Diff for /imach/src/imach.c between versions 1.52 and 1.158

version 1.52, 2002/07/19 18:49:30 version 1.158, 2014/08/27 17:11:51
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.158  2014/08/27 17:11:51  brouard
      *** empty log message ***
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.157  2014/08/27 16:26:55  brouard
   first survey ("cross") where individuals from different ages are    Summary: Preparing windows Visual studio version
   interviewed on their health status or degree of disability (in the    Author: Brouard
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    In order to compile on Visual studio, time.h is now correct and time_t
   (if any) in individual health status.  Health expectancies are    and tm struct should be used. difftime should be used but sometimes I
   computed from the time spent in each health state according to a    just make the differences in raw time format (time(&now).
   model. More health states you consider, more time is necessary to reach the    Trying to suppress #ifdef LINUX
   Maximum Likelihood of the parameters involved in the model.  The    Add xdg-open for __linux in order to open default browser.
   simplest model is the multinomial logistic model where pij is the  
   probability to be observed in state j at the second wave    Revision 1.156  2014/08/25 20:10:10  brouard
   conditional to be observed in state i at the first wave. Therefore    *** empty log message ***
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.155  2014/08/25 18:32:34  brouard
   complex model than "constant and age", you should modify the program    Summary: New compile, minor changes
   where the markup *Covariates have to be included here again* invites    Author: Brouard
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.154  2014/06/20 17:32:08  brouard
     Summary: Outputs now all graphs of convergence to period prevalence
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.153  2014/06/20 16:45:46  brouard
   identical for each individual. Also, if a individual missed an    Summary: If 3 live state, convergence to period prevalence on same graph
   intermediate interview, the information is lost, but taken into    Author: Brouard
   account using an interpolation or extrapolation.    
     Revision 1.152  2014/06/18 17:54:09  brouard
   hPijx is the probability to be observed in state i at age x+h    Summary: open browser, use gnuplot on same dir than imach if not found in the path
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.151  2014/06/18 16:43:30  brouard
   states. This elementary transition (by month or quarter trimester,    *** empty log message ***
   semester or year) is model as a multinomial logistic.  The hPx  
   matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.150  2014/06/18 16:42:35  brouard
   and the contribution of each individual to the likelihood is simply    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
   hPijx.    Author: brouard
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.149  2014/06/18 15:51:14  brouard
   of the life expectancies. It also computes the prevalence limits.    Summary: Some fixes in parameter files errors
      Author: Nicolas Brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.148  2014/06/17 17:38:48  brouard
   This software have been partly granted by Euro-REVES, a concerted action    Summary: Nothing new
   from the European Union.    Author: Brouard
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Just a new packaging for OS/X version 0.98nS
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.147  2014/06/16 10:33:11  brouard
      *** empty log message ***
 #include <math.h>  
 #include <stdio.h>    Revision 1.146  2014/06/16 10:20:28  brouard
 #include <stdlib.h>    Summary: Merge
 #include <unistd.h>    Author: Brouard
   
 #define MAXLINE 256    Merge, before building revised version.
 #define GNUPLOTPROGRAM "gnuplot"  
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Revision 1.145  2014/06/10 21:23:15  brouard
 #define FILENAMELENGTH 80    Summary: Debugging with valgrind
 /*#define DEBUG*/    Author: Nicolas Brouard
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Lot of changes in order to output the results with some covariates
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    After the Edimburgh REVES conference 2014, it seems mandatory to
     improve the code.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    No more memory valgrind error but a lot has to be done in order to
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    continue the work of splitting the code into subroutines.
     Also, decodemodel has been improved. Tricode is still not
 #define NINTERVMAX 8    optimal. nbcode should be improved. Documentation has been added in
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    the source code.
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.143  2014/01/26 09:45:38  brouard
 #define MAXN 20000    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #define AGEBASE 40    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
 #ifdef windows  
 #define DIRSEPARATOR '\\'    Revision 1.142  2014/01/26 03:57:36  brouard
 #define ODIRSEPARATOR '/'    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
 #else  
 #define DIRSEPARATOR '/'    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #define ODIRSEPARATOR '\\'  
 #endif    Revision 1.141  2014/01/26 02:42:01  brouard
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";  
 int erreur; /* Error number */    Revision 1.140  2011/09/02 10:37:54  brouard
 int nvar;    Summary: times.h is ok with mingw32 now.
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;    Revision 1.139  2010/06/14 07:50:17  brouard
 int nlstate=2; /* Number of live states */    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
 int ndeath=1; /* Number of dead states */    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.138  2010/04/30 18:19:40  brouard
     *** empty log message ***
 int *wav; /* Number of waves for this individuual 0 is possible */  
 int maxwav; /* Maxim number of waves */    Revision 1.137  2010/04/29 18:11:38  brouard
 int jmin, jmax; /* min, max spacing between 2 waves */    (Module): Checking covariates for more complex models
 int mle, weightopt;    than V1+V2. A lot of change to be done. Unstable.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.136  2010/04/26 20:30:53  brouard
 double jmean; /* Mean space between 2 waves */    (Module): merging some libgsl code. Fixing computation
 double **oldm, **newm, **savm; /* Working pointers to matrices */    of likelione (using inter/intrapolation if mle = 0) in order to
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    get same likelihood as if mle=1.
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Some cleaning of code and comments added.
 FILE *ficlog;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Revision 1.135  2009/10/29 15:33:14  brouard
 FILE *ficresprobmorprev;    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;    Revision 1.134  2009/10/29 13:18:53  brouard
 char filerese[FILENAMELENGTH];    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 FILE  *ficresvij;  
 char fileresv[FILENAMELENGTH];    Revision 1.133  2009/07/06 10:21:25  brouard
 FILE  *ficresvpl;    just nforces
 char fileresvpl[FILENAMELENGTH];  
 char title[MAXLINE];    Revision 1.132  2009/07/06 08:22:05  brouard
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Many tings
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
     Revision 1.131  2009/06/20 16:22:47  brouard
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Some dimensions resccaled
 char filelog[FILENAMELENGTH]; /* Log file */  
 char filerest[FILENAMELENGTH];    Revision 1.130  2009/05/26 06:44:34  brouard
 char fileregp[FILENAMELENGTH];    (Module): Max Covariate is now set to 20 instead of 8. A
 char popfile[FILENAMELENGTH];    lot of cleaning with variables initialized to 0. Trying to make
     V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  
     Revision 1.129  2007/08/31 13:49:27  lievre
 #define NR_END 1    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.128  2006/06/30 13:02:05  brouard
     (Module): Clarifications on computing e.j
 #define NRANSI  
 #define ITMAX 200    Revision 1.127  2006/04/28 18:11:50  brouard
     (Module): Yes the sum of survivors was wrong since
 #define TOL 2.0e-4    imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
 #define CGOLD 0.3819660    (Module): In order to speed up (in case of numerous covariates) we
 #define ZEPS 1.0e-10    compute health expectancies (without variances) in a first step
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    and then all the health expectancies with variances or standard
     deviation (needs data from the Hessian matrices) which slows the
 #define GOLD 1.618034    computation.
 #define GLIMIT 100.0    In the future we should be able to stop the program is only health
 #define TINY 1.0e-20    expectancies and graph are needed without standard deviations.
   
 static double maxarg1,maxarg2;    Revision 1.126  2006/04/28 17:23:28  brouard
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    (Module): Yes the sum of survivors was wrong since
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    imach-114 because nhstepm was no more computed in the age
      loop. Now we define nhstepma in the age loop.
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Version 0.98h
 #define rint(a) floor(a+0.5)  
     Revision 1.125  2006/04/04 15:20:31  lievre
 static double sqrarg;    Errors in calculation of health expectancies. Age was not initialized.
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Forecasting file added.
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.124  2006/03/22 17:13:53  lievre
 int imx;    Parameters are printed with %lf instead of %f (more numbers after the comma).
 int stepm;    The log-likelihood is printed in the log file
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.123  2006/03/20 10:52:43  brouard
 int estepm;    * imach.c (Module): <title> changed, corresponds to .htm file
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    name. <head> headers where missing.
   
 int m,nb;    * imach.c (Module): Weights can have a decimal point as for
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    English (a comma might work with a correct LC_NUMERIC environment,
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    otherwise the weight is truncated).
 double **pmmij, ***probs, ***mobaverage;    Modification of warning when the covariates values are not 0 or
 double dateintmean=0;    1.
     Version 0.98g
 double *weight;  
 int **s; /* Status */    Revision 1.122  2006/03/20 09:45:41  brouard
 double *agedc, **covar, idx;    (Module): Weights can have a decimal point as for
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Modification of warning when the covariates values are not 0 or
 double ftolhess; /* Tolerance for computing hessian */    1.
     Version 0.98g
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Revision 1.121  2006/03/16 17:45:01  lievre
 {    * imach.c (Module): Comments concerning covariates added
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    * imach.c (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
    l1 = strlen( path );                 /* length of path */    not 1 month. Version 0.98f
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    Revision 1.120  2006/03/16 15:10:38  lievre
    if ( s == NULL ) {                   /* no directory, so use current */    (Module): refinements in the computation of lli if
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    status=-2 in order to have more reliable computation if stepm is
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    not 1 month. Version 0.98f
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.119  2006/03/15 17:42:26  brouard
     (Module): Bug if status = -2, the loglikelihood was
       if ( getwd( dirc ) == NULL ) {    computed as likelihood omitting the logarithm. Version O.98e
 #else  
       extern char       *getcwd( );    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    table of variances if popbased=1 .
 #endif    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
          return( GLOCK_ERROR_GETCWD );    (Module): Function pstamp added
       }    (Module): Version 0.98d
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */    Revision 1.117  2006/03/14 17:16:22  brouard
       s++;                              /* after this, the filename */    (Module): varevsij Comments added explaining the second
       l2 = strlen( s );                 /* length of filename */    table of variances if popbased=1 .
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
       strcpy( name, s );                /* save file name */    (Module): Function pstamp added
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    (Module): Version 0.98d
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.116  2006/03/06 10:29:27  brouard
    l1 = strlen( dirc );                 /* length of directory */    (Module): Variance-covariance wrong links and
 #ifdef windows    varian-covariance of ej. is needed (Saito).
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else    Revision 1.115  2006/02/27 12:17:45  brouard
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    (Module): One freematrix added in mlikeli! 0.98c
 #endif  
    s = strrchr( name, '.' );            /* find last / */    Revision 1.114  2006/02/26 12:57:58  brouard
    s++;    (Module): Some improvements in processing parameter
    strcpy(ext,s);                       /* save extension */    filename with strsep.
    l1= strlen( name);  
    l2= strlen( s)+1;    Revision 1.113  2006/02/24 14:20:24  brouard
    strncpy( finame, name, l1-l2);    (Module): Memory leaks checks with valgrind and:
    finame[l1-l2]= 0;    datafile was not closed, some imatrix were not freed and on matrix
    return( 0 );                         /* we're done */    allocation too.
 }  
     Revision 1.112  2006/01/30 09:55:26  brouard
     (Module): Back to gnuplot.exe instead of wgnuplot.exe
 /******************************************/  
     Revision 1.111  2006/01/25 20:38:18  brouard
 void replace(char *s, char*t)    (Module): Lots of cleaning and bugs added (Gompertz)
 {    (Module): Comments can be added in data file. Missing date values
   int i;    can be a simple dot '.'.
   int lg=20;  
   i=0;    Revision 1.110  2006/01/25 00:51:50  brouard
   lg=strlen(t);    (Module): Lots of cleaning and bugs added (Gompertz)
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    Revision 1.109  2006/01/24 19:37:15  brouard
     if (t[i]== '\\') s[i]='/';    (Module): Comments (lines starting with a #) are allowed in data.
   }  
 }    Revision 1.108  2006/01/19 18:05:42  lievre
     Gnuplot problem appeared...
 int nbocc(char *s, char occ)    To be fixed
 {  
   int i,j=0;    Revision 1.107  2006/01/19 16:20:37  brouard
   int lg=20;    Test existence of gnuplot in imach path
   i=0;  
   lg=strlen(s);    Revision 1.106  2006/01/19 13:24:36  brouard
   for(i=0; i<= lg; i++) {    Some cleaning and links added in html output
   if  (s[i] == occ ) j++;  
   }    Revision 1.105  2006/01/05 20:23:19  lievre
   return j;    *** empty log message ***
 }  
     Revision 1.104  2005/09/30 16:11:43  lievre
 void cutv(char *u,char *v, char*t, char occ)    (Module): sump fixed, loop imx fixed, and simplifications.
 {    (Module): If the status is missing at the last wave but we know
   /* cuts string t into u and v where u is ended by char occ excluding it    that the person is alive, then we can code his/her status as -2
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)    (instead of missing=-1 in earlier versions) and his/her
      gives u="abcedf" and v="ghi2j" */    contributions to the likelihood is 1 - Prob of dying from last
   int i,lg,j,p=0;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   i=0;    the healthy state at last known wave). Version is 0.98
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Revision 1.103  2005/09/30 15:54:49  lievre
   }    (Module): sump fixed, loop imx fixed, and simplifications.
   
   lg=strlen(t);    Revision 1.102  2004/09/15 17:31:30  brouard
   for(j=0; j<p; j++) {    Add the possibility to read data file including tab characters.
     (u[j] = t[j]);  
   }    Revision 1.101  2004/09/15 10:38:38  brouard
      u[p]='\0';    Fix on curr_time
   
    for(j=0; j<= lg; j++) {    Revision 1.100  2004/07/12 18:29:06  brouard
     if (j>=(p+1))(v[j-p-1] = t[j]);    Add version for Mac OS X. Just define UNIX in Makefile
   }  
 }    Revision 1.99  2004/06/05 08:57:40  brouard
     *** empty log message ***
 /********************** nrerror ********************/  
     Revision 1.98  2004/05/16 15:05:56  brouard
 void nrerror(char error_text[])    New version 0.97 . First attempt to estimate force of mortality
 {    directly from the data i.e. without the need of knowing the health
   fprintf(stderr,"ERREUR ...\n");    state at each age, but using a Gompertz model: log u =a + b*age .
   fprintf(stderr,"%s\n",error_text);    This is the basic analysis of mortality and should be done before any
   exit(1);    other analysis, in order to test if the mortality estimated from the
 }    cross-longitudinal survey is different from the mortality estimated
 /*********************** vector *******************/    from other sources like vital statistic data.
 double *vector(int nl, int nh)  
 {    The same imach parameter file can be used but the option for mle should be -3.
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    Agnès, who wrote this part of the code, tried to keep most of the
   if (!v) nrerror("allocation failure in vector");    former routines in order to include the new code within the former code.
   return v-nl+NR_END;  
 }    The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)    Current limitations:
 {    A) Even if you enter covariates, i.e. with the
   free((FREE_ARG)(v+nl-NR_END));    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 }    B) There is no computation of Life Expectancy nor Life Table.
   
 /************************ivector *******************************/    Revision 1.97  2004/02/20 13:25:42  lievre
 int *ivector(long nl,long nh)    Version 0.96d. Population forecasting command line is (temporarily)
 {    suppressed.
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Revision 1.96  2003/07/15 15:38:55  brouard
   if (!v) nrerror("allocation failure in ivector");    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   return v-nl+NR_END;    rewritten within the same printf. Workaround: many printfs.
 }  
     Revision 1.95  2003/07/08 07:54:34  brouard
 /******************free ivector **************************/    * imach.c (Repository):
 void free_ivector(int *v, long nl, long nh)    (Repository): Using imachwizard code to output a more meaningful covariance
 {    matrix (cov(a12,c31) instead of numbers.
   free((FREE_ARG)(v+nl-NR_END));  
 }    Revision 1.94  2003/06/27 13:00:02  brouard
     Just cleaning
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Revision 1.93  2003/06/25 16:33:55  brouard
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    (Module): On windows (cygwin) function asctime_r doesn't
 {    exist so I changed back to asctime which exists.
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    (Module): Version 0.96b
   int **m;  
      Revision 1.92  2003/06/25 16:30:45  brouard
   /* allocate pointers to rows */    (Module): On windows (cygwin) function asctime_r doesn't
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    exist so I changed back to asctime which exists.
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.91  2003/06/25 15:30:29  brouard
   m -= nrl;    * imach.c (Repository): Duplicated warning errors corrected.
      (Repository): Elapsed time after each iteration is now output. It
      helps to forecast when convergence will be reached. Elapsed time
   /* allocate rows and set pointers to them */    is stamped in powell.  We created a new html file for the graphs
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    concerning matrix of covariance. It has extension -cov.htm.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.90  2003/06/24 12:34:15  brouard
   m[nrl] -= ncl;    (Module): Some bugs corrected for windows. Also, when
      mle=-1 a template is output in file "or"mypar.txt with the design
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    of the covariance matrix to be input.
    
   /* return pointer to array of pointers to rows */    Revision 1.89  2003/06/24 12:30:52  brouard
   return m;    (Module): Some bugs corrected for windows. Also, when
 }    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)    Revision 1.88  2003/06/23 17:54:56  brouard
       int **m;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */    Revision 1.87  2003/06/18 12:26:01  brouard
 {    Version 0.96
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));    Revision 1.86  2003/06/17 20:04:08  brouard
 }    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)    Revision 1.85  2003/06/17 13:12:43  brouard
 {    * imach.c (Repository): Check when date of death was earlier that
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    current date of interview. It may happen when the death was just
   double **m;    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    assuming that the date of death was just one stepm after the
   if (!m) nrerror("allocation failure 1 in matrix()");    interview.
   m += NR_END;    (Repository): Because some people have very long ID (first column)
   m -= nrl;    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    truncation)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    (Repository): No more line truncation errors.
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    place. It differs from routine "prevalence" which may be called
   return m;    many times. Probs is memory consuming and must be used with
 }    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    Revision 1.83  2003/06/10 13:39:11  lievre
 {    *** empty log message ***
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));    Revision 1.82  2003/06/05 15:57:20  brouard
 }    Add log in  imach.c and  fullversion number is now printed.
   
 /******************* ma3x *******************************/  */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  /*
 {     Interpolated Markov Chain
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;    Short summary of the programme:
     
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    This program computes Healthy Life Expectancies from
   if (!m) nrerror("allocation failure 1 in matrix()");    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   m += NR_END;    first survey ("cross") where individuals from different ages are
   m -= nrl;    interviewed on their health status or degree of disability (in the
     case of a health survey which is our main interest) -2- at least a
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    second wave of interviews ("longitudinal") which measure each change
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    (if any) in individual health status.  Health expectancies are
   m[nrl] += NR_END;    computed from the time spent in each health state according to a
   m[nrl] -= ncl;    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    simplest model is the multinomial logistic model where pij is the
     probability to be observed in state j at the second wave
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    conditional to be observed in state i at the first wave. Therefore
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   m[nrl][ncl] += NR_END;    'age' is age and 'sex' is a covariate. If you want to have a more
   m[nrl][ncl] -= nll;    complex model than "constant and age", you should modify the program
   for (j=ncl+1; j<=nch; j++)    where the markup *Covariates have to be included here again* invites
     m[nrl][j]=m[nrl][j-1]+nlay;    you to do it.  More covariates you add, slower the
      convergence.
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    The advantage of this computer programme, compared to a simple
     for (j=ncl+1; j<=nch; j++)    multinomial logistic model, is clear when the delay between waves is not
       m[i][j]=m[i][j-1]+nlay;    identical for each individual. Also, if a individual missed an
   }    intermediate interview, the information is lost, but taken into
   return m;    account using an interpolation or extrapolation.  
 }  
     hPijx is the probability to be observed in state i at age x+h
 /*************************free ma3x ************************/    conditional to the observed state i at age x. The delay 'h' can be
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    split into an exact number (nh*stepm) of unobserved intermediate
 {    states. This elementary transition (by month, quarter,
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    semester or year) is modelled as a multinomial logistic.  The hPx
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    matrix is simply the matrix product of nh*stepm elementary matrices
   free((FREE_ARG)(m+nrl-NR_END));    and the contribution of each individual to the likelihood is simply
 }    hPijx.
   
 /***************** f1dim *************************/    Also this programme outputs the covariance matrix of the parameters but also
 extern int ncom;    of the life expectancies. It also computes the period (stable) prevalence. 
 extern double *pcom,*xicom;    
 extern double (*nrfunc)(double []);    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
               Institut national d'études démographiques, Paris.
 double f1dim(double x)    This software have been partly granted by Euro-REVES, a concerted action
 {    from the European Union.
   int j;    It is copyrighted identically to a GNU software product, ie programme and
   double f;    software can be distributed freely for non commercial use. Latest version
   double *xt;    can be accessed at http://euroreves.ined.fr/imach .
    
   xt=vector(1,ncom);    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   f=(*nrfunc)(xt);    
   free_vector(xt,1,ncom);    **********************************************************************/
   return f;  /*
 }    main
     read parameterfile
 /*****************brent *************************/    read datafile
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    concatwav
 {    freqsummary
   int iter;    if (mle >= 1)
   double a,b,d,etemp;      mlikeli
   double fu,fv,fw,fx;    print results files
   double ftemp;    if mle==1 
   double p,q,r,tol1,tol2,u,v,w,x,xm;       computes hessian
   double e=0.0;    read end of parameter file: agemin, agemax, bage, fage, estepm
          begin-prev-date,...
   a=(ax < cx ? ax : cx);    open gnuplot file
   b=(ax > cx ? ax : cx);    open html file
   x=w=v=bx;    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
   fw=fv=fx=(*f)(x);     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
   for (iter=1;iter<=ITMAX;iter++) {                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
     xm=0.5*(a+b);      freexexit2 possible for memory heap.
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    h Pij x                         | pij_nom  ficrestpij
     printf(".");fflush(stdout);     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
     fprintf(ficlog,".");fflush(ficlog);         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
 #ifdef DEBUG         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
 #endif    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
       *xmin=x;     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
       return fx;  
     }    forecasting if prevfcast==1 prevforecast call prevalence()
     ftemp=fu;    health expectancies
     if (fabs(e) > tol1) {    Variance-covariance of DFLE
       r=(x-w)*(fx-fv);    prevalence()
       q=(x-v)*(fx-fw);     movingaverage()
       p=(x-v)*q-(x-w)*r;    varevsij() 
       q=2.0*(q-r);    if popbased==1 varevsij(,popbased)
       if (q > 0.0) p = -p;    total life expectancies
       q=fabs(q);    Variance of period (stable) prevalence
       etemp=e;   end
       e=d;  */
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {  
         d=p/q;   
         u=x+d;  #include <math.h>
         if (u-a < tol2 || b-u < tol2)  #include <stdio.h>
           d=SIGN(tol1,xm-x);  #include <stdlib.h>
       }  #include <string.h>
     } else {  #include <unistd.h>
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  
     }  #include <limits.h>
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #include <sys/types.h>
     fu=(*f)(u);  #include <sys/stat.h>
     if (fu <= fx) {  #include <errno.h>
       if (u >= x) a=x; else b=x;  extern int errno;
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)  /* #ifdef LINUX */
         } else {  /* #include <time.h> */
           if (u < x) a=u; else b=u;  /* #include "timeval.h" */
           if (fu <= fw || w == x) {  /* #else */
             v=w;  /* #include <sys/time.h> */
             w=u;  /* #endif */
             fv=fw;  
             fw=fu;  #include <time.h>
           } else if (fu <= fv || v == x || v == w) {  
             v=u;  #ifdef GSL
             fv=fu;  #include <gsl/gsl_errno.h>
           }  #include <gsl/gsl_multimin.h>
         }  #endif
   }  
   nrerror("Too many iterations in brent");  /* #include <libintl.h> */
   *xmin=x;  /* #define _(String) gettext (String) */
   return fx;  
 }  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
   
 /****************** mnbrak ***********************/  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  #define FILENAMELENGTH 132
             double (*func)(double))  
 {  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   double ulim,u,r,q, dum;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   double fu;  
    #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
   *fa=(*func)(*ax);  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
   *fb=(*func)(*bx);  
   if (*fb > *fa) {  #define NINTERVMAX 8
     SHFT(dum,*ax,*bx,dum)  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
       SHFT(dum,*fb,*fa,dum)  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
       }  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
   *cx=(*bx)+GOLD*(*bx-*ax);  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
   *fc=(*func)(*cx);  #define MAXN 20000
   while (*fb > *fc) {  #define YEARM 12. /**< Number of months per year */
     r=(*bx-*ax)*(*fb-*fc);  #define AGESUP 130
     q=(*bx-*cx)*(*fb-*fa);  #define AGEBASE 40
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  #ifdef _WIN32
     ulim=(*bx)+GLIMIT*(*cx-*bx);  #define DIRSEPARATOR '\\'
     if ((*bx-u)*(u-*cx) > 0.0) {  #define CHARSEPARATOR "\\"
       fu=(*func)(u);  #define ODIRSEPARATOR '/'
     } else if ((*cx-u)*(u-ulim) > 0.0) {  #else
       fu=(*func)(u);  #define DIRSEPARATOR '/'
       if (fu < *fc) {  #define CHARSEPARATOR "/"
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  #define ODIRSEPARATOR '\\'
           SHFT(*fb,*fc,fu,(*func)(u))  #endif
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  /* $Id$ */
       u=ulim;  /* $State$ */
       fu=(*func)(u);  
     } else {  char version[]="Imach version 0.98nX, August 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
       u=(*cx)+GOLD*(*cx-*bx);  char fullversion[]="$Revision$ $Date$"; 
       fu=(*func)(u);  char strstart[80];
     }  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
     SHFT(*ax,*bx,*cx,u)  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       SHFT(*fa,*fb,*fc,fu)  int nvar=0, nforce=0; /* Number of variables, number of forces */
       }  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
 }  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
   int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
 /*************** linmin ************************/  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
   int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
 int ncom;  int cptcovprodnoage=0; /**< Number of covariate products without age */   
 double *pcom,*xicom;  int cptcoveff=0; /* Total number of covariates to vary for printing results */
 double (*nrfunc)(double []);  int cptcov=0; /* Working variable */
    int npar=NPARMAX;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  int nlstate=2; /* Number of live states */
 {  int ndeath=1; /* Number of dead states */
   double brent(double ax, double bx, double cx,  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
                double (*f)(double), double tol, double *xmin);  int popbased=0;
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  int *wav; /* Number of waves for this individuual 0 is possible */
               double *fc, double (*func)(double));  int maxwav=0; /* Maxim number of waves */
   int j;  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   double xx,xmin,bx,ax;  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   double fx,fb,fa;  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
                       to the likelihood and the sum of weights (done by funcone)*/
   ncom=n;  int mle=1, weightopt=0;
   pcom=vector(1,n);  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   xicom=vector(1,n);  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   nrfunc=func;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   for (j=1;j<=n;j++) {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
     pcom[j]=p[j];  double jmean=1; /* Mean space between 2 waves */
     xicom[j]=xi[j];  double **matprod2(); /* test */
   }  double **oldm, **newm, **savm; /* Working pointers to matrices */
   ax=0.0;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   xx=1.0;  /*FILE *fic ; */ /* Used in readdata only */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  FILE *ficlog, *ficrespow;
 #ifdef DEBUG  int globpr=0; /* Global variable for printing or not */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  double fretone; /* Only one call to likelihood */
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  long ipmx=0; /* Number of contributions */
 #endif  double sw; /* Sum of weights */
   for (j=1;j<=n;j++) {  char filerespow[FILENAMELENGTH];
     xi[j] *= xmin;  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
     p[j] += xi[j];  FILE *ficresilk;
   }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   free_vector(xicom,1,n);  FILE *ficresprobmorprev;
   free_vector(pcom,1,n);  FILE *fichtm, *fichtmcov; /* Html File */
 }  FILE *ficreseij;
   char filerese[FILENAMELENGTH];
 /*************** powell ************************/  FILE *ficresstdeij;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  char fileresstde[FILENAMELENGTH];
             double (*func)(double []))  FILE *ficrescveij;
 {  char filerescve[FILENAMELENGTH];
   void linmin(double p[], double xi[], int n, double *fret,  FILE  *ficresvij;
               double (*func)(double []));  char fileresv[FILENAMELENGTH];
   int i,ibig,j;  FILE  *ficresvpl;
   double del,t,*pt,*ptt,*xit;  char fileresvpl[FILENAMELENGTH];
   double fp,fptt;  char title[MAXLINE];
   double *xits;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   pt=vector(1,n);  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   ptt=vector(1,n);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   xit=vector(1,n);  char command[FILENAMELENGTH];
   xits=vector(1,n);  int  outcmd=0;
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  char filelog[FILENAMELENGTH]; /* Log file */
     ibig=0;  char filerest[FILENAMELENGTH];
     del=0.0;  char fileregp[FILENAMELENGTH];
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  char popfile[FILENAMELENGTH];
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
       printf(" %d %.12f",i, p[i]);  
     fprintf(ficlog," %d %.12f",i, p[i]);  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
     printf("\n");  /* struct timezone tzp; */
     fprintf(ficlog,"\n");  /* extern int gettimeofday(); */
     for (i=1;i<=n;i++) {  struct tm tml, *gmtime(), *localtime();
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  
       fptt=(*fret);  extern time_t time();
 #ifdef DEBUG  
       printf("fret=%lf \n",*fret);  struct tm start_time, end_time, curr_time, last_time, forecast_time;
       fprintf(ficlog,"fret=%lf \n",*fret);  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
 #endif  struct tm tm;
       printf("%d",i);fflush(stdout);  
       fprintf(ficlog,"%d",i);fflush(ficlog);  char strcurr[80], strfor[80];
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  char *endptr;
         del=fabs(fptt-(*fret));  long lval;
         ibig=i;  double dval;
       }  
 #ifdef DEBUG  #define NR_END 1
       printf("%d %.12e",i,(*fret));  #define FREE_ARG char*
       fprintf(ficlog,"%d %.12e",i,(*fret));  #define FTOL 1.0e-10
       for (j=1;j<=n;j++) {  
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  #define NRANSI 
         printf(" x(%d)=%.12e",j,xit[j]);  #define ITMAX 200 
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  
       }  #define TOL 2.0e-4 
       for(j=1;j<=n;j++) {  
         printf(" p=%.12e",p[j]);  #define CGOLD 0.3819660 
         fprintf(ficlog," p=%.12e",p[j]);  #define ZEPS 1.0e-10 
       }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       printf("\n");  
       fprintf(ficlog,"\n");  #define GOLD 1.618034 
 #endif  #define GLIMIT 100.0 
     }  #define TINY 1.0e-20 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG  static double maxarg1,maxarg2;
       int k[2],l;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       k[0]=1;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       k[1]=-1;    
       printf("Max: %.12e",(*func)(p));  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       fprintf(ficlog,"Max: %.12e",(*func)(p));  #define rint(a) floor(a+0.5)
       for (j=1;j<=n;j++) {  
         printf(" %.12e",p[j]);  static double sqrarg;
         fprintf(ficlog," %.12e",p[j]);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       }  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       printf("\n");  int agegomp= AGEGOMP;
       fprintf(ficlog,"\n");  
       for(l=0;l<=1;l++) {  int imx; 
         for (j=1;j<=n;j++) {  int stepm=1;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  /* Stepm, step in month: minimum step interpolation*/
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  int estepm;
         }  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  int m,nb;
       }  long *num;
 #endif  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double **pmmij, ***probs;
       free_vector(xit,1,n);  double *ageexmed,*agecens;
       free_vector(xits,1,n);  double dateintmean=0;
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);  double *weight;
       return;  int **s; /* Status */
     }  double *agedc;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
     for (j=1;j<=n;j++) {                    * covar=matrix(0,NCOVMAX,1,n); 
       ptt[j]=2.0*p[j]-pt[j];                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
       xit[j]=p[j]-pt[j];  double  idx; 
       pt[j]=p[j];  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
     }  int *Ndum; /** Freq of modality (tricode */
     fptt=(*func)(ptt);  int **codtab; /**< codtab=imatrix(1,100,1,10); */
     if (fptt < fp) {  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  double *lsurv, *lpop, *tpop;
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
         for (j=1;j<=n;j++) {  double ftolhess; /**< Tolerance for computing hessian */
           xi[j][ibig]=xi[j][n];  
           xi[j][n]=xit[j];  /**************** split *************************/
         }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 #ifdef DEBUG  {
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);       the name of the file (name), its extension only (ext) and its first part of the name (finame)
         for(j=1;j<=n;j++){    */ 
           printf(" %.12e",xit[j]);    char  *ss;                            /* pointer */
           fprintf(ficlog," %.12e",xit[j]);    int   l1, l2;                         /* length counters */
         }  
         printf("\n");    l1 = strlen(path );                   /* length of path */
         fprintf(ficlog,"\n");    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 #endif    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       }    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     }      strcpy( name, path );               /* we got the fullname name because no directory */
   }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* get current working directory */
 /**** Prevalence limit ****************/      /*    extern  char* getcwd ( char *buf , int len);*/
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)        return( GLOCK_ERROR_GETCWD );
 {      }
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      /* got dirc from getcwd*/
      matrix by transitions matrix until convergence is reached */      printf(" DIRC = %s \n",dirc);
     } else {                              /* strip direcotry from path */
   int i, ii,j,k;      ss++;                               /* after this, the filename */
   double min, max, maxmin, maxmax,sumnew=0.;      l2 = strlen( ss );                  /* length of filename */
   double **matprod2();      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   double **out, cov[NCOVMAX], **pmij();      strcpy( name, ss );         /* save file name */
   double **newm;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   double agefin, delaymax=50 ; /* Max number of years to converge */      dirc[l1-l2] = 0;                    /* add zero */
       printf(" DIRC2 = %s \n",dirc);
   for (ii=1;ii<=nlstate+ndeath;ii++)    }
     for (j=1;j<=nlstate+ndeath;j++){    /* We add a separator at the end of dirc if not exists */
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    l1 = strlen( dirc );                  /* length of directory */
     }    if( dirc[l1-1] != DIRSEPARATOR ){
       dirc[l1] =  DIRSEPARATOR;
    cov[1]=1.;      dirc[l1+1] = 0; 
        printf(" DIRC3 = %s \n",dirc);
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    }
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    ss = strrchr( name, '.' );            /* find last / */
     newm=savm;    if (ss >0){
     /* Covariates have to be included here again */      ss++;
      cov[2]=agefin;      strcpy(ext,ss);                     /* save extension */
        l1= strlen( name);
       for (k=1; k<=cptcovn;k++) {      l2= strlen(ss)+1;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      strncpy( finame, name, l1-l2);
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/      finame[l1-l2]= 0;
       }    }
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)    return( 0 );                          /* we're done */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  }
   
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  /******************************************/
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  void replace_back_to_slash(char *s, char*t)
   {
     savm=oldm;    int i;
     oldm=newm;    int lg=0;
     maxmax=0.;    i=0;
     for(j=1;j<=nlstate;j++){    lg=strlen(t);
       min=1.;    for(i=0; i<= lg; i++) {
       max=0.;      (s[i] = t[i]);
       for(i=1; i<=nlstate; i++) {      if (t[i]== '\\') s[i]='/';
         sumnew=0;    }
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  }
         prlim[i][j]= newm[i][j]/(1-sumnew);  
         max=FMAX(max,prlim[i][j]);  char *trimbb(char *out, char *in)
         min=FMIN(min,prlim[i][j]);  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
       }    char *s;
       maxmin=max-min;    s=out;
       maxmax=FMAX(maxmax,maxmin);    while (*in != '\0'){
     }      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
     if(maxmax < ftolpl){        in++;
       return prlim;      }
     }      *out++ = *in++;
   }    }
 }    *out='\0';
     return s;
 /*************** transition probabilities ***************/  }
   
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  char *cutl(char *blocc, char *alocc, char *in, char occ)
 {  {
   double s1, s2;    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
   /*double t34;*/       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   int i,j,j1, nc, ii, jj;       gives blocc="abcdef2ghi" and alocc="j".
        If occ is not found blocc is null and alocc is equal to in. Returns blocc
     for(i=1; i<= nlstate; i++){    */
     for(j=1; j<i;j++){    char *s, *t, *bl;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    t=in;s=in;
         /*s2 += param[i][j][nc]*cov[nc];*/    while ((*in != occ) && (*in != '\0')){
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      *alocc++ = *in++;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    }
       }    if( *in == occ){
       ps[i][j]=s2;      *(alocc)='\0';
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      s=++in;
     }    }
     for(j=i+1; j<=nlstate+ndeath;j++){   
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    if (s == t) {/* occ not found */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];      *(alocc-(in-s))='\0';
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      in=s;
       }    }
       ps[i][j]=s2;    while ( *in != '\0'){
     }      *blocc++ = *in++;
   }    }
     /*ps[3][2]=1;*/  
     *blocc='\0';
   for(i=1; i<= nlstate; i++){    return t;
      s1=0;  }
     for(j=1; j<i; j++)  char *cutv(char *blocc, char *alocc, char *in, char occ)
       s1+=exp(ps[i][j]);  {
     for(j=i+1; j<=nlstate+ndeath; j++)    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
       s1+=exp(ps[i][j]);       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
     ps[i][i]=1./(s1+1.);       gives blocc="abcdef2ghi" and alocc="j".
     for(j=1; j<i; j++)       If occ is not found blocc is null and alocc is equal to in. Returns alocc
       ps[i][j]= exp(ps[i][j])*ps[i][i];    */
     for(j=i+1; j<=nlstate+ndeath; j++)    char *s, *t;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    t=in;s=in;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    while (*in != '\0'){
   } /* end i */      while( *in == occ){
         *blocc++ = *in++;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        s=in;
     for(jj=1; jj<= nlstate+ndeath; jj++){      }
       ps[ii][jj]=0;      *blocc++ = *in++;
       ps[ii][ii]=1;    }
     }    if (s == t) /* occ not found */
   }      *(blocc-(in-s))='\0';
     else
       *(blocc-(in-s)-1)='\0';
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    in=s;
     for(jj=1; jj<= nlstate+ndeath; jj++){    while ( *in != '\0'){
      printf("%lf ",ps[ii][jj]);      *alocc++ = *in++;
    }    }
     printf("\n ");  
     }    *alocc='\0';
     printf("\n ");printf("%lf ",cov[2]);*/    return s;
 /*  }
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  
   goto end;*/  int nbocc(char *s, char occ)
     return ps;  {
 }    int i,j=0;
     int lg=20;
 /**************** Product of 2 matrices ******************/    i=0;
     lg=strlen(s);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    for(i=0; i<= lg; i++) {
 {    if  (s[i] == occ ) j++;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    }
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    return j;
   /* in, b, out are matrice of pointers which should have been initialized  }
      before: only the contents of out is modified. The function returns  
      a pointer to pointers identical to out */  /* void cutv(char *u,char *v, char*t, char occ) */
   long i, j, k;  /* { */
   for(i=nrl; i<= nrh; i++)  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
     for(k=ncolol; k<=ncoloh; k++)  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  /*      gives u="abcdef2ghi" and v="j" *\/ */
         out[i][k] +=in[i][j]*b[j][k];  /*   int i,lg,j,p=0; */
   /*   i=0; */
   return out;  /*   lg=strlen(t); */
 }  /*   for(j=0; j<=lg-1; j++) { */
   /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   /*   } */
 /************* Higher Matrix Product ***************/  
   /*   for(j=0; j<p; j++) { */
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  /*     (u[j] = t[j]); */
 {  /*   } */
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  /*      u[p]='\0'; */
      duration (i.e. until  
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  /*    for(j=0; j<= lg; j++) { */
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
      (typically every 2 years instead of every month which is too big).  /*   } */
      Model is determined by parameters x and covariates have to be  /* } */
      included manually here.  
   /********************** nrerror ********************/
      */  
   void nrerror(char error_text[])
   int i, j, d, h, k;  {
   double **out, cov[NCOVMAX];    fprintf(stderr,"ERREUR ...\n");
   double **newm;    fprintf(stderr,"%s\n",error_text);
     exit(EXIT_FAILURE);
   /* Hstepm could be zero and should return the unit matrix */  }
   for (i=1;i<=nlstate+ndeath;i++)  /*********************** vector *******************/
     for (j=1;j<=nlstate+ndeath;j++){  double *vector(int nl, int nh)
       oldm[i][j]=(i==j ? 1.0 : 0.0);  {
       po[i][j][0]=(i==j ? 1.0 : 0.0);    double *v;
     }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    if (!v) nrerror("allocation failure in vector");
   for(h=1; h <=nhstepm; h++){    return v-nl+NR_END;
     for(d=1; d <=hstepm; d++){  }
       newm=savm;  
       /* Covariates have to be included here again */  /************************ free vector ******************/
       cov[1]=1.;  void free_vector(double*v, int nl, int nh)
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  {
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    free((FREE_ARG)(v+nl-NR_END));
       for (k=1; k<=cptcovage;k++)  }
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)  /************************ivector *******************************/
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  int *ivector(long nl,long nh)
   {
     int *v;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    if (!v) nrerror("allocation failure in ivector");
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    return v-nl+NR_END;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  }
       savm=oldm;  
       oldm=newm;  /******************free ivector **************************/
     }  void free_ivector(int *v, long nl, long nh)
     for(i=1; i<=nlstate+ndeath; i++)  {
       for(j=1;j<=nlstate+ndeath;j++) {    free((FREE_ARG)(v+nl-NR_END));
         po[i][j][h]=newm[i][j];  }
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  
          */  /************************lvector *******************************/
       }  long *lvector(long nl,long nh)
   } /* end h */  {
   return po;    long *v;
 }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
 /*************** log-likelihood *************/  }
 double func( double *x)  
 {  /******************free lvector **************************/
   int i, ii, j, k, mi, d, kk;  void free_lvector(long *v, long nl, long nh)
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  {
   double **out;    free((FREE_ARG)(v+nl-NR_END));
   double sw; /* Sum of weights */  }
   double lli; /* Individual log likelihood */  
   long ipmx;  /******************* imatrix *******************************/
   /*extern weight */  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   /* We are differentiating ll according to initial status */       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  { 
   /*for(i=1;i<imx;i++)    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     printf(" %d\n",s[4][i]);    int **m; 
   */    
   cov[1]=1.;    /* allocate pointers to rows */ 
     m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   for(k=1; k<=nlstate; k++) ll[k]=0.;    if (!m) nrerror("allocation failure 1 in matrix()"); 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    m += NR_END; 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    m -= nrl; 
     for(mi=1; mi<= wav[i]-1; mi++){    
       for (ii=1;ii<=nlstate+ndeath;ii++)    
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    /* allocate rows and set pointers to them */ 
       for(d=0; d<dh[mi][i]; d++){    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
         newm=savm;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    m[nrl] += NR_END; 
         for (kk=1; kk<=cptcovage;kk++) {    m[nrl] -= ncl; 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    
         }    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
            
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    /* return pointer to array of pointers to rows */ 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    return m; 
         savm=oldm;  } 
         oldm=newm;  
          /****************** free_imatrix *************************/
          void free_imatrix(m,nrl,nrh,ncl,nch)
       } /* end mult */        int **m;
              long nch,ncl,nrh,nrl; 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);       /* free an int matrix allocated by imatrix() */ 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  { 
       ipmx +=1;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       sw += weight[i];    free((FREE_ARG) (m+nrl-NR_END)); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  } 
     } /* end of wave */  
   } /* end of individual */  /******************* matrix *******************************/
   double **matrix(long nrl, long nrh, long ncl, long nch)
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  {
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    double **m;
   return -l;  
 }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
 /*********** Maximum Likelihood Estimation ***************/    m -= nrl;
   
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   int i,j, iter;    m[nrl] += NR_END;
   double **xi,*delti;    m[nrl] -= ncl;
   double fret;  
   xi=matrix(1,npar,1,npar);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for (i=1;i<=npar;i++)    return m;
     for (j=1;j<=npar;j++)    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
       xi[i][j]=(i==j ? 1.0 : 0.0);  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
   printf("Powell\n");  fprintf(ficlog,"Powell\n");  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
   powell(p,xi,npar,ftol,&iter,&fret,func);     */
   }
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  /*************************free matrix ************************/
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
 }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
 /**** Computes Hessian and covariance matrix ***/  }
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  
 {  /******************* ma3x *******************************/
   double  **a,**y,*x,pd;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   double **hess;  {
   int i, j,jk;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   int *indx;    double ***m;
   
   double hessii(double p[], double delta, int theta, double delti[]);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double hessij(double p[], double delti[], int i, int j);    if (!m) nrerror("allocation failure 1 in matrix()");
   void lubksb(double **a, int npar, int *indx, double b[]) ;    m += NR_END;
   void ludcmp(double **a, int npar, int *indx, double *d) ;    m -= nrl;
   
   hess=matrix(1,npar,1,npar);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   printf("\nCalculation of the hessian matrix. Wait...\n");    m[nrl] += NR_END;
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    m[nrl] -= ncl;
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     fprintf(ficlog,"%d",i);fflush(ficlog);  
     hess[i][i]=hessii(p,ftolhess,i,delti);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     /*printf(" %f ",p[i]);*/    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     /*printf(" %lf ",hess[i][i]);*/    m[nrl][ncl] += NR_END;
   }    m[nrl][ncl] -= nll;
      for (j=ncl+1; j<=nch; j++) 
   for (i=1;i<=npar;i++) {      m[nrl][j]=m[nrl][j-1]+nlay;
     for (j=1;j<=npar;j++)  {    
       if (j>i) {    for (i=nrl+1; i<=nrh; i++) {
         printf(".%d%d",i,j);fflush(stdout);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);      for (j=ncl+1; j<=nch; j++) 
         hess[i][j]=hessij(p,delti,i,j);        m[i][j]=m[i][j-1]+nlay;
         hess[j][i]=hess[i][j];        }
         /*printf(" %lf ",hess[i][j]);*/    return m; 
       }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   }    */
   printf("\n");  }
   fprintf(ficlog,"\n");  
   /*************************free ma3x ************************/
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");  {
      free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   a=matrix(1,npar,1,npar);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   y=matrix(1,npar,1,npar);    free((FREE_ARG)(m+nrl-NR_END));
   x=vector(1,npar);  }
   indx=ivector(1,npar);  
   for (i=1;i<=npar;i++)  /*************** function subdirf ***********/
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  char *subdirf(char fileres[])
   ludcmp(a,npar,indx,&pd);  {
     /* Caution optionfilefiname is hidden */
   for (j=1;j<=npar;j++) {    strcpy(tmpout,optionfilefiname);
     for (i=1;i<=npar;i++) x[i]=0;    strcat(tmpout,"/"); /* Add to the right */
     x[j]=1;    strcat(tmpout,fileres);
     lubksb(a,npar,indx,x);    return tmpout;
     for (i=1;i<=npar;i++){  }
       matcov[i][j]=x[i];  
     }  /*************** function subdirf2 ***********/
   }  char *subdirf2(char fileres[], char *preop)
   {
   printf("\n#Hessian matrix#\n");    
   fprintf(ficlog,"\n#Hessian matrix#\n");    /* Caution optionfilefiname is hidden */
   for (i=1;i<=npar;i++) {    strcpy(tmpout,optionfilefiname);
     for (j=1;j<=npar;j++) {    strcat(tmpout,"/");
       printf("%.3e ",hess[i][j]);    strcat(tmpout,preop);
       fprintf(ficlog,"%.3e ",hess[i][j]);    strcat(tmpout,fileres);
     }    return tmpout;
     printf("\n");  }
     fprintf(ficlog,"\n");  
   }  /*************** function subdirf3 ***********/
   char *subdirf3(char fileres[], char *preop, char *preop2)
   /* Recompute Inverse */  {
   for (i=1;i<=npar;i++)    
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    /* Caution optionfilefiname is hidden */
   ludcmp(a,npar,indx,&pd);    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
   /*  printf("\n#Hessian matrix recomputed#\n");    strcat(tmpout,preop);
     strcat(tmpout,preop2);
   for (j=1;j<=npar;j++) {    strcat(tmpout,fileres);
     for (i=1;i<=npar;i++) x[i]=0;    return tmpout;
     x[j]=1;  }
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){  /***************** f1dim *************************/
       y[i][j]=x[i];  extern int ncom; 
       printf("%.3e ",y[i][j]);  extern double *pcom,*xicom;
       fprintf(ficlog,"%.3e ",y[i][j]);  extern double (*nrfunc)(double []); 
     }   
     printf("\n");  double f1dim(double x) 
     fprintf(ficlog,"\n");  { 
   }    int j; 
   */    double f;
     double *xt; 
   free_matrix(a,1,npar,1,npar);   
   free_matrix(y,1,npar,1,npar);    xt=vector(1,ncom); 
   free_vector(x,1,npar);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   free_ivector(indx,1,npar);    f=(*nrfunc)(xt); 
   free_matrix(hess,1,npar,1,npar);    free_vector(xt,1,ncom); 
     return f; 
   } 
 }  
   /*****************brent *************************/
 /*************** hessian matrix ****************/  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 double hessii( double x[], double delta, int theta, double delti[])  { 
 {    int iter; 
   int i;    double a,b,d,etemp;
   int l=1, lmax=20;    double fu,fv,fw,fx;
   double k1,k2;    double ftemp;
   double p2[NPARMAX+1];    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   double res;    double e=0.0; 
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;   
   double fx;    a=(ax < cx ? ax : cx); 
   int k=0,kmax=10;    b=(ax > cx ? ax : cx); 
   double l1;    x=w=v=bx; 
     fw=fv=fx=(*f)(x); 
   fx=func(x);    for (iter=1;iter<=ITMAX;iter++) { 
   for (i=1;i<=npar;i++) p2[i]=x[i];      xm=0.5*(a+b); 
   for(l=0 ; l <=lmax; l++){      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     l1=pow(10,l);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     delts=delt;      printf(".");fflush(stdout);
     for(k=1 ; k <kmax; k=k+1){      fprintf(ficlog,".");fflush(ficlog);
       delt = delta*(l1*k);  #ifdef DEBUG
       p2[theta]=x[theta] +delt;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       k1=func(p2)-fx;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       p2[theta]=x[theta]-delt;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       k2=func(p2)-fx;  #endif
       /*res= (k1-2.0*fx+k2)/delt/delt; */      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        *xmin=x; 
              return fx; 
 #ifdef DEBUG      } 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      ftemp=fu;
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      if (fabs(e) > tol1) { 
 #endif        r=(x-w)*(fx-fv); 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        q=(x-v)*(fx-fw); 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        p=(x-v)*q-(x-w)*r; 
         k=kmax;        q=2.0*(q-r); 
       }        if (q > 0.0) p = -p; 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        q=fabs(q); 
         k=kmax; l=lmax*10.;        etemp=e; 
       }        e=d; 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
         delts=delt;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       }        else { 
     }          d=p/q; 
   }          u=x+d; 
   delti[theta]=delts;          if (u-a < tol2 || b-u < tol2) 
   return res;            d=SIGN(tol1,xm-x); 
          } 
 }      } else { 
         d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 double hessij( double x[], double delti[], int thetai,int thetaj)      } 
 {      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   int i;      fu=(*f)(u); 
   int l=1, l1, lmax=20;      if (fu <= fx) { 
   double k1,k2,k3,k4,res,fx;        if (u >= x) a=x; else b=x; 
   double p2[NPARMAX+1];        SHFT(v,w,x,u) 
   int k;          SHFT(fv,fw,fx,fu) 
           } else { 
   fx=func(x);            if (u < x) a=u; else b=u; 
   for (k=1; k<=2; k++) {            if (fu <= fw || w == x) { 
     for (i=1;i<=npar;i++) p2[i]=x[i];              v=w; 
     p2[thetai]=x[thetai]+delti[thetai]/k;              w=u; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;              fv=fw; 
     k1=func(p2)-fx;              fw=fu; 
              } else if (fu <= fv || v == x || v == w) { 
     p2[thetai]=x[thetai]+delti[thetai]/k;              v=u; 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;              fv=fu; 
     k2=func(p2)-fx;            } 
            } 
     p2[thetai]=x[thetai]-delti[thetai]/k;    } 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    nrerror("Too many iterations in brent"); 
     k3=func(p2)-fx;    *xmin=x; 
      return fx; 
     p2[thetai]=x[thetai]-delti[thetai]/k;  } 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;  
     k4=func(p2)-fx;  /****************** mnbrak ***********************/
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  
 #ifdef DEBUG  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);              double (*func)(double)) 
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  { 
 #endif    double ulim,u,r,q, dum;
   }    double fu; 
   return res;   
 }    *fa=(*func)(*ax); 
     *fb=(*func)(*bx); 
 /************** Inverse of matrix **************/    if (*fb > *fa) { 
 void ludcmp(double **a, int n, int *indx, double *d)      SHFT(dum,*ax,*bx,dum) 
 {        SHFT(dum,*fb,*fa,dum) 
   int i,imax,j,k;        } 
   double big,dum,sum,temp;    *cx=(*bx)+GOLD*(*bx-*ax); 
   double *vv;    *fc=(*func)(*cx); 
      while (*fb > *fc) { 
   vv=vector(1,n);      r=(*bx-*ax)*(*fb-*fc); 
   *d=1.0;      q=(*bx-*cx)*(*fb-*fa); 
   for (i=1;i<=n;i++) {      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     big=0.0;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     for (j=1;j<=n;j++)      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       if ((temp=fabs(a[i][j])) > big) big=temp;      if ((*bx-u)*(u-*cx) > 0.0) { 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        fu=(*func)(u); 
     vv[i]=1.0/big;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   }        fu=(*func)(u); 
   for (j=1;j<=n;j++) {        if (fu < *fc) { 
     for (i=1;i<j;i++) {          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       sum=a[i][j];            SHFT(*fb,*fc,fu,(*func)(u)) 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];            } 
       a[i][j]=sum;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     }        u=ulim; 
     big=0.0;        fu=(*func)(u); 
     for (i=j;i<=n;i++) {      } else { 
       sum=a[i][j];        u=(*cx)+GOLD*(*cx-*bx); 
       for (k=1;k<j;k++)        fu=(*func)(u); 
         sum -= a[i][k]*a[k][j];      } 
       a[i][j]=sum;      SHFT(*ax,*bx,*cx,u) 
       if ( (dum=vv[i]*fabs(sum)) >= big) {        SHFT(*fa,*fb,*fc,fu) 
         big=dum;        } 
         imax=i;  } 
       }  
     }  /*************** linmin ************************/
     if (j != imax) {  
       for (k=1;k<=n;k++) {  int ncom; 
         dum=a[imax][k];  double *pcom,*xicom;
         a[imax][k]=a[j][k];  double (*nrfunc)(double []); 
         a[j][k]=dum;   
       }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       *d = -(*d);  { 
       vv[imax]=vv[j];    double brent(double ax, double bx, double cx, 
     }                 double (*f)(double), double tol, double *xmin); 
     indx[j]=imax;    double f1dim(double x); 
     if (a[j][j] == 0.0) a[j][j]=TINY;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
     if (j != n) {                double *fc, double (*func)(double)); 
       dum=1.0/(a[j][j]);    int j; 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    double xx,xmin,bx,ax; 
     }    double fx,fb,fa;
   }   
   free_vector(vv,1,n);  /* Doesn't work */    ncom=n; 
 ;    pcom=vector(1,n); 
 }    xicom=vector(1,n); 
     nrfunc=func; 
 void lubksb(double **a, int n, int *indx, double b[])    for (j=1;j<=n;j++) { 
 {      pcom[j]=p[j]; 
   int i,ii=0,ip,j;      xicom[j]=xi[j]; 
   double sum;    } 
      ax=0.0; 
   for (i=1;i<=n;i++) {    xx=1.0; 
     ip=indx[i];    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     sum=b[ip];    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     b[ip]=b[i];  #ifdef DEBUG
     if (ii)    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     else if (sum) ii=i;  #endif
     b[i]=sum;    for (j=1;j<=n;j++) { 
   }      xi[j] *= xmin; 
   for (i=n;i>=1;i--) {      p[j] += xi[j]; 
     sum=b[i];    } 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    free_vector(xicom,1,n); 
     b[i]=sum/a[i][i];    free_vector(pcom,1,n); 
   }  } 
 }  
   char *asc_diff_time(long time_sec, char ascdiff[])
 /************ Frequencies ********************/  {
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    long sec_left, days, hours, minutes;
 {  /* Some frequencies */    days = (time_sec) / (60*60*24);
      sec_left = (time_sec) % (60*60*24);
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    hours = (sec_left) / (60*60) ;
   int first;    sec_left = (sec_left) %(60*60);
   double ***freq; /* Frequencies */    minutes = (sec_left) /60;
   double *pp;    sec_left = (sec_left) % (60);
   double pos, k2, dateintsum=0,k2cpt=0;    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
   FILE *ficresp;    return ascdiff;
   char fileresp[FILENAMELENGTH];  }
    
   pp=vector(1,nlstate);  /*************** powell ************************/
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   strcpy(fileresp,"p");              double (*func)(double [])) 
   strcat(fileresp,fileres);  { 
   if((ficresp=fopen(fileresp,"w"))==NULL) {    void linmin(double p[], double xi[], int n, double *fret, 
     printf("Problem with prevalence resultfile: %s\n", fileresp);                double (*func)(double [])); 
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    int i,ibig,j; 
     exit(0);    double del,t,*pt,*ptt,*xit;
   }    double fp,fptt;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    double *xits;
   j1=0;    int niterf, itmp;
    
   j=cptcoveff;    pt=vector(1,n); 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    ptt=vector(1,n); 
     xit=vector(1,n); 
   first=1;    xits=vector(1,n); 
     *fret=(*func)(p); 
   for(k1=1; k1<=j;k1++){    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for(i1=1; i1<=ncodemax[k1];i1++){      rcurr_time = time(NULL);  
       j1++;    for (*iter=1;;++(*iter)) { 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      fp=(*fret); 
         scanf("%d", i);*/      ibig=0; 
       for (i=-1; i<=nlstate+ndeath; i++)        del=0.0; 
         for (jk=-1; jk<=nlstate+ndeath; jk++)        rlast_time=rcurr_time;
           for(m=agemin; m <= agemax+3; m++)      /* (void) gettimeofday(&curr_time,&tzp); */
             freq[i][jk][m]=0;      rcurr_time = time(NULL);  
            curr_time = *localtime(&rcurr_time);
       dateintsum=0;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
       k2cpt=0;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
       for (i=1; i<=imx; i++) {  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
         bool=1;     for (i=1;i<=n;i++) {
         if  (cptcovn>0) {        printf(" %d %.12f",i, p[i]);
           for (z1=1; z1<=cptcoveff; z1++)        fprintf(ficlog," %d %.12lf",i, p[i]);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        fprintf(ficrespow," %.12lf", p[i]);
               bool=0;      }
         }      printf("\n");
         if (bool==1) {      fprintf(ficlog,"\n");
           for(m=firstpass; m<=lastpass; m++){      fprintf(ficrespow,"\n");fflush(ficrespow);
             k2=anint[m][i]+(mint[m][i]/12.);      if(*iter <=3){
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        tml = *localtime(&rcurr_time);
               if(agev[m][i]==0) agev[m][i]=agemax+1;        strcpy(strcurr,asctime(&tml));
               if(agev[m][i]==1) agev[m][i]=agemax+2;  /*       asctime_r(&tm,strcurr); */
               if (m<lastpass) {        rforecast_time=rcurr_time; 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        itmp = strlen(strcurr);
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
               }          strcurr[itmp-1]='\0';
                      printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
                 dateintsum=dateintsum+k2;        for(niterf=10;niterf<=30;niterf+=10){
                 k2cpt++;          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
               }          forecast_time = *localtime(&rforecast_time);
             }  /*      asctime_r(&tmf,strfor); */
           }          strcpy(strfor,asctime(&forecast_time));
         }          itmp = strlen(strfor);
       }          if(strfor[itmp-1]=='\n')
                  strfor[itmp-1]='\0';
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
           fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
       if  (cptcovn>0) {        }
         fprintf(ficresp, "\n#********** Variable ");      }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for (i=1;i<=n;i++) { 
         fprintf(ficresp, "**********\n#");        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       }        fptt=(*fret); 
       for(i=1; i<=nlstate;i++)  #ifdef DEBUG
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        printf("fret=%lf \n",*fret);
       fprintf(ficresp, "\n");        fprintf(ficlog,"fret=%lf \n",*fret);
        #endif
       for(i=(int)agemin; i <= (int)agemax+3; i++){        printf("%d",i);fflush(stdout);
         if(i==(int)agemax+3){        fprintf(ficlog,"%d",i);fflush(ficlog);
           fprintf(ficlog,"Total");        linmin(p,xit,n,fret,func); 
         }else{        if (fabs(fptt-(*fret)) > del) { 
           if(first==1){          del=fabs(fptt-(*fret)); 
             first=0;          ibig=i; 
             printf("See log file for details...\n");        } 
           }  #ifdef DEBUG
           fprintf(ficlog,"Age %d", i);        printf("%d %.12e",i,(*fret));
         }        fprintf(ficlog,"%d %.12e",i,(*fret));
         for(jk=1; jk <=nlstate ; jk++){        for (j=1;j<=n;j++) {
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
             pp[jk] += freq[jk][m][i];          printf(" x(%d)=%.12e",j,xit[j]);
         }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         for(jk=1; jk <=nlstate ; jk++){        }
           for(m=-1, pos=0; m <=0 ; m++)        for(j=1;j<=n;j++) {
             pos += freq[jk][m][i];          printf(" p=%.12e",p[j]);
           if(pp[jk]>=1.e-10){          fprintf(ficlog," p=%.12e",p[j]);
             if(first==1){        }
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        printf("\n");
             }        fprintf(ficlog,"\n");
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  #endif
           }else{      } 
             if(first==1)      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  #ifdef DEBUG
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        int k[2],l;
           }        k[0]=1;
         }        k[1]=-1;
         printf("Max: %.12e",(*func)(p));
         for(jk=1; jk <=nlstate ; jk++){        fprintf(ficlog,"Max: %.12e",(*func)(p));
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        for (j=1;j<=n;j++) {
             pp[jk] += freq[jk][m][i];          printf(" %.12e",p[j]);
         }          fprintf(ficlog," %.12e",p[j]);
         }
         for(jk=1,pos=0; jk <=nlstate ; jk++)        printf("\n");
           pos += pp[jk];        fprintf(ficlog,"\n");
         for(jk=1; jk <=nlstate ; jk++){        for(l=0;l<=1;l++) {
           if(pos>=1.e-5){          for (j=1;j<=n;j++) {
             if(first==1)            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }else{          }
             if(first==1)          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        }
           }  #endif
           if( i <= (int) agemax){  
             if(pos>=1.e-5){  
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        free_vector(xit,1,n); 
               probs[i][jk][j1]= pp[jk]/pos;        free_vector(xits,1,n); 
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        free_vector(ptt,1,n); 
             }        free_vector(pt,1,n); 
             else        return; 
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      } 
           }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
         }      for (j=1;j<=n;j++) { 
                ptt[j]=2.0*p[j]-pt[j]; 
         for(jk=-1; jk <=nlstate+ndeath; jk++)        xit[j]=p[j]-pt[j]; 
           for(m=-1; m <=nlstate+ndeath; m++)        pt[j]=p[j]; 
             if(freq[jk][m][i] !=0 ) {      } 
             if(first==1)      fptt=(*func)(ptt); 
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      if (fptt < fp) { 
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
             }        if (t < 0.0) { 
         if(i <= (int) agemax)          linmin(p,xit,n,fret,func); 
           fprintf(ficresp,"\n");          for (j=1;j<=n;j++) { 
         if(first==1)            xi[j][ibig]=xi[j][n]; 
           printf("Others in log...\n");            xi[j][n]=xit[j]; 
         fprintf(ficlog,"\n");          }
       }  #ifdef DEBUG
     }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   }          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   dateintmean=dateintsum/k2cpt;          for(j=1;j<=n;j++){
              printf(" %.12e",xit[j]);
   fclose(ficresp);            fprintf(ficlog," %.12e",xit[j]);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          }
   free_vector(pp,1,nlstate);          printf("\n");
            fprintf(ficlog,"\n");
   /* End of Freq */  #endif
 }        }
       } 
 /************ Prevalence ********************/    } 
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  } 
 {  /* Some frequencies */  
    /**** Prevalence limit (stable or period prevalence)  ****************/
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  
   double ***freq; /* Frequencies */  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   double *pp;  {
   double pos, k2;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
        matrix by transitions matrix until convergence is reached */
   pp=vector(1,nlstate);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    int i, ii,j,k;
      double min, max, maxmin, maxmax,sumnew=0.;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    /* double **matprod2(); */ /* test */
   j1=0;    double **out, cov[NCOVMAX+1], **pmij();
      double **newm;
   j=cptcoveff;    double agefin, delaymax=50 ; /* Max number of years to converge */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
      for (ii=1;ii<=nlstate+ndeath;ii++)
   for(k1=1; k1<=j;k1++){      for (j=1;j<=nlstate+ndeath;j++){
     for(i1=1; i1<=ncodemax[k1];i1++){        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       j1++;      }
        
       for (i=-1; i<=nlstate+ndeath; i++)       cov[1]=1.;
         for (jk=-1; jk<=nlstate+ndeath; jk++)     
           for(m=agemin; m <= agemax+3; m++)   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
             freq[i][jk][m]=0;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
            newm=savm;
       for (i=1; i<=imx; i++) {      /* Covariates have to be included here again */
         bool=1;      cov[2]=agefin;
         if  (cptcovn>0) {      
           for (z1=1; z1<=cptcoveff; z1++)      for (k=1; k<=cptcovn;k++) {
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
               bool=0;        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
         }      }
         if (bool==1) {      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
           for(m=firstpass; m<=lastpass; m++){      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
             k2=anint[m][i]+(mint[m][i]/12.);      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      
               if(agev[m][i]==0) agev[m][i]=agemax+1;      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
               if(agev[m][i]==1) agev[m][i]=agemax+2;      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
               if (m<lastpass) {      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
                 if (calagedate>0)      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
                 else      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];      savm=oldm;
               }      oldm=newm;
             }      maxmax=0.;
           }      for(j=1;j<=nlstate;j++){
         }        min=1.;
       }        max=0.;
       for(i=(int)agemin; i <= (int)agemax+3; i++){        for(i=1; i<=nlstate; i++) {
         for(jk=1; jk <=nlstate ; jk++){          sumnew=0;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
             pp[jk] += freq[jk][m][i];          prlim[i][j]= newm[i][j]/(1-sumnew);
         }          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
         for(jk=1; jk <=nlstate ; jk++){          max=FMAX(max,prlim[i][j]);
           for(m=-1, pos=0; m <=0 ; m++)          min=FMIN(min,prlim[i][j]);
             pos += freq[jk][m][i];        }
         }        maxmin=max-min;
                maxmax=FMAX(maxmax,maxmin);
         for(jk=1; jk <=nlstate ; jk++){      }
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      if(maxmax < ftolpl){
             pp[jk] += freq[jk][m][i];        return prlim;
         }      }
            }
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];  }
          
         for(jk=1; jk <=nlstate ; jk++){      /*************** transition probabilities ***************/ 
           if( i <= (int) agemax){  
             if(pos>=1.e-5){  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
               probs[i][jk][j1]= pp[jk]/pos;  {
             }    /* According to parameters values stored in x and the covariate's values stored in cov,
           }       computes the probability to be observed in state j being in state i by appying the
         }/* end jk */       model to the ncovmodel covariates (including constant and age).
       }/* end i */       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
     } /* end i1 */       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
   } /* end k1 */       ncth covariate in the global vector x is given by the formula:
        j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
         j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
   free_vector(pp,1,nlstate);       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
         Outputs ps[i][j] the probability to be observed in j being in j according to
 }  /* End of Freq */       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
     */
 /************* Waves Concatenation ***************/    double s1, lnpijopii;
     /*double t34;*/
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    int i,j,j1, nc, ii, jj;
 {  
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      for(i=1; i<= nlstate; i++){
      Death is a valid wave (if date is known).        for(j=1; j<i;j++){
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            /*lnpijopii += param[i][j][nc]*cov[nc];*/
      and mw[mi+1][i]. dh depends on stepm.            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
      */  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
           }
   int i, mi, m;          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
      double sum=0., jmean=0.;*/        }
   int first;        for(j=i+1; j<=nlstate+ndeath;j++){
   int j, k=0,jk, ju, jl;          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   double sum=0.;            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
   first=0;            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   jmin=1e+5;  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
   jmax=-1;          }
   jmean=0.;          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   for(i=1; i<=imx; i++){        }
     mi=0;      }
     m=firstpass;      
     while(s[m][i] <= nlstate){      for(i=1; i<= nlstate; i++){
       if(s[m][i]>=1)        s1=0;
         mw[++mi][i]=m;        for(j=1; j<i; j++){
       if(m >=lastpass)          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
         break;          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
       else        }
         m++;        for(j=i+1; j<=nlstate+ndeath; j++){
     }/* end while */          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
     if (s[m][i] > nlstate){          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
       mi++;     /* Death is another wave */        }
       /* if(mi==0)  never been interviewed correctly before death */        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
          /* Only death is a correct wave */        ps[i][i]=1./(s1+1.);
       mw[mi][i]=m;        /* Computing other pijs */
     }        for(j=1; j<i; j++)
           ps[i][j]= exp(ps[i][j])*ps[i][i];
     wav[i]=mi;        for(j=i+1; j<=nlstate+ndeath; j++)
     if(mi==0){          ps[i][j]= exp(ps[i][j])*ps[i][i];
       if(first==0){        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);      } /* end i */
         first=1;      
       }      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       if(first==1){        for(jj=1; jj<= nlstate+ndeath; jj++){
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);          ps[ii][jj]=0;
       }          ps[ii][ii]=1;
     } /* end mi==0 */        }
   }      }
       
   for(i=1; i<=imx; i++){      
     for(mi=1; mi<wav[i];mi++){      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
       if (stepm <=0)      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
         dh[mi][i]=1;      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
       else{      /*   } */
         if (s[mw[mi+1][i]][i] > nlstate) {      /*   printf("\n "); */
           if (agedc[i] < 2*AGESUP) {      /* } */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      /* printf("\n ");printf("%lf ",cov[2]);*/
           if(j==0) j=1;  /* Survives at least one month after exam */      /*
           k=k+1;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
           if (j >= jmax) jmax=j;        goto end;*/
           if (j <= jmin) jmin=j;      return ps;
           sum=sum+j;  }
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  
           }  /**************** Product of 2 matrices ******************/
         }  
         else{  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  {
           k=k+1;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
           if (j >= jmax) jmax=j;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
           else if (j <= jmin)jmin=j;    /* in, b, out are matrice of pointers which should have been initialized 
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */       before: only the contents of out is modified. The function returns
           sum=sum+j;       a pointer to pointers identical to out */
         }    int i, j, k;
         jk= j/stepm;    for(i=nrl; i<= nrh; i++)
         jl= j -jk*stepm;      for(k=ncolol; k<=ncoloh; k++){
         ju= j -(jk+1)*stepm;        out[i][k]=0.;
         if(jl <= -ju)        for(j=ncl; j<=nch; j++)
           dh[mi][i]=jk;          out[i][k] +=in[i][j]*b[j][k];
         else      }
           dh[mi][i]=jk+1;    return out;
         if(dh[mi][i]==0)  }
           dh[mi][i]=1; /* At least one step */  
       }  
     }  /************* Higher Matrix Product ***************/
   }  
   jmean=sum/k;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  {
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    /* Computes the transition matrix starting at age 'age' over 
  }       'nhstepm*hstepm*stepm' months (i.e. until
        age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 /*********** Tricode ****************************/       nhstepm*hstepm matrices. 
 void tricode(int *Tvar, int **nbcode, int imx)       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 {       (typically every 2 years instead of every month which is too big 
   int Ndum[20],ij=1, k, j, i;       for the memory).
   int cptcode=0;       Model is determined by parameters x and covariates have to be 
   cptcoveff=0;       included manually here. 
    
   for (k=0; k<19; k++) Ndum[k]=0;       */
   for (k=1; k<=7; k++) ncodemax[k]=0;  
     int i, j, d, h, k;
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    double **out, cov[NCOVMAX+1];
     for (i=1; i<=imx; i++) {    double **newm;
       ij=(int)(covar[Tvar[j]][i]);  
       Ndum[ij]++;    /* Hstepm could be zero and should return the unit matrix */
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    for (i=1;i<=nlstate+ndeath;i++)
       if (ij > cptcode) cptcode=ij;      for (j=1;j<=nlstate+ndeath;j++){
     }        oldm[i][j]=(i==j ? 1.0 : 0.0);
         po[i][j][0]=(i==j ? 1.0 : 0.0);
     for (i=0; i<=cptcode; i++) {      }
       if(Ndum[i]!=0) ncodemax[j]++;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     }    for(h=1; h <=nhstepm; h++){
     ij=1;      for(d=1; d <=hstepm; d++){
         newm=savm;
         /* Covariates have to be included here again */
     for (i=1; i<=ncodemax[j]; i++) {        cov[1]=1.;
       for (k=0; k<=19; k++) {        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         if (Ndum[k] != 0) {        for (k=1; k<=cptcovn;k++) 
           nbcode[Tvar[j]][ij]=k;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
                  for (k=1; k<=cptcovage;k++)
           ij++;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         }        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
         if (ij > ncodemax[j]) break;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       }    
     }  
   }          /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
  for (k=0; k<19; k++) Ndum[k]=0;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                      pmij(pmmij,cov,ncovmodel,x,nlstate));
  for (i=1; i<=ncovmodel-2; i++) {        savm=oldm;
    ij=Tvar[i];        oldm=newm;
    Ndum[ij]++;      }
  }      for(i=1; i<=nlstate+ndeath; i++)
         for(j=1;j<=nlstate+ndeath;j++) {
  ij=1;          po[i][j][h]=newm[i][j];
  for (i=1; i<=10; i++) {          /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
    if((Ndum[i]!=0) && (i<=ncovcol)){        }
      Tvaraff[ij]=i;      /*printf("h=%d ",h);*/
      ij++;    } /* end h */
    }  /*     printf("\n H=%d \n",h); */
  }    return po;
    }
  cptcoveff=ij-1;  
 }  
   /*************** log-likelihood *************/
 /*********** Health Expectancies ****************/  double func( double *x)
   {
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    int i, ii, j, k, mi, d, kk;
     double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
 {    double **out;
   /* Health expectancies */    double sw; /* Sum of weights */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    double lli; /* Individual log likelihood */
   double age, agelim, hf;    int s1, s2;
   double ***p3mat,***varhe;    double bbh, survp;
   double **dnewm,**doldm;    long ipmx;
   double *xp;    /*extern weight */
   double **gp, **gm;    /* We are differentiating ll according to initial status */
   double ***gradg, ***trgradg;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   int theta;    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    */
   xp=vector(1,npar);    cov[1]=1.;
   dnewm=matrix(1,nlstate*2,1,npar);  
   doldm=matrix(1,nlstate*2,1,nlstate*2);    for(k=1; k<=nlstate; k++) ll[k]=0.;
    
   fprintf(ficreseij,"# Health expectancies\n");    if(mle==1){
   fprintf(ficreseij,"# Age");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for(i=1; i<=nlstate;i++)        /* Computes the values of the ncovmodel covariates of the model
     for(j=1; j<=nlstate;j++)           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
       fprintf(ficreseij," %1d-%1d (SE)",i,j);           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
   fprintf(ficreseij,"\n");           to be observed in j being in i according to the model.
          */
   if(estepm < stepm){        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
     printf ("Problem %d lower than %d\n",estepm, stepm);          cov[2+k]=covar[Tvar[k]][i];
   }        }
   else  hstepm=estepm;          /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
   /* We compute the life expectancy from trapezoids spaced every estepm months           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
    * This is mainly to measure the difference between two models: for example           has been calculated etc */
    * if stepm=24 months pijx are given only every 2 years and by summing them        for(mi=1; mi<= wav[i]-1; mi++){
    * we are calculating an estimate of the Life Expectancy assuming a linear          for (ii=1;ii<=nlstate+ndeath;ii++)
    * progression inbetween and thus overestimating or underestimating according            for (j=1;j<=nlstate+ndeath;j++){
    * to the curvature of the survival function. If, for the same date, we              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
    * estimate the model with stepm=1 month, we can keep estepm to 24 months              savm[ii][j]=(ii==j ? 1.0 : 0.0);
    * to compare the new estimate of Life expectancy with the same linear            }
    * hypothesis. A more precise result, taking into account a more precise          for(d=0; d<dh[mi][i]; d++){
    * curvature will be obtained if estepm is as small as stepm. */            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   /* For example we decided to compute the life expectancy with the smallest unit */            for (kk=1; kk<=cptcovage;kk++) {
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
      nhstepm is the number of hstepm from age to agelim            }
      nstepm is the number of stepm from age to agelin.            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      Look at hpijx to understand the reason of that which relies in memory size                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      and note for a fixed period like estepm months */            savm=oldm;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            oldm=newm;
      survival function given by stepm (the optimization length). Unfortunately it          } /* end mult */
      means that if the survival funtion is printed only each two years of age and if        
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
      results. So we changed our mind and took the option of the best precision.          /* But now since version 0.9 we anticipate for bias at large stepm.
   */           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */           * (in months) between two waves is not a multiple of stepm, we rounded to 
            * the nearest (and in case of equal distance, to the lowest) interval but now
   agelim=AGESUP;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
     /* nhstepm age range expressed in number of stepm */           * probability in order to take into account the bias as a fraction of the way
     nstepm=(int) rint((agelim-age)*YEARM/stepm);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */           * -stepm/2 to stepm/2 .
     /* if (stepm >= YEARM) hstepm=1;*/           * For stepm=1 the results are the same as for previous versions of Imach.
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */           * For stepm > 1 the results are less biased than in previous versions. 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);          s1=s[mw[mi][i]][i];
     gp=matrix(0,nhstepm,1,nlstate*2);          s2=s[mw[mi+1][i]][i];
     gm=matrix(0,nhstepm,1,nlstate*2);          bbh=(double)bh[mi][i]/(double)stepm; 
           /* bias bh is positive if real duration
     /* Computed by stepm unit matrices, product of hstepm matrices, stored           * is higher than the multiple of stepm and negative otherwise.
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */           */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
            if( s2 > nlstate){ 
             /* i.e. if s2 is a death state and if the date of death is known 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */               then the contribution to the likelihood is the probability to 
                die between last step unit time and current  step unit time, 
     /* Computing Variances of health expectancies */               which is also equal to probability to die before dh 
                minus probability to die before dh-stepm . 
      for(theta=1; theta <=npar; theta++){               In version up to 0.92 likelihood was computed
       for(i=1; i<=npar; i++){          as if date of death was unknown. Death was treated as any other
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          health state: the date of the interview describes the actual state
       }          and not the date of a change in health state. The former idea was
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            to consider that at each interview the state was recorded
            (healthy, disable or death) and IMaCh was corrected; but when we
       cptj=0;          introduced the exact date of death then we should have modified
       for(j=1; j<= nlstate; j++){          the contribution of an exact death to the likelihood. This new
         for(i=1; i<=nlstate; i++){          contribution is smaller and very dependent of the step unit
           cptj=cptj+1;          stepm. It is no more the probability to die between last interview
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){          and month of death but the probability to survive from last
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          interview up to one month before death multiplied by the
           }          probability to die within a month. Thanks to Chris
         }          Jackson for correcting this bug.  Former versions increased
       }          mortality artificially. The bad side is that we add another loop
                which slows down the processing. The difference can be up to 10%
                lower mortality.
       for(i=1; i<=npar; i++)            */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            lli=log(out[s1][s2] - savm[s1][s2]);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
        
       cptj=0;          } else if  (s2==-2) {
       for(j=1; j<= nlstate; j++){            for (j=1,survp=0. ; j<=nlstate; j++) 
         for(i=1;i<=nlstate;i++){              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
           cptj=cptj+1;            /*survp += out[s1][j]; */
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){            lli= log(survp);
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          }
           }          
         }          else if  (s2==-4) { 
       }            for (j=3,survp=0. ; j<=nlstate; j++)  
       for(j=1; j<= nlstate*2; j++)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         for(h=0; h<=nhstepm-1; h++){            lli= log(survp); 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          } 
         }  
      }          else if  (s2==-5) { 
                for (j=1,survp=0. ; j<=2; j++)  
 /* End theta */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             lli= log(survp); 
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);          } 
           
      for(h=0; h<=nhstepm-1; h++)          else{
       for(j=1; j<=nlstate*2;j++)            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         for(theta=1; theta <=npar; theta++)            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           trgradg[h][j][theta]=gradg[h][theta][j];          } 
                /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
      for(i=1;i<=nlstate*2;i++)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       for(j=1;j<=nlstate*2;j++)          ipmx +=1;
         varhe[i][j][(int)age] =0.;          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
      printf("%d|",(int)age);fflush(stdout);        } /* end of wave */
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);      } /* end of individual */
      for(h=0;h<=nhstepm-1;h++){    }  else if(mle==2){
       for(k=0;k<=nhstepm-1;k++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);        for(mi=1; mi<= wav[i]-1; mi++){
         for(i=1;i<=nlstate*2;i++)          for (ii=1;ii<=nlstate+ndeath;ii++)
           for(j=1;j<=nlstate*2;j++)            for (j=1;j<=nlstate+ndeath;j++){
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
     /* Computing expectancies */          for(d=0; d<=dh[mi][i]; d++){
     for(i=1; i<=nlstate;i++)            newm=savm;
       for(j=1; j<=nlstate;j++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){            for (kk=1; kk<=cptcovage;kk++) {
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                      }
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }            savm=oldm;
             oldm=newm;
     fprintf(ficreseij,"%3.0f",age );          } /* end mult */
     cptj=0;        
     for(i=1; i<=nlstate;i++)          s1=s[mw[mi][i]][i];
       for(j=1; j<=nlstate;j++){          s2=s[mw[mi+1][i]][i];
         cptj++;          bbh=(double)bh[mi][i]/(double)stepm; 
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       }          ipmx +=1;
     fprintf(ficreseij,"\n");          sw += weight[i];
              ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     free_matrix(gm,0,nhstepm,1,nlstate*2);        } /* end of wave */
     free_matrix(gp,0,nhstepm,1,nlstate*2);      } /* end of individual */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    }  else if(mle==3){  /* exponential inter-extrapolation */
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
   printf("\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
   fprintf(ficlog,"\n");            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_vector(xp,1,npar);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_matrix(dnewm,1,nlstate*2,1,npar);            }
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);          for(d=0; d<dh[mi][i]; d++){
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);            newm=savm;
 }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
 /************ Variance ******************/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)            }
 {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   /* Variance of health expectancies */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            savm=oldm;
   /* double **newm;*/            oldm=newm;
   double **dnewm,**doldm;          } /* end mult */
   double **dnewmp,**doldmp;        
   int i, j, nhstepm, hstepm, h, nstepm ;          s1=s[mw[mi][i]][i];
   int k, cptcode;          s2=s[mw[mi+1][i]][i];
   double *xp;          bbh=(double)bh[mi][i]/(double)stepm; 
   double **gp, **gm;  /* for var eij */          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   double ***gradg, ***trgradg; /*for var eij */          ipmx +=1;
   double **gradgp, **trgradgp; /* for var p point j */          sw += weight[i];
   double *gpp, *gmp; /* for var p point j */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */        } /* end of wave */
   double ***p3mat;      } /* end of individual */
   double age,agelim, hf;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
   int theta;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   char digit[4];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   char digitp[16];        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   char fileresprobmorprev[FILENAMELENGTH];            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   if(popbased==1)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     strcpy(digitp,"-populbased-");            }
   else          for(d=0; d<dh[mi][i]; d++){
     strcpy(digitp,"-stablbased-");            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   strcpy(fileresprobmorprev,"prmorprev");            for (kk=1; kk<=cptcovage;kk++) {
   sprintf(digit,"%-d",ij);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/            }
   strcat(fileresprobmorprev,digit); /* Tvar to be done */          
   strcat(fileresprobmorprev,digitp); /* Popbased or not */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   strcat(fileresprobmorprev,fileres);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {            savm=oldm;
     printf("Problem with resultfile: %s\n", fileresprobmorprev);            oldm=newm;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);          } /* end mult */
   }        
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);          s1=s[mw[mi][i]][i];
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);          s2=s[mw[mi+1][i]][i];
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");          if( s2 > nlstate){ 
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);            lli=log(out[s1][s2] - savm[s1][s2]);
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){          }else{
     fprintf(ficresprobmorprev," p.%-d SE",j);            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     for(i=1; i<=nlstate;i++)          }
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);          ipmx +=1;
   }            sw += weight[i];
   fprintf(ficresprobmorprev,"\n");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);        } /* end of wave */
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);      } /* end of individual */
     exit(0);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   else{        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     fprintf(ficgp,"\n# Routine varevsij");        for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {            for (j=1;j<=nlstate+ndeath;j++){
     printf("Problem with html file: %s\n", optionfilehtm);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     exit(0);            }
   }          for(d=0; d<dh[mi][i]; d++){
   else{            newm=savm;
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");          
   fprintf(ficresvij,"# Age");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for(i=1; i<=nlstate;i++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(j=1; j<=nlstate;j++)            savm=oldm;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);            oldm=newm;
   fprintf(ficresvij,"\n");          } /* end mult */
         
   xp=vector(1,npar);          s1=s[mw[mi][i]][i];
   dnewm=matrix(1,nlstate,1,npar);          s2=s[mw[mi+1][i]][i];
   doldm=matrix(1,nlstate,1,nlstate);          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);          ipmx +=1;
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   gpp=vector(nlstate+1,nlstate+ndeath);        } /* end of wave */
   gmp=vector(nlstate+1,nlstate+ndeath);      } /* end of individual */
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    } /* End of if */
      for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   if(estepm < stepm){    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     printf ("Problem %d lower than %d\n",estepm, stepm);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   }    return -l;
   else  hstepm=estepm;    }
   /* For example we decided to compute the life expectancy with the smallest unit */  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  /*************** log-likelihood *************/
      nhstepm is the number of hstepm from age to agelim  double funcone( double *x)
      nstepm is the number of stepm from age to agelin.  {
      Look at hpijx to understand the reason of that which relies in memory size    /* Same as likeli but slower because of a lot of printf and if */
      and note for a fixed period like k years */    int i, ii, j, k, mi, d, kk;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
      survival function given by stepm (the optimization length). Unfortunately it    double **out;
      means that if the survival funtion is printed only each two years of age and if    double lli; /* Individual log likelihood */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    double llt;
      results. So we changed our mind and took the option of the best precision.    int s1, s2;
   */    double bbh, survp;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    /*extern weight */
   agelim = AGESUP;    /* We are differentiating ll according to initial status */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    /*for(i=1;i<imx;i++) 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      printf(" %d\n",s[4][i]);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    cov[1]=1.;
     gp=matrix(0,nhstepm,1,nlstate);  
     gm=matrix(0,nhstepm,1,nlstate);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(theta=1; theta <=npar; theta++){      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(i=1; i<=npar; i++){ /* Computes gradient */      for(mi=1; mi<= wav[i]-1; mi++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        for (ii=1;ii<=nlstate+ndeath;ii++)
       }          for (j=1;j<=nlstate+ndeath;j++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
           }
       if (popbased==1) {        for(d=0; d<dh[mi][i]; d++){
         for(i=1; i<=nlstate;i++)          newm=savm;
           prlim[i][i]=probs[(int)age][i][ij];          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }          for (kk=1; kk<=cptcovage;kk++) {
              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(j=1; j<= nlstate; j++){          }
         for(h=0; h<=nhstepm; h++){          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         }          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
       }          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
       /* This for computing forces of mortality (h=1)as a weighted average */          savm=oldm;
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){          oldm=newm;
         for(i=1; i<= nlstate; i++)        } /* end mult */
           gpp[j] += prlim[i][i]*p3mat[i][j][1];        
       }            s1=s[mw[mi][i]][i];
       /* end force of mortality */        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
       for(i=1; i<=npar; i++) /* Computes gradient */        /* bias is positive if real duration
         xp[i] = x[i] - (i==theta ?delti[theta]:0);         * is higher than the multiple of stepm and negative otherwise.
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);           */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
            lli=log(out[s1][s2] - savm[s1][s2]);
       if (popbased==1) {        } else if  (s2==-2) {
         for(i=1; i<=nlstate;i++)          for (j=1,survp=0. ; j<=nlstate; j++) 
           prlim[i][i]=probs[(int)age][i][ij];            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       }          lli= log(survp);
         }else if (mle==1){
       for(j=1; j<= nlstate; j++){          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         for(h=0; h<=nhstepm; h++){        } else if(mle==2){
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];        } else if(mle==3){  /* exponential inter-extrapolation */
         }          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       }        } else if (mle==4){  /* mle=4 no inter-extrapolation */
       /* This for computing force of mortality (h=1)as a weighted average */          lli=log(out[s1][s2]); /* Original formula */
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){        } else{  /* mle=0 back to 1 */
         for(i=1; i<= nlstate; i++)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
           gmp[j] += prlim[i][i]*p3mat[i][j][1];          /*lli=log(out[s1][s2]); */ /* Original formula */
       }            } /* End of if */
       /* end force of mortality */        ipmx +=1;
         sw += weight[i];
       for(j=1; j<= nlstate; j++) /* vareij */        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(h=0; h<=nhstepm; h++){        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        if(globpr){
         }          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */   %11.6f %11.6f %11.6f ", \
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       }                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     } /* End theta */            llt +=ll[k]*gipmx/gsw;
             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */          }
           fprintf(ficresilk," %10.6f\n", -llt);
     for(h=0; h<=nhstepm; h++) /* veij */        }
       for(j=1; j<=nlstate;j++)      } /* end of wave */
         for(theta=1; theta <=npar; theta++)    } /* end of individual */
           trgradg[h][j][theta]=gradg[h][theta][j];    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       for(theta=1; theta <=npar; theta++)    if(globpr==0){ /* First time we count the contributions and weights */
         trgradgp[j][theta]=gradgp[theta][j];      gipmx=ipmx;
       gsw=sw;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    }
     for(i=1;i<=nlstate;i++)    return -l;
       for(j=1;j<=nlstate;j++)  }
         vareij[i][j][(int)age] =0.;  
   
     for(h=0;h<=nhstepm;h++){  /*************** function likelione ***********/
       for(k=0;k<=nhstepm;k++){  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  {
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    /* This routine should help understanding what is done with 
         for(i=1;i<=nlstate;i++)       the selection of individuals/waves and
           for(j=1;j<=nlstate;j++)       to check the exact contribution to the likelihood.
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;       Plotting could be done.
       }     */
     }    int k;
   
     /* pptj */    if(*globpri !=0){ /* Just counts and sums, no printings */
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);      strcpy(fileresilk,"ilk"); 
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);      strcat(fileresilk,fileres);
     for(j=nlstate+1;j<=nlstate+ndeath;j++)      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       for(i=nlstate+1;i<=nlstate+ndeath;i++)        printf("Problem with resultfile: %s\n", fileresilk);
         varppt[j][i]=doldmp[j][i];        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     /* end ppptj */      }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);        fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
        /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     if (popbased==1) {      for(k=1; k<=nlstate; k++) 
       for(i=1; i<=nlstate;i++)        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
         prlim[i][i]=probs[(int)age][i][ij];      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }    }
      
     /* This for computing force of mortality (h=1)as a weighted average */    *fretone=(*funcone)(p);
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){    if(*globpri !=0){
       for(i=1; i<= nlstate; i++)      fclose(ficresilk);
         gmp[j] += prlim[i][i]*p3mat[i][j][1];      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     }          fflush(fichtm); 
     /* end force of mortality */    } 
     return;
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);  }
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){  
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));  
       for(i=1; i<=nlstate;i++){  /*********** Maximum Likelihood Estimation ***************/
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);  
       }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     }  {
     fprintf(ficresprobmorprev,"\n");    int i,j, iter;
     double **xi;
     fprintf(ficresvij,"%.0f ",age );    double fret;
     for(i=1; i<=nlstate;i++)    double fretone; /* Only one call to likelihood */
       for(j=1; j<=nlstate;j++){    /*  char filerespow[FILENAMELENGTH];*/
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    xi=matrix(1,npar,1,npar);
       }    for (i=1;i<=npar;i++)
     fprintf(ficresvij,"\n");      for (j=1;j<=npar;j++)
     free_matrix(gp,0,nhstepm,1,nlstate);        xi[i][j]=(i==j ? 1.0 : 0.0);
     free_matrix(gm,0,nhstepm,1,nlstate);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    strcpy(filerespow,"pow"); 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    strcat(filerespow,fileres);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   } /* End age */      printf("Problem with resultfile: %s\n", filerespow);
   free_vector(gpp,nlstate+1,nlstate+ndeath);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   free_vector(gmp,nlstate+1,nlstate+ndeath);    }
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/    for (i=1;i<=nlstate;i++)
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");      for(j=1;j<=nlstate+ndeath;j++)
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");    fprintf(ficrespow,"\n");
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);  
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);    powell(p,xi,npar,ftol,&iter,&fret,func);
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);  
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);    free_matrix(xi,1,npar,1,npar);
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,digitp,digit);    fclose(ficrespow);
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
 */    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   
   free_vector(xp,1,npar);  }
   free_matrix(doldm,1,nlstate,1,nlstate);  
   free_matrix(dnewm,1,nlstate,1,npar);  /**** Computes Hessian and covariance matrix ***/
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);  {
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    double  **a,**y,*x,pd;
   fclose(ficresprobmorprev);    double **hess;
   fclose(ficgp);    int i, j,jk;
   fclose(fichtm);    int *indx;
   
 }    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
 /************ Variance of prevlim ******************/    void lubksb(double **a, int npar, int *indx, double b[]) ;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    void ludcmp(double **a, int npar, int *indx, double *d) ;
 {    double gompertz(double p[]);
   /* Variance of prevalence limit */    hess=matrix(1,npar,1,npar);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;    printf("\nCalculation of the hessian matrix. Wait...\n");
   double **dnewm,**doldm;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   int i, j, nhstepm, hstepm;    for (i=1;i<=npar;i++){
   int k, cptcode;      printf("%d",i);fflush(stdout);
   double *xp;      fprintf(ficlog,"%d",i);fflush(ficlog);
   double *gp, *gm;     
   double **gradg, **trgradg;       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   double age,agelim;      
   int theta;      /*  printf(" %f ",p[i]);
              printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    }
   fprintf(ficresvpl,"# Age");    
   for(i=1; i<=nlstate;i++)    for (i=1;i<=npar;i++) {
       fprintf(ficresvpl," %1d-%1d",i,i);      for (j=1;j<=npar;j++)  {
   fprintf(ficresvpl,"\n");        if (j>i) { 
           printf(".%d%d",i,j);fflush(stdout);
   xp=vector(1,npar);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   dnewm=matrix(1,nlstate,1,npar);          hess[i][j]=hessij(p,delti,i,j,func,npar);
   doldm=matrix(1,nlstate,1,nlstate);          
            hess[j][i]=hess[i][j];    
   hstepm=1*YEARM; /* Every year of age */          /*printf(" %lf ",hess[i][j]);*/
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        }
   agelim = AGESUP;      }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    printf("\n");
     if (stepm >= YEARM) hstepm=1;    fprintf(ficlog,"\n");
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
     gradg=matrix(1,npar,1,nlstate);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     gp=vector(1,nlstate);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     gm=vector(1,nlstate);    
     a=matrix(1,npar,1,npar);
     for(theta=1; theta <=npar; theta++){    y=matrix(1,npar,1,npar);
       for(i=1; i<=npar; i++){ /* Computes gradient */    x=vector(1,npar);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    indx=ivector(1,npar);
       }    for (i=1;i<=npar;i++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       for(i=1;i<=nlstate;i++)    ludcmp(a,npar,indx,&pd);
         gp[i] = prlim[i][i];  
        for (j=1;j<=npar;j++) {
       for(i=1; i<=npar; i++) /* Computes gradient */      for (i=1;i<=npar;i++) x[i]=0;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      x[j]=1;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      lubksb(a,npar,indx,x);
       for(i=1;i<=nlstate;i++)      for (i=1;i<=npar;i++){ 
         gm[i] = prlim[i][i];        matcov[i][j]=x[i];
       }
       for(i=1;i<=nlstate;i++)    }
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  
     } /* End theta */    printf("\n#Hessian matrix#\n");
     fprintf(ficlog,"\n#Hessian matrix#\n");
     trgradg =matrix(1,nlstate,1,npar);    for (i=1;i<=npar;i++) { 
       for (j=1;j<=npar;j++) { 
     for(j=1; j<=nlstate;j++)        printf("%.3e ",hess[i][j]);
       for(theta=1; theta <=npar; theta++)        fprintf(ficlog,"%.3e ",hess[i][j]);
         trgradg[j][theta]=gradg[theta][j];      }
       printf("\n");
     for(i=1;i<=nlstate;i++)      fprintf(ficlog,"\n");
       varpl[i][(int)age] =0.;    }
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    /* Recompute Inverse */
     for(i=1;i<=nlstate;i++)    for (i=1;i<=npar;i++)
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     ludcmp(a,npar,indx,&pd);
     fprintf(ficresvpl,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)    /*  printf("\n#Hessian matrix recomputed#\n");
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  
     fprintf(ficresvpl,"\n");    for (j=1;j<=npar;j++) {
     free_vector(gp,1,nlstate);      for (i=1;i<=npar;i++) x[i]=0;
     free_vector(gm,1,nlstate);      x[j]=1;
     free_matrix(gradg,1,npar,1,nlstate);      lubksb(a,npar,indx,x);
     free_matrix(trgradg,1,nlstate,1,npar);      for (i=1;i<=npar;i++){ 
   } /* End age */        y[i][j]=x[i];
         printf("%.3e ",y[i][j]);
   free_vector(xp,1,npar);        fprintf(ficlog,"%.3e ",y[i][j]);
   free_matrix(doldm,1,nlstate,1,npar);      }
   free_matrix(dnewm,1,nlstate,1,nlstate);      printf("\n");
       fprintf(ficlog,"\n");
 }    }
     */
 /************ Variance of one-step probabilities  ******************/  
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    free_matrix(a,1,npar,1,npar);
 {    free_matrix(y,1,npar,1,npar);
   int i, j=0,  i1, k1, l1, t, tj;    free_vector(x,1,npar);
   int k2, l2, j1,  z1;    free_ivector(indx,1,npar);
   int k=0,l, cptcode;    free_matrix(hess,1,npar,1,npar);
   int first=1, first1;  
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;  
   double **dnewm,**doldm;  }
   double *xp;  
   double *gp, *gm;  /*************** hessian matrix ****************/
   double **gradg, **trgradg;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   double **mu;  {
   double age,agelim, cov[NCOVMAX];    int i;
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    int l=1, lmax=20;
   int theta;    double k1,k2;
   char fileresprob[FILENAMELENGTH];    double p2[MAXPARM+1]; /* identical to x */
   char fileresprobcov[FILENAMELENGTH];    double res;
   char fileresprobcor[FILENAMELENGTH];    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     double fx;
   double ***varpij;    int k=0,kmax=10;
     double l1;
   strcpy(fileresprob,"prob");  
   strcat(fileresprob,fileres);    fx=func(x);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    for (i=1;i<=npar;i++) p2[i]=x[i];
     printf("Problem with resultfile: %s\n", fileresprob);    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);      l1=pow(10,l);
   }      delts=delt;
   strcpy(fileresprobcov,"probcov");      for(k=1 ; k <kmax; k=k+1){
   strcat(fileresprobcov,fileres);        delt = delta*(l1*k);
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {        p2[theta]=x[theta] +delt;
     printf("Problem with resultfile: %s\n", fileresprobcov);        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);        p2[theta]=x[theta]-delt;
   }        k2=func(p2)-fx;
   strcpy(fileresprobcor,"probcor");        /*res= (k1-2.0*fx+k2)/delt/delt; */
   strcat(fileresprobcor,fileres);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {        
     printf("Problem with resultfile: %s\n", fileresprobcor);  #ifdef DEBUGHESS
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);  #endif
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);          k=kmax;
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        }
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
            k=kmax; l=lmax*10.;
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");        }
   fprintf(ficresprob,"# Age");        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");          delts=delt;
   fprintf(ficresprobcov,"# Age");        }
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");      }
   fprintf(ficresprobcov,"# Age");    }
     delti[theta]=delts;
     return res; 
   for(i=1; i<=nlstate;i++)    
     for(j=1; j<=(nlstate+ndeath);j++){  }
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);  
       fprintf(ficresprobcov," p%1d-%1d ",i,j);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
       fprintf(ficresprobcor," p%1d-%1d ",i,j);  {
     }      int i;
   fprintf(ficresprob,"\n");    int l=1, l1, lmax=20;
   fprintf(ficresprobcov,"\n");    double k1,k2,k3,k4,res,fx;
   fprintf(ficresprobcor,"\n");    double p2[MAXPARM+1];
   xp=vector(1,npar);    int k;
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    fx=func(x);
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    for (k=1; k<=2; k++) {
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);      for (i=1;i<=npar;i++) p2[i]=x[i];
   first=1;      p2[thetai]=x[thetai]+delti[thetai]/k;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);      k1=func(p2)-fx;
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);    
     exit(0);      p2[thetai]=x[thetai]+delti[thetai]/k;
   }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   else{      k2=func(p2)-fx;
     fprintf(ficgp,"\n# Routine varprob");    
   }      p2[thetai]=x[thetai]-delti[thetai]/k;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     printf("Problem with html file: %s\n", optionfilehtm);      k3=func(p2)-fx;
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    
     exit(0);      p2[thetai]=x[thetai]-delti[thetai]/k;
   }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   else{      k4=func(p2)-fx;
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     fprintf(fichtm,"\n");  #ifdef DEBUG
       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");  #endif
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");    }
     return res;
   }  }
   
    /************** Inverse of matrix **************/
   cov[1]=1;  void ludcmp(double **a, int n, int *indx, double *d) 
   tj=cptcoveff;  { 
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}    int i,imax,j,k; 
   j1=0;    double big,dum,sum,temp; 
   for(t=1; t<=tj;t++){    double *vv; 
     for(i1=1; i1<=ncodemax[t];i1++){   
       j1++;    vv=vector(1,n); 
          *d=1.0; 
       if  (cptcovn>0) {    for (i=1;i<=n;i++) { 
         fprintf(ficresprob, "\n#********** Variable ");      big=0.0; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for (j=1;j<=n;j++) 
         fprintf(ficresprob, "**********\n#");        if ((temp=fabs(a[i][j])) > big) big=temp; 
         fprintf(ficresprobcov, "\n#********** Variable ");      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      vv[i]=1.0/big; 
         fprintf(ficresprobcov, "**********\n#");    } 
            for (j=1;j<=n;j++) { 
         fprintf(ficgp, "\n#********** Variable ");      for (i=1;i<j;i++) { 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        sum=a[i][j]; 
         fprintf(ficgp, "**********\n#");        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
                a[i][j]=sum; 
              } 
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");      big=0.0; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for (i=j;i<=n;i++) { 
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");        sum=a[i][j]; 
                for (k=1;k<j;k++) 
         fprintf(ficresprobcor, "\n#********** Variable ");              sum -= a[i][k]*a[k][j]; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        a[i][j]=sum; 
         fprintf(ficgp, "**********\n#");            if ( (dum=vv[i]*fabs(sum)) >= big) { 
       }          big=dum; 
                imax=i; 
       for (age=bage; age<=fage; age ++){        } 
         cov[2]=age;      } 
         for (k=1; k<=cptcovn;k++) {      if (j != imax) { 
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];        for (k=1;k<=n;k++) { 
         }          dum=a[imax][k]; 
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          a[imax][k]=a[j][k]; 
         for (k=1; k<=cptcovprod;k++)          a[j][k]=dum; 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        } 
                *d = -(*d); 
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));        vv[imax]=vv[j]; 
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      } 
         gp=vector(1,(nlstate)*(nlstate+ndeath));      indx[j]=imax; 
         gm=vector(1,(nlstate)*(nlstate+ndeath));      if (a[j][j] == 0.0) a[j][j]=TINY; 
          if (j != n) { 
         for(theta=1; theta <=npar; theta++){        dum=1.0/(a[j][j]); 
           for(i=1; i<=npar; i++)        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
             xp[i] = x[i] + (i==theta ?delti[theta]:0);      } 
              } 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    free_vector(vv,1,n);  /* Doesn't work */
            ;
           k=0;  } 
           for(i=1; i<= (nlstate); i++){  
             for(j=1; j<=(nlstate+ndeath);j++){  void lubksb(double **a, int n, int *indx, double b[]) 
               k=k+1;  { 
               gp[k]=pmmij[i][j];    int i,ii=0,ip,j; 
             }    double sum; 
           }   
              for (i=1;i<=n;i++) { 
           for(i=1; i<=npar; i++)      ip=indx[i]; 
             xp[i] = x[i] - (i==theta ?delti[theta]:0);      sum=b[ip]; 
          b[ip]=b[i]; 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      if (ii) 
           k=0;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
           for(i=1; i<=(nlstate); i++){      else if (sum) ii=i; 
             for(j=1; j<=(nlstate+ndeath);j++){      b[i]=sum; 
               k=k+1;    } 
               gm[k]=pmmij[i][j];    for (i=n;i>=1;i--) { 
             }      sum=b[i]; 
           }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
            b[i]=sum/a[i][i]; 
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)    } 
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    } 
         }  
   void pstamp(FILE *fichier)
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)  {
           for(theta=1; theta <=npar; theta++)    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
             trgradg[j][theta]=gradg[theta][j];  }
          
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);  /************ Frequencies ********************/
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
          {  /* Some frequencies */
         pmij(pmmij,cov,ncovmodel,x,nlstate);    
            int i, m, jk, k1,i1, j1, bool, z1,j;
         k=0;    int first;
         for(i=1; i<=(nlstate); i++){    double ***freq; /* Frequencies */
           for(j=1; j<=(nlstate+ndeath);j++){    double *pp, **prop;
             k=k+1;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
             mu[k][(int) age]=pmmij[i][j];    char fileresp[FILENAMELENGTH];
           }    
         }    pp=vector(1,nlstate);
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    prop=matrix(1,nlstate,iagemin,iagemax+3);
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    strcpy(fileresp,"p");
             varpij[i][j][(int)age] = doldm[i][j];    strcat(fileresp,fileres);
     if((ficresp=fopen(fileresp,"w"))==NULL) {
         /*printf("\n%d ",(int)age);      printf("Problem with prevalence resultfile: %s\n", fileresp);
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      exit(0);
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    }
      }*/    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     j1=0;
         fprintf(ficresprob,"\n%d ",(int)age);    
         fprintf(ficresprobcov,"\n%d ",(int)age);    j=cptcoveff;
         fprintf(ficresprobcor,"\n%d ",(int)age);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)    first=1;
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));  
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);    /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);    /*    j1++;
         }  */
         i=0;    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
         for (k=1; k<=(nlstate);k++){        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           for (l=1; l<=(nlstate+ndeath);l++){          scanf("%d", i);*/
             i=i++;        for (i=-5; i<=nlstate+ndeath; i++)  
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);            for(m=iagemin; m <= iagemax+3; m++)
             for (j=1; j<=i;j++){              freq[i][jk][m]=0;
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);        
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));        for (i=1; i<=nlstate; i++)  
             }          for(m=iagemin; m <= iagemax+3; m++)
           }            prop[i][m]=0;
         }/* end of loop for state */        
       } /* end of loop for age */        dateintsum=0;
         k2cpt=0;
       /* Confidence intervalle of pij  */        for (i=1; i<=imx; i++) {
       /*          bool=1;
       fprintf(ficgp,"\nset noparametric;unset label");          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");            for (z1=1; z1<=cptcoveff; z1++)       
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);                bool=0;
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
       */                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
                 /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/              } 
       first1=1;          }
       for (k2=1; k2<=(nlstate);k2++){   
         for (l2=1; l2<=(nlstate+ndeath);l2++){          if (bool==1){
           if(l2==k2) continue;            for(m=firstpass; m<=lastpass; m++){
           j=(k2-1)*(nlstate+ndeath)+l2;              k2=anint[m][i]+(mint[m][i]/12.);
           for (k1=1; k1<=(nlstate);k1++){              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
             for (l1=1; l1<=(nlstate+ndeath);l1++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
               if(l1==k1) continue;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
               i=(k1-1)*(nlstate+ndeath)+l1;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
               if(i<=j) continue;                if (m<lastpass) {
               for (age=bage; age<=fage; age ++){                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                 if ((int)age %5==0){                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;                }
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;                
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   mu1=mu[i][(int) age]/stepm*YEARM ;                  dateintsum=dateintsum+k2;
                   mu2=mu[j][(int) age]/stepm*YEARM;                  k2cpt++;
                   c12=cv12/sqrt(v1*v2);                }
                   /* Computing eigen value of matrix of covariance */                /*}*/
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;            }
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;          }
                   /* Eigen vectors */        } /* end i */
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));         
                   /*v21=sqrt(1.-v11*v11); *//* error */        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
                   v21=(lc1-v1)/cv12*v11;        pstamp(ficresp);
                   v12=-v21;        if  (cptcovn>0) {
                   v22=v11;          fprintf(ficresp, "\n#********** Variable "); 
                   tnalp=v21/v11;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   if(first1==1){          fprintf(ficresp, "**********\n#");
                     first1=0;          fprintf(ficlog, "\n#********** Variable "); 
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   }          fprintf(ficlog, "**********\n#");
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);        }
                   /*printf(fignu*/        for(i=1; i<=nlstate;i++) 
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */        fprintf(ficresp, "\n");
                   if(first==1){        
                     first=0;        for(i=iagemin; i <= iagemax+3; i++){
                     fprintf(ficgp,"\nset parametric;unset label");          if(i==iagemax+3){
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);            fprintf(ficlog,"Total");
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          }else{
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);            if(first==1){
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);              first=0;
                     fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);              printf("See log file for details...\n");
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);            }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);            fprintf(ficlog,"Age %d", i);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);          }
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\          for(jk=1; jk <=nlstate ; jk++){
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));              pp[jk] += freq[jk][m][i]; 
                   }else{          }
                     first=0;          for(jk=1; jk <=nlstate ; jk++){
                     fprintf(fichtm," %d (%.3f),",(int) age, c12);            for(m=-1, pos=0; m <=0 ; m++)
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);              pos += freq[jk][m][i];
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);            if(pp[jk]>=1.e-10){
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\              if(first==1){
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));              }
                   }/* if first */              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                 } /* age mod 5 */            }else{
               } /* end loop age */              if(first==1)
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               first=1;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             } /*l12 */            }
           } /* k12 */          }
         } /*l1 */  
       }/* k1 */          for(jk=1; jk <=nlstate ; jk++){
     } /* loop covariates */            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);              pp[jk] += freq[jk][m][i];
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          }       
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);            pos += pp[jk];
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            posprop += prop[jk][i];
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          }
   }          for(jk=1; jk <=nlstate ; jk++){
   free_vector(xp,1,npar);            if(pos>=1.e-5){
   fclose(ficresprob);              if(first==1)
   fclose(ficresprobcov);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   fclose(ficresprobcor);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   fclose(ficgp);            }else{
   fclose(fichtm);              if(first==1)
 }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             }
 /******************* Printing html file ***********/            if( i <= iagemax){
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \              if(pos>=1.e-5){
                   int lastpass, int stepm, int weightopt, char model[],\                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\                /*probs[i][jk][j1]= pp[jk]/pos;*/
                   int popforecast, int estepm ,\                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                   double jprev1, double mprev1,double anprev1, \              }
                   double jprev2, double mprev2,double anprev2){              else
   int jj1, k1, i1, cpt;                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   /*char optionfilehtm[FILENAMELENGTH];*/            }
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {          }
     printf("Problem with %s \n",optionfilehtm), exit(0);          
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);          for(jk=-1; jk <=nlstate+ndeath; jk++)
   }            for(m=-1; m <=nlstate+ndeath; m++)
               if(freq[jk][m][i] !=0 ) {
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n              if(first==1)
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n              }
  - Life expectancies by age and initial health status (estepm=%2d months):          if(i <= iagemax)
    <a href=\"e%s\">e%s</a> <br>\n</li>", \            fprintf(ficresp,"\n");
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);          if(first==1)
             printf("Others in log...\n");
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");          fprintf(ficlog,"\n");
         }
  m=cptcoveff;        /*}*/
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    }
     dateintmean=dateintsum/k2cpt; 
  jj1=0;   
  for(k1=1; k1<=m;k1++){    fclose(ficresp);
    for(i1=1; i1<=ncodemax[k1];i1++){    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
      jj1++;    free_vector(pp,1,nlstate);
      if (cptcovn > 0) {    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    /* End of Freq */
        for (cpt=1; cpt<=cptcoveff;cpt++)  }
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  /************ Prevalence ********************/
      }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
      /* Pij */  {  
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);           in each health status at the date of interview (if between dateprev1 and dateprev2).
      /* Quasi-incidences */       We still use firstpass and lastpass as another selection.
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>    */
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);   
        /* Stable prevalence in each health state */    int i, m, jk, k1, i1, j1, bool, z1,j;
        for(cpt=1; cpt<nlstate;cpt++){    double ***freq; /* Frequencies */
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>    double *pp, **prop;
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    double pos,posprop; 
        }    double  y2; /* in fractional years */
      for(cpt=1; cpt<=nlstate;cpt++) {    int iagemin, iagemax;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>    int first; /** to stop verbosity which is redirected to log file */
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
      }    iagemin= (int) agemin;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    iagemax= (int) agemax;
 health expectancies in states (1) and (2): e%s%d.png<br>    /*pp=vector(1,nlstate);*/
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
    } /* end i1 */    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
  }/* End k1 */    j1=0;
  fprintf(fichtm,"</ul>");    
     /*j=cptcoveff;*/
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n    
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    first=1;
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n      /*for(i1=1; i1<=ncodemax[k1];i1++){
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n        j1++;*/
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n        
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n        for (i=1; i<=nlstate; i++)  
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);          for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0.0;
  if(popforecast==1) fprintf(fichtm,"\n       
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n        for (i=1; i<=imx; i++) { /* Each individual */
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n          bool=1;
         <br>",fileres,fileres,fileres,fileres);          if  (cptcovn>0) {
  else            for (z1=1; z1<=cptcoveff; z1++) 
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");                bool=0;
           } 
  m=cptcoveff;          if (bool==1) { 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
  jj1=0;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
  for(k1=1; k1<=m;k1++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
    for(i1=1; i1<=ncodemax[k1];i1++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
      jj1++;                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
      if (cptcovn > 0) {                if (s[m][i]>0 && s[m][i]<=nlstate) { 
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
        for (cpt=1; cpt<=cptcoveff;cpt++)                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);                  prop[s[m][i]][iagemax+3] += weight[i]; 
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");                } 
      }              }
      for(cpt=1; cpt<=nlstate;cpt++) {            } /* end selection of waves */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident          }
 interval) in state (%d): v%s%d%d.png <br>        }
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          for(i=iagemin; i <= iagemax+3; i++){  
      }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
    } /* end i1 */            posprop += prop[jk][i]; 
  }/* End k1 */          } 
  fprintf(fichtm,"</ul>");          
 fclose(fichtm);          for(jk=1; jk <=nlstate ; jk++){     
 }            if( i <=  iagemax){ 
               if(posprop>=1.e-5){ 
 /******************* Gnuplot file **************/                probs[i][jk][j1]= prop[jk][i]/posprop;
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){              } else{
                 if(first==1){
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;                  first=0;
   int ng;                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {                }
     printf("Problem with file %s",optionfilegnuplot);              }
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);            } 
   }          }/* end jk */ 
         }/* end i */ 
 #ifdef windows      /*} *//* end i1 */
     fprintf(ficgp,"cd \"%s\" \n",pathc);    } /* end j1 */
 #endif    
 m=pow(2,cptcoveff);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
      /*free_vector(pp,1,nlstate);*/
  /* 1eme*/    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   for (cpt=1; cpt<= nlstate ; cpt ++) {  }  /* End of prevalence */
    for (k1=1; k1<= m ; k1 ++) {  
   /************* Waves Concatenation ***************/
 #ifdef windows  
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);  {
 #endif    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
 #ifdef unix       Death is a valid wave (if date is known).
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
 #endif       and mw[mi+1][i]. dh depends on stepm.
        */
 for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    int i, mi, m;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 }       double sum=0., jmean=0.;*/
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    int first;
     for (i=1; i<= nlstate ; i ++) {    int j, k=0,jk, ju, jl;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double sum=0.;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    first=0;
 }    jmin=1e+5;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    jmax=-1;
      for (i=1; i<= nlstate ; i ++) {    jmean=0.;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    for(i=1; i<=imx; i++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");      mi=0;
 }        m=firstpass;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      while(s[m][i] <= nlstate){
 #ifdef unix        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");          mw[++mi][i]=m;
 #endif        if(m >=lastpass)
    }          break;
   }        else
   /*2 eme*/          m++;
       }/* end while */
   for (k1=1; k1<= m ; k1 ++) {      if (s[m][i] > nlstate){
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);        mi++;     /* Death is another wave */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);        /* if(mi==0)  never been interviewed correctly before death */
               /* Only death is a correct wave */
     for (i=1; i<= nlstate+1 ; i ++) {        mw[mi][i]=m;
       k=2*i;      }
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {      wav[i]=mi;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      if(mi==0){
   else fprintf(ficgp," \%%*lf (\%%*lf)");        nbwarn++;
 }          if(first==0){
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          first=1;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        }
       for (j=1; j<= nlstate+1 ; j ++) {        if(first==1){
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         else fprintf(ficgp," \%%*lf (\%%*lf)");        }
 }        } /* end mi==0 */
       fprintf(ficgp,"\" t\"\" w l 0,");    } /* End individuals */
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  
       for (j=1; j<= nlstate+1 ; j ++) {    for(i=1; i<=imx; i++){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      for(mi=1; mi<wav[i];mi++){
   else fprintf(ficgp," \%%*lf (\%%*lf)");        if (stepm <=0)
 }            dh[mi][i]=1;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        else{
       else fprintf(ficgp,"\" t\"\" w l 0,");          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     }            if (agedc[i] < 2*AGESUP) {
   }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                if(j==0) j=1;  /* Survives at least one month after exam */
   /*3eme*/              else if(j<0){
                 nberr++;
   for (k1=1; k1<= m ; k1 ++) {                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     for (cpt=1; cpt<= nlstate ; cpt ++) {                j=1; /* Temporary Dangerous patch */
       k=2+nlstate*(2*cpt-2);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              }
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              k=k+1;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              if (j >= jmax){
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                jmax=j;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");                ijmax=i;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              }
               if (j <= jmin){
 */                jmin=j;
       for (i=1; i< nlstate ; i ++) {                ijmin=i;
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);              }
               sum=sum+j;
       }              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   }            }
            }
   /* CV preval stat */          else{
     for (k1=1; k1<= m ; k1 ++) {            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     for (cpt=1; cpt<nlstate ; cpt ++) {  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       k=3;  
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            k=k+1;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);            if (j >= jmax) {
               jmax=j;
       for (i=1; i< nlstate ; i ++)              ijmax=i;
         fprintf(ficgp,"+$%d",k+i+1);            }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);            else if (j <= jmin){
                    jmin=j;
       l=3+(nlstate+ndeath)*cpt;              ijmin=i;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            }
       for (i=1; i< nlstate ; i ++) {            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         l=3+(nlstate+ndeath)*cpt;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         fprintf(ficgp,"+$%d",l+i+1);            if(j<0){
       }              nberr++;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);                printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   }              }
              sum=sum+j;
   /* proba elementaires */          }
    for(i=1,jk=1; i <=nlstate; i++){          jk= j/stepm;
     for(k=1; k <=(nlstate+ndeath); k++){          jl= j -jk*stepm;
       if (k != i) {          ju= j -(jk+1)*stepm;
         for(j=1; j <=ncovmodel; j++){          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);            if(jl==0){
           jk++;              dh[mi][i]=jk;
           fprintf(ficgp,"\n");              bh[mi][i]=0;
         }            }else{ /* We want a negative bias in order to only have interpolation ie
       }                    * to avoid the price of an extra matrix product in likelihood */
     }              dh[mi][i]=jk+1;
    }              bh[mi][i]=ju;
             }
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/          }else{
      for(jk=1; jk <=m; jk++) {            if(jl <= -ju){
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);              dh[mi][i]=jk;
        if (ng==2)              bh[mi][i]=jl;       /* bias is positive if real duration
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");                                   * is higher than the multiple of stepm and negative otherwise.
        else                                   */
          fprintf(ficgp,"\nset title \"Probability\"\n");            }
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);            else{
        i=1;              dh[mi][i]=jk+1;
        for(k2=1; k2<=nlstate; k2++) {              bh[mi][i]=ju;
          k3=i;            }
          for(k=1; k<=(nlstate+ndeath); k++) {            if(dh[mi][i]==0){
            if (k != k2){              dh[mi][i]=1; /* At least one step */
              if(ng==2)              bh[mi][i]=ju; /* At least one step */
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
              else            }
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          } /* end if mle */
              ij=1;        }
              for(j=3; j <=ncovmodel; j++) {      } /* end wave */
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    }
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    jmean=sum/k;
                  ij++;    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
                }    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
                else   }
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
              }  /*********** Tricode ****************************/
              fprintf(ficgp,")/(1");  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
                {
              for(k1=1; k1 <=nlstate; k1++){      /**< Uses cptcovn+2*cptcovprod as the number of covariates */
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
                ij=1;    /* Boring subroutine which should only output nbcode[Tvar[j]][k]
                for(j=3; j <=ncovmodel; j++){     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    /* nbcode[Tvar[j]][1]= 
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    */
                    ij++;  
                  }    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
                  else    int modmaxcovj=0; /* Modality max of covariates j */
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    int cptcode=0; /* Modality max of covariates j */
                }    int modmincovj=0; /* Modality min of covariates j */
                fprintf(ficgp,")");  
              }  
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    cptcoveff=0; 
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");   
              i=i+ncovmodel;    for (k=-1; k < maxncov; k++) Ndum[k]=0;
            }    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
          } /* end k */  
        } /* end k2 */    /* Loop on covariates without age and products */
      } /* end jk */    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
    } /* end ng */      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
    fclose(ficgp);                                 modality of this covariate Vj*/ 
 }  /* end gnuplot */        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
                                       * If product of Vn*Vm, still boolean *:
                                       * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
 /*************** Moving average **************/                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
                                         modality of the nth covariate of individual i. */
   int i, cpt, cptcod;        if (ij > modmaxcovj)
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)          modmaxcovj=ij; 
       for (i=1; i<=nlstate;i++)        else if (ij < modmincovj) 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)          modmincovj=ij; 
           mobaverage[(int)agedeb][i][cptcod]=0.;        if ((ij < -1) && (ij > NCOVMAX)){
              printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){          exit(1);
       for (i=1; i<=nlstate;i++){        }else
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
           for (cpt=0;cpt<=4;cpt++){        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
           }        /* getting the maximum value of the modality of the covariate
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
         }           female is 1, then modmaxcovj=1.*/
       }      }
     }      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
          cptcode=modmaxcovj;
 }      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
      /*for (i=0; i<=cptcode; i++) {*/
       for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
 /************** Forecasting ******************/        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
            ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        }
   int *popage;        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
   double *popeffectif,*popcount;      } /* Ndum[-1] number of undefined modalities */
   double ***p3mat;  
   char fileresf[FILENAMELENGTH];      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
       /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
  agelim=AGESUP;      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;         modmincovj=3; modmaxcovj = 7;
          There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
           variables V1_1 and V1_2.
           nbcode[Tvar[j]][ij]=k;
   strcpy(fileresf,"f");         nbcode[Tvar[j]][1]=0;
   strcat(fileresf,fileres);         nbcode[Tvar[j]][2]=1;
   if((ficresf=fopen(fileresf,"w"))==NULL) {         nbcode[Tvar[j]][3]=2;
     printf("Problem with forecast resultfile: %s\n", fileresf);      */
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);      ij=1; /* ij is similar to i but can jumps over null modalities */
   }      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
   printf("Computing forecasting: result on file '%s' \n", fileresf);        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);          /*recode from 0 */
           if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
                                        k is a modality. If we have model=V1+V1*sex 
   if (mobilav==1) {                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            ij++;
     movingaverage(agedeb, fage, ageminpar, mobaverage);          }
   }          if (ij > ncodemax[j]) break; 
         }  /* end of loop on */
   stepsize=(int) (stepm+YEARM-1)/YEARM;      } /* end of loop on modality */ 
   if (stepm<=12) stepsize=1;    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
      
   agelim=AGESUP;   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
      
   hstepm=1;    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
   hstepm=hstepm/stepm;     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
   yp1=modf(dateintmean,&yp);     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
   anprojmean=yp;     Ndum[ij]++; 
   yp2=modf((yp1*12),&yp);   } 
   mprojmean=yp;  
   yp1=modf((yp2*30.5),&yp);   ij=1;
   jprojmean=yp;   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
   if(jprojmean==0) jprojmean=1;     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
   if(mprojmean==0) jprojmean=1;     if((Ndum[i]!=0) && (i<=ncovcol)){
         /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);       Tvaraff[ij]=i; /*For printing (unclear) */
         ij++;
   for(cptcov=1;cptcov<=i2;cptcov++){     }else
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){         Tvaraff[ij]=0;
       k=k+1;   }
       fprintf(ficresf,"\n#******");   ij--;
       for(j=1;j<=cptcoveff;j++) {   cptcoveff=ij; /*Number of total covariates*/
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }  }
       fprintf(ficresf,"******\n");  
       fprintf(ficresf,"# StartingAge FinalAge");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);  /*********** Health Expectancies ****************/
        
        void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {  
         fprintf(ficresf,"\n");  {
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);      /* Health expectancies, no variances */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    int nhstepma, nstepma; /* Decreasing with age */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    double age, agelim, hf;
           nhstepm = nhstepm/hstepm;    double ***p3mat;
              double eip;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           oldm=oldms;savm=savms;    pstamp(ficreseij);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
            fprintf(ficreseij,"# Age");
           for (h=0; h<=nhstepm; h++){    for(i=1; i<=nlstate;i++){
             if (h==(int) (calagedate+YEARM*cpt)) {      for(j=1; j<=nlstate;j++){
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);        fprintf(ficreseij," e%1d%1d ",i,j);
             }      }
             for(j=1; j<=nlstate+ndeath;j++) {      fprintf(ficreseij," e%1d. ",i);
               kk1=0.;kk2=0;    }
               for(i=1; i<=nlstate;i++) {                  fprintf(ficreseij,"\n");
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    
                 else {    if(estepm < stepm){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      printf ("Problem %d lower than %d\n",estepm, stepm);
                 }    }
                    else  hstepm=estepm;   
               }    /* We compute the life expectancy from trapezoids spaced every estepm months
               if (h==(int)(calagedate+12*cpt)){     * This is mainly to measure the difference between two models: for example
                 fprintf(ficresf," %.3f", kk1);     * if stepm=24 months pijx are given only every 2 years and by summing them
                             * we are calculating an estimate of the Life Expectancy assuming a linear 
               }     * progression in between and thus overestimating or underestimating according
             }     * to the curvature of the survival function. If, for the same date, we 
           }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     * to compare the new estimate of Life expectancy with the same linear 
         }     * hypothesis. A more precise result, taking into account a more precise
       }     * curvature will be obtained if estepm is as small as stepm. */
     }  
   }    /* For example we decided to compute the life expectancy with the smallest unit */
            /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
   fclose(ficresf);       Look at hpijx to understand the reason of that which relies in memory size
 }       and note for a fixed period like estepm months */
 /************** Forecasting ******************/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){       survival function given by stepm (the optimization length). Unfortunately it
         means that if the survival funtion is printed only each two years of age and if
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   int *popage;       results. So we changed our mind and took the option of the best precision.
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    */
   double *popeffectif,*popcount;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   double ***p3mat,***tabpop,***tabpopprev;  
   char filerespop[FILENAMELENGTH];    agelim=AGESUP;
     /* If stepm=6 months */
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   agelim=AGESUP;      
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  /* nhstepm age range expressed in number of stepm */
      nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
      /* if (stepm >= YEARM) hstepm=1;*/
      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   strcpy(filerespop,"pop");    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcat(filerespop,fileres);  
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    for (age=bage; age<=fage; age ++){ 
     printf("Problem with forecast resultfile: %s\n", filerespop);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   }      /* if (stepm >= YEARM) hstepm=1;*/
   printf("Computing forecasting: result on file '%s' \n", filerespop);      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);  
       /* If stepm=6 months */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   if (mobilav==1) {      
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);      
   }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
   stepsize=(int) (stepm+YEARM-1)/YEARM;      printf("%d|",(int)age);fflush(stdout);
   if (stepm<=12) stepsize=1;      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        
   agelim=AGESUP;      /* Computing expectancies */
        for(i=1; i<=nlstate;i++)
   hstepm=1;        for(j=1; j<=nlstate;j++)
   hstepm=hstepm/stepm;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
              eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   if (popforecast==1) {            
     if((ficpop=fopen(popfile,"r"))==NULL) {            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       printf("Problem with population file : %s\n",popfile);exit(0);  
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);          }
     }  
     popage=ivector(0,AGESUP);      fprintf(ficreseij,"%3.0f",age );
     popeffectif=vector(0,AGESUP);      for(i=1; i<=nlstate;i++){
     popcount=vector(0,AGESUP);        eip=0;
            for(j=1; j<=nlstate;j++){
     i=1;            eip +=eij[i][j][(int)age];
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
            }
     imx=i;        fprintf(ficreseij,"%9.4f", eip );
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      }
   }      fprintf(ficreseij,"\n");
       
   for(cptcov=1;cptcov<=i2;cptcov++){    }
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       k=k+1;    printf("\n");
       fprintf(ficrespop,"\n#******");    fprintf(ficlog,"\n");
       for(j=1;j<=cptcoveff;j++) {    
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  }
       }  
       fprintf(ficrespop,"******\n");  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
       fprintf(ficrespop,"# Age");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);  {
       if (popforecast==1)  fprintf(ficrespop," [Population]");    /* Covariances of health expectancies eij and of total life expectancies according
           to initial status i, ei. .
       for (cpt=0; cpt<=0;cpt++) {    */
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
            int nhstepma, nstepma; /* Decreasing with age */
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    double age, agelim, hf;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    double ***p3matp, ***p3matm, ***varhe;
           nhstepm = nhstepm/hstepm;    double **dnewm,**doldm;
              double *xp, *xm;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double **gp, **gm;
           oldm=oldms;savm=savms;    double ***gradg, ***trgradg;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      int theta;
          
           for (h=0; h<=nhstepm; h++){    double eip, vip;
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
             }    xp=vector(1,npar);
             for(j=1; j<=nlstate+ndeath;j++) {    xm=vector(1,npar);
               kk1=0.;kk2=0;    dnewm=matrix(1,nlstate*nlstate,1,npar);
               for(i=1; i<=nlstate;i++) {                  doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
                 if (mobilav==1)    
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    pstamp(ficresstdeij);
                 else {    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    fprintf(ficresstdeij,"# Age");
                 }    for(i=1; i<=nlstate;i++){
               }      for(j=1; j<=nlstate;j++)
               if (h==(int)(calagedate+12*cpt)){        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;      fprintf(ficresstdeij," e%1d. ",i);
                   /*fprintf(ficrespop," %.3f", kk1);    }
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    fprintf(ficresstdeij,"\n");
               }  
             }    pstamp(ficrescveij);
             for(i=1; i<=nlstate;i++){    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
               kk1=0.;    fprintf(ficrescveij,"# Age");
                 for(j=1; j<=nlstate;j++){    for(i=1; i<=nlstate;i++)
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      for(j=1; j<=nlstate;j++){
                 }        cptj= (j-1)*nlstate+i;
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];        for(i2=1; i2<=nlstate;i2++)
             }          for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)            if(cptj2 <= cptj)
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }          }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
         }    fprintf(ficrescveij,"\n");
       }    
      if(estepm < stepm){
   /******/      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {    else  hstepm=estepm;   
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      /* We compute the life expectancy from trapezoids spaced every estepm months
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){     * This is mainly to measure the difference between two models: for example
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);     * if stepm=24 months pijx are given only every 2 years and by summing them
           nhstepm = nhstepm/hstepm;     * we are calculating an estimate of the Life Expectancy assuming a linear 
               * progression in between and thus overestimating or underestimating according
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     * to the curvature of the survival function. If, for the same date, we 
           oldm=oldms;savm=savms;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);       * to compare the new estimate of Life expectancy with the same linear 
           for (h=0; h<=nhstepm; h++){     * hypothesis. A more precise result, taking into account a more precise
             if (h==(int) (calagedate+YEARM*cpt)) {     * curvature will be obtained if estepm is as small as stepm. */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }    /* For example we decided to compute the life expectancy with the smallest unit */
             for(j=1; j<=nlstate+ndeath;j++) {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
               kk1=0.;kk2=0;       nhstepm is the number of hstepm from age to agelim 
               for(i=1; i<=nlstate;i++) {                     nstepm is the number of stepm from age to agelin. 
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];           Look at hpijx to understand the reason of that which relies in memory size
               }       and note for a fixed period like estepm months */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
             }       survival function given by stepm (the optimization length). Unfortunately it
           }       means that if the survival funtion is printed only each two years of age and if
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         }       results. So we changed our mind and took the option of the best precision.
       }    */
    }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   }  
      /* If stepm=6 months */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
   if (popforecast==1) {    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     free_ivector(popage,0,AGESUP);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     free_vector(popeffectif,0,AGESUP);    /* if (stepm >= YEARM) hstepm=1;*/
     free_vector(popcount,0,AGESUP);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   }    
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fclose(ficrespop);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
 }    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
 /***********************************************/    gm=matrix(0,nhstepm,1,nlstate*nlstate);
 /**************** Main Program *****************/  
 /***********************************************/    for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
 int main(int argc, char *argv[])      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 {      /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;  
   double agedeb, agefin,hf;      /* If stepm=6 months */
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;      /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   double fret;      
   double **xi,tmp,delta;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
   double dum; /* Dummy variable */      /* Computing  Variances of health expectancies */
   double ***p3mat;      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   int *indx;         decrease memory allocation */
   char line[MAXLINE], linepar[MAXLINE];      for(theta=1; theta <=npar; theta++){
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];        for(i=1; i<=npar; i++){ 
   int firstobs=1, lastobs=10;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   int sdeb, sfin; /* Status at beginning and end */          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   int c,  h , cpt,l;        }
   int ju,jl, mi;        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    
   int mobilav=0,popforecast=0;        for(j=1; j<= nlstate; j++){
   int hstepm, nhstepm;          for(i=1; i<=nlstate; i++){
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;            for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   double bage, fage, age, agelim, agebase;              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   double ftolpl=FTOL;            }
   double **prlim;          }
   double *severity;        }
   double ***param; /* Matrix of parameters */       
   double  *p;        for(ij=1; ij<= nlstate*nlstate; ij++)
   double **matcov; /* Matrix of covariance */          for(h=0; h<=nhstepm-1; h++){
   double ***delti3; /* Scale */            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   double *delti; /* Scale */          }
   double ***eij, ***vareij;      }/* End theta */
   double **varpl; /* Variances of prevalence limits by age */      
   double *epj, vepp;      
   double kk1, kk2;      for(h=0; h<=nhstepm-1; h++)
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;        for(j=1; j<=nlstate*nlstate;j++)
            for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   char *alph[]={"a","a","b","c","d","e"}, str[4];      
   
        for(ij=1;ij<=nlstate*nlstate;ij++)
   char z[1]="c", occ;        for(ji=1;ji<=nlstate*nlstate;ji++)
 #include <sys/time.h>          varhe[ij][ji][(int)age] =0.;
 #include <time.h>  
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];       printf("%d|",(int)age);fflush(stdout);
         fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   /* long total_usecs;       for(h=0;h<=nhstepm-1;h++){
   struct timeval start_time, end_time;        for(k=0;k<=nhstepm-1;k++){
            matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   getcwd(pathcd, size);          for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
   printf("\n%s",version);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   if(argc <=1){        }
     printf("\nEnter the parameter file name: ");      }
     scanf("%s",pathtot);  
   }      /* Computing expectancies */
   else{      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     strcpy(pathtot,argv[1]);      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++)
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   /*cygwin_split_path(pathtot,path,optionfile);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/            
   /* cutv(path,optionfile,pathtot,'\\');*/            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);          }
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  
   chdir(path);      fprintf(ficresstdeij,"%3.0f",age );
   replace(pathc,path);      for(i=1; i<=nlstate;i++){
         eip=0.;
 /*-------- arguments in the command line --------*/        vip=0.;
         for(j=1; j<=nlstate;j++){
   /* Log file */          eip += eij[i][j][(int)age];
   strcat(filelog, optionfilefiname);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   strcat(filelog,".log");    /* */            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
   if((ficlog=fopen(filelog,"w"))==NULL)    {          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
     printf("Problem with logfile %s\n",filelog);        }
     goto end;        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   }      }
   fprintf(ficlog,"Log filename:%s\n",filelog);      fprintf(ficresstdeij,"\n");
   fprintf(ficlog,"\n%s",version);  
   fprintf(ficlog,"\nEnter the parameter file name: ");      fprintf(ficrescveij,"%3.0f",age );
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      for(i=1; i<=nlstate;i++)
   fflush(ficlog);        for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
   /* */          for(i2=1; i2<=nlstate;i2++)
   strcpy(fileres,"r");            for(j2=1; j2<=nlstate;j2++){
   strcat(fileres, optionfilefiname);              cptj2= (j2-1)*nlstate+i2;
   strcat(fileres,".txt");    /* Other files have txt extension */              if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   /*---------arguments file --------*/            }
         }
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      fprintf(ficrescveij,"\n");
     printf("Problem with optionfile %s\n",optionfile);     
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);    }
     goto end;    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   }    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   strcpy(filereso,"o");    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   strcat(filereso,fileres);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((ficparo=fopen(filereso,"w"))==NULL) {    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("Problem with Output resultfile: %s\n", filereso);    printf("\n");
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);    fprintf(ficlog,"\n");
     goto end;  
   }    free_vector(xm,1,npar);
     free_vector(xp,1,npar);
   /* Reads comments: lines beginning with '#' */    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     ungetc(c,ficpar);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
     fgets(line, MAXLINE, ficpar);  }
     puts(line);  
     fputs(line,ficparo);  /************ Variance ******************/
   }  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   ungetc(c,ficpar);  {
     /* Variance of health expectancies */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    /* double **newm;*/
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    double **dnewm,**doldm;
 while((c=getc(ficpar))=='#' && c!= EOF){    double **dnewmp,**doldmp;
     ungetc(c,ficpar);    int i, j, nhstepm, hstepm, h, nstepm ;
     fgets(line, MAXLINE, ficpar);    int k, cptcode;
     puts(line);    double *xp;
     fputs(line,ficparo);    double **gp, **gm;  /* for var eij */
   }    double ***gradg, ***trgradg; /*for var eij */
   ungetc(c,ficpar);    double **gradgp, **trgradgp; /* for var p point j */
      double *gpp, *gmp; /* for var p point j */
        double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   covar=matrix(0,NCOVMAX,1,n);    double ***p3mat;
   cptcovn=0;    double age,agelim, hf;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    double ***mobaverage;
     int theta;
   ncovmodel=2+cptcovn;    char digit[4];
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    char digitp[25];
    
   /* Read guess parameters */    char fileresprobmorprev[FILENAMELENGTH];
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    if(popbased==1){
     ungetc(c,ficpar);      if(mobilav!=0)
     fgets(line, MAXLINE, ficpar);        strcpy(digitp,"-populbased-mobilav-");
     puts(line);      else strcpy(digitp,"-populbased-nomobil-");
     fputs(line,ficparo);    }
   }    else 
   ungetc(c,ficpar);      strcpy(digitp,"-stablbased-");
    
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    if (mobilav!=0) {
     for(i=1; i <=nlstate; i++)      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     for(j=1; j <=nlstate+ndeath-1; j++){      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
       fscanf(ficpar,"%1d%1d",&i1,&j1);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       fprintf(ficparo,"%1d%1d",i1,j1);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       if(mle==1)      }
         printf("%1d%1d",i,j);    }
       fprintf(ficlog,"%1d%1d",i,j);  
       for(k=1; k<=ncovmodel;k++){    strcpy(fileresprobmorprev,"prmorprev"); 
         fscanf(ficpar," %lf",&param[i][j][k]);    sprintf(digit,"%-d",ij);
         if(mle==1){    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
           printf(" %lf",param[i][j][k]);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
           fprintf(ficlog," %lf",param[i][j][k]);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
         }    strcat(fileresprobmorprev,fileres);
         else    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
           fprintf(ficlog," %lf",param[i][j][k]);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
         fprintf(ficparo," %lf",param[i][j][k]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
       }    }
       fscanf(ficpar,"\n");    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       if(mle==1)   
         printf("\n");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       fprintf(ficlog,"\n");    pstamp(ficresprobmorprev);
       fprintf(ficparo,"\n");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
   p=param[1][1];        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
      }  
   /* Reads comments: lines beginning with '#' */    fprintf(ficresprobmorprev,"\n");
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficgp,"\n# Routine varevsij");
     ungetc(c,ficpar);    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fgets(line, MAXLINE, ficpar);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     puts(line);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
     fputs(line,ficparo);  /*   } */
   }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   ungetc(c,ficpar);    pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    if(popbased==1)
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
   for(i=1; i <=nlstate; i++){    else
     for(j=1; j <=nlstate+ndeath-1; j++){      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
       fscanf(ficpar,"%1d%1d",&i1,&j1);    fprintf(ficresvij,"# Age");
       printf("%1d%1d",i,j);    for(i=1; i<=nlstate;i++)
       fprintf(ficparo,"%1d%1d",i1,j1);      for(j=1; j<=nlstate;j++)
       for(k=1; k<=ncovmodel;k++){        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
         fscanf(ficpar,"%le",&delti3[i][j][k]);    fprintf(ficresvij,"\n");
         printf(" %le",delti3[i][j][k]);  
         fprintf(ficparo," %le",delti3[i][j][k]);    xp=vector(1,npar);
       }    dnewm=matrix(1,nlstate,1,npar);
       fscanf(ficpar,"\n");    doldm=matrix(1,nlstate,1,nlstate);
       printf("\n");    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
       fprintf(ficparo,"\n");    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     }  
   }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   delti=delti3[1][1];    gpp=vector(nlstate+1,nlstate+ndeath);
      gmp=vector(nlstate+1,nlstate+ndeath);
   /* Reads comments: lines beginning with '#' */    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);    if(estepm < stepm){
     fgets(line, MAXLINE, ficpar);      printf ("Problem %d lower than %d\n",estepm, stepm);
     puts(line);    }
     fputs(line,ficparo);    else  hstepm=estepm;   
   }    /* For example we decided to compute the life expectancy with the smallest unit */
   ungetc(c,ficpar);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         nhstepm is the number of hstepm from age to agelim 
   matcov=matrix(1,npar,1,npar);       nstepm is the number of stepm from age to agelin. 
   for(i=1; i <=npar; i++){       Look at function hpijx to understand why (it is linked to memory size questions) */
     fscanf(ficpar,"%s",&str);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     if(mle==1)       survival function given by stepm (the optimization length). Unfortunately it
       printf("%s",str);       means that if the survival funtion is printed every two years of age and if
     fprintf(ficlog,"%s",str);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     fprintf(ficparo,"%s",str);       results. So we changed our mind and took the option of the best precision.
     for(j=1; j <=i; j++){    */
       fscanf(ficpar," %le",&matcov[i][j]);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       if(mle==1){    agelim = AGESUP;
         printf(" %.5le",matcov[i][j]);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         fprintf(ficlog," %.5le",matcov[i][j]);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       else      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficlog," %.5le",matcov[i][j]);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       fprintf(ficparo," %.5le",matcov[i][j]);      gp=matrix(0,nhstepm,1,nlstate);
     }      gm=matrix(0,nhstepm,1,nlstate);
     fscanf(ficpar,"\n");  
     if(mle==1)  
       printf("\n");      for(theta=1; theta <=npar; theta++){
     fprintf(ficlog,"\n");        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     fprintf(ficparo,"\n");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   }        }
   for(i=1; i <=npar; i++)        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     for(j=i+1;j<=npar;j++)        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       matcov[i][j]=matcov[j][i];  
            if (popbased==1) {
   if(mle==1)          if(mobilav ==0){
     printf("\n");            for(i=1; i<=nlstate;i++)
   fprintf(ficlog,"\n");              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
     /*-------- Rewriting paramater file ----------*/              prlim[i][i]=mobaverage[(int)age][i][ij];
      strcpy(rfileres,"r");    /* "Rparameterfile */          }
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        }
      strcat(rfileres,".");    /* */    
      strcat(rfileres,optionfilext);    /* Other files have txt extension */        for(j=1; j<= nlstate; j++){
     if((ficres =fopen(rfileres,"w"))==NULL) {          for(h=0; h<=nhstepm; h++){
       printf("Problem writing new parameter file: %s\n", fileres);goto end;            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     }          }
     fprintf(ficres,"#%s\n",version);        }
            /* This for computing probability of death (h=1 means
     /*-------- data file ----------*/           computed over hstepm matrices product = hstepm*stepm months) 
     if((fic=fopen(datafile,"r"))==NULL)    {           as a weighted average of prlim.
       printf("Problem with datafile: %s\n", datafile);goto end;        */
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
     n= lastobs;        }    
     severity = vector(1,maxwav);        /* end probability of death */
     outcome=imatrix(1,maxwav+1,1,n);  
     num=ivector(1,n);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     moisnais=vector(1,n);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     annais=vector(1,n);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     moisdc=vector(1,n);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     andc=vector(1,n);   
     agedc=vector(1,n);        if (popbased==1) {
     cod=ivector(1,n);          if(mobilav ==0){
     weight=vector(1,n);            for(i=1; i<=nlstate;i++)
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */              prlim[i][i]=probs[(int)age][i][ij];
     mint=matrix(1,maxwav,1,n);          }else{ /* mobilav */ 
     anint=matrix(1,maxwav,1,n);            for(i=1; i<=nlstate;i++)
     s=imatrix(1,maxwav+1,1,n);              prlim[i][i]=mobaverage[(int)age][i][ij];
     adl=imatrix(1,maxwav+1,1,n);              }
     tab=ivector(1,NCOVMAX);        }
     ncodemax=ivector(1,8);  
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
     i=1;          for(h=0; h<=nhstepm; h++){
     while (fgets(line, MAXLINE, fic) != NULL)    {            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       if ((i >= firstobs) && (i <=lastobs)) {              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
                  }
         for (j=maxwav;j>=1;j--){        }
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        /* This for computing probability of death (h=1 means
           strcpy(line,stra);           computed over hstepm matrices product = hstepm*stepm months) 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);           as a weighted average of prlim.
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        */
         }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                  for(i=1,gmp[j]=0.; i<= nlstate; i++)
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        }    
         /* end probability of death */
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         for (j=ncovcol;j>=1;j--){          }
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
         num[i]=atol(stra);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
                }
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/      } /* End theta */
   
         i=i+1;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
       }  
     }      for(h=0; h<=nhstepm; h++) /* veij */
     /* printf("ii=%d", ij);        for(j=1; j<=nlstate;j++)
        scanf("%d",i);*/          for(theta=1; theta <=npar; theta++)
   imx=i-1; /* Number of individuals */            trgradg[h][j][theta]=gradg[h][theta][j];
   
   /* for (i=1; i<=imx; i++){      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        for(theta=1; theta <=npar; theta++)
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;          trgradgp[j][theta]=gradgp[theta][j];
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    
     }*/  
    /*  for (i=1; i<=imx; i++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      if (s[4][i]==9)  s[4][i]=-1;      for(i=1;i<=nlstate;i++)
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        for(j=1;j<=nlstate;j++)
            vareij[i][j][(int)age] =0.;
    
   /* Calculation of the number of parameter from char model*/      for(h=0;h<=nhstepm;h++){
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */        for(k=0;k<=nhstepm;k++){
   Tprod=ivector(1,15);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
   Tvaraff=ivector(1,15);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   Tvard=imatrix(1,15,1,2);          for(i=1;i<=nlstate;i++)
   Tage=ivector(1,15);                  for(j=1;j<=nlstate;j++)
                  vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   if (strlen(model) >1){        }
     j=0, j1=0, k1=1, k2=1;      }
     j=nbocc(model,'+');    
     j1=nbocc(model,'*');      /* pptj */
     cptcovn=j+1;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     cptcovprod=j1;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
          for(j=nlstate+1;j<=nlstate+ndeath;j++)
     strcpy(modelsav,model);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){          varppt[j][i]=doldmp[j][i];
       printf("Error. Non available option model=%s ",model);      /* end ppptj */
       fprintf(ficlog,"Error. Non available option model=%s ",model);      /*  x centered again */
       goto end;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     }      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
       
     for(i=(j+1); i>=1;i--){      if (popbased==1) {
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */        if(mobilav ==0){
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */          for(i=1; i<=nlstate;i++)
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/            prlim[i][i]=probs[(int)age][i][ij];
       /*scanf("%d",i);*/        }else{ /* mobilav */ 
       if (strchr(strb,'*')) {  /* Model includes a product */          for(i=1; i<=nlstate;i++)
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/            prlim[i][i]=mobaverage[(int)age][i][ij];
         if (strcmp(strc,"age")==0) { /* Vn*age */        }
           cptcovprod--;      }
           cutv(strb,stre,strd,'V');               
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/      /* This for computing probability of death (h=1 means
           cptcovage++;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
             Tage[cptcovage]=i;         as a weighted average of prlim.
             /*printf("stre=%s ", stre);*/      */
         }      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         else if (strcmp(strd,"age")==0) { /* or age*Vn */        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           cptcovprod--;          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
           cutv(strb,stre,strc,'V');      }    
           Tvar[i]=atoi(stre);      /* end probability of death */
           cptcovage++;  
           Tage[cptcovage]=i;      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
         }      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         else {  /* Age is not in the model */        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/        for(i=1; i<=nlstate;i++){
           Tvar[i]=ncovcol+k1;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */        }
           Tprod[k1]=i;      } 
           Tvard[k1][1]=atoi(strc); /* m*/      fprintf(ficresprobmorprev,"\n");
           Tvard[k1][2]=atoi(stre); /* n */  
           Tvar[cptcovn+k2]=Tvard[k1][1];      fprintf(ficresvij,"%.0f ",age );
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      for(i=1; i<=nlstate;i++)
           for (k=1; k<=lastobs;k++)        for(j=1; j<=nlstate;j++){
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
           k1++;        }
           k2=k2+2;      fprintf(ficresvij,"\n");
         }      free_matrix(gp,0,nhstepm,1,nlstate);
       }      free_matrix(gm,0,nhstepm,1,nlstate);
       else { /* no more sum */      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
        /*  scanf("%d",i);*/      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       cutv(strd,strc,strb,'V');    } /* End age */
       Tvar[i]=atoi(strc);    free_vector(gpp,nlstate+1,nlstate+ndeath);
       }    free_vector(gmp,nlstate+1,nlstate+ndeath);
       strcpy(modelsav,stra);      free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         scanf("%d",i);*/    fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     } /* end of loop + */    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   } /* end model */    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
    /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   printf("cptcovprod=%d ", cptcovprod);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
   scanf("%d ",i);*/    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fclose(fic);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     /*  if(mle==1){*/    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     if (weightopt != 1) { /* Maximisation without weights*/    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
       for(i=1;i<=n;i++) weight[i]=1.0;  */
     }  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     /*-calculation of age at interview from date of interview and age at death -*/    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     agev=matrix(1,maxwav,1,imx);  
     free_vector(xp,1,npar);
     for (i=1; i<=imx; i++) {    free_matrix(doldm,1,nlstate,1,nlstate);
       for(m=2; (m<= maxwav); m++) {    free_matrix(dnewm,1,nlstate,1,npar);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
          anint[m][i]=9999;    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
          s[m][i]=-1;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
        }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    fclose(ficresprobmorprev);
       }    fflush(ficgp);
     }    fflush(fichtm); 
   }  /* end varevsij */
     for (i=1; i<=imx; i++)  {  
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  /************ Variance of prevlim ******************/
       for(m=1; (m<= maxwav); m++){  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
         if(s[m][i] >0){  {
           if (s[m][i] >= nlstate+1) {    /* Variance of prevalence limit */
             if(agedc[i]>0)    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
               if(moisdc[i]!=99 && andc[i]!=9999)    double **newm;
                 agev[m][i]=agedc[i];    double **dnewm,**doldm;
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    int i, j, nhstepm, hstepm;
            else {    int k, cptcode;
               if (andc[i]!=9999){    double *xp;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    double *gp, *gm;
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);    double **gradg, **trgradg;
               agev[m][i]=-1;    double age,agelim;
               }    int theta;
             }    
           }    pstamp(ficresvpl);
           else if(s[m][i] !=9){ /* Should no more exist */    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    fprintf(ficresvpl,"# Age");
             if(mint[m][i]==99 || anint[m][i]==9999)    for(i=1; i<=nlstate;i++)
               agev[m][i]=1;        fprintf(ficresvpl," %1d-%1d",i,i);
             else if(agev[m][i] <agemin){    fprintf(ficresvpl,"\n");
               agemin=agev[m][i];  
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    xp=vector(1,npar);
             }    dnewm=matrix(1,nlstate,1,npar);
             else if(agev[m][i] >agemax){    doldm=matrix(1,nlstate,1,nlstate);
               agemax=agev[m][i];    
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    hstepm=1*YEARM; /* Every year of age */
             }    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
             /*agev[m][i]=anint[m][i]-annais[i];*/    agelim = AGESUP;
             /*   agev[m][i] = age[i]+2*m;*/    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           else { /* =9 */      if (stepm >= YEARM) hstepm=1;
             agev[m][i]=1;      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
             s[m][i]=-1;      gradg=matrix(1,npar,1,nlstate);
           }      gp=vector(1,nlstate);
         }      gm=vector(1,nlstate);
         else /*= 0 Unknown */  
           agev[m][i]=1;      for(theta=1; theta <=npar; theta++){
       }        for(i=1; i<=npar; i++){ /* Computes gradient */
              xp[i] = x[i] + (i==theta ?delti[theta]:0);
     }        }
     for (i=1; i<=imx; i++)  {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       for(m=1; (m<= maxwav); m++){        for(i=1;i<=nlstate;i++)
         if (s[m][i] > (nlstate+ndeath)) {          gp[i] = prlim[i][i];
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);        
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);          for(i=1; i<=npar; i++) /* Computes gradient */
           goto end;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       }        for(i=1;i<=nlstate;i++)
     }          gm[i] = prlim[i][i];
   
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        for(i=1;i<=nlstate;i++)
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
     free_vector(severity,1,maxwav);  
     free_imatrix(outcome,1,maxwav+1,1,n);      trgradg =matrix(1,nlstate,1,npar);
     free_vector(moisnais,1,n);  
     free_vector(annais,1,n);      for(j=1; j<=nlstate;j++)
     /* free_matrix(mint,1,maxwav,1,n);        for(theta=1; theta <=npar; theta++)
        free_matrix(anint,1,maxwav,1,n);*/          trgradg[j][theta]=gradg[theta][j];
     free_vector(moisdc,1,n);  
     free_vector(andc,1,n);      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
          matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     wav=ivector(1,imx);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      for(i=1;i<=nlstate;i++)
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
      
     /* Concatenates waves */      fprintf(ficresvpl,"%.0f ",age );
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       Tcode=ivector(1,100);      free_vector(gp,1,nlstate);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      free_vector(gm,1,nlstate);
       ncodemax[1]=1;      free_matrix(gradg,1,npar,1,nlstate);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);      free_matrix(trgradg,1,nlstate,1,npar);
          } /* End age */
    codtab=imatrix(1,100,1,10);  
    h=0;    free_vector(xp,1,npar);
    m=pow(2,cptcoveff);    free_matrix(doldm,1,nlstate,1,npar);
      free_matrix(dnewm,1,nlstate,1,nlstate);
    for(k=1;k<=cptcoveff; k++){  
      for(i=1; i <=(m/pow(2,k));i++){  }
        for(j=1; j <= ncodemax[k]; j++){  
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){  /************ Variance of one-step probabilities  ******************/
            h++;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  {
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    int i, j=0,  i1, k1, l1, t, tj;
          }    int k2, l2, j1,  z1;
        }    int k=0,l, cptcode;
      }    int first=1, first1, first2;
    }    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    double **dnewm,**doldm;
       codtab[1][2]=1;codtab[2][2]=2; */    double *xp;
    /* for(i=1; i <=m ;i++){    double *gp, *gm;
       for(k=1; k <=cptcovn; k++){    double **gradg, **trgradg;
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    double **mu;
       }    double age,agelim, cov[NCOVMAX+1];
       printf("\n");    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
       }    int theta;
       scanf("%d",i);*/    char fileresprob[FILENAMELENGTH];
        char fileresprobcov[FILENAMELENGTH];
    /* Calculates basic frequencies. Computes observed prevalence at single age    char fileresprobcor[FILENAMELENGTH];
        and prints on file fileres'p'. */    double ***varpij;
   
        strcpy(fileresprob,"prob"); 
        strcat(fileresprob,fileres);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      printf("Problem with resultfile: %s\n", fileresprob);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    strcpy(fileresprobcov,"probcov"); 
          strcat(fileresprobcov,fileres);
     /* For Powell, parameters are in a vector p[] starting at p[1]    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      printf("Problem with resultfile: %s\n", fileresprobcov);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     if(mle==1){    strcpy(fileresprobcor,"probcor"); 
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    strcat(fileresprobcor,fileres);
     }    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
          printf("Problem with resultfile: %s\n", fileresprobcor);
     /*--------- results files --------------*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    }
      printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
    jk=1;    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
    for(i=1,jk=1; i <=nlstate; i++){    pstamp(ficresprob);
      for(k=1; k <=(nlstate+ndeath); k++){    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
        if (k != i)    fprintf(ficresprob,"# Age");
          {    pstamp(ficresprobcov);
            printf("%d%d ",i,k);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
            fprintf(ficlog,"%d%d ",i,k);    fprintf(ficresprobcov,"# Age");
            fprintf(ficres,"%1d%1d ",i,k);    pstamp(ficresprobcor);
            for(j=1; j <=ncovmodel; j++){    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
              printf("%f ",p[jk]);    fprintf(ficresprobcor,"# Age");
              fprintf(ficlog,"%f ",p[jk]);  
              fprintf(ficres,"%f ",p[jk]);  
              jk++;    for(i=1; i<=nlstate;i++)
            }      for(j=1; j<=(nlstate+ndeath);j++){
            printf("\n");        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
            fprintf(ficlog,"\n");        fprintf(ficresprobcov," p%1d-%1d ",i,j);
            fprintf(ficres,"\n");        fprintf(ficresprobcor," p%1d-%1d ",i,j);
          }      }  
      }   /* fprintf(ficresprob,"\n");
    }    fprintf(ficresprobcov,"\n");
    if(mle==1){    fprintf(ficresprobcor,"\n");
      /* Computing hessian and covariance matrix */   */
      ftolhess=ftol; /* Usually correct */    xp=vector(1,npar);
      hesscov(matcov, p, npar, delti, ftolhess, func);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
    }    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
    printf("# Scales (for hessian or gradient estimation)\n");    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");    first=1;
    for(i=1,jk=1; i <=nlstate; i++){    fprintf(ficgp,"\n# Routine varprob");
      for(j=1; j <=nlstate+ndeath; j++){    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
        if (j!=i) {    fprintf(fichtm,"\n");
          fprintf(ficres,"%1d%1d",i,j);  
          printf("%1d%1d",i,j);    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
          fprintf(ficlog,"%1d%1d",i,j);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
          for(k=1; k<=ncovmodel;k++){    file %s<br>\n",optionfilehtmcov);
            printf(" %.5e",delti[jk]);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
            fprintf(ficlog," %.5e",delti[jk]);  and drawn. It helps understanding how is the covariance between two incidences.\
            fprintf(ficres," %.5e",delti[jk]);   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
            jk++;    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
          }  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
          printf("\n");  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
          fprintf(ficlog,"\n");  standard deviations wide on each axis. <br>\
          fprintf(ficres,"\n");   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
        }   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
      }  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
    }  
        cov[1]=1;
    k=1;    /* tj=cptcoveff; */
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    tj = (int) pow(2,cptcoveff);
    if(mle==1)    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    j1=0;
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    for(j1=1; j1<=tj;j1++){
    for(i=1;i<=npar;i++){      /*for(i1=1; i1<=ncodemax[t];i1++){ */
      /*  if (k>nlstate) k=1;      /*j1++;*/
          i1=(i-1)/(ncovmodel*nlstate)+1;        if  (cptcovn>0) {
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          fprintf(ficresprob, "\n#********** Variable "); 
          printf("%s%d%d",alph[k],i1,tab[i]);*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      fprintf(ficres,"%3d",i);          fprintf(ficresprob, "**********\n#\n");
      if(mle==1)          fprintf(ficresprobcov, "\n#********** Variable "); 
        printf("%3d",i);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      fprintf(ficlog,"%3d",i);          fprintf(ficresprobcov, "**********\n#\n");
      for(j=1; j<=i;j++){          
        fprintf(ficres," %.5e",matcov[i][j]);          fprintf(ficgp, "\n#********** Variable "); 
        if(mle==1)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
          printf(" %.5e",matcov[i][j]);          fprintf(ficgp, "**********\n#\n");
        fprintf(ficlog," %.5e",matcov[i][j]);          
      }          
      fprintf(ficres,"\n");          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
      if(mle==1)          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        printf("\n");          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
      fprintf(ficlog,"\n");          
      k++;          fprintf(ficresprobcor, "\n#********** Variable ");    
    }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
              fprintf(ficresprobcor, "**********\n#");    
    while((c=getc(ficpar))=='#' && c!= EOF){        }
      ungetc(c,ficpar);        
      fgets(line, MAXLINE, ficpar);        gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
      puts(line);        trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
      fputs(line,ficparo);        gp=vector(1,(nlstate)*(nlstate+ndeath));
    }        gm=vector(1,(nlstate)*(nlstate+ndeath));
    ungetc(c,ficpar);        for (age=bage; age<=fage; age ++){ 
    estepm=0;          cov[2]=age;
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);          for (k=1; k<=cptcovn;k++) {
    if (estepm==0 || estepm < stepm) estepm=stepm;            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
    if (fage <= 2) {                                                           * 1  1 1 1 1
      bage = ageminpar;                                                           * 2  2 1 1 1
      fage = agemaxpar;                                                           * 3  1 2 1 1
    }                                                           */
                /* nbcode[1][1]=0 nbcode[1][2]=1;*/
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          }
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          for (k=1; k<=cptcovprod;k++)
                cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
    while((c=getc(ficpar))=='#' && c!= EOF){          
      ungetc(c,ficpar);      
      fgets(line, MAXLINE, ficpar);          for(theta=1; theta <=npar; theta++){
      puts(line);            for(i=1; i<=npar; i++)
      fputs(line,ficparo);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
    }            
    ungetc(c,ficpar);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
              
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);            k=0;
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            for(i=1; i<= (nlstate); i++){
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              for(j=1; j<=(nlstate+ndeath);j++){
                    k=k+1;
    while((c=getc(ficpar))=='#' && c!= EOF){                gp[k]=pmmij[i][j];
      ungetc(c,ficpar);              }
      fgets(line, MAXLINE, ficpar);            }
      puts(line);            
      fputs(line,ficparo);            for(i=1; i<=npar; i++)
    }              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
    ungetc(c,ficpar);      
              pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
    dateprev1=anprev1+mprev1/12.+jprev1/365.;            for(i=1; i<=(nlstate); i++){
    dateprev2=anprev2+mprev2/12.+jprev2/365.;              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
   fscanf(ficpar,"pop_based=%d\n",&popbased);                gm[k]=pmmij[i][j];
   fprintf(ficparo,"pop_based=%d\n",popbased);                }
   fprintf(ficres,"pop_based=%d\n",popbased);              }
         
   while((c=getc(ficpar))=='#' && c!= EOF){            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     ungetc(c,ficpar);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     fgets(line, MAXLINE, ficpar);          }
     puts(line);  
     fputs(line,ficparo);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
   }            for(theta=1; theta <=npar; theta++)
   ungetc(c,ficpar);              trgradg[j][theta]=gradg[theta][j];
           
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);  
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
 while((c=getc(ficpar))=='#' && c!= EOF){          k=0;
     ungetc(c,ficpar);          for(i=1; i<=(nlstate); i++){
     fgets(line, MAXLINE, ficpar);            for(j=1; j<=(nlstate+ndeath);j++){
     puts(line);              k=k+1;
     fputs(line,ficparo);              mu[k][(int) age]=pmmij[i][j];
   }            }
   ungetc(c,ficpar);          }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);              varpij[i][j][(int)age] = doldm[i][j];
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
           /*printf("\n%d ",(int)age);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 /*------------ gnuplot -------------*/            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   strcpy(optionfilegnuplot,optionfilefiname);            }*/
   strcat(optionfilegnuplot,".gp");  
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {          fprintf(ficresprob,"\n%d ",(int)age);
     printf("Problem with file %s",optionfilegnuplot);          fprintf(ficresprobcov,"\n%d ",(int)age);
   }          fprintf(ficresprobcor,"\n%d ",(int)age);
   fclose(ficgp);  
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
 /*--------- index.htm --------*/            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   strcpy(optionfilehtm,optionfile);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   strcat(optionfilehtm,".htm");            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          }
     printf("Problem with %s \n",optionfilehtm), exit(0);          i=0;
   }          for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n              i++;
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 \n              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 Total number of observations=%d <br>\n              for (j=1; j<=i;j++){
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n                /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
 <hr  size=\"2\" color=\"#EC5E5E\">                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
  <ul><li><h4>Parameter files</h4>\n                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n              }
  - Log file of the run: <a href=\"%s\">%s</a><br>\n            }
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);          }/* end of loop for state */
   fclose(fichtm);        } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);        free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 /*------------ free_vector  -------------*/        free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
  chdir(path);        
          /* Confidence intervalle of pij  */
  free_ivector(wav,1,imx);        /*
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          fprintf(ficgp,"\nunset parametric;unset label");
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);            fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
  free_ivector(num,1,n);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
  free_vector(agedc,1,n);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
  fclose(ficparo);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
  fclose(ficres);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
   /*--------------- Prevalence limit --------------*/        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
          first1=1;first2=2;
   strcpy(filerespl,"pl");        for (k2=1; k2<=(nlstate);k2++){
   strcat(filerespl,fileres);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   if((ficrespl=fopen(filerespl,"w"))==NULL) {            if(l2==k2) continue;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;            j=(k2-1)*(nlstate+ndeath)+l2;
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;            for (k1=1; k1<=(nlstate);k1++){
   }              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                if(l1==k1) continue;
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);                i=(k1-1)*(nlstate+ndeath)+l1;
   fprintf(ficrespl,"#Prevalence limit\n");                if(i<=j) continue;
   fprintf(ficrespl,"#Age ");                for (age=bage; age<=fage; age ++){ 
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                  if ((int)age %5==0){
   fprintf(ficrespl,"\n");                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                      v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   prlim=matrix(1,nlstate,1,nlstate);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    mu1=mu[i][(int) age]/stepm*YEARM ;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    mu2=mu[j][(int) age]/stepm*YEARM;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    c12=cv12/sqrt(v1*v2);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    /* Computing eigen value of matrix of covariance */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   k=0;                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   agebase=ageminpar;                    if ((lc2 <0) || (lc1 <0) ){
   agelim=agemaxpar;                      if(first2==1){
   ftolpl=1.e-10;                        first1=0;
   i1=cptcoveff;                      printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
   if (cptcovn < 1){i1=1;}                      }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
   for(cptcov=1;cptcov<=i1;cptcov++){                      /* lc1=fabs(lc1); */ /* If we want to have them positive */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                      /* lc2=fabs(lc2); */
         k=k+1;                    }
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  
         fprintf(ficrespl,"\n#******");                    /* Eigen vectors */
         printf("\n#******");                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
         fprintf(ficlog,"\n#******");                    /*v21=sqrt(1.-v11*v11); *//* error */
         for(j=1;j<=cptcoveff;j++) {                    v21=(lc1-v1)/cv12*v11;
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    v12=-v21;
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    v22=v11;
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    tnalp=v21/v11;
         }                    if(first1==1){
         fprintf(ficrespl,"******\n");                      first1=0;
         printf("******\n");                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         fprintf(ficlog,"******\n");                    }
                            fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         for (age=agebase; age<=agelim; age++){                    /*printf(fignu*/
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
           fprintf(ficrespl,"%.0f",age );                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
           for(i=1; i<=nlstate;i++)                    if(first==1){
           fprintf(ficrespl," %.5f", prlim[i][i]);                      first=0;
           fprintf(ficrespl,"\n");                      fprintf(ficgp,"\nset parametric;unset label");
         }                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
       }                      fprintf(ficgp,"\nset ter png small size 320, 240");
     }                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   fclose(ficrespl);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   /*------------- h Pij x at various ages ------------*/                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                                subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   printf("Computing pij: result on file '%s' \n", filerespij);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   stepsize=(int) (stepm+YEARM-1)/YEARM;                    }else{
   /*if (stepm<=24) stepsize=2;*/                      first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   agelim=AGESUP;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   hstepm=stepsize*YEARM; /* Every year of age */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   /* hstepm=1;   aff par mois*/                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
   k=0;                  } /* age mod 5 */
   for(cptcov=1;cptcov<=i1;cptcov++){                } /* end loop age */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
       k=k+1;                first=1;
         fprintf(ficrespij,"\n#****** ");              } /*l12 */
         for(j=1;j<=cptcoveff;j++)            } /* k12 */
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          } /*l1 */
         fprintf(ficrespij,"******\n");        }/* k1 */
                /* } /* loop covariates */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
           /*      nhstepm=nhstepm*YEARM; aff par mois*/    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fclose(ficresprob);
           oldm=oldms;savm=savms;    fclose(ficresprobcov);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fclose(ficresprobcor);
           fprintf(ficrespij,"# Age");    fflush(ficgp);
           for(i=1; i<=nlstate;i++)    fflush(fichtmcov);
             for(j=1; j<=nlstate+ndeath;j++)  }
               fprintf(ficrespij," %1d-%1d",i,j);  
           fprintf(ficrespij,"\n");  
            for (h=0; h<=nhstepm; h++){  /******************* Printing html file ***********/
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
             for(i=1; i<=nlstate;i++)                    int lastpass, int stepm, int weightopt, char model[],\
               for(j=1; j<=nlstate+ndeath;j++)                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                    int popforecast, int estepm ,\
             fprintf(ficrespij,"\n");                    double jprev1, double mprev1,double anprev1, \
              }                    double jprev2, double mprev2,double anprev2){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int jj1, k1, i1, cpt;
           fprintf(ficrespij,"\n");  
         }     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
     }     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   }  </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   fclose(ficrespij);     fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   /*---------- Forecasting ------------------*/     fprintf(fichtm,"\
   if((stepm == 1) && (strcmp(model,".")==0)){   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);     fprintf(fichtm,"\
   }   - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
   else{     <a href=\"%s\">%s</a> <br>\n",
     erreur=108;             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);     fprintf(fichtm,"\
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);   - Population projections by age and states: \
   }     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
    
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   /*---------- Health expectancies and variances ------------*/  
    m=pow(2,cptcoveff);
   strcpy(filerest,"t");   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   strcat(filerest,fileres);  
   if((ficrest=fopen(filerest,"w"))==NULL) {   jj1=0;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;   for(k1=1; k1<=m;k1++){
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;     for(i1=1; i1<=ncodemax[k1];i1++){
   }       jj1++;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);       if (cptcovn > 0) {
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   strcpy(filerese,"e");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   strcat(filerese,fileres);       }
   if((ficreseij=fopen(filerese,"w"))==NULL) {       /* Pij */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
   }       /* Quasi-incidences */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
   strcpy(fileresv,"v");         /* Period (stable) prevalence in each health state */
   strcat(fileresv,fileres);         for(cpt=1; cpt<=nlstate;cpt++){
   if((ficresvij=fopen(fileresv,"w"))==NULL) {           fprintf(fichtm,"<br>- Convergence from each state (1 to %d) to period (stable) prevalence in state %d <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  <img src=\"%s%d_%d.png\">",nlstate, cpt, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);         }
   }       for(cpt=1; cpt<=nlstate;cpt++) {
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   calagedate=-1;       }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);     } /* end i1 */
    }/* End k1 */
   k=0;   fprintf(fichtm,"</ul>");
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;   fprintf(fichtm,"\
       fprintf(ficrest,"\n#****** ");  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
       for(j=1;j<=cptcoveff;j++)   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
       fprintf(ficreseij,"\n#****** ");   fprintf(fichtm,"\
       for(j=1;j<=cptcoveff;j++)   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
       fprintf(ficreseij,"******\n");  
    fprintf(fichtm,"\
       fprintf(ficresvij,"\n#****** ");   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       for(j=1;j<=cptcoveff;j++)           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   fprintf(fichtm,"\
       fprintf(ficresvij,"******\n");   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
       oldm=oldms;savm=savms;   fprintf(fichtm,"\
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);     - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
       <a href=\"%s\">%s</a> <br>\n</li>",
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
       oldm=oldms;savm=savms;   fprintf(fichtm,"\
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
       if(popbased==1){           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);   fprintf(fichtm,"\
        }   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
     fprintf(fichtm,"\
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
       fprintf(ficrest,"\n");  
   /*  if(popforecast==1) fprintf(fichtm,"\n */
       epj=vector(1,nlstate+1);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
       for(age=bage; age <=fage ;age++){  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  /*      <br>",fileres,fileres,fileres,fileres); */
         if (popbased==1) {  /*  else  */
           for(i=1; i<=nlstate;i++)  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
             prlim[i][i]=probs[(int)age][i][k];   fflush(fichtm);
         }   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
          
         fprintf(ficrest," %4.0f",age);   m=pow(2,cptcoveff);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  
             epj[j] += prlim[i][i]*eij[i][j][(int)age];   jj1=0;
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/   for(k1=1; k1<=m;k1++){
           }     for(i1=1; i1<=ncodemax[k1];i1++){
           epj[nlstate+1] +=epj[j];       jj1++;
         }       if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
         for(i=1, vepp=0.;i <=nlstate;i++)         for (cpt=1; cpt<=cptcoveff;cpt++) 
           for(j=1;j <=nlstate;j++)           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
             vepp += vareij[i][j][(int)age];         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));       }
         for(j=1;j <=nlstate;j++){       for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
         }  prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
         fprintf(ficrest,"\n");  <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
       }       }
     }       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   }  health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
 free_matrix(mint,1,maxwav,1,n);  true period expectancies (those weighted with period prevalences are also\
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);   drawn in addition to the population based expectancies computed using\
     free_vector(weight,1,n);   observed and cahotic prevalences: %s%d.png<br>\
   fclose(ficreseij);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   fclose(ficresvij);     } /* end i1 */
   fclose(ficrest);   }/* End k1 */
   fclose(ficpar);   fprintf(fichtm,"</ul>");
   free_vector(epj,1,nlstate+1);   fflush(fichtm);
    }
   /*------- Variance limit prevalence------*/    
   /******************* Gnuplot file **************/
   strcpy(fileresvpl,"vpl");  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   strcat(fileresvpl,fileres);  
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    char dirfileres[132],optfileres[132];
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     exit(0);    int ng=0;
   }  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   k=0;  /*   } */
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /*#ifdef windows */
       k=k+1;    fprintf(ficgp,"cd \"%s\" \n",pathc);
       fprintf(ficresvpl,"\n#****** ");      /*#endif */
       for(j=1;j<=cptcoveff;j++)    m=pow(2,cptcoveff);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficresvpl,"******\n");    strcpy(dirfileres,optionfilefiname);
          strcpy(optfileres,"vpl");
       varpl=matrix(1,nlstate,(int) bage, (int) fage);   /* 1eme*/
       oldm=oldms;savm=savms;    fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    for (cpt=1; cpt<= nlstate ; cpt ++) {
     }      for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
  }       fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
   fclose(ficresvpl);       fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   /*---------- End : free ----------------*/  set ter png small size 320, 240\n\
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
    
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);       for (i=1; i<= nlstate ; i ++) {
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           else        fprintf(ficgp," \%%*lf (\%%*lf)");
         }
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);       for (i=1; i<= nlstate ; i ++) {
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);         else fprintf(ficgp," \%%*lf (\%%*lf)");
         } 
   free_matrix(matcov,1,npar,1,npar);       fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
   free_vector(delti,1,npar);       for (i=1; i<= nlstate ; i ++) {
   free_matrix(agev,1,maxwav,1,imx);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);         else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
   fprintf(fichtm,"\n</body>");       fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   fclose(fichtm);     }
   fclose(ficgp);    }
      /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
   if(erreur >0){    for (k1=1; k1<= m ; k1 ++) { 
     printf("End of Imach with error or warning %d\n",erreur);      fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
   }else{      
    printf("End of Imach\n");      for (i=1; i<= nlstate+1 ; i ++) {
    fprintf(ficlog,"End of Imach\n");        k=2*i;
   }        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
   printf("See log file on %s\n",filelog);        for (j=1; j<= nlstate+1 ; j ++) {
   fclose(ficlog);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          else fprintf(ficgp," \%%*lf (\%%*lf)");
          }   
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
   /*printf("Total time was %d uSec.\n", total_usecs);*/        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   /*------ End -----------*/        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
  end:          else fprintf(ficgp," \%%*lf (\%%*lf)");
 #ifdef windows        }   
   /* chdir(pathcd);*/        fprintf(ficgp,"\" t\"\" w l lt 0,");
 #endif        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
  /*system("wgnuplot graph.plt");*/        for (j=1; j<= nlstate+1 ; j ++) {
  /*system("../gp37mgw/wgnuplot graph.plt");*/          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
  /*system("cd ../gp37mgw");*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/        }   
  strcpy(plotcmd,GNUPLOTPROGRAM);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
  strcat(plotcmd," ");        else fprintf(ficgp,"\" t\"\" w l lt 0,");
  strcat(plotcmd,optionfilegnuplot);      }
  system(plotcmd);    }
     
 #ifdef windows    /*3eme*/
   while (z[0] != 'q') {    
     /* chdir(path); */    for (k1=1; k1<= m ; k1 ++) { 
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");      for (cpt=1; cpt<= nlstate ; cpt ++) {
     scanf("%s",z);        /*       k=2+nlstate*(2*cpt-2); */
     if (z[0] == 'c') system("./imach");        k=2+(nlstate+1)*(cpt-1);
     else if (z[0] == 'e') system(optionfilehtm);        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
     else if (z[0] == 'g') system(plotcmd);        fprintf(ficgp,"set ter png small size 320, 240\n\
     else if (z[0] == 'q') exit(0);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
   }        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
 #endif          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    avoid:
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.", dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ = *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int i1, j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.52  
changed lines
  Added in v.1.158


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>