileresf,"w"))==NULL) {    free_vector(xp,1,npar);
     printf("Problem with forecast resultfile: %s\n", fileresf);    free_matrix(doldm,1,nlstate,1,npar);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    free_matrix(dnewm,1,nlstate,1,nlstate);
   }  
   printf("Computing forecasting: result on file '%s' \n", fileresf);  }
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);  
   /************ Variance of one-step probabilities  ******************/
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
   if (mobilav==1) {    int i, j=0,  i1, k1, l1, t, tj;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    int k2, l2, j1,  z1;
     movingaverage(agedeb, fage, ageminpar, mobaverage);    int k=0,l, cptcode;
   }    int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double **dnewm,**doldm;
   if (stepm<=12) stepsize=1;    double *xp;
      double *gp, *gm;
   agelim=AGESUP;    double **gradg, **trgradg;
      double **mu;
   hstepm=1;    double age,agelim, cov[NCOVMAX];
   hstepm=hstepm/stepm;    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   yp1=modf(dateintmean,&yp);    int theta;
   anprojmean=yp;    char fileresprob[FILENAMELENGTH];
   yp2=modf((yp1*12),&yp);    char fileresprobcov[FILENAMELENGTH];
   mprojmean=yp;    char fileresprobcor[FILENAMELENGTH];
   yp1=modf((yp2*30.5),&yp);  
   jprojmean=yp;    double ***varpij;
   if(jprojmean==0) jprojmean=1;  
   if(mprojmean==0) jprojmean=1;    strcpy(fileresprob,"prob"); 
      strcat(fileresprob,fileres);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprob);
   for(cptcov=1;cptcov<=i2;cptcov++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    }
       k=k+1;    strcpy(fileresprobcov,"probcov"); 
       fprintf(ficresf,"\n#******");    strcat(fileresprobcov,fileres);
       for(j=1;j<=cptcoveff;j++) {    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf("Problem with resultfile: %s\n", fileresprobcov);
       }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficresf,"******\n");    }
       fprintf(ficresf,"# StartingAge FinalAge");    strcpy(fileresprobcor,"probcor"); 
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    strcat(fileresprobcor,fileres);
          if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
            printf("Problem with resultfile: %s\n", fileresprobcor);
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
         fprintf(ficresf,"\n");    }
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
           nhstepm = nhstepm/hstepm;    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
              fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
           oldm=oldms;savm=savms;    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficresprob,"# Age");
            fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
           for (h=0; h<=nhstepm; h++){    fprintf(ficresprobcov,"# Age");
             if (h==(int) (calagedate+YEARM*cpt)) {    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    fprintf(ficresprobcov,"# Age");
             }  
             for(j=1; j<=nlstate+ndeath;j++) {  
               kk1=0.;kk2=0;    for(i=1; i<=nlstate;i++)
               for(i=1; i<=nlstate;i++) {                    for(j=1; j<=(nlstate+ndeath);j++){
                 if (mobilav==1)        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        fprintf(ficresprobcov," p%1d-%1d ",i,j);
                 else {        fprintf(ficresprobcor," p%1d-%1d ",i,j);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      }  
                 }   /* fprintf(ficresprob,"\n");
                    fprintf(ficresprobcov,"\n");
               }    fprintf(ficresprobcor,"\n");
               if (h==(int)(calagedate+12*cpt)){   */
                 fprintf(ficresf," %.3f", kk1);   xp=vector(1,npar);
                            dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
               }    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
             }    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
           }    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    first=1;
         }    fprintf(ficgp,"\n# Routine varprob");
       }    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     }    fprintf(fichtm,"\n");
   }  
            fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Computing matrix of variance-covariance of step probabilities</a></h4></li>\n",optionfilehtmcov);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(fichtmcov,"\n<h4>Computing matrix of variance-covariance of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
   fclose(ficresf);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
 }  and drawn. It helps understanding how is the covariance between two incidences.\
 /************** Forecasting ******************/   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
    It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   int *popage;  standard deviations wide on each axis. <br>\
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   double *popeffectif,*popcount;   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   double ***p3mat,***tabpop,***tabpopprev;  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   char filerespop[FILENAMELENGTH];  
     cov[1]=1;
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    tj=cptcoveff;
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   agelim=AGESUP;    j1=0;
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    for(t=1; t<=tj;t++){
        for(i1=1; i1<=ncodemax[t];i1++){ 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        j1++;
          if  (cptcovn>0) {
            fprintf(ficresprob, "\n#********** Variable "); 
   strcpy(filerespop,"pop");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   strcat(filerespop,fileres);          fprintf(ficresprob, "**********\n#\n");
   if((ficrespop=fopen(filerespop,"w"))==NULL) {          fprintf(ficresprobcov, "\n#********** Variable "); 
     printf("Problem with forecast resultfile: %s\n", filerespop);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);          fprintf(ficresprobcov, "**********\n#\n");
   }          
   printf("Computing forecasting: result on file '%s' \n", filerespop);          fprintf(ficgp, "\n#********** Variable "); 
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          
           
   if (mobilav==1) {          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     movingaverage(agedeb, fage, ageminpar, mobaverage);          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   }          
           fprintf(ficresprobcor, "\n#********** Variable ");    
   stepsize=(int) (stepm+YEARM-1)/YEARM;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   if (stepm<=12) stepsize=1;          fprintf(ficresprobcor, "**********\n#");    
          }
   agelim=AGESUP;        
          for (age=bage; age<=fage; age ++){ 
   hstepm=1;          cov[2]=age;
   hstepm=hstepm/stepm;          for (k=1; k<=cptcovn;k++) {
              cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   if (popforecast==1) {          }
     if((ficpop=fopen(popfile,"r"))==NULL) {          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       printf("Problem with population file : %s\n",popfile);exit(0);          for (k=1; k<=cptcovprod;k++)
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     }          
     popage=ivector(0,AGESUP);          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     popeffectif=vector(0,AGESUP);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     popcount=vector(0,AGESUP);          gp=vector(1,(nlstate)*(nlstate+ndeath));
              gm=vector(1,(nlstate)*(nlstate+ndeath));
     i=1;        
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;          for(theta=1; theta <=npar; theta++){
                for(i=1; i<=npar; i++)
     imx=i;              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];            
   }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
   for(cptcov=1;cptcov<=i2;cptcov++){            k=0;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            for(i=1; i<= (nlstate); i++){
       k=k+1;              for(j=1; j<=(nlstate+ndeath);j++){
       fprintf(ficrespop,"\n#******");                k=k+1;
       for(j=1;j<=cptcoveff;j++) {                gp[k]=pmmij[i][j];
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              }
       }            }
       fprintf(ficrespop,"******\n");            
       fprintf(ficrespop,"# Age");            for(i=1; i<=npar; i++)
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       if (popforecast==1)  fprintf(ficrespop," [Population]");      
                  pmij(pmmij,cov,ncovmodel,xp,nlstate);
       for (cpt=0; cpt<=0;cpt++) {            k=0;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);              for(i=1; i<=(nlstate); i++){
                      for(j=1; j<=(nlstate+ndeath);j++){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){                k=k+1;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                gm[k]=pmmij[i][j];
           nhstepm = nhstepm/hstepm;              }
                      }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       
           oldm=oldms;savm=savms;            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
                  }
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            for(theta=1; theta <=npar; theta++)
             }              trgradg[j][theta]=gradg[theta][j];
             for(j=1; j<=nlstate+ndeath;j++) {          
               kk1=0.;kk2=0;          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
               for(i=1; i<=nlstate;i++) {                        matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
                 if (mobilav==1)          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
                 else {          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
                 }  
               }          pmij(pmmij,cov,ncovmodel,x,nlstate);
               if (h==(int)(calagedate+12*cpt)){          
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;          k=0;
                   /*fprintf(ficrespop," %.3f", kk1);          for(i=1; i<=(nlstate); i++){
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/            for(j=1; j<=(nlstate+ndeath);j++){
               }              k=k+1;
             }              mu[k][(int) age]=pmmij[i][j];
             for(i=1; i<=nlstate;i++){            }
               kk1=0.;          }
                 for(j=1; j<=nlstate;j++){          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                 }              varpij[i][j][(int)age] = doldm[i][j];
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];  
             }          /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
           }            }*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }          fprintf(ficresprob,"\n%d ",(int)age);
       }          fprintf(ficresprobcov,"\n%d ",(int)age);
            fprintf(ficresprobcor,"\n%d ",(int)age);
   /******/  
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           nhstepm = nhstepm/hstepm;          }
                    i=0;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (k=1; k<=(nlstate);k++){
           oldm=oldms;savm=savms;            for (l=1; l<=(nlstate+ndeath);l++){ 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                i=i++;
           for (h=0; h<=nhstepm; h++){              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
             if (h==(int) (calagedate+YEARM*cpt)) {              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);              for (j=1; j<=i;j++){
             }                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
             for(j=1; j<=nlstate+ndeath;j++) {                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               kk1=0.;kk2=0;              }
               for(i=1; i<=nlstate;i++) {                          }
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];              }/* end of loop for state */
               }        } /* end of loop for age */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);  
             }        /* Confidence intervalle of pij  */
           }        /*
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficgp,"\nset noparametric;unset label");
         }          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
       }          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
    }          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   }          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
            fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   if (popforecast==1) {  
     free_ivector(popage,0,AGESUP);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
     free_vector(popeffectif,0,AGESUP);        first1=1;
     free_vector(popcount,0,AGESUP);        for (k2=1; k2<=(nlstate);k2++){
   }          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            if(l2==k2) continue;
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            j=(k2-1)*(nlstate+ndeath)+l2;
   fclose(ficrespop);            for (k1=1; k1<=(nlstate);k1++){
 }              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
 /***********************************************/                i=(k1-1)*(nlstate+ndeath)+l1;
 /**************** Main Program *****************/                if(i<=j) continue;
 /***********************************************/                for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
 int main(int argc, char *argv[])                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
 {                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;                    mu1=mu[i][(int) age]/stepm*YEARM ;
   double agedeb, agefin,hf;                    mu2=mu[j][(int) age]/stepm*YEARM;
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;                    c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
   double fret;                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   double **xi,tmp,delta;                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
   double dum; /* Dummy variable */                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   double ***p3mat;                    /*v21=sqrt(1.-v11*v11); *//* error */
   int *indx;                    v21=(lc1-v1)/cv12*v11;
   char line[MAXLINE], linepar[MAXLINE];                    v12=-v21;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];                    v22=v11;
   int firstobs=1, lastobs=10;                    tnalp=v21/v11;
   int sdeb, sfin; /* Status at beginning and end */                    if(first1==1){
   int c,  h , cpt,l;                      first1=0;
   int ju,jl, mi;                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;                    }
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   int mobilav=0,popforecast=0;                    /*printf(fignu*/
   int hstepm, nhstepm;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
   double bage, fage, age, agelim, agebase;                      first=0;
   double ftolpl=FTOL;                      fprintf(ficgp,"\nset parametric;unset label");
   double **prlim;                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   double *severity;                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   double ***param; /* Matrix of parameters */                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   double  *p;   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   double **matcov; /* Matrix of covariance */  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   double ***delti3; /* Scale */                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   double *delti; /* Scale */                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   double ***eij, ***vareij;                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   double **varpl; /* Variances of prevalence limits by age */                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   double *epj, vepp;                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   double kk1, kk2;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                        fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   char *alph[]={"a","a","b","c","d","e"}, str[4];                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
   char z[1]="c", occ;                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
 #include <sys/time.h>                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 #include <time.h>                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                                mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   /* long total_usecs;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   struct timeval start_time, end_time;                    }/* if first */
                    } /* age mod 5 */
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */                } /* end loop age */
   getcwd(pathcd, size);                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
   printf("\n%s",version);              } /*l12 */
   if(argc <=1){            } /* k12 */
     printf("\nEnter the parameter file name: ");          } /*l1 */
     scanf("%s",pathtot);        }/* k1 */
   }      } /* loop covariates */
   else{    }
     strcpy(pathtot,argv[1]);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   }    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    free_vector(xp,1,npar);
   /*cygwin_split_path(pathtot,path,optionfile);    fclose(ficresprob);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    fclose(ficresprobcov);
   /* cutv(path,optionfile,pathtot,'\\');*/    fclose(ficresprobcor);
     fflush(ficgp);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    fflush(fichtmcov);
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  }
   chdir(path);  
   replace(pathc,path);  
   /******************* Printing html file ***********/
 /*-------- arguments in the command line --------*/  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
   /* Log file */                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   strcat(filelog, optionfilefiname);                    int popforecast, int estepm ,\
   strcat(filelog,".log");    /* */                    double jprev1, double mprev1,double anprev1, \
   if((ficlog=fopen(filelog,"w"))==NULL)    {                    double jprev2, double mprev2,double anprev2){
     printf("Problem with logfile %s\n",filelog);    int jj1, k1, i1, cpt;
     goto end;    /*char optionfilehtm[FILENAMELENGTH];*/
   }  /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
   fprintf(ficlog,"Log filename:%s\n",filelog);  /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
   fprintf(ficlog,"\n%s",version);  /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
   fprintf(ficlog,"\nEnter the parameter file name: ");  /*   } */
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  
   fflush(ficlog);     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
   /* */   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
   strcpy(fileres,"r");   - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
   strcat(fileres, optionfilefiname);   - Life expectancies by age and initial health status (estepm=%2d months): \
   strcat(fileres,".txt");    /* Other files have txt extension */     <a href=\"%s\">%s</a> <br>\n</li>", \
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
   /*---------arguments file --------*/             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
   if((ficpar=fopen(optionfile,"r"))==NULL)    {             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
     printf("Problem with optionfile %s\n",optionfile);  
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
     goto end;  
   }   m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   strcpy(filereso,"o");  
   strcat(filereso,fileres);   jj1=0;
   if((ficparo=fopen(filereso,"w"))==NULL) {   for(k1=1; k1<=m;k1++){
     printf("Problem with Output resultfile: %s\n", filereso);     for(i1=1; i1<=ncodemax[k1];i1++){
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);       jj1++;
     goto end;       if (cptcovn > 0) {
   }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
   /* Reads comments: lines beginning with '#' */           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   while((c=getc(ficpar))=='#' && c!= EOF){         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     ungetc(c,ficpar);       }
     fgets(line, MAXLINE, ficpar);       /* Pij */
     puts(line);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
     fputs(line,ficparo);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
   }       /* Quasi-incidences */
   ungetc(c,ficpar);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);         /* Stable prevalence in each health state */
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);         for(cpt=1; cpt<nlstate;cpt++){
 while((c=getc(ficpar))=='#' && c!= EOF){           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
     ungetc(c,ficpar);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     fgets(line, MAXLINE, ficpar);         }
     puts(line);       for(cpt=1; cpt<=nlstate;cpt++) {
     fputs(line,ficparo);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   }  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   ungetc(c,ficpar);       }
         fprintf(fichtm,"\n<br>- Total life expectancy by age and \
      health expectancies in states (1) and (2): %s%d.png<br>\
   covar=matrix(0,NCOVMAX,1,n);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   cptcovn=0;     } /* end i1 */
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;   }/* End k1 */
    fprintf(fichtm,"</ul>");
   ncovmodel=2+cptcovn;  
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  
     fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
   /* Read guess parameters */   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
   /* Reads comments: lines beginning with '#' */   - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
   while((c=getc(ficpar))=='#' && c!= EOF){   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
     ungetc(c,ficpar);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
     fgets(line, MAXLINE, ficpar);   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
     puts(line);   - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
     fputs(line,ficparo);   - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
   }           rfileres,rfileres,\
   ungetc(c,ficpar);           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
             subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
     for(i=1; i <=nlstate; i++)           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
     for(j=1; j <=nlstate+ndeath-1; j++){           subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
       fscanf(ficpar,"%1d%1d",&i1,&j1);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
       fprintf(ficparo,"%1d%1d",i1,j1);  
       if(mle==1)  /*  if(popforecast==1) fprintf(fichtm,"\n */
         printf("%1d%1d",i,j);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
       fprintf(ficlog,"%1d%1d",i,j);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
       for(k=1; k<=ncovmodel;k++){  /*      <br>",fileres,fileres,fileres,fileres); */
         fscanf(ficpar," %lf",&param[i][j][k]);  /*  else  */
         if(mle==1){  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
           printf(" %lf",param[i][j][k]);  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
           fprintf(ficlog," %lf",param[i][j][k]);  
         }   m=cptcoveff;
         else   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
           fprintf(ficlog," %lf",param[i][j][k]);  
         fprintf(ficparo," %lf",param[i][j][k]);   jj1=0;
       }   for(k1=1; k1<=m;k1++){
       fscanf(ficpar,"\n");     for(i1=1; i1<=ncodemax[k1];i1++){
       if(mle==1)       jj1++;
         printf("\n");       if (cptcovn > 0) {
       fprintf(ficlog,"\n");         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
       fprintf(ficparo,"\n");         for (cpt=1; cpt<=cptcoveff;cpt++) 
     }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;       }
        for(cpt=1; cpt<=nlstate;cpt++) {
   p=param[1][1];         fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
    interval) in state (%d): %s%d%d.png <br>\
   /* Reads comments: lines beginning with '#' */  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   while((c=getc(ficpar))=='#' && c!= EOF){       }
     ungetc(c,ficpar);     } /* end i1 */
     fgets(line, MAXLINE, ficpar);   }/* End k1 */
     puts(line);   fprintf(fichtm,"</ul>");
     fputs(line,ficparo);   fflush(fichtm);
   }  }
   ungetc(c,ficpar);  
   /******************* Gnuplot file **************/
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  
   for(i=1; i <=nlstate; i++){    char dirfileres[132],optfileres[132];
     for(j=1; j <=nlstate+ndeath-1; j++){    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    int ng;
       printf("%1d%1d",i,j);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
       fprintf(ficparo,"%1d%1d",i1,j1);  /*     printf("Problem with file %s",optionfilegnuplot); */
       for(k=1; k<=ncovmodel;k++){  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
         fscanf(ficpar,"%le",&delti3[i][j][k]);  /*   } */
         printf(" %le",delti3[i][j][k]);  
         fprintf(ficparo," %le",delti3[i][j][k]);    /*#ifdef windows */
       }    fprintf(ficgp,"cd \"%s\" \n",pathc);
       fscanf(ficpar,"\n");      /*#endif */
       printf("\n");    m=pow(2,cptcoveff);
       fprintf(ficparo,"\n");  
     }    strcpy(dirfileres,optionfilefiname);
   }    strcpy(optfileres,"vpl");
   delti=delti3[1][1];   /* 1eme*/
      for (cpt=1; cpt<= nlstate ; cpt ++) {
   /* Reads comments: lines beginning with '#' */     for (k1=1; k1<= m ; k1 ++) {
   while((c=getc(ficpar))=='#' && c!= EOF){       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
     ungetc(c,ficpar);       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
     fgets(line, MAXLINE, ficpar);       fprintf(ficgp,"set xlabel \"Age\" \n\
     puts(line);  set ylabel \"Probability\" \n\
     fputs(line,ficparo);  set ter png small\n\
   }  set size 0.65,0.65\n\
   ungetc(c,ficpar);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
    
   matcov=matrix(1,npar,1,npar);       for (i=1; i<= nlstate ; i ++) {
   for(i=1; i <=npar; i++){         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     fscanf(ficpar,"%s",&str);         else fprintf(ficgp," \%%*lf (\%%*lf)");
     if(mle==1)       }
       printf("%s",str);       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
     fprintf(ficlog,"%s",str);       for (i=1; i<= nlstate ; i ++) {
     fprintf(ficparo,"%s",str);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     for(j=1; j <=i; j++){         else fprintf(ficgp," \%%*lf (\%%*lf)");
       fscanf(ficpar," %le",&matcov[i][j]);       } 
       if(mle==1){       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
         printf(" %.5le",matcov[i][j]);       for (i=1; i<= nlstate ; i ++) {
         fprintf(ficlog," %.5le",matcov[i][j]);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
       }         else fprintf(ficgp," \%%*lf (\%%*lf)");
       else       }  
         fprintf(ficlog," %.5le",matcov[i][j]);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
       fprintf(ficparo," %.5le",matcov[i][j]);     }
     }    }
     fscanf(ficpar,"\n");    /*2 eme*/
     if(mle==1)    
       printf("\n");    for (k1=1; k1<= m ; k1 ++) { 
     fprintf(ficlog,"\n");      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
     fprintf(ficparo,"\n");      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   }      
   for(i=1; i <=npar; i++)      for (i=1; i<= nlstate+1 ; i ++) {
     for(j=i+1;j<=npar;j++)        k=2*i;
       matcov[i][j]=matcov[j][i];        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
            for (j=1; j<= nlstate+1 ; j ++) {
   if(mle==1)          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     printf("\n");          else fprintf(ficgp," \%%*lf (\%%*lf)");
   fprintf(ficlog,"\n");        }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
     /*-------- Rewriting paramater file ----------*/        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
      strcpy(rfileres,"r");    /* "Rparameterfile */        for (j=1; j<= nlstate+1 ; j ++) {
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
      strcat(rfileres,".");    /* */          else fprintf(ficgp," \%%*lf (\%%*lf)");
      strcat(rfileres,optionfilext);    /* Other files have txt extension */        }   
     if((ficres =fopen(rfileres,"w"))==NULL) {        fprintf(ficgp,"\" t\"\" w l 0,");
       printf("Problem writing new parameter file: %s\n", fileres);goto end;        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;        for (j=1; j<= nlstate+1 ; j ++) {
     }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     fprintf(ficres,"#%s\n",version);          else fprintf(ficgp," \%%*lf (\%%*lf)");
            }   
     /*-------- data file ----------*/        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
     if((fic=fopen(datafile,"r"))==NULL)    {        else fprintf(ficgp,"\" t\"\" w l 0,");
       printf("Problem with datafile: %s\n", datafile);goto end;      }
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;    }
     }    
     /*3eme*/
     n= lastobs;    
     severity = vector(1,maxwav);    for (k1=1; k1<= m ; k1 ++) { 
     outcome=imatrix(1,maxwav+1,1,n);      for (cpt=1; cpt<= nlstate ; cpt ++) {
     num=ivector(1,n);        k=2+nlstate*(2*cpt-2);
     moisnais=vector(1,n);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
     annais=vector(1,n);        fprintf(ficgp,"set ter png small\n\
     moisdc=vector(1,n);  set size 0.65,0.65\n\
     andc=vector(1,n);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
     agedc=vector(1,n);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     cod=ivector(1,n);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     weight=vector(1,n);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     mint=matrix(1,maxwav,1,n);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     anint=matrix(1,maxwav,1,n);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     s=imatrix(1,maxwav+1,1,n);          
     adl=imatrix(1,maxwav+1,1,n);            */
     tab=ivector(1,NCOVMAX);        for (i=1; i< nlstate ; i ++) {
     ncodemax=ivector(1,8);          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
     i=1;        } 
     while (fgets(line, MAXLINE, fic) != NULL)    {      }
       if ((i >= firstobs) && (i <=lastobs)) {    }
            
         for (j=maxwav;j>=1;j--){    /* CV preval stable (period) */
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    for (k1=1; k1<= m ; k1 ++) { 
           strcpy(line,stra);      for (cpt=1; cpt<=nlstate ; cpt ++) {
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        k=3;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         }        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
          set ter png small\nset size 0.65,0.65\n\
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  unset log y\n\
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        for (i=1; i< nlstate ; i ++)
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        
         for (j=ncovcol;j>=1;j--){        l=3+(nlstate+ndeath)*cpt;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         }        for (i=1; i< nlstate ; i ++) {
         num[i]=atol(stra);          l=3+(nlstate+ndeath)*cpt;
                  fprintf(ficgp,"+$%d",l+i+1);
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        }
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
         i=i+1;    }  
       }    
     }    /* proba elementaires */
     /* printf("ii=%d", ij);    for(i=1,jk=1; i <=nlstate; i++){
        scanf("%d",i);*/      for(k=1; k <=(nlstate+ndeath); k++){
   imx=i-1; /* Number of individuals */        if (k != i) {
           for(j=1; j <=ncovmodel; j++){
   /* for (i=1; i<=imx; i++){            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;            jk++; 
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;            fprintf(ficgp,"\n");
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          }
     }*/        }
    /*  for (i=1; i<=imx; i++){      }
      if (s[4][i]==9)  s[4][i]=-1;     }
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/  
       for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
         for(jk=1; jk <=m; jk++) {
   /* Calculation of the number of parameter from char model*/         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */         if (ng==2)
   Tprod=ivector(1,15);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
   Tvaraff=ivector(1,15);         else
   Tvard=imatrix(1,15,1,2);           fprintf(ficgp,"\nset title \"Probability\"\n");
   Tage=ivector(1,15);               fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
             i=1;
   if (strlen(model) >1){         for(k2=1; k2<=nlstate; k2++) {
     j=0, j1=0, k1=1, k2=1;           k3=i;
     j=nbocc(model,'+');           for(k=1; k<=(nlstate+ndeath); k++) {
     j1=nbocc(model,'*');             if (k != k2){
     cptcovn=j+1;               if(ng==2)
     cptcovprod=j1;                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                   else
     strcpy(modelsav,model);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){               ij=1;
       printf("Error. Non available option model=%s ",model);               for(j=3; j <=ncovmodel; j++) {
       fprintf(ficlog,"Error. Non available option model=%s ",model);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       goto end;                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     }                   ij++;
                     }
     for(i=(j+1); i>=1;i--){                 else
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */               }
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/               fprintf(ficgp,")/(1");
       /*scanf("%d",i);*/               
       if (strchr(strb,'*')) {  /* Model includes a product */               for(k1=1; k1 <=nlstate; k1++){   
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
         if (strcmp(strc,"age")==0) { /* Vn*age */                 ij=1;
           cptcovprod--;                 for(j=3; j <=ncovmodel; j++){
           cutv(strb,stre,strd,'V');                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
           cptcovage++;                     ij++;
             Tage[cptcovage]=i;                   }
             /*printf("stre=%s ", stre);*/                   else
         }                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
         else if (strcmp(strd,"age")==0) { /* or age*Vn */                 }
           cptcovprod--;                 fprintf(ficgp,")");
           cutv(strb,stre,strc,'V');               }
           Tvar[i]=atoi(stre);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
           cptcovage++;               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
           Tage[cptcovage]=i;               i=i+ncovmodel;
         }             }
         else {  /* Age is not in the model */           } /* end k */
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/         } /* end k2 */
           Tvar[i]=ncovcol+k1;       } /* end jk */
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */     } /* end ng */
           Tprod[k1]=i;     fflush(ficgp); 
           Tvard[k1][1]=atoi(strc); /* m*/  }  /* end gnuplot */
           Tvard[k1][2]=atoi(stre); /* n */  
           Tvar[cptcovn+k2]=Tvard[k1][1];  
           Tvar[cptcovn+k2+1]=Tvard[k1][2];  /*************** Moving average **************/
           for (k=1; k<=lastobs;k++)  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  
           k1++;    int i, cpt, cptcod;
           k2=k2+2;    int modcovmax =1;
         }    int mobilavrange, mob;
       }    double age;
       else { /* no more sum */  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
        /*  scanf("%d",i);*/                             a covariate has 2 modalities */
       cutv(strd,strc,strb,'V');    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
       Tvar[i]=atoi(strc);  
       }    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       strcpy(modelsav,stra);        if(mobilav==1) mobilavrange=5; /* default */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      else mobilavrange=mobilav;
         scanf("%d",i);*/      for (age=bage; age<=fage; age++)
     } /* end of loop + */        for (i=1; i<=nlstate;i++)
   } /* end model */          for (cptcod=1;cptcod<=modcovmax;cptcod++)
              mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);      /* We keep the original values on the extreme ages bage, fage and for 
   printf("cptcovprod=%d ", cptcovprod);         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);         we use a 5 terms etc. until the borders are no more concerned. 
   scanf("%d ",i);*/      */ 
     fclose(fic);      for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
     /*  if(mle==1){*/          for (i=1; i<=nlstate;i++){
     if (weightopt != 1) { /* Maximisation without weights*/            for (cptcod=1;cptcod<=modcovmax;cptcod++){
       for(i=1;i<=n;i++) weight[i]=1.0;              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
     }                for (cpt=1;cpt<=(mob-1)/2;cpt++){
     /*-calculation of age at interview from date of interview and age at death -*/                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
     agev=matrix(1,maxwav,1,imx);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
     for (i=1; i<=imx; i++) {              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
       for(m=2; (m<= maxwav); m++) {            }
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){          }
          anint[m][i]=9999;        }/* end age */
          s[m][i]=-1;      }/* end mob */
        }    }else return -1;
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    return 0;
       }  }/* End movingaverage */
     }  
   
     for (i=1; i<=imx; i++)  {  /************** Forecasting ******************/
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
       for(m=1; (m<= maxwav); m++){    /* proj1, year, month, day of starting projection 
         if(s[m][i] >0){       agemin, agemax range of age
           if (s[m][i] >= nlstate+1) {       dateprev1 dateprev2 range of dates during which prevalence is computed
             if(agedc[i]>0)       anproj2 year of en of projection (same day and month as proj1).
               if(moisdc[i]!=99 && andc[i]!=9999)    */
                 agev[m][i]=agedc[i];    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    int *popage;
            else {    double agec; /* generic age */
               if (andc[i]!=9999){    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    double *popeffectif,*popcount;
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);    double ***p3mat;
               agev[m][i]=-1;    double ***mobaverage;
               }    char fileresf[FILENAMELENGTH];
             }  
           }    agelim=AGESUP;
           else if(s[m][i] !=9){ /* Should no more exist */    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);   
             if(mint[m][i]==99 || anint[m][i]==9999)    strcpy(fileresf,"f"); 
               agev[m][i]=1;    strcat(fileresf,fileres);
             else if(agev[m][i] <agemin){    if((ficresf=fopen(fileresf,"w"))==NULL) {
               agemin=agev[m][i];      printf("Problem with forecast resultfile: %s\n", fileresf);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
             }    }
             else if(agev[m][i] >agemax){    printf("Computing forecasting: result on file '%s' \n", fileresf);
               agemax=agev[m][i];    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  
             }    if (cptcoveff==0) ncodemax[cptcoveff]=1;
             /*agev[m][i]=anint[m][i]-annais[i];*/  
             /*   agev[m][i] = age[i]+2*m;*/    if (mobilav!=0) {
           }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           else { /* =9 */      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
             agev[m][i]=1;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
             s[m][i]=-1;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
           }      }
         }    }
         else /*= 0 Unknown */  
           agev[m][i]=1;    stepsize=(int) (stepm+YEARM-1)/YEARM;
       }    if (stepm<=12) stepsize=1;
        if(estepm < stepm){
     }      printf ("Problem %d lower than %d\n",estepm, stepm);
     for (i=1; i<=imx; i++)  {    }
       for(m=1; (m<= maxwav); m++){    else  hstepm=estepm;   
         if (s[m][i] > (nlstate+ndeath)) {  
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      hstepm=hstepm/stepm; 
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);      yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
           goto end;                                 fractional in yp1 */
         }    anprojmean=yp;
       }    yp2=modf((yp1*12),&yp);
     }    mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    jprojmean=yp;
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
     free_vector(severity,1,maxwav);  
     free_imatrix(outcome,1,maxwav+1,1,n);    i1=cptcoveff;
     free_vector(moisnais,1,n);    if (cptcovn < 1){i1=1;}
     free_vector(annais,1,n);    
     /* free_matrix(mint,1,maxwav,1,n);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
        free_matrix(anint,1,maxwav,1,n);*/    
     free_vector(moisdc,1,n);    fprintf(ficresf,"#****** Routine prevforecast **\n");
     free_vector(andc,1,n);  
   /*            if (h==(int)(YEARM*yearp)){ */
        for(cptcov=1, k=0;cptcov<=i1;cptcov++){
     wav=ivector(1,imx);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        k=k+1;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        fprintf(ficresf,"\n#******");
            for(j=1;j<=cptcoveff;j++) {
     /* Concatenates waves */          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
       Tcode=ivector(1,100);        for(j=1; j<=nlstate+ndeath;j++){ 
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);          for(i=1; i<=nlstate;i++)              
       ncodemax[1]=1;            fprintf(ficresf," p%d%d",i,j);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);          fprintf(ficresf," p.%d",j);
              }
    codtab=imatrix(1,100,1,10);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
    h=0;          fprintf(ficresf,"\n");
    m=pow(2,cptcoveff);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
    
    for(k=1;k<=cptcoveff; k++){          for (agec=fage; agec>=(ageminpar-1); agec--){ 
      for(i=1; i <=(m/pow(2,k));i++){            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
        for(j=1; j <= ncodemax[k]; j++){            nhstepm = nhstepm/hstepm; 
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            h++;            oldm=oldms;savm=savms;
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/          
          }            for (h=0; h<=nhstepm; h++){
        }              if (h*hstepm/YEARM*stepm ==yearp) {
      }                fprintf(ficresf,"\n");
    }                for(j=1;j<=cptcoveff;j++) 
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       codtab[1][2]=1;codtab[2][2]=2; */                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
    /* for(i=1; i <=m ;i++){              } 
       for(k=1; k <=cptcovn; k++){              for(j=1; j<=nlstate+ndeath;j++) {
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);                ppij=0.;
       }                for(i=1; i<=nlstate;i++) {
       printf("\n");                  if (mobilav==1) 
       }                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
       scanf("%d",i);*/                  else {
                        ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
    /* Calculates basic frequencies. Computes observed prevalence at single age                  }
        and prints on file fileres'p'. */                  if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                      }
                    } /* end i */
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                if (h*hstepm/YEARM*stepm==yearp) {
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                  fprintf(ficresf," %.3f", ppij);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                }
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              }/* end j */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            } /* end h */
                  free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     /* For Powell, parameters are in a vector p[] starting at p[1]          } /* end agec */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        } /* end yearp */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */      } /* end cptcod */
     } /* end  cptcov */
     if(mle==1){         
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  
        fclose(ficresf);
     /*--------- results files --------------*/  }
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  
    /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
    jk=1;    
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    int *popage;
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    double calagedatem, agelim, kk1, kk2;
    for(i=1,jk=1; i <=nlstate; i++){    double *popeffectif,*popcount;
      for(k=1; k <=(nlstate+ndeath); k++){    double ***p3mat,***tabpop,***tabpopprev;
        if (k != i)    double ***mobaverage;
          {    char filerespop[FILENAMELENGTH];
            printf("%d%d ",i,k);  
            fprintf(ficlog,"%d%d ",i,k);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
            fprintf(ficres,"%1d%1d ",i,k);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
            for(j=1; j <=ncovmodel; j++){    agelim=AGESUP;
              printf("%f ",p[jk]);    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
              fprintf(ficlog,"%f ",p[jk]);    
              fprintf(ficres,"%f ",p[jk]);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
              jk++;    
            }    
            printf("\n");    strcpy(filerespop,"pop"); 
            fprintf(ficlog,"\n");    strcat(filerespop,fileres);
            fprintf(ficres,"\n");    if((ficrespop=fopen(filerespop,"w"))==NULL) {
          }      printf("Problem with forecast resultfile: %s\n", filerespop);
      }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
    }    }
    if(mle==1){    printf("Computing forecasting: result on file '%s' \n", filerespop);
      /* Computing hessian and covariance matrix */    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
      ftolhess=ftol; /* Usually correct */  
      hesscov(matcov, p, npar, delti, ftolhess, func);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
    }  
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    if (mobilav!=0) {
    printf("# Scales (for hessian or gradient estimation)\n");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
    for(i=1,jk=1; i <=nlstate; i++){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
      for(j=1; j <=nlstate+ndeath; j++){        printf(" Error in movingaverage mobilav=%d\n",mobilav);
        if (j!=i) {      }
          fprintf(ficres,"%1d%1d",i,j);    }
          printf("%1d%1d",i,j);  
          fprintf(ficlog,"%1d%1d",i,j);    stepsize=(int) (stepm+YEARM-1)/YEARM;
          for(k=1; k<=ncovmodel;k++){    if (stepm<=12) stepsize=1;
            printf(" %.5e",delti[jk]);    
            fprintf(ficlog," %.5e",delti[jk]);    agelim=AGESUP;
            fprintf(ficres," %.5e",delti[jk]);    
            jk++;    hstepm=1;
          }    hstepm=hstepm/stepm; 
          printf("\n");    
          fprintf(ficlog,"\n");    if (popforecast==1) {
          fprintf(ficres,"\n");      if((ficpop=fopen(popfile,"r"))==NULL) {
        }        printf("Problem with population file : %s\n",popfile);exit(0);
      }        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
    }      } 
          popage=ivector(0,AGESUP);
    k=1;      popeffectif=vector(0,AGESUP);
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      popcount=vector(0,AGESUP);
    if(mle==1)      
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      i=1;   
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
    for(i=1;i<=npar;i++){     
      /*  if (k>nlstate) k=1;      imx=i;
          i1=(i-1)/(ncovmodel*nlstate)+1;      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    }
          printf("%s%d%d",alph[k],i1,tab[i]);*/  
      fprintf(ficres,"%3d",i);    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      if(mle==1)     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
        printf("%3d",i);        k=k+1;
      fprintf(ficlog,"%3d",i);        fprintf(ficrespop,"\n#******");
      for(j=1; j<=i;j++){        for(j=1;j<=cptcoveff;j++) {
        fprintf(ficres," %.5e",matcov[i][j]);          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
        if(mle==1)        }
          printf(" %.5e",matcov[i][j]);        fprintf(ficrespop,"******\n");
        fprintf(ficlog," %.5e",matcov[i][j]);        fprintf(ficrespop,"# Age");
      }        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
      fprintf(ficres,"\n");        if (popforecast==1)  fprintf(ficrespop," [Population]");
      if(mle==1)        
        printf("\n");        for (cpt=0; cpt<=0;cpt++) { 
      fprintf(ficlog,"\n");          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
      k++;          
    }          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
                nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
    while((c=getc(ficpar))=='#' && c!= EOF){            nhstepm = nhstepm/hstepm; 
      ungetc(c,ficpar);            
      fgets(line, MAXLINE, ficpar);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      puts(line);            oldm=oldms;savm=savms;
      fputs(line,ficparo);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
    }          
    ungetc(c,ficpar);            for (h=0; h<=nhstepm; h++){
    estepm=0;              if (h==(int) (calagedatem+YEARM*cpt)) {
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
    if (estepm==0 || estepm < stepm) estepm=stepm;              } 
    if (fage <= 2) {              for(j=1; j<=nlstate+ndeath;j++) {
      bage = ageminpar;                kk1=0.;kk2=0;
      fage = agemaxpar;                for(i=1; i<=nlstate;i++) {              
    }                  if (mobilav==1) 
                        kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");                  else {
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                  }
                    }
    while((c=getc(ficpar))=='#' && c!= EOF){                if (h==(int)(calagedatem+12*cpt)){
      ungetc(c,ficpar);                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
      fgets(line, MAXLINE, ficpar);                    /*fprintf(ficrespop," %.3f", kk1);
      puts(line);                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
      fputs(line,ficparo);                }
    }              }
    ungetc(c,ficpar);              for(i=1; i<=nlstate;i++){
                  kk1=0.;
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);                  for(j=1; j<=nlstate;j++){
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);                  }
                        tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
    while((c=getc(ficpar))=='#' && c!= EOF){              }
      ungetc(c,ficpar);  
      fgets(line, MAXLINE, ficpar);              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
      puts(line);                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
      fputs(line,ficparo);            }
    }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    ungetc(c,ficpar);          }
          }
    
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    /******/
    dateprev2=anprev2+mprev2/12.+jprev2/365.;  
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
   fscanf(ficpar,"pop_based=%d\n",&popbased);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
   fprintf(ficparo,"pop_based=%d\n",popbased);            for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   fprintf(ficres,"pop_based=%d\n",popbased);              nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
              nhstepm = nhstepm/hstepm; 
   while((c=getc(ficpar))=='#' && c!= EOF){            
     ungetc(c,ficpar);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fgets(line, MAXLINE, ficpar);            oldm=oldms;savm=savms;
     puts(line);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
     fputs(line,ficparo);            for (h=0; h<=nhstepm; h++){
   }              if (h==(int) (calagedatem+YEARM*cpt)) {
   ungetc(c,ficpar);                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);              for(j=1; j<=nlstate+ndeath;j++) {
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                kk1=0.;kk2=0;
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
 while((c=getc(ficpar))=='#' && c!= EOF){                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
     ungetc(c,ficpar);              }
     fgets(line, MAXLINE, ficpar);            }
     puts(line);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fputs(line,ficparo);          }
   }        }
   ungetc(c,ficpar);     } 
     }
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);   
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
     if (popforecast==1) {
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
 /*------------ gnuplot -------------*/      free_vector(popcount,0,AGESUP);
   strcpy(optionfilegnuplot,optionfilefiname);    }
   strcat(optionfilegnuplot,".gp");    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     printf("Problem with file %s",optionfilegnuplot);    fclose(ficrespop);
   }  } /* End of popforecast */
   fclose(ficgp);  
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);  int fileappend(FILE *fichier, char *optionfich)
 /*--------- index.htm --------*/  {
     if((fichier=fopen(optionfich,"a"))==NULL) {
   strcpy(optionfilehtm,optionfile);      printf("Problem with file: %s\n", optionfich);
   strcat(optionfilehtm,".htm");      fprintf(ficlog,"Problem with file: %s\n", optionfich);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      return (0);
     printf("Problem with %s \n",optionfilehtm), exit(0);    }
   }    fflush(fichier);
     return (1);
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n  }
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
 \n  {
 Total number of observations=%d <br>\n  
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    char ca[32], cb[32], cc[32];
 <hr  size=\"2\" color=\"#EC5E5E\">    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
  <ul><li><h4>Parameter files</h4>\n    int numlinepar;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n  
  - Log file of the run: <a href=\"%s\">%s</a><br>\n    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   fclose(fichtm);    for(i=1; i <=nlstate; i++){
       jj=0;
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);      for(j=1; j <=nlstate+ndeath; j++){
          if(j==i) continue;
 /*------------ free_vector  -------------*/        jj++;
  chdir(path);        /*ca[0]= k+'a'-1;ca[1]='\0';*/
          printf("%1d%1d",i,j);
  free_ivector(wav,1,imx);        fprintf(ficparo,"%1d%1d",i,j);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        for(k=1; k<=ncovmodel;k++){
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            /*        printf(" %lf",param[i][j][k]); */
  free_ivector(num,1,n);          /*        fprintf(ficparo," %lf",param[i][j][k]); */
  free_vector(agedc,1,n);          printf(" 0.");
  /*free_matrix(covar,1,NCOVMAX,1,n);*/          fprintf(ficparo," 0.");
  fclose(ficparo);        }
  fclose(ficres);        printf("\n");
         fprintf(ficparo,"\n");
       }
   /*--------------- Prevalence limit --------------*/    }
      printf("# Scales (for hessian or gradient estimation)\n");
   strcpy(filerespl,"pl");    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
   strcat(filerespl,fileres);    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    for(i=1; i <=nlstate; i++){
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      jj=0;
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;      for(j=1; j <=nlstate+ndeath; j++){
   }        if(j==i) continue;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        jj++;
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);        fprintf(ficparo,"%1d%1d",i,j);
   fprintf(ficrespl,"#Prevalence limit\n");        printf("%1d%1d",i,j);
   fprintf(ficrespl,"#Age ");        fflush(stdout);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        for(k=1; k<=ncovmodel;k++){
   fprintf(ficrespl,"\n");          /*      printf(" %le",delti3[i][j][k]); */
            /*      fprintf(ficparo," %le",delti3[i][j][k]); */
   prlim=matrix(1,nlstate,1,nlstate);          printf(" 0.");
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficparo," 0.");
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        numlinepar++;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        printf("\n");
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        fprintf(ficparo,"\n");
   k=0;      }
   agebase=ageminpar;    }
   agelim=agemaxpar;    printf("# Covariance matrix\n");
   ftolpl=1.e-10;  /* # 121 Var(a12)\n\ */
   i1=cptcoveff;  /* # 122 Cov(b12,a12) Var(b12)\n\ */
   if (cptcovn < 1){i1=1;}  /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   for(cptcov=1;cptcov<=i1;cptcov++){  /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
         k=k+1;  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
         fprintf(ficrespl,"\n#******");    fflush(stdout);
         printf("\n#******");    fprintf(ficparo,"# Covariance matrix\n");
         fprintf(ficlog,"\n#******");    /* # 121 Var(a12)\n\ */
         for(j=1;j<=cptcoveff;j++) {    /* # 122 Cov(b12,a12) Var(b12)\n\ */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /* #   ...\n\ */
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    
         }    for(itimes=1;itimes<=2;itimes++){
         fprintf(ficrespl,"******\n");      jj=0;
         printf("******\n");      for(i=1; i <=nlstate; i++){
         fprintf(ficlog,"******\n");        for(j=1; j <=nlstate+ndeath; j++){
                  if(j==i) continue;
         for (age=agebase; age<=agelim; age++){          for(k=1; k<=ncovmodel;k++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            jj++;
           fprintf(ficrespl,"%.0f",age );            ca[0]= k+'a'-1;ca[1]='\0';
           for(i=1; i<=nlstate;i++)            if(itimes==1){
           fprintf(ficrespl," %.5f", prlim[i][i]);              printf("#%1d%1d%d",i,j,k);
           fprintf(ficrespl,"\n");              fprintf(ficparo,"#%1d%1d%d",i,j,k);
         }            }else{
       }              printf("%1d%1d%d",i,j,k);
     }              fprintf(ficparo,"%1d%1d%d",i,j,k);
   fclose(ficrespl);              /*  printf(" %.5le",matcov[i][j]); */
             }
   /*------------- h Pij x at various ages ------------*/            ll=0;
              for(li=1;li <=nlstate; li++){
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);              for(lj=1;lj <=nlstate+ndeath; lj++){
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                if(lj==li) continue;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                for(lk=1;lk<=ncovmodel;lk++){
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;                  ll++;
   }                  if(ll<=jj){
   printf("Computing pij: result on file '%s' \n", filerespij);                    cb[0]= lk +'a'-1;cb[1]='\0';
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);                    if(ll<jj){
                        if(itimes==1){
   stepsize=(int) (stepm+YEARM-1)/YEARM;                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
   /*if (stepm<=24) stepsize=2;*/                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
   agelim=AGESUP;                        printf(" 0.");
   hstepm=stepsize*YEARM; /* Every year of age */                        fprintf(ficparo," 0.");
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                      }
                     }else{
   /* hstepm=1;   aff par mois*/                      if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
   k=0;                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
   for(cptcov=1;cptcov<=i1;cptcov++){                      }else{
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                        printf(" 0.");
       k=k+1;                        fprintf(ficparo," 0.");
         fprintf(ficrespij,"\n#****** ");                      }
         for(j=1;j<=cptcoveff;j++)                    }
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                  }
         fprintf(ficrespij,"******\n");                } /* end lk */
                      } /* end lj */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */            } /* end li */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            printf("\n");
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            fprintf(ficparo,"\n");
             numlinepar++;
           /*      nhstepm=nhstepm*YEARM; aff par mois*/          } /* end k*/
         } /*end j */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      } /* end i */
           oldm=oldms;savm=savms;    }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           fprintf(ficrespij,"# Age");  } /* end of prwizard */
           for(i=1; i<=nlstate;i++)  
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %1d-%1d",i,j);  /***********************************************/
           fprintf(ficrespij,"\n");  /**************** Main Program *****************/
            for (h=0; h<=nhstepm; h++){  /***********************************************/
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  
             for(i=1; i<=nlstate;i++)  int main(int argc, char *argv[])
               for(j=1; j<=nlstate+ndeath;j++)  {
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
             fprintf(ficrespij,"\n");    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
              }    int jj, imk;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int numlinepar=0; /* Current linenumber of parameter file */
           fprintf(ficrespij,"\n");    /*  FILE *fichtm; *//* Html File */
         }    /* FILE *ficgp;*/ /*Gnuplot File */
     }    double agedeb, agefin,hf;
   }    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    double fret;
     double **xi,tmp,delta;
   fclose(ficrespij);  
     double dum; /* Dummy variable */
     double ***p3mat;
   /*---------- Forecasting ------------------*/    double ***mobaverage;
   if((stepm == 1) && (strcmp(model,".")==0)){    int *indx;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    char line[MAXLINE], linepar[MAXLINE];
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
   }    char pathr[MAXLINE]; 
   else{    int firstobs=1, lastobs=10;
     erreur=108;    int sdeb, sfin; /* Status at beginning and end */
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    int c,  h , cpt,l;
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    int ju,jl, mi;
   }    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
      int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
   /*---------- Health expectancies and variances ------------*/    int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
   strcpy(filerest,"t");    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
   strcat(filerest,fileres);    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   if((ficrest=fopen(filerest,"w"))==NULL) {  
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    double bage, fage, age, agelim, agebase;
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;    double ftolpl=FTOL;
   }    double **prlim;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    double *severity;
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);    double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
   strcpy(filerese,"e");    double ***delti3; /* Scale */
   strcat(filerese,fileres);    double *delti; /* Scale */
   if((ficreseij=fopen(filerese,"w"))==NULL) {    double ***eij, ***vareij;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    double **varpl; /* Variances of prevalence limits by age */
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    double *epj, vepp;
   }    double kk1, kk2;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);  
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   strcpy(fileresv,"v");  
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    char z[1]="c", occ;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
   }    char strstart[80], *strt, strtend[80];
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    char *stratrunc;
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    int lstra;
   calagedate=-1;  
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    long total_usecs;
    
   k=0;    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
   for(cptcov=1;cptcov<=i1;cptcov++){    (void) gettimeofday(&start_time,&tzp);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    curr_time=start_time;
       k=k+1;    tm = *localtime(&start_time.tv_sec);
       fprintf(ficrest,"\n#****** ");    tmg = *gmtime(&start_time.tv_sec);
       for(j=1;j<=cptcoveff;j++)    strcpy(strstart,asctime(&tm));
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");  /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
       fprintf(ficreseij,"\n#****** ");  /*  tm = *localtime(&start_time.tv_sec); */
       for(j=1;j<=cptcoveff;j++)  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
       fprintf(ficreseij,"******\n");  /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
       fprintf(ficresvij,"\n#****** ");  /*   strt=asctime(&tmg); */
       for(j=1;j<=cptcoveff;j++)  /*   printf("Time(after) =%s",strstart);  */
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /*  (void) time (&time_value);
       fprintf(ficresvij,"******\n");  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  *  strstart=asctime(&tm);
       oldm=oldms;savm=savms;  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);    */
    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    nberr=0; /* Number of errors and warnings */
       oldm=oldms;savm=savms;    nbwarn=0;
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);    getcwd(pathcd, size);
       if(popbased==1){  
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);    printf("\n%s\n%s",version,fullversion);
        }    if(argc <=1){
       printf("\nEnter the parameter file name: ");
        scanf("%s",pathtot);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    }
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    else{
       fprintf(ficrest,"\n");      strcpy(pathtot,argv[1]);
     }
       epj=vector(1,nlstate+1);    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
       for(age=bage; age <=fage ;age++){    /*cygwin_split_path(pathtot,path,optionfile);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
         if (popbased==1) {    /* cutv(path,optionfile,pathtot,'\\');*/
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][k];    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
         }    printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
            chdir(path);
         fprintf(ficrest," %4.0f",age);    strcpy(command,"mkdir ");
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    strcat(command,optionfilefiname);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    if((outcmd=system(command)) != 0){
             epj[j] += prlim[i][i]*eij[i][j][(int)age];      printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
           }      /* fclose(ficlog); */
           epj[nlstate+1] +=epj[j];  /*     exit(1); */
         }    }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
         for(i=1, vepp=0.;i <=nlstate;i++)  /*     perror("mkdir"); */
           for(j=1;j <=nlstate;j++)  /*   } */
             vepp += vareij[i][j][(int)age];  
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));    /*-------- arguments in the command line --------*/
         for(j=1;j <=nlstate;j++){  
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    /* Log file */
         }    strcat(filelog, optionfilefiname);
         fprintf(ficrest,"\n");    strcat(filelog,".log");    /* */
       }    if((ficlog=fopen(filelog,"w"))==NULL)    {
     }      printf("Problem with logfile %s\n",filelog);
   }      goto end;
 free_matrix(mint,1,maxwav,1,n);    }
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    fprintf(ficlog,"Log filename:%s\n",filelog);
     free_vector(weight,1,n);    fprintf(ficlog,"\n%s\n%s",version,fullversion);
   fclose(ficreseij);    fprintf(ficlog,"\nEnter the parameter file name: ");
   fclose(ficresvij);    fprintf(ficlog,"pathtot=%s\n\
   fclose(ficrest);   path=%s \n\
   fclose(ficpar);   optionfile=%s\n\
   free_vector(epj,1,nlstate+1);   optionfilext=%s\n\
     optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   /*------- Variance limit prevalence------*/    
     printf("Localtime (at start):%s",strstart);
   strcpy(fileresvpl,"vpl");    fprintf(ficlog,"Localtime (at start): %s",strstart);
   strcat(fileresvpl,fileres);    fflush(ficlog);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  /*   (void) gettimeofday(&curr_time,&tzp); */
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
     exit(0);  
   }    /* */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
   k=0;    strcat(fileres,".txt");    /* Other files have txt extension */
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /*---------arguments file --------*/
       k=k+1;  
       fprintf(ficresvpl,"\n#****** ");    if((ficpar=fopen(optionfile,"r"))==NULL)    {
       for(j=1;j<=cptcoveff;j++)      printf("Problem with optionfile %s\n",optionfile);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fprintf(ficresvpl,"******\n");      fflush(ficlog);
            goto end;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    }
       oldm=oldms;savm=savms;  
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);  
     }  
  }    strcpy(filereso,"o");
     strcat(filereso,fileres);
   fclose(ficresvpl);    if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
   /*---------- End : free ----------------*/      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      fflush(ficlog);
        goto end;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    }
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
      /* Reads comments: lines beginning with '#' */
      numlinepar=0;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    while((c=getc(ficpar))=='#' && c!= EOF){
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      ungetc(c,ficpar);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      fgets(line, MAXLINE, ficpar);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      numlinepar++;
        puts(line);
   free_matrix(matcov,1,npar,1,npar);      fputs(line,ficparo);
   free_vector(delti,1,npar);      fputs(line,ficlog);
   free_matrix(agev,1,maxwav,1,imx);    }
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    ungetc(c,ficpar);
   
   fprintf(fichtm,"\n</body>");    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
   fclose(fichtm);    numlinepar++;
   fclose(ficgp);    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
      fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
   if(erreur >0){    fflush(ficlog);
     printf("End of Imach with error or warning %d\n",erreur);    while((c=getc(ficpar))=='#' && c!= EOF){
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);      ungetc(c,ficpar);
   }else{      fgets(line, MAXLINE, ficpar);
    printf("End of Imach\n");      numlinepar++;
    fprintf(ficlog,"End of Imach\n");      puts(line);
   }      fputs(line,ficparo);
   printf("See log file on %s\n",filelog);      fputs(line,ficlog);
   fclose(ficlog);    }
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    ungetc(c,ficpar);
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/     
   /*printf("Total time was %d uSec.\n", total_usecs);*/    covar=matrix(0,NCOVMAX,1,n); 
   /*------ End -----------*/    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
  end:    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
 #ifdef windows    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
   /* chdir(pathcd);*/   
 #endif    if(mle==-1){ /* Print a wizard for help writing covariance matrix */
  /*system("wgnuplot graph.plt");*/      prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
  /*system("../gp37mgw/wgnuplot graph.plt");*/      printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
  /*system("cd ../gp37mgw");*/      fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      fclose (ficparo);
  strcpy(plotcmd,GNUPLOTPROGRAM);      fclose (ficlog);
  strcat(plotcmd," ");      exit(0);
  strcat(plotcmd,optionfilegnuplot);    }
  system(plotcmd);    /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
 #ifdef windows    while((c=getc(ficpar))=='#' && c!= EOF){
   while (z[0] != 'q') {      ungetc(c,ficpar);
     /* chdir(path); */      fgets(line, MAXLINE, ficpar);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");      numlinepar++;
     scanf("%s",z);      puts(line);
     if (z[0] == 'c') system("./imach");      fputs(line,ficparo);
     else if (z[0] == 'e') system(optionfilehtm);      fputs(line,ficlog);
     else if (z[0] == 'g') system(plotcmd);    }
     else if (z[0] == 'q') exit(0);    ungetc(c,ficpar);
   }  
 #endif    param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
 }    for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     strcpy(lfileres,fileres);
     strcat(lfileres,"/");
     strcat(lfileres,optionfilefiname);
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.51  
changed lines
  Added in v.1.92


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>