Diff for /imach/src/imach.c between versions 1.52 and 1.79

version 1.52, 2002/07/19 18:49:30 version 1.79, 2003/06/05 15:17:23
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain     Interpolated Markov Chain
   
   Short summary of the programme:    Short summary of the programme:
      
   This program computes Healthy Life Expectancies from    This program computes Healthy Life Expectancies from
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   first survey ("cross") where individuals from different ages are    first survey ("cross") where individuals from different ages are
   interviewed on their health status or degree of disability (in the    interviewed on their health status or degree of disability (in the
   case of a health survey which is our main interest) -2- at least a    case of a health survey which is our main interest) -2- at least a
   second wave of interviews ("longitudinal") which measure each change    second wave of interviews ("longitudinal") which measure each change
   (if any) in individual health status.  Health expectancies are    (if any) in individual health status.  Health expectancies are
   computed from the time spent in each health state according to a    computed from the time spent in each health state according to a
   model. More health states you consider, more time is necessary to reach the    model. More health states you consider, more time is necessary to reach the
   Maximum Likelihood of the parameters involved in the model.  The    Maximum Likelihood of the parameters involved in the model.  The
   simplest model is the multinomial logistic model where pij is the    simplest model is the multinomial logistic model where pij is the
   probability to be observed in state j at the second wave    probability to be observed in state j at the second wave
   conditional to be observed in state i at the first wave. Therefore    conditional to be observed in state i at the first wave. Therefore
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   'age' is age and 'sex' is a covariate. If you want to have a more    'age' is age and 'sex' is a covariate. If you want to have a more
   complex model than "constant and age", you should modify the program    complex model than "constant and age", you should modify the program
   where the markup *Covariates have to be included here again* invites    where the markup *Covariates have to be included here again* invites
   you to do it.  More covariates you add, slower the    you to do it.  More covariates you add, slower the
   convergence.    convergence.
   
   The advantage of this computer programme, compared to a simple    The advantage of this computer programme, compared to a simple
   multinomial logistic model, is clear when the delay between waves is not    multinomial logistic model, is clear when the delay between waves is not
   identical for each individual. Also, if a individual missed an    identical for each individual. Also, if a individual missed an
   intermediate interview, the information is lost, but taken into    intermediate interview, the information is lost, but taken into
   account using an interpolation or extrapolation.      account using an interpolation or extrapolation.  
   
   hPijx is the probability to be observed in state i at age x+h    hPijx is the probability to be observed in state i at age x+h
   conditional to the observed state i at age x. The delay 'h' can be    conditional to the observed state i at age x. The delay 'h' can be
   split into an exact number (nh*stepm) of unobserved intermediate    split into an exact number (nh*stepm) of unobserved intermediate
   states. This elementary transition (by month or quarter trimester,    states. This elementary transition (by month, quarter,
   semester or year) is model as a multinomial logistic.  The hPx    semester or year) is modelled as a multinomial logistic.  The hPx
   matrix is simply the matrix product of nh*stepm elementary matrices    matrix is simply the matrix product of nh*stepm elementary matrices
   and the contribution of each individual to the likelihood is simply    and the contribution of each individual to the likelihood is simply
   hPijx.    hPijx.
   
   Also this programme outputs the covariance matrix of the parameters but also    Also this programme outputs the covariance matrix of the parameters but also
   of the life expectancies. It also computes the prevalence limits.    of the life expectancies. It also computes the stable prevalence. 
      
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
            Institut national d'études démographiques, Paris.             Institut national d'études démographiques, Paris.
   This software have been partly granted by Euro-REVES, a concerted action    This software have been partly granted by Euro-REVES, a concerted action
   from the European Union.    from the European Union.
   It is copyrighted identically to a GNU software product, ie programme and    It is copyrighted identically to a GNU software product, ie programme and
   software can be distributed freely for non commercial use. Latest version    software can be distributed freely for non commercial use. Latest version
   can be accessed at http://euroreves.ined.fr/imach .    can be accessed at http://euroreves.ined.fr/imach .
   **********************************************************************/  
      Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #include <math.h>    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #include <stdio.h>    
 #include <stdlib.h>    **********************************************************************/
 #include <unistd.h>  /*
     main
 #define MAXLINE 256    read parameterfile
 #define GNUPLOTPROGRAM "gnuplot"    read datafile
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    concatwav
 #define FILENAMELENGTH 80    if (mle >= 1)
 /*#define DEBUG*/      mlikeli
 #define windows    print results files
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    if mle==1 
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */        begin-prev-date,...
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    open gnuplot file
     open html file
 #define NINTERVMAX 8    stable prevalence
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */     for age prevalim()
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    h Pij x
 #define NCOVMAX 8 /* Maximum number of covariates */    variance of p varprob
 #define MAXN 20000    forecasting if prevfcast==1 prevforecast call prevalence()
 #define YEARM 12. /* Number of months per year */    health expectancies
 #define AGESUP 130    Variance-covariance of DFLE
 #define AGEBASE 40    prevalence()
 #ifdef windows     movingaverage()
 #define DIRSEPARATOR '\\'    varevsij() 
 #define ODIRSEPARATOR '/'    if popbased==1 varevsij(,popbased)
 #else    total life expectancies
 #define DIRSEPARATOR '/'    Variance of stable prevalence
 #define ODIRSEPARATOR '\\'   end
 #endif  */
   
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";  
 int erreur; /* Error number */  
 int nvar;   
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;  #include <math.h>
 int npar=NPARMAX;  #include <stdio.h>
 int nlstate=2; /* Number of live states */  #include <stdlib.h>
 int ndeath=1; /* Number of dead states */  #include <unistd.h>
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
 int popbased=0;  #define MAXLINE 256
   #define GNUPLOTPROGRAM "gnuplot"
 int *wav; /* Number of waves for this individuual 0 is possible */  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 int maxwav; /* Maxim number of waves */  #define FILENAMELENGTH 80
 int jmin, jmax; /* min, max spacing between 2 waves */  /*#define DEBUG*/
 int mle, weightopt;  #define windows
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  
 FILE *ficlog;  #define NINTERVMAX 8
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 FILE *ficresprobmorprev;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 FILE *fichtm; /* Html File */  #define NCOVMAX 8 /* Maximum number of covariates */
 FILE *ficreseij;  #define MAXN 20000
 char filerese[FILENAMELENGTH];  #define YEARM 12. /* Number of months per year */
 FILE  *ficresvij;  #define AGESUP 130
 char fileresv[FILENAMELENGTH];  #define AGEBASE 40
 FILE  *ficresvpl;  #ifdef windows
 char fileresvpl[FILENAMELENGTH];  #define DIRSEPARATOR '\\'
 char title[MAXLINE];  #define ODIRSEPARATOR '/'
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  #else
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  #define DIRSEPARATOR '/'
   #define ODIRSEPARATOR '\\'
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  #endif
 char filelog[FILENAMELENGTH]; /* Log file */  
 char filerest[FILENAMELENGTH];  /* $Id$ */
 char fileregp[FILENAMELENGTH];  /* $Log$
 char popfile[FILENAMELENGTH];   * Revision 1.79  2003/06/05 15:17:23  brouard
    * *** empty log message ***
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];   * */
   char version[80]="Imach version 0.95a1, June 2003, INED-EUROREVES ";
 #define NR_END 1  int erreur; /* Error number */
 #define FREE_ARG char*  int nvar;
 #define FTOL 1.0e-10  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   int npar=NPARMAX;
 #define NRANSI  int nlstate=2; /* Number of live states */
 #define ITMAX 200  int ndeath=1; /* Number of dead states */
   int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 #define TOL 2.0e-4  int popbased=0;
   
 #define CGOLD 0.3819660  int *wav; /* Number of waves for this individuual 0 is possible */
 #define ZEPS 1.0e-10  int maxwav; /* Maxim number of waves */
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  int jmin, jmax; /* min, max spacing between 2 waves */
   int mle, weightopt;
 #define GOLD 1.618034  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 #define GLIMIT 100.0  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 #define TINY 1.0e-20  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
 static double maxarg1,maxarg2;  double jmean; /* Mean space between 2 waves */
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  double **oldm, **newm, **savm; /* Working pointers to matrices */
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
    FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  FILE *ficlog, *ficrespow;
 #define rint(a) floor(a+0.5)  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 static double sqrarg;  FILE *fichtm; /* Html File */
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  FILE *ficreseij;
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  char filerese[FILENAMELENGTH];
   FILE  *ficresvij;
 int imx;  char fileresv[FILENAMELENGTH];
 int stepm;  FILE  *ficresvpl;
 /* Stepm, step in month: minimum step interpolation*/  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 int estepm;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   
 int m,nb;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  char filelog[FILENAMELENGTH]; /* Log file */
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  char filerest[FILENAMELENGTH];
 double **pmmij, ***probs, ***mobaverage;  char fileregp[FILENAMELENGTH];
 double dateintmean=0;  char popfile[FILENAMELENGTH];
   
 double *weight;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
 int **s; /* Status */  
 double *agedc, **covar, idx;  #define NR_END 1
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  #define FREE_ARG char*
   #define FTOL 1.0e-10
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */  #define NRANSI 
   #define ITMAX 200 
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  #define TOL 2.0e-4 
 {  
    char *s;                             /* pointer */  #define CGOLD 0.3819660 
    int  l1, l2;                         /* length counters */  #define ZEPS 1.0e-10 
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #define GOLD 1.618034 
    s= strrchr( path, DIRSEPARATOR );            /* find last / */  #define GLIMIT 100.0 
    if ( s == NULL ) {                   /* no directory, so use current */  #define TINY 1.0e-20 
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)  
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/  static double maxarg1,maxarg2;
 #if     defined(__bsd__)                /* get current working directory */  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
       extern char       *getwd( );  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
       if ( getwd( dirc ) == NULL ) {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 #else  #define rint(a) floor(a+0.5)
       extern char       *getcwd( );  
   static double sqrarg;
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 #endif  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
          return( GLOCK_ERROR_GETCWD );  
       }  int imx; 
       strcpy( name, path );             /* we've got it */  int stepm;
    } else {                             /* strip direcotry from path */  /* Stepm, step in month: minimum step interpolation*/
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */  int estepm;
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  int m,nb;
       dirc[l1-l2] = 0;                  /* add zero */  int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
    }  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
    l1 = strlen( dirc );                 /* length of directory */  double **pmmij, ***probs;
 #ifdef windows  double dateintmean=0;
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else  double *weight;
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  int **s; /* Status */
 #endif  double *agedc, **covar, idx;
    s = strrchr( name, '.' );            /* find last / */  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
    s++;  
    strcpy(ext,s);                       /* save extension */  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
    l1= strlen( name);  double ftolhess; /* Tolerance for computing hessian */
    l2= strlen( s)+1;  
    strncpy( finame, name, l1-l2);  /**************** split *************************/
    finame[l1-l2]= 0;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
    return( 0 );                         /* we're done */  {
 }    char  *ss;                            /* pointer */
     int   l1, l2;                         /* length counters */
   
 /******************************************/    l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 void replace(char *s, char*t)    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 {    if ( ss == NULL ) {                   /* no directory, so use current */
   int i;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   int lg=20;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   i=0;      /* get current working directory */
   lg=strlen(t);      /*    extern  char* getcwd ( char *buf , int len);*/
   for(i=0; i<= lg; i++) {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     (s[i] = t[i]);        return( GLOCK_ERROR_GETCWD );
     if (t[i]== '\\') s[i]='/';      }
   }      strcpy( name, path );               /* we've got it */
 }    } else {                              /* strip direcotry from path */
       ss++;                               /* after this, the filename */
 int nbocc(char *s, char occ)      l2 = strlen( ss );                  /* length of filename */
 {      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   int i,j=0;      strcpy( name, ss );         /* save file name */
   int lg=20;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   i=0;      dirc[l1-l2] = 0;                    /* add zero */
   lg=strlen(s);    }
   for(i=0; i<= lg; i++) {    l1 = strlen( dirc );                  /* length of directory */
   if  (s[i] == occ ) j++;  #ifdef windows
   }    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   return j;  #else
 }    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   #endif
 void cutv(char *u,char *v, char*t, char occ)    ss = strrchr( name, '.' );            /* find last / */
 {    ss++;
   /* cuts string t into u and v where u is ended by char occ excluding it    strcpy(ext,ss);                       /* save extension */
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)    l1= strlen( name);
      gives u="abcedf" and v="ghi2j" */    l2= strlen(ss)+1;
   int i,lg,j,p=0;    strncpy( finame, name, l1-l2);
   i=0;    finame[l1-l2]= 0;
   for(j=0; j<=strlen(t)-1; j++) {    return( 0 );                          /* we're done */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  }
   }  
   
   lg=strlen(t);  /******************************************/
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);  void replace(char *s, char*t)
   }  {
      u[p]='\0';    int i;
     int lg=20;
    for(j=0; j<= lg; j++) {    i=0;
     if (j>=(p+1))(v[j-p-1] = t[j]);    lg=strlen(t);
   }    for(i=0; i<= lg; i++) {
 }      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
 /********************** nrerror ********************/    }
   }
 void nrerror(char error_text[])  
 {  int nbocc(char *s, char occ)
   fprintf(stderr,"ERREUR ...\n");  {
   fprintf(stderr,"%s\n",error_text);    int i,j=0;
   exit(1);    int lg=20;
 }    i=0;
 /*********************** vector *******************/    lg=strlen(s);
 double *vector(int nl, int nh)    for(i=0; i<= lg; i++) {
 {    if  (s[i] == occ ) j++;
   double *v;    }
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    return j;
   if (!v) nrerror("allocation failure in vector");  }
   return v-nl+NR_END;  
 }  void cutv(char *u,char *v, char*t, char occ)
   {
 /************************ free vector ******************/    /* cuts string t into u and v where u is ended by char occ excluding it
 void free_vector(double*v, int nl, int nh)       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
 {       gives u="abcedf" and v="ghi2j" */
   free((FREE_ARG)(v+nl-NR_END));    int i,lg,j,p=0;
 }    i=0;
     for(j=0; j<=strlen(t)-1; j++) {
 /************************ivector *******************************/      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 int *ivector(long nl,long nh)    }
 {  
   int *v;    lg=strlen(t);
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    for(j=0; j<p; j++) {
   if (!v) nrerror("allocation failure in ivector");      (u[j] = t[j]);
   return v-nl+NR_END;    }
 }       u[p]='\0';
   
 /******************free ivector **************************/     for(j=0; j<= lg; j++) {
 void free_ivector(int *v, long nl, long nh)      if (j>=(p+1))(v[j-p-1] = t[j]);
 {    }
   free((FREE_ARG)(v+nl-NR_END));  }
 }  
   /********************** nrerror ********************/
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)  void nrerror(char error_text[])
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  {
 {    fprintf(stderr,"ERREUR ...\n");
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    fprintf(stderr,"%s\n",error_text);
   int **m;    exit(EXIT_FAILURE);
    }
   /* allocate pointers to rows */  /*********************** vector *******************/
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  double *vector(int nl, int nh)
   if (!m) nrerror("allocation failure 1 in matrix()");  {
   m += NR_END;    double *v;
   m -= nrl;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
      if (!v) nrerror("allocation failure in vector");
      return v-nl+NR_END;
   /* allocate rows and set pointers to them */  }
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /************************ free vector ******************/
   m[nrl] += NR_END;  void free_vector(double*v, int nl, int nh)
   m[nrl] -= ncl;  {
      free((FREE_ARG)(v+nl-NR_END));
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  }
    
   /* return pointer to array of pointers to rows */  /************************ivector *******************************/
   return m;  char *cvector(long nl,long nh)
 }  {
     char *v;
 /****************** free_imatrix *************************/    v=(char *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(char)));
 void free_imatrix(m,nrl,nrh,ncl,nch)    if (!v) nrerror("allocation failure in cvector");
       int **m;    return v-nl+NR_END;
       long nch,ncl,nrh,nrl;  }
      /* free an int matrix allocated by imatrix() */  
 {  /******************free ivector **************************/
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  void free_cvector(char *v, long nl, long nh)
   free((FREE_ARG) (m+nrl-NR_END));  {
 }    free((FREE_ARG)(v+nl-NR_END));
   }
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)  /************************ivector *******************************/
 {  int *ivector(long nl,long nh)
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  {
   double **m;    int *v;
     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    if (!v) nrerror("allocation failure in ivector");
   if (!m) nrerror("allocation failure 1 in matrix()");    return v-nl+NR_END;
   m += NR_END;  }
   m -= nrl;  
   /******************free ivector **************************/
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  void free_ivector(int *v, long nl, long nh)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  {
   m[nrl] += NR_END;    free((FREE_ARG)(v+nl-NR_END));
   m[nrl] -= ncl;  }
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /******************* imatrix *******************************/
   return m;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
 }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   { 
 /*************************free matrix ************************/    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    int **m; 
 {    
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    /* allocate pointers to rows */ 
   free((FREE_ARG)(m+nrl-NR_END));    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 }    if (!m) nrerror("allocation failure 1 in matrix()"); 
     m += NR_END; 
 /******************* ma3x *******************************/    m -= nrl; 
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    
 {    
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    /* allocate rows and set pointers to them */ 
   double ***m;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    m[nrl] += NR_END; 
   if (!m) nrerror("allocation failure 1 in matrix()");    m[nrl] -= ncl; 
   m += NR_END;    
   m -= nrl;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    /* return pointer to array of pointers to rows */ 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    return m; 
   m[nrl] += NR_END;  } 
   m[nrl] -= ncl;  
   /****************** free_imatrix *************************/
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  void free_imatrix(m,nrl,nrh,ncl,nch)
         int **m;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));        long nch,ncl,nrh,nrl; 
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");       /* free an int matrix allocated by imatrix() */ 
   m[nrl][ncl] += NR_END;  { 
   m[nrl][ncl] -= nll;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   for (j=ncl+1; j<=nch; j++)    free((FREE_ARG) (m+nrl-NR_END)); 
     m[nrl][j]=m[nrl][j-1]+nlay;  } 
    
   for (i=nrl+1; i<=nrh; i++) {  /******************* matrix *******************************/
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  double **matrix(long nrl, long nrh, long ncl, long nch)
     for (j=ncl+1; j<=nch; j++)  {
       m[i][j]=m[i][j-1]+nlay;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   }    double **m;
   return m;  
 }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
 /*************************free ma3x ************************/    m += NR_END;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    m -= nrl;
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   free((FREE_ARG)(m+nrl-NR_END));    m[nrl] += NR_END;
 }    m[nrl] -= ncl;
   
 /***************** f1dim *************************/    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 extern int ncom;    return m;
 extern double *pcom,*xicom;    /* print *(*(m+1)+70) ou print m[1][70]; print m+1 or print &(m[1]) 
 extern double (*nrfunc)(double []);     */
    }
 double f1dim(double x)  
 {  /*************************free matrix ************************/
   int j;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   double f;  {
   double *xt;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
      free((FREE_ARG)(m+nrl-NR_END));
   xt=vector(1,ncom);  }
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);  /******************* ma3x *******************************/
   free_vector(xt,1,ncom);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   return f;  {
 }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     double ***m;
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 {    if (!m) nrerror("allocation failure 1 in matrix()");
   int iter;    m += NR_END;
   double a,b,d,etemp;    m -= nrl;
   double fu,fv,fw,fx;  
   double ftemp;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double p,q,r,tol1,tol2,u,v,w,x,xm;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   double e=0.0;    m[nrl] += NR_END;
      m[nrl] -= ncl;
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   for (iter=1;iter<=ITMAX;iter++) {    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     xm=0.5*(a+b);    m[nrl][ncl] += NR_END;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    m[nrl][ncl] -= nll;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    for (j=ncl+1; j<=nch; j++) 
     printf(".");fflush(stdout);      m[nrl][j]=m[nrl][j-1]+nlay;
     fprintf(ficlog,".");fflush(ficlog);    
 #ifdef DEBUG    for (i=nrl+1; i<=nrh; i++) {
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      for (j=ncl+1; j<=nch; j++) 
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */        m[i][j]=m[i][j-1]+nlay;
 #endif    }
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    return m; 
       *xmin=x;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       return fx;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     }    */
     ftemp=fu;  }
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);  /*************************free ma3x ************************/
       q=(x-v)*(fx-fw);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       p=(x-v)*q-(x-w)*r;  {
       q=2.0*(q-r);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       if (q > 0.0) p = -p;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       q=fabs(q);    free((FREE_ARG)(m+nrl-NR_END));
       etemp=e;  }
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  /***************** f1dim *************************/
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  extern int ncom; 
       else {  extern double *pcom,*xicom;
         d=p/q;  extern double (*nrfunc)(double []); 
         u=x+d;   
         if (u-a < tol2 || b-u < tol2)  double f1dim(double x) 
           d=SIGN(tol1,xm-x);  { 
       }    int j; 
     } else {    double f;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    double *xt; 
     }   
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    xt=vector(1,ncom); 
     fu=(*f)(u);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     if (fu <= fx) {    f=(*nrfunc)(xt); 
       if (u >= x) a=x; else b=x;    free_vector(xt,1,ncom); 
       SHFT(v,w,x,u)    return f; 
         SHFT(fv,fw,fx,fu)  } 
         } else {  
           if (u < x) a=u; else b=u;  /*****************brent *************************/
           if (fu <= fw || w == x) {  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
             v=w;  { 
             w=u;    int iter; 
             fv=fw;    double a,b,d,etemp;
             fw=fu;    double fu,fv,fw,fx;
           } else if (fu <= fv || v == x || v == w) {    double ftemp;
             v=u;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
             fv=fu;    double e=0.0; 
           }   
         }    a=(ax < cx ? ax : cx); 
   }    b=(ax > cx ? ax : cx); 
   nrerror("Too many iterations in brent");    x=w=v=bx; 
   *xmin=x;    fw=fv=fx=(*f)(x); 
   return fx;    for (iter=1;iter<=ITMAX;iter++) { 
 }      xm=0.5*(a+b); 
       tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 /****************** mnbrak ***********************/      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(".");fflush(stdout);
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,      fprintf(ficlog,".");fflush(ficlog);
             double (*func)(double))  #ifdef DEBUG
 {      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double ulim,u,r,q, dum;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double fu;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
    #endif
   *fa=(*func)(*ax);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   *fb=(*func)(*bx);        *xmin=x; 
   if (*fb > *fa) {        return fx; 
     SHFT(dum,*ax,*bx,dum)      } 
       SHFT(dum,*fb,*fa,dum)      ftemp=fu;
       }      if (fabs(e) > tol1) { 
   *cx=(*bx)+GOLD*(*bx-*ax);        r=(x-w)*(fx-fv); 
   *fc=(*func)(*cx);        q=(x-v)*(fx-fw); 
   while (*fb > *fc) {        p=(x-v)*q-(x-w)*r; 
     r=(*bx-*ax)*(*fb-*fc);        q=2.0*(q-r); 
     q=(*bx-*cx)*(*fb-*fa);        if (q > 0.0) p = -p; 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/        q=fabs(q); 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));        etemp=e; 
     ulim=(*bx)+GLIMIT*(*cx-*bx);        e=d; 
     if ((*bx-u)*(u-*cx) > 0.0) {        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       fu=(*func)(u);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     } else if ((*cx-u)*(u-ulim) > 0.0) {        else { 
       fu=(*func)(u);          d=p/q; 
       if (fu < *fc) {          u=x+d; 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))          if (u-a < tol2 || b-u < tol2) 
           SHFT(*fb,*fc,fu,(*func)(u))            d=SIGN(tol1,xm-x); 
           }        } 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      } else { 
       u=ulim;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       fu=(*func)(u);      } 
     } else {      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       u=(*cx)+GOLD*(*cx-*bx);      fu=(*f)(u); 
       fu=(*func)(u);      if (fu <= fx) { 
     }        if (u >= x) a=x; else b=x; 
     SHFT(*ax,*bx,*cx,u)        SHFT(v,w,x,u) 
       SHFT(*fa,*fb,*fc,fu)          SHFT(fv,fw,fx,fu) 
       }          } else { 
 }            if (u < x) a=u; else b=u; 
             if (fu <= fw || w == x) { 
 /*************** linmin ************************/              v=w; 
               w=u; 
 int ncom;              fv=fw; 
 double *pcom,*xicom;              fw=fu; 
 double (*nrfunc)(double []);            } else if (fu <= fv || v == x || v == w) { 
                v=u; 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))              fv=fu; 
 {            } 
   double brent(double ax, double bx, double cx,          } 
                double (*f)(double), double tol, double *xmin);    } 
   double f1dim(double x);    nrerror("Too many iterations in brent"); 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    *xmin=x; 
               double *fc, double (*func)(double));    return fx; 
   int j;  } 
   double xx,xmin,bx,ax;  
   double fx,fb,fa;  /****************** mnbrak ***********************/
    
   ncom=n;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   pcom=vector(1,n);              double (*func)(double)) 
   xicom=vector(1,n);  { 
   nrfunc=func;    double ulim,u,r,q, dum;
   for (j=1;j<=n;j++) {    double fu; 
     pcom[j]=p[j];   
     xicom[j]=xi[j];    *fa=(*func)(*ax); 
   }    *fb=(*func)(*bx); 
   ax=0.0;    if (*fb > *fa) { 
   xx=1.0;      SHFT(dum,*ax,*bx,dum) 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);        SHFT(dum,*fb,*fa,dum) 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);        } 
 #ifdef DEBUG    *cx=(*bx)+GOLD*(*bx-*ax); 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    *fc=(*func)(*cx); 
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    while (*fb > *fc) { 
 #endif      r=(*bx-*ax)*(*fb-*fc); 
   for (j=1;j<=n;j++) {      q=(*bx-*cx)*(*fb-*fa); 
     xi[j] *= xmin;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     p[j] += xi[j];        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   }      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   free_vector(xicom,1,n);      if ((*bx-u)*(u-*cx) > 0.0) { 
   free_vector(pcom,1,n);        fu=(*func)(u); 
 }      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         fu=(*func)(u); 
 /*************** powell ************************/        if (fu < *fc) { 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
             double (*func)(double []))            SHFT(*fb,*fc,fu,(*func)(u)) 
 {            } 
   void linmin(double p[], double xi[], int n, double *fret,      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
               double (*func)(double []));        u=ulim; 
   int i,ibig,j;        fu=(*func)(u); 
   double del,t,*pt,*ptt,*xit;      } else { 
   double fp,fptt;        u=(*cx)+GOLD*(*cx-*bx); 
   double *xits;        fu=(*func)(u); 
   pt=vector(1,n);      } 
   ptt=vector(1,n);      SHFT(*ax,*bx,*cx,u) 
   xit=vector(1,n);        SHFT(*fa,*fb,*fc,fu) 
   xits=vector(1,n);        } 
   *fret=(*func)(p);  } 
   for (j=1;j<=n;j++) pt[j]=p[j];  
   for (*iter=1;;++(*iter)) {  /*************** linmin ************************/
     fp=(*fret);  
     ibig=0;  int ncom; 
     del=0.0;  double *pcom,*xicom;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  double (*nrfunc)(double []); 
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);   
     for (i=1;i<=n;i++)  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       printf(" %d %.12f",i, p[i]);  { 
     fprintf(ficlog," %d %.12f",i, p[i]);    double brent(double ax, double bx, double cx, 
     printf("\n");                 double (*f)(double), double tol, double *xmin); 
     fprintf(ficlog,"\n");    double f1dim(double x); 
     for (i=1;i<=n;i++) {    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];                double *fc, double (*func)(double)); 
       fptt=(*fret);    int j; 
 #ifdef DEBUG    double xx,xmin,bx,ax; 
       printf("fret=%lf \n",*fret);    double fx,fb,fa;
       fprintf(ficlog,"fret=%lf \n",*fret);   
 #endif    ncom=n; 
       printf("%d",i);fflush(stdout);    pcom=vector(1,n); 
       fprintf(ficlog,"%d",i);fflush(ficlog);    xicom=vector(1,n); 
       linmin(p,xit,n,fret,func);    nrfunc=func; 
       if (fabs(fptt-(*fret)) > del) {    for (j=1;j<=n;j++) { 
         del=fabs(fptt-(*fret));      pcom[j]=p[j]; 
         ibig=i;      xicom[j]=xi[j]; 
       }    } 
 #ifdef DEBUG    ax=0.0; 
       printf("%d %.12e",i,(*fret));    xx=1.0; 
       fprintf(ficlog,"%d %.12e",i,(*fret));    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       for (j=1;j<=n;j++) {    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  #ifdef DEBUG
         printf(" x(%d)=%.12e",j,xit[j]);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       }  #endif
       for(j=1;j<=n;j++) {    for (j=1;j<=n;j++) { 
         printf(" p=%.12e",p[j]);      xi[j] *= xmin; 
         fprintf(ficlog," p=%.12e",p[j]);      p[j] += xi[j]; 
       }    } 
       printf("\n");    free_vector(xicom,1,n); 
       fprintf(ficlog,"\n");    free_vector(pcom,1,n); 
 #endif  } 
     }  
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  /*************** powell ************************/
 #ifdef DEBUG  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       int k[2],l;              double (*func)(double [])) 
       k[0]=1;  { 
       k[1]=-1;    void linmin(double p[], double xi[], int n, double *fret, 
       printf("Max: %.12e",(*func)(p));                double (*func)(double [])); 
       fprintf(ficlog,"Max: %.12e",(*func)(p));    int i,ibig,j; 
       for (j=1;j<=n;j++) {    double del,t,*pt,*ptt,*xit;
         printf(" %.12e",p[j]);    double fp,fptt;
         fprintf(ficlog," %.12e",p[j]);    double *xits;
       }    pt=vector(1,n); 
       printf("\n");    ptt=vector(1,n); 
       fprintf(ficlog,"\n");    xit=vector(1,n); 
       for(l=0;l<=1;l++) {    xits=vector(1,n); 
         for (j=1;j<=n;j++) {    *fret=(*func)(p); 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    for (j=1;j<=n;j++) pt[j]=p[j]; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    for (*iter=1;;++(*iter)) { 
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      fp=(*fret); 
         }      ibig=0; 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      del=0.0; 
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
 #endif      fprintf(ficrespow,"%d %.12f",*iter,*fret);
       for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
       free_vector(xit,1,n);        fprintf(ficlog," %d %.12lf",i, p[i]);
       free_vector(xits,1,n);        fprintf(ficrespow," %.12lf", p[i]);
       free_vector(ptt,1,n);      }
       free_vector(pt,1,n);      printf("\n");
       return;      fprintf(ficlog,"\n");
     }      fprintf(ficrespow,"\n");
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      for (i=1;i<=n;i++) { 
     for (j=1;j<=n;j++) {        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       ptt[j]=2.0*p[j]-pt[j];        fptt=(*fret); 
       xit[j]=p[j]-pt[j];  #ifdef DEBUG
       pt[j]=p[j];        printf("fret=%lf \n",*fret);
     }        fprintf(ficlog,"fret=%lf \n",*fret);
     fptt=(*func)(ptt);  #endif
     if (fptt < fp) {        printf("%d",i);fflush(stdout);
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);        fprintf(ficlog,"%d",i);fflush(ficlog);
       if (t < 0.0) {        linmin(p,xit,n,fret,func); 
         linmin(p,xit,n,fret,func);        if (fabs(fptt-(*fret)) > del) { 
         for (j=1;j<=n;j++) {          del=fabs(fptt-(*fret)); 
           xi[j][ibig]=xi[j][n];          ibig=i; 
           xi[j][n]=xit[j];        } 
         }  #ifdef DEBUG
 #ifdef DEBUG        printf("%d %.12e",i,(*fret));
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        fprintf(ficlog,"%d %.12e",i,(*fret));
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        for (j=1;j<=n;j++) {
         for(j=1;j<=n;j++){          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" %.12e",xit[j]);          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," %.12e",xit[j]);          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }        }
         printf("\n");        for(j=1;j<=n;j++) {
         fprintf(ficlog,"\n");          printf(" p=%.12e",p[j]);
 #endif          fprintf(ficlog," p=%.12e",p[j]);
       }        }
     }        printf("\n");
   }        fprintf(ficlog,"\n");
 }  #endif
       } 
 /**** Prevalence limit ****************/      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   #ifdef DEBUG
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)        int k[2],l;
 {        k[0]=1;
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit        k[1]=-1;
      matrix by transitions matrix until convergence is reached */        printf("Max: %.12e",(*func)(p));
         fprintf(ficlog,"Max: %.12e",(*func)(p));
   int i, ii,j,k;        for (j=1;j<=n;j++) {
   double min, max, maxmin, maxmax,sumnew=0.;          printf(" %.12e",p[j]);
   double **matprod2();          fprintf(ficlog," %.12e",p[j]);
   double **out, cov[NCOVMAX], **pmij();        }
   double **newm;        printf("\n");
   double agefin, delaymax=50 ; /* Max number of years to converge */        fprintf(ficlog,"\n");
         for(l=0;l<=1;l++) {
   for (ii=1;ii<=nlstate+ndeath;ii++)          for (j=1;j<=n;j++) {
     for (j=1;j<=nlstate+ndeath;j++){            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }
    cov[1]=1.;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
            fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        }
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  #endif
     newm=savm;  
     /* Covariates have to be included here again */  
      cov[2]=agefin;        free_vector(xit,1,n); 
          free_vector(xits,1,n); 
       for (k=1; k<=cptcovn;k++) {        free_vector(ptt,1,n); 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        free_vector(pt,1,n); 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/        return; 
       }      } 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (k=1; k<=cptcovprod;k++)      for (j=1;j<=n;j++) { 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        pt[j]=p[j]; 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      } 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/      fptt=(*func)(ptt); 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      if (fptt < fp) { 
         t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     savm=oldm;        if (t < 0.0) { 
     oldm=newm;          linmin(p,xit,n,fret,func); 
     maxmax=0.;          for (j=1;j<=n;j++) { 
     for(j=1;j<=nlstate;j++){            xi[j][ibig]=xi[j][n]; 
       min=1.;            xi[j][n]=xit[j]; 
       max=0.;          }
       for(i=1; i<=nlstate; i++) {  #ifdef DEBUG
         sumnew=0;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         prlim[i][j]= newm[i][j]/(1-sumnew);          for(j=1;j<=n;j++){
         max=FMAX(max,prlim[i][j]);            printf(" %.12e",xit[j]);
         min=FMIN(min,prlim[i][j]);            fprintf(ficlog," %.12e",xit[j]);
       }          }
       maxmin=max-min;          printf("\n");
       maxmax=FMAX(maxmax,maxmin);          fprintf(ficlog,"\n");
     }  #endif
     if(maxmax < ftolpl){        }
       return prlim;      } 
     }    } 
   }  } 
 }  
   /**** Prevalence limit (stable prevalence)  ****************/
 /*************** transition probabilities ***************/  
   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  {
 {    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   double s1, s2;       matrix by transitions matrix until convergence is reached */
   /*double t34;*/  
   int i,j,j1, nc, ii, jj;    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
     for(i=1; i<= nlstate; i++){    double **matprod2();
     for(j=1; j<i;j++){    double **out, cov[NCOVMAX], **pmij();
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    double **newm;
         /*s2 += param[i][j][nc]*cov[nc];*/    double agefin, delaymax=50 ; /* Max number of years to converge */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    for (ii=1;ii<=nlstate+ndeath;ii++)
       }      for (j=1;j<=nlstate+ndeath;j++){
       ps[i][j]=s2;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/      }
     }  
     for(j=i+1; j<=nlstate+ndeath;j++){     cov[1]=1.;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){   
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       }      newm=savm;
       ps[i][j]=s2;      /* Covariates have to be included here again */
     }       cov[2]=agefin;
   }    
     /*ps[3][2]=1;*/        for (k=1; k<=cptcovn;k++) {
           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   for(i=1; i<= nlstate; i++){          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
      s1=0;        }
     for(j=1; j<i; j++)        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       s1+=exp(ps[i][j]);        for (k=1; k<=cptcovprod;k++)
     for(j=i+1; j<=nlstate+ndeath; j++)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       s1+=exp(ps[i][j]);  
     ps[i][i]=1./(s1+1.);        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     for(j=1; j<i; j++)        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       ps[i][j]= exp(ps[i][j])*ps[i][i];        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
     for(j=i+1; j<=nlstate+ndeath; j++)      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       ps[i][j]= exp(ps[i][j])*ps[i][i];  
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      savm=oldm;
   } /* end i */      oldm=newm;
       maxmax=0.;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      for(j=1;j<=nlstate;j++){
     for(jj=1; jj<= nlstate+ndeath; jj++){        min=1.;
       ps[ii][jj]=0;        max=0.;
       ps[ii][ii]=1;        for(i=1; i<=nlstate; i++) {
     }          sumnew=0;
   }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           prlim[i][j]= newm[i][j]/(1-sumnew);
           max=FMAX(max,prlim[i][j]);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){          min=FMIN(min,prlim[i][j]);
     for(jj=1; jj<= nlstate+ndeath; jj++){        }
      printf("%lf ",ps[ii][jj]);        maxmin=max-min;
    }        maxmax=FMAX(maxmax,maxmin);
     printf("\n ");      }
     }      if(maxmax < ftolpl){
     printf("\n ");printf("%lf ",cov[2]);*/        return prlim;
 /*      }
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    }
   goto end;*/  }
     return ps;  
 }  /*************** transition probabilities ***************/ 
   
 /**************** Product of 2 matrices ******************/  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    double s1, s2;
 {    /*double t34;*/
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    int i,j,j1, nc, ii, jj;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */  
   /* in, b, out are matrice of pointers which should have been initialized      for(i=1; i<= nlstate; i++){
      before: only the contents of out is modified. The function returns      for(j=1; j<i;j++){
      a pointer to pointers identical to out */        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   long i, j, k;          /*s2 += param[i][j][nc]*cov[nc];*/
   for(i=nrl; i<= nrh; i++)          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     for(k=ncolol; k<=ncoloh; k++)          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        }
         out[i][k] +=in[i][j]*b[j][k];        ps[i][j]=s2;
         /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   return out;      }
 }      for(j=i+1; j<=nlstate+ndeath;j++){
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 /************* Higher Matrix Product ***************/          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
         }
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        ps[i][j]=s2;
 {      }
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    }
      duration (i.e. until      /*ps[3][2]=1;*/
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    for(i=1; i<= nlstate; i++){
      (typically every 2 years instead of every month which is too big).       s1=0;
      Model is determined by parameters x and covariates have to be      for(j=1; j<i; j++)
      included manually here.        s1+=exp(ps[i][j]);
       for(j=i+1; j<=nlstate+ndeath; j++)
      */        s1+=exp(ps[i][j]);
       ps[i][i]=1./(s1+1.);
   int i, j, d, h, k;      for(j=1; j<i; j++)
   double **out, cov[NCOVMAX];        ps[i][j]= exp(ps[i][j])*ps[i][i];
   double **newm;      for(j=i+1; j<=nlstate+ndeath; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];
   /* Hstepm could be zero and should return the unit matrix */      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   for (i=1;i<=nlstate+ndeath;i++)    } /* end i */
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[i][j]=(i==j ? 1.0 : 0.0);    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       po[i][j][0]=(i==j ? 1.0 : 0.0);      for(jj=1; jj<= nlstate+ndeath; jj++){
     }        ps[ii][jj]=0;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        ps[ii][ii]=1;
   for(h=1; h <=nhstepm; h++){      }
     for(d=1; d <=hstepm; d++){    }
       newm=savm;  
       /* Covariates have to be included here again */  
       cov[1]=1.;    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      for(jj=1; jj<= nlstate+ndeath; jj++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];       printf("%lf ",ps[ii][jj]);
       for (k=1; k<=cptcovage;k++)     }
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      printf("\n ");
       for (k=1; k<=cptcovprod;k++)      }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      printf("\n ");printf("%lf ",cov[2]);*/
   /*
     for(i=1; i<= npar; i++) printf("%f ",x[i]);
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    goto end;*/
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      return ps;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  }
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;  /**************** Product of 2 matrices ******************/
       oldm=newm;  
     }  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     for(i=1; i<=nlstate+ndeath; i++)  {
       for(j=1;j<=nlstate+ndeath;j++) {    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         po[i][j][h]=newm[i][j];       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    /* in, b, out are matrice of pointers which should have been initialized 
          */       before: only the contents of out is modified. The function returns
       }       a pointer to pointers identical to out */
   } /* end h */    long i, j, k;
   return po;    for(i=nrl; i<= nrh; i++)
 }      for(k=ncolol; k<=ncoloh; k++)
         for(j=ncl,out[i][k]=0.; j<=nch; j++)
           out[i][k] +=in[i][j]*b[j][k];
 /*************** log-likelihood *************/  
 double func( double *x)    return out;
 {  }
   int i, ii, j, k, mi, d, kk;  
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;  /************* Higher Matrix Product ***************/
   double sw; /* Sum of weights */  
   double lli; /* Individual log likelihood */  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   long ipmx;  {
   /*extern weight */    /* Computes the transition matrix starting at age 'age' over 
   /* We are differentiating ll according to initial status */       'nhstepm*hstepm*stepm' months (i.e. until
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   /*for(i=1;i<imx;i++)       nhstepm*hstepm matrices. 
     printf(" %d\n",s[4][i]);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   */       (typically every 2 years instead of every month which is too big 
   cov[1]=1.;       for the memory).
        Model is determined by parameters x and covariates have to be 
   for(k=1; k<=nlstate; k++) ll[k]=0.;       included manually here. 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];       */
     for(mi=1; mi<= wav[i]-1; mi++){  
       for (ii=1;ii<=nlstate+ndeath;ii++)    int i, j, d, h, k;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    double **out, cov[NCOVMAX];
       for(d=0; d<dh[mi][i]; d++){    double **newm;
         newm=savm;  
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    /* Hstepm could be zero and should return the unit matrix */
         for (kk=1; kk<=cptcovage;kk++) {    for (i=1;i<=nlstate+ndeath;i++)
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      for (j=1;j<=nlstate+ndeath;j++){
         }        oldm[i][j]=(i==j ? 1.0 : 0.0);
                po[i][j][0]=(i==j ? 1.0 : 0.0);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      }
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         savm=oldm;    for(h=1; h <=nhstepm; h++){
         oldm=newm;      for(d=1; d <=hstepm; d++){
                newm=savm;
                /* Covariates have to be included here again */
       } /* end mult */        cov[1]=1.;
              cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        for (k=1; k<=cptcovage;k++)
       ipmx +=1;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       sw += weight[i];        for (k=1; k<=cptcovprod;k++)
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     } /* end of wave */  
   } /* end of individual */  
         /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   return -l;        savm=oldm;
 }        oldm=newm;
       }
       for(i=1; i<=nlstate+ndeath; i++)
 /*********** Maximum Likelihood Estimation ***************/        for(j=1;j<=nlstate+ndeath;j++) {
           po[i][j][h]=newm[i][j];
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
 {           */
   int i,j, iter;        }
   double **xi,*delti;    } /* end h */
   double fret;    return po;
   xi=matrix(1,npar,1,npar);  }
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++)  
       xi[i][j]=(i==j ? 1.0 : 0.0);  /*************** log-likelihood *************/
   printf("Powell\n");  fprintf(ficlog,"Powell\n");  double func( double *x)
   powell(p,xi,npar,ftol,&iter,&fret,func);  {
     int i, ii, j, k, mi, d, kk;
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    double **out;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    double sw; /* Sum of weights */
     double lli; /* Individual log likelihood */
 }    int s1, s2;
     double bbh, survp;
 /**** Computes Hessian and covariance matrix ***/    long ipmx;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    /*extern weight */
 {    /* We are differentiating ll according to initial status */
   double  **a,**y,*x,pd;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double **hess;    /*for(i=1;i<imx;i++) 
   int i, j,jk;      printf(" %d\n",s[4][i]);
   int *indx;    */
     cov[1]=1.;
   double hessii(double p[], double delta, int theta, double delti[]);  
   double hessij(double p[], double delti[], int i, int j);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   void lubksb(double **a, int npar, int *indx, double b[]) ;  
   void ludcmp(double **a, int npar, int *indx, double *d) ;    if(mle==1){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   hess=matrix(1,npar,1,npar);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
   printf("\nCalculation of the hessian matrix. Wait...\n");          for (ii=1;ii<=nlstate+ndeath;ii++)
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");            for (j=1;j<=nlstate+ndeath;j++){
   for (i=1;i<=npar;i++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     printf("%d",i);fflush(stdout);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficlog,"%d",i);fflush(ficlog);            }
     hess[i][i]=hessii(p,ftolhess,i,delti);          for(d=0; d<dh[mi][i]; d++){
     /*printf(" %f ",p[i]);*/            newm=savm;
     /*printf(" %lf ",hess[i][i]);*/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for (i=1;i<=npar;i++) {            }
     for (j=1;j<=npar;j++)  {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       if (j>i) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         printf(".%d%d",i,j);fflush(stdout);            savm=oldm;
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);            oldm=newm;
         hess[i][j]=hessij(p,delti,i,j);          } /* end mult */
         hess[j][i]=hess[i][j];            
         /*printf(" %lf ",hess[i][j]);*/          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       }          /* But now since version 0.9 we anticipate for bias and large stepm.
     }           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   }           * (in months) between two waves is not a multiple of stepm, we rounded to 
   printf("\n");           * the nearest (and in case of equal distance, to the lowest) interval but now
   fprintf(ficlog,"\n");           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");           * probability in order to take into account the bias as a fraction of the way
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
             * -stepm/2 to stepm/2 .
   a=matrix(1,npar,1,npar);           * For stepm=1 the results are the same as for previous versions of Imach.
   y=matrix(1,npar,1,npar);           * For stepm > 1 the results are less biased than in previous versions. 
   x=vector(1,npar);           */
   indx=ivector(1,npar);          s1=s[mw[mi][i]][i];
   for (i=1;i<=npar;i++)          s2=s[mw[mi+1][i]][i];
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          bbh=(double)bh[mi][i]/(double)stepm; 
   ludcmp(a,npar,indx,&pd);          /* bias is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
   for (j=1;j<=npar;j++) {           */
     for (i=1;i<=npar;i++) x[i]=0;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     x[j]=1;          if( s2 > nlstate){ 
     lubksb(a,npar,indx,x);            /* i.e. if s2 is a death state and if the date of death is known then the contribution
     for (i=1;i<=npar;i++){               to the likelihood is the probability to die between last step unit time and current 
       matcov[i][j]=x[i];               step unit time, which is also the differences between probability to die before dh 
     }               and probability to die before dh-stepm . 
   }               In version up to 0.92 likelihood was computed
           as if date of death was unknown. Death was treated as any other
   printf("\n#Hessian matrix#\n");          health state: the date of the interview describes the actual state
   fprintf(ficlog,"\n#Hessian matrix#\n");          and not the date of a change in health state. The former idea was
   for (i=1;i<=npar;i++) {          to consider that at each interview the state was recorded
     for (j=1;j<=npar;j++) {          (healthy, disable or death) and IMaCh was corrected; but when we
       printf("%.3e ",hess[i][j]);          introduced the exact date of death then we should have modified
       fprintf(ficlog,"%.3e ",hess[i][j]);          the contribution of an exact death to the likelihood. This new
     }          contribution is smaller and very dependent of the step unit
     printf("\n");          stepm. It is no more the probability to die between last interview
     fprintf(ficlog,"\n");          and month of death but the probability to survive from last
   }          interview up to one month before death multiplied by the
           probability to die within a month. Thanks to Chris
   /* Recompute Inverse */          Jackson for correcting this bug.  Former versions increased
   for (i=1;i<=npar;i++)          mortality artificially. The bad side is that we add another loop
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          which slows down the processing. The difference can be up to 10%
   ludcmp(a,npar,indx,&pd);          lower mortality.
             */
   /*  printf("\n#Hessian matrix recomputed#\n");            lli=log(out[s1][s2] - savm[s1][s2]);
           }else{
   for (j=1;j<=npar;j++) {            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     for (i=1;i<=npar;i++) x[i]=0;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     x[j]=1;          } 
     lubksb(a,npar,indx,x);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     for (i=1;i<=npar;i++){          /*if(lli ==000.0)*/
       y[i][j]=x[i];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       printf("%.3e ",y[i][j]);          ipmx +=1;
       fprintf(ficlog,"%.3e ",y[i][j]);          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     printf("\n");        } /* end of wave */
     fprintf(ficlog,"\n");      } /* end of individual */
   }    }  else if(mle==2){
   */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   free_matrix(a,1,npar,1,npar);        for(mi=1; mi<= wav[i]-1; mi++){
   free_matrix(y,1,npar,1,npar);          for (ii=1;ii<=nlstate+ndeath;ii++)
   free_vector(x,1,npar);            for (j=1;j<=nlstate+ndeath;j++){
   free_ivector(indx,1,npar);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_matrix(hess,1,npar,1,npar);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
           for(d=0; d<=dh[mi][i]; d++){
 }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 /*************** hessian matrix ****************/            for (kk=1; kk<=cptcovage;kk++) {
 double hessii( double x[], double delta, int theta, double delti[])              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 {            }
   int i;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int l=1, lmax=20;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double k1,k2;            savm=oldm;
   double p2[NPARMAX+1];            oldm=newm;
   double res;          } /* end mult */
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        
   double fx;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   int k=0,kmax=10;          /* But now since version 0.9 we anticipate for bias and large stepm.
   double l1;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
   fx=func(x);           * the nearest (and in case of equal distance, to the lowest) interval but now
   for (i=1;i<=npar;i++) p2[i]=x[i];           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   for(l=0 ; l <=lmax; l++){           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     l1=pow(10,l);           * probability in order to take into account the bias as a fraction of the way
     delts=delt;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     for(k=1 ; k <kmax; k=k+1){           * -stepm/2 to stepm/2 .
       delt = delta*(l1*k);           * For stepm=1 the results are the same as for previous versions of Imach.
       p2[theta]=x[theta] +delt;           * For stepm > 1 the results are less biased than in previous versions. 
       k1=func(p2)-fx;           */
       p2[theta]=x[theta]-delt;          s1=s[mw[mi][i]][i];
       k2=func(p2)-fx;          s2=s[mw[mi+1][i]][i];
       /*res= (k1-2.0*fx+k2)/delt/delt; */          bbh=(double)bh[mi][i]/(double)stepm; 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          /* bias is positive if real duration
                 * is higher than the multiple of stepm and negative otherwise.
 #ifdef DEBUG           */
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
 #endif          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          /*if(lli ==000.0)*/
         k=kmax;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       }          ipmx +=1;
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          sw += weight[i];
         k=kmax; l=lmax*10.;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       }        } /* end of wave */
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      } /* end of individual */
         delts=delt;    }  else if(mle==3){  /* exponential inter-extrapolation */
       }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   }        for(mi=1; mi<= wav[i]-1; mi++){
   delti[theta]=delts;          for (ii=1;ii<=nlstate+ndeath;ii++)
   return res;            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
 double hessij( double x[], double delti[], int thetai,int thetaj)          for(d=0; d<dh[mi][i]; d++){
 {            newm=savm;
   int i;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int l=1, l1, lmax=20;            for (kk=1; kk<=cptcovage;kk++) {
   double k1,k2,k3,k4,res,fx;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double p2[NPARMAX+1];            }
   int k;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   fx=func(x);            savm=oldm;
   for (k=1; k<=2; k++) {            oldm=newm;
     for (i=1;i<=npar;i++) p2[i]=x[i];          } /* end mult */
     p2[thetai]=x[thetai]+delti[thetai]/k;        
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     k1=func(p2)-fx;          /* But now since version 0.9 we anticipate for bias and large stepm.
             * If stepm is larger than one month (smallest stepm) and if the exact delay 
     p2[thetai]=x[thetai]+delti[thetai]/k;           * (in months) between two waves is not a multiple of stepm, we rounded to 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;           * the nearest (and in case of equal distance, to the lowest) interval but now
     k2=func(p2)-fx;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
             * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     p2[thetai]=x[thetai]-delti[thetai]/k;           * probability in order to take into account the bias as a fraction of the way
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     k3=func(p2)-fx;           * -stepm/2 to stepm/2 .
             * For stepm=1 the results are the same as for previous versions of Imach.
     p2[thetai]=x[thetai]-delti[thetai]/k;           * For stepm > 1 the results are less biased than in previous versions. 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;           */
     k4=func(p2)-fx;          s1=s[mw[mi][i]][i];
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          s2=s[mw[mi+1][i]][i];
 #ifdef DEBUG          bbh=(double)bh[mi][i]/(double)stepm; 
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          /* bias is positive if real duration
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);           * is higher than the multiple of stepm and negative otherwise.
 #endif           */
   }          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
   return res;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
 /************** Inverse of matrix **************/          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 void ludcmp(double **a, int n, int *indx, double *d)          ipmx +=1;
 {          sw += weight[i];
   int i,imax,j,k;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double big,dum,sum,temp;        } /* end of wave */
   double *vv;      } /* end of individual */
      }else{  /* ml=4 no inter-extrapolation */
   vv=vector(1,n);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   *d=1.0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (i=1;i<=n;i++) {        for(mi=1; mi<= wav[i]-1; mi++){
     big=0.0;          for (ii=1;ii<=nlstate+ndeath;ii++)
     for (j=1;j<=n;j++)            for (j=1;j<=nlstate+ndeath;j++){
       if ((temp=fabs(a[i][j])) > big) big=temp;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     vv[i]=1.0/big;            }
   }          for(d=0; d<dh[mi][i]; d++){
   for (j=1;j<=n;j++) {            newm=savm;
     for (i=1;i<j;i++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       sum=a[i][j];            for (kk=1; kk<=cptcovage;kk++) {
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       a[i][j]=sum;            }
     }          
     big=0.0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for (i=j;i<=n;i++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       sum=a[i][j];            savm=oldm;
       for (k=1;k<j;k++)            oldm=newm;
         sum -= a[i][k]*a[k][j];          } /* end mult */
       a[i][j]=sum;        
       if ( (dum=vv[i]*fabs(sum)) >= big) {          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         big=dum;          ipmx +=1;
         imax=i;          sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }        } /* end of wave */
     if (j != imax) {      } /* end of individual */
       for (k=1;k<=n;k++) {    } /* End of if */
         dum=a[imax][k];    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         a[imax][k]=a[j][k];    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         a[j][k]=dum;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       }    return -l;
       *d = -(*d);  }
       vv[imax]=vv[j];  
     }  
     indx[j]=imax;  /*********** Maximum Likelihood Estimation ***************/
     if (a[j][j] == 0.0) a[j][j]=TINY;  
     if (j != n) {  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       dum=1.0/(a[j][j]);  {
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    int i,j, iter;
     }    double **xi;
   }    double fret;
   free_vector(vv,1,n);  /* Doesn't work */    char filerespow[FILENAMELENGTH];
 ;    xi=matrix(1,npar,1,npar);
 }    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++)
 void lubksb(double **a, int n, int *indx, double b[])        xi[i][j]=(i==j ? 1.0 : 0.0);
 {    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   int i,ii=0,ip,j;    strcpy(filerespow,"pow"); 
   double sum;    strcat(filerespow,fileres);
      if((ficrespow=fopen(filerespow,"w"))==NULL) {
   for (i=1;i<=n;i++) {      printf("Problem with resultfile: %s\n", filerespow);
     ip=indx[i];      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     sum=b[ip];    }
     b[ip]=b[i];    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     if (ii)    for (i=1;i<=nlstate;i++)
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];      for(j=1;j<=nlstate+ndeath;j++)
     else if (sum) ii=i;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     b[i]=sum;    fprintf(ficrespow,"\n");
   }    powell(p,xi,npar,ftol,&iter,&fret,func);
   for (i=n;i>=1;i--) {  
     sum=b[i];    fclose(ficrespow);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     b[i]=sum/a[i][i];    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   }    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
 }  
   }
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  /**** Computes Hessian and covariance matrix ***/
 {  /* Some frequencies */  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
    {
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    double  **a,**y,*x,pd;
   int first;    double **hess;
   double ***freq; /* Frequencies */    int i, j,jk;
   double *pp;    int *indx;
   double pos, k2, dateintsum=0,k2cpt=0;  
   FILE *ficresp;    double hessii(double p[], double delta, int theta, double delti[]);
   char fileresp[FILENAMELENGTH];    double hessij(double p[], double delti[], int i, int j);
      void lubksb(double **a, int npar, int *indx, double b[]) ;
   pp=vector(1,nlstate);    void ludcmp(double **a, int npar, int *indx, double *d) ;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   strcpy(fileresp,"p");    hess=matrix(1,npar,1,npar);
   strcat(fileresp,fileres);  
   if((ficresp=fopen(fileresp,"w"))==NULL) {    printf("\nCalculation of the hessian matrix. Wait...\n");
     printf("Problem with prevalence resultfile: %s\n", fileresp);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);    for (i=1;i<=npar;i++){
     exit(0);      printf("%d",i);fflush(stdout);
   }      fprintf(ficlog,"%d",i);fflush(ficlog);
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      hess[i][i]=hessii(p,ftolhess,i,delti);
   j1=0;      /*printf(" %f ",p[i]);*/
        /*printf(" %lf ",hess[i][i]);*/
   j=cptcoveff;    }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    
     for (i=1;i<=npar;i++) {
   first=1;      for (j=1;j<=npar;j++)  {
         if (j>i) { 
   for(k1=1; k1<=j;k1++){          printf(".%d%d",i,j);fflush(stdout);
     for(i1=1; i1<=ncodemax[k1];i1++){          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       j1++;          hess[i][j]=hessij(p,delti,i,j);
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          hess[j][i]=hess[i][j];    
         scanf("%d", i);*/          /*printf(" %lf ",hess[i][j]);*/
       for (i=-1; i<=nlstate+ndeath; i++)          }
         for (jk=-1; jk<=nlstate+ndeath; jk++)        }
           for(m=agemin; m <= agemax+3; m++)    }
             freq[i][jk][m]=0;    printf("\n");
          fprintf(ficlog,"\n");
       dateintsum=0;  
       k2cpt=0;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       for (i=1; i<=imx; i++) {    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
         bool=1;    
         if  (cptcovn>0) {    a=matrix(1,npar,1,npar);
           for (z1=1; z1<=cptcoveff; z1++)    y=matrix(1,npar,1,npar);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    x=vector(1,npar);
               bool=0;    indx=ivector(1,npar);
         }    for (i=1;i<=npar;i++)
         if (bool==1) {      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
           for(m=firstpass; m<=lastpass; m++){    ludcmp(a,npar,indx,&pd);
             k2=anint[m][i]+(mint[m][i]/12.);  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    for (j=1;j<=npar;j++) {
               if(agev[m][i]==0) agev[m][i]=agemax+1;      for (i=1;i<=npar;i++) x[i]=0;
               if(agev[m][i]==1) agev[m][i]=agemax+2;      x[j]=1;
               if (m<lastpass) {      lubksb(a,npar,indx,x);
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      for (i=1;i<=npar;i++){ 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        matcov[i][j]=x[i];
               }      }
                  }
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  
                 dateintsum=dateintsum+k2;    printf("\n#Hessian matrix#\n");
                 k2cpt++;    fprintf(ficlog,"\n#Hessian matrix#\n");
               }    for (i=1;i<=npar;i++) { 
             }      for (j=1;j<=npar;j++) { 
           }        printf("%.3e ",hess[i][j]);
         }        fprintf(ficlog,"%.3e ",hess[i][j]);
       }      }
              printf("\n");
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      fprintf(ficlog,"\n");
     }
       if  (cptcovn>0) {  
         fprintf(ficresp, "\n#********** Variable ");    /* Recompute Inverse */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    for (i=1;i<=npar;i++)
         fprintf(ficresp, "**********\n#");      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       }    ludcmp(a,npar,indx,&pd);
       for(i=1; i<=nlstate;i++)  
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    /*  printf("\n#Hessian matrix recomputed#\n");
       fprintf(ficresp, "\n");  
          for (j=1;j<=npar;j++) {
       for(i=(int)agemin; i <= (int)agemax+3; i++){      for (i=1;i<=npar;i++) x[i]=0;
         if(i==(int)agemax+3){      x[j]=1;
           fprintf(ficlog,"Total");      lubksb(a,npar,indx,x);
         }else{      for (i=1;i<=npar;i++){ 
           if(first==1){        y[i][j]=x[i];
             first=0;        printf("%.3e ",y[i][j]);
             printf("See log file for details...\n");        fprintf(ficlog,"%.3e ",y[i][j]);
           }      }
           fprintf(ficlog,"Age %d", i);      printf("\n");
         }      fprintf(ficlog,"\n");
         for(jk=1; jk <=nlstate ; jk++){    }
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    */
             pp[jk] += freq[jk][m][i];  
         }    free_matrix(a,1,npar,1,npar);
         for(jk=1; jk <=nlstate ; jk++){    free_matrix(y,1,npar,1,npar);
           for(m=-1, pos=0; m <=0 ; m++)    free_vector(x,1,npar);
             pos += freq[jk][m][i];    free_ivector(indx,1,npar);
           if(pp[jk]>=1.e-10){    free_matrix(hess,1,npar,1,npar);
             if(first==1){  
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
             }  }
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
           }else{  /*************** hessian matrix ****************/
             if(first==1)  double hessii( double x[], double delta, int theta, double delti[])
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  {
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    int i;
           }    int l=1, lmax=20;
         }    double k1,k2;
     double p2[NPARMAX+1];
         for(jk=1; jk <=nlstate ; jk++){    double res;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
             pp[jk] += freq[jk][m][i];    double fx;
         }    int k=0,kmax=10;
     double l1;
         for(jk=1,pos=0; jk <=nlstate ; jk++)  
           pos += pp[jk];    fx=func(x);
         for(jk=1; jk <=nlstate ; jk++){    for (i=1;i<=npar;i++) p2[i]=x[i];
           if(pos>=1.e-5){    for(l=0 ; l <=lmax; l++){
             if(first==1)      l1=pow(10,l);
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      delts=delt;
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      for(k=1 ; k <kmax; k=k+1){
           }else{        delt = delta*(l1*k);
             if(first==1)        p2[theta]=x[theta] +delt;
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        k1=func(p2)-fx;
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        p2[theta]=x[theta]-delt;
           }        k2=func(p2)-fx;
           if( i <= (int) agemax){        /*res= (k1-2.0*fx+k2)/delt/delt; */
             if(pos>=1.e-5){        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        
               probs[i][jk][j1]= pp[jk]/pos;  #ifdef DEBUG
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
             }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
             else  #endif
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
           }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
         }          k=kmax;
                }
         for(jk=-1; jk <=nlstate+ndeath; jk++)        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           for(m=-1; m <=nlstate+ndeath; m++)          k=kmax; l=lmax*10.;
             if(freq[jk][m][i] !=0 ) {        }
             if(first==1)        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          delts=delt;
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);        }
             }      }
         if(i <= (int) agemax)    }
           fprintf(ficresp,"\n");    delti[theta]=delts;
         if(first==1)    return res; 
           printf("Others in log...\n");    
         fprintf(ficlog,"\n");  }
       }  
     }  double hessij( double x[], double delti[], int thetai,int thetaj)
   }  {
   dateintmean=dateintsum/k2cpt;    int i;
      int l=1, l1, lmax=20;
   fclose(ficresp);    double k1,k2,k3,k4,res,fx;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    double p2[NPARMAX+1];
   free_vector(pp,1,nlstate);    int k;
    
   /* End of Freq */    fx=func(x);
 }    for (k=1; k<=2; k++) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
 /************ Prevalence ********************/      p2[thetai]=x[thetai]+delti[thetai]/k;
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 {  /* Some frequencies */      k1=func(p2)-fx;
      
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      p2[thetai]=x[thetai]+delti[thetai]/k;
   double ***freq; /* Frequencies */      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   double *pp;      k2=func(p2)-fx;
   double pos, k2;    
       p2[thetai]=x[thetai]-delti[thetai]/k;
   pp=vector(1,nlstate);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      k3=func(p2)-fx;
      
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      p2[thetai]=x[thetai]-delti[thetai]/k;
   j1=0;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
        k4=func(p2)-fx;
   j=cptcoveff;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  #ifdef DEBUG
        printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   for(k1=1; k1<=j;k1++){      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     for(i1=1; i1<=ncodemax[k1];i1++){  #endif
       j1++;    }
          return res;
       for (i=-1; i<=nlstate+ndeath; i++)    }
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)  /************** Inverse of matrix **************/
             freq[i][jk][m]=0;  void ludcmp(double **a, int n, int *indx, double *d) 
        { 
       for (i=1; i<=imx; i++) {    int i,imax,j,k; 
         bool=1;    double big,dum,sum,temp; 
         if  (cptcovn>0) {    double *vv; 
           for (z1=1; z1<=cptcoveff; z1++)   
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    vv=vector(1,n); 
               bool=0;    *d=1.0; 
         }    for (i=1;i<=n;i++) { 
         if (bool==1) {      big=0.0; 
           for(m=firstpass; m<=lastpass; m++){      for (j=1;j<=n;j++) 
             k2=anint[m][i]+(mint[m][i]/12.);        if ((temp=fabs(a[i][j])) > big) big=temp; 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
               if(agev[m][i]==0) agev[m][i]=agemax+1;      vv[i]=1.0/big; 
               if(agev[m][i]==1) agev[m][i]=agemax+2;    } 
               if (m<lastpass) {    for (j=1;j<=n;j++) { 
                 if (calagedate>0)      for (i=1;i<j;i++) { 
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        sum=a[i][j]; 
                 else        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        a[i][j]=sum; 
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];      } 
               }      big=0.0; 
             }      for (i=j;i<=n;i++) { 
           }        sum=a[i][j]; 
         }        for (k=1;k<j;k++) 
       }          sum -= a[i][k]*a[k][j]; 
       for(i=(int)agemin; i <= (int)agemax+3; i++){        a[i][j]=sum; 
         for(jk=1; jk <=nlstate ; jk++){        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          big=dum; 
             pp[jk] += freq[jk][m][i];          imax=i; 
         }        } 
         for(jk=1; jk <=nlstate ; jk++){      } 
           for(m=-1, pos=0; m <=0 ; m++)      if (j != imax) { 
             pos += freq[jk][m][i];        for (k=1;k<=n;k++) { 
         }          dum=a[imax][k]; 
                  a[imax][k]=a[j][k]; 
         for(jk=1; jk <=nlstate ; jk++){          a[j][k]=dum; 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        } 
             pp[jk] += freq[jk][m][i];        *d = -(*d); 
         }        vv[imax]=vv[j]; 
              } 
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];      indx[j]=imax; 
              if (a[j][j] == 0.0) a[j][j]=TINY; 
         for(jk=1; jk <=nlstate ; jk++){          if (j != n) { 
           if( i <= (int) agemax){        dum=1.0/(a[j][j]); 
             if(pos>=1.e-5){        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
               probs[i][jk][j1]= pp[jk]/pos;      } 
             }    } 
           }    free_vector(vv,1,n);  /* Doesn't work */
         }/* end jk */  ;
       }/* end i */  } 
     } /* end i1 */  
   } /* end k1 */  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
      int i,ii=0,ip,j; 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    double sum; 
   free_vector(pp,1,nlstate);   
      for (i=1;i<=n;i++) { 
 }  /* End of Freq */      ip=indx[i]; 
       sum=b[ip]; 
 /************* Waves Concatenation ***************/      b[ip]=b[i]; 
       if (ii) 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
 {      else if (sum) ii=i; 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.      b[i]=sum; 
      Death is a valid wave (if date is known).    } 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    for (i=n;i>=1;i--) { 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]      sum=b[i]; 
      and mw[mi+1][i]. dh depends on stepm.      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
      */      b[i]=sum/a[i][i]; 
     } 
   int i, mi, m;  } 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  
      double sum=0., jmean=0.;*/  /************ Frequencies ********************/
   int first;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)
   int j, k=0,jk, ju, jl;  {  /* Some frequencies */
   double sum=0.;    
   first=0;    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   jmin=1e+5;    int first;
   jmax=-1;    double ***freq; /* Frequencies */
   jmean=0.;    double *pp, **prop;
   for(i=1; i<=imx; i++){    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     mi=0;    FILE *ficresp;
     m=firstpass;    char fileresp[FILENAMELENGTH];
     while(s[m][i] <= nlstate){    
       if(s[m][i]>=1)    pp=vector(1,nlstate);
         mw[++mi][i]=m;    prop=matrix(1,nlstate,iagemin,iagemax+3);
       if(m >=lastpass)    strcpy(fileresp,"p");
         break;    strcat(fileresp,fileres);
       else    if((ficresp=fopen(fileresp,"w"))==NULL) {
         m++;      printf("Problem with prevalence resultfile: %s\n", fileresp);
     }/* end while */      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     if (s[m][i] > nlstate){      exit(0);
       mi++;     /* Death is another wave */    }
       /* if(mi==0)  never been interviewed correctly before death */    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
          /* Only death is a correct wave */    j1=0;
       mw[mi][i]=m;    
     }    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
     wav[i]=mi;  
     if(mi==0){    first=1;
       if(first==0){  
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);    for(k1=1; k1<=j;k1++){
         first=1;      for(i1=1; i1<=ncodemax[k1];i1++){
       }        j1++;
       if(first==1){        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);          scanf("%d", i);*/
       }        for (i=-1; i<=nlstate+ndeath; i++)  
     } /* end mi==0 */          for (jk=-1; jk<=nlstate+ndeath; jk++)  
   }            for(m=iagemin; m <= iagemax+3; m++)
               freq[i][jk][m]=0;
   for(i=1; i<=imx; i++){  
     for(mi=1; mi<wav[i];mi++){      for (i=1; i<=nlstate; i++)  
       if (stepm <=0)        for(m=iagemin; m <= iagemax+3; m++)
         dh[mi][i]=1;          prop[i][m]=0;
       else{        
         if (s[mw[mi+1][i]][i] > nlstate) {        dateintsum=0;
           if (agedc[i] < 2*AGESUP) {        k2cpt=0;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        for (i=1; i<=imx; i++) {
           if(j==0) j=1;  /* Survives at least one month after exam */          bool=1;
           k=k+1;          if  (cptcovn>0) {
           if (j >= jmax) jmax=j;            for (z1=1; z1<=cptcoveff; z1++) 
           if (j <= jmin) jmin=j;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
           sum=sum+j;                bool=0;
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          }
           }          if (bool==1){
         }            for(m=firstpass; m<=lastpass; m++){
         else{              k2=anint[m][i]+(mint[m][i]/12.);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));              if ((k2>=dateprev1) && (k2<=dateprev2)) {
           k=k+1;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           if (j >= jmax) jmax=j;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
           else if (j <= jmin)jmin=j;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */                if (m<lastpass) {
           sum=sum+j;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
         jk= j/stepm;                }
         jl= j -jk*stepm;                
         ju= j -(jk+1)*stepm;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         if(jl <= -ju)                  dateintsum=dateintsum+k2;
           dh[mi][i]=jk;                  k2cpt++;
         else                }
           dh[mi][i]=jk+1;              }
         if(dh[mi][i]==0)            }
           dh[mi][i]=1; /* At least one step */          }
       }        }
     }         
   }        fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   jmean=sum/k;  
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);        if  (cptcovn>0) {
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          fprintf(ficresp, "\n#********** Variable "); 
  }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresp, "**********\n#");
 /*********** Tricode ****************************/        }
 void tricode(int *Tvar, int **nbcode, int imx)        for(i=1; i<=nlstate;i++) 
 {          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   int Ndum[20],ij=1, k, j, i;        fprintf(ficresp, "\n");
   int cptcode=0;        
   cptcoveff=0;        for(i=iagemin; i <= iagemax+3; i++){
            if(i==iagemax+3){
   for (k=0; k<19; k++) Ndum[k]=0;            fprintf(ficlog,"Total");
   for (k=1; k<=7; k++) ncodemax[k]=0;          }else{
             if(first==1){
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {              first=0;
     for (i=1; i<=imx; i++) {              printf("See log file for details...\n");
       ij=(int)(covar[Tvar[j]][i]);            }
       Ndum[ij]++;            fprintf(ficlog,"Age %d", i);
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          }
       if (ij > cptcode) cptcode=ij;          for(jk=1; jk <=nlstate ; jk++){
     }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
               pp[jk] += freq[jk][m][i]; 
     for (i=0; i<=cptcode; i++) {          }
       if(Ndum[i]!=0) ncodemax[j]++;          for(jk=1; jk <=nlstate ; jk++){
     }            for(m=-1, pos=0; m <=0 ; m++)
     ij=1;              pos += freq[jk][m][i];
             if(pp[jk]>=1.e-10){
               if(first==1){
     for (i=1; i<=ncodemax[j]; i++) {              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       for (k=0; k<=19; k++) {              }
         if (Ndum[k] != 0) {              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           nbcode[Tvar[j]][ij]=k;            }else{
                        if(first==1)
           ij++;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         if (ij > ncodemax[j]) break;            }
       }            }
     }  
   }            for(jk=1; jk <=nlstate ; jk++){
             for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
  for (k=0; k<19; k++) Ndum[k]=0;              pp[jk] += freq[jk][m][i];
           }       
  for (i=1; i<=ncovmodel-2; i++) {          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
    ij=Tvar[i];            pos += pp[jk];
    Ndum[ij]++;            posprop += prop[jk][i];
  }          }
           for(jk=1; jk <=nlstate ; jk++){
  ij=1;            if(pos>=1.e-5){
  for (i=1; i<=10; i++) {              if(first==1)
    if((Ndum[i]!=0) && (i<=ncovcol)){                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
      Tvaraff[ij]=i;              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
      ij++;            }else{
    }              if(first==1)
  }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
  cptcoveff=ij-1;            }
 }            if( i <= iagemax){
               if(pos>=1.e-5){
 /*********** Health Expectancies ****************/                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 probs[i][jk][j1]= pp[jk]/pos;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
 {              else
   /* Health expectancies */                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;            }
   double age, agelim, hf;          }
   double ***p3mat,***varhe;          
   double **dnewm,**doldm;          for(jk=-1; jk <=nlstate+ndeath; jk++)
   double *xp;            for(m=-1; m <=nlstate+ndeath; m++)
   double **gp, **gm;              if(freq[jk][m][i] !=0 ) {
   double ***gradg, ***trgradg;              if(first==1)
   int theta;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);              }
   xp=vector(1,npar);          if(i <= iagemax)
   dnewm=matrix(1,nlstate*2,1,npar);            fprintf(ficresp,"\n");
   doldm=matrix(1,nlstate*2,1,nlstate*2);          if(first==1)
              printf("Others in log...\n");
   fprintf(ficreseij,"# Health expectancies\n");          fprintf(ficlog,"\n");
   fprintf(ficreseij,"# Age");        }
   for(i=1; i<=nlstate;i++)      }
     for(j=1; j<=nlstate;j++)    }
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    dateintmean=dateintsum/k2cpt; 
   fprintf(ficreseij,"\n");   
     fclose(ficresp);
   if(estepm < stepm){    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
     printf ("Problem %d lower than %d\n",estepm, stepm);    free_vector(pp,1,nlstate);
   }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   else  hstepm=estepm;      /* End of Freq */
   /* We compute the life expectancy from trapezoids spaced every estepm months  }
    * This is mainly to measure the difference between two models: for example  
    * if stepm=24 months pijx are given only every 2 years and by summing them  /************ Prevalence ********************/
    * we are calculating an estimate of the Life Expectancy assuming a linear  void prevalence(double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
    * progression inbetween and thus overestimating or underestimating according  {  
    * to the curvature of the survival function. If, for the same date, we    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
    * estimate the model with stepm=1 month, we can keep estepm to 24 months       in each health status at the date of interview (if between dateprev1 and dateprev2).
    * to compare the new estimate of Life expectancy with the same linear       We still use firstpass and lastpass as another selection.
    * hypothesis. A more precise result, taking into account a more precise    */
    * curvature will be obtained if estepm is as small as stepm. */   
     int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   /* For example we decided to compute the life expectancy with the smallest unit */    double ***freq; /* Frequencies */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    double *pp, **prop;
      nhstepm is the number of hstepm from age to agelim    double pos,posprop; 
      nstepm is the number of stepm from age to agelin.    double  y2; /* in fractional years */
      Look at hpijx to understand the reason of that which relies in memory size    int iagemin, iagemax;
      and note for a fixed period like estepm months */  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    iagemin= (int) agemin;
      survival function given by stepm (the optimization length). Unfortunately it    iagemax= (int) agemax;
      means that if the survival funtion is printed only each two years of age and if    /*pp=vector(1,nlstate);*/
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    prop=matrix(1,nlstate,iagemin,iagemax+3); 
      results. So we changed our mind and took the option of the best precision.    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   */    j1=0;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    
     j=cptcoveff;
   agelim=AGESUP;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    
     /* nhstepm age range expressed in number of stepm */    for(k1=1; k1<=j;k1++){
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      for(i1=1; i1<=ncodemax[k1];i1++){
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        j1++;
     /* if (stepm >= YEARM) hstepm=1;*/        
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */        for (i=1; i<=nlstate; i++)  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(m=iagemin; m <= iagemax+3; m++)
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);            prop[i][m]=0.0;
     gp=matrix(0,nhstepm,1,nlstate*2);       
     gm=matrix(0,nhstepm,1,nlstate*2);        for (i=1; i<=imx; i++) { /* Each individual */
           bool=1;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          if  (cptcovn>0) {
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            for (z1=1; z1<=cptcoveff; z1++) 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);                if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                  bool=0;
           } 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
     /* Computing Variances of health expectancies */              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
      for(theta=1; theta <=npar; theta++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       for(i=1; i<=npar; i++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                    /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                    prop[s[m][i]][(int)agev[m][i]] += weight[i];
       cptj=0;                  prop[s[m][i]][iagemax+3] += weight[i]; 
       for(j=1; j<= nlstate; j++){                } 
         for(i=1; i<=nlstate; i++){              }
           cptj=cptj+1;            } /* end selection of waves */
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){          }
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        }
           }        for(i=iagemin; i <= iagemax+3; i++){  
         }          
       }          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
                  posprop += prop[jk][i]; 
                } 
       for(i=1; i<=npar; i++)  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          for(jk=1; jk <=nlstate ; jk++){     
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              if( i <=  iagemax){ 
                    if(posprop>=1.e-5){ 
       cptj=0;                probs[i][jk][j1]= prop[jk][i]/posprop;
       for(j=1; j<= nlstate; j++){              } 
         for(i=1;i<=nlstate;i++){            } 
           cptj=cptj+1;          }/* end jk */ 
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){        }/* end i */ 
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      } /* end i1 */
           }    } /* end k1 */
         }    
       }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
       for(j=1; j<= nlstate*2; j++)    /*free_vector(pp,1,nlstate);*/
         for(h=0; h<=nhstepm-1; h++){    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  }  /* End of prevalence */
         }  
      }  /************* Waves Concatenation ***************/
      
 /* End theta */  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   {
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
      for(h=0; h<=nhstepm-1; h++)       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       for(j=1; j<=nlstate*2;j++)       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
         for(theta=1; theta <=npar; theta++)       and mw[mi+1][i]. dh depends on stepm.
           trgradg[h][j][theta]=gradg[h][theta][j];       */
        
     int i, mi, m;
      for(i=1;i<=nlstate*2;i++)    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       for(j=1;j<=nlstate*2;j++)       double sum=0., jmean=0.;*/
         varhe[i][j][(int)age] =0.;    int first;
     int j, k=0,jk, ju, jl;
      printf("%d|",(int)age);fflush(stdout);    double sum=0.;
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);    first=0;
      for(h=0;h<=nhstepm-1;h++){    jmin=1e+5;
       for(k=0;k<=nhstepm-1;k++){    jmax=-1;
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    jmean=0.;
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    for(i=1; i<=imx; i++){
         for(i=1;i<=nlstate*2;i++)      mi=0;
           for(j=1;j<=nlstate*2;j++)      m=firstpass;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      while(s[m][i] <= nlstate){
       }        if(s[m][i]>=1)
     }          mw[++mi][i]=m;
     /* Computing expectancies */        if(m >=lastpass)
     for(i=1; i<=nlstate;i++)          break;
       for(j=1; j<=nlstate;j++)        else
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          m++;
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;      }/* end while */
                if (s[m][i] > nlstate){
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
         }           /* Only death is a correct wave */
         mw[mi][i]=m;
     fprintf(ficreseij,"%3.0f",age );      }
     cptj=0;  
     for(i=1; i<=nlstate;i++)      wav[i]=mi;
       for(j=1; j<=nlstate;j++){      if(mi==0){
         cptj++;        if(first==0){
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );          printf("Warning! None valid information for:%d line=%d (skipped) and may be others, see log file\n",num[i],i);
       }          first=1;
     fprintf(ficreseij,"\n");        }
            if(first==1){
     free_matrix(gm,0,nhstepm,1,nlstate*2);          fprintf(ficlog,"Warning! None valid information for:%d line=%d (skipped)\n",num[i],i);
     free_matrix(gp,0,nhstepm,1,nlstate*2);        }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);      } /* end mi==0 */
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    } /* End individuals */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   }    for(i=1; i<=imx; i++){
   printf("\n");      for(mi=1; mi<wav[i];mi++){
   fprintf(ficlog,"\n");        if (stepm <=0)
           dh[mi][i]=1;
   free_vector(xp,1,npar);        else{
   free_matrix(dnewm,1,nlstate*2,1,npar);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);            if (agedc[i] < 2*AGESUP) {
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
 }            if(j==0) j=1;  /* Survives at least one month after exam */
             k=k+1;
 /************ Variance ******************/            if (j >= jmax) jmax=j;
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)            if (j <= jmin) jmin=j;
 {            sum=sum+j;
   /* Variance of health expectancies */            /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   /* double **newm;*/            if(j<0)printf("Error! Negative delay (%d to death) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   double **dnewm,**doldm;            }
   double **dnewmp,**doldmp;          }
   int i, j, nhstepm, hstepm, h, nstepm ;          else{
   int k, cptcode;            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   double *xp;            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   double **gp, **gm;  /* for var eij */            k=k+1;
   double ***gradg, ***trgradg; /*for var eij */            if (j >= jmax) jmax=j;
   double **gradgp, **trgradgp; /* for var p point j */            else if (j <= jmin)jmin=j;
   double *gpp, *gmp; /* for var p point j */            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   double ***p3mat;            if(j<0)printf("Error! Negative delay (%d) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   double age,agelim, hf;            sum=sum+j;
   int theta;          }
   char digit[4];          jk= j/stepm;
   char digitp[16];          jl= j -jk*stepm;
           ju= j -(jk+1)*stepm;
   char fileresprobmorprev[FILENAMELENGTH];          if(mle <=1){ 
             if(jl==0){
   if(popbased==1)              dh[mi][i]=jk;
     strcpy(digitp,"-populbased-");              bh[mi][i]=0;
   else            }else{ /* We want a negative bias in order to only have interpolation ie
     strcpy(digitp,"-stablbased-");                    * at the price of an extra matrix product in likelihood */
               dh[mi][i]=jk+1;
   strcpy(fileresprobmorprev,"prmorprev");              bh[mi][i]=ju;
   sprintf(digit,"%-d",ij);            }
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/          }else{
   strcat(fileresprobmorprev,digit); /* Tvar to be done */            if(jl <= -ju){
   strcat(fileresprobmorprev,digitp); /* Popbased or not */              dh[mi][i]=jk;
   strcat(fileresprobmorprev,fileres);              bh[mi][i]=jl;       /* bias is positive if real duration
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {                                   * is higher than the multiple of stepm and negative otherwise.
     printf("Problem with resultfile: %s\n", fileresprobmorprev);                                   */
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);            }
   }            else{
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);              dh[mi][i]=jk+1;
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);              bh[mi][i]=ju;
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");            }
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);            if(dh[mi][i]==0){
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){              dh[mi][i]=1; /* At least one step */
     fprintf(ficresprobmorprev," p.%-d SE",j);              bh[mi][i]=ju; /* At least one step */
     for(i=1; i<=nlstate;i++)              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);            }
   }            }
   fprintf(ficresprobmorprev,"\n");        } /* end if mle */
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      } /* end wave */
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);    }
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);    jmean=sum/k;
     exit(0);    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   }    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   else{   }
     fprintf(ficgp,"\n# Routine varevsij");  
   }  /*********** Tricode ****************************/
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {  void tricode(int *Tvar, int **nbcode, int imx)
     printf("Problem with html file: %s\n", optionfilehtm);  {
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);    
     exit(0);    int Ndum[20],ij=1, k, j, i, maxncov=19;
   }    int cptcode=0;
   else{    cptcoveff=0; 
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");   
   }    for (k=0; k<maxncov; k++) Ndum[k]=0;
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);    for (k=1; k<=7; k++) ncodemax[k]=0;
   
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   fprintf(ficresvij,"# Age");      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   for(i=1; i<=nlstate;i++)                                 modality*/ 
     for(j=1; j<=nlstate;j++)        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        Ndum[ij]++; /*store the modality */
   fprintf(ficresvij,"\n");        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   xp=vector(1,npar);                                         Tvar[j]. If V=sex and male is 0 and 
   dnewm=matrix(1,nlstate,1,npar);                                         female is 1, then  cptcode=1.*/
   doldm=matrix(1,nlstate,1,nlstate);      }
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);  
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);      for (i=0; i<=cptcode; i++) {
         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);      }
   gpp=vector(nlstate+1,nlstate+ndeath);  
   gmp=vector(nlstate+1,nlstate+ndeath);      ij=1; 
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/      for (i=1; i<=ncodemax[j]; i++) {
          for (k=0; k<= maxncov; k++) {
   if(estepm < stepm){          if (Ndum[k] != 0) {
     printf ("Problem %d lower than %d\n",estepm, stepm);            nbcode[Tvar[j]][ij]=k; 
   }            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   else  hstepm=estepm;              
   /* For example we decided to compute the life expectancy with the smallest unit */            ij++;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          }
      nhstepm is the number of hstepm from age to agelim          if (ij > ncodemax[j]) break; 
      nstepm is the number of stepm from age to agelin.        }  
      Look at hpijx to understand the reason of that which relies in memory size      } 
      and note for a fixed period like k years */    }  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the  
      survival function given by stepm (the optimization length). Unfortunately it   for (k=0; k< maxncov; k++) Ndum[k]=0;
      means that if the survival funtion is printed only each two years of age and if  
      you sum them up and add 1 year (area under the trapezoids) you won't get the same   for (i=1; i<=ncovmodel-2; i++) { 
      results. So we changed our mind and took the option of the best precision.     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   */     ij=Tvar[i];
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */     Ndum[ij]++;
   agelim = AGESUP;   }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */   ij=1;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */   for (i=1; i<= maxncov; i++) {
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     if((Ndum[i]!=0) && (i<=ncovcol)){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);       Tvaraff[ij]=i; /*For printing */
     gp=matrix(0,nhstepm,1,nlstate);       ij++;
     gm=matrix(0,nhstepm,1,nlstate);     }
    }
    
     for(theta=1; theta <=npar; theta++){   cptcoveff=ij-1; /*Number of simple covariates*/
       for(i=1; i<=npar; i++){ /* Computes gradient */  }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }  /*********** Health Expectancies ****************/
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
   
       if (popbased==1) {  {
         for(i=1; i<=nlstate;i++)    /* Health expectancies */
           prlim[i][i]=probs[(int)age][i][ij];    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
       }    double age, agelim, hf;
      double ***p3mat,***varhe;
       for(j=1; j<= nlstate; j++){    double **dnewm,**doldm;
         for(h=0; h<=nhstepm; h++){    double *xp;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    double **gp, **gm;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    double ***gradg, ***trgradg;
         }    int theta;
       }  
       /* This for computing forces of mortality (h=1)as a weighted average */    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){    xp=vector(1,npar);
         for(i=1; i<= nlstate; i++)    dnewm=matrix(1,nlstate*nlstate,1,npar);
           gpp[j] += prlim[i][i]*p3mat[i][j][1];    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
       }        
       /* end force of mortality */    fprintf(ficreseij,"# Health expectancies\n");
     fprintf(ficreseij,"# Age");
       for(i=1; i<=npar; i++) /* Computes gradient */    for(i=1; i<=nlstate;i++)
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      for(j=1; j<=nlstate;j++)
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          fprintf(ficreseij," %1d-%1d (SE)",i,j);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    fprintf(ficreseij,"\n");
    
       if (popbased==1) {    if(estepm < stepm){
         for(i=1; i<=nlstate;i++)      printf ("Problem %d lower than %d\n",estepm, stepm);
           prlim[i][i]=probs[(int)age][i][ij];    }
       }    else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
       for(j=1; j<= nlstate; j++){     * This is mainly to measure the difference between two models: for example
         for(h=0; h<=nhstepm; h++){     * if stepm=24 months pijx are given only every 2 years and by summing them
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)     * we are calculating an estimate of the Life Expectancy assuming a linear 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];     * progression in between and thus overestimating or underestimating according
         }     * to the curvature of the survival function. If, for the same date, we 
       }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       /* This for computing force of mortality (h=1)as a weighted average */     * to compare the new estimate of Life expectancy with the same linear 
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){     * hypothesis. A more precise result, taking into account a more precise
         for(i=1; i<= nlstate; i++)     * curvature will be obtained if estepm is as small as stepm. */
           gmp[j] += prlim[i][i]*p3mat[i][j][1];  
       }        /* For example we decided to compute the life expectancy with the smallest unit */
       /* end force of mortality */    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
       for(j=1; j<= nlstate; j++) /* vareij */       nstepm is the number of stepm from age to agelin. 
         for(h=0; h<=nhstepm; h++){       Look at hpijx to understand the reason of that which relies in memory size
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];       and note for a fixed period like estepm months */
         }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */       survival function given by stepm (the optimization length). Unfortunately it
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];       means that if the survival funtion is printed only each two years of age and if
       }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     } /* End theta */    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */  
     agelim=AGESUP;
     for(h=0; h<=nhstepm; h++) /* veij */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       for(j=1; j<=nlstate;j++)      /* nhstepm age range expressed in number of stepm */
         for(theta=1; theta <=npar; theta++)      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
           trgradg[h][j][theta]=gradg[h][theta][j];      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       for(theta=1; theta <=npar; theta++)      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         trgradgp[j][theta]=gradgp[theta][j];      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       gp=matrix(0,nhstepm,1,nlstate*nlstate);
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      gm=matrix(0,nhstepm,1,nlstate*nlstate);
     for(i=1;i<=nlstate;i++)  
       for(j=1;j<=nlstate;j++)      /* Computed by stepm unit matrices, product of hstepm matrices, stored
         vareij[i][j][(int)age] =0.;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
     for(h=0;h<=nhstepm;h++){   
       for(k=0;k<=nhstepm;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  
         for(i=1;i<=nlstate;i++)      /* Computing Variances of health expectancies */
           for(j=1;j<=nlstate;j++)  
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;       for(theta=1; theta <=npar; theta++){
       }        for(i=1; i<=npar; i++){ 
     }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
     /* pptj */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);    
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);        cptj=0;
     for(j=nlstate+1;j<=nlstate+ndeath;j++)        for(j=1; j<= nlstate; j++){
       for(i=nlstate+1;i<=nlstate+ndeath;i++)          for(i=1; i<=nlstate; i++){
         varppt[j][i]=doldmp[j][i];            cptj=cptj+1;
     /* end ppptj */            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);                gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);            }
            }
     if (popbased==1) {        }
       for(i=1; i<=nlstate;i++)       
         prlim[i][i]=probs[(int)age][i][ij];       
     }        for(i=1; i<=npar; i++) 
              xp[i] = x[i] - (i==theta ?delti[theta]:0);
     /* This for computing force of mortality (h=1)as a weighted average */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){        
       for(i=1; i<= nlstate; i++)        cptj=0;
         gmp[j] += prlim[i][i]*p3mat[i][j][1];        for(j=1; j<= nlstate; j++){
     }              for(i=1;i<=nlstate;i++){
     /* end force of mortality */            cptj=cptj+1;
             for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);  
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));            }
       for(i=1; i<=nlstate;i++){          }
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);        }
       }        for(j=1; j<= nlstate*nlstate; j++)
     }          for(h=0; h<=nhstepm-1; h++){
     fprintf(ficresprobmorprev,"\n");            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
     fprintf(ficresvij,"%.0f ",age );       } 
     for(i=1; i<=nlstate;i++)     
       for(j=1; j<=nlstate;j++){  /* End theta */
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);  
       }       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     fprintf(ficresvij,"\n");  
     free_matrix(gp,0,nhstepm,1,nlstate);       for(h=0; h<=nhstepm-1; h++)
     free_matrix(gm,0,nhstepm,1,nlstate);        for(j=1; j<=nlstate*nlstate;j++)
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          for(theta=1; theta <=npar; theta++)
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);            trgradg[h][j][theta]=gradg[h][theta][j];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       
   } /* End age */  
   free_vector(gpp,nlstate+1,nlstate+ndeath);       for(i=1;i<=nlstate*nlstate;i++)
   free_vector(gmp,nlstate+1,nlstate+ndeath);        for(j=1;j<=nlstate*nlstate;j++)
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);          varhe[i][j][(int)age] =0.;
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/  
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");       printf("%d|",(int)age);fflush(stdout);
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");       for(h=0;h<=nhstepm-1;h++){
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);        for(k=0;k<=nhstepm-1;k++){
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);          for(i=1;i<=nlstate*nlstate;i++)
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,digitp,digit);            for(j=1;j<=nlstate*nlstate;j++)
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
 */        }
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);      }
       /* Computing expectancies */
   free_vector(xp,1,npar);      for(i=1; i<=nlstate;i++)
   free_matrix(doldm,1,nlstate,1,nlstate);        for(j=1; j<=nlstate;j++)
   free_matrix(dnewm,1,nlstate,1,npar);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);            
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   fclose(ficresprobmorprev);  
   fclose(ficgp);          }
   fclose(fichtm);  
       fprintf(ficreseij,"%3.0f",age );
 }      cptj=0;
       for(i=1; i<=nlstate;i++)
 /************ Variance of prevlim ******************/        for(j=1; j<=nlstate;j++){
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          cptj++;
 {          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
   /* Variance of prevalence limit */        }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      fprintf(ficreseij,"\n");
   double **newm;     
   double **dnewm,**doldm;      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   int i, j, nhstepm, hstepm;      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   int k, cptcode;      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   double *xp;      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   double *gp, *gm;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   double **gradg, **trgradg;    }
   double age,agelim;    printf("\n");
   int theta;    fprintf(ficlog,"\n");
      
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");    free_vector(xp,1,npar);
   fprintf(ficresvpl,"# Age");    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   for(i=1; i<=nlstate;i++)    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
       fprintf(ficresvpl," %1d-%1d",i,i);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   fprintf(ficresvpl,"\n");  }
   
   xp=vector(1,npar);  /************ Variance ******************/
   dnewm=matrix(1,nlstate,1,npar);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
   doldm=matrix(1,nlstate,1,nlstate);  {
      /* Variance of health expectancies */
   hstepm=1*YEARM; /* Every year of age */    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    /* double **newm;*/
   agelim = AGESUP;    double **dnewm,**doldm;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    double **dnewmp,**doldmp;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    int i, j, nhstepm, hstepm, h, nstepm ;
     if (stepm >= YEARM) hstepm=1;    int k, cptcode;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    double *xp;
     gradg=matrix(1,npar,1,nlstate);    double **gp, **gm;  /* for var eij */
     gp=vector(1,nlstate);    double ***gradg, ***trgradg; /*for var eij */
     gm=vector(1,nlstate);    double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     for(theta=1; theta <=npar; theta++){    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
       for(i=1; i<=npar; i++){ /* Computes gradient */    double ***p3mat;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double age,agelim, hf;
       }    double ***mobaverage;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int theta;
       for(i=1;i<=nlstate;i++)    char digit[4];
         gp[i] = prlim[i][i];    char digitp[25];
      
       for(i=1; i<=npar; i++) /* Computes gradient */    char fileresprobmorprev[FILENAMELENGTH];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    if(popbased==1){
       for(i=1;i<=nlstate;i++)      if(mobilav!=0)
         gm[i] = prlim[i][i];        strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
       for(i=1;i<=nlstate;i++)    }
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    else 
     } /* End theta */      strcpy(digitp,"-stablbased-");
   
     trgradg =matrix(1,nlstate,1,npar);    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     for(j=1; j<=nlstate;j++)      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
       for(theta=1; theta <=npar; theta++)        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         trgradg[j][theta]=gradg[theta][j];        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     for(i=1;i<=nlstate;i++)    }
       varpl[i][(int)age] =0.;  
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    strcpy(fileresprobmorprev,"prmorprev"); 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    sprintf(digit,"%-d",ij);
     for(i=1;i<=nlstate;i++)    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     fprintf(ficresvpl,"%.0f ",age );    strcat(fileresprobmorprev,fileres);
     for(i=1; i<=nlstate;i++)    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      printf("Problem with resultfile: %s\n", fileresprobmorprev);
     fprintf(ficresvpl,"\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     free_vector(gp,1,nlstate);    }
     free_vector(gm,1,nlstate);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     free_matrix(gradg,1,npar,1,nlstate);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     free_matrix(trgradg,1,nlstate,1,npar);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   } /* End age */    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   free_vector(xp,1,npar);      fprintf(ficresprobmorprev," p.%-d SE",j);
   free_matrix(doldm,1,nlstate,1,npar);      for(i=1; i<=nlstate;i++)
   free_matrix(dnewm,1,nlstate,1,nlstate);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
 }    fprintf(ficresprobmorprev,"\n");
     if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
 /************ Variance of one-step probabilities  ******************/      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
 {      exit(0);
   int i, j=0,  i1, k1, l1, t, tj;    }
   int k2, l2, j1,  z1;    else{
   int k=0,l, cptcode;      fprintf(ficgp,"\n# Routine varevsij");
   int first=1, first1;    }
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
   double **dnewm,**doldm;      printf("Problem with html file: %s\n", optionfilehtm);
   double *xp;      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
   double *gp, *gm;      exit(0);
   double **gradg, **trgradg;    }
   double **mu;    else{
   double age,agelim, cov[NCOVMAX];      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   int theta;    }
   char fileresprob[FILENAMELENGTH];    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   char fileresprobcov[FILENAMELENGTH];  
   char fileresprobcor[FILENAMELENGTH];    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
     fprintf(ficresvij,"# Age");
   double ***varpij;    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
   strcpy(fileresprob,"prob");        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   strcat(fileresprob,fileres);    fprintf(ficresvij,"\n");
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprob);    xp=vector(1,npar);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    dnewm=matrix(1,nlstate,1,npar);
   }    doldm=matrix(1,nlstate,1,nlstate);
   strcpy(fileresprobcov,"probcov");    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   strcat(fileresprobcov,fileres);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprobcov);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);    gpp=vector(nlstate+1,nlstate+ndeath);
   }    gmp=vector(nlstate+1,nlstate+ndeath);
   strcpy(fileresprobcor,"probcor");    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   strcat(fileresprobcor,fileres);    
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    if(estepm < stepm){
     printf("Problem with resultfile: %s\n", fileresprobcor);      printf ("Problem %d lower than %d\n",estepm, stepm);
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    }
   }    else  hstepm=estepm;   
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    /* For example we decided to compute the life expectancy with the smallest unit */
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);       nhstepm is the number of hstepm from age to agelim 
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);       nstepm is the number of stepm from age to agelin. 
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);       Look at hpijx to understand the reason of that which relies in memory size
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);       and note for a fixed period like k years */
      /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");       survival function given by stepm (the optimization length). Unfortunately it
   fprintf(ficresprob,"# Age");       means that if the survival funtion is printed every two years of age and if
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   fprintf(ficresprobcov,"# Age");       results. So we changed our mind and took the option of the best precision.
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    */
   fprintf(ficresprobcov,"# Age");    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   for(i=1; i<=nlstate;i++)      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     for(j=1; j<=(nlstate+ndeath);j++){      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficresprobcov," p%1d-%1d ",i,j);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       fprintf(ficresprobcor," p%1d-%1d ",i,j);      gp=matrix(0,nhstepm,1,nlstate);
     }        gm=matrix(0,nhstepm,1,nlstate);
   fprintf(ficresprob,"\n");  
   fprintf(ficresprobcov,"\n");  
   fprintf(ficresprobcor,"\n");      for(theta=1; theta <=npar; theta++){
   xp=vector(1,npar);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));        }
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   first=1;  
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        if (popbased==1) {
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);          if(mobilav ==0){
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);            for(i=1; i<=nlstate;i++)
     exit(0);              prlim[i][i]=probs[(int)age][i][ij];
   }          }else{ /* mobilav */ 
   else{            for(i=1; i<=nlstate;i++)
     fprintf(ficgp,"\n# Routine varprob");              prlim[i][i]=mobaverage[(int)age][i][ij];
   }          }
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {        }
     printf("Problem with html file: %s\n", optionfilehtm);    
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);        for(j=1; j<= nlstate; j++){
     exit(0);          for(h=0; h<=nhstepm; h++){
   }            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   else{              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");          }
     fprintf(fichtm,"\n");        }
         /* This for computing probability of death (h=1 means
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");           computed over hstepm matrices product = hstepm*stepm months) 
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");           as a weighted average of prlim.
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
   }          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
          }    
   cov[1]=1;        /* end probability of death */
   tj=cptcoveff;  
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
   j1=0;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   for(t=1; t<=tj;t++){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     for(i1=1; i1<=ncodemax[t];i1++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       j1++;   
              if (popbased==1) {
       if  (cptcovn>0) {          if(mobilav ==0){
         fprintf(ficresprob, "\n#********** Variable ");            for(i=1; i<=nlstate;i++)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              prlim[i][i]=probs[(int)age][i][ij];
         fprintf(ficresprob, "**********\n#");          }else{ /* mobilav */ 
         fprintf(ficresprobcov, "\n#********** Variable ");            for(i=1; i<=nlstate;i++)
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);              prlim[i][i]=mobaverage[(int)age][i][ij];
         fprintf(ficresprobcov, "**********\n#");          }
                }
         fprintf(ficgp, "\n#********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(j=1; j<= nlstate; j++){
         fprintf(ficgp, "**********\n#");          for(h=0; h<=nhstepm; h++){
                    for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                      gm[h][j] += prlim[i][i]*p3mat[i][j][h];
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");          }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        }
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");        /* This for computing probability of death (h=1 means
                   computed over hstepm matrices product = hstepm*stepm months) 
         fprintf(ficresprobcor, "\n#********** Variable ");               as a weighted average of prlim.
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        */
         fprintf(ficgp, "**********\n#");            for(j=nlstate+1;j<=nlstate+ndeath;j++){
       }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
                 gmp[j] += prlim[i][i]*p3mat[i][j][1];
       for (age=bage; age<=fage; age ++){        }    
         cov[2]=age;        /* end probability of death */
         for (k=1; k<=cptcovn;k++) {  
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];        for(j=1; j<= nlstate; j++) /* vareij */
         }          for(h=0; h<=nhstepm; h++){
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         for (k=1; k<=cptcovprod;k++)          }
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
                for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);        }
         gp=vector(1,(nlstate)*(nlstate+ndeath));  
         gm=vector(1,(nlstate)*(nlstate+ndeath));      } /* End theta */
      
         for(theta=1; theta <=npar; theta++){      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
           for(i=1; i<=npar; i++)  
             xp[i] = x[i] + (i==theta ?delti[theta]:0);      for(h=0; h<=nhstepm; h++) /* veij */
                  for(j=1; j<=nlstate;j++)
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          for(theta=1; theta <=npar; theta++)
                      trgradg[h][j][theta]=gradg[h][theta][j];
           k=0;  
           for(i=1; i<= (nlstate); i++){      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
             for(j=1; j<=(nlstate+ndeath);j++){        for(theta=1; theta <=npar; theta++)
               k=k+1;          trgradgp[j][theta]=gradgp[theta][j];
               gp[k]=pmmij[i][j];    
             }  
           }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                for(i=1;i<=nlstate;i++)
           for(i=1; i<=npar; i++)        for(j=1;j<=nlstate;j++)
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          vareij[i][j][(int)age] =0.;
      
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      for(h=0;h<=nhstepm;h++){
           k=0;        for(k=0;k<=nhstepm;k++){
           for(i=1; i<=(nlstate); i++){          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
             for(j=1; j<=(nlstate+ndeath);j++){          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
               k=k+1;          for(i=1;i<=nlstate;i++)
               gm[k]=pmmij[i][j];            for(j=1;j<=nlstate;j++)
             }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
           }        }
            }
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)    
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];        /* pptj */
         }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)      for(j=nlstate+1;j<=nlstate+ndeath;j++)
           for(theta=1; theta <=npar; theta++)        for(i=nlstate+1;i<=nlstate+ndeath;i++)
             trgradg[j][theta]=gradg[theta][j];          varppt[j][i]=doldmp[j][i];
              /* end ppptj */
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);      /*  x centered again */
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
              prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
         pmij(pmmij,cov,ncovmodel,x,nlstate);   
              if (popbased==1) {
         k=0;        if(mobilav ==0){
         for(i=1; i<=(nlstate); i++){          for(i=1; i<=nlstate;i++)
           for(j=1; j<=(nlstate+ndeath);j++){            prlim[i][i]=probs[(int)age][i][ij];
             k=k+1;        }else{ /* mobilav */ 
             mu[k][(int) age]=pmmij[i][j];          for(i=1; i<=nlstate;i++)
           }            prlim[i][i]=mobaverage[(int)age][i][ij];
         }        }
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)      }
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)               
             varpij[i][j][(int)age] = doldm[i][j];      /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
         /*printf("\n%d ",(int)age);         as a weighted average of prlim.
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      */
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      for(j=nlstate+1;j<=nlstate+ndeath;j++){
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
      }*/          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
         fprintf(ficresprob,"\n%d ",(int)age);      /* end probability of death */
         fprintf(ficresprobcov,"\n%d ",(int)age);  
         fprintf(ficresprobcor,"\n%d ",(int)age);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));        for(i=1; i<=nlstate;i++){
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);        }
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);      } 
         }      fprintf(ficresprobmorprev,"\n");
         i=0;  
         for (k=1; k<=(nlstate);k++){      fprintf(ficresvij,"%.0f ",age );
           for (l=1; l<=(nlstate+ndeath);l++){      for(i=1; i<=nlstate;i++)
             i=i++;        for(j=1; j<=nlstate;j++){
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);        }
             for (j=1; j<=i;j++){      fprintf(ficresvij,"\n");
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);      free_matrix(gp,0,nhstepm,1,nlstate);
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));      free_matrix(gm,0,nhstepm,1,nlstate);
             }      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
           }      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
         }/* end of loop for state */      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       } /* end of loop for age */    } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
       /* Confidence intervalle of pij  */    free_vector(gmp,nlstate+1,nlstate+ndeath);
       /*    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       fprintf(ficgp,"\nset noparametric;unset label");    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
       */    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
       first1=1;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
       for (k2=1; k2<=(nlstate);k2++){    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
         for (l2=1; l2<=(nlstate+ndeath);l2++){    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
           if(l2==k2) continue;  */
           j=(k2-1)*(nlstate+ndeath)+l2;    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
           for (k1=1; k1<=(nlstate);k1++){  
             for (l1=1; l1<=(nlstate+ndeath);l1++){    free_vector(xp,1,npar);
               if(l1==k1) continue;    free_matrix(doldm,1,nlstate,1,nlstate);
               i=(k1-1)*(nlstate+ndeath)+l1;    free_matrix(dnewm,1,nlstate,1,npar);
               if(i<=j) continue;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               for (age=bage; age<=fage; age ++){    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
                 if ((int)age %5==0){    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    fclose(ficresprobmorprev);
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    fclose(ficgp);
                   mu1=mu[i][(int) age]/stepm*YEARM ;    fclose(fichtm);
                   mu2=mu[j][(int) age]/stepm*YEARM;  }  
                   c12=cv12/sqrt(v1*v2);  
                   /* Computing eigen value of matrix of covariance */  /************ Variance of prevlim ******************/
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;  {
                   /* Eigen vectors */    /* Variance of prevalence limit */
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
                   /*v21=sqrt(1.-v11*v11); *//* error */    double **newm;
                   v21=(lc1-v1)/cv12*v11;    double **dnewm,**doldm;
                   v12=-v21;    int i, j, nhstepm, hstepm;
                   v22=v11;    int k, cptcode;
                   tnalp=v21/v11;    double *xp;
                   if(first1==1){    double *gp, *gm;
                     first1=0;    double **gradg, **trgradg;
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);    double age,agelim;
                   }    int theta;
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);     
                   /*printf(fignu*/    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    fprintf(ficresvpl,"# Age");
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */    for(i=1; i<=nlstate;i++)
                   if(first==1){        fprintf(ficresvpl," %1d-%1d",i,i);
                     first=0;    fprintf(ficresvpl,"\n");
                     fprintf(ficgp,"\nset parametric;unset label");  
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);    xp=vector(1,npar);
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    dnewm=matrix(1,nlstate,1,npar);
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);    doldm=matrix(1,nlstate,1,nlstate);
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);    
                     fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);    hstepm=1*YEARM; /* Every year of age */
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    agelim = AGESUP;
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\      if (stepm >= YEARM) hstepm=1;
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
                   }else{      gradg=matrix(1,npar,1,nlstate);
                     first=0;      gp=vector(1,nlstate);
                     fprintf(fichtm," %d (%.3f),",(int) age, c12);      gm=vector(1,nlstate);
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);  
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);      for(theta=1; theta <=npar; theta++){
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\        for(i=1; i<=npar; i++){ /* Computes gradient */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\          xp[i] = x[i] + (i==theta ?delti[theta]:0);
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));        }
                   }/* if first */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                 } /* age mod 5 */        for(i=1;i<=nlstate;i++)
               } /* end loop age */          gp[i] = prlim[i][i];
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);      
               first=1;        for(i=1; i<=npar; i++) /* Computes gradient */
             } /*l12 */          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           } /* k12 */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         } /*l1 */        for(i=1;i<=nlstate;i++)
       }/* k1 */          gm[i] = prlim[i][i];
     } /* loop covariates */  
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);        for(i=1;i<=nlstate;i++)
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      } /* End theta */
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);  
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      trgradg =matrix(1,nlstate,1,npar);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  
   }      for(j=1; j<=nlstate;j++)
   free_vector(xp,1,npar);        for(theta=1; theta <=npar; theta++)
   fclose(ficresprob);          trgradg[j][theta]=gradg[theta][j];
   fclose(ficresprobcov);  
   fclose(ficresprobcor);      for(i=1;i<=nlstate;i++)
   fclose(ficgp);        varpl[i][(int)age] =0.;
   fclose(fichtm);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 }      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 /******************* Printing html file ***********/  
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      fprintf(ficresvpl,"%.0f ",age );
                   int lastpass, int stepm, int weightopt, char model[],\      for(i=1; i<=nlstate;i++)
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
                   int popforecast, int estepm ,\      fprintf(ficresvpl,"\n");
                   double jprev1, double mprev1,double anprev1, \      free_vector(gp,1,nlstate);
                   double jprev2, double mprev2,double anprev2){      free_vector(gm,1,nlstate);
   int jj1, k1, i1, cpt;      free_matrix(gradg,1,npar,1,nlstate);
   /*char optionfilehtm[FILENAMELENGTH];*/      free_matrix(trgradg,1,nlstate,1,npar);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {    } /* End age */
     printf("Problem with %s \n",optionfilehtm), exit(0);  
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);    free_vector(xp,1,npar);
   }    free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n  
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n  }
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n  
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n  /************ Variance of one-step probabilities  ******************/
  - Life expectancies by age and initial health status (estepm=%2d months):  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
    <a href=\"e%s\">e%s</a> <br>\n</li>", \  {
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    int k=0,l, cptcode;
     int first=1, first1;
  m=cptcoveff;    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    double **dnewm,**doldm;
     double *xp;
  jj1=0;    double *gp, *gm;
  for(k1=1; k1<=m;k1++){    double **gradg, **trgradg;
    for(i1=1; i1<=ncodemax[k1];i1++){    double **mu;
      jj1++;    double age,agelim, cov[NCOVMAX];
      if (cptcovn > 0) {    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    int theta;
        for (cpt=1; cpt<=cptcoveff;cpt++)    char fileresprob[FILENAMELENGTH];
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    char fileresprobcov[FILENAMELENGTH];
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    char fileresprobcor[FILENAMELENGTH];
      }  
      /* Pij */    double ***varpij;
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>  
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        strcpy(fileresprob,"prob"); 
      /* Quasi-incidences */    strcat(fileresprob,fileres);
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      printf("Problem with resultfile: %s\n", fileresprob);
        /* Stable prevalence in each health state */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
        for(cpt=1; cpt<nlstate;cpt++){    }
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>    strcpy(fileresprobcov,"probcov"); 
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    strcat(fileresprobcov,fileres);
        }    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
      for(cpt=1; cpt<=nlstate;cpt++) {      printf("Problem with resultfile: %s\n", fileresprobcov);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    }
      }    strcpy(fileresprobcor,"probcor"); 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    strcat(fileresprobcor,fileres);
 health expectancies in states (1) and (2): e%s%d.png<br>    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      printf("Problem with resultfile: %s\n", fileresprobcor);
    } /* end i1 */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
  }/* End k1 */    }
  fprintf(fichtm,"</ul>");    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n    
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    fprintf(ficresprob,"# Age");
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
  if(popforecast==1) fprintf(fichtm,"\n    fprintf(ficresprobcov,"# Age");
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n  
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n  
         <br>",fileres,fileres,fileres,fileres);    for(i=1; i<=nlstate;i++)
  else      for(j=1; j<=(nlstate+ndeath);j++){
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");        fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
  m=cptcoveff;      }  
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}   /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
  jj1=0;    fprintf(ficresprobcor,"\n");
  for(k1=1; k1<=m;k1++){   */
    for(i1=1; i1<=ncodemax[k1];i1++){   xp=vector(1,npar);
      jj1++;    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
      if (cptcovn > 0) {    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
        for (cpt=1; cpt<=cptcoveff;cpt++)    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    first=1;
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
      }      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
      for(cpt=1; cpt<=nlstate;cpt++) {      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      exit(0);
 interval) in state (%d): v%s%d%d.png <br>    }
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      else{
      }      fprintf(ficgp,"\n# Routine varprob");
    } /* end i1 */    }
  }/* End k1 */    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
  fprintf(fichtm,"</ul>");      printf("Problem with html file: %s\n", optionfilehtm);
 fclose(fichtm);      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
 }      exit(0);
     }
 /******************* Gnuplot file **************/    else{
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       fprintf(fichtm,"\n");
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;  
   int ng;      fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     printf("Problem with file %s",optionfilegnuplot);      fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);  
   }    }
   
 #ifdef windows    cov[1]=1;
     fprintf(ficgp,"cd \"%s\" \n",pathc);    tj=cptcoveff;
 #endif    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
 m=pow(2,cptcoveff);    j1=0;
      for(t=1; t<=tj;t++){
  /* 1eme*/      for(i1=1; i1<=ncodemax[t];i1++){ 
   for (cpt=1; cpt<= nlstate ; cpt ++) {        j1++;
    for (k1=1; k1<= m ; k1 ++) {        if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
 #ifdef windows          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          fprintf(ficresprob, "**********\n#\n");
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);          fprintf(ficresprobcov, "\n#********** Variable "); 
 #endif          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 #ifdef unix          fprintf(ficresprobcov, "**********\n#\n");
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);          fprintf(ficgp, "\n#********** Variable "); 
 #endif          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
 for (i=1; i<= nlstate ; i ++) {          
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          
   else fprintf(ficgp," \%%*lf (\%%*lf)");          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
 }          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     for (i=1; i<= nlstate ; i ++) {          
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          fprintf(ficresprobcor, "\n#********** Variable ");    
   else fprintf(ficgp," \%%*lf (\%%*lf)");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 }          fprintf(ficresprobcor, "**********\n#");    
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        }
      for (i=1; i<= nlstate ; i ++) {        
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        for (age=bage; age<=fage; age ++){ 
   else fprintf(ficgp," \%%*lf (\%%*lf)");          cov[2]=age;
 }            for (k=1; k<=cptcovn;k++) {
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
 #ifdef unix          }
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 #endif          for (k=1; k<=cptcovprod;k++)
    }            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   }          
   /*2 eme*/          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   for (k1=1; k1<= m ; k1 ++) {          gp=vector(1,(nlstate)*(nlstate+ndeath));
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);          gm=vector(1,(nlstate)*(nlstate+ndeath));
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);      
              for(theta=1; theta <=npar; theta++){
     for (i=1; i<= nlstate+1 ; i ++) {            for(i=1; i<=npar; i++)
       k=2*i;              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);            
       for (j=1; j<= nlstate+1 ; j ++) {            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            
   else fprintf(ficgp," \%%*lf (\%%*lf)");            k=0;
 }              for(i=1; i<= (nlstate); i++){
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");              for(j=1; j<=(nlstate+ndeath);j++){
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);                k=k+1;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);                gp[k]=pmmij[i][j];
       for (j=1; j<= nlstate+1 ; j ++) {              }
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            }
         else fprintf(ficgp," \%%*lf (\%%*lf)");            
 }              for(i=1; i<=npar; i++)
       fprintf(ficgp,"\" t\"\" w l 0,");              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      
       for (j=1; j<= nlstate+1 ; j ++) {            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            k=0;
   else fprintf(ficgp," \%%*lf (\%%*lf)");            for(i=1; i<=(nlstate); i++){
 }                for(j=1; j<=(nlstate+ndeath);j++){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");                k=k+1;
       else fprintf(ficgp,"\" t\"\" w l 0,");                gm[k]=pmmij[i][j];
     }              }
   }            }
         
   /*3eme*/            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
   for (k1=1; k1<= m ; k1 ++) {          }
     for (cpt=1; cpt<= nlstate ; cpt ++) {  
       k=2+nlstate*(2*cpt-2);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            for(theta=1; theta <=npar; theta++)
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);              trgradg[j][theta]=gradg[theta][j];
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
 */  
       for (i=1; i< nlstate ; i ++) {          pmij(pmmij,cov,ncovmodel,x,nlstate);
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);          
           k=0;
       }          for(i=1; i<=(nlstate); i++){
     }            for(j=1; j<=(nlstate+ndeath);j++){
   }              k=k+1;
                mu[k][(int) age]=pmmij[i][j];
   /* CV preval stat */            }
     for (k1=1; k1<= m ; k1 ++) {          }
     for (cpt=1; cpt<nlstate ; cpt ++) {          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
       k=3;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              varpij[i][j][(int)age] = doldm[i][j];
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);  
           /*printf("\n%d ",(int)age);
       for (i=1; i< nlstate ; i ++)            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         fprintf(ficgp,"+$%d",k+i+1);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                  }*/
       l=3+(nlstate+ndeath)*cpt;  
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          fprintf(ficresprob,"\n%d ",(int)age);
       for (i=1; i< nlstate ; i ++) {          fprintf(ficresprobcov,"\n%d ",(int)age);
         l=3+(nlstate+ndeath)*cpt;          fprintf(ficresprobcor,"\n%d ",(int)age);
         fprintf(ficgp,"+$%d",l+i+1);  
       }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);              fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
     }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   }              fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
              fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   /* proba elementaires */          }
    for(i=1,jk=1; i <=nlstate; i++){          i=0;
     for(k=1; k <=(nlstate+ndeath); k++){          for (k=1; k<=(nlstate);k++){
       if (k != i) {            for (l=1; l<=(nlstate+ndeath);l++){ 
         for(j=1; j <=ncovmodel; j++){              i=i++;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
           jk++;              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
           fprintf(ficgp,"\n");              for (j=1; j<=i;j++){
         }                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
       }                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
     }              }
    }            }
           }/* end of loop for state */
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/        } /* end of loop for age */
      for(jk=1; jk <=m; jk++) {  
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);        /* Confidence intervalle of pij  */
        if (ng==2)        /*
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");          fprintf(ficgp,"\nset noparametric;unset label");
        else          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
          fprintf(ficgp,"\nset title \"Probability\"\n");          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
        i=1;          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
        for(k2=1; k2<=nlstate; k2++) {          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
          k3=i;          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
          for(k=1; k<=(nlstate+ndeath); k++) {        */
            if (k != k2){  
              if(ng==2)        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);        first1=1;
              else        for (k2=1; k2<=(nlstate);k2++){
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
              ij=1;            if(l2==k2) continue;
              for(j=3; j <=ncovmodel; j++) {            j=(k2-1)*(nlstate+ndeath)+l2;
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            for (k1=1; k1<=(nlstate);k1++){
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                  ij++;                if(l1==k1) continue;
                }                i=(k1-1)*(nlstate+ndeath)+l1;
                else                if(i<=j) continue;
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                for (age=bage; age<=fage; age ++){ 
              }                  if ((int)age %5==0){
              fprintf(ficgp,")/(1");                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                                  v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
              for(k1=1; k1 <=nlstate; k1++){                      cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);                    mu1=mu[i][(int) age]/stepm*YEARM ;
                ij=1;                    mu2=mu[j][(int) age]/stepm*YEARM;
                for(j=3; j <=ncovmodel; j++){                    c12=cv12/sqrt(v1*v2);
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                    /* Computing eigen value of matrix of covariance */
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                    ij++;                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                  }                    /* Eigen vectors */
                  else                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);                    /*v21=sqrt(1.-v11*v11); *//* error */
                }                    v21=(lc1-v1)/cv12*v11;
                fprintf(ficgp,")");                    v12=-v21;
              }                    v22=v11;
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);                    tnalp=v21/v11;
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");                    if(first1==1){
              i=i+ncovmodel;                      first1=0;
            }                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
          } /* end k */                    }
        } /* end k2 */                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
      } /* end jk */                    /*printf(fignu*/
    } /* end ng */                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
    fclose(ficgp);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
 }  /* end gnuplot */                    if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
 /*************** Moving average **************/                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
   int i, cpt, cptcod;                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
       for (i=1; i<=nlstate;i++)                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           mobaverage[(int)agedeb][i][cptcod]=0.;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                          fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       for (i=1; i<=nlstate;i++){                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                    }else{
           for (cpt=0;cpt<=4;cpt++){                      first=0;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
           }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         }                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
       }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                        }/* if first */
 }                  } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
 /************** Forecasting ******************/                first=1;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){              } /*l12 */
              } /* k12 */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          } /*l1 */
   int *popage;        }/* k1 */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      } /* loop covariates */
   double *popeffectif,*popcount;    }
   double ***p3mat;    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   char fileresf[FILENAMELENGTH];    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
  agelim=AGESUP;    fclose(ficresprob);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    fclose(ficresprobcov);
     fclose(ficresprobcor);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    fclose(ficgp);
      fclose(fichtm);
    }
   strcpy(fileresf,"f");  
   strcat(fileresf,fileres);  
   if((ficresf=fopen(fileresf,"w"))==NULL) {  /******************* Printing html file ***********/
     printf("Problem with forecast resultfile: %s\n", fileresf);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);                    int lastpass, int stepm, int weightopt, char model[],\
   }                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   printf("Computing forecasting: result on file '%s' \n", fileresf);                    int popforecast, int estepm ,\
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);                    double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    int jj1, k1, i1, cpt;
     /*char optionfilehtm[FILENAMELENGTH];*/
   if (mobilav==1) {    if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      printf("Problem with %s \n",optionfilehtm), exit(0);
     movingaverage(agedeb, fage, ageminpar, mobaverage);      fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
   }    }
   
   stepsize=(int) (stepm+YEARM-1)/YEARM;     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n
   if (stepm<=12) stepsize=1;   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n
     - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n
   agelim=AGESUP;   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n
     - Life expectancies by age and initial health status (estepm=%2d months): 
   hstepm=1;     <a href=\"e%s\">e%s</a> <br>\n</li>", \
   hstepm=hstepm/stepm;    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
   yp1=modf(dateintmean,&yp);  
   anprojmean=yp;  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   yp2=modf((yp1*12),&yp);  
   mprojmean=yp;   m=cptcoveff;
   yp1=modf((yp2*30.5),&yp);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   jprojmean=yp;  
   if(jprojmean==0) jprojmean=1;   jj1=0;
   if(mprojmean==0) jprojmean=1;   for(k1=1; k1<=m;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);       jj1++;
         if (cptcovn > 0) {
   for(cptcov=1;cptcov<=i2;cptcov++){         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){         for (cpt=1; cpt<=cptcoveff;cpt++) 
       k=k+1;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       fprintf(ficresf,"\n#******");         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       for(j=1;j<=cptcoveff;j++) {       }
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       /* Pij */
       }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br>
       fprintf(ficresf,"******\n");  <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
       fprintf(ficresf,"# StartingAge FinalAge");       /* Quasi-incidences */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>
        <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
               /* Stable prevalence in each health state */
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {         for(cpt=1; cpt<nlstate;cpt++){
         fprintf(ficresf,"\n");           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);    <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
          }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){       for(cpt=1; cpt<=nlstate;cpt++) {
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>
           nhstepm = nhstepm/hstepm;  <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
                 }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       fprintf(fichtm,"\n<br>- Total life expectancy by age and
           oldm=oldms;savm=savms;  health expectancies in states (1) and (2): e%s%d.png<br>
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
             } /* end i1 */
           for (h=0; h<=nhstepm; h++){   }/* End k1 */
             if (h==(int) (calagedate+YEARM*cpt)) {   fprintf(fichtm,"</ul>");
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);  
             }  
             for(j=1; j<=nlstate+ndeath;j++) {   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n
               kk1=0.;kk2=0;   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n
               for(i=1; i<=nlstate;i++) {                 - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
                 if (mobilav==1)   - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];   - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n
                 else {   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n 
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];   - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n
                 }   - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
                  
               }  /*  if(popforecast==1) fprintf(fichtm,"\n */
               if (h==(int)(calagedate+12*cpt)){  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
                 fprintf(ficresf," %.3f", kk1);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
                          /*      <br>",fileres,fileres,fileres,fileres); */
               }  /*  else  */
             }  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
           }  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }   m=cptcoveff;
       }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     }  
   }   jj1=0;
           for(k1=1; k1<=m;k1++){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
   fclose(ficresf);       if (cptcovn > 0) {
 }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
 /************** Forecasting ******************/         for (cpt=1; cpt<=cptcoveff;cpt++) 
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
           fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;       }
   int *popage;       for(cpt=1; cpt<=nlstate;cpt++) {
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;         fprintf(fichtm,"<br>- Observed and period prevalence (with confident
   double *popeffectif,*popcount;  interval) in state (%d): v%s%d%d.png <br>
   double ***p3mat,***tabpop,***tabpopprev;  <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
   char filerespop[FILENAMELENGTH];       }
      } /* end i1 */
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   }/* End k1 */
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   fprintf(fichtm,"</ul>");
   agelim=AGESUP;  fclose(fichtm);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;  }
    
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  /******************* Gnuplot file **************/
    void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
    
   strcpy(filerespop,"pop");    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   strcat(filerespop,fileres);    int ng;
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
     printf("Problem with forecast resultfile: %s\n", filerespop);      printf("Problem with file %s",optionfilegnuplot);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);      fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
   }    }
   printf("Computing forecasting: result on file '%s' \n", filerespop);  
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);    /*#ifdef windows */
       fprintf(ficgp,"cd \"%s\" \n",pathc);
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      /*#endif */
   m=pow(2,cptcoveff);
   if (mobilav==1) {    
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   /* 1eme*/
     movingaverage(agedeb, fage, ageminpar, mobaverage);    for (cpt=1; cpt<= nlstate ; cpt ++) {
   }     for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
   stepsize=(int) (stepm+YEARM-1)/YEARM;       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
   if (stepm<=12) stepsize=1;  
         for (i=1; i<= nlstate ; i ++) {
   agelim=AGESUP;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
   hstepm=1;       }
   hstepm=hstepm/stepm;       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
         for (i=1; i<= nlstate ; i ++) {
   if (popforecast==1) {         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     if((ficpop=fopen(popfile,"r"))==NULL) {         else fprintf(ficgp," \%%*lf (\%%*lf)");
       printf("Problem with population file : %s\n",popfile);exit(0);       } 
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
     }       for (i=1; i<= nlstate ; i ++) {
     popage=ivector(0,AGESUP);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     popeffectif=vector(0,AGESUP);         else fprintf(ficgp," \%%*lf (\%%*lf)");
     popcount=vector(0,AGESUP);       }  
           fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
     i=1;       }
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    }
        /*2 eme*/
     imx=i;    
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    for (k1=1; k1<= m ; k1 ++) { 
   }      fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   for(cptcov=1;cptcov<=i2;cptcov++){      
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      for (i=1; i<= nlstate+1 ; i ++) {
       k=k+1;        k=2*i;
       fprintf(ficrespop,"\n#******");        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
       for(j=1;j<=cptcoveff;j++) {        for (j=1; j<= nlstate+1 ; j ++) {
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       }          else fprintf(ficgp," \%%*lf (\%%*lf)");
       fprintf(ficrespop,"******\n");        }   
       fprintf(ficrespop,"# Age");        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
       if (popforecast==1)  fprintf(ficrespop," [Population]");        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
              for (j=1; j<= nlstate+1 ; j ++) {
       for (cpt=0; cpt<=0;cpt++) {          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            else fprintf(ficgp," \%%*lf (\%%*lf)");
                }   
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        fprintf(ficgp,"\" t\"\" w l 0,");
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
           nhstepm = nhstepm/hstepm;        for (j=1; j<= nlstate+1 ; j ++) {
                    if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          else fprintf(ficgp," \%%*lf (\%%*lf)");
           oldm=oldms;savm=savms;        }   
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
                else fprintf(ficgp,"\" t\"\" w l 0,");
           for (h=0; h<=nhstepm; h++){      }
             if (h==(int) (calagedate+YEARM*cpt)) {    }
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    
             }    /*3eme*/
             for(j=1; j<=nlstate+ndeath;j++) {    
               kk1=0.;kk2=0;    for (k1=1; k1<= m ; k1 ++) { 
               for(i=1; i<=nlstate;i++) {                    for (cpt=1; cpt<= nlstate ; cpt ++) {
                 if (mobilav==1)        k=2+nlstate*(2*cpt-2);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
                 else {        fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                 }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
               }          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
               if (h==(int)(calagedate+12*cpt)){          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
                   /*fprintf(ficrespop," %.3f", kk1);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/          
               }        */
             }        for (i=1; i< nlstate ; i ++) {
             for(i=1; i<=nlstate;i++){          fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
               kk1=0.;          
                 for(j=1; j<=nlstate;j++){        } 
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];      }
                 }    }
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    
             }    /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)      for (cpt=1; cpt<=nlstate ; cpt ++) {
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);        k=3;
           }        fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
         }        
       }        for (i=1; i<= nlstate ; i ++)
            fprintf(ficgp,"+$%d",k+i+1);
   /******/        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {        l=3+(nlstate+ndeath)*cpt;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);          fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        for (i=1; i< nlstate ; i ++) {
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          l=3+(nlstate+ndeath)*cpt;
           nhstepm = nhstepm/hstepm;          fprintf(ficgp,"+$%d",l+i+1);
                  }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
           oldm=oldms;savm=savms;      } 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      }  
           for (h=0; h<=nhstepm; h++){    
             if (h==(int) (calagedate+YEARM*cpt)) {    /* proba elementaires */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    for(i=1,jk=1; i <=nlstate; i++){
             }      for(k=1; k <=(nlstate+ndeath); k++){
             for(j=1; j<=nlstate+ndeath;j++) {        if (k != i) {
               kk1=0.;kk2=0;          for(j=1; j <=ncovmodel; j++){
               for(i=1; i<=nlstate;i++) {                          fprintf(ficgp,"p%d=%f ",jk,p[jk]);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                jk++; 
               }            fprintf(ficgp,"\n");
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);          }
             }        }
           }      }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     }
         }  
       }     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
    }       for(jk=1; jk <=m; jk++) {
   }         fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
           if (ng==2)
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
   if (popforecast==1) {           fprintf(ficgp,"\nset title \"Probability\"\n");
     free_ivector(popage,0,AGESUP);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
     free_vector(popeffectif,0,AGESUP);         i=1;
     free_vector(popcount,0,AGESUP);         for(k2=1; k2<=nlstate; k2++) {
   }           k3=i;
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);           for(k=1; k<=(nlstate+ndeath); k++) {
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);             if (k != k2){
   fclose(ficrespop);               if(ng==2)
 }                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
 /***********************************************/                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
 /**************** Main Program *****************/               ij=1;
 /***********************************************/               for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
 int main(int argc, char *argv[])                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
 {                   ij++;
                  }
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;                 else
   double agedeb, agefin,hf;                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;               }
                fprintf(ficgp,")/(1");
   double fret;               
   double **xi,tmp,delta;               for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   double dum; /* Dummy variable */                 ij=1;
   double ***p3mat;                 for(j=3; j <=ncovmodel; j++){
   int *indx;                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   char line[MAXLINE], linepar[MAXLINE];                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];                     ij++;
   int firstobs=1, lastobs=10;                   }
   int sdeb, sfin; /* Status at beginning and end */                   else
   int c,  h , cpt,l;                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   int ju,jl, mi;                 }
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;                 fprintf(ficgp,")");
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;               }
   int mobilav=0,popforecast=0;               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
   int hstepm, nhstepm;               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;               i=i+ncovmodel;
              }
   double bage, fage, age, agelim, agebase;           } /* end k */
   double ftolpl=FTOL;         } /* end k2 */
   double **prlim;       } /* end jk */
   double *severity;     } /* end ng */
   double ***param; /* Matrix of parameters */     fclose(ficgp); 
   double  *p;  }  /* end gnuplot */
   double **matcov; /* Matrix of covariance */  
   double ***delti3; /* Scale */  
   double *delti; /* Scale */  /*************** Moving average **************/
   double ***eij, ***vareij;  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   double **varpl; /* Variances of prevalence limits by age */  
   double *epj, vepp;    int i, cpt, cptcod;
   double kk1, kk2;    int modcovmax =1;
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    int mobilavrange, mob;
      double age;
   
   char *alph[]={"a","a","b","c","d","e"}, str[4];    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   char z[1]="c", occ;  
 #include <sys/time.h>    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
 #include <time.h>      if(mobilav==1) mobilavrange=5; /* default */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      else mobilavrange=mobilav;
        for (age=bage; age<=fage; age++)
   /* long total_usecs;        for (i=1; i<=nlstate;i++)
   struct timeval start_time, end_time;          for (cptcod=1;cptcod<=modcovmax;cptcod++)
              mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */      /* We keep the original values on the extreme ages bage, fage and for 
   getcwd(pathcd, size);         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
   printf("\n%s",version);      */ 
   if(argc <=1){      for (mob=3;mob <=mobilavrange;mob=mob+2){
     printf("\nEnter the parameter file name: ");        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
     scanf("%s",pathtot);          for (i=1; i<=nlstate;i++){
   }            for (cptcod=1;cptcod<=modcovmax;cptcod++){
   else{              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
     strcpy(pathtot,argv[1]);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
   }                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   /*cygwin_split_path(pathtot,path,optionfile);                }
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   /* cutv(path,optionfile,pathtot,'\\');*/            }
           }
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);        }/* end age */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      }/* end mob */
   chdir(path);    }else return -1;
   replace(pathc,path);    return 0;
   }/* End movingaverage */
 /*-------- arguments in the command line --------*/  
   
   /* Log file */  /************** Forecasting ******************/
   strcat(filelog, optionfilefiname);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   strcat(filelog,".log");    /* */    /* proj1, year, month, day of starting projection 
   if((ficlog=fopen(filelog,"w"))==NULL)    {       agemin, agemax range of age
     printf("Problem with logfile %s\n",filelog);       dateprev1 dateprev2 range of dates during which prevalence is computed
     goto end;       anproj2 year of en of projection (same day and month as proj1).
   }    */
   fprintf(ficlog,"Log filename:%s\n",filelog);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   fprintf(ficlog,"\n%s",version);    int *popage;
   fprintf(ficlog,"\nEnter the parameter file name: ");    double agec; /* generic age */
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   fflush(ficlog);    double *popeffectif,*popcount;
     double ***p3mat;
   /* */    double ***mobaverage;
   strcpy(fileres,"r");    char fileresf[FILENAMELENGTH];
   strcat(fileres, optionfilefiname);  
   strcat(fileres,".txt");    /* Other files have txt extension */    agelim=AGESUP;
     prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   /*---------arguments file --------*/   
     strcpy(fileresf,"f"); 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    strcat(fileresf,fileres);
     printf("Problem with optionfile %s\n",optionfile);    if((ficresf=fopen(fileresf,"w"))==NULL) {
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);      printf("Problem with forecast resultfile: %s\n", fileresf);
     goto end;      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
   }    }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
   strcpy(filereso,"o");    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) {    if (cptcoveff==0) ncodemax[cptcoveff]=1;
     printf("Problem with Output resultfile: %s\n", filereso);  
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);    if (mobilav!=0) {
     goto end;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   /* Reads comments: lines beginning with '#' */        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   while((c=getc(ficpar))=='#' && c!= EOF){      }
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);  
     puts(line);    stepsize=(int) (stepm+YEARM-1)/YEARM;
     fputs(line,ficparo);    if (stepm<=12) stepsize=1;
   }    if(estepm < stepm){
   ungetc(c,ficpar);      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    else  hstepm=estepm;   
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);  
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    hstepm=hstepm/stepm; 
 while((c=getc(ficpar))=='#' && c!= EOF){    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
     ungetc(c,ficpar);                                 fractional in yp1 */
     fgets(line, MAXLINE, ficpar);    anprojmean=yp;
     puts(line);    yp2=modf((yp1*12),&yp);
     fputs(line,ficparo);    mprojmean=yp;
   }    yp1=modf((yp2*30.5),&yp);
   ungetc(c,ficpar);    jprojmean=yp;
      if(jprojmean==0) jprojmean=1;
        if(mprojmean==0) jprojmean=1;
   covar=matrix(0,NCOVMAX,1,n);  
   cptcovn=0;    i1=cptcoveff;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    if (cptcovn < 1){i1=1;}
     
   ncovmodel=2+cptcovn;    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    
      fprintf(ficresf,"#****** Routine prevforecast **\n");
   /* Read guess parameters */  
   /* Reads comments: lines beginning with '#' */  /*            if (h==(int)(YEARM*yearp)){ */
   while((c=getc(ficpar))=='#' && c!= EOF){    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
     ungetc(c,ficpar);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     fgets(line, MAXLINE, ficpar);        k=k+1;
     puts(line);        fprintf(ficresf,"\n#******");
     fputs(line,ficparo);        for(j=1;j<=cptcoveff;j++) {
   }          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   ungetc(c,ficpar);        }
          fprintf(ficresf,"******\n");
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
     for(i=1; i <=nlstate; i++)        for(j=1; j<=nlstate+ndeath;j++){ 
     for(j=1; j <=nlstate+ndeath-1; j++){          for(i=1; i<=nlstate;i++)              
       fscanf(ficpar,"%1d%1d",&i1,&j1);            fprintf(ficresf," p%d%d",i,j);
       fprintf(ficparo,"%1d%1d",i1,j1);          fprintf(ficresf," p.%d",j);
       if(mle==1)        }
         printf("%1d%1d",i,j);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
       fprintf(ficlog,"%1d%1d",i,j);          fprintf(ficresf,"\n");
       for(k=1; k<=ncovmodel;k++){          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
         fscanf(ficpar," %lf",&param[i][j][k]);  
         if(mle==1){          for (agec=fage; agec>=(ageminpar-1); agec--){ 
           printf(" %lf",param[i][j][k]);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
           fprintf(ficlog," %lf",param[i][j][k]);            nhstepm = nhstepm/hstepm; 
         }            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         else            oldm=oldms;savm=savms;
           fprintf(ficlog," %lf",param[i][j][k]);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
         fprintf(ficparo," %lf",param[i][j][k]);          
       }            for (h=0; h<=nhstepm; h++){
       fscanf(ficpar,"\n");              if (h*hstepm/YEARM*stepm ==yearp) {
       if(mle==1)                fprintf(ficresf,"\n");
         printf("\n");                for(j=1;j<=cptcoveff;j++) 
       fprintf(ficlog,"\n");                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       fprintf(ficparo,"\n");                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
     }              } 
                for(j=1; j<=nlstate+ndeath;j++) {
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;                ppij=0.;
                 for(i=1; i<=nlstate;i++) {
   p=param[1][1];                  if (mobilav==1) 
                      ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
   /* Reads comments: lines beginning with '#' */                  else {
   while((c=getc(ficpar))=='#' && c!= EOF){                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
     ungetc(c,ficpar);                  }
     fgets(line, MAXLINE, ficpar);                  if (h*hstepm/YEARM*stepm== yearp) {
     puts(line);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
     fputs(line,ficparo);                  }
   }                } /* end i */
   ungetc(c,ficpar);                if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                }
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */              }/* end j */
   for(i=1; i <=nlstate; i++){            } /* end h */
     for(j=1; j <=nlstate+ndeath-1; j++){            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fscanf(ficpar,"%1d%1d",&i1,&j1);          } /* end agec */
       printf("%1d%1d",i,j);        } /* end yearp */
       fprintf(ficparo,"%1d%1d",i1,j1);      } /* end cptcod */
       for(k=1; k<=ncovmodel;k++){    } /* end  cptcov */
         fscanf(ficpar,"%le",&delti3[i][j][k]);         
         printf(" %le",delti3[i][j][k]);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         fprintf(ficparo," %le",delti3[i][j][k]);  
       }    fclose(ficresf);
       fscanf(ficpar,"\n");  }
       printf("\n");  
       fprintf(ficparo,"\n");  /************** Forecasting *****not tested NB*************/
     }  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
   }    
   delti=delti3[1][1];    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
      int *popage;
   /* Reads comments: lines beginning with '#' */    double calagedatem, agelim, kk1, kk2;
   while((c=getc(ficpar))=='#' && c!= EOF){    double *popeffectif,*popcount;
     ungetc(c,ficpar);    double ***p3mat,***tabpop,***tabpopprev;
     fgets(line, MAXLINE, ficpar);    double ***mobaverage;
     puts(line);    char filerespop[FILENAMELENGTH];
     fputs(line,ficparo);  
   }    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   ungetc(c,ficpar);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      agelim=AGESUP;
   matcov=matrix(1,npar,1,npar);    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
   for(i=1; i <=npar; i++){    
     fscanf(ficpar,"%s",&str);    prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     if(mle==1)    
       printf("%s",str);    
     fprintf(ficlog,"%s",str);    strcpy(filerespop,"pop"); 
     fprintf(ficparo,"%s",str);    strcat(filerespop,fileres);
     for(j=1; j <=i; j++){    if((ficrespop=fopen(filerespop,"w"))==NULL) {
       fscanf(ficpar," %le",&matcov[i][j]);      printf("Problem with forecast resultfile: %s\n", filerespop);
       if(mle==1){      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
         printf(" %.5le",matcov[i][j]);    }
         fprintf(ficlog," %.5le",matcov[i][j]);    printf("Computing forecasting: result on file '%s' \n", filerespop);
       }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
       else  
         fprintf(ficlog," %.5le",matcov[i][j]);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
       fprintf(ficparo," %.5le",matcov[i][j]);  
     }    if (mobilav!=0) {
     fscanf(ficpar,"\n");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     if(mle==1)      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
       printf("\n");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     fprintf(ficlog,"\n");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     fprintf(ficparo,"\n");      }
   }    }
   for(i=1; i <=npar; i++)  
     for(j=i+1;j<=npar;j++)    stepsize=(int) (stepm+YEARM-1)/YEARM;
       matcov[i][j]=matcov[j][i];    if (stepm<=12) stepsize=1;
        
   if(mle==1)    agelim=AGESUP;
     printf("\n");    
   fprintf(ficlog,"\n");    hstepm=1;
     hstepm=hstepm/stepm; 
     
     /*-------- Rewriting paramater file ----------*/    if (popforecast==1) {
      strcpy(rfileres,"r");    /* "Rparameterfile */      if((ficpop=fopen(popfile,"r"))==NULL) {
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        printf("Problem with population file : %s\n",popfile);exit(0);
      strcat(rfileres,".");    /* */        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
      strcat(rfileres,optionfilext);    /* Other files have txt extension */      } 
     if((ficres =fopen(rfileres,"w"))==NULL) {      popage=ivector(0,AGESUP);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;      popeffectif=vector(0,AGESUP);
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;      popcount=vector(0,AGESUP);
     }      
     fprintf(ficres,"#%s\n",version);      i=1;   
          while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
     /*-------- data file ----------*/     
     if((fic=fopen(datafile,"r"))==NULL)    {      imx=i;
       printf("Problem with datafile: %s\n", datafile);goto end;      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;    }
     }  
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
     n= lastobs;     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     severity = vector(1,maxwav);        k=k+1;
     outcome=imatrix(1,maxwav+1,1,n);        fprintf(ficrespop,"\n#******");
     num=ivector(1,n);        for(j=1;j<=cptcoveff;j++) {
     moisnais=vector(1,n);          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     annais=vector(1,n);        }
     moisdc=vector(1,n);        fprintf(ficrespop,"******\n");
     andc=vector(1,n);        fprintf(ficrespop,"# Age");
     agedc=vector(1,n);        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
     cod=ivector(1,n);        if (popforecast==1)  fprintf(ficrespop," [Population]");
     weight=vector(1,n);        
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        for (cpt=0; cpt<=0;cpt++) { 
     mint=matrix(1,maxwav,1,n);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
     anint=matrix(1,maxwav,1,n);          
     s=imatrix(1,maxwav+1,1,n);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
     adl=imatrix(1,maxwav+1,1,n);                nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
     tab=ivector(1,NCOVMAX);            nhstepm = nhstepm/hstepm; 
     ncodemax=ivector(1,8);            
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     i=1;            oldm=oldms;savm=savms;
     while (fgets(line, MAXLINE, fic) != NULL)    {            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
       if ((i >= firstobs) && (i <=lastobs)) {          
                    for (h=0; h<=nhstepm; h++){
         for (j=maxwav;j>=1;j--){              if (h==(int) (calagedatem+YEARM*cpt)) {
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
           strcpy(line,stra);              } 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              for(j=1; j<=nlstate+ndeath;j++) {
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);                kk1=0.;kk2=0;
         }                for(i=1; i<=nlstate;i++) {              
                          if (mobilav==1) 
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);                  else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);                  }
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);                }
                 if (h==(int)(calagedatem+12*cpt)){
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
         for (j=ncovcol;j>=1;j--){                    /*fprintf(ficrespop," %.3f", kk1);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
         }                }
         num[i]=atol(stra);              }
                      for(i=1; i<=nlstate;i++){
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){                kk1=0.;
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/                  for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
         i=i+1;                  }
       }                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
     }              }
     /* printf("ii=%d", ij);  
        scanf("%d",i);*/              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
   imx=i-1; /* Number of individuals */                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
   /* for (i=1; i<=imx; i++){            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;          }
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        }
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;   
     }*/    /******/
    /*  for (i=1; i<=imx; i++){  
      if (s[4][i]==9)  s[4][i]=-1;        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
            for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
              nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   /* Calculation of the number of parameter from char model*/            nhstepm = nhstepm/hstepm; 
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */            
   Tprod=ivector(1,15);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   Tvaraff=ivector(1,15);            oldm=oldms;savm=savms;
   Tvard=imatrix(1,15,1,2);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   Tage=ivector(1,15);                  for (h=0; h<=nhstepm; h++){
                  if (h==(int) (calagedatem+YEARM*cpt)) {
   if (strlen(model) >1){                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     j=0, j1=0, k1=1, k2=1;              } 
     j=nbocc(model,'+');              for(j=1; j<=nlstate+ndeath;j++) {
     j1=nbocc(model,'*');                kk1=0.;kk2=0;
     cptcovn=j+1;                for(i=1; i<=nlstate;i++) {              
     cptcovprod=j1;                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                    }
     strcpy(modelsav,model);                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){              }
       printf("Error. Non available option model=%s ",model);            }
       fprintf(ficlog,"Error. Non available option model=%s ",model);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       goto end;          }
     }        }
         } 
     for(i=(j+1); i>=1;i--){    }
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */   
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  
       /*scanf("%d",i);*/    if (popforecast==1) {
       if (strchr(strb,'*')) {  /* Model includes a product */      free_ivector(popage,0,AGESUP);
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/      free_vector(popeffectif,0,AGESUP);
         if (strcmp(strc,"age")==0) { /* Vn*age */      free_vector(popcount,0,AGESUP);
           cptcovprod--;    }
           cutv(strb,stre,strd,'V');    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           cptcovage++;    fclose(ficrespop);
             Tage[cptcovage]=i;  }
             /*printf("stre=%s ", stre);*/  
         }  /***********************************************/
         else if (strcmp(strd,"age")==0) { /* or age*Vn */  /**************** Main Program *****************/
           cptcovprod--;  /***********************************************/
           cutv(strb,stre,strc,'V');  
           Tvar[i]=atoi(stre);  int main(int argc, char *argv[])
           cptcovage++;  {
           Tage[cptcovage]=i;    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
         }    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
         else {  /* Age is not in the model */    double agedeb, agefin,hf;
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
           Tvar[i]=ncovcol+k1;  
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */    double fret;
           Tprod[k1]=i;    double **xi,tmp,delta;
           Tvard[k1][1]=atoi(strc); /* m*/  
           Tvard[k1][2]=atoi(stre); /* n */    double dum; /* Dummy variable */
           Tvar[cptcovn+k2]=Tvard[k1][1];    double ***p3mat;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    double ***mobaverage;
           for (k=1; k<=lastobs;k++)    int *indx;
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    char line[MAXLINE], linepar[MAXLINE];
           k1++;    char path[80],pathc[80],pathcd[80],pathtot[80],model[80];
           k2=k2+2;    int firstobs=1, lastobs=10;
         }    int sdeb, sfin; /* Status at beginning and end */
       }    int c,  h , cpt,l;
       else { /* no more sum */    int ju,jl, mi;
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
        /*  scanf("%d",i);*/    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
       cutv(strd,strc,strb,'V');    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
       Tvar[i]=atoi(strc);    int mobilav=0,popforecast=0;
       }    int hstepm, nhstepm;
       strcpy(modelsav,stra);      double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
         scanf("%d",i);*/  
     } /* end of loop + */    double bage, fage, age, agelim, agebase;
   } /* end model */    double ftolpl=FTOL;
      double **prlim;
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    double *severity;
   printf("cptcovprod=%d ", cptcovprod);    double ***param; /* Matrix of parameters */
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);    double  *p;
   scanf("%d ",i);*/    double **matcov; /* Matrix of covariance */
     fclose(fic);    double ***delti3; /* Scale */
     double *delti; /* Scale */
     /*  if(mle==1){*/    double ***eij, ***vareij;
     if (weightopt != 1) { /* Maximisation without weights*/    double **varpl; /* Variances of prevalence limits by age */
       for(i=1;i<=n;i++) weight[i]=1.0;    double *epj, vepp;
     }    double kk1, kk2;
     /*-calculation of age at interview from date of interview and age at death -*/    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     agev=matrix(1,maxwav,1,imx);  
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     for (i=1; i<=imx; i++) {  
       for(m=2; (m<= maxwav); m++) {  
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    char z[1]="c", occ;
          anint[m][i]=9999;  #include <sys/time.h>
          s[m][i]=-1;  #include <time.h>
        }    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;   
       }    /* long total_usecs;
     }       struct timeval start_time, end_time;
     
     for (i=1; i<=imx; i++)  {       gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    getcwd(pathcd, size);
       for(m=1; (m<= maxwav); m++){  
         if(s[m][i] >0){    printf("\n%s",version);
           if (s[m][i] >= nlstate+1) {    if(argc <=1){
             if(agedc[i]>0)      printf("\nEnter the parameter file name: ");
               if(moisdc[i]!=99 && andc[i]!=9999)      scanf("%s",pathtot);
                 agev[m][i]=agedc[i];    }
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    else{
            else {      strcpy(pathtot,argv[1]);
               if (andc[i]!=9999){    }
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);    /*cygwin_split_path(pathtot,path,optionfile);
               agev[m][i]=-1;      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
               }    /* cutv(path,optionfile,pathtot,'\\');*/
             }  
           }    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
           else if(s[m][i] !=9){ /* Should no more exist */    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    chdir(path);
             if(mint[m][i]==99 || anint[m][i]==9999)    replace(pathc,path);
               agev[m][i]=1;  
             else if(agev[m][i] <agemin){    /*-------- arguments in the command line --------*/
               agemin=agev[m][i];  
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    /* Log file */
             }    strcat(filelog, optionfilefiname);
             else if(agev[m][i] >agemax){    strcat(filelog,".log");    /* */
               agemax=agev[m][i];    if((ficlog=fopen(filelog,"w"))==NULL)    {
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/      printf("Problem with logfile %s\n",filelog);
             }      goto end;
             /*agev[m][i]=anint[m][i]-annais[i];*/    }
             /*   agev[m][i] = age[i]+2*m;*/    fprintf(ficlog,"Log filename:%s\n",filelog);
           }    fprintf(ficlog,"\n%s",version);
           else { /* =9 */    fprintf(ficlog,"\nEnter the parameter file name: ");
             agev[m][i]=1;    fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
             s[m][i]=-1;    fflush(ficlog);
           }  
         }    /* */
         else /*= 0 Unknown */    strcpy(fileres,"r");
           agev[m][i]=1;    strcat(fileres, optionfilefiname);
       }    strcat(fileres,".txt");    /* Other files have txt extension */
      
     }    /*---------arguments file --------*/
     for (i=1; i<=imx; i++)  {  
       for(m=1; (m<= maxwav); m++){    if((ficpar=fopen(optionfile,"r"))==NULL)    {
         if (s[m][i] > (nlstate+ndeath)) {      printf("Problem with optionfile %s\n",optionfile);
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);        fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);        goto end;
           goto end;    }
         }  
       }    strcpy(filereso,"o");
     }    strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) {
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      printf("Problem with Output resultfile: %s\n", filereso);
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       goto end;
     free_vector(severity,1,maxwav);    }
     free_imatrix(outcome,1,maxwav+1,1,n);  
     free_vector(moisnais,1,n);    /* Reads comments: lines beginning with '#' */
     free_vector(annais,1,n);    while((c=getc(ficpar))=='#' && c!= EOF){
     /* free_matrix(mint,1,maxwav,1,n);      ungetc(c,ficpar);
        free_matrix(anint,1,maxwav,1,n);*/      fgets(line, MAXLINE, ficpar);
     free_vector(moisdc,1,n);      puts(line);
     free_vector(andc,1,n);      fputs(line,ficparo);
     }
        ungetc(c,ficpar);
     wav=ivector(1,imx);  
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
        fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     /* Concatenates waves */    while((c=getc(ficpar))=='#' && c!= EOF){
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       Tcode=ivector(1,100);      fputs(line,ficparo);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    }
       ncodemax[1]=1;    ungetc(c,ficpar);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    
           
    codtab=imatrix(1,100,1,10);    covar=matrix(0,NCOVMAX,1,n); 
    h=0;    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
    m=pow(2,cptcoveff);    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
    
    for(k=1;k<=cptcoveff; k++){    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
      for(i=1; i <=(m/pow(2,k));i++){    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
        for(j=1; j <= ncodemax[k]; j++){    
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    /* Read guess parameters */
            h++;    /* Reads comments: lines beginning with '#' */
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    while((c=getc(ficpar))=='#' && c!= EOF){
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/      ungetc(c,ficpar);
          }      fgets(line, MAXLINE, ficpar);
        }      puts(line);
      }      fputs(line,ficparo);
    }    }
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    ungetc(c,ficpar);
       codtab[1][2]=1;codtab[2][2]=2; */    
    /* for(i=1; i <=m ;i++){    param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(k=1; k <=cptcovn; k++){    for(i=1; i <=nlstate; i++)
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);      for(j=1; j <=nlstate+ndeath-1; j++){
       }        fscanf(ficpar,"%1d%1d",&i1,&j1);
       printf("\n");        fprintf(ficparo,"%1d%1d",i1,j1);
       }        if(mle==1)
       scanf("%d",i);*/          printf("%1d%1d",i,j);
            fprintf(ficlog,"%1d%1d",i,j);
    /* Calculates basic frequencies. Computes observed prevalence at single age        for(k=1; k<=ncovmodel;k++){
        and prints on file fileres'p'. */          fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
                printf(" %lf",param[i][j][k]);
                fprintf(ficlog," %lf",param[i][j][k]);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          else
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            fprintf(ficlog," %lf",param[i][j][k]);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficparo," %lf",param[i][j][k]);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        }
              fscanf(ficpar,"\n");
     /* For Powell, parameters are in a vector p[] starting at p[1]        if(mle==1)
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          printf("\n");
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */        fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
     if(mle==1){      }
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    
     }    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
      
     /*--------- results files --------------*/    p=param[1][1];
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    
      /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
    jk=1;      ungetc(c,ficpar);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      fgets(line, MAXLINE, ficpar);
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      puts(line);
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      fputs(line,ficparo);
    for(i=1,jk=1; i <=nlstate; i++){    }
      for(k=1; k <=(nlstate+ndeath); k++){    ungetc(c,ficpar);
        if (k != i)  
          {    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
            printf("%d%d ",i,k);    /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
            fprintf(ficlog,"%d%d ",i,k);    for(i=1; i <=nlstate; i++){
            fprintf(ficres,"%1d%1d ",i,k);      for(j=1; j <=nlstate+ndeath-1; j++){
            for(j=1; j <=ncovmodel; j++){        fscanf(ficpar,"%1d%1d",&i1,&j1);
              printf("%f ",p[jk]);        printf("%1d%1d",i,j);
              fprintf(ficlog,"%f ",p[jk]);        fprintf(ficparo,"%1d%1d",i1,j1);
              fprintf(ficres,"%f ",p[jk]);        for(k=1; k<=ncovmodel;k++){
              jk++;          fscanf(ficpar,"%le",&delti3[i][j][k]);
            }          printf(" %le",delti3[i][j][k]);
            printf("\n");          fprintf(ficparo," %le",delti3[i][j][k]);
            fprintf(ficlog,"\n");        }
            fprintf(ficres,"\n");        fscanf(ficpar,"\n");
          }        printf("\n");
      }        fprintf(ficparo,"\n");
    }      }
    if(mle==1){    }
      /* Computing hessian and covariance matrix */    delti=delti3[1][1];
      ftolhess=ftol; /* Usually correct */  
      hesscov(matcov, p, npar, delti, ftolhess, func);  
    }    /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    
    printf("# Scales (for hessian or gradient estimation)\n");    /* Reads comments: lines beginning with '#' */
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");    while((c=getc(ficpar))=='#' && c!= EOF){
    for(i=1,jk=1; i <=nlstate; i++){      ungetc(c,ficpar);
      for(j=1; j <=nlstate+ndeath; j++){      fgets(line, MAXLINE, ficpar);
        if (j!=i) {      puts(line);
          fprintf(ficres,"%1d%1d",i,j);      fputs(line,ficparo);
          printf("%1d%1d",i,j);    }
          fprintf(ficlog,"%1d%1d",i,j);    ungetc(c,ficpar);
          for(k=1; k<=ncovmodel;k++){    
            printf(" %.5e",delti[jk]);    matcov=matrix(1,npar,1,npar);
            fprintf(ficlog," %.5e",delti[jk]);    for(i=1; i <=npar; i++){
            fprintf(ficres," %.5e",delti[jk]);      fscanf(ficpar,"%s",&str);
            jk++;      if(mle==1)
          }        printf("%s",str);
          printf("\n");      fprintf(ficlog,"%s",str);
          fprintf(ficlog,"\n");      fprintf(ficparo,"%s",str);
          fprintf(ficres,"\n");      for(j=1; j <=i; j++){
        }        fscanf(ficpar," %le",&matcov[i][j]);
      }        if(mle==1){
    }          printf(" %.5le",matcov[i][j]);
              fprintf(ficlog," %.5le",matcov[i][j]);
    k=1;        }
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        else
    if(mle==1)          fprintf(ficlog," %.5le",matcov[i][j]);
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        fprintf(ficparo," %.5le",matcov[i][j]);
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      }
    for(i=1;i<=npar;i++){      fscanf(ficpar,"\n");
      /*  if (k>nlstate) k=1;      if(mle==1)
          i1=(i-1)/(ncovmodel*nlstate)+1;        printf("\n");
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);      fprintf(ficlog,"\n");
          printf("%s%d%d",alph[k],i1,tab[i]);*/      fprintf(ficparo,"\n");
      fprintf(ficres,"%3d",i);    }
      if(mle==1)    for(i=1; i <=npar; i++)
        printf("%3d",i);      for(j=i+1;j<=npar;j++)
      fprintf(ficlog,"%3d",i);        matcov[i][j]=matcov[j][i];
      for(j=1; j<=i;j++){     
        fprintf(ficres," %.5e",matcov[i][j]);    if(mle==1)
        if(mle==1)      printf("\n");
          printf(" %.5e",matcov[i][j]);    fprintf(ficlog,"\n");
        fprintf(ficlog," %.5e",matcov[i][j]);  
      }  
      fprintf(ficres,"\n");    /*-------- Rewriting paramater file ----------*/
      if(mle==1)    strcpy(rfileres,"r");    /* "Rparameterfile */
        printf("\n");    strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
      fprintf(ficlog,"\n");    strcat(rfileres,".");    /* */
      k++;    strcat(rfileres,optionfilext);    /* Other files have txt extension */
    }    if((ficres =fopen(rfileres,"w"))==NULL) {
          printf("Problem writing new parameter file: %s\n", fileres);goto end;
    while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
      ungetc(c,ficpar);    }
      fgets(line, MAXLINE, ficpar);    fprintf(ficres,"#%s\n",version);
      puts(line);      
      fputs(line,ficparo);    /*-------- data file ----------*/
    }    if((fic=fopen(datafile,"r"))==NULL)    {
    ungetc(c,ficpar);      printf("Problem with datafile: %s\n", datafile);goto end;
    estepm=0;      fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    }
    if (estepm==0 || estepm < stepm) estepm=stepm;  
    if (fage <= 2) {    n= lastobs;
      bage = ageminpar;    severity = vector(1,maxwav);
      fage = agemaxpar;    outcome=imatrix(1,maxwav+1,1,n);
    }    num=ivector(1,n);
        moisnais=vector(1,n);
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    annais=vector(1,n);
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    moisdc=vector(1,n);
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    andc=vector(1,n);
        agedc=vector(1,n);
    while((c=getc(ficpar))=='#' && c!= EOF){    cod=ivector(1,n);
      ungetc(c,ficpar);    weight=vector(1,n);
      fgets(line, MAXLINE, ficpar);    for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
      puts(line);    mint=matrix(1,maxwav,1,n);
      fputs(line,ficparo);    anint=matrix(1,maxwav,1,n);
    }    s=imatrix(1,maxwav+1,1,n);
    ungetc(c,ficpar);    tab=ivector(1,NCOVMAX);
      ncodemax=ivector(1,8);
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);  
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    i=1;
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    while (fgets(line, MAXLINE, fic) != NULL)    {
          if ((i >= firstobs) && (i <=lastobs)) {
    while((c=getc(ficpar))=='#' && c!= EOF){          
      ungetc(c,ficpar);        for (j=maxwav;j>=1;j--){
      fgets(line, MAXLINE, ficpar);          cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
      puts(line);          strcpy(line,stra);
      fputs(line,ficparo);          cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
    }          cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
    ungetc(c,ficpar);        }
            
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;        cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;  
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
   fscanf(ficpar,"pop_based=%d\n",&popbased);        cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   fprintf(ficparo,"pop_based=%d\n",popbased);    
   fprintf(ficres,"pop_based=%d\n",popbased);          cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
          for (j=ncovcol;j>=1;j--){
   while((c=getc(ficpar))=='#' && c!= EOF){          cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
     ungetc(c,ficpar);        } 
     fgets(line, MAXLINE, ficpar);        num[i]=atol(stra);
     puts(line);          
     fputs(line,ficparo);        /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
   }          printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   ungetc(c,ficpar);  
         i=i+1;
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);      }
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    }
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
 while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    /* for (i=1; i<=imx; i++){
     fgets(line, MAXLINE, ficpar);      if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
     puts(line);      if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
     fputs(line,ficparo);      if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
   }      }*/
   ungetc(c,ficpar);     /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);       printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);   for (i=1; i<=imx; i++)
    
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);     /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
 /*------------ gnuplot -------------*/  
   strcpy(optionfilegnuplot,optionfilefiname);    /* Calculation of the number of parameter from char model*/
   strcat(optionfilegnuplot,".gp");    Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {    Tprod=ivector(1,15); 
     printf("Problem with file %s",optionfilegnuplot);    Tvaraff=ivector(1,15); 
   }    Tvard=imatrix(1,15,1,2);
   fclose(ficgp);    Tage=ivector(1,15);      
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);     
 /*--------- index.htm --------*/    if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
   strcpy(optionfilehtm,optionfile);      j=nbocc(model,'+'); /* j=Number of '+' */
   strcat(optionfilehtm,".htm");      j1=nbocc(model,'*'); /* j1=Number of '*' */
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {      cptcovn=j+1; 
     printf("Problem with %s \n",optionfilehtm), exit(0);      cptcovprod=j1; /*Number of products */
   }      
       strcpy(modelsav,model); 
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n      if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n        printf("Error. Non available option model=%s ",model);
 \n        fprintf(ficlog,"Error. Non available option model=%s ",model);
 Total number of observations=%d <br>\n        goto end;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n      }
 <hr  size=\"2\" color=\"#EC5E5E\">      
  <ul><li><h4>Parameter files</h4>\n      /* This loop fills the array Tvar from the string 'model'.*/
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n  
  - Log file of the run: <a href=\"%s\">%s</a><br>\n      for(i=(j+1); i>=1;i--){
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);        cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
   fclose(fichtm);        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);        /*scanf("%d",i);*/
          if (strchr(strb,'*')) {  /* Model includes a product */
 /*------------ free_vector  -------------*/          cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
  chdir(path);          if (strcmp(strc,"age")==0) { /* Vn*age */
              cptcovprod--;
  free_ivector(wav,1,imx);            cutv(strb,stre,strd,'V');
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);            Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);              cptcovage++;
  free_ivector(num,1,n);              Tage[cptcovage]=i;
  free_vector(agedc,1,n);              /*printf("stre=%s ", stre);*/
  /*free_matrix(covar,1,NCOVMAX,1,n);*/          }
  fclose(ficparo);          else if (strcmp(strd,"age")==0) { /* or age*Vn */
  fclose(ficres);            cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
   /*--------------- Prevalence limit --------------*/            cptcovage++;
              Tage[cptcovage]=i;
   strcpy(filerespl,"pl");          }
   strcat(filerespl,fileres);          else {  /* Age is not in the model */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;            Tvar[i]=ncovcol+k1;
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
   }            Tprod[k1]=i;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);            Tvard[k1][1]=atoi(strc); /* m*/
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);            Tvard[k1][2]=atoi(stre); /* n */
   fprintf(ficrespl,"#Prevalence limit\n");            Tvar[cptcovn+k2]=Tvard[k1][1];
   fprintf(ficrespl,"#Age ");            Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);            for (k=1; k<=lastobs;k++) 
   fprintf(ficrespl,"\n");              covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
              k1++;
   prlim=matrix(1,nlstate,1,nlstate);            k2=k2+2;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          }
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        else { /* no more sum */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */         /*  scanf("%d",i);*/
   k=0;        cutv(strd,strc,strb,'V');
   agebase=ageminpar;        Tvar[i]=atoi(strc);
   agelim=agemaxpar;        }
   ftolpl=1.e-10;        strcpy(modelsav,stra);  
   i1=cptcoveff;        /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
   if (cptcovn < 1){i1=1;}          scanf("%d",i);*/
       } /* end of loop + */
   for(cptcov=1;cptcov<=i1;cptcov++){    } /* end model */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    
         k=k+1;    /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
         fprintf(ficrespl,"\n#******");  
         printf("\n#******");    /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
         fprintf(ficlog,"\n#******");    printf("cptcovprod=%d ", cptcovprod);
         for(j=1;j<=cptcoveff;j++) {    fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    scanf("%d ",i);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fclose(fic);*/
         }  
         fprintf(ficrespl,"******\n");      /*  if(mle==1){*/
         printf("******\n");    if (weightopt != 1) { /* Maximisation without weights*/
         fprintf(ficlog,"******\n");      for(i=1;i<=n;i++) weight[i]=1.0;
            }
         for (age=agebase; age<=agelim; age++){      /*-calculation of age at interview from date of interview and age at death -*/
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    agev=matrix(1,maxwav,1,imx);
           fprintf(ficrespl,"%.0f",age );  
           for(i=1; i<=nlstate;i++)    for (i=1; i<=imx; i++) {
           fprintf(ficrespl," %.5f", prlim[i][i]);      for(m=2; (m<= maxwav); m++) {
           fprintf(ficrespl,"\n");        if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
         }          anint[m][i]=9999;
       }          s[m][i]=-1;
     }        }
   fclose(ficrespl);        if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
   /*------------- h Pij x at various ages ------------*/          fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
            s[m][i]=-1;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        }
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          printf("Error! Month of death of individual %d on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;          fprintf(ficlog,"Error! Month of death of individual %d on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
   }          s[m][i]=-1;
   printf("Computing pij: result on file '%s' \n", filerespij);        }
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);      }
      }
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   /*if (stepm<=24) stepsize=2;*/    for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
   agelim=AGESUP;      for(m=firstpass; (m<= lastpass); m++){
   hstepm=stepsize*YEARM; /* Every year of age */        if(s[m][i] >0){
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */          if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
   /* hstepm=1;   aff par mois*/              if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
   k=0;            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
   for(cptcov=1;cptcov<=i1;cptcov++){              else {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                if ((int)andc[i]!=9999){
       k=k+1;                  printf("Warning negative age at death: %d line:%d\n",num[i],i);
         fprintf(ficrespij,"\n#****** ");                  fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
         for(j=1;j<=cptcoveff;j++)                  agev[m][i]=-1;
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                }
         fprintf(ficrespij,"******\n");              }
                  }
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          else if(s[m][i] !=9){ /* Standard case, age in fractional
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                                   years but with the precision of a
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                                   month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
           /*      nhstepm=nhstepm*YEARM; aff par mois*/            if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            else if(agev[m][i] <agemin){ 
           oldm=oldms;savm=savms;              agemin=agev[m][i];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
           fprintf(ficrespij,"# Age");            }
           for(i=1; i<=nlstate;i++)            else if(agev[m][i] >agemax){
             for(j=1; j<=nlstate+ndeath;j++)              agemax=agev[m][i];
               fprintf(ficrespij," %1d-%1d",i,j);              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
           fprintf(ficrespij,"\n");            }
            for (h=0; h<=nhstepm; h++){            /*agev[m][i]=anint[m][i]-annais[i];*/
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );            /*     agev[m][i] = age[i]+2*m;*/
             for(i=1; i<=nlstate;i++)          }
               for(j=1; j<=nlstate+ndeath;j++)          else { /* =9 */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);            agev[m][i]=1;
             fprintf(ficrespij,"\n");            s[m][i]=-1;
              }          }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
           fprintf(ficrespij,"\n");        else /*= 0 Unknown */
         }          agev[m][i]=1;
     }      }
   }      
     }
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
   fclose(ficrespij);        if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
   /*---------- Forecasting ------------------*/          goto end;
   if((stepm == 1) && (strcmp(model,".")==0)){        }
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);      }
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);    }
   }  
   else{    /*for (i=1; i<=imx; i++){
     erreur=108;    for (m=firstpass; (m<lastpass); m++){
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);       printf("%d %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);  }
   }  
    }*/
   
   /*---------- Health expectancies and variances ------------*/    printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   strcpy(filerest,"t");  
   strcat(filerest,fileres);    free_vector(severity,1,maxwav);
   if((ficrest=fopen(filerest,"w"))==NULL) {    free_imatrix(outcome,1,maxwav+1,1,n);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    free_vector(moisnais,1,n);
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;    free_vector(annais,1,n);
   }    /* free_matrix(mint,1,maxwav,1,n);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);       free_matrix(anint,1,maxwav,1,n);*/
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);    free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
   strcpy(filerese,"e");     
   strcat(filerese,fileres);    wav=ivector(1,imx);
   if((ficreseij=fopen(filerese,"w"))==NULL) {    dh=imatrix(1,lastpass-firstpass+1,1,imx);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    bh=imatrix(1,lastpass-firstpass+1,1,imx);
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    mw=imatrix(1,lastpass-firstpass+1,1,imx);
   }     
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    /* Concatenates waves */
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);    concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
   strcpy(fileresv,"v");    /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    Tcode=ivector(1,100);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);    ncodemax[1]=1;
   }    if (cptcovn > 0) tricode(Tvar,nbcode,imx);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
   calagedate=-1;                                   the estimations*/
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    h=0;
     m=pow(2,cptcoveff);
   k=0;   
   for(cptcov=1;cptcov<=i1;cptcov++){    for(k=1;k<=cptcoveff; k++){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      for(i=1; i <=(m/pow(2,k));i++){
       k=k+1;        for(j=1; j <= ncodemax[k]; j++){
       fprintf(ficrest,"\n#****** ");          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
       for(j=1;j<=cptcoveff;j++)            h++;
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
       fprintf(ficrest,"******\n");            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
       fprintf(ficreseij,"\n#****** ");        }
       for(j=1;j<=cptcoveff;j++)      }
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    } 
       fprintf(ficreseij,"******\n");    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
       fprintf(ficresvij,"\n#****** ");    /* for(i=1; i <=m ;i++){ 
       for(j=1;j<=cptcoveff;j++)       for(k=1; k <=cptcovn; k++){
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
       fprintf(ficresvij,"******\n");       }
        printf("\n");
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);       }
       oldm=oldms;savm=savms;       scanf("%d",i);*/
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);        
      /* Calculates basic frequencies. Computes observed prevalence at single age
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);       and prints on file fileres'p'. */
       oldm=oldms;savm=savms;  
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);      pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       if(popbased==1){      oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);      newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
        }      savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
        
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");     
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    /* For Powell, parameters are in a vector p[] starting at p[1]
       fprintf(ficrest,"\n");       so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
       epj=vector(1,nlstate+1);  
       for(age=bage; age <=fage ;age++){    if(mle>=1){ /* Could be 1 or 2 */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
         if (popbased==1) {    }
           for(i=1; i<=nlstate;i++)      
             prlim[i][i]=probs[(int)age][i][k];    /*--------- results files --------------*/
         }    fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
            
         fprintf(ficrest," %4.0f",age);  
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    jk=1;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
           }    for(i=1,jk=1; i <=nlstate; i++){
           epj[nlstate+1] +=epj[j];      for(k=1; k <=(nlstate+ndeath); k++){
         }        if (k != i) 
           {
         for(i=1, vepp=0.;i <=nlstate;i++)            printf("%d%d ",i,k);
           for(j=1;j <=nlstate;j++)            fprintf(ficlog,"%d%d ",i,k);
             vepp += vareij[i][j][(int)age];            fprintf(ficres,"%1d%1d ",i,k);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));            for(j=1; j <=ncovmodel; j++){
         for(j=1;j <=nlstate;j++){              printf("%f ",p[jk]);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));              fprintf(ficlog,"%f ",p[jk]);
         }              fprintf(ficres,"%f ",p[jk]);
         fprintf(ficrest,"\n");              jk++; 
       }            }
     }            printf("\n");
   }            fprintf(ficlog,"\n");
 free_matrix(mint,1,maxwav,1,n);            fprintf(ficres,"\n");
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);          }
     free_vector(weight,1,n);      }
   fclose(ficreseij);    }
   fclose(ficresvij);    if(mle==1){
   fclose(ficrest);      /* Computing hessian and covariance matrix */
   fclose(ficpar);      ftolhess=ftol; /* Usually correct */
   free_vector(epj,1,nlstate+1);      hesscov(matcov, p, npar, delti, ftolhess, func);
      }
   /*------- Variance limit prevalence------*/      fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
   strcpy(fileresvpl,"vpl");    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
   strcat(fileresvpl,fileres);    for(i=1,jk=1; i <=nlstate; i++){
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      for(j=1; j <=nlstate+ndeath; j++){
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        if (j!=i) {
     exit(0);          fprintf(ficres,"%1d%1d",i,j);
   }          printf("%1d%1d",i,j);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);          fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
   k=0;            printf(" %.5e",delti[jk]);
   for(cptcov=1;cptcov<=i1;cptcov++){            fprintf(ficlog," %.5e",delti[jk]);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            fprintf(ficres," %.5e",delti[jk]);
       k=k+1;            jk++;
       fprintf(ficresvpl,"\n#****** ");          }
       for(j=1;j<=cptcoveff;j++)          printf("\n");
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          fprintf(ficlog,"\n");
       fprintf(ficresvpl,"******\n");          fprintf(ficres,"\n");
              }
       varpl=matrix(1,nlstate,(int) bage, (int) fage);      }
       oldm=oldms;savm=savms;    }
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);     
     }    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
  }    if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
   fclose(ficresvpl);    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
   /*---------- End : free ----------------*/      /*  if (k>nlstate) k=1;
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          i1=(i-1)/(ncovmodel*nlstate)+1; 
            fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          printf("%s%d%d",alph[k],i1,tab[i]);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      */
        fprintf(ficres,"%3d",i);
        if(mle==1)
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        printf("%3d",i);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      fprintf(ficlog,"%3d",i);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      for(j=1; j<=i;j++){
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);        fprintf(ficres," %.5e",matcov[i][j]);
          if(mle==1)
   free_matrix(matcov,1,npar,1,npar);          printf(" %.5e",matcov[i][j]);
   free_vector(delti,1,npar);        fprintf(ficlog," %.5e",matcov[i][j]);
   free_matrix(agev,1,maxwav,1,imx);      }
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      fprintf(ficres,"\n");
       if(mle==1)
   fprintf(fichtm,"\n</body>");        printf("\n");
   fclose(fichtm);      fprintf(ficlog,"\n");
   fclose(ficgp);      k++;
      }
      
   if(erreur >0){    while((c=getc(ficpar))=='#' && c!= EOF){
     printf("End of Imach with error or warning %d\n",erreur);      ungetc(c,ficpar);
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);      fgets(line, MAXLINE, ficpar);
   }else{      puts(line);
    printf("End of Imach\n");      fputs(line,ficparo);
    fprintf(ficlog,"End of Imach\n");    }
   }    ungetc(c,ficpar);
   printf("See log file on %s\n",filelog);  
   fclose(ficlog);    estepm=0;
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
      if (estepm==0 || estepm < stepm) estepm=stepm;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    if (fage <= 2) {
   /*printf("Total time was %d uSec.\n", total_usecs);*/      bage = ageminpar;
   /*------ End -----------*/      fage = agemaxpar;
     }
      
  end:    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
 #ifdef windows    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
   /* chdir(pathcd);*/    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 #endif     
  /*system("wgnuplot graph.plt");*/    while((c=getc(ficpar))=='#' && c!= EOF){
  /*system("../gp37mgw/wgnuplot graph.plt");*/      ungetc(c,ficpar);
  /*system("cd ../gp37mgw");*/      fgets(line, MAXLINE, ficpar);
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      puts(line);
  strcpy(plotcmd,GNUPLOTPROGRAM);      fputs(line,ficparo);
  strcat(plotcmd," ");    }
  strcat(plotcmd,optionfilegnuplot);    ungetc(c,ficpar);
  system(plotcmd);    
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
 #ifdef windows    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
   while (z[0] != 'q') {    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     /* chdir(path); */    printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     scanf("%s",z);     
     if (z[0] == 'c') system("./imach");    while((c=getc(ficpar))=='#' && c!= EOF){
     else if (z[0] == 'e') system(optionfilehtm);      ungetc(c,ficpar);
     else if (z[0] == 'g') system(plotcmd);      fgets(line, MAXLINE, ficpar);
     else if (z[0] == 'q') exit(0);      puts(line);
   }      fputs(line,ficparo);
 #endif    }
 }    ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
   \n
   Total number of observations=%d <br>\n
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
   <hr  size=\"2\" color=\"#EC5E5E\">
    <ul><li><h4>Parameter files</h4>\n
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
    - Log file of the run: <a href=\"%s\">%s</a><br>\n
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,agemin,agemax,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
      fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_ivector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     
     /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
     /*printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.52  
changed lines
  Added in v.1.79


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>