Diff for /imach/src/imach.c between versions 1.52 and 1.159

version 1.52, 2002/07/19 18:49:30 version 1.159, 2014/09/01 10:34:10
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.159  2014/09/01 10:34:10  brouard
      Summary: WIN32
   This program computes Healthy Life Expectancies from    Author: Brouard
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.158  2014/08/27 17:11:51  brouard
   interviewed on their health status or degree of disability (in the    *** empty log message ***
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.157  2014/08/27 16:26:55  brouard
   (if any) in individual health status.  Health expectancies are    Summary: Preparing windows Visual studio version
   computed from the time spent in each health state according to a    Author: Brouard
   model. More health states you consider, more time is necessary to reach the  
   Maximum Likelihood of the parameters involved in the model.  The    In order to compile on Visual studio, time.h is now correct and time_t
   simplest model is the multinomial logistic model where pij is the    and tm struct should be used. difftime should be used but sometimes I
   probability to be observed in state j at the second wave    just make the differences in raw time format (time(&now).
   conditional to be observed in state i at the first wave. Therefore    Trying to suppress #ifdef LINUX
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Add xdg-open for __linux in order to open default browser.
   'age' is age and 'sex' is a covariate. If you want to have a more  
   complex model than "constant and age", you should modify the program    Revision 1.156  2014/08/25 20:10:10  brouard
   where the markup *Covariates have to be included here again* invites    *** empty log message ***
   you to do it.  More covariates you add, slower the  
   convergence.    Revision 1.155  2014/08/25 18:32:34  brouard
     Summary: New compile, minor changes
   The advantage of this computer programme, compared to a simple    Author: Brouard
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Revision 1.154  2014/06/20 17:32:08  brouard
   intermediate interview, the information is lost, but taken into    Summary: Outputs now all graphs of convergence to period prevalence
   account using an interpolation or extrapolation.    
     Revision 1.153  2014/06/20 16:45:46  brouard
   hPijx is the probability to be observed in state i at age x+h    Summary: If 3 live state, convergence to period prevalence on same graph
   conditional to the observed state i at age x. The delay 'h' can be    Author: Brouard
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.152  2014/06/18 17:54:09  brouard
   semester or year) is model as a multinomial logistic.  The hPx    Summary: open browser, use gnuplot on same dir than imach if not found in the path
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.151  2014/06/18 16:43:30  brouard
   hPijx.    *** empty log message ***
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.150  2014/06/18 16:42:35  brouard
   of the life expectancies. It also computes the prevalence limits.    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
      Author: brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.149  2014/06/18 15:51:14  brouard
   This software have been partly granted by Euro-REVES, a concerted action    Summary: Some fixes in parameter files errors
   from the European Union.    Author: Nicolas Brouard
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.148  2014/06/17 17:38:48  brouard
   can be accessed at http://euroreves.ined.fr/imach .    Summary: Nothing new
   **********************************************************************/    Author: Brouard
    
 #include <math.h>    Just a new packaging for OS/X version 0.98nS
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.147  2014/06/16 10:33:11  brouard
 #include <unistd.h>    *** empty log message ***
   
 #define MAXLINE 256    Revision 1.146  2014/06/16 10:20:28  brouard
 #define GNUPLOTPROGRAM "gnuplot"    Summary: Merge
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Author: Brouard
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Merge, before building revised version.
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.145  2014/06/10 21:23:15  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Summary: Debugging with valgrind
     Author: Nicolas Brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Lot of changes in order to output the results with some covariates
     After the Edimburgh REVES conference 2014, it seems mandatory to
 #define NINTERVMAX 8    improve the code.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    No more memory valgrind error but a lot has to be done in order to
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    continue the work of splitting the code into subroutines.
 #define NCOVMAX 8 /* Maximum number of covariates */    Also, decodemodel has been improved. Tricode is still not
 #define MAXN 20000    optimal. nbcode should be improved. Documentation has been added in
 #define YEARM 12. /* Number of months per year */    the source code.
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.143  2014/01/26 09:45:38  brouard
 #ifdef windows    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
 #define DIRSEPARATOR '\\'  
 #define ODIRSEPARATOR '/'    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #else    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
 #define DIRSEPARATOR '/'  
 #define ODIRSEPARATOR '\\'    Revision 1.142  2014/01/26 03:57:36  brouard
 #endif    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 int erreur; /* Error number */  
 int nvar;    Revision 1.141  2014/01/26 02:42:01  brouard
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.140  2011/09/02 10:37:54  brouard
 int ndeath=1; /* Number of dead states */    Summary: times.h is ok with mingw32 now.
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;    Revision 1.139  2010/06/14 07:50:17  brouard
     After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
 int *wav; /* Number of waves for this individuual 0 is possible */    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.138  2010/04/30 18:19:40  brouard
 int mle, weightopt;    *** empty log message ***
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.137  2010/04/29 18:11:38  brouard
 double jmean; /* Mean space between 2 waves */    (Module): Checking covariates for more complex models
 double **oldm, **newm, **savm; /* Working pointers to matrices */    than V1+V2. A lot of change to be done. Unstable.
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.136  2010/04/26 20:30:53  brouard
 FILE *ficlog;    (Module): merging some libgsl code. Fixing computation
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    of likelione (using inter/intrapolation if mle = 0) in order to
 FILE *ficresprobmorprev;    get same likelihood as if mle=1.
 FILE *fichtm; /* Html File */    Some cleaning of code and comments added.
 FILE *ficreseij;  
 char filerese[FILENAMELENGTH];    Revision 1.135  2009/10/29 15:33:14  brouard
 FILE  *ficresvij;    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 char fileresv[FILENAMELENGTH];  
 FILE  *ficresvpl;    Revision 1.134  2009/10/29 13:18:53  brouard
 char fileresvpl[FILENAMELENGTH];    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 char title[MAXLINE];  
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Revision 1.133  2009/07/06 10:21:25  brouard
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    just nforces
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Revision 1.132  2009/07/06 08:22:05  brouard
 char filelog[FILENAMELENGTH]; /* Log file */    Many tings
 char filerest[FILENAMELENGTH];  
 char fileregp[FILENAMELENGTH];    Revision 1.131  2009/06/20 16:22:47  brouard
 char popfile[FILENAMELENGTH];    Some dimensions resccaled
   
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    Revision 1.130  2009/05/26 06:44:34  brouard
     (Module): Max Covariate is now set to 20 instead of 8. A
 #define NR_END 1    lot of cleaning with variables initialized to 0. Trying to make
 #define FREE_ARG char*    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 #define FTOL 1.0e-10  
     Revision 1.129  2007/08/31 13:49:27  lievre
 #define NRANSI    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 #define ITMAX 200  
     Revision 1.128  2006/06/30 13:02:05  brouard
 #define TOL 2.0e-4    (Module): Clarifications on computing e.j
   
 #define CGOLD 0.3819660    Revision 1.127  2006/04/28 18:11:50  brouard
 #define ZEPS 1.0e-10    (Module): Yes the sum of survivors was wrong since
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
 #define GOLD 1.618034    (Module): In order to speed up (in case of numerous covariates) we
 #define GLIMIT 100.0    compute health expectancies (without variances) in a first step
 #define TINY 1.0e-20    and then all the health expectancies with variances or standard
     deviation (needs data from the Hessian matrices) which slows the
 static double maxarg1,maxarg2;    computation.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    In the future we should be able to stop the program is only health
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    expectancies and graph are needed without standard deviations.
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.126  2006/04/28 17:23:28  brouard
 #define rint(a) floor(a+0.5)    (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
 static double sqrarg;    loop. Now we define nhstepma in the age loop.
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Version 0.98h
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.125  2006/04/04 15:20:31  lievre
 int imx;    Errors in calculation of health expectancies. Age was not initialized.
 int stepm;    Forecasting file added.
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.124  2006/03/22 17:13:53  lievre
 int estepm;    Parameters are printed with %lf instead of %f (more numbers after the comma).
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    The log-likelihood is printed in the log file
   
 int m,nb;    Revision 1.123  2006/03/20 10:52:43  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    * imach.c (Module): <title> changed, corresponds to .htm file
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    name. <head> headers where missing.
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;    * imach.c (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
 double *weight;    otherwise the weight is truncated).
 int **s; /* Status */    Modification of warning when the covariates values are not 0 or
 double *agedc, **covar, idx;    1.
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Version 0.98g
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Revision 1.122  2006/03/20 09:45:41  brouard
 double ftolhess; /* Tolerance for computing hessian */    (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
 /**************** split *************************/    otherwise the weight is truncated).
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    Modification of warning when the covariates values are not 0 or
 {    1.
    char *s;                             /* pointer */    Version 0.98g
    int  l1, l2;                         /* length counters */  
     Revision 1.121  2006/03/16 17:45:01  lievre
    l1 = strlen( path );                 /* length of path */    * imach.c (Module): Comments concerning covariates added
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    * imach.c (Module): refinements in the computation of lli if
    if ( s == NULL ) {                   /* no directory, so use current */    status=-2 in order to have more reliable computation if stepm is
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)    not 1 month. Version 0.98f
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  
 #if     defined(__bsd__)                /* get current working directory */    Revision 1.120  2006/03/16 15:10:38  lievre
       extern char       *getwd( );    (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
       if ( getwd( dirc ) == NULL ) {    not 1 month. Version 0.98f
 #else  
       extern char       *getcwd( );    Revision 1.119  2006/03/15 17:42:26  brouard
     (Module): Bug if status = -2, the loglikelihood was
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    computed as likelihood omitting the logarithm. Version O.98e
 #endif  
          return( GLOCK_ERROR_GETCWD );    Revision 1.118  2006/03/14 18:20:07  brouard
       }    (Module): varevsij Comments added explaining the second
       strcpy( name, path );             /* we've got it */    table of variances if popbased=1 .
    } else {                             /* strip direcotry from path */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
       s++;                              /* after this, the filename */    (Module): Function pstamp added
       l2 = strlen( s );                 /* length of filename */    (Module): Version 0.98d
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    Revision 1.117  2006/03/14 17:16:22  brouard
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    (Module): varevsij Comments added explaining the second
       dirc[l1-l2] = 0;                  /* add zero */    table of variances if popbased=1 .
    }    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
    l1 = strlen( dirc );                 /* length of directory */    (Module): Function pstamp added
 #ifdef windows    (Module): Version 0.98d
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else    Revision 1.116  2006/03/06 10:29:27  brouard
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    (Module): Variance-covariance wrong links and
 #endif    varian-covariance of ej. is needed (Saito).
    s = strrchr( name, '.' );            /* find last / */  
    s++;    Revision 1.115  2006/02/27 12:17:45  brouard
    strcpy(ext,s);                       /* save extension */    (Module): One freematrix added in mlikeli! 0.98c
    l1= strlen( name);  
    l2= strlen( s)+1;    Revision 1.114  2006/02/26 12:57:58  brouard
    strncpy( finame, name, l1-l2);    (Module): Some improvements in processing parameter
    finame[l1-l2]= 0;    filename with strsep.
    return( 0 );                         /* we're done */  
 }    Revision 1.113  2006/02/24 14:20:24  brouard
     (Module): Memory leaks checks with valgrind and:
     datafile was not closed, some imatrix were not freed and on matrix
 /******************************************/    allocation too.
   
 void replace(char *s, char*t)    Revision 1.112  2006/01/30 09:55:26  brouard
 {    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   int i;  
   int lg=20;    Revision 1.111  2006/01/25 20:38:18  brouard
   i=0;    (Module): Lots of cleaning and bugs added (Gompertz)
   lg=strlen(t);    (Module): Comments can be added in data file. Missing date values
   for(i=0; i<= lg; i++) {    can be a simple dot '.'.
     (s[i] = t[i]);  
     if (t[i]== '\\') s[i]='/';    Revision 1.110  2006/01/25 00:51:50  brouard
   }    (Module): Lots of cleaning and bugs added (Gompertz)
 }  
     Revision 1.109  2006/01/24 19:37:15  brouard
 int nbocc(char *s, char occ)    (Module): Comments (lines starting with a #) are allowed in data.
 {  
   int i,j=0;    Revision 1.108  2006/01/19 18:05:42  lievre
   int lg=20;    Gnuplot problem appeared...
   i=0;    To be fixed
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {    Revision 1.107  2006/01/19 16:20:37  brouard
   if  (s[i] == occ ) j++;    Test existence of gnuplot in imach path
   }  
   return j;    Revision 1.106  2006/01/19 13:24:36  brouard
 }    Some cleaning and links added in html output
   
 void cutv(char *u,char *v, char*t, char occ)    Revision 1.105  2006/01/05 20:23:19  lievre
 {    *** empty log message ***
   /* cuts string t into u and v where u is ended by char occ excluding it  
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)    Revision 1.104  2005/09/30 16:11:43  lievre
      gives u="abcedf" and v="ghi2j" */    (Module): sump fixed, loop imx fixed, and simplifications.
   int i,lg,j,p=0;    (Module): If the status is missing at the last wave but we know
   i=0;    that the person is alive, then we can code his/her status as -2
   for(j=0; j<=strlen(t)-1; j++) {    (instead of missing=-1 in earlier versions) and his/her
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    contributions to the likelihood is 1 - Prob of dying from last
   }    health status (= 1-p13= p11+p12 in the easiest case of somebody in
     the healthy state at last known wave). Version is 0.98
   lg=strlen(t);  
   for(j=0; j<p; j++) {    Revision 1.103  2005/09/30 15:54:49  lievre
     (u[j] = t[j]);    (Module): sump fixed, loop imx fixed, and simplifications.
   }  
      u[p]='\0';    Revision 1.102  2004/09/15 17:31:30  brouard
     Add the possibility to read data file including tab characters.
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);    Revision 1.101  2004/09/15 10:38:38  brouard
   }    Fix on curr_time
 }  
     Revision 1.100  2004/07/12 18:29:06  brouard
 /********************** nrerror ********************/    Add version for Mac OS X. Just define UNIX in Makefile
   
 void nrerror(char error_text[])    Revision 1.99  2004/06/05 08:57:40  brouard
 {    *** empty log message ***
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);    Revision 1.98  2004/05/16 15:05:56  brouard
   exit(1);    New version 0.97 . First attempt to estimate force of mortality
 }    directly from the data i.e. without the need of knowing the health
 /*********************** vector *******************/    state at each age, but using a Gompertz model: log u =a + b*age .
 double *vector(int nl, int nh)    This is the basic analysis of mortality and should be done before any
 {    other analysis, in order to test if the mortality estimated from the
   double *v;    cross-longitudinal survey is different from the mortality estimated
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    from other sources like vital statistic data.
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;    The same imach parameter file can be used but the option for mle should be -3.
 }  
     Agnès, who wrote this part of the code, tried to keep most of the
 /************************ free vector ******************/    former routines in order to include the new code within the former code.
 void free_vector(double*v, int nl, int nh)  
 {    The output is very simple: only an estimate of the intercept and of
   free((FREE_ARG)(v+nl-NR_END));    the slope with 95% confident intervals.
 }  
     Current limitations:
 /************************ivector *******************************/    A) Even if you enter covariates, i.e. with the
 int *ivector(long nl,long nh)    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 {    B) There is no computation of Life Expectancy nor Life Table.
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Revision 1.97  2004/02/20 13:25:42  lievre
   if (!v) nrerror("allocation failure in ivector");    Version 0.96d. Population forecasting command line is (temporarily)
   return v-nl+NR_END;    suppressed.
 }  
     Revision 1.96  2003/07/15 15:38:55  brouard
 /******************free ivector **************************/    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 void free_ivector(int *v, long nl, long nh)    rewritten within the same printf. Workaround: many printfs.
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.95  2003/07/08 07:54:34  brouard
 }    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
 /******************* imatrix *******************************/    matrix (cov(a12,c31) instead of numbers.
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    Revision 1.94  2003/06/27 13:00:02  brouard
 {    Just cleaning
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;    Revision 1.93  2003/06/25 16:33:55  brouard
      (Module): On windows (cygwin) function asctime_r doesn't
   /* allocate pointers to rows */    exist so I changed back to asctime which exists.
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    (Module): Version 0.96b
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.92  2003/06/25 16:30:45  brouard
   m -= nrl;    (Module): On windows (cygwin) function asctime_r doesn't
      exist so I changed back to asctime which exists.
    
   /* allocate rows and set pointers to them */    Revision 1.91  2003/06/25 15:30:29  brouard
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    * imach.c (Repository): Duplicated warning errors corrected.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    (Repository): Elapsed time after each iteration is now output. It
   m[nrl] += NR_END;    helps to forecast when convergence will be reached. Elapsed time
   m[nrl] -= ncl;    is stamped in powell.  We created a new html file for the graphs
      concerning matrix of covariance. It has extension -cov.htm.
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
      Revision 1.90  2003/06/24 12:34:15  brouard
   /* return pointer to array of pointers to rows */    (Module): Some bugs corrected for windows. Also, when
   return m;    mle=-1 a template is output in file "or"mypar.txt with the design
 }    of the covariance matrix to be input.
   
 /****************** free_imatrix *************************/    Revision 1.89  2003/06/24 12:30:52  brouard
 void free_imatrix(m,nrl,nrh,ncl,nch)    (Module): Some bugs corrected for windows. Also, when
       int **m;    mle=-1 a template is output in file "or"mypar.txt with the design
       long nch,ncl,nrh,nrl;    of the covariance matrix to be input.
      /* free an int matrix allocated by imatrix() */  
 {    Revision 1.88  2003/06/23 17:54:56  brouard
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   free((FREE_ARG) (m+nrl-NR_END));  
 }    Revision 1.87  2003/06/18 12:26:01  brouard
     Version 0.96
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)    Revision 1.86  2003/06/17 20:04:08  brouard
 {    (Module): Change position of html and gnuplot routines and added
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    routine fileappend.
   double **m;  
     Revision 1.85  2003/06/17 13:12:43  brouard
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    * imach.c (Repository): Check when date of death was earlier that
   if (!m) nrerror("allocation failure 1 in matrix()");    current date of interview. It may happen when the death was just
   m += NR_END;    prior to the death. In this case, dh was negative and likelihood
   m -= nrl;    was wrong (infinity). We still send an "Error" but patch by
     assuming that the date of death was just one stepm after the
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    interview.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    (Repository): Because some people have very long ID (first column)
   m[nrl] += NR_END;    we changed int to long in num[] and we added a new lvector for
   m[nrl] -= ncl;    memory allocation. But we also truncated to 8 characters (left
     truncation)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    (Repository): No more line truncation errors.
   return m;  
 }    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
 /*************************free matrix ************************/    place. It differs from routine "prevalence" which may be called
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    many times. Probs is memory consuming and must be used with
 {    parcimony.
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   free((FREE_ARG)(m+nrl-NR_END));  
 }    Revision 1.83  2003/06/10 13:39:11  lievre
     *** empty log message ***
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    Revision 1.82  2003/06/05 15:57:20  brouard
 {    Add log in  imach.c and  fullversion number is now printed.
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;  */
   /*
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));     Interpolated Markov Chain
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Short summary of the programme:
   m -= nrl;    
     This program computes Healthy Life Expectancies from
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    first survey ("cross") where individuals from different ages are
   m[nrl] += NR_END;    interviewed on their health status or degree of disability (in the
   m[nrl] -= ncl;    case of a health survey which is our main interest) -2- at least a
     second wave of interviews ("longitudinal") which measure each change
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    model. More health states you consider, more time is necessary to reach the
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    Maximum Likelihood of the parameters involved in the model.  The
   m[nrl][ncl] += NR_END;    simplest model is the multinomial logistic model where pij is the
   m[nrl][ncl] -= nll;    probability to be observed in state j at the second wave
   for (j=ncl+1; j<=nch; j++)    conditional to be observed in state i at the first wave. Therefore
     m[nrl][j]=m[nrl][j-1]+nlay;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
      'age' is age and 'sex' is a covariate. If you want to have a more
   for (i=nrl+1; i<=nrh; i++) {    complex model than "constant and age", you should modify the program
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    where the markup *Covariates have to be included here again* invites
     for (j=ncl+1; j<=nch; j++)    you to do it.  More covariates you add, slower the
       m[i][j]=m[i][j-1]+nlay;    convergence.
   }  
   return m;    The advantage of this computer programme, compared to a simple
 }    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
 /*************************free ma3x ************************/    intermediate interview, the information is lost, but taken into
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    account using an interpolation or extrapolation.  
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    hPijx is the probability to be observed in state i at age x+h
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    conditional to the observed state i at age x. The delay 'h' can be
   free((FREE_ARG)(m+nrl-NR_END));    split into an exact number (nh*stepm) of unobserved intermediate
 }    states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
 /***************** f1dim *************************/    matrix is simply the matrix product of nh*stepm elementary matrices
 extern int ncom;    and the contribution of each individual to the likelihood is simply
 extern double *pcom,*xicom;    hPijx.
 extern double (*nrfunc)(double []);  
      Also this programme outputs the covariance matrix of the parameters but also
 double f1dim(double x)    of the life expectancies. It also computes the period (stable) prevalence. 
 {    
   int j;    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
   double f;             Institut national d'études démographiques, Paris.
   double *xt;    This software have been partly granted by Euro-REVES, a concerted action
      from the European Union.
   xt=vector(1,ncom);    It is copyrighted identically to a GNU software product, ie programme and
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    software can be distributed freely for non commercial use. Latest version
   f=(*nrfunc)(xt);    can be accessed at http://euroreves.ined.fr/imach .
   free_vector(xt,1,ncom);  
   return f;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 }    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
 /*****************brent *************************/    **********************************************************************/
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  /*
 {    main
   int iter;    read parameterfile
   double a,b,d,etemp;    read datafile
   double fu,fv,fw,fx;    concatwav
   double ftemp;    freqsummary
   double p,q,r,tol1,tol2,u,v,w,x,xm;    if (mle >= 1)
   double e=0.0;      mlikeli
      print results files
   a=(ax < cx ? ax : cx);    if mle==1 
   b=(ax > cx ? ax : cx);       computes hessian
   x=w=v=bx;    read end of parameter file: agemin, agemax, bage, fage, estepm
   fw=fv=fx=(*f)(x);        begin-prev-date,...
   for (iter=1;iter<=ITMAX;iter++) {    open gnuplot file
     xm=0.5*(a+b);    open html file
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
     printf(".");fflush(stdout);                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
     fprintf(ficlog,".");fflush(ficlog);      freexexit2 possible for memory heap.
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    h Pij x                         | pij_nom  ficrestpij
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
 #endif         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
       return fx;         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
     }    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
     ftemp=fu;     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
     if (fabs(e) > tol1) {     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
       r=(x-w)*(fx-fv);  
       q=(x-v)*(fx-fw);    forecasting if prevfcast==1 prevforecast call prevalence()
       p=(x-v)*q-(x-w)*r;    health expectancies
       q=2.0*(q-r);    Variance-covariance of DFLE
       if (q > 0.0) p = -p;    prevalence()
       q=fabs(q);     movingaverage()
       etemp=e;    varevsij() 
       e=d;    if popbased==1 varevsij(,popbased)
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    total life expectancies
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    Variance of period (stable) prevalence
       else {   end
         d=p/q;  */
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);  
       }   
     } else {  #include <math.h>
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #include <stdio.h>
     }  #include <stdlib.h>
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #include <string.h>
     fu=(*f)(u);  
     if (fu <= fx) {  #ifdef _WIN32
       if (u >= x) a=x; else b=x;  #include <io.h>
       SHFT(v,w,x,u)  #else
         SHFT(fv,fw,fx,fu)  #include <unistd.h>
         } else {  #endif
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  #include <limits.h>
             v=w;  #include <sys/types.h>
             w=u;  #include <sys/stat.h>
             fv=fw;  #include <errno.h>
             fw=fu;  /* extern int errno; */
           } else if (fu <= fv || v == x || v == w) {  
             v=u;  /* #ifdef LINUX */
             fv=fu;  /* #include <time.h> */
           }  /* #include "timeval.h" */
         }  /* #else */
   }  /* #include <sys/time.h> */
   nrerror("Too many iterations in brent");  /* #endif */
   *xmin=x;  
   return fx;  #include <time.h>
 }  
   #ifdef GSL
 /****************** mnbrak ***********************/  #include <gsl/gsl_errno.h>
   #include <gsl/gsl_multimin.h>
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  #endif
             double (*func)(double))  
 {  /* #include <libintl.h> */
   double ulim,u,r,q, dum;  /* #define _(String) gettext (String) */
   double fu;  
    #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);  #define GNUPLOTPROGRAM "gnuplot"
   if (*fb > *fa) {  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
     SHFT(dum,*ax,*bx,dum)  #define FILENAMELENGTH 132
       SHFT(dum,*fb,*fa,dum)  
       }  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   *cx=(*bx)+GOLD*(*bx-*ax);  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   *fc=(*func)(*cx);  
   while (*fb > *fc) {  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
     r=(*bx-*ax)*(*fb-*fc);  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
     q=(*bx-*cx)*(*fb-*fa);  
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  #define NINTERVMAX 8
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
     ulim=(*bx)+GLIMIT*(*cx-*bx);  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
     if ((*bx-u)*(u-*cx) > 0.0) {  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
       fu=(*func)(u);  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
     } else if ((*cx-u)*(u-ulim) > 0.0) {  #define MAXN 20000
       fu=(*func)(u);  #define YEARM 12. /**< Number of months per year */
       if (fu < *fc) {  #define AGESUP 130
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  #define AGEBASE 40
           SHFT(*fb,*fc,fu,(*func)(u))  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
           }  #ifdef _WIN32
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  #define DIRSEPARATOR '\\'
       u=ulim;  #define CHARSEPARATOR "\\"
       fu=(*func)(u);  #define ODIRSEPARATOR '/'
     } else {  #else
       u=(*cx)+GOLD*(*cx-*bx);  #define DIRSEPARATOR '/'
       fu=(*func)(u);  #define CHARSEPARATOR "/"
     }  #define ODIRSEPARATOR '\\'
     SHFT(*ax,*bx,*cx,u)  #endif
       SHFT(*fa,*fb,*fc,fu)  
       }  /* $Id$ */
 }  /* $State$ */
   
 /*************** linmin ************************/  char version[]="Imach version 0.98nX, August 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
   char fullversion[]="$Revision$ $Date$"; 
 int ncom;  char strstart[80];
 double *pcom,*xicom;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 double (*nrfunc)(double []);  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
    int nvar=0, nforce=0; /* Number of variables, number of forces */
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
 {  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
   double brent(double ax, double bx, double cx,  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
                double (*f)(double), double tol, double *xmin);  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
   double f1dim(double x);  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  int cptcovprodnoage=0; /**< Number of covariate products without age */   
               double *fc, double (*func)(double));  int cptcoveff=0; /* Total number of covariates to vary for printing results */
   int j;  int cptcov=0; /* Working variable */
   double xx,xmin,bx,ax;  int npar=NPARMAX;
   double fx,fb,fa;  int nlstate=2; /* Number of live states */
    int ndeath=1; /* Number of dead states */
   ncom=n;  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   pcom=vector(1,n);  int popbased=0;
   xicom=vector(1,n);  
   nrfunc=func;  int *wav; /* Number of waves for this individuual 0 is possible */
   for (j=1;j<=n;j++) {  int maxwav=0; /* Maxim number of waves */
     pcom[j]=p[j];  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
     xicom[j]=xi[j];  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
   }  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
   ax=0.0;                     to the likelihood and the sum of weights (done by funcone)*/
   xx=1.0;  int mle=1, weightopt=0;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 #ifdef DEBUG  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  double jmean=1; /* Mean space between 2 waves */
 #endif  double **matprod2(); /* test */
   for (j=1;j<=n;j++) {  double **oldm, **newm, **savm; /* Working pointers to matrices */
     xi[j] *= xmin;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     p[j] += xi[j];  /*FILE *fic ; */ /* Used in readdata only */
   }  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   free_vector(xicom,1,n);  FILE *ficlog, *ficrespow;
   free_vector(pcom,1,n);  int globpr=0; /* Global variable for printing or not */
 }  double fretone; /* Only one call to likelihood */
   long ipmx=0; /* Number of contributions */
 /*************** powell ************************/  double sw; /* Sum of weights */
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  char filerespow[FILENAMELENGTH];
             double (*func)(double []))  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 {  FILE *ficresilk;
   void linmin(double p[], double xi[], int n, double *fret,  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
               double (*func)(double []));  FILE *ficresprobmorprev;
   int i,ibig,j;  FILE *fichtm, *fichtmcov; /* Html File */
   double del,t,*pt,*ptt,*xit;  FILE *ficreseij;
   double fp,fptt;  char filerese[FILENAMELENGTH];
   double *xits;  FILE *ficresstdeij;
   pt=vector(1,n);  char fileresstde[FILENAMELENGTH];
   ptt=vector(1,n);  FILE *ficrescveij;
   xit=vector(1,n);  char filerescve[FILENAMELENGTH];
   xits=vector(1,n);  FILE  *ficresvij;
   *fret=(*func)(p);  char fileresv[FILENAMELENGTH];
   for (j=1;j<=n;j++) pt[j]=p[j];  FILE  *ficresvpl;
   for (*iter=1;;++(*iter)) {  char fileresvpl[FILENAMELENGTH];
     fp=(*fret);  char title[MAXLINE];
     ibig=0;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     del=0.0;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  char command[FILENAMELENGTH];
     for (i=1;i<=n;i++)  int  outcmd=0;
       printf(" %d %.12f",i, p[i]);  
     fprintf(ficlog," %d %.12f",i, p[i]);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     printf("\n");  
     fprintf(ficlog,"\n");  char filelog[FILENAMELENGTH]; /* Log file */
     for (i=1;i<=n;i++) {  char filerest[FILENAMELENGTH];
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  char fileregp[FILENAMELENGTH];
       fptt=(*fret);  char popfile[FILENAMELENGTH];
 #ifdef DEBUG  
       printf("fret=%lf \n",*fret);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
       fprintf(ficlog,"fret=%lf \n",*fret);  
 #endif  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
       printf("%d",i);fflush(stdout);  /* struct timezone tzp; */
       fprintf(ficlog,"%d",i);fflush(ficlog);  /* extern int gettimeofday(); */
       linmin(p,xit,n,fret,func);  struct tm tml, *gmtime(), *localtime();
       if (fabs(fptt-(*fret)) > del) {  
         del=fabs(fptt-(*fret));  extern time_t time();
         ibig=i;  
       }  struct tm start_time, end_time, curr_time, last_time, forecast_time;
 #ifdef DEBUG  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
       printf("%d %.12e",i,(*fret));  struct tm tm;
       fprintf(ficlog,"%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {  char strcurr[80], strfor[80];
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  
         printf(" x(%d)=%.12e",j,xit[j]);  char *endptr;
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  long lval;
       }  double dval;
       for(j=1;j<=n;j++) {  
         printf(" p=%.12e",p[j]);  #define NR_END 1
         fprintf(ficlog," p=%.12e",p[j]);  #define FREE_ARG char*
       }  #define FTOL 1.0e-10
       printf("\n");  
       fprintf(ficlog,"\n");  #define NRANSI 
 #endif  #define ITMAX 200 
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  #define TOL 2.0e-4 
 #ifdef DEBUG  
       int k[2],l;  #define CGOLD 0.3819660 
       k[0]=1;  #define ZEPS 1.0e-10 
       k[1]=-1;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
       printf("Max: %.12e",(*func)(p));  
       fprintf(ficlog,"Max: %.12e",(*func)(p));  #define GOLD 1.618034 
       for (j=1;j<=n;j++) {  #define GLIMIT 100.0 
         printf(" %.12e",p[j]);  #define TINY 1.0e-20 
         fprintf(ficlog," %.12e",p[j]);  
       }  static double maxarg1,maxarg2;
       printf("\n");  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       fprintf(ficlog,"\n");  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       for(l=0;l<=1;l++) {    
         for (j=1;j<=n;j++) {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  #define rint(a) floor(a+0.5)
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  static double sqrarg;
         }  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  int agegomp= AGEGOMP;
       }  
 #endif  int imx; 
   int stepm=1;
   /* Stepm, step in month: minimum step interpolation*/
       free_vector(xit,1,n);  
       free_vector(xits,1,n);  int estepm;
       free_vector(ptt,1,n);  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       free_vector(pt,1,n);  
       return;  int m,nb;
     }  long *num;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     for (j=1;j<=n;j++) {  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       ptt[j]=2.0*p[j]-pt[j];  double **pmmij, ***probs;
       xit[j]=p[j]-pt[j];  double *ageexmed,*agecens;
       pt[j]=p[j];  double dateintmean=0;
     }  
     fptt=(*func)(ptt);  double *weight;
     if (fptt < fp) {  int **s; /* Status */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  double *agedc;
       if (t < 0.0) {  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
         linmin(p,xit,n,fret,func);                    * covar=matrix(0,NCOVMAX,1,n); 
         for (j=1;j<=n;j++) {                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
           xi[j][ibig]=xi[j][n];  double  idx; 
           xi[j][n]=xit[j];  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
         }  int *Ndum; /** Freq of modality (tricode */
 #ifdef DEBUG  int **codtab; /**< codtab=imatrix(1,100,1,10); */
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  double *lsurv, *lpop, *tpop;
         for(j=1;j<=n;j++){  
           printf(" %.12e",xit[j]);  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
           fprintf(ficlog," %.12e",xit[j]);  double ftolhess; /**< Tolerance for computing hessian */
         }  
         printf("\n");  /**************** split *************************/
         fprintf(ficlog,"\n");  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 #endif  {
       }    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
     }       the name of the file (name), its extension only (ext) and its first part of the name (finame)
   }    */ 
 }    char  *ss;                            /* pointer */
     int   l1, l2;                         /* length counters */
 /**** Prevalence limit ****************/  
     l1 = strlen(path );                   /* length of path */
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 {    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    if ( ss == NULL ) {                   /* no directory, so determine current directory */
      matrix by transitions matrix until convergence is reached */      strcpy( name, path );               /* we got the fullname name because no directory */
       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   int i, ii,j,k;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   double min, max, maxmin, maxmax,sumnew=0.;      /* get current working directory */
   double **matprod2();      /*    extern  char* getcwd ( char *buf , int len);*/
   double **out, cov[NCOVMAX], **pmij();      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   double **newm;        return( GLOCK_ERROR_GETCWD );
   double agefin, delaymax=50 ; /* Max number of years to converge */      }
       /* got dirc from getcwd*/
   for (ii=1;ii<=nlstate+ndeath;ii++)      printf(" DIRC = %s \n",dirc);
     for (j=1;j<=nlstate+ndeath;j++){    } else {                              /* strip direcotry from path */
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      ss++;                               /* after this, the filename */
     }      l2 = strlen( ss );                  /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
    cov[1]=1.;      strcpy( name, ss );         /* save file name */
        strncpy( dirc, path, l1 - l2 );     /* now the directory */
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      dirc[l1-l2] = 0;                    /* add zero */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      printf(" DIRC2 = %s \n",dirc);
     newm=savm;    }
     /* Covariates have to be included here again */    /* We add a separator at the end of dirc if not exists */
      cov[2]=agefin;    l1 = strlen( dirc );                  /* length of directory */
      if( dirc[l1-1] != DIRSEPARATOR ){
       for (k=1; k<=cptcovn;k++) {      dirc[l1] =  DIRSEPARATOR;
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      dirc[l1+1] = 0; 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/      printf(" DIRC3 = %s \n",dirc);
       }    }
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    ss = strrchr( name, '.' );            /* find last / */
       for (k=1; k<=cptcovprod;k++)    if (ss >0){
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      ss++;
       strcpy(ext,ss);                     /* save extension */
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      l1= strlen( name);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      l2= strlen(ss)+1;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      strncpy( finame, name, l1-l2);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      finame[l1-l2]= 0;
     }
     savm=oldm;  
     oldm=newm;    return( 0 );                          /* we're done */
     maxmax=0.;  }
     for(j=1;j<=nlstate;j++){  
       min=1.;  
       max=0.;  /******************************************/
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;  void replace_back_to_slash(char *s, char*t)
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  {
         prlim[i][j]= newm[i][j]/(1-sumnew);    int i;
         max=FMAX(max,prlim[i][j]);    int lg=0;
         min=FMIN(min,prlim[i][j]);    i=0;
       }    lg=strlen(t);
       maxmin=max-min;    for(i=0; i<= lg; i++) {
       maxmax=FMAX(maxmax,maxmin);      (s[i] = t[i]);
     }      if (t[i]== '\\') s[i]='/';
     if(maxmax < ftolpl){    }
       return prlim;  }
     }  
   }  char *trimbb(char *out, char *in)
 }  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
     char *s;
 /*************** transition probabilities ***************/    s=out;
     while (*in != '\0'){
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
 {        in++;
   double s1, s2;      }
   /*double t34;*/      *out++ = *in++;
   int i,j,j1, nc, ii, jj;    }
     *out='\0';
     for(i=1; i<= nlstate; i++){    return s;
     for(j=1; j<i;j++){  }
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         /*s2 += param[i][j][nc]*cov[nc];*/  char *cutl(char *blocc, char *alocc, char *in, char occ)
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  {
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
       }       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
       ps[i][j]=s2;       gives blocc="abcdef2ghi" and alocc="j".
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/       If occ is not found blocc is null and alocc is equal to in. Returns blocc
     }    */
     for(j=i+1; j<=nlstate+ndeath;j++){    char *s, *t, *bl;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    t=in;s=in;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    while ((*in != occ) && (*in != '\0')){
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      *alocc++ = *in++;
       }    }
       ps[i][j]=s2;    if( *in == occ){
     }      *(alocc)='\0';
   }      s=++in;
     /*ps[3][2]=1;*/    }
    
   for(i=1; i<= nlstate; i++){    if (s == t) {/* occ not found */
      s1=0;      *(alocc-(in-s))='\0';
     for(j=1; j<i; j++)      in=s;
       s1+=exp(ps[i][j]);    }
     for(j=i+1; j<=nlstate+ndeath; j++)    while ( *in != '\0'){
       s1+=exp(ps[i][j]);      *blocc++ = *in++;
     ps[i][i]=1./(s1+1.);    }
     for(j=1; j<i; j++)  
       ps[i][j]= exp(ps[i][j])*ps[i][i];    *blocc='\0';
     for(j=i+1; j<=nlstate+ndeath; j++)    return t;
       ps[i][j]= exp(ps[i][j])*ps[i][i];  }
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  char *cutv(char *blocc, char *alocc, char *in, char occ)
   } /* end i */  {
     /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
     for(jj=1; jj<= nlstate+ndeath; jj++){       gives blocc="abcdef2ghi" and alocc="j".
       ps[ii][jj]=0;       If occ is not found blocc is null and alocc is equal to in. Returns alocc
       ps[ii][ii]=1;    */
     }    char *s, *t;
   }    t=in;s=in;
     while (*in != '\0'){
       while( *in == occ){
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        *blocc++ = *in++;
     for(jj=1; jj<= nlstate+ndeath; jj++){        s=in;
      printf("%lf ",ps[ii][jj]);      }
    }      *blocc++ = *in++;
     printf("\n ");    }
     }    if (s == t) /* occ not found */
     printf("\n ");printf("%lf ",cov[2]);*/      *(blocc-(in-s))='\0';
 /*    else
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      *(blocc-(in-s)-1)='\0';
   goto end;*/    in=s;
     return ps;    while ( *in != '\0'){
 }      *alocc++ = *in++;
     }
 /**************** Product of 2 matrices ******************/  
     *alocc='\0';
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    return s;
 {  }
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times  
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  int nbocc(char *s, char occ)
   /* in, b, out are matrice of pointers which should have been initialized  {
      before: only the contents of out is modified. The function returns    int i,j=0;
      a pointer to pointers identical to out */    int lg=20;
   long i, j, k;    i=0;
   for(i=nrl; i<= nrh; i++)    lg=strlen(s);
     for(k=ncolol; k<=ncoloh; k++)    for(i=0; i<= lg; i++) {
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    if  (s[i] == occ ) j++;
         out[i][k] +=in[i][j]*b[j][k];    }
     return j;
   return out;  }
 }  
   /* void cutv(char *u,char *v, char*t, char occ) */
   /* { */
 /************* Higher Matrix Product ***************/  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
   /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  /*      gives u="abcdef2ghi" and v="j" *\/ */
 {  /*   int i,lg,j,p=0; */
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  /*   i=0; */
      duration (i.e. until  /*   lg=strlen(t); */
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  /*   for(j=0; j<=lg-1; j++) { */
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
      (typically every 2 years instead of every month which is too big).  /*   } */
      Model is determined by parameters x and covariates have to be  
      included manually here.  /*   for(j=0; j<p; j++) { */
   /*     (u[j] = t[j]); */
      */  /*   } */
   /*      u[p]='\0'; */
   int i, j, d, h, k;  
   double **out, cov[NCOVMAX];  /*    for(j=0; j<= lg; j++) { */
   double **newm;  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   /*   } */
   /* Hstepm could be zero and should return the unit matrix */  /* } */
   for (i=1;i<=nlstate+ndeath;i++)  
     for (j=1;j<=nlstate+ndeath;j++){  /********************** nrerror ********************/
       oldm[i][j]=(i==j ? 1.0 : 0.0);  
       po[i][j][0]=(i==j ? 1.0 : 0.0);  void nrerror(char error_text[])
     }  {
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    fprintf(stderr,"ERREUR ...\n");
   for(h=1; h <=nhstepm; h++){    fprintf(stderr,"%s\n",error_text);
     for(d=1; d <=hstepm; d++){    exit(EXIT_FAILURE);
       newm=savm;  }
       /* Covariates have to be included here again */  /*********************** vector *******************/
       cov[1]=1.;  double *vector(int nl, int nh)
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  {
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    double *v;
       for (k=1; k<=cptcovage;k++)    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    if (!v) nrerror("allocation failure in vector");
       for (k=1; k<=cptcovprod;k++)    return v-nl+NR_END;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  }
   
   /************************ free vector ******************/
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  void free_vector(double*v, int nl, int nh)
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  {
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    free((FREE_ARG)(v+nl-NR_END));
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  }
       savm=oldm;  
       oldm=newm;  /************************ivector *******************************/
     }  int *ivector(long nl,long nh)
     for(i=1; i<=nlstate+ndeath; i++)  {
       for(j=1;j<=nlstate+ndeath;j++) {    int *v;
         po[i][j][h]=newm[i][j];    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    if (!v) nrerror("allocation failure in ivector");
          */    return v-nl+NR_END;
       }  }
   } /* end h */  
   return po;  /******************free ivector **************************/
 }  void free_ivector(int *v, long nl, long nh)
   {
     free((FREE_ARG)(v+nl-NR_END));
 /*************** log-likelihood *************/  }
 double func( double *x)  
 {  /************************lvector *******************************/
   int i, ii, j, k, mi, d, kk;  long *lvector(long nl,long nh)
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  {
   double **out;    long *v;
   double sw; /* Sum of weights */    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   double lli; /* Individual log likelihood */    if (!v) nrerror("allocation failure in ivector");
   long ipmx;    return v-nl+NR_END;
   /*extern weight */  }
   /* We are differentiating ll according to initial status */  
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  /******************free lvector **************************/
   /*for(i=1;i<imx;i++)  void free_lvector(long *v, long nl, long nh)
     printf(" %d\n",s[4][i]);  {
   */    free((FREE_ARG)(v+nl-NR_END));
   cov[1]=1.;  }
   
   for(k=1; k<=nlstate; k++) ll[k]=0.;  /******************* imatrix *******************************/
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     for(mi=1; mi<= wav[i]-1; mi++){  { 
       for (ii=1;ii<=nlstate+ndeath;ii++)    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    int **m; 
       for(d=0; d<dh[mi][i]; d++){    
         newm=savm;    /* allocate pointers to rows */ 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
         for (kk=1; kk<=cptcovage;kk++) {    if (!m) nrerror("allocation failure 1 in matrix()"); 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    m += NR_END; 
         }    m -= nrl; 
            
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    /* allocate rows and set pointers to them */ 
         savm=oldm;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
         oldm=newm;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
            m[nrl] += NR_END; 
            m[nrl] -= ncl; 
       } /* end mult */    
          for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);    
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    /* return pointer to array of pointers to rows */ 
       ipmx +=1;    return m; 
       sw += weight[i];  } 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
     } /* end of wave */  /****************** free_imatrix *************************/
   } /* end of individual */  void free_imatrix(m,nrl,nrh,ncl,nch)
         int **m;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        long nch,ncl,nrh,nrl; 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */       /* free an int matrix allocated by imatrix() */ 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  { 
   return -l;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 }    free((FREE_ARG) (m+nrl-NR_END)); 
   } 
   
 /*********** Maximum Likelihood Estimation ***************/  /******************* matrix *******************************/
   double **matrix(long nrl, long nrh, long ncl, long nch)
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  {
 {    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   int i,j, iter;    double **m;
   double **xi,*delti;  
   double fret;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   xi=matrix(1,npar,1,npar);    if (!m) nrerror("allocation failure 1 in matrix()");
   for (i=1;i<=npar;i++)    m += NR_END;
     for (j=1;j<=npar;j++)    m -= nrl;
       xi[i][j]=(i==j ? 1.0 : 0.0);  
   printf("Powell\n");  fprintf(ficlog,"Powell\n");    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   powell(p,xi,npar,ftol,&iter,&fret,func);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     m[nrl] += NR_END;
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    m[nrl] -= ncl;
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     return m;
 }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
   m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
 /**** Computes Hessian and covariance matrix ***/  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))     */
 {  }
   double  **a,**y,*x,pd;  
   double **hess;  /*************************free matrix ************************/
   int i, j,jk;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   int *indx;  {
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double hessii(double p[], double delta, int theta, double delti[]);    free((FREE_ARG)(m+nrl-NR_END));
   double hessij(double p[], double delti[], int i, int j);  }
   void lubksb(double **a, int npar, int *indx, double b[]) ;  
   void ludcmp(double **a, int npar, int *indx, double *d) ;  /******************* ma3x *******************************/
   double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   hess=matrix(1,npar,1,npar);  {
     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   printf("\nCalculation of the hessian matrix. Wait...\n");    double ***m;
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");  
   for (i=1;i<=npar;i++){    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     printf("%d",i);fflush(stdout);    if (!m) nrerror("allocation failure 1 in matrix()");
     fprintf(ficlog,"%d",i);fflush(ficlog);    m += NR_END;
     hess[i][i]=hessii(p,ftolhess,i,delti);    m -= nrl;
     /*printf(" %f ",p[i]);*/  
     /*printf(" %lf ",hess[i][i]);*/    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
      m[nrl] += NR_END;
   for (i=1;i<=npar;i++) {    m[nrl] -= ncl;
     for (j=1;j<=npar;j++)  {  
       if (j>i) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         printf(".%d%d",i,j);fflush(stdout);  
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         hess[i][j]=hessij(p,delti,i,j);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         hess[j][i]=hess[i][j];        m[nrl][ncl] += NR_END;
         /*printf(" %lf ",hess[i][j]);*/    m[nrl][ncl] -= nll;
       }    for (j=ncl+1; j<=nch; j++) 
     }      m[nrl][j]=m[nrl][j-1]+nlay;
   }    
   printf("\n");    for (i=nrl+1; i<=nrh; i++) {
   fprintf(ficlog,"\n");      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (j=ncl+1; j<=nch; j++) 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        m[i][j]=m[i][j-1]+nlay;
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");    }
      return m; 
   a=matrix(1,npar,1,npar);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   y=matrix(1,npar,1,npar);             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   x=vector(1,npar);    */
   indx=ivector(1,npar);  }
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  /*************************free ma3x ************************/
   ludcmp(a,npar,indx,&pd);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   {
   for (j=1;j<=npar;j++) {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     for (i=1;i<=npar;i++) x[i]=0;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     x[j]=1;    free((FREE_ARG)(m+nrl-NR_END));
     lubksb(a,npar,indx,x);  }
     for (i=1;i<=npar;i++){  
       matcov[i][j]=x[i];  /*************** function subdirf ***********/
     }  char *subdirf(char fileres[])
   }  {
     /* Caution optionfilefiname is hidden */
   printf("\n#Hessian matrix#\n");    strcpy(tmpout,optionfilefiname);
   fprintf(ficlog,"\n#Hessian matrix#\n");    strcat(tmpout,"/"); /* Add to the right */
   for (i=1;i<=npar;i++) {    strcat(tmpout,fileres);
     for (j=1;j<=npar;j++) {    return tmpout;
       printf("%.3e ",hess[i][j]);  }
       fprintf(ficlog,"%.3e ",hess[i][j]);  
     }  /*************** function subdirf2 ***********/
     printf("\n");  char *subdirf2(char fileres[], char *preop)
     fprintf(ficlog,"\n");  {
   }    
     /* Caution optionfilefiname is hidden */
   /* Recompute Inverse */    strcpy(tmpout,optionfilefiname);
   for (i=1;i<=npar;i++)    strcat(tmpout,"/");
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    strcat(tmpout,preop);
   ludcmp(a,npar,indx,&pd);    strcat(tmpout,fileres);
     return tmpout;
   /*  printf("\n#Hessian matrix recomputed#\n");  }
   
   for (j=1;j<=npar;j++) {  /*************** function subdirf3 ***********/
     for (i=1;i<=npar;i++) x[i]=0;  char *subdirf3(char fileres[], char *preop, char *preop2)
     x[j]=1;  {
     lubksb(a,npar,indx,x);    
     for (i=1;i<=npar;i++){    /* Caution optionfilefiname is hidden */
       y[i][j]=x[i];    strcpy(tmpout,optionfilefiname);
       printf("%.3e ",y[i][j]);    strcat(tmpout,"/");
       fprintf(ficlog,"%.3e ",y[i][j]);    strcat(tmpout,preop);
     }    strcat(tmpout,preop2);
     printf("\n");    strcat(tmpout,fileres);
     fprintf(ficlog,"\n");    return tmpout;
   }  }
   */  
   /***************** f1dim *************************/
   free_matrix(a,1,npar,1,npar);  extern int ncom; 
   free_matrix(y,1,npar,1,npar);  extern double *pcom,*xicom;
   free_vector(x,1,npar);  extern double (*nrfunc)(double []); 
   free_ivector(indx,1,npar);   
   free_matrix(hess,1,npar,1,npar);  double f1dim(double x) 
   { 
     int j; 
 }    double f;
     double *xt; 
 /*************** hessian matrix ****************/   
 double hessii( double x[], double delta, int theta, double delti[])    xt=vector(1,ncom); 
 {    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   int i;    f=(*nrfunc)(xt); 
   int l=1, lmax=20;    free_vector(xt,1,ncom); 
   double k1,k2;    return f; 
   double p2[NPARMAX+1];  } 
   double res;  
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  /*****************brent *************************/
   double fx;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   int k=0,kmax=10;  { 
   double l1;    int iter; 
     double a,b,d,etemp;
   fx=func(x);    double fu=0,fv,fw,fx;
   for (i=1;i<=npar;i++) p2[i]=x[i];    double ftemp;
   for(l=0 ; l <=lmax; l++){    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     l1=pow(10,l);    double e=0.0; 
     delts=delt;   
     for(k=1 ; k <kmax; k=k+1){    a=(ax < cx ? ax : cx); 
       delt = delta*(l1*k);    b=(ax > cx ? ax : cx); 
       p2[theta]=x[theta] +delt;    x=w=v=bx; 
       k1=func(p2)-fx;    fw=fv=fx=(*f)(x); 
       p2[theta]=x[theta]-delt;    for (iter=1;iter<=ITMAX;iter++) { 
       k2=func(p2)-fx;      xm=0.5*(a+b); 
       /*res= (k1-2.0*fx+k2)/delt/delt; */      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
            printf(".");fflush(stdout);
 #ifdef DEBUG      fprintf(ficlog,".");fflush(ficlog);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  #ifdef DEBUG
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 #endif      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  #endif
         k=kmax;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       }        *xmin=x; 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        return fx; 
         k=kmax; l=lmax*10.;      } 
       }      ftemp=fu;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      if (fabs(e) > tol1) { 
         delts=delt;        r=(x-w)*(fx-fv); 
       }        q=(x-v)*(fx-fw); 
     }        p=(x-v)*q-(x-w)*r; 
   }        q=2.0*(q-r); 
   delti[theta]=delts;        if (q > 0.0) p = -p; 
   return res;        q=fabs(q); 
          etemp=e; 
 }        e=d; 
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
 double hessij( double x[], double delti[], int thetai,int thetaj)          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 {        else { 
   int i;          d=p/q; 
   int l=1, l1, lmax=20;          u=x+d; 
   double k1,k2,k3,k4,res,fx;          if (u-a < tol2 || b-u < tol2) 
   double p2[NPARMAX+1];            d=SIGN(tol1,xm-x); 
   int k;        } 
       } else { 
   fx=func(x);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   for (k=1; k<=2; k++) {      } 
     for (i=1;i<=npar;i++) p2[i]=x[i];      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
     p2[thetai]=x[thetai]+delti[thetai]/k;      fu=(*f)(u); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      if (fu <= fx) { 
     k1=func(p2)-fx;        if (u >= x) a=x; else b=x; 
          SHFT(v,w,x,u) 
     p2[thetai]=x[thetai]+delti[thetai]/k;          SHFT(fv,fw,fx,fu) 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          } else { 
     k2=func(p2)-fx;            if (u < x) a=u; else b=u; 
              if (fu <= fw || w == x) { 
     p2[thetai]=x[thetai]-delti[thetai]/k;              v=w; 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;              w=u; 
     k3=func(p2)-fx;              fv=fw; 
                fw=fu; 
     p2[thetai]=x[thetai]-delti[thetai]/k;            } else if (fu <= fv || v == x || v == w) { 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;              v=u; 
     k4=func(p2)-fx;              fv=fu; 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */            } 
 #ifdef DEBUG          } 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    } 
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    nrerror("Too many iterations in brent"); 
 #endif    *xmin=x; 
   }    return fx; 
   return res;  } 
 }  
   /****************** mnbrak ***********************/
 /************** Inverse of matrix **************/  
 void ludcmp(double **a, int n, int *indx, double *d)  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 {              double (*func)(double)) 
   int i,imax,j,k;  { 
   double big,dum,sum,temp;    double ulim,u,r,q, dum;
   double *vv;    double fu; 
     
   vv=vector(1,n);    *fa=(*func)(*ax); 
   *d=1.0;    *fb=(*func)(*bx); 
   for (i=1;i<=n;i++) {    if (*fb > *fa) { 
     big=0.0;      SHFT(dum,*ax,*bx,dum) 
     for (j=1;j<=n;j++)        SHFT(dum,*fb,*fa,dum) 
       if ((temp=fabs(a[i][j])) > big) big=temp;        } 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    *cx=(*bx)+GOLD*(*bx-*ax); 
     vv[i]=1.0/big;    *fc=(*func)(*cx); 
   }    while (*fb > *fc) { 
   for (j=1;j<=n;j++) {      r=(*bx-*ax)*(*fb-*fc); 
     for (i=1;i<j;i++) {      q=(*bx-*cx)*(*fb-*fa); 
       sum=a[i][j];      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       a[i][j]=sum;      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     }      if ((*bx-u)*(u-*cx) > 0.0) { 
     big=0.0;        fu=(*func)(u); 
     for (i=j;i<=n;i++) {      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       sum=a[i][j];        fu=(*func)(u); 
       for (k=1;k<j;k++)        if (fu < *fc) { 
         sum -= a[i][k]*a[k][j];          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       a[i][j]=sum;            SHFT(*fb,*fc,fu,(*func)(u)) 
       if ( (dum=vv[i]*fabs(sum)) >= big) {            } 
         big=dum;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         imax=i;        u=ulim; 
       }        fu=(*func)(u); 
     }      } else { 
     if (j != imax) {        u=(*cx)+GOLD*(*cx-*bx); 
       for (k=1;k<=n;k++) {        fu=(*func)(u); 
         dum=a[imax][k];      } 
         a[imax][k]=a[j][k];      SHFT(*ax,*bx,*cx,u) 
         a[j][k]=dum;        SHFT(*fa,*fb,*fc,fu) 
       }        } 
       *d = -(*d);  } 
       vv[imax]=vv[j];  
     }  /*************** linmin ************************/
     indx[j]=imax;  
     if (a[j][j] == 0.0) a[j][j]=TINY;  int ncom; 
     if (j != n) {  double *pcom,*xicom;
       dum=1.0/(a[j][j]);  double (*nrfunc)(double []); 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;   
     }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   }  { 
   free_vector(vv,1,n);  /* Doesn't work */    double brent(double ax, double bx, double cx, 
 ;                 double (*f)(double), double tol, double *xmin); 
 }    double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 void lubksb(double **a, int n, int *indx, double b[])                double *fc, double (*func)(double)); 
 {    int j; 
   int i,ii=0,ip,j;    double xx,xmin,bx,ax; 
   double sum;    double fx,fb,fa;
     
   for (i=1;i<=n;i++) {    ncom=n; 
     ip=indx[i];    pcom=vector(1,n); 
     sum=b[ip];    xicom=vector(1,n); 
     b[ip]=b[i];    nrfunc=func; 
     if (ii)    for (j=1;j<=n;j++) { 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      pcom[j]=p[j]; 
     else if (sum) ii=i;      xicom[j]=xi[j]; 
     b[i]=sum;    } 
   }    ax=0.0; 
   for (i=n;i>=1;i--) {    xx=1.0; 
     sum=b[i];    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     b[i]=sum/a[i][i];  #ifdef DEBUG
   }    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   #endif
 /************ Frequencies ********************/    for (j=1;j<=n;j++) { 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)      xi[j] *= xmin; 
 {  /* Some frequencies */      p[j] += xi[j]; 
      } 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    free_vector(xicom,1,n); 
   int first;    free_vector(pcom,1,n); 
   double ***freq; /* Frequencies */  } 
   double *pp;  
   double pos, k2, dateintsum=0,k2cpt=0;  char *asc_diff_time(long time_sec, char ascdiff[])
   FILE *ficresp;  {
   char fileresp[FILENAMELENGTH];    long sec_left, days, hours, minutes;
      days = (time_sec) / (60*60*24);
   pp=vector(1,nlstate);    sec_left = (time_sec) % (60*60*24);
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    hours = (sec_left) / (60*60) ;
   strcpy(fileresp,"p");    sec_left = (sec_left) %(60*60);
   strcat(fileresp,fileres);    minutes = (sec_left) /60;
   if((ficresp=fopen(fileresp,"w"))==NULL) {    sec_left = (sec_left) % (60);
     printf("Problem with prevalence resultfile: %s\n", fileresp);    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    return ascdiff;
     exit(0);  }
   }  
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  /*************** powell ************************/
   j1=0;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
                double (*func)(double [])) 
   j=cptcoveff;  { 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    void linmin(double p[], double xi[], int n, double *fret, 
                 double (*func)(double [])); 
   first=1;    int i,ibig,j; 
     double del,t,*pt,*ptt,*xit;
   for(k1=1; k1<=j;k1++){    double fp,fptt;
     for(i1=1; i1<=ncodemax[k1];i1++){    double *xits;
       j1++;    int niterf, itmp;
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  
         scanf("%d", i);*/    pt=vector(1,n); 
       for (i=-1; i<=nlstate+ndeath; i++)      ptt=vector(1,n); 
         for (jk=-1; jk<=nlstate+ndeath; jk++)      xit=vector(1,n); 
           for(m=agemin; m <= agemax+3; m++)    xits=vector(1,n); 
             freq[i][jk][m]=0;    *fret=(*func)(p); 
          for (j=1;j<=n;j++) pt[j]=p[j]; 
       dateintsum=0;      rcurr_time = time(NULL);  
       k2cpt=0;    for (*iter=1;;++(*iter)) { 
       for (i=1; i<=imx; i++) {      fp=(*fret); 
         bool=1;      ibig=0; 
         if  (cptcovn>0) {      del=0.0; 
           for (z1=1; z1<=cptcoveff; z1++)      rlast_time=rcurr_time;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      /* (void) gettimeofday(&curr_time,&tzp); */
               bool=0;      rcurr_time = time(NULL);  
         }      curr_time = *localtime(&rcurr_time);
         if (bool==1) {      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
           for(m=firstpass; m<=lastpass; m++){      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
             k2=anint[m][i]+(mint[m][i]/12.);  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {     for (i=1;i<=n;i++) {
               if(agev[m][i]==0) agev[m][i]=agemax+1;        printf(" %d %.12f",i, p[i]);
               if(agev[m][i]==1) agev[m][i]=agemax+2;        fprintf(ficlog," %d %.12lf",i, p[i]);
               if (m<lastpass) {        fprintf(ficrespow," %.12lf", p[i]);
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      }
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      printf("\n");
               }      fprintf(ficlog,"\n");
                    fprintf(ficrespow,"\n");fflush(ficrespow);
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {      if(*iter <=3){
                 dateintsum=dateintsum+k2;        tml = *localtime(&rcurr_time);
                 k2cpt++;        strcpy(strcurr,asctime(&tml));
               }  /*       asctime_r(&tm,strcurr); */
             }        rforecast_time=rcurr_time; 
           }        itmp = strlen(strcurr);
         }        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       }          strcurr[itmp-1]='\0';
                printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
         for(niterf=10;niterf<=30;niterf+=10){
       if  (cptcovn>0) {          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
         fprintf(ficresp, "\n#********** Variable ");          forecast_time = *localtime(&rforecast_time);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  /*      asctime_r(&tmf,strfor); */
         fprintf(ficresp, "**********\n#");          strcpy(strfor,asctime(&forecast_time));
       }          itmp = strlen(strfor);
       for(i=1; i<=nlstate;i++)          if(strfor[itmp-1]=='\n')
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          strfor[itmp-1]='\0';
       fprintf(ficresp, "\n");          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
                fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
       for(i=(int)agemin; i <= (int)agemax+3; i++){        }
         if(i==(int)agemax+3){      }
           fprintf(ficlog,"Total");      for (i=1;i<=n;i++) { 
         }else{        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
           if(first==1){        fptt=(*fret); 
             first=0;  #ifdef DEBUG
             printf("See log file for details...\n");        printf("fret=%lf \n",*fret);
           }        fprintf(ficlog,"fret=%lf \n",*fret);
           fprintf(ficlog,"Age %d", i);  #endif
         }        printf("%d",i);fflush(stdout);
         for(jk=1; jk <=nlstate ; jk++){        fprintf(ficlog,"%d",i);fflush(ficlog);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        linmin(p,xit,n,fret,func); 
             pp[jk] += freq[jk][m][i];        if (fabs(fptt-(*fret)) > del) { 
         }          del=fabs(fptt-(*fret)); 
         for(jk=1; jk <=nlstate ; jk++){          ibig=i; 
           for(m=-1, pos=0; m <=0 ; m++)        } 
             pos += freq[jk][m][i];  #ifdef DEBUG
           if(pp[jk]>=1.e-10){        printf("%d %.12e",i,(*fret));
             if(first==1){        fprintf(ficlog,"%d %.12e",i,(*fret));
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        for (j=1;j<=n;j++) {
             }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          printf(" x(%d)=%.12e",j,xit[j]);
           }else{          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
             if(first==1)        }
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        for(j=1;j<=n;j++) {
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          printf(" p=%.12e",p[j]);
           }          fprintf(ficlog," p=%.12e",p[j]);
         }        }
         printf("\n");
         for(jk=1; jk <=nlstate ; jk++){        fprintf(ficlog,"\n");
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  #endif
             pp[jk] += freq[jk][m][i];      } 
         }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   #ifdef DEBUG
         for(jk=1,pos=0; jk <=nlstate ; jk++)        int k[2],l;
           pos += pp[jk];        k[0]=1;
         for(jk=1; jk <=nlstate ; jk++){        k[1]=-1;
           if(pos>=1.e-5){        printf("Max: %.12e",(*func)(p));
             if(first==1)        fprintf(ficlog,"Max: %.12e",(*func)(p));
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        for (j=1;j<=n;j++) {
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          printf(" %.12e",p[j]);
           }else{          fprintf(ficlog," %.12e",p[j]);
             if(first==1)        }
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        printf("\n");
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        fprintf(ficlog,"\n");
           }        for(l=0;l<=1;l++) {
           if( i <= (int) agemax){          for (j=1;j<=n;j++) {
             if(pos>=1.e-5){            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
               probs[i][jk][j1]= pp[jk]/pos;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/          }
             }          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
             else          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        }
           }  #endif
         }  
          
         for(jk=-1; jk <=nlstate+ndeath; jk++)        free_vector(xit,1,n); 
           for(m=-1; m <=nlstate+ndeath; m++)        free_vector(xits,1,n); 
             if(freq[jk][m][i] !=0 ) {        free_vector(ptt,1,n); 
             if(first==1)        free_vector(pt,1,n); 
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        return; 
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);      } 
             }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
         if(i <= (int) agemax)      for (j=1;j<=n;j++) { 
           fprintf(ficresp,"\n");        ptt[j]=2.0*p[j]-pt[j]; 
         if(first==1)        xit[j]=p[j]-pt[j]; 
           printf("Others in log...\n");        pt[j]=p[j]; 
         fprintf(ficlog,"\n");      } 
       }      fptt=(*func)(ptt); 
     }      if (fptt < fp) { 
   }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   dateintmean=dateintsum/k2cpt;        if (t < 0.0) { 
            linmin(p,xit,n,fret,func); 
   fclose(ficresp);          for (j=1;j<=n;j++) { 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            xi[j][ibig]=xi[j][n]; 
   free_vector(pp,1,nlstate);            xi[j][n]=xit[j]; 
            }
   /* End of Freq */  #ifdef DEBUG
 }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 /************ Prevalence ********************/          for(j=1;j<=n;j++){
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)            printf(" %.12e",xit[j]);
 {  /* Some frequencies */            fprintf(ficlog," %.12e",xit[j]);
            }
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          printf("\n");
   double ***freq; /* Frequencies */          fprintf(ficlog,"\n");
   double *pp;  #endif
   double pos, k2;        }
       } 
   pp=vector(1,nlstate);    } 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  } 
    
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  /**** Prevalence limit (stable or period prevalence)  ****************/
   j1=0;  
    double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   j=cptcoveff;  {
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         matrix by transitions matrix until convergence is reached */
   for(k1=1; k1<=j;k1++){  
     for(i1=1; i1<=ncodemax[k1];i1++){    int i, ii,j,k;
       j1++;    double min, max, maxmin, maxmax,sumnew=0.;
          /* double **matprod2(); */ /* test */
       for (i=-1; i<=nlstate+ndeath; i++)      double **out, cov[NCOVMAX+1], **pmij();
         for (jk=-1; jk<=nlstate+ndeath; jk++)      double **newm;
           for(m=agemin; m <= agemax+3; m++)    double agefin, delaymax=50 ; /* Max number of years to converge */
             freq[i][jk][m]=0;  
          for (ii=1;ii<=nlstate+ndeath;ii++)
       for (i=1; i<=imx; i++) {      for (j=1;j<=nlstate+ndeath;j++){
         bool=1;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if  (cptcovn>0) {      }
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])     cov[1]=1.;
               bool=0;   
         }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         if (bool==1) {    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
           for(m=firstpass; m<=lastpass; m++){      newm=savm;
             k2=anint[m][i]+(mint[m][i]/12.);      /* Covariates have to be included here again */
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      cov[2]=agefin;
               if(agev[m][i]==0) agev[m][i]=agemax+1;      
               if(agev[m][i]==1) agev[m][i]=agemax+2;      for (k=1; k<=cptcovn;k++) {
               if (m<lastpass) {        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
                 if (calagedate>0)        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];      }
                 else      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
               }      
             }      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
           }      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         }      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       }      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
       for(i=(int)agemin; i <= (int)agemax+3; i++){      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
         for(jk=1; jk <=nlstate ; jk++){      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      
             pp[jk] += freq[jk][m][i];      savm=oldm;
         }      oldm=newm;
         for(jk=1; jk <=nlstate ; jk++){      maxmax=0.;
           for(m=-1, pos=0; m <=0 ; m++)      for(j=1;j<=nlstate;j++){
             pos += freq[jk][m][i];        min=1.;
         }        max=0.;
                for(i=1; i<=nlstate; i++) {
         for(jk=1; jk <=nlstate ; jk++){          sumnew=0;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
             pp[jk] += freq[jk][m][i];          prlim[i][j]= newm[i][j]/(1-sumnew);
         }          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
                  max=FMAX(max,prlim[i][j]);
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];          min=FMIN(min,prlim[i][j]);
                }
         for(jk=1; jk <=nlstate ; jk++){            maxmin=max-min;
           if( i <= (int) agemax){        maxmax=FMAX(maxmax,maxmin);
             if(pos>=1.e-5){      }
               probs[i][jk][j1]= pp[jk]/pos;      if(maxmax < ftolpl){
             }        return prlim;
           }      }
         }/* end jk */    }
       }/* end i */  }
     } /* end i1 */  
   } /* end k1 */  /*************** transition probabilities ***************/ 
   
    double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  {
   free_vector(pp,1,nlstate);    /* According to parameters values stored in x and the covariate's values stored in cov,
         computes the probability to be observed in state j being in state i by appying the
 }  /* End of Freq */       model to the ncovmodel covariates (including constant and age).
        lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
 /************* Waves Concatenation ***************/       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
        ncth covariate in the global vector x is given by the formula:
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
 {       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
      Death is a valid wave (if date is known).       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i       Outputs ps[i][j] the probability to be observed in j being in j according to
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
      and mw[mi+1][i]. dh depends on stepm.    */
      */    double s1, lnpijopii;
     /*double t34;*/
   int i, mi, m;    int i,j,j1, nc, ii, jj;
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  
      double sum=0., jmean=0.;*/      for(i=1; i<= nlstate; i++){
   int first;        for(j=1; j<i;j++){
   int j, k=0,jk, ju, jl;          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   double sum=0.;            /*lnpijopii += param[i][j][nc]*cov[nc];*/
   first=0;            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
   jmin=1e+5;  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   jmax=-1;          }
   jmean=0.;          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   for(i=1; i<=imx; i++){  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
     mi=0;        }
     m=firstpass;        for(j=i+1; j<=nlstate+ndeath;j++){
     while(s[m][i] <= nlstate){          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
       if(s[m][i]>=1)            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
         mw[++mi][i]=m;            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
       if(m >=lastpass)  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
         break;          }
       else          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         m++;        }
     }/* end while */      }
     if (s[m][i] > nlstate){      
       mi++;     /* Death is another wave */      for(i=1; i<= nlstate; i++){
       /* if(mi==0)  never been interviewed correctly before death */        s1=0;
          /* Only death is a correct wave */        for(j=1; j<i; j++){
       mw[mi][i]=m;          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
     }          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         }
     wav[i]=mi;        for(j=i+1; j<=nlstate+ndeath; j++){
     if(mi==0){          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
       if(first==0){          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);        }
         first=1;        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
       }        ps[i][i]=1./(s1+1.);
       if(first==1){        /* Computing other pijs */
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);        for(j=1; j<i; j++)
       }          ps[i][j]= exp(ps[i][j])*ps[i][i];
     } /* end mi==0 */        for(j=i+1; j<=nlstate+ndeath; j++)
   }          ps[i][j]= exp(ps[i][j])*ps[i][i];
         /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   for(i=1; i<=imx; i++){      } /* end i */
     for(mi=1; mi<wav[i];mi++){      
       if (stepm <=0)      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         dh[mi][i]=1;        for(jj=1; jj<= nlstate+ndeath; jj++){
       else{          ps[ii][jj]=0;
         if (s[mw[mi+1][i]][i] > nlstate) {          ps[ii][ii]=1;
           if (agedc[i] < 2*AGESUP) {        }
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      }
           if(j==0) j=1;  /* Survives at least one month after exam */      
           k=k+1;      
           if (j >= jmax) jmax=j;      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
           if (j <= jmin) jmin=j;      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
           sum=sum+j;      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */      /*   } */
           }      /*   printf("\n "); */
         }      /* } */
         else{      /* printf("\n ");printf("%lf ",cov[2]);*/
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      /*
           k=k+1;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
           if (j >= jmax) jmax=j;        goto end;*/
           else if (j <= jmin)jmin=j;      return ps;
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */  }
           sum=sum+j;  
         }  /**************** Product of 2 matrices ******************/
         jk= j/stepm;  
         jl= j -jk*stepm;  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
         ju= j -(jk+1)*stepm;  {
         if(jl <= -ju)    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
           dh[mi][i]=jk;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         else    /* in, b, out are matrice of pointers which should have been initialized 
           dh[mi][i]=jk+1;       before: only the contents of out is modified. The function returns
         if(dh[mi][i]==0)       a pointer to pointers identical to out */
           dh[mi][i]=1; /* At least one step */    int i, j, k;
       }    for(i=nrl; i<= nrh; i++)
     }      for(k=ncolol; k<=ncoloh; k++){
   }        out[i][k]=0.;
   jmean=sum/k;        for(j=ncl; j<=nch; j++)
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          out[i][k] +=in[i][j]*b[j][k];
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      }
  }    return out;
   }
 /*********** Tricode ****************************/  
 void tricode(int *Tvar, int **nbcode, int imx)  
 {  /************* Higher Matrix Product ***************/
   int Ndum[20],ij=1, k, j, i;  
   int cptcode=0;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   cptcoveff=0;  {
      /* Computes the transition matrix starting at age 'age' over 
   for (k=0; k<19; k++) Ndum[k]=0;       'nhstepm*hstepm*stepm' months (i.e. until
   for (k=1; k<=7; k++) ncodemax[k]=0;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
        nhstepm*hstepm matrices. 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     for (i=1; i<=imx; i++) {       (typically every 2 years instead of every month which is too big 
       ij=(int)(covar[Tvar[j]][i]);       for the memory).
       Ndum[ij]++;       Model is determined by parameters x and covariates have to be 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/       included manually here. 
       if (ij > cptcode) cptcode=ij;  
     }       */
   
     for (i=0; i<=cptcode; i++) {    int i, j, d, h, k;
       if(Ndum[i]!=0) ncodemax[j]++;    double **out, cov[NCOVMAX+1];
     }    double **newm;
     ij=1;  
     /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=nlstate+ndeath;i++)
     for (i=1; i<=ncodemax[j]; i++) {      for (j=1;j<=nlstate+ndeath;j++){
       for (k=0; k<=19; k++) {        oldm[i][j]=(i==j ? 1.0 : 0.0);
         if (Ndum[k] != 0) {        po[i][j][0]=(i==j ? 1.0 : 0.0);
           nbcode[Tvar[j]][ij]=k;      }
              /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           ij++;    for(h=1; h <=nhstepm; h++){
         }      for(d=1; d <=hstepm; d++){
         if (ij > ncodemax[j]) break;        newm=savm;
       }          /* Covariates have to be included here again */
     }        cov[1]=1.;
   }          cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for (k=1; k<=cptcovn;k++) 
  for (k=0; k<19; k++) Ndum[k]=0;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         for (k=1; k<=cptcovage;k++)
  for (i=1; i<=ncovmodel-2; i++) {          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
    ij=Tvar[i];        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
    Ndum[ij]++;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
  }  
   
  ij=1;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
  for (i=1; i<=10; i++) {        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
    if((Ndum[i]!=0) && (i<=ncovcol)){        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
      Tvaraff[ij]=i;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
      ij++;        savm=oldm;
    }        oldm=newm;
  }      }
        for(i=1; i<=nlstate+ndeath; i++)
  cptcoveff=ij-1;        for(j=1;j<=nlstate+ndeath;j++) {
 }          po[i][j][h]=newm[i][j];
           /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
 /*********** Health Expectancies ****************/        }
       /*printf("h=%d ",h);*/
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    } /* end h */
   /*     printf("\n H=%d \n",h); */
 {    return po;
   /* Health expectancies */  }
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;  
   double age, agelim, hf;  
   double ***p3mat,***varhe;  /*************** log-likelihood *************/
   double **dnewm,**doldm;  double func( double *x)
   double *xp;  {
   double **gp, **gm;    int i, ii, j, k, mi, d, kk;
   double ***gradg, ***trgradg;    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   int theta;    double **out;
     double sw; /* Sum of weights */
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);    double lli; /* Individual log likelihood */
   xp=vector(1,npar);    int s1, s2;
   dnewm=matrix(1,nlstate*2,1,npar);    double bbh, survp;
   doldm=matrix(1,nlstate*2,1,nlstate*2);    long ipmx;
      /*extern weight */
   fprintf(ficreseij,"# Health expectancies\n");    /* We are differentiating ll according to initial status */
   fprintf(ficreseij,"# Age");    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   for(i=1; i<=nlstate;i++)    /*for(i=1;i<imx;i++) 
     for(j=1; j<=nlstate;j++)      printf(" %d\n",s[4][i]);
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    */
   fprintf(ficreseij,"\n");    cov[1]=1.;
   
   if(estepm < stepm){    for(k=1; k<=nlstate; k++) ll[k]=0.;
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }    if(mle==1){
   else  hstepm=estepm;        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /* We compute the life expectancy from trapezoids spaced every estepm months        /* Computes the values of the ncovmodel covariates of the model
    * This is mainly to measure the difference between two models: for example           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
    * if stepm=24 months pijx are given only every 2 years and by summing them           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
    * we are calculating an estimate of the Life Expectancy assuming a linear           to be observed in j being in i according to the model.
    * progression inbetween and thus overestimating or underestimating according         */
    * to the curvature of the survival function. If, for the same date, we        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          cov[2+k]=covar[Tvar[k]][i];
    * to compare the new estimate of Life expectancy with the same linear        }
    * hypothesis. A more precise result, taking into account a more precise        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
    * curvature will be obtained if estepm is as small as stepm. */           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
            has been calculated etc */
   /* For example we decided to compute the life expectancy with the smallest unit */        for(mi=1; mi<= wav[i]-1; mi++){
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          for (ii=1;ii<=nlstate+ndeath;ii++)
      nhstepm is the number of hstepm from age to agelim            for (j=1;j<=nlstate+ndeath;j++){
      nstepm is the number of stepm from age to agelin.              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      Look at hpijx to understand the reason of that which relies in memory size              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      and note for a fixed period like estepm months */            }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          for(d=0; d<dh[mi][i]; d++){
      survival function given by stepm (the optimization length). Unfortunately it            newm=savm;
      means that if the survival funtion is printed only each two years of age and if            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same            for (kk=1; kk<=cptcovage;kk++) {
      results. So we changed our mind and took the option of the best precision.              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
   */            }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   agelim=AGESUP;            savm=oldm;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            oldm=newm;
     /* nhstepm age range expressed in number of stepm */          } /* end mult */
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     /* if (stepm >= YEARM) hstepm=1;*/          /* But now since version 0.9 we anticipate for bias at large stepm.
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           * (in months) between two waves is not a multiple of stepm, we rounded to 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);           * the nearest (and in case of equal distance, to the lowest) interval but now
     gp=matrix(0,nhstepm,1,nlstate*2);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     gm=matrix(0,nhstepm,1,nlstate*2);           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
     /* Computed by stepm unit matrices, product of hstepm matrices, stored           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */           * -stepm/2 to stepm/2 .
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);             * For stepm=1 the results are the same as for previous versions of Imach.
             * For stepm > 1 the results are less biased than in previous versions. 
            */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
     /* Computing Variances of health expectancies */          bbh=(double)bh[mi][i]/(double)stepm; 
           /* bias bh is positive if real duration
      for(theta=1; theta <=npar; theta++){           * is higher than the multiple of stepm and negative otherwise.
       for(i=1; i<=npar; i++){           */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       }          if( s2 > nlstate){ 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              /* i.e. if s2 is a death state and if the date of death is known 
                 then the contribution to the likelihood is the probability to 
       cptj=0;               die between last step unit time and current  step unit time, 
       for(j=1; j<= nlstate; j++){               which is also equal to probability to die before dh 
         for(i=1; i<=nlstate; i++){               minus probability to die before dh-stepm . 
           cptj=cptj+1;               In version up to 0.92 likelihood was computed
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){          as if date of death was unknown. Death was treated as any other
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;          health state: the date of the interview describes the actual state
           }          and not the date of a change in health state. The former idea was
         }          to consider that at each interview the state was recorded
       }          (healthy, disable or death) and IMaCh was corrected; but when we
                introduced the exact date of death then we should have modified
                the contribution of an exact death to the likelihood. This new
       for(i=1; i<=npar; i++)          contribution is smaller and very dependent of the step unit
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          stepm. It is no more the probability to die between last interview
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            and month of death but the probability to survive from last
                interview up to one month before death multiplied by the
       cptj=0;          probability to die within a month. Thanks to Chris
       for(j=1; j<= nlstate; j++){          Jackson for correcting this bug.  Former versions increased
         for(i=1;i<=nlstate;i++){          mortality artificially. The bad side is that we add another loop
           cptj=cptj+1;          which slows down the processing. The difference can be up to 10%
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){          lower mortality.
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;            */
           }            lli=log(out[s1][s2] - savm[s1][s2]);
         }  
       }  
       for(j=1; j<= nlstate*2; j++)          } else if  (s2==-2) {
         for(h=0; h<=nhstepm-1; h++){            for (j=1,survp=0. ; j<=nlstate; j++) 
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
         }            /*survp += out[s1][j]; */
      }            lli= log(survp);
              }
 /* End theta */          
           else if  (s2==-4) { 
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);            for (j=3,survp=0. ; j<=nlstate; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      for(h=0; h<=nhstepm-1; h++)            lli= log(survp); 
       for(j=1; j<=nlstate*2;j++)          } 
         for(theta=1; theta <=npar; theta++)  
           trgradg[h][j][theta]=gradg[h][theta][j];          else if  (s2==-5) { 
                  for (j=1,survp=0. ; j<=2; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      for(i=1;i<=nlstate*2;i++)            lli= log(survp); 
       for(j=1;j<=nlstate*2;j++)          } 
         varhe[i][j][(int)age] =0.;          
           else{
      printf("%d|",(int)age);fflush(stdout);            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
      for(h=0;h<=nhstepm-1;h++){          } 
       for(k=0;k<=nhstepm-1;k++){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);          /*if(lli ==000.0)*/
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         for(i=1;i<=nlstate*2;i++)          ipmx +=1;
           for(j=1;j<=nlstate*2;j++)          sw += weight[i];
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }        } /* end of wave */
     }      } /* end of individual */
     /* Computing expectancies */    }  else if(mle==2){
     for(i=1; i<=nlstate;i++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(j=1; j<=nlstate;j++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        for(mi=1; mi<= wav[i]-1; mi++){
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;          for (ii=1;ii<=nlstate+ndeath;ii++)
                      for (j=1;j<=nlstate+ndeath;j++){
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
           for(d=0; d<=dh[mi][i]; d++){
     fprintf(ficreseij,"%3.0f",age );            newm=savm;
     cptj=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(i=1; i<=nlstate;i++)            for (kk=1; kk<=cptcovage;kk++) {
       for(j=1; j<=nlstate;j++){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         cptj++;            }
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     fprintf(ficreseij,"\n");            savm=oldm;
                oldm=newm;
     free_matrix(gm,0,nhstepm,1,nlstate*2);          } /* end mult */
     free_matrix(gp,0,nhstepm,1,nlstate*2);        
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);          s1=s[mw[mi][i]][i];
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);          s2=s[mw[mi+1][i]][i];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          bbh=(double)bh[mi][i]/(double)stepm; 
   }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   printf("\n");          ipmx +=1;
   fprintf(ficlog,"\n");          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   free_vector(xp,1,npar);        } /* end of wave */
   free_matrix(dnewm,1,nlstate*2,1,npar);      } /* end of individual */
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    }  else if(mle==3){  /* exponential inter-extrapolation */
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 /************ Variance ******************/          for (ii=1;ii<=nlstate+ndeath;ii++)
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)            for (j=1;j<=nlstate+ndeath;j++){
 {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* Variance of health expectancies */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            }
   /* double **newm;*/          for(d=0; d<dh[mi][i]; d++){
   double **dnewm,**doldm;            newm=savm;
   double **dnewmp,**doldmp;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int i, j, nhstepm, hstepm, h, nstepm ;            for (kk=1; kk<=cptcovage;kk++) {
   int k, cptcode;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double *xp;            }
   double **gp, **gm;  /* for var eij */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double ***gradg, ***trgradg; /*for var eij */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double **gradgp, **trgradgp; /* for var p point j */            savm=oldm;
   double *gpp, *gmp; /* for var p point j */            oldm=newm;
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */          } /* end mult */
   double ***p3mat;        
   double age,agelim, hf;          s1=s[mw[mi][i]][i];
   int theta;          s2=s[mw[mi+1][i]][i];
   char digit[4];          bbh=(double)bh[mi][i]/(double)stepm; 
   char digitp[16];          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           ipmx +=1;
   char fileresprobmorprev[FILENAMELENGTH];          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   if(popbased==1)        } /* end of wave */
     strcpy(digitp,"-populbased-");      } /* end of individual */
   else    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     strcpy(digitp,"-stablbased-");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   strcpy(fileresprobmorprev,"prmorprev");        for(mi=1; mi<= wav[i]-1; mi++){
   sprintf(digit,"%-d",ij);          for (ii=1;ii<=nlstate+ndeath;ii++)
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/            for (j=1;j<=nlstate+ndeath;j++){
   strcat(fileresprobmorprev,digit); /* Tvar to be done */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   strcat(fileresprobmorprev,digitp); /* Popbased or not */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   strcat(fileresprobmorprev,fileres);            }
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {          for(d=0; d<dh[mi][i]; d++){
     printf("Problem with resultfile: %s\n", fileresprobmorprev);            newm=savm;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);            }
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");          
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     fprintf(ficresprobmorprev," p.%-d SE",j);            savm=oldm;
     for(i=1; i<=nlstate;i++)            oldm=newm;
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);          } /* end mult */
   }          
   fprintf(ficresprobmorprev,"\n");          s1=s[mw[mi][i]][i];
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          s2=s[mw[mi+1][i]][i];
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);          if( s2 > nlstate){ 
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);            lli=log(out[s1][s2] - savm[s1][s2]);
     exit(0);          }else{
   }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   else{          }
     fprintf(ficgp,"\n# Routine varevsij");          ipmx +=1;
   }          sw += weight[i];
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     printf("Problem with html file: %s\n", optionfilehtm);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);        } /* end of wave */
     exit(0);      } /* end of individual */
   }    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   else{      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficresvij,"# Age");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(i=1; i<=nlstate;i++)            }
     for(j=1; j<=nlstate;j++)          for(d=0; d<dh[mi][i]; d++){
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);            newm=savm;
   fprintf(ficresvij,"\n");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   xp=vector(1,npar);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   dnewm=matrix(1,nlstate,1,npar);            }
   doldm=matrix(1,nlstate,1,nlstate);          
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);            oldm=newm;
   gpp=vector(nlstate+1,nlstate+ndeath);          } /* end mult */
   gmp=vector(nlstate+1,nlstate+ndeath);        
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
   if(estepm < stepm){          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     printf ("Problem %d lower than %d\n",estepm, stepm);          ipmx +=1;
   }          sw += weight[i];
   else  hstepm=estepm;            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /* For example we decided to compute the life expectancy with the smallest unit */          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.        } /* end of wave */
      nhstepm is the number of hstepm from age to agelim      } /* end of individual */
      nstepm is the number of stepm from age to agelin.    } /* End of if */
      Look at hpijx to understand the reason of that which relies in memory size    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      and note for a fixed period like k years */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      survival function given by stepm (the optimization length). Unfortunately it    return -l;
      means that if the survival funtion is printed only each two years of age and if  }
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  
      results. So we changed our mind and took the option of the best precision.  /*************** log-likelihood *************/
   */  double funcone( double *x)
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  {
   agelim = AGESUP;    /* Same as likeli but slower because of a lot of printf and if */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    int i, ii, j, k, mi, d, kk;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    double **out;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double lli; /* Individual log likelihood */
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    double llt;
     gp=matrix(0,nhstepm,1,nlstate);    int s1, s2;
     gm=matrix(0,nhstepm,1,nlstate);    double bbh, survp;
     /*extern weight */
     /* We are differentiating ll according to initial status */
     for(theta=1; theta <=npar; theta++){    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       for(i=1; i<=npar; i++){ /* Computes gradient */    /*for(i=1;i<imx;i++) 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      printf(" %d\n",s[4][i]);
       }    */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      cov[1]=1.;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           prlim[i][i]=probs[(int)age][i][ij];      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }      for(mi=1; mi<= wav[i]-1; mi++){
          for (ii=1;ii<=nlstate+ndeath;ii++)
       for(j=1; j<= nlstate; j++){          for (j=1;j<=nlstate+ndeath;j++){
         for(h=0; h<=nhstepm; h++){            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)            savm[ii][j]=(ii==j ? 1.0 : 0.0);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          }
         }        for(d=0; d<dh[mi][i]; d++){
       }          newm=savm;
       /* This for computing forces of mortality (h=1)as a weighted average */          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){          for (kk=1; kk<=cptcovage;kk++) {
         for(i=1; i<= nlstate; i++)            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           gpp[j] += prlim[i][i]*p3mat[i][j][1];          }
       }              /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
       /* end force of mortality */          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for(i=1; i<=npar; i++) /* Computes gradient */          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            savm=oldm;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          oldm=newm;
          } /* end mult */
       if (popbased==1) {        
         for(i=1; i<=nlstate;i++)        s1=s[mw[mi][i]][i];
           prlim[i][i]=probs[(int)age][i][ij];        s2=s[mw[mi+1][i]][i];
       }        bbh=(double)bh[mi][i]/(double)stepm; 
         /* bias is positive if real duration
       for(j=1; j<= nlstate; j++){         * is higher than the multiple of stepm and negative otherwise.
         for(h=0; h<=nhstepm; h++){         */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)        if( s2 > nlstate && (mle <5) ){  /* Jackson */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          lli=log(out[s1][s2] - savm[s1][s2]);
         }        } else if  (s2==-2) {
       }          for (j=1,survp=0. ; j<=nlstate; j++) 
       /* This for computing force of mortality (h=1)as a weighted average */            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){          lli= log(survp);
         for(i=1; i<= nlstate; i++)        }else if (mle==1){
           gmp[j] += prlim[i][i]*p3mat[i][j][1];          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       }            } else if(mle==2){
       /* end force of mortality */          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         } else if(mle==3){  /* exponential inter-extrapolation */
       for(j=1; j<= nlstate; j++) /* vareij */          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         for(h=0; h<=nhstepm; h++){        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          lli=log(out[s1][s2]); /* Original formula */
         }        } else{  /* mle=0 back to 1 */
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];          /*lli=log(out[s1][s2]); */ /* Original formula */
       }        } /* End of if */
         ipmx +=1;
     } /* End theta */        sw += weight[i];
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
     for(h=0; h<=nhstepm; h++) /* veij */          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
       for(j=1; j<=nlstate;j++)   %11.6f %11.6f %11.6f ", \
         for(theta=1; theta <=npar; theta++)                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
           trgradg[h][j][theta]=gradg[h][theta][j];                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
           for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */            llt +=ll[k]*gipmx/gsw;
       for(theta=1; theta <=npar; theta++)            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
         trgradgp[j][theta]=gradgp[theta][j];          }
           fprintf(ficresilk," %10.6f\n", -llt);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */        }
     for(i=1;i<=nlstate;i++)      } /* end of wave */
       for(j=1;j<=nlstate;j++)    } /* end of individual */
         vareij[i][j][(int)age] =0.;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     for(h=0;h<=nhstepm;h++){    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       for(k=0;k<=nhstepm;k++){    if(globpr==0){ /* First time we count the contributions and weights */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      gipmx=ipmx;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);      gsw=sw;
         for(i=1;i<=nlstate;i++)    }
           for(j=1;j<=nlstate;j++)    return -l;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;  }
       }  
     }  
   /*************** function likelione ***********/
     /* pptj */  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);  {
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);    /* This routine should help understanding what is done with 
     for(j=nlstate+1;j<=nlstate+ndeath;j++)       the selection of individuals/waves and
       for(i=nlstate+1;i<=nlstate+ndeath;i++)       to check the exact contribution to the likelihood.
         varppt[j][i]=doldmp[j][i];       Plotting could be done.
     /* end ppptj */     */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);      int k;
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);  
      if(*globpri !=0){ /* Just counts and sums, no printings */
     if (popbased==1) {      strcpy(fileresilk,"ilk"); 
       for(i=1; i<=nlstate;i++)      strcat(fileresilk,fileres);
         prlim[i][i]=probs[(int)age][i][ij];      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     }        printf("Problem with resultfile: %s\n", fileresilk);
            fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     /* This for computing force of mortality (h=1)as a weighted average */      }
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       for(i=1; i<= nlstate; i++)      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
         gmp[j] += prlim[i][i]*p3mat[i][j][1];      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     }          for(k=1; k<=nlstate; k++) 
     /* end force of mortality */        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);    }
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){  
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));    *fretone=(*funcone)(p);
       for(i=1; i<=nlstate;i++){    if(*globpri !=0){
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);      fclose(ficresilk);
       }      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     }      fflush(fichtm); 
     fprintf(ficresprobmorprev,"\n");    } 
     return;
     fprintf(ficresvij,"%.0f ",age );  }
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){  
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);  /*********** Maximum Likelihood Estimation ***************/
       }  
     fprintf(ficresvij,"\n");  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     free_matrix(gp,0,nhstepm,1,nlstate);  {
     free_matrix(gm,0,nhstepm,1,nlstate);    int i,j, iter;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    double **xi;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    double fret;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double fretone; /* Only one call to likelihood */
   } /* End age */    /*  char filerespow[FILENAMELENGTH];*/
   free_vector(gpp,nlstate+1,nlstate+ndeath);    xi=matrix(1,npar,1,npar);
   free_vector(gmp,nlstate+1,nlstate+ndeath);    for (i=1;i<=npar;i++)
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);      for (j=1;j<=npar;j++)
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/        xi[i][j]=(i==j ? 1.0 : 0.0);
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */    strcpy(filerespow,"pow"); 
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");    strcat(filerespow,fileres);
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);      printf("Problem with resultfile: %s\n", filerespow);
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);    }
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,digitp,digit);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);    for (i=1;i<=nlstate;i++)
 */      for(j=1;j<=nlstate+ndeath;j++)
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     fprintf(ficrespow,"\n");
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,nlstate);    powell(p,xi,npar,ftol,&iter,&fret,func);
   free_matrix(dnewm,1,nlstate,1,npar);  
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    free_matrix(xi,1,npar,1,npar);
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);    fclose(ficrespow);
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   fclose(ficresprobmorprev);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   fclose(ficgp);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   fclose(fichtm);  
   }
 }  
   /**** Computes Hessian and covariance matrix ***/
 /************ Variance of prevlim ******************/  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  {
 {    double  **a,**y,*x,pd;
   /* Variance of prevalence limit */    double **hess;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    int i, j,jk;
   double **newm;    int *indx;
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
   int k, cptcode;    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   double *xp;    void lubksb(double **a, int npar, int *indx, double b[]) ;
   double *gp, *gm;    void ludcmp(double **a, int npar, int *indx, double *d) ;
   double **gradg, **trgradg;    double gompertz(double p[]);
   double age,agelim;    hess=matrix(1,npar,1,npar);
   int theta;  
        printf("\nCalculation of the hessian matrix. Wait...\n");
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   fprintf(ficresvpl,"# Age");    for (i=1;i<=npar;i++){
   for(i=1; i<=nlstate;i++)      printf("%d",i);fflush(stdout);
       fprintf(ficresvpl," %1d-%1d",i,i);      fprintf(ficlog,"%d",i);fflush(ficlog);
   fprintf(ficresvpl,"\n");     
        hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   xp=vector(1,npar);      
   dnewm=matrix(1,nlstate,1,npar);      /*  printf(" %f ",p[i]);
   doldm=matrix(1,nlstate,1,nlstate);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
      }
   hstepm=1*YEARM; /* Every year of age */    
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    for (i=1;i<=npar;i++) {
   agelim = AGESUP;      for (j=1;j<=npar;j++)  {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        if (j>i) { 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          printf(".%d%d",i,j);fflush(stdout);
     if (stepm >= YEARM) hstepm=1;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          hess[i][j]=hessij(p,delti,i,j,func,npar);
     gradg=matrix(1,npar,1,nlstate);          
     gp=vector(1,nlstate);          hess[j][i]=hess[i][j];    
     gm=vector(1,nlstate);          /*printf(" %lf ",hess[i][j]);*/
         }
     for(theta=1; theta <=npar; theta++){      }
       for(i=1; i<=npar; i++){ /* Computes gradient */    }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    printf("\n");
       }    fprintf(ficlog,"\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
         gp[i] = prlim[i][i];    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
        
       for(i=1; i<=npar; i++) /* Computes gradient */    a=matrix(1,npar,1,npar);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    y=matrix(1,npar,1,npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    x=vector(1,npar);
       for(i=1;i<=nlstate;i++)    indx=ivector(1,npar);
         gm[i] = prlim[i][i];    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       for(i=1;i<=nlstate;i++)    ludcmp(a,npar,indx,&pd);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  
     } /* End theta */    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
     trgradg =matrix(1,nlstate,1,npar);      x[j]=1;
       lubksb(a,npar,indx,x);
     for(j=1; j<=nlstate;j++)      for (i=1;i<=npar;i++){ 
       for(theta=1; theta <=npar; theta++)        matcov[i][j]=x[i];
         trgradg[j][theta]=gradg[theta][j];      }
     }
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] =0.;    printf("\n#Hessian matrix#\n");
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    fprintf(ficlog,"\n#Hessian matrix#\n");
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    for (i=1;i<=npar;i++) { 
     for(i=1;i<=nlstate;i++)      for (j=1;j<=npar;j++) { 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        printf("%.3e ",hess[i][j]);
         fprintf(ficlog,"%.3e ",hess[i][j]);
     fprintf(ficresvpl,"%.0f ",age );      }
     for(i=1; i<=nlstate;i++)      printf("\n");
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      fprintf(ficlog,"\n");
     fprintf(ficresvpl,"\n");    }
     free_vector(gp,1,nlstate);  
     free_vector(gm,1,nlstate);    /* Recompute Inverse */
     free_matrix(gradg,1,npar,1,nlstate);    for (i=1;i<=npar;i++)
     free_matrix(trgradg,1,nlstate,1,npar);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   } /* End age */    ludcmp(a,npar,indx,&pd);
   
   free_vector(xp,1,npar);    /*  printf("\n#Hessian matrix recomputed#\n");
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
 }      x[j]=1;
       lubksb(a,npar,indx,x);
 /************ Variance of one-step probabilities  ******************/      for (i=1;i<=npar;i++){ 
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        y[i][j]=x[i];
 {        printf("%.3e ",y[i][j]);
   int i, j=0,  i1, k1, l1, t, tj;        fprintf(ficlog,"%.3e ",y[i][j]);
   int k2, l2, j1,  z1;      }
   int k=0,l, cptcode;      printf("\n");
   int first=1, first1;      fprintf(ficlog,"\n");
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;    }
   double **dnewm,**doldm;    */
   double *xp;  
   double *gp, *gm;    free_matrix(a,1,npar,1,npar);
   double **gradg, **trgradg;    free_matrix(y,1,npar,1,npar);
   double **mu;    free_vector(x,1,npar);
   double age,agelim, cov[NCOVMAX];    free_ivector(indx,1,npar);
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    free_matrix(hess,1,npar,1,npar);
   int theta;  
   char fileresprob[FILENAMELENGTH];  
   char fileresprobcov[FILENAMELENGTH];  }
   char fileresprobcor[FILENAMELENGTH];  
   /*************** hessian matrix ****************/
   double ***varpij;  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   {
   strcpy(fileresprob,"prob");    int i;
   strcat(fileresprob,fileres);    int l=1, lmax=20;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    double k1,k2;
     printf("Problem with resultfile: %s\n", fileresprob);    double p2[MAXPARM+1]; /* identical to x */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    double res;
   }    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   strcpy(fileresprobcov,"probcov");    double fx;
   strcat(fileresprobcov,fileres);    int k=0,kmax=10;
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    double l1;
     printf("Problem with resultfile: %s\n", fileresprobcov);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);    fx=func(x);
   }    for (i=1;i<=npar;i++) p2[i]=x[i];
   strcpy(fileresprobcor,"probcor");    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
   strcat(fileresprobcor,fileres);      l1=pow(10,l);
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {      delts=delt;
     printf("Problem with resultfile: %s\n", fileresprobcor);      for(k=1 ; k <kmax; k=k+1){
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);        delt = delta*(l1*k);
   }        p2[theta]=x[theta] +delt;
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        p2[theta]=x[theta]-delt;
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        k2=func(p2)-fx;
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);        /*res= (k1-2.0*fx+k2)/delt/delt; */
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);        
    #ifdef DEBUGHESS
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   fprintf(ficresprob,"# Age");        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");  #endif
   fprintf(ficresprobcov,"# Age");        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   fprintf(ficresprobcov,"# Age");          k=kmax;
         }
         else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   for(i=1; i<=nlstate;i++)          k=kmax; l=lmax*10.;
     for(j=1; j<=(nlstate+ndeath);j++){        }
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       fprintf(ficresprobcov," p%1d-%1d ",i,j);          delts=delt;
       fprintf(ficresprobcor," p%1d-%1d ",i,j);        }
     }        }
   fprintf(ficresprob,"\n");    }
   fprintf(ficresprobcov,"\n");    delti[theta]=delts;
   fprintf(ficresprobcor,"\n");    return res; 
   xp=vector(1,npar);    
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  }
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));  
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);  {
   first=1;    int i;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    int l=1, l1, lmax=20;
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    double k1,k2,k3,k4,res,fx;
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);    double p2[MAXPARM+1];
     exit(0);    int k;
   }  
   else{    fx=func(x);
     fprintf(ficgp,"\n# Routine varprob");    for (k=1; k<=2; k++) {
   }      for (i=1;i<=npar;i++) p2[i]=x[i];
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {      p2[thetai]=x[thetai]+delti[thetai]/k;
     printf("Problem with html file: %s\n", optionfilehtm);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);      k1=func(p2)-fx;
     exit(0);    
   }      p2[thetai]=x[thetai]+delti[thetai]/k;
   else{      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");      k2=func(p2)-fx;
     fprintf(fichtm,"\n");    
       p2[thetai]=x[thetai]-delti[thetai]/k;
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");      k3=func(p2)-fx;
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");    
       p2[thetai]=x[thetai]-delti[thetai]/k;
   }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k4=func(p2)-fx;
        res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   cov[1]=1;  #ifdef DEBUG
   tj=cptcoveff;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   j1=0;  #endif
   for(t=1; t<=tj;t++){    }
     for(i1=1; i1<=ncodemax[t];i1++){    return res;
       j1++;  }
        
       if  (cptcovn>0) {  /************** Inverse of matrix **************/
         fprintf(ficresprob, "\n#********** Variable ");  void ludcmp(double **a, int n, int *indx, double *d) 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  { 
         fprintf(ficresprob, "**********\n#");    int i,imax,j,k; 
         fprintf(ficresprobcov, "\n#********** Variable ");    double big,dum,sum,temp; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    double *vv; 
         fprintf(ficresprobcov, "**********\n#");   
            vv=vector(1,n); 
         fprintf(ficgp, "\n#********** Variable ");    *d=1.0; 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    for (i=1;i<=n;i++) { 
         fprintf(ficgp, "**********\n#");      big=0.0; 
              for (j=1;j<=n;j++) 
                if ((temp=fabs(a[i][j])) > big) big=temp; 
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      vv[i]=1.0/big; 
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");    } 
            for (j=1;j<=n;j++) { 
         fprintf(ficresprobcor, "\n#********** Variable ");          for (i=1;i<j;i++) { 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        sum=a[i][j]; 
         fprintf(ficgp, "**********\n#");            for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       }        a[i][j]=sum; 
            } 
       for (age=bage; age<=fage; age ++){      big=0.0; 
         cov[2]=age;      for (i=j;i<=n;i++) { 
         for (k=1; k<=cptcovn;k++) {        sum=a[i][j]; 
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];        for (k=1;k<j;k++) 
         }          sum -= a[i][k]*a[k][j]; 
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        a[i][j]=sum; 
         for (k=1; k<=cptcovprod;k++)        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          big=dum; 
                  imax=i; 
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));        } 
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);      } 
         gp=vector(1,(nlstate)*(nlstate+ndeath));      if (j != imax) { 
         gm=vector(1,(nlstate)*(nlstate+ndeath));        for (k=1;k<=n;k++) { 
              dum=a[imax][k]; 
         for(theta=1; theta <=npar; theta++){          a[imax][k]=a[j][k]; 
           for(i=1; i<=npar; i++)          a[j][k]=dum; 
             xp[i] = x[i] + (i==theta ?delti[theta]:0);        } 
                  *d = -(*d); 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);        vv[imax]=vv[j]; 
                } 
           k=0;      indx[j]=imax; 
           for(i=1; i<= (nlstate); i++){      if (a[j][j] == 0.0) a[j][j]=TINY; 
             for(j=1; j<=(nlstate+ndeath);j++){      if (j != n) { 
               k=k+1;        dum=1.0/(a[j][j]); 
               gp[k]=pmmij[i][j];        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
             }      } 
           }    } 
              free_vector(vv,1,n);  /* Doesn't work */
           for(i=1; i<=npar; i++)  ;
             xp[i] = x[i] - (i==theta ?delti[theta]:0);  } 
      
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  void lubksb(double **a, int n, int *indx, double b[]) 
           k=0;  { 
           for(i=1; i<=(nlstate); i++){    int i,ii=0,ip,j; 
             for(j=1; j<=(nlstate+ndeath);j++){    double sum; 
               k=k+1;   
               gm[k]=pmmij[i][j];    for (i=1;i<=n;i++) { 
             }      ip=indx[i]; 
           }      sum=b[ip]; 
            b[ip]=b[i]; 
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)      if (ii) 
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         }      else if (sum) ii=i; 
       b[i]=sum; 
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    } 
           for(theta=1; theta <=npar; theta++)    for (i=n;i>=1;i--) { 
             trgradg[j][theta]=gradg[theta][j];      sum=b[i]; 
              for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);      b[i]=sum/a[i][i]; 
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    } 
          } 
         pmij(pmmij,cov,ncovmodel,x,nlstate);  
          void pstamp(FILE *fichier)
         k=0;  {
         for(i=1; i<=(nlstate); i++){    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
           for(j=1; j<=(nlstate+ndeath);j++){  }
             k=k+1;  
             mu[k][(int) age]=pmmij[i][j];  /************ Frequencies ********************/
           }  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
         }  {  /* Some frequencies */
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    int i, m, jk, k1,i1, j1, bool, z1,j;
             varpij[i][j][(int)age] = doldm[i][j];    int first;
     double ***freq; /* Frequencies */
         /*printf("\n%d ",(int)age);    double *pp, **prop;
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    double pos,posprop, k2, dateintsum=0,k2cpt=0;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    char fileresp[FILENAMELENGTH];
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    
      }*/    pp=vector(1,nlstate);
     prop=matrix(1,nlstate,iagemin,iagemax+3);
         fprintf(ficresprob,"\n%d ",(int)age);    strcpy(fileresp,"p");
         fprintf(ficresprobcov,"\n%d ",(int)age);    strcat(fileresp,fileres);
         fprintf(ficresprobcor,"\n%d ",(int)age);    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));      exit(0);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    }
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);    j1=0;
         }    
         i=0;    j=cptcoveff;
         for (k=1; k<=(nlstate);k++){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           for (l=1; l<=(nlstate+ndeath);l++){  
             i=i++;    first=1;
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);  
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);    /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
             for (j=1; j<=i;j++){    /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);    /*    j1++;
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));  */
             }    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
           }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         }/* end of loop for state */          scanf("%d", i);*/
       } /* end of loop for age */        for (i=-5; i<=nlstate+ndeath; i++)  
           for (jk=-5; jk<=nlstate+ndeath; jk++)  
       /* Confidence intervalle of pij  */            for(m=iagemin; m <= iagemax+3; m++)
       /*              freq[i][jk][m]=0;
       fprintf(ficgp,"\nset noparametric;unset label");        
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");        for (i=1; i<=nlstate; i++)  
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          for(m=iagemin; m <= iagemax+3; m++)
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);            prop[i][m]=0;
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);        
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);        dateintsum=0;
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);        k2cpt=0;
       */        for (i=1; i<=imx; i++) {
           bool=1;
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
       first1=1;            for (z1=1; z1<=cptcoveff; z1++)       
       for (k2=1; k2<=(nlstate);k2++){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
         for (l2=1; l2<=(nlstate+ndeath);l2++){                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
           if(l2==k2) continue;                bool=0;
           j=(k2-1)*(nlstate+ndeath)+l2;                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
           for (k1=1; k1<=(nlstate);k1++){                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
             for (l1=1; l1<=(nlstate+ndeath);l1++){                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
               if(l1==k1) continue;                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
               i=(k1-1)*(nlstate+ndeath)+l1;              } 
               if(i<=j) continue;          }
               for (age=bage; age<=fage; age ++){   
                 if ((int)age %5==0){          if (bool==1){
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;            for(m=firstpass; m<=lastpass; m++){
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;              k2=anint[m][i]+(mint[m][i]/12.);
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                   mu1=mu[i][(int) age]/stepm*YEARM ;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                   mu2=mu[j][(int) age]/stepm*YEARM;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                   c12=cv12/sqrt(v1*v2);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   /* Computing eigen value of matrix of covariance */                if (m<lastpass) {
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                   /* Eigen vectors */                }
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));                
                   /*v21=sqrt(1.-v11*v11); *//* error */                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   v21=(lc1-v1)/cv12*v11;                  dateintsum=dateintsum+k2;
                   v12=-v21;                  k2cpt++;
                   v22=v11;                }
                   tnalp=v21/v11;                /*}*/
                   if(first1==1){            }
                     first1=0;          }
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);        } /* end i */
                   }         
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
                   /*printf(fignu*/        pstamp(ficresp);
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */        if  (cptcovn>0) {
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */          fprintf(ficresp, "\n#********** Variable "); 
                   if(first==1){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                     first=0;          fprintf(ficresp, "**********\n#");
                     fprintf(ficgp,"\nset parametric;unset label");          fprintf(ficlog, "\n#********** Variable "); 
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          fprintf(ficlog, "**********\n#");
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);        }
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);        for(i=1; i<=nlstate;i++) 
                     fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);        fprintf(ficresp, "\n");
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);        
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);        for(i=iagemin; i <= iagemax+3; i++){
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\          if(i==iagemax+3){
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\            fprintf(ficlog,"Total");
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));          }else{
                   }else{            if(first==1){
                     first=0;              first=0;
                     fprintf(fichtm," %d (%.3f),",(int) age, c12);              printf("See log file for details...\n");
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);            }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);            fprintf(ficlog,"Age %d", i);
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\          }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\          for(jk=1; jk <=nlstate ; jk++){
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
                   }/* if first */              pp[jk] += freq[jk][m][i]; 
                 } /* age mod 5 */          }
               } /* end loop age */          for(jk=1; jk <=nlstate ; jk++){
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);            for(m=-1, pos=0; m <=0 ; m++)
               first=1;              pos += freq[jk][m][i];
             } /*l12 */            if(pp[jk]>=1.e-10){
           } /* k12 */              if(first==1){
         } /*l1 */                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       }/* k1 */              }
     } /* loop covariates */              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);            }else{
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));              if(first==1)
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            }
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          }
   }  
   free_vector(xp,1,npar);          for(jk=1; jk <=nlstate ; jk++){
   fclose(ficresprob);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   fclose(ficresprobcov);              pp[jk] += freq[jk][m][i];
   fclose(ficresprobcor);          }       
   fclose(ficgp);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   fclose(fichtm);            pos += pp[jk];
 }            posprop += prop[jk][i];
           }
           for(jk=1; jk <=nlstate ; jk++){
 /******************* Printing html file ***********/            if(pos>=1.e-5){
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \              if(first==1)
                   int lastpass, int stepm, int weightopt, char model[],\                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                   int popforecast, int estepm ,\            }else{
                   double jprev1, double mprev1,double anprev1, \              if(first==1)
                   double jprev2, double mprev2,double anprev2){                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   int jj1, k1, i1, cpt;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   /*char optionfilehtm[FILENAMELENGTH];*/            }
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {            if( i <= iagemax){
     printf("Problem with %s \n",optionfilehtm), exit(0);              if(pos>=1.e-5){
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   }                /*probs[i][jk][j1]= pp[jk]/pos;*/
                 /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n              }
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n              else
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n            }
  - Life expectancies by age and initial health status (estepm=%2d months):          }
    <a href=\"e%s\">e%s</a> <br>\n</li>", \          
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");              if(freq[jk][m][i] !=0 ) {
               if(first==1)
  m=cptcoveff;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               }
  jj1=0;          if(i <= iagemax)
  for(k1=1; k1<=m;k1++){            fprintf(ficresp,"\n");
    for(i1=1; i1<=ncodemax[k1];i1++){          if(first==1)
      jj1++;            printf("Others in log...\n");
      if (cptcovn > 0) {          fprintf(ficlog,"\n");
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        }
        for (cpt=1; cpt<=cptcoveff;cpt++)        /*}*/
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    }
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    dateintmean=dateintsum/k2cpt; 
      }   
      /* Pij */    fclose(ficresp);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        free_vector(pp,1,nlstate);
      /* Quasi-incidences */    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>    /* End of Freq */
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);  }
        /* Stable prevalence in each health state */  
        for(cpt=1; cpt<nlstate;cpt++){  /************ Prevalence ********************/
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  {  
        }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
      for(cpt=1; cpt<=nlstate;cpt++) {       in each health status at the date of interview (if between dateprev1 and dateprev2).
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>       We still use firstpass and lastpass as another selection.
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    */
      }   
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    int i, m, jk, k1, i1, j1, bool, z1,j;
 health expectancies in states (1) and (2): e%s%d.png<br>    double ***freq; /* Frequencies */
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    double *pp, **prop;
    } /* end i1 */    double pos,posprop; 
  }/* End k1 */    double  y2; /* in fractional years */
  fprintf(fichtm,"</ul>");    int iagemin, iagemax;
     int first; /** to stop verbosity which is redirected to log file */
   
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n    iagemin= (int) agemin;
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    iagemax= (int) agemax;
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    /*pp=vector(1,nlstate);*/
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n    prop=matrix(1,nlstate,iagemin,iagemax+3); 
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    j1=0;
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    /*j=cptcoveff;*/
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
  if(popforecast==1) fprintf(fichtm,"\n    
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    first=1;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
         <br>",fileres,fileres,fileres,fileres);      /*for(i1=1; i1<=ncodemax[k1];i1++){
  else        j1++;*/
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);        
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");        for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
  m=cptcoveff;            prop[i][m]=0.0;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}       
         for (i=1; i<=imx; i++) { /* Each individual */
  jj1=0;          bool=1;
  for(k1=1; k1<=m;k1++){          if  (cptcovn>0) {
    for(i1=1; i1<=ncodemax[k1];i1++){            for (z1=1; z1<=cptcoveff; z1++) 
      jj1++;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
      if (cptcovn > 0) {                bool=0;
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          } 
        for (cpt=1; cpt<=cptcoveff;cpt++)          if (bool==1) { 
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
      }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
      for(cpt=1; cpt<=nlstate;cpt++) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 interval) in state (%d): v%s%d%d.png <br>                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);                  if (s[m][i]>0 && s[m][i]<=nlstate) { 
      }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
    } /* end i1 */                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
  }/* End k1 */                  prop[s[m][i]][iagemax+3] += weight[i]; 
  fprintf(fichtm,"</ul>");                } 
 fclose(fichtm);              }
 }            } /* end selection of waves */
           }
 /******************* Gnuplot file **************/        }
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        for(i=iagemin; i <= iagemax+3; i++){  
           for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;            posprop += prop[jk][i]; 
   int ng;          } 
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {          
     printf("Problem with file %s",optionfilegnuplot);          for(jk=1; jk <=nlstate ; jk++){     
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);            if( i <=  iagemax){ 
   }              if(posprop>=1.e-5){ 
                 probs[i][jk][j1]= prop[jk][i]/posprop;
 #ifdef windows              } else{
     fprintf(ficgp,"cd \"%s\" \n",pathc);                if(first==1){
 #endif                  first=0;
 m=pow(2,cptcoveff);                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
                  }
  /* 1eme*/              }
   for (cpt=1; cpt<= nlstate ; cpt ++) {            } 
    for (k1=1; k1<= m ; k1 ++) {          }/* end jk */ 
         }/* end i */ 
 #ifdef windows      /*} *//* end i1 */
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    } /* end j1 */
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    
 #endif    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 #ifdef unix    /*free_vector(pp,1,nlstate);*/
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);  }  /* End of prevalence */
 #endif  
   /************* Waves Concatenation ***************/
 for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   else fprintf(ficgp," \%%*lf (\%%*lf)");  {
 }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);       Death is a valid wave (if date is known).
     for (i=1; i<= nlstate ; i ++) {       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   else fprintf(ficgp," \%%*lf (\%%*lf)");       and mw[mi+1][i]. dh depends on stepm.
 }       */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);  
      for (i=1; i<= nlstate ; i ++) {    int i, mi, m;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");       double sum=0., jmean=0.;*/
 }      int first;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    int j, k=0,jk, ju, jl;
 #ifdef unix    double sum=0.;
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    first=0;
 #endif    jmin=1e+5;
    }    jmax=-1;
   }    jmean=0.;
   /*2 eme*/    for(i=1; i<=imx; i++){
       mi=0;
   for (k1=1; k1<= m ; k1 ++) {      m=firstpass;
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);      while(s[m][i] <= nlstate){
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
              mw[++mi][i]=m;
     for (i=1; i<= nlstate+1 ; i ++) {        if(m >=lastpass)
       k=2*i;          break;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        else
       for (j=1; j<= nlstate+1 ; j ++) {          m++;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      }/* end while */
   else fprintf(ficgp," \%%*lf (\%%*lf)");      if (s[m][i] > nlstate){
 }          mi++;     /* Death is another wave */
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        /* if(mi==0)  never been interviewed correctly before death */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);           /* Only death is a correct wave */
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        mw[mi][i]=m;
       for (j=1; j<= nlstate+1 ; j ++) {      }
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");      wav[i]=mi;
 }        if(mi==0){
       fprintf(ficgp,"\" t\"\" w l 0,");        nbwarn++;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        if(first==0){
       for (j=1; j<= nlstate+1 ; j ++) {          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          first=1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");        }
 }          if(first==1){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
       else fprintf(ficgp,"\" t\"\" w l 0,");        }
     }      } /* end mi==0 */
   }    } /* End individuals */
    
   /*3eme*/    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
   for (k1=1; k1<= m ; k1 ++) {        if (stepm <=0)
     for (cpt=1; cpt<= nlstate ; cpt ++) {          dh[mi][i]=1;
       k=2+nlstate*(2*cpt-2);        else{
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);            if (agedc[i] < 2*AGESUP) {
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              if(j==0) j=1;  /* Survives at least one month after exam */
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              else if(j<0){
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);                nberr++;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);                j=1; /* Temporary Dangerous patch */
                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 */                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       for (i=1; i< nlstate ; i ++) {                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);              }
               k=k+1;
       }              if (j >= jmax){
     }                jmax=j;
   }                ijmax=i;
                }
   /* CV preval stat */              if (j <= jmin){
     for (k1=1; k1<= m ; k1 ++) {                jmin=j;
     for (cpt=1; cpt<nlstate ; cpt ++) {                ijmin=i;
       k=3;              }
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              sum=sum+j;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
               /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       for (i=1; i< nlstate ; i ++)            }
         fprintf(ficgp,"+$%d",k+i+1);          }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          else{
                  j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       l=3+(nlstate+ndeath)*cpt;  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  
       for (i=1; i< nlstate ; i ++) {            k=k+1;
         l=3+(nlstate+ndeath)*cpt;            if (j >= jmax) {
         fprintf(ficgp,"+$%d",l+i+1);              jmax=j;
       }              ijmax=i;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);              }
     }            else if (j <= jmin){
   }                jmin=j;
                ijmin=i;
   /* proba elementaires */            }
    for(i=1,jk=1; i <=nlstate; i++){            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     for(k=1; k <=(nlstate+ndeath); k++){            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       if (k != i) {            if(j<0){
         for(j=1; j <=ncovmodel; j++){              nberr++;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           jk++;              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           fprintf(ficgp,"\n");            }
         }            sum=sum+j;
       }          }
     }          jk= j/stepm;
    }          jl= j -jk*stepm;
           ju= j -(jk+1)*stepm;
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
      for(jk=1; jk <=m; jk++) {            if(jl==0){
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);              dh[mi][i]=jk;
        if (ng==2)              bh[mi][i]=0;
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");            }else{ /* We want a negative bias in order to only have interpolation ie
        else                    * to avoid the price of an extra matrix product in likelihood */
          fprintf(ficgp,"\nset title \"Probability\"\n");              dh[mi][i]=jk+1;
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);              bh[mi][i]=ju;
        i=1;            }
        for(k2=1; k2<=nlstate; k2++) {          }else{
          k3=i;            if(jl <= -ju){
          for(k=1; k<=(nlstate+ndeath); k++) {              dh[mi][i]=jk;
            if (k != k2){              bh[mi][i]=jl;       /* bias is positive if real duration
              if(ng==2)                                   * is higher than the multiple of stepm and negative otherwise.
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);                                   */
              else            }
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);            else{
              ij=1;              dh[mi][i]=jk+1;
              for(j=3; j <=ncovmodel; j++) {              bh[mi][i]=ju;
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            }
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            if(dh[mi][i]==0){
                  ij++;              dh[mi][i]=1; /* At least one step */
                }              bh[mi][i]=ju; /* At least one step */
                else              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            }
              }          } /* end if mle */
              fprintf(ficgp,")/(1");        }
                    } /* end wave */
              for(k1=1; k1 <=nlstate; k1++){      }
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);    jmean=sum/k;
                ij=1;    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
                for(j=3; j <=ncovmodel; j++){    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {   }
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  
                    ij++;  /*********** Tricode ****************************/
                  }  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
                  else  {
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
                }    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
                fprintf(ficgp,")");    /* Boring subroutine which should only output nbcode[Tvar[j]][k]
              }     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    /* nbcode[Tvar[j]][1]= 
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    */
              i=i+ncovmodel;  
            }    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
          } /* end k */    int modmaxcovj=0; /* Modality max of covariates j */
        } /* end k2 */    int cptcode=0; /* Modality max of covariates j */
      } /* end jk */    int modmincovj=0; /* Modality min of covariates j */
    } /* end ng */  
    fclose(ficgp);  
 }  /* end gnuplot */    cptcoveff=0; 
    
     for (k=-1; k < maxncov; k++) Ndum[k]=0;
 /*************** Moving average **************/    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){  
     /* Loop on covariates without age and products */
   int i, cpt, cptcod;    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
       for (i=1; i<=nlstate;i++)                                 modality of this covariate Vj*/ 
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
           mobaverage[(int)agedeb][i][cptcod]=0.;                                      * If product of Vn*Vm, still boolean *:
                                          * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
       for (i=1; i<=nlstate;i++){        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                                        modality of the nth covariate of individual i. */
           for (cpt=0;cpt<=4;cpt++){        if (ij > modmaxcovj)
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];          modmaxcovj=ij; 
           }        else if (ij < modmincovj) 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;          modmincovj=ij; 
         }        if ((ij < -1) && (ij > NCOVMAX)){
       }          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
     }          exit(1);
            }else
 }        Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
         /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
 /************** Forecasting ******************/        /* getting the maximum value of the modality of the covariate
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){           (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
             female is 1, then modmaxcovj=1.*/
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;      }
   int *popage;      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      cptcode=modmaxcovj;
   double *popeffectif,*popcount;      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
   double ***p3mat;     /*for (i=0; i<=cptcode; i++) {*/
   char fileresf[FILENAMELENGTH];      for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
         printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
  agelim=AGESUP;        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
         }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
             historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
        } /* Ndum[-1] number of undefined modalities */
   strcpy(fileresf,"f");  
   strcat(fileresf,fileres);      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
   if((ficresf=fopen(fileresf,"w"))==NULL) {      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
     printf("Problem with forecast resultfile: %s\n", fileresf);      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);         modmincovj=3; modmaxcovj = 7;
   }         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
   printf("Computing forecasting: result on file '%s' \n", fileresf);         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);         variables V1_1 and V1_2.
          nbcode[Tvar[j]][ij]=k;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;         nbcode[Tvar[j]][1]=0;
          nbcode[Tvar[j]][2]=1;
   if (mobilav==1) {         nbcode[Tvar[j]][3]=2;
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      */
     movingaverage(agedeb, fage, ageminpar, mobaverage);      ij=1; /* ij is similar to i but can jumps over null modalities */
   }      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
         for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
   stepsize=(int) (stepm+YEARM-1)/YEARM;          /*recode from 0 */
   if (stepm<=12) stepsize=1;          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
              nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
   agelim=AGESUP;                                       k is a modality. If we have model=V1+V1*sex 
                                         then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   hstepm=1;            ij++;
   hstepm=hstepm/stepm;          }
   yp1=modf(dateintmean,&yp);          if (ij > ncodemax[j]) break; 
   anprojmean=yp;        }  /* end of loop on */
   yp2=modf((yp1*12),&yp);      } /* end of loop on modality */ 
   mprojmean=yp;    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
   yp1=modf((yp2*30.5),&yp);    
   jprojmean=yp;   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
   if(jprojmean==0) jprojmean=1;    
   if(mprojmean==0) jprojmean=1;    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
       /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
       Ndum[ij]++; 
   for(cptcov=1;cptcov<=i2;cptcov++){   } 
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){  
       k=k+1;   ij=1;
       fprintf(ficresf,"\n#******");   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
       for(j=1;j<=cptcoveff;j++) {     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     if((Ndum[i]!=0) && (i<=ncovcol)){
       }       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
       fprintf(ficresf,"******\n");       Tvaraff[ij]=i; /*For printing (unclear) */
       fprintf(ficresf,"# StartingAge FinalAge");       ij++;
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);     }else
               Tvaraff[ij]=0;
         }
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {   ij--;
         fprintf(ficresf,"\n");   cptcoveff=ij; /*Number of total covariates*/
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);    
   }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;  /*********** Health Expectancies ****************/
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    {
            /* Health expectancies, no variances */
           for (h=0; h<=nhstepm; h++){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
             if (h==(int) (calagedate+YEARM*cpt)) {    int nhstepma, nstepma; /* Decreasing with age */
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    double age, agelim, hf;
             }    double ***p3mat;
             for(j=1; j<=nlstate+ndeath;j++) {    double eip;
               kk1=0.;kk2=0;  
               for(i=1; i<=nlstate;i++) {                  pstamp(ficreseij);
                 if (mobilav==1)    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    fprintf(ficreseij,"# Age");
                 else {    for(i=1; i<=nlstate;i++){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      for(j=1; j<=nlstate;j++){
                 }        fprintf(ficreseij," e%1d%1d ",i,j);
                      }
               }      fprintf(ficreseij," e%1d. ",i);
               if (h==(int)(calagedate+12*cpt)){    }
                 fprintf(ficresf," %.3f", kk1);    fprintf(ficreseij,"\n");
                          
               }    
             }    if(estepm < stepm){
           }      printf ("Problem %d lower than %d\n",estepm, stepm);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
         }    else  hstepm=estepm;   
       }    /* We compute the life expectancy from trapezoids spaced every estepm months
     }     * This is mainly to measure the difference between two models: for example
   }     * if stepm=24 months pijx are given only every 2 years and by summing them
             * we are calculating an estimate of the Life Expectancy assuming a linear 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
   fclose(ficresf);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
 }     * to compare the new estimate of Life expectancy with the same linear 
 /************** Forecasting ******************/     * hypothesis. A more precise result, taking into account a more precise
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){     * curvature will be obtained if estepm is as small as stepm. */
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    /* For example we decided to compute the life expectancy with the smallest unit */
   int *popage;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;       nhstepm is the number of hstepm from age to agelim 
   double *popeffectif,*popcount;       nstepm is the number of stepm from age to agelin. 
   double ***p3mat,***tabpop,***tabpopprev;       Look at hpijx to understand the reason of that which relies in memory size
   char filerespop[FILENAMELENGTH];       and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       survival function given by stepm (the optimization length). Unfortunately it
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       means that if the survival funtion is printed only each two years of age and if
   agelim=AGESUP;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;       results. So we changed our mind and took the option of the best precision.
      */
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    
      agelim=AGESUP;
   strcpy(filerespop,"pop");    /* If stepm=6 months */
   strcat(filerespop,fileres);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   if((ficrespop=fopen(filerespop,"w"))==NULL) {         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     printf("Problem with forecast resultfile: %s\n", filerespop);      
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);  /* nhstepm age range expressed in number of stepm */
   }    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   printf("Computing forecasting: result on file '%s' \n", filerespop);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
   if (mobilav==1) {    for (age=bage; age<=fage; age ++){ 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     movingaverage(agedeb, fage, ageminpar, mobaverage);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   }      /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;      /* If stepm=6 months */
        /* Computed by stepm unit matrices, product of hstepma matrices, stored
   agelim=AGESUP;         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
        
   hstepm=1;      hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   hstepm=hstepm/stepm;      
        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   if (popforecast==1) {      
     if((ficpop=fopen(popfile,"r"))==NULL) {      printf("%d|",(int)age);fflush(stdout);
       printf("Problem with population file : %s\n",popfile);exit(0);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);      
     }      /* Computing expectancies */
     popage=ivector(0,AGESUP);      for(i=1; i<=nlstate;i++)
     popeffectif=vector(0,AGESUP);        for(j=1; j<=nlstate;j++)
     popcount=vector(0,AGESUP);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     i=1;              
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
      
     imx=i;          }
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];  
   }      fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
   for(cptcov=1;cptcov<=i2;cptcov++){        eip=0;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        for(j=1; j<=nlstate;j++){
       k=k+1;          eip +=eij[i][j][(int)age];
       fprintf(ficrespop,"\n#******");          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
       for(j=1;j<=cptcoveff;j++) {        }
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficreseij,"%9.4f", eip );
       }      }
       fprintf(ficrespop,"******\n");      fprintf(ficreseij,"\n");
       fprintf(ficrespop,"# Age");      
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    }
       if (popforecast==1)  fprintf(ficrespop," [Population]");    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          printf("\n");
       for (cpt=0; cpt<=0;cpt++) {    fprintf(ficlog,"\n");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      
          }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
           nhstepm = nhstepm/hstepm;  
            {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* Covariances of health expectancies eij and of total life expectancies according
           oldm=oldms;savm=savms;     to initial status i, ei. .
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      */
            int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
           for (h=0; h<=nhstepm; h++){    int nhstepma, nstepma; /* Decreasing with age */
             if (h==(int) (calagedate+YEARM*cpt)) {    double age, agelim, hf;
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    double ***p3matp, ***p3matm, ***varhe;
             }    double **dnewm,**doldm;
             for(j=1; j<=nlstate+ndeath;j++) {    double *xp, *xm;
               kk1=0.;kk2=0;    double **gp, **gm;
               for(i=1; i<=nlstate;i++) {                  double ***gradg, ***trgradg;
                 if (mobilav==1)    int theta;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  
                 else {    double eip, vip;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];  
                 }    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
               }    xp=vector(1,npar);
               if (h==(int)(calagedate+12*cpt)){    xm=vector(1,npar);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    dnewm=matrix(1,nlstate*nlstate,1,npar);
                   /*fprintf(ficrespop," %.3f", kk1);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    
               }    pstamp(ficresstdeij);
             }    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
             for(i=1; i<=nlstate;i++){    fprintf(ficresstdeij,"# Age");
               kk1=0.;    for(i=1; i<=nlstate;i++){
                 for(j=1; j<=nlstate;j++){      for(j=1; j<=nlstate;j++)
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
                 }      fprintf(ficresstdeij," e%1d. ",i);
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    }
             }    fprintf(ficresstdeij,"\n");
   
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    pstamp(ficrescveij);
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
           }    fprintf(ficrescveij,"# Age");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(i=1; i<=nlstate;i++)
         }      for(j=1; j<=nlstate;j++){
       }        cptj= (j-1)*nlstate+i;
          for(i2=1; i2<=nlstate;i2++)
   /******/          for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {            if(cptj2 <= cptj)
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      }
           nhstepm = nhstepm/hstepm;    fprintf(ficrescveij,"\n");
              
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    if(estepm < stepm){
           oldm=oldms;savm=savms;      printf ("Problem %d lower than %d\n",estepm, stepm);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      }
           for (h=0; h<=nhstepm; h++){    else  hstepm=estepm;   
             if (h==(int) (calagedate+YEARM*cpt)) {    /* We compute the life expectancy from trapezoids spaced every estepm months
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);     * This is mainly to measure the difference between two models: for example
             }     * if stepm=24 months pijx are given only every 2 years and by summing them
             for(j=1; j<=nlstate+ndeath;j++) {     * we are calculating an estimate of the Life Expectancy assuming a linear 
               kk1=0.;kk2=0;     * progression in between and thus overestimating or underestimating according
               for(i=1; i<=nlstate;i++) {                   * to the curvature of the survival function. If, for the same date, we 
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];         * estimate the model with stepm=1 month, we can keep estepm to 24 months
               }     * to compare the new estimate of Life expectancy with the same linear 
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);     * hypothesis. A more precise result, taking into account a more precise
             }     * curvature will be obtained if estepm is as small as stepm. */
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* For example we decided to compute the life expectancy with the smallest unit */
         }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       }       nhstepm is the number of hstepm from age to agelim 
    }       nstepm is the number of stepm from age to agelin. 
   }       Look at hpijx to understand the reason of that which relies in memory size
         and note for a fixed period like estepm months */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
   if (popforecast==1) {       means that if the survival funtion is printed only each two years of age and if
     free_ivector(popage,0,AGESUP);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     free_vector(popeffectif,0,AGESUP);       results. So we changed our mind and took the option of the best precision.
     free_vector(popcount,0,AGESUP);    */
   }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* If stepm=6 months */
   fclose(ficrespop);    /* nhstepm age range expressed in number of stepm */
 }    agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
 /***********************************************/    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
 /**************** Main Program *****************/    /* if (stepm >= YEARM) hstepm=1;*/
 /***********************************************/    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
 int main(int argc, char *argv[])    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 {    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   double agedeb, agefin,hf;    gp=matrix(0,nhstepm,1,nlstate*nlstate);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
   double fret;    for (age=bage; age<=fage; age ++){ 
   double **xi,tmp,delta;      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   double dum; /* Dummy variable */      /* if (stepm >= YEARM) hstepm=1;*/
   double ***p3mat;      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   int *indx;  
   char line[MAXLINE], linepar[MAXLINE];      /* If stepm=6 months */
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   int firstobs=1, lastobs=10;         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   int sdeb, sfin; /* Status at beginning and end */      
   int c,  h , cpt,l;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   int ju,jl, mi;  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      /* Computing  Variances of health expectancies */
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   int mobilav=0,popforecast=0;         decrease memory allocation */
   int hstepm, nhstepm;      for(theta=1; theta <=npar; theta++){
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;        for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   double bage, fage, age, agelim, agebase;          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   double ftolpl=FTOL;        }
   double **prlim;        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   double *severity;        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   double ***param; /* Matrix of parameters */    
   double  *p;        for(j=1; j<= nlstate; j++){
   double **matcov; /* Matrix of covariance */          for(i=1; i<=nlstate; i++){
   double ***delti3; /* Scale */            for(h=0; h<=nhstepm-1; h++){
   double *delti; /* Scale */              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   double ***eij, ***vareij;              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
   double **varpl; /* Variances of prevalence limits by age */            }
   double *epj, vepp;          }
   double kk1, kk2;        }
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;       
          for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
   char *alph[]={"a","a","b","c","d","e"}, str[4];            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
   char z[1]="c", occ;      
 #include <sys/time.h>      
 #include <time.h>      for(h=0; h<=nhstepm-1; h++)
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];        for(j=1; j<=nlstate*nlstate;j++)
            for(theta=1; theta <=npar; theta++)
   /* long total_usecs;            trgradg[h][j][theta]=gradg[h][theta][j];
   struct timeval start_time, end_time;      
    
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */       for(ij=1;ij<=nlstate*nlstate;ij++)
   getcwd(pathcd, size);        for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   printf("\n%s",version);  
   if(argc <=1){       printf("%d|",(int)age);fflush(stdout);
     printf("\nEnter the parameter file name: ");       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     scanf("%s",pathtot);       for(h=0;h<=nhstepm-1;h++){
   }        for(k=0;k<=nhstepm-1;k++){
   else{          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     strcpy(pathtot,argv[1]);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   }          for(ij=1;ij<=nlstate*nlstate;ij++)
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/            for(ji=1;ji<=nlstate*nlstate;ji++)
   /*cygwin_split_path(pathtot,path,optionfile);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/        }
   /* cutv(path,optionfile,pathtot,'\\');*/      }
   
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      /* Computing expectancies */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   chdir(path);      for(i=1; i<=nlstate;i++)
   replace(pathc,path);        for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
 /*-------- arguments in the command line --------*/            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
   /* Log file */            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   strcat(filelog, optionfilefiname);  
   strcat(filelog,".log");    /* */          }
   if((ficlog=fopen(filelog,"w"))==NULL)    {  
     printf("Problem with logfile %s\n",filelog);      fprintf(ficresstdeij,"%3.0f",age );
     goto end;      for(i=1; i<=nlstate;i++){
   }        eip=0.;
   fprintf(ficlog,"Log filename:%s\n",filelog);        vip=0.;
   fprintf(ficlog,"\n%s",version);        for(j=1; j<=nlstate;j++){
   fprintf(ficlog,"\nEnter the parameter file name: ");          eip += eij[i][j][(int)age];
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
   fflush(ficlog);            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   /* */        }
   strcpy(fileres,"r");        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
   strcat(fileres, optionfilefiname);      }
   strcat(fileres,".txt");    /* Other files have txt extension */      fprintf(ficresstdeij,"\n");
   
   /*---------arguments file --------*/      fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        for(j=1; j<=nlstate;j++){
     printf("Problem with optionfile %s\n",optionfile);          cptj= (j-1)*nlstate+i;
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);          for(i2=1; i2<=nlstate;i2++)
     goto end;            for(j2=1; j2<=nlstate;j2++){
   }              cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
   strcpy(filereso,"o");                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   strcat(filereso,fileres);            }
   if((ficparo=fopen(filereso,"w"))==NULL) {        }
     printf("Problem with Output resultfile: %s\n", filereso);      fprintf(ficrescveij,"\n");
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);     
     goto end;    }
   }    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   /* Reads comments: lines beginning with '#' */    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   while((c=getc(ficpar))=='#' && c!= EOF){    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     ungetc(c,ficpar);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fgets(line, MAXLINE, ficpar);    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     puts(line);    printf("\n");
     fputs(line,ficparo);    fprintf(ficlog,"\n");
   }  
   ungetc(c,ficpar);    free_vector(xm,1,npar);
     free_vector(xp,1,npar);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 while((c=getc(ficpar))=='#' && c!= EOF){  }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  /************ Variance ******************/
     puts(line);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
     fputs(line,ficparo);  {
   }    /* Variance of health expectancies */
   ungetc(c,ficpar);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
      /* double **newm;*/
        double **dnewm,**doldm;
   covar=matrix(0,NCOVMAX,1,n);    double **dnewmp,**doldmp;
   cptcovn=0;    int i, j, nhstepm, hstepm, h, nstepm ;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    int k, cptcode;
     double *xp;
   ncovmodel=2+cptcovn;    double **gp, **gm;  /* for var eij */
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    double ***gradg, ***trgradg; /*for var eij */
      double **gradgp, **trgradgp; /* for var p point j */
   /* Read guess parameters */    double *gpp, *gmp; /* for var p point j */
   /* Reads comments: lines beginning with '#' */    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   while((c=getc(ficpar))=='#' && c!= EOF){    double ***p3mat;
     ungetc(c,ficpar);    double age,agelim, hf;
     fgets(line, MAXLINE, ficpar);    double ***mobaverage;
     puts(line);    int theta;
     fputs(line,ficparo);    char digit[4];
   }    char digitp[25];
   ungetc(c,ficpar);  
      char fileresprobmorprev[FILENAMELENGTH];
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
     for(i=1; i <=nlstate; i++)    if(popbased==1){
     for(j=1; j <=nlstate+ndeath-1; j++){      if(mobilav!=0)
       fscanf(ficpar,"%1d%1d",&i1,&j1);        strcpy(digitp,"-populbased-mobilav-");
       fprintf(ficparo,"%1d%1d",i1,j1);      else strcpy(digitp,"-populbased-nomobil-");
       if(mle==1)    }
         printf("%1d%1d",i,j);    else 
       fprintf(ficlog,"%1d%1d",i,j);      strcpy(digitp,"-stablbased-");
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar," %lf",&param[i][j][k]);    if (mobilav!=0) {
         if(mle==1){      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           printf(" %lf",param[i][j][k]);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," %lf",param[i][j][k]);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         else      }
           fprintf(ficlog," %lf",param[i][j][k]);    }
         fprintf(ficparo," %lf",param[i][j][k]);  
       }    strcpy(fileresprobmorprev,"prmorprev"); 
       fscanf(ficpar,"\n");    sprintf(digit,"%-d",ij);
       if(mle==1)    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
         printf("\n");    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       fprintf(ficlog,"\n");    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
       fprintf(ficparo,"\n");    strcat(fileresprobmorprev,fileres);
     }    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobmorprev);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
   p=param[1][1];    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     
   /* Reads comments: lines beginning with '#' */    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   while((c=getc(ficpar))=='#' && c!= EOF){    pstamp(ficresprobmorprev);
     ungetc(c,ficpar);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fgets(line, MAXLINE, ficpar);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     puts(line);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     fputs(line,ficparo);      fprintf(ficresprobmorprev," p.%-d SE",j);
   }      for(i=1; i<=nlstate;i++)
   ungetc(c,ficpar);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(ficresprobmorprev,"\n");
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    fprintf(ficgp,"\n# Routine varevsij");
   for(i=1; i <=nlstate; i++){    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     for(j=1; j <=nlstate+ndeath-1; j++){    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       fscanf(ficpar,"%1d%1d",&i1,&j1);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       printf("%1d%1d",i,j);  /*   } */
       fprintf(ficparo,"%1d%1d",i1,j1);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       for(k=1; k<=ncovmodel;k++){    pstamp(ficresvij);
         fscanf(ficpar,"%le",&delti3[i][j][k]);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
         printf(" %le",delti3[i][j][k]);    if(popbased==1)
         fprintf(ficparo," %le",delti3[i][j][k]);      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
       }    else
       fscanf(ficpar,"\n");      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
       printf("\n");    fprintf(ficresvij,"# Age");
       fprintf(ficparo,"\n");    for(i=1; i<=nlstate;i++)
     }      for(j=1; j<=nlstate;j++)
   }        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
   delti=delti3[1][1];    fprintf(ficresvij,"\n");
    
   /* Reads comments: lines beginning with '#' */    xp=vector(1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){    dnewm=matrix(1,nlstate,1,npar);
     ungetc(c,ficpar);    doldm=matrix(1,nlstate,1,nlstate);
     fgets(line, MAXLINE, ficpar);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     puts(line);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     fputs(line,ficparo);  
   }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   ungetc(c,ficpar);    gpp=vector(nlstate+1,nlstate+ndeath);
      gmp=vector(nlstate+1,nlstate+ndeath);
   matcov=matrix(1,npar,1,npar);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   for(i=1; i <=npar; i++){    
     fscanf(ficpar,"%s",&str);    if(estepm < stepm){
     if(mle==1)      printf ("Problem %d lower than %d\n",estepm, stepm);
       printf("%s",str);    }
     fprintf(ficlog,"%s",str);    else  hstepm=estepm;   
     fprintf(ficparo,"%s",str);    /* For example we decided to compute the life expectancy with the smallest unit */
     for(j=1; j <=i; j++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       fscanf(ficpar," %le",&matcov[i][j]);       nhstepm is the number of hstepm from age to agelim 
       if(mle==1){       nstepm is the number of stepm from age to agelin. 
         printf(" %.5le",matcov[i][j]);       Look at function hpijx to understand why (it is linked to memory size questions) */
         fprintf(ficlog," %.5le",matcov[i][j]);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       }       survival function given by stepm (the optimization length). Unfortunately it
       else       means that if the survival funtion is printed every two years of age and if
         fprintf(ficlog," %.5le",matcov[i][j]);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       fprintf(ficparo," %.5le",matcov[i][j]);       results. So we changed our mind and took the option of the best precision.
     }    */
     fscanf(ficpar,"\n");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     if(mle==1)    agelim = AGESUP;
       printf("\n");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     fprintf(ficlog,"\n");      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     fprintf(ficparo,"\n");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   for(i=1; i <=npar; i++)      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     for(j=i+1;j<=npar;j++)      gp=matrix(0,nhstepm,1,nlstate);
       matcov[i][j]=matcov[j][i];      gm=matrix(0,nhstepm,1,nlstate);
      
   if(mle==1)  
     printf("\n");      for(theta=1; theta <=npar; theta++){
   fprintf(ficlog,"\n");        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
     /*-------- Rewriting paramater file ----------*/        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
      strcpy(rfileres,"r");    /* "Rparameterfile */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/  
      strcat(rfileres,".");    /* */        if (popbased==1) {
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          if(mobilav ==0){
     if((ficres =fopen(rfileres,"w"))==NULL) {            for(i=1; i<=nlstate;i++)
       printf("Problem writing new parameter file: %s\n", fileres);goto end;              prlim[i][i]=probs[(int)age][i][ij];
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;          }else{ /* mobilav */ 
     }            for(i=1; i<=nlstate;i++)
     fprintf(ficres,"#%s\n",version);              prlim[i][i]=mobaverage[(int)age][i][ij];
              }
     /*-------- data file ----------*/        }
     if((fic=fopen(datafile,"r"))==NULL)    {    
       printf("Problem with datafile: %s\n", datafile);goto end;        for(j=1; j<= nlstate; j++){
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;          for(h=0; h<=nhstepm; h++){
     }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     n= lastobs;          }
     severity = vector(1,maxwav);        }
     outcome=imatrix(1,maxwav+1,1,n);        /* This for computing probability of death (h=1 means
     num=ivector(1,n);           computed over hstepm matrices product = hstepm*stepm months) 
     moisnais=vector(1,n);           as a weighted average of prlim.
     annais=vector(1,n);        */
     moisdc=vector(1,n);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     andc=vector(1,n);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     agedc=vector(1,n);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     cod=ivector(1,n);        }    
     weight=vector(1,n);        /* end probability of death */
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  
     mint=matrix(1,maxwav,1,n);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
     anint=matrix(1,maxwav,1,n);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     s=imatrix(1,maxwav+1,1,n);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     adl=imatrix(1,maxwav+1,1,n);            prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     tab=ivector(1,NCOVMAX);   
     ncodemax=ivector(1,8);        if (popbased==1) {
           if(mobilav ==0){
     i=1;            for(i=1; i<=nlstate;i++)
     while (fgets(line, MAXLINE, fic) != NULL)    {              prlim[i][i]=probs[(int)age][i][ij];
       if ((i >= firstobs) && (i <=lastobs)) {          }else{ /* mobilav */ 
                    for(i=1; i<=nlstate;i++)
         for (j=maxwav;j>=1;j--){              prlim[i][i]=mobaverage[(int)age][i][ij];
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          }
           strcpy(line,stra);        }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
         }          for(h=0; h<=nhstepm; h++){
                    for(i=1, gm[h][j]=0.;i<=nlstate;i++)
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          }
         }
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        /* This for computing probability of death (h=1 means
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        */
         for (j=ncovcol;j>=1;j--){        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
         }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         num[i]=atol(stra);        }    
                /* end probability of death */
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){  
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
         i=i+1;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       }          }
     }  
     /* printf("ii=%d", ij);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
        scanf("%d",i);*/          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
   imx=i-1; /* Number of individuals */        }
   
   /* for (i=1; i<=imx; i++){      } /* End theta */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  
     }*/      for(h=0; h<=nhstepm; h++) /* veij */
    /*  for (i=1; i<=imx; i++){        for(j=1; j<=nlstate;j++)
      if (s[4][i]==9)  s[4][i]=-1;          for(theta=1; theta <=npar; theta++)
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/            trgradg[h][j][theta]=gradg[h][theta][j];
    
        for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   /* Calculation of the number of parameter from char model*/        for(theta=1; theta <=npar; theta++)
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */          trgradgp[j][theta]=gradgp[theta][j];
   Tprod=ivector(1,15);    
   Tvaraff=ivector(1,15);  
   Tvard=imatrix(1,15,1,2);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   Tage=ivector(1,15);            for(i=1;i<=nlstate;i++)
            for(j=1;j<=nlstate;j++)
   if (strlen(model) >1){          vareij[i][j][(int)age] =0.;
     j=0, j1=0, k1=1, k2=1;  
     j=nbocc(model,'+');      for(h=0;h<=nhstepm;h++){
     j1=nbocc(model,'*');        for(k=0;k<=nhstepm;k++){
     cptcovn=j+1;          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
     cptcovprod=j1;          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
              for(i=1;i<=nlstate;i++)
     strcpy(modelsav,model);            for(j=1;j<=nlstate;j++)
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
       printf("Error. Non available option model=%s ",model);        }
       fprintf(ficlog,"Error. Non available option model=%s ",model);      }
       goto end;    
     }      /* pptj */
          matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
     for(i=(j+1); i>=1;i--){      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */      for(j=nlstate+1;j<=nlstate+ndeath;j++)
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */        for(i=nlstate+1;i<=nlstate+ndeath;i++)
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          varppt[j][i]=doldmp[j][i];
       /*scanf("%d",i);*/      /* end ppptj */
       if (strchr(strb,'*')) {  /* Model includes a product */      /*  x centered again */
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
         if (strcmp(strc,"age")==0) { /* Vn*age */      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
           cptcovprod--;   
           cutv(strb,stre,strd,'V');      if (popbased==1) {
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/        if(mobilav ==0){
           cptcovage++;          for(i=1; i<=nlstate;i++)
             Tage[cptcovage]=i;            prlim[i][i]=probs[(int)age][i][ij];
             /*printf("stre=%s ", stre);*/        }else{ /* mobilav */ 
         }          for(i=1; i<=nlstate;i++)
         else if (strcmp(strd,"age")==0) { /* or age*Vn */            prlim[i][i]=mobaverage[(int)age][i][ij];
           cptcovprod--;        }
           cutv(strb,stre,strc,'V');      }
           Tvar[i]=atoi(stre);               
           cptcovage++;      /* This for computing probability of death (h=1 means
           Tage[cptcovage]=i;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
         }         as a weighted average of prlim.
         else {  /* Age is not in the model */      */
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/      for(j=nlstate+1;j<=nlstate+ndeath;j++){
           Tvar[i]=ncovcol+k1;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
           Tprod[k1]=i;      }    
           Tvard[k1][1]=atoi(strc); /* m*/      /* end probability of death */
           Tvard[k1][2]=atoi(stre); /* n */  
           Tvar[cptcovn+k2]=Tvard[k1][1];      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           for (k=1; k<=lastobs;k++)        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];        for(i=1; i<=nlstate;i++){
           k1++;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
           k2=k2+2;        }
         }      } 
       }      fprintf(ficresprobmorprev,"\n");
       else { /* no more sum */  
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      fprintf(ficresvij,"%.0f ",age );
        /*  scanf("%d",i);*/      for(i=1; i<=nlstate;i++)
       cutv(strd,strc,strb,'V');        for(j=1; j<=nlstate;j++){
       Tvar[i]=atoi(strc);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
       }        }
       strcpy(modelsav,stra);        fprintf(ficresvij,"\n");
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      free_matrix(gp,0,nhstepm,1,nlstate);
         scanf("%d",i);*/      free_matrix(gm,0,nhstepm,1,nlstate);
     } /* end of loop + */      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   } /* end model */      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    } /* End age */
   printf("cptcovprod=%d ", cptcovprod);    free_vector(gpp,nlstate+1,nlstate+ndeath);
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    free_vector(gmp,nlstate+1,nlstate+ndeath);
   scanf("%d ",i);*/    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     fclose(fic);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /*  if(mle==1){*/    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     if (weightopt != 1) { /* Maximisation without weights*/    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
       for(i=1;i<=n;i++) weight[i]=1.0;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     /*-calculation of age at interview from date of interview and age at death -*/  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     agev=matrix(1,maxwav,1,imx);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     for (i=1; i<=imx; i++) {    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
       for(m=2; (m<= maxwav); m++) {    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
          anint[m][i]=9999;    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
          s[m][i]=-1;  */
        }  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       }  
     }    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     for (i=1; i<=imx; i++)  {    free_matrix(dnewm,1,nlstate,1,npar);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       for(m=1; (m<= maxwav); m++){    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
         if(s[m][i] >0){    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           if (s[m][i] >= nlstate+1) {    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             if(agedc[i]>0)    fclose(ficresprobmorprev);
               if(moisdc[i]!=99 && andc[i]!=9999)    fflush(ficgp);
                 agev[m][i]=agedc[i];    fflush(fichtm); 
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  }  /* end varevsij */
            else {  
               if (andc[i]!=9999){  /************ Variance of prevlim ******************/
               printf("Warning negative age at death: %d line:%d\n",num[i],i);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);  {
               agev[m][i]=-1;    /* Variance of prevalence limit */
               }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
             }    double **newm;
           }    double **dnewm,**doldm;
           else if(s[m][i] !=9){ /* Should no more exist */    int i, j, nhstepm, hstepm;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    int k, cptcode;
             if(mint[m][i]==99 || anint[m][i]==9999)    double *xp;
               agev[m][i]=1;    double *gp, *gm;
             else if(agev[m][i] <agemin){    double **gradg, **trgradg;
               agemin=agev[m][i];    double age,agelim;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    int theta;
             }    
             else if(agev[m][i] >agemax){    pstamp(ficresvpl);
               agemax=agev[m][i];    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    fprintf(ficresvpl,"# Age");
             }    for(i=1; i<=nlstate;i++)
             /*agev[m][i]=anint[m][i]-annais[i];*/        fprintf(ficresvpl," %1d-%1d",i,i);
             /*   agev[m][i] = age[i]+2*m;*/    fprintf(ficresvpl,"\n");
           }  
           else { /* =9 */    xp=vector(1,npar);
             agev[m][i]=1;    dnewm=matrix(1,nlstate,1,npar);
             s[m][i]=-1;    doldm=matrix(1,nlstate,1,nlstate);
           }    
         }    hstepm=1*YEARM; /* Every year of age */
         else /*= 0 Unknown */    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
           agev[m][i]=1;    agelim = AGESUP;
       }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
          nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     }      if (stepm >= YEARM) hstepm=1;
     for (i=1; i<=imx; i++)  {      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       for(m=1; (m<= maxwav); m++){      gradg=matrix(1,npar,1,nlstate);
         if (s[m][i] > (nlstate+ndeath)) {      gp=vector(1,nlstate);
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);        gm=vector(1,nlstate);
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
           goto end;      for(theta=1; theta <=npar; theta++){
         }        for(i=1; i<=npar; i++){ /* Computes gradient */
       }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     }        }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        for(i=1;i<=nlstate;i++)
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          gp[i] = prlim[i][i];
       
     free_vector(severity,1,maxwav);        for(i=1; i<=npar; i++) /* Computes gradient */
     free_imatrix(outcome,1,maxwav+1,1,n);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     free_vector(moisnais,1,n);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     free_vector(annais,1,n);        for(i=1;i<=nlstate;i++)
     /* free_matrix(mint,1,maxwav,1,n);          gm[i] = prlim[i][i];
        free_matrix(anint,1,maxwav,1,n);*/  
     free_vector(moisdc,1,n);        for(i=1;i<=nlstate;i++)
     free_vector(andc,1,n);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
      
     wav=ivector(1,imx);      trgradg =matrix(1,nlstate,1,npar);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      for(j=1; j<=nlstate;j++)
            for(theta=1; theta <=npar; theta++)
     /* Concatenates waves */          trgradg[j][theta]=gradg[theta][j];
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);  
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       Tcode=ivector(1,100);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       ncodemax[1]=1;      for(i=1;i<=nlstate;i++)
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
        
    codtab=imatrix(1,100,1,10);      fprintf(ficresvpl,"%.0f ",age );
    h=0;      for(i=1; i<=nlstate;i++)
    m=pow(2,cptcoveff);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
        fprintf(ficresvpl,"\n");
    for(k=1;k<=cptcoveff; k++){      free_vector(gp,1,nlstate);
      for(i=1; i <=(m/pow(2,k));i++){      free_vector(gm,1,nlstate);
        for(j=1; j <= ncodemax[k]; j++){      free_matrix(gradg,1,npar,1,nlstate);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      free_matrix(trgradg,1,nlstate,1,npar);
            h++;    } /* End age */
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    free_vector(xp,1,npar);
          }    free_matrix(doldm,1,nlstate,1,npar);
        }    free_matrix(dnewm,1,nlstate,1,nlstate);
      }  
    }  }
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);  
       codtab[1][2]=1;codtab[2][2]=2; */  /************ Variance of one-step probabilities  ******************/
    /* for(i=1; i <=m ;i++){  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
       for(k=1; k <=cptcovn; k++){  {
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);    int i, j=0,  i1, k1, l1, t, tj;
       }    int k2, l2, j1,  z1;
       printf("\n");    int k=0,l, cptcode;
       }    int first=1, first1, first2;
       scanf("%d",i);*/    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
        double **dnewm,**doldm;
    /* Calculates basic frequencies. Computes observed prevalence at single age    double *xp;
        and prints on file fileres'p'. */    double *gp, *gm;
     double **gradg, **trgradg;
        double **mu;
        double age,agelim, cov[NCOVMAX+1];
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int theta;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    char fileresprob[FILENAMELENGTH];
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    char fileresprobcov[FILENAMELENGTH];
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    char fileresprobcor[FILENAMELENGTH];
          double ***varpij;
     /* For Powell, parameters are in a vector p[] starting at p[1]  
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    strcpy(fileresprob,"prob"); 
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
     if(mle==1){      printf("Problem with resultfile: %s\n", fileresprob);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }    }
        strcpy(fileresprobcov,"probcov"); 
     /*--------- results files --------------*/    strcat(fileresprobcov,fileres);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
    jk=1;    }
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    strcpy(fileresprobcor,"probcor"); 
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    strcat(fileresprobcor,fileres);
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
    for(i=1,jk=1; i <=nlstate; i++){      printf("Problem with resultfile: %s\n", fileresprobcor);
      for(k=1; k <=(nlstate+ndeath); k++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
        if (k != i)    }
          {    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
            printf("%d%d ",i,k);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
            fprintf(ficlog,"%d%d ",i,k);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
            fprintf(ficres,"%1d%1d ",i,k);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
            for(j=1; j <=ncovmodel; j++){    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
              printf("%f ",p[jk]);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
              fprintf(ficlog,"%f ",p[jk]);    pstamp(ficresprob);
              fprintf(ficres,"%f ",p[jk]);    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
              jk++;    fprintf(ficresprob,"# Age");
            }    pstamp(ficresprobcov);
            printf("\n");    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
            fprintf(ficlog,"\n");    fprintf(ficresprobcov,"# Age");
            fprintf(ficres,"\n");    pstamp(ficresprobcor);
          }    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
      }    fprintf(ficresprobcor,"# Age");
    }  
    if(mle==1){  
      /* Computing hessian and covariance matrix */    for(i=1; i<=nlstate;i++)
      ftolhess=ftol; /* Usually correct */      for(j=1; j<=(nlstate+ndeath);j++){
      hesscov(matcov, p, npar, delti, ftolhess, func);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
    }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");        fprintf(ficresprobcor," p%1d-%1d ",i,j);
    printf("# Scales (for hessian or gradient estimation)\n");      }  
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");   /* fprintf(ficresprob,"\n");
    for(i=1,jk=1; i <=nlstate; i++){    fprintf(ficresprobcov,"\n");
      for(j=1; j <=nlstate+ndeath; j++){    fprintf(ficresprobcor,"\n");
        if (j!=i) {   */
          fprintf(ficres,"%1d%1d",i,j);    xp=vector(1,npar);
          printf("%1d%1d",i,j);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
          fprintf(ficlog,"%1d%1d",i,j);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
          for(k=1; k<=ncovmodel;k++){    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
            printf(" %.5e",delti[jk]);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
            fprintf(ficlog," %.5e",delti[jk]);    first=1;
            fprintf(ficres," %.5e",delti[jk]);    fprintf(ficgp,"\n# Routine varprob");
            jk++;    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
          }    fprintf(fichtm,"\n");
          printf("\n");  
          fprintf(ficlog,"\n");    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
          fprintf(ficres,"\n");    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
        }    file %s<br>\n",optionfilehtmcov);
      }    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
    }  and drawn. It helps understanding how is the covariance between two incidences.\
       They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
    k=1;    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
    if(mle==1)  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  standard deviations wide on each axis. <br>\
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    for(i=1;i<=npar;i++){   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
      /*  if (k>nlstate) k=1;  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
          i1=(i-1)/(ncovmodel*nlstate)+1;  
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    cov[1]=1;
          printf("%s%d%d",alph[k],i1,tab[i]);*/    /* tj=cptcoveff; */
      fprintf(ficres,"%3d",i);    tj = (int) pow(2,cptcoveff);
      if(mle==1)    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
        printf("%3d",i);    j1=0;
      fprintf(ficlog,"%3d",i);    for(j1=1; j1<=tj;j1++){
      for(j=1; j<=i;j++){      /*for(i1=1; i1<=ncodemax[t];i1++){ */
        fprintf(ficres," %.5e",matcov[i][j]);      /*j1++;*/
        if(mle==1)        if  (cptcovn>0) {
          printf(" %.5e",matcov[i][j]);          fprintf(ficresprob, "\n#********** Variable "); 
        fprintf(ficlog," %.5e",matcov[i][j]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      }          fprintf(ficresprob, "**********\n#\n");
      fprintf(ficres,"\n");          fprintf(ficresprobcov, "\n#********** Variable "); 
      if(mle==1)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        printf("\n");          fprintf(ficresprobcov, "**********\n#\n");
      fprintf(ficlog,"\n");          
      k++;          fprintf(ficgp, "\n#********** Variable "); 
    }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
              fprintf(ficgp, "**********\n#\n");
    while((c=getc(ficpar))=='#' && c!= EOF){          
      ungetc(c,ficpar);          
      fgets(line, MAXLINE, ficpar);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
      puts(line);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      fputs(line,ficparo);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
    }          
    ungetc(c,ficpar);          fprintf(ficresprobcor, "\n#********** Variable ");    
    estepm=0;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);          fprintf(ficresprobcor, "**********\n#");    
    if (estepm==0 || estepm < stepm) estepm=stepm;        }
    if (fage <= 2) {        
      bage = ageminpar;        gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
      fage = agemaxpar;        trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
    }        gp=vector(1,(nlstate)*(nlstate+ndeath));
            gm=vector(1,(nlstate)*(nlstate+ndeath));
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        for (age=bage; age<=fage; age ++){ 
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          cov[2]=age;
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);          for (k=1; k<=cptcovn;k++) {
                cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
    while((c=getc(ficpar))=='#' && c!= EOF){                                                           * 1  1 1 1 1
      ungetc(c,ficpar);                                                           * 2  2 1 1 1
      fgets(line, MAXLINE, ficpar);                                                           * 3  1 2 1 1
      puts(line);                                                           */
      fputs(line,ficparo);            /* nbcode[1][1]=0 nbcode[1][2]=1;*/
    }          }
    ungetc(c,ficpar);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
            for (k=1; k<=cptcovprod;k++)
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      
              for(theta=1; theta <=npar; theta++){
    while((c=getc(ficpar))=='#' && c!= EOF){            for(i=1; i<=npar; i++)
      ungetc(c,ficpar);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
      fgets(line, MAXLINE, ficpar);            
      puts(line);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
      fputs(line,ficparo);            
    }            k=0;
    ungetc(c,ficpar);            for(i=1; i<= (nlstate); i++){
                for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
    dateprev1=anprev1+mprev1/12.+jprev1/365.;                gp[k]=pmmij[i][j];
    dateprev2=anprev2+mprev2/12.+jprev2/365.;              }
             }
   fscanf(ficpar,"pop_based=%d\n",&popbased);            
   fprintf(ficparo,"pop_based=%d\n",popbased);              for(i=1; i<=npar; i++)
   fprintf(ficres,"pop_based=%d\n",popbased);                xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
        
   while((c=getc(ficpar))=='#' && c!= EOF){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     ungetc(c,ficpar);            k=0;
     fgets(line, MAXLINE, ficpar);            for(i=1; i<=(nlstate); i++){
     puts(line);              for(j=1; j<=(nlstate+ndeath);j++){
     fputs(line,ficparo);                k=k+1;
   }                gm[k]=pmmij[i][j];
   ungetc(c,ficpar);              }
             }
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);       
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
 while((c=getc(ficpar))=='#' && c!= EOF){          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
     ungetc(c,ficpar);            for(theta=1; theta <=npar; theta++)
     fgets(line, MAXLINE, ficpar);              trgradg[j][theta]=gradg[theta][j];
     puts(line);          
     fputs(line,ficparo);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   }          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   ungetc(c,ficpar);  
           pmij(pmmij,cov,ncovmodel,x,nlstate);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);          
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          k=0;
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              k=k+1;
               mu[k][(int) age]=pmmij[i][j];
 /*------------ gnuplot -------------*/            }
   strcpy(optionfilegnuplot,optionfilefiname);          }
   strcat(optionfilegnuplot,".gp");          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     printf("Problem with file %s",optionfilegnuplot);              varpij[i][j][(int)age] = doldm[i][j];
   }  
   fclose(ficgp);          /*printf("\n%d ",(int)age);
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 /*--------- index.htm --------*/            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   strcpy(optionfilehtm,optionfile);            }*/
   strcat(optionfilehtm,".htm");  
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          fprintf(ficresprob,"\n%d ",(int)age);
     printf("Problem with %s \n",optionfilehtm), exit(0);          fprintf(ficresprobcov,"\n%d ",(int)age);
   }          fprintf(ficresprobcor,"\n%d ",(int)age);
   
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
 \n          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 Total number of observations=%d <br>\n            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
 <hr  size=\"2\" color=\"#EC5E5E\">          }
  <ul><li><h4>Parameter files</h4>\n          i=0;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n          for (k=1; k<=(nlstate);k++){
  - Log file of the run: <a href=\"%s\">%s</a><br>\n            for (l=1; l<=(nlstate+ndeath);l++){ 
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);              i++;
   fclose(fichtm);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);              for (j=1; j<=i;j++){
                  /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
 /*------------ free_vector  -------------*/                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
  chdir(path);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                }
  free_ivector(wav,1,imx);            }
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          }/* end of loop for state */
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          } /* end of loop for age */
  free_ivector(num,1,n);        free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
  free_vector(agedc,1,n);        free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
  /*free_matrix(covar,1,NCOVMAX,1,n);*/        free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
  fclose(ficparo);        free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
  fclose(ficres);        
         /* Confidence intervalle of pij  */
         /*
   /*--------------- Prevalence limit --------------*/          fprintf(ficgp,"\nunset parametric;unset label");
            fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   strcpy(filerespl,"pl");          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   strcat(filerespl,fileres);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   }        */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   fprintf(ficrespl,"#Prevalence limit\n");        first1=1;first2=2;
   fprintf(ficrespl,"#Age ");        for (k2=1; k2<=(nlstate);k2++){
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   fprintf(ficrespl,"\n");            if(l2==k2) continue;
              j=(k2-1)*(nlstate+ndeath)+l2;
   prlim=matrix(1,nlstate,1,nlstate);            for (k1=1; k1<=(nlstate);k1++){
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                if(l1==k1) continue;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                i=(k1-1)*(nlstate+ndeath)+l1;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                if(i<=j) continue;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                for (age=bage; age<=fage; age ++){ 
   k=0;                  if ((int)age %5==0){
   agebase=ageminpar;                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   agelim=agemaxpar;                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   ftolpl=1.e-10;                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   i1=cptcoveff;                    mu1=mu[i][(int) age]/stepm*YEARM ;
   if (cptcovn < 1){i1=1;}                    mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
   for(cptcov=1;cptcov<=i1;cptcov++){                    /* Computing eigen value of matrix of covariance */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         k=k+1;                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/                    if ((lc2 <0) || (lc1 <0) ){
         fprintf(ficrespl,"\n#******");                      if(first2==1){
         printf("\n#******");                        first1=0;
         fprintf(ficlog,"\n#******");                      printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
         for(j=1;j<=cptcoveff;j++) {                      }
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                      fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                      /* lc1=fabs(lc1); */ /* If we want to have them positive */
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                      /* lc2=fabs(lc2); */
         }                    }
         fprintf(ficrespl,"******\n");  
         printf("******\n");                    /* Eigen vectors */
         fprintf(ficlog,"******\n");                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                            /*v21=sqrt(1.-v11*v11); *//* error */
         for (age=agebase; age<=agelim; age++){                    v21=(lc1-v1)/cv12*v11;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                    v12=-v21;
           fprintf(ficrespl,"%.0f",age );                    v22=v11;
           for(i=1; i<=nlstate;i++)                    tnalp=v21/v11;
           fprintf(ficrespl," %.5f", prlim[i][i]);                    if(first1==1){
           fprintf(ficrespl,"\n");                      first1=0;
         }                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       }                    }
     }                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   fclose(ficrespl);                    /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   /*------------- h Pij x at various ages ------------*/                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                      if(first==1){
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                      first=0;
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                      fprintf(ficgp,"\nset parametric;unset label");
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;                      fprintf(ficgp,"\nset ter png small size 320, 240");
   }                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
   printf("Computing pij: result on file '%s' \n", filerespij);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                                subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   stepsize=(int) (stepm+YEARM-1)/YEARM;                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   /*if (stepm<=24) stepsize=2;*/                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   agelim=AGESUP;                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   hstepm=stepsize*YEARM; /* Every year of age */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   /* hstepm=1;   aff par mois*/                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   k=0;                    }else{
   for(cptcov=1;cptcov<=i1;cptcov++){                      first=0;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
       k=k+1;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         fprintf(ficrespij,"\n#****** ");                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         for(j=1;j<=cptcoveff;j++)                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
         fprintf(ficrespij,"******\n");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                            }/* if first */
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                  } /* age mod 5 */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                } /* end loop age */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
           /*      nhstepm=nhstepm*YEARM; aff par mois*/              } /*l12 */
             } /* k12 */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          } /*l1 */
           oldm=oldms;savm=savms;        }/* k1 */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          /* } /* loop covariates */
           fprintf(ficrespij,"# Age");    }
           for(i=1; i<=nlstate;i++)    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
             for(j=1; j<=nlstate+ndeath;j++)    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
               fprintf(ficrespij," %1d-%1d",i,j);    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
           fprintf(ficrespij,"\n");    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
            for (h=0; h<=nhstepm; h++){    free_vector(xp,1,npar);
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    fclose(ficresprob);
             for(i=1; i<=nlstate;i++)    fclose(ficresprobcov);
               for(j=1; j<=nlstate+ndeath;j++)    fclose(ficresprobcor);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    fflush(ficgp);
             fprintf(ficrespij,"\n");    fflush(fichtmcov);
              }  }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           fprintf(ficrespij,"\n");  
         }  /******************* Printing html file ***********/
     }  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   }                    int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);                    int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
   fclose(ficrespij);                    double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
   /*---------- Forecasting ------------------*/     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   if((stepm == 1) && (strcmp(model,".")==0)){     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);  </ul>");
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);     fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   }   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   else{             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
     erreur=108;     fprintf(fichtm,"\
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
   }     fprintf(fichtm,"\
     - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   /*---------- Health expectancies and variances ------------*/     fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
   strcpy(filerest,"t");     <a href=\"%s\">%s</a> <br>\n",
   strcat(filerest,fileres);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   if((ficrest=fopen(filerest,"w"))==NULL) {     fprintf(fichtm,"\
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;   - Population projections by age and states: \
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   }  
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);  
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   strcpy(filerese,"e");  
   strcat(filerese,fileres);   jj1=0;
   if((ficreseij=fopen(filerese,"w"))==NULL) {   for(k1=1; k1<=m;k1++){
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);     for(i1=1; i1<=ncodemax[k1];i1++){
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);       jj1++;
   }       if (cptcovn > 0) {
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);         for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   strcpy(fileresv,"v");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   strcat(fileresv,fileres);       }
   if((ficresvij=fopen(fileresv,"w"))==NULL) {       /* Pij */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);  <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
   }       /* Quasi-incidences */
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   calagedate=-1;  <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);         /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
   k=0;           fprintf(fichtm,"<br>- Convergence from each state (1 to %d) to period (stable) prevalence in state %d <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   for(cptcov=1;cptcov<=i1;cptcov++){  <img src=\"%s%d_%d.png\">",nlstate, cpt, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){         }
       k=k+1;       for(cpt=1; cpt<=nlstate;cpt++) {
       fprintf(ficrest,"\n#****** ");          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
       for(j=1;j<=cptcoveff;j++)  <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       }
       fprintf(ficrest,"******\n");     } /* end i1 */
    }/* End k1 */
       fprintf(ficreseij,"\n#****** ");   fprintf(fichtm,"</ul>");
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficreseij,"******\n");   fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
       fprintf(ficresvij,"\n#****** ");   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       fprintf(ficresvij,"******\n");           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       oldm=oldms;savm=savms;           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);    
     fprintf(fichtm,"\
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       oldm=oldms;savm=savms;           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);   fprintf(fichtm,"\
       if(popbased==1){   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);     <a href=\"%s\">%s</a> <br>\n</li>",
        }             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
     - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");     <a href=\"%s\">%s</a> <br>\n</li>",
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
       fprintf(ficrest,"\n");   fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
       epj=vector(1,nlstate+1);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
       for(age=bage; age <=fage ;age++){   fprintf(fichtm,"\
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
         if (popbased==1) {           estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
           for(i=1; i<=nlstate;i++)   fprintf(fichtm,"\
             prlim[i][i]=probs[(int)age][i][k];   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
         }           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
          
         fprintf(ficrest," %4.0f",age);  /*  if(popforecast==1) fprintf(fichtm,"\n */
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
             epj[j] += prlim[i][i]*eij[i][j][(int)age];  /*      <br>",fileres,fileres,fileres,fileres); */
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/  /*  else  */
           }  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
           epj[nlstate+1] +=epj[j];   fflush(fichtm);
         }   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
         for(i=1, vepp=0.;i <=nlstate;i++)   m=pow(2,cptcoveff);
           for(j=1;j <=nlstate;j++)   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
             vepp += vareij[i][j][(int)age];  
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));   jj1=0;
         for(j=1;j <=nlstate;j++){   for(k1=1; k1<=m;k1++){
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));     for(i1=1; i1<=ncodemax[k1];i1++){
         }       jj1++;
         fprintf(ficrest,"\n");       if (cptcovn > 0) {
       }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     }         for (cpt=1; cpt<=cptcoveff;cpt++) 
   }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
 free_matrix(mint,1,maxwav,1,n);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);       }
     free_vector(weight,1,n);       for(cpt=1; cpt<=nlstate;cpt++) {
   fclose(ficreseij);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   fclose(ficresvij);  prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   fclose(ficrest);  <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
   fclose(ficpar);       }
   free_vector(epj,1,nlstate+1);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
    health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   /*------- Variance limit prevalence------*/    true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
   strcpy(fileresvpl,"vpl");   observed and cahotic prevalences: %s%d.png<br>\
   strcat(fileresvpl,fileres);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {     } /* end i1 */
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);   }/* End k1 */
     exit(0);   fprintf(fichtm,"</ul>");
   }   fflush(fichtm);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  }
   
   k=0;  /******************* Gnuplot file **************/
   for(cptcov=1;cptcov<=i1;cptcov++){  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    char dirfileres[132],optfileres[132];
       fprintf(ficresvpl,"\n#****** ");    int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
       for(j=1;j<=cptcoveff;j++)    int ng=0;
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
       fprintf(ficresvpl,"******\n");  /*     printf("Problem with file %s",optionfilegnuplot); */
        /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
       varpl=matrix(1,nlstate,(int) bage, (int) fage);  /*   } */
       oldm=oldms;savm=savms;  
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    /*#ifdef windows */
     }    fprintf(ficgp,"cd \"%s\" \n",pathc);
  }      /*#endif */
     m=pow(2,cptcoveff);
   fclose(ficresvpl);  
     strcpy(dirfileres,optionfilefiname);
   /*---------- End : free ----------------*/    strcpy(optfileres,"vpl");
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);   /* 1eme*/
      fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    for (cpt=1; cpt<= nlstate ; cpt ++) {
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
         fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);       fprintf(ficgp,"set xlabel \"Age\" \n\
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  set ylabel \"Probability\" \n\
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  set ter png small size 320, 240\n\
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
    
   free_matrix(matcov,1,npar,1,npar);       for (i=1; i<= nlstate ; i ++) {
   free_vector(delti,1,npar);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   free_matrix(agev,1,maxwav,1,imx);         else        fprintf(ficgp," \%%*lf (\%%*lf)");
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);       }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   fprintf(fichtm,"\n</body>");       for (i=1; i<= nlstate ; i ++) {
   fclose(fichtm);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   fclose(ficgp);         else fprintf(ficgp," \%%*lf (\%%*lf)");
         } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
   if(erreur >0){       for (i=1; i<= nlstate ; i ++) {
     printf("End of Imach with error or warning %d\n",erreur);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   }else{       }  
    printf("End of Imach\n");       fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
    fprintf(ficlog,"End of Imach\n");     }
   }    }
   printf("See log file on %s\n",filelog);    /*2 eme*/
   fclose(ficlog);    fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    for (k1=1; k1<= m ; k1 ++) { 
        fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
   /*printf("Total time was %d uSec.\n", total_usecs);*/      
   /*------ End -----------*/      for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
  end:        for (j=1; j<= nlstate+1 ; j ++) {
 #ifdef windows          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   /* chdir(pathcd);*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
 #endif        }   
  /*system("wgnuplot graph.plt");*/        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
  /*system("../gp37mgw/wgnuplot graph.plt");*/        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
  /*system("cd ../gp37mgw");*/        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/        for (j=1; j<= nlstate+1 ; j ++) {
  strcpy(plotcmd,GNUPLOTPROGRAM);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
  strcat(plotcmd," ");          else fprintf(ficgp," \%%*lf (\%%*lf)");
  strcat(plotcmd,optionfilegnuplot);        }   
  system(plotcmd);        fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
 #ifdef windows        for (j=1; j<= nlstate+1 ; j ++) {
   while (z[0] != 'q') {          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     /* chdir(path); */          else fprintf(ficgp," \%%*lf (\%%*lf)");
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");        }   
     scanf("%s",z);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
     if (z[0] == 'c') system("./imach");        else fprintf(ficgp,"\" t\"\" w l lt 0,");
     else if (z[0] == 'e') system(optionfilehtm);      }
     else if (z[0] == 'g') system(plotcmd);    }
     else if (z[0] == 'q') exit(0);    
   }    /*3eme*/
 #endif    
 }    for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    avoid:
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.", dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ = *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int i1, j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.52  
changed lines
  Added in v.1.159


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>