Diff for /imach/src/imach.c between versions 1.43 and 1.53

version 1.43, 2002/05/24 13:00:54 version 1.53, 2002/07/23 23:59:37
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain     Interpolated Markov Chain
   
   Short summary of the programme:    Short summary of the programme:
      
   This program computes Healthy Life Expectancies from    This program computes Healthy Life Expectancies from
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   first survey ("cross") where individuals from different ages are    first survey ("cross") where individuals from different ages are
   interviewed on their health status or degree of disability (in the    interviewed on their health status or degree of disability (in the
   case of a health survey which is our main interest) -2- at least a    case of a health survey which is our main interest) -2- at least a
   second wave of interviews ("longitudinal") which measure each change    second wave of interviews ("longitudinal") which measure each change
   (if any) in individual health status.  Health expectancies are    (if any) in individual health status.  Health expectancies are
   computed from the time spent in each health state according to a    computed from the time spent in each health state according to a
   model. More health states you consider, more time is necessary to reach the    model. More health states you consider, more time is necessary to reach the
   Maximum Likelihood of the parameters involved in the model.  The    Maximum Likelihood of the parameters involved in the model.  The
   simplest model is the multinomial logistic model where pij is the    simplest model is the multinomial logistic model where pij is the
   probability to be observed in state j at the second wave    probability to be observed in state j at the second wave
   conditional to be observed in state i at the first wave. Therefore    conditional to be observed in state i at the first wave. Therefore
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   'age' is age and 'sex' is a covariate. If you want to have a more    'age' is age and 'sex' is a covariate. If you want to have a more
   complex model than "constant and age", you should modify the program    complex model than "constant and age", you should modify the program
   where the markup *Covariates have to be included here again* invites    where the markup *Covariates have to be included here again* invites
   you to do it.  More covariates you add, slower the    you to do it.  More covariates you add, slower the
   convergence.    convergence.
   
   The advantage of this computer programme, compared to a simple    The advantage of this computer programme, compared to a simple
   multinomial logistic model, is clear when the delay between waves is not    multinomial logistic model, is clear when the delay between waves is not
   identical for each individual. Also, if a individual missed an    identical for each individual. Also, if a individual missed an
   intermediate interview, the information is lost, but taken into    intermediate interview, the information is lost, but taken into
   account using an interpolation or extrapolation.      account using an interpolation or extrapolation.  
   
   hPijx is the probability to be observed in state i at age x+h    hPijx is the probability to be observed in state i at age x+h
   conditional to the observed state i at age x. The delay 'h' can be    conditional to the observed state i at age x. The delay 'h' can be
   split into an exact number (nh*stepm) of unobserved intermediate    split into an exact number (nh*stepm) of unobserved intermediate
   states. This elementary transition (by month or quarter trimester,    states. This elementary transition (by month or quarter trimester,
   semester or year) is model as a multinomial logistic.  The hPx    semester or year) is model as a multinomial logistic.  The hPx
   matrix is simply the matrix product of nh*stepm elementary matrices    matrix is simply the matrix product of nh*stepm elementary matrices
   and the contribution of each individual to the likelihood is simply    and the contribution of each individual to the likelihood is simply
   hPijx.    hPijx.
   
   Also this programme outputs the covariance matrix of the parameters but also    Also this programme outputs the covariance matrix of the parameters but also
   of the life expectancies. It also computes the prevalence limits.    of the life expectancies. It also computes the prevalence limits. 
      
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
            Institut national d'études démographiques, Paris.             Institut national d'études démographiques, Paris.
   This software have been partly granted by Euro-REVES, a concerted action    This software have been partly granted by Euro-REVES, a concerted action
   from the European Union.    from the European Union.
   It is copyrighted identically to a GNU software product, ie programme and    It is copyrighted identically to a GNU software product, ie programme and
   software can be distributed freely for non commercial use. Latest version    software can be distributed freely for non commercial use. Latest version
   can be accessed at http://euroreves.ined.fr/imach .    can be accessed at http://euroreves.ined.fr/imach .
   **********************************************************************/    **********************************************************************/
     
 #include <math.h>  #include <math.h>
 #include <stdio.h>  #include <stdio.h>
 #include <stdlib.h>  #include <stdlib.h>
 #include <unistd.h>  #include <unistd.h>
   
 #define MAXLINE 256  #define MAXLINE 256
 #define GNUPLOTPROGRAM "gnuplot"  #define GNUPLOTPROGRAM "gnuplot"
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #define FILENAMELENGTH 80  #define FILENAMELENGTH 80
 /*#define DEBUG*/  /*#define DEBUG*/
 #define windows  #define unix
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 #define NINTERVMAX 8  #define NINTERVMAX 8
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 #define NCOVMAX 8 /* Maximum number of covariates */  #define NCOVMAX 8 /* Maximum number of covariates */
 #define MAXN 20000  #define MAXN 20000
 #define YEARM 12. /* Number of months per year */  #define YEARM 12. /* Number of months per year */
 #define AGESUP 130  #define AGESUP 130
 #define AGEBASE 40  #define AGEBASE 40
   #ifdef windows
   #define DIRSEPARATOR '\\'
 int erreur; /* Error number */  #define ODIRSEPARATOR '/'
 int nvar;  #else
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  #define DIRSEPARATOR '/'
 int npar=NPARMAX;  #define ODIRSEPARATOR '\\'
 int nlstate=2; /* Number of live states */  #endif
 int ndeath=1; /* Number of dead states */  
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  char version[80]="Imach version 0.8j, July 2002, INED-EUROREVES ";
 int popbased=0;  int erreur; /* Error number */
   int nvar;
 int *wav; /* Number of waves for this individuual 0 is possible */  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 int maxwav; /* Maxim number of waves */  int npar=NPARMAX;
 int jmin, jmax; /* min, max spacing between 2 waves */  int nlstate=2; /* Number of live states */
 int mle, weightopt;  int ndeath=1; /* Number of dead states */
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  int popbased=0;
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */  int *wav; /* Number of waves for this individuual 0 is possible */
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  int maxwav; /* Maxim number of waves */
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  int jmin, jmax; /* min, max spacing between 2 waves */
 FILE *ficgp,*ficresprob,*ficpop;  int mle, weightopt;
 FILE *ficreseij;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   char filerese[FILENAMELENGTH];  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
  FILE  *ficresvij;  double jmean; /* Mean space between 2 waves */
   char fileresv[FILENAMELENGTH];  double **oldm, **newm, **savm; /* Working pointers to matrices */
  FILE  *ficresvpl;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   char fileresvpl[FILENAMELENGTH];  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   FILE *ficlog;
 #define NR_END 1  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 #define FREE_ARG char*  FILE *ficresprobmorprev;
 #define FTOL 1.0e-10  FILE *fichtm; /* Html File */
   FILE *ficreseij;
 #define NRANSI  char filerese[FILENAMELENGTH];
 #define ITMAX 200  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
 #define TOL 2.0e-4  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
 #define CGOLD 0.3819660  char title[MAXLINE];
 #define ZEPS 1.0e-10  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   
 #define GOLD 1.618034  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 #define GLIMIT 100.0  char filelog[FILENAMELENGTH]; /* Log file */
 #define TINY 1.0e-20  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
 static double maxarg1,maxarg2;  char popfile[FILENAMELENGTH];
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #define NR_END 1
 #define rint(a) floor(a+0.5)  #define FREE_ARG char*
   #define FTOL 1.0e-10
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #define NRANSI 
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  #define ITMAX 200 
   
 int imx;  #define TOL 2.0e-4 
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/  #define CGOLD 0.3819660 
   #define ZEPS 1.0e-10 
 int estepm;  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
   #define GOLD 1.618034 
 int m,nb;  #define GLIMIT 100.0 
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  #define TINY 1.0e-20 
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;  static double maxarg1,maxarg2;
 double dateintmean=0;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 double *weight;    
 int **s; /* Status */  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 double *agedc, **covar, idx;  #define rint(a) floor(a+0.5)
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  
   static double sqrarg;
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 double ftolhess; /* Tolerance for computing hessian */  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   
 /**************** split *************************/  int imx; 
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  int stepm;
 {  /* Stepm, step in month: minimum step interpolation*/
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  int m,nb;
 #ifdef windows  int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
    s = strrchr( path, '\\' );           /* find last / */  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 #else  double **pmmij, ***probs, ***mobaverage;
    s = strrchr( path, '/' );            /* find last / */  double dateintmean=0;
 #endif  
    if ( s == NULL ) {                   /* no directory, so use current */  double *weight;
 #if     defined(__bsd__)                /* get current working directory */  int **s; /* Status */
       extern char       *getwd( );  double *agedc, **covar, idx;
   int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
       if ( getwd( dirc ) == NULL ) {  
 #else  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
       extern char       *getcwd( );  double ftolhess; /* Tolerance for computing hessian */
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  /**************** split *************************/
 #endif  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
          return( GLOCK_ERROR_GETCWD );  {
       }     char *s;                             /* pointer */
       strcpy( name, path );             /* we've got it */     int  l1, l2;                         /* length counters */
    } else {                             /* strip direcotry from path */  
       s++;                              /* after this, the filename */     l1 = strlen( path );                 /* length of path */
       l2 = strlen( s );                 /* length of filename */     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );     s= strrchr( path, DIRSEPARATOR );            /* find last / */
       strcpy( name, s );                /* save file name */     if ( s == NULL ) {                   /* no directory, so use current */
       strncpy( dirc, path, l1 - l2 );   /* now the directory */       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       dirc[l1-l2] = 0;                  /* add zero */         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
    }  #if     defined(__bsd__)                /* get current working directory */
    l1 = strlen( dirc );                 /* length of directory */        extern char       *getwd( );
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }        if ( getwd( dirc ) == NULL ) {
 #else  #else
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }        extern char       *getcwd( );
 #endif  
    s = strrchr( name, '.' );            /* find last / */        if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
    s++;  #endif
    strcpy(ext,s);                       /* save extension */           return( GLOCK_ERROR_GETCWD );
    l1= strlen( name);        }
    l2= strlen( s)+1;        strcpy( name, path );             /* we've got it */
    strncpy( finame, name, l1-l2);     } else {                             /* strip direcotry from path */
    finame[l1-l2]= 0;        s++;                              /* after this, the filename */
    return( 0 );                         /* we're done */        l2 = strlen( s );                 /* length of filename */
 }        if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
         strcpy( name, s );                /* save file name */
         strncpy( dirc, path, l1 - l2 );   /* now the directory */
 /******************************************/        dirc[l1-l2] = 0;                  /* add zero */
      }
 void replace(char *s, char*t)     l1 = strlen( dirc );                 /* length of directory */
 {  #ifdef windows
   int i;     if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   int lg=20;  #else
   i=0;     if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   lg=strlen(t);  #endif
   for(i=0; i<= lg; i++) {     s = strrchr( name, '.' );            /* find last / */
     (s[i] = t[i]);     s++;
     if (t[i]== '\\') s[i]='/';     strcpy(ext,s);                       /* save extension */
   }     l1= strlen( name);
 }     l2= strlen( s)+1;
      strncpy( finame, name, l1-l2);
 int nbocc(char *s, char occ)     finame[l1-l2]= 0;
 {     return( 0 );                         /* we're done */
   int i,j=0;  }
   int lg=20;  
   i=0;  
   lg=strlen(s);  /******************************************/
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;  void replace(char *s, char*t)
   }  {
   return j;    int i;
 }    int lg=20;
     i=0;
 void cutv(char *u,char *v, char*t, char occ)    lg=strlen(t);
 {    for(i=0; i<= lg; i++) {
   int i,lg,j,p=0;      (s[i] = t[i]);
   i=0;      if (t[i]== '\\') s[i]='/';
   for(j=0; j<=strlen(t)-1; j++) {    }
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  }
   }  
   int nbocc(char *s, char occ)
   lg=strlen(t);  {
   for(j=0; j<p; j++) {    int i,j=0;
     (u[j] = t[j]);    int lg=20;
   }    i=0;
      u[p]='\0';    lg=strlen(s);
     for(i=0; i<= lg; i++) {
    for(j=0; j<= lg; j++) {    if  (s[i] == occ ) j++;
     if (j>=(p+1))(v[j-p-1] = t[j]);    }
   }    return j;
 }  }
   
 /********************** nrerror ********************/  void cutv(char *u,char *v, char*t, char occ)
   {
 void nrerror(char error_text[])    /* cuts string t into u and v where u is ended by char occ excluding it
 {       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   fprintf(stderr,"ERREUR ...\n");       gives u="abcedf" and v="ghi2j" */
   fprintf(stderr,"%s\n",error_text);    int i,lg,j,p=0;
   exit(1);    i=0;
 }    for(j=0; j<=strlen(t)-1; j++) {
 /*********************** vector *******************/      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 double *vector(int nl, int nh)    }
 {  
   double *v;    lg=strlen(t);
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    for(j=0; j<p; j++) {
   if (!v) nrerror("allocation failure in vector");      (u[j] = t[j]);
   return v-nl+NR_END;    }
 }       u[p]='\0';
   
 /************************ free vector ******************/     for(j=0; j<= lg; j++) {
 void free_vector(double*v, int nl, int nh)      if (j>=(p+1))(v[j-p-1] = t[j]);
 {    }
   free((FREE_ARG)(v+nl-NR_END));  }
 }  
   /********************** nrerror ********************/
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)  void nrerror(char error_text[])
 {  {
   int *v;    fprintf(stderr,"ERREUR ...\n");
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    fprintf(stderr,"%s\n",error_text);
   if (!v) nrerror("allocation failure in ivector");    exit(1);
   return v-nl+NR_END;  }
 }  /*********************** vector *******************/
   double *vector(int nl, int nh)
 /******************free ivector **************************/  {
 void free_ivector(int *v, long nl, long nh)    double *v;
 {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   free((FREE_ARG)(v+nl-NR_END));    if (!v) nrerror("allocation failure in vector");
 }    return v-nl+NR_END;
   }
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)  /************************ free vector ******************/
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  void free_vector(double*v, int nl, int nh)
 {  {
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    free((FREE_ARG)(v+nl-NR_END));
   int **m;  }
    
   /* allocate pointers to rows */  /************************ivector *******************************/
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  int *ivector(long nl,long nh)
   if (!m) nrerror("allocation failure 1 in matrix()");  {
   m += NR_END;    int *v;
   m -= nrl;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
      if (!v) nrerror("allocation failure in ivector");
      return v-nl+NR_END;
   /* allocate rows and set pointers to them */  }
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /******************free ivector **************************/
   m[nrl] += NR_END;  void free_ivector(int *v, long nl, long nh)
   m[nrl] -= ncl;  {
      free((FREE_ARG)(v+nl-NR_END));
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  }
    
   /* return pointer to array of pointers to rows */  /******************* imatrix *******************************/
   return m;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
 }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   { 
 /****************** free_imatrix *************************/    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 void free_imatrix(m,nrl,nrh,ncl,nch)    int **m; 
       int **m;    
       long nch,ncl,nrh,nrl;    /* allocate pointers to rows */ 
      /* free an int matrix allocated by imatrix() */    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 {    if (!m) nrerror("allocation failure 1 in matrix()"); 
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    m += NR_END; 
   free((FREE_ARG) (m+nrl-NR_END));    m -= nrl; 
 }    
     
 /******************* matrix *******************************/    /* allocate rows and set pointers to them */ 
 double **matrix(long nrl, long nrh, long ncl, long nch)    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
 {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    m[nrl] += NR_END; 
   double **m;    m[nrl] -= ncl; 
     
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   if (!m) nrerror("allocation failure 1 in matrix()");    
   m += NR_END;    /* return pointer to array of pointers to rows */ 
   m -= nrl;    return m; 
   } 
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /****************** free_imatrix *************************/
   m[nrl] += NR_END;  void free_imatrix(m,nrl,nrh,ncl,nch)
   m[nrl] -= ncl;        int **m;
         long nch,ncl,nrh,nrl; 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;       /* free an int matrix allocated by imatrix() */ 
   return m;  { 
 }    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     free((FREE_ARG) (m+nrl-NR_END)); 
 /*************************free matrix ************************/  } 
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {  /******************* matrix *******************************/
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  double **matrix(long nrl, long nrh, long ncl, long nch)
   free((FREE_ARG)(m+nrl-NR_END));  {
 }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     double **m;
 /******************* ma3x *******************************/  
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 {    if (!m) nrerror("allocation failure 1 in matrix()");
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    m += NR_END;
   double ***m;    m -= nrl;
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   if (!m) nrerror("allocation failure 1 in matrix()");    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   m += NR_END;    m[nrl] += NR_END;
   m -= nrl;    m[nrl] -= ncl;
   
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    return m;
   m[nrl] += NR_END;  }
   m[nrl] -= ncl;  
   /*************************free matrix ************************/
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    free((FREE_ARG)(m+nrl-NR_END));
   m[nrl][ncl] += NR_END;  }
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)  /******************* ma3x *******************************/
     m[nrl][j]=m[nrl][j-1]+nlay;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
    {
   for (i=nrl+1; i<=nrh; i++) {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    double ***m;
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   }    if (!m) nrerror("allocation failure 1 in matrix()");
   return m;    m += NR_END;
 }    m -= nrl;
   
 /*************************free ma3x ************************/    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 {    m[nrl] += NR_END;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    m[nrl] -= ncl;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 }  
     m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 /***************** f1dim *************************/    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 extern int ncom;    m[nrl][ncl] += NR_END;
 extern double *pcom,*xicom;    m[nrl][ncl] -= nll;
 extern double (*nrfunc)(double []);    for (j=ncl+1; j<=nch; j++) 
        m[nrl][j]=m[nrl][j-1]+nlay;
 double f1dim(double x)    
 {    for (i=nrl+1; i<=nrh; i++) {
   int j;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   double f;      for (j=ncl+1; j<=nch; j++) 
   double *xt;        m[i][j]=m[i][j-1]+nlay;
      }
   xt=vector(1,ncom);    return m;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  }
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  /*************************free ma3x ************************/
   return f;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 }  {
     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 /*****************brent *************************/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    free((FREE_ARG)(m+nrl-NR_END));
 {  }
   int iter;  
   double a,b,d,etemp;  /***************** f1dim *************************/
   double fu,fv,fw,fx;  extern int ncom; 
   double ftemp;  extern double *pcom,*xicom;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  extern double (*nrfunc)(double []); 
   double e=0.0;   
    double f1dim(double x) 
   a=(ax < cx ? ax : cx);  { 
   b=(ax > cx ? ax : cx);    int j; 
   x=w=v=bx;    double f;
   fw=fv=fx=(*f)(x);    double *xt; 
   for (iter=1;iter<=ITMAX;iter++) {   
     xm=0.5*(a+b);    xt=vector(1,ncom); 
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    f=(*nrfunc)(xt); 
     printf(".");fflush(stdout);    free_vector(xt,1,ncom); 
 #ifdef DEBUG    return f; 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  } 
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif  /*****************brent *************************/
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       *xmin=x;  { 
       return fx;    int iter; 
     }    double a,b,d,etemp;
     ftemp=fu;    double fu,fv,fw,fx;
     if (fabs(e) > tol1) {    double ftemp;
       r=(x-w)*(fx-fv);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       q=(x-v)*(fx-fw);    double e=0.0; 
       p=(x-v)*q-(x-w)*r;   
       q=2.0*(q-r);    a=(ax < cx ? ax : cx); 
       if (q > 0.0) p = -p;    b=(ax > cx ? ax : cx); 
       q=fabs(q);    x=w=v=bx; 
       etemp=e;    fw=fv=fx=(*f)(x); 
       e=d;    for (iter=1;iter<=ITMAX;iter++) { 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))      xm=0.5*(a+b); 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       else {      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         d=p/q;      printf(".");fflush(stdout);
         u=x+d;      fprintf(ficlog,".");fflush(ficlog);
         if (u-a < tol2 || b-u < tol2)  #ifdef DEBUG
           d=SIGN(tol1,xm-x);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     } else {      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #endif
     }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));        *xmin=x; 
     fu=(*f)(u);        return fx; 
     if (fu <= fx) {      } 
       if (u >= x) a=x; else b=x;      ftemp=fu;
       SHFT(v,w,x,u)      if (fabs(e) > tol1) { 
         SHFT(fv,fw,fx,fu)        r=(x-w)*(fx-fv); 
         } else {        q=(x-v)*(fx-fw); 
           if (u < x) a=u; else b=u;        p=(x-v)*q-(x-w)*r; 
           if (fu <= fw || w == x) {        q=2.0*(q-r); 
             v=w;        if (q > 0.0) p = -p; 
             w=u;        q=fabs(q); 
             fv=fw;        etemp=e; 
             fw=fu;        e=d; 
           } else if (fu <= fv || v == x || v == w) {        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
             v=u;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
             fv=fu;        else { 
           }          d=p/q; 
         }          u=x+d; 
   }          if (u-a < tol2 || b-u < tol2) 
   nrerror("Too many iterations in brent");            d=SIGN(tol1,xm-x); 
   *xmin=x;        } 
   return fx;      } else { 
 }        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } 
 /****************** mnbrak ***********************/      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       fu=(*f)(u); 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,      if (fu <= fx) { 
             double (*func)(double))        if (u >= x) a=x; else b=x; 
 {        SHFT(v,w,x,u) 
   double ulim,u,r,q, dum;          SHFT(fv,fw,fx,fu) 
   double fu;          } else { 
              if (u < x) a=u; else b=u; 
   *fa=(*func)(*ax);            if (fu <= fw || w == x) { 
   *fb=(*func)(*bx);              v=w; 
   if (*fb > *fa) {              w=u; 
     SHFT(dum,*ax,*bx,dum)              fv=fw; 
       SHFT(dum,*fb,*fa,dum)              fw=fu; 
       }            } else if (fu <= fv || v == x || v == w) { 
   *cx=(*bx)+GOLD*(*bx-*ax);              v=u; 
   *fc=(*func)(*cx);              fv=fu; 
   while (*fb > *fc) {            } 
     r=(*bx-*ax)*(*fb-*fc);          } 
     q=(*bx-*cx)*(*fb-*fa);    } 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    nrerror("Too many iterations in brent"); 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    *xmin=x; 
     ulim=(*bx)+GLIMIT*(*cx-*bx);    return fx; 
     if ((*bx-u)*(u-*cx) > 0.0) {  } 
       fu=(*func)(u);  
     } else if ((*cx-u)*(u-ulim) > 0.0) {  /****************** mnbrak ***********************/
       fu=(*func)(u);  
       if (fu < *fc) {  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))              double (*func)(double)) 
           SHFT(*fb,*fc,fu,(*func)(u))  { 
           }    double ulim,u,r,q, dum;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    double fu; 
       u=ulim;   
       fu=(*func)(u);    *fa=(*func)(*ax); 
     } else {    *fb=(*func)(*bx); 
       u=(*cx)+GOLD*(*cx-*bx);    if (*fb > *fa) { 
       fu=(*func)(u);      SHFT(dum,*ax,*bx,dum) 
     }        SHFT(dum,*fb,*fa,dum) 
     SHFT(*ax,*bx,*cx,u)        } 
       SHFT(*fa,*fb,*fc,fu)    *cx=(*bx)+GOLD*(*bx-*ax); 
       }    *fc=(*func)(*cx); 
 }    while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
 /*************** linmin ************************/      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 int ncom;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 double *pcom,*xicom;      ulim=(*bx)+GLIMIT*(*cx-*bx); 
 double (*nrfunc)(double []);      if ((*bx-u)*(u-*cx) > 0.0) { 
          fu=(*func)(u); 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))      } else if ((*cx-u)*(u-ulim) > 0.0) { 
 {        fu=(*func)(u); 
   double brent(double ax, double bx, double cx,        if (fu < *fc) { 
                double (*f)(double), double tol, double *xmin);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   double f1dim(double x);            SHFT(*fb,*fc,fu,(*func)(u)) 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,            } 
               double *fc, double (*func)(double));      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   int j;        u=ulim; 
   double xx,xmin,bx,ax;        fu=(*func)(u); 
   double fx,fb,fa;      } else { 
          u=(*cx)+GOLD*(*cx-*bx); 
   ncom=n;        fu=(*func)(u); 
   pcom=vector(1,n);      } 
   xicom=vector(1,n);      SHFT(*ax,*bx,*cx,u) 
   nrfunc=func;        SHFT(*fa,*fb,*fc,fu) 
   for (j=1;j<=n;j++) {        } 
     pcom[j]=p[j];  } 
     xicom[j]=xi[j];  
   }  /*************** linmin ************************/
   ax=0.0;  
   xx=1.0;  int ncom; 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  double *pcom,*xicom;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  double (*nrfunc)(double []); 
 #ifdef DEBUG   
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
 #endif  { 
   for (j=1;j<=n;j++) {    double brent(double ax, double bx, double cx, 
     xi[j] *= xmin;                 double (*f)(double), double tol, double *xmin); 
     p[j] += xi[j];    double f1dim(double x); 
   }    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   free_vector(xicom,1,n);                double *fc, double (*func)(double)); 
   free_vector(pcom,1,n);    int j; 
 }    double xx,xmin,bx,ax; 
     double fx,fb,fa;
 /*************** powell ************************/   
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    ncom=n; 
             double (*func)(double []))    pcom=vector(1,n); 
 {    xicom=vector(1,n); 
   void linmin(double p[], double xi[], int n, double *fret,    nrfunc=func; 
               double (*func)(double []));    for (j=1;j<=n;j++) { 
   int i,ibig,j;      pcom[j]=p[j]; 
   double del,t,*pt,*ptt,*xit;      xicom[j]=xi[j]; 
   double fp,fptt;    } 
   double *xits;    ax=0.0; 
   pt=vector(1,n);    xx=1.0; 
   ptt=vector(1,n);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   xit=vector(1,n);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   xits=vector(1,n);  #ifdef DEBUG
   *fret=(*func)(p);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   for (j=1;j<=n;j++) pt[j]=p[j];    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   for (*iter=1;;++(*iter)) {  #endif
     fp=(*fret);    for (j=1;j<=n;j++) { 
     ibig=0;      xi[j] *= xmin; 
     del=0.0;      p[j] += xi[j]; 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    } 
     for (i=1;i<=n;i++)    free_vector(xicom,1,n); 
       printf(" %d %.12f",i, p[i]);    free_vector(pcom,1,n); 
     printf("\n");  } 
     for (i=1;i<=n;i++) {  
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  /*************** powell ************************/
       fptt=(*fret);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 #ifdef DEBUG              double (*func)(double [])) 
       printf("fret=%lf \n",*fret);  { 
 #endif    void linmin(double p[], double xi[], int n, double *fret, 
       printf("%d",i);fflush(stdout);                double (*func)(double [])); 
       linmin(p,xit,n,fret,func);    int i,ibig,j; 
       if (fabs(fptt-(*fret)) > del) {    double del,t,*pt,*ptt,*xit;
         del=fabs(fptt-(*fret));    double fp,fptt;
         ibig=i;    double *xits;
       }    pt=vector(1,n); 
 #ifdef DEBUG    ptt=vector(1,n); 
       printf("%d %.12e",i,(*fret));    xit=vector(1,n); 
       for (j=1;j<=n;j++) {    xits=vector(1,n); 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    *fret=(*func)(p); 
         printf(" x(%d)=%.12e",j,xit[j]);    for (j=1;j<=n;j++) pt[j]=p[j]; 
       }    for (*iter=1;;++(*iter)) { 
       for(j=1;j<=n;j++)      fp=(*fret); 
         printf(" p=%.12e",p[j]);      ibig=0; 
       printf("\n");      del=0.0; 
 #endif      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
     }      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      for (i=1;i<=n;i++) 
 #ifdef DEBUG        printf(" %d %.12f",i, p[i]);
       int k[2],l;      fprintf(ficlog," %d %.12f",i, p[i]);
       k[0]=1;      printf("\n");
       k[1]=-1;      fprintf(ficlog,"\n");
       printf("Max: %.12e",(*func)(p));      for (i=1;i<=n;i++) { 
       for (j=1;j<=n;j++)        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         printf(" %.12e",p[j]);        fptt=(*fret); 
       printf("\n");  #ifdef DEBUG
       for(l=0;l<=1;l++) {        printf("fret=%lf \n",*fret);
         for (j=1;j<=n;j++) {        fprintf(ficlog,"fret=%lf \n",*fret);
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  #endif
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        printf("%d",i);fflush(stdout);
         }        fprintf(ficlog,"%d",i);fflush(ficlog);
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        linmin(p,xit,n,fret,func); 
       }        if (fabs(fptt-(*fret)) > del) { 
 #endif          del=fabs(fptt-(*fret)); 
           ibig=i; 
         } 
       free_vector(xit,1,n);  #ifdef DEBUG
       free_vector(xits,1,n);        printf("%d %.12e",i,(*fret));
       free_vector(ptt,1,n);        fprintf(ficlog,"%d %.12e",i,(*fret));
       free_vector(pt,1,n);        for (j=1;j<=n;j++) {
       return;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     }          printf(" x(%d)=%.12e",j,xit[j]);
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     for (j=1;j<=n;j++) {        }
       ptt[j]=2.0*p[j]-pt[j];        for(j=1;j<=n;j++) {
       xit[j]=p[j]-pt[j];          printf(" p=%.12e",p[j]);
       pt[j]=p[j];          fprintf(ficlog," p=%.12e",p[j]);
     }        }
     fptt=(*func)(ptt);        printf("\n");
     if (fptt < fp) {        fprintf(ficlog,"\n");
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  #endif
       if (t < 0.0) {      } 
         linmin(p,xit,n,fret,func);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         for (j=1;j<=n;j++) {  #ifdef DEBUG
           xi[j][ibig]=xi[j][n];        int k[2],l;
           xi[j][n]=xit[j];        k[0]=1;
         }        k[1]=-1;
 #ifdef DEBUG        printf("Max: %.12e",(*func)(p));
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for(j=1;j<=n;j++)        for (j=1;j<=n;j++) {
           printf(" %.12e",xit[j]);          printf(" %.12e",p[j]);
         printf("\n");          fprintf(ficlog," %.12e",p[j]);
 #endif        }
       }        printf("\n");
     }        fprintf(ficlog,"\n");
   }        for(l=0;l<=1;l++) {
 }          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 /**** Prevalence limit ****************/            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)          }
 {          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
      matrix by transitions matrix until convergence is reached */        }
   #endif
   int i, ii,j,k;  
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();        free_vector(xit,1,n); 
   double **out, cov[NCOVMAX], **pmij();        free_vector(xits,1,n); 
   double **newm;        free_vector(ptt,1,n); 
   double agefin, delaymax=50 ; /* Max number of years to converge */        free_vector(pt,1,n); 
         return; 
   for (ii=1;ii<=nlstate+ndeath;ii++)      } 
     for (j=1;j<=nlstate+ndeath;j++){      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      for (j=1;j<=n;j++) { 
     }        ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
    cov[1]=1.;        pt[j]=p[j]; 
        } 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      fptt=(*func)(ptt); 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      if (fptt < fp) { 
     newm=savm;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     /* Covariates have to be included here again */        if (t < 0.0) { 
      cov[2]=agefin;          linmin(p,xit,n,fret,func); 
            for (j=1;j<=n;j++) { 
       for (k=1; k<=cptcovn;k++) {            xi[j][ibig]=xi[j][n]; 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];            xi[j][n]=xit[j]; 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/          }
       }  #ifdef DEBUG
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       for (k=1; k<=cptcovprod;k++)          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          for(j=1;j<=n;j++){
             printf(" %.12e",xit[j]);
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/            fprintf(ficlog," %.12e",xit[j]);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/          }
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/          printf("\n");
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);          fprintf(ficlog,"\n");
   #endif
     savm=oldm;        } 
     oldm=newm;      } 
     maxmax=0.;    } 
     for(j=1;j<=nlstate;j++){  } 
       min=1.;  
       max=0.;  /**** Prevalence limit ****************/
       for(i=1; i<=nlstate; i++) {  
         sumnew=0;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  {
         prlim[i][j]= newm[i][j]/(1-sumnew);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         max=FMAX(max,prlim[i][j]);       matrix by transitions matrix until convergence is reached */
         min=FMIN(min,prlim[i][j]);  
       }    int i, ii,j,k;
       maxmin=max-min;    double min, max, maxmin, maxmax,sumnew=0.;
       maxmax=FMAX(maxmax,maxmin);    double **matprod2();
     }    double **out, cov[NCOVMAX], **pmij();
     if(maxmax < ftolpl){    double **newm;
       return prlim;    double agefin, delaymax=50 ; /* Max number of years to converge */
     }  
   }    for (ii=1;ii<=nlstate+ndeath;ii++)
 }      for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /*************** transition probabilities ***************/      }
   
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )     cov[1]=1.;
 {   
   double s1, s2;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   /*double t34;*/    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
   int i,j,j1, nc, ii, jj;      newm=savm;
       /* Covariates have to be included here again */
     for(i=1; i<= nlstate; i++){       cov[2]=agefin;
     for(j=1; j<i;j++){    
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        for (k=1; k<=cptcovn;k++) {
         /*s2 += param[i][j][nc]*cov[nc];*/          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        }
       }        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       ps[i][j]=s2;        for (k=1; k<=cptcovprod;k++)
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     }  
     for(j=i+1; j<=nlstate+ndeath;j++){        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       }  
       ps[i][j]=s2;      savm=oldm;
     }      oldm=newm;
   }      maxmax=0.;
     /*ps[3][2]=1;*/      for(j=1;j<=nlstate;j++){
         min=1.;
   for(i=1; i<= nlstate; i++){        max=0.;
      s1=0;        for(i=1; i<=nlstate; i++) {
     for(j=1; j<i; j++)          sumnew=0;
       s1+=exp(ps[i][j]);          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     for(j=i+1; j<=nlstate+ndeath; j++)          prlim[i][j]= newm[i][j]/(1-sumnew);
       s1+=exp(ps[i][j]);          max=FMAX(max,prlim[i][j]);
     ps[i][i]=1./(s1+1.);          min=FMIN(min,prlim[i][j]);
     for(j=1; j<i; j++)        }
       ps[i][j]= exp(ps[i][j])*ps[i][i];        maxmin=max-min;
     for(j=i+1; j<=nlstate+ndeath; j++)        maxmax=FMAX(maxmax,maxmin);
       ps[i][j]= exp(ps[i][j])*ps[i][i];      }
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      if(maxmax < ftolpl){
   } /* end i */        return prlim;
       }
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    }
     for(jj=1; jj<= nlstate+ndeath; jj++){  }
       ps[ii][jj]=0;  
       ps[ii][ii]=1;  /*************** transition probabilities ***************/ 
     }  
   }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
     double s1, s2;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    /*double t34;*/
     for(jj=1; jj<= nlstate+ndeath; jj++){    int i,j,j1, nc, ii, jj;
      printf("%lf ",ps[ii][jj]);  
    }      for(i=1; i<= nlstate; i++){
     printf("\n ");      for(j=1; j<i;j++){
     }        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     printf("\n ");printf("%lf ",cov[2]);*/          /*s2 += param[i][j][nc]*cov[nc];*/
 /*          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   for(i=1; i<= npar; i++) printf("%f ",x[i]);          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
   goto end;*/        }
     return ps;        ps[i][j]=s2;
 }        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
       }
 /**************** Product of 2 matrices ******************/      for(j=i+1; j<=nlstate+ndeath;j++){
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 {          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        }
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        ps[i][j]=s2;
   /* in, b, out are matrice of pointers which should have been initialized      }
      before: only the contents of out is modified. The function returns    }
      a pointer to pointers identical to out */      /*ps[3][2]=1;*/
   long i, j, k;  
   for(i=nrl; i<= nrh; i++)    for(i=1; i<= nlstate; i++){
     for(k=ncolol; k<=ncoloh; k++)       s1=0;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      for(j=1; j<i; j++)
         out[i][k] +=in[i][j]*b[j][k];        s1+=exp(ps[i][j]);
       for(j=i+1; j<=nlstate+ndeath; j++)
   return out;        s1+=exp(ps[i][j]);
 }      ps[i][i]=1./(s1+1.);
       for(j=1; j<i; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];
 /************* Higher Matrix Product ***************/      for(j=i+1; j<=nlstate+ndeath; j++)
         ps[i][j]= exp(ps[i][j])*ps[i][i];
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
 {    } /* end i */
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  
      duration (i.e. until    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      for(jj=1; jj<= nlstate+ndeath; jj++){
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        ps[ii][jj]=0;
      (typically every 2 years instead of every month which is too big).        ps[ii][ii]=1;
      Model is determined by parameters x and covariates have to be      }
      included manually here.    }
   
      */  
     /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   int i, j, d, h, k;      for(jj=1; jj<= nlstate+ndeath; jj++){
   double **out, cov[NCOVMAX];       printf("%lf ",ps[ii][jj]);
   double **newm;     }
       printf("\n ");
   /* Hstepm could be zero and should return the unit matrix */      }
   for (i=1;i<=nlstate+ndeath;i++)      printf("\n ");printf("%lf ",cov[2]);*/
     for (j=1;j<=nlstate+ndeath;j++){  /*
       oldm[i][j]=(i==j ? 1.0 : 0.0);    for(i=1; i<= npar; i++) printf("%f ",x[i]);
       po[i][j][0]=(i==j ? 1.0 : 0.0);    goto end;*/
     }      return ps;
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  }
   for(h=1; h <=nhstepm; h++){  
     for(d=1; d <=hstepm; d++){  /**************** Product of 2 matrices ******************/
       newm=savm;  
       /* Covariates have to be included here again */  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       cov[1]=1.;  {
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       for (k=1; k<=cptcovage;k++)    /* in, b, out are matrice of pointers which should have been initialized 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];       before: only the contents of out is modified. The function returns
       for (k=1; k<=cptcovprod;k++)       a pointer to pointers identical to out */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    long i, j, k;
     for(i=nrl; i<= nrh; i++)
       for(k=ncolol; k<=ncoloh; k++)
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        for(j=ncl,out[i][k]=0.; j<=nch; j++)
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/          out[i][k] +=in[i][j]*b[j][k];
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    return out;
       savm=oldm;  }
       oldm=newm;  
     }  
     for(i=1; i<=nlstate+ndeath; i++)  /************* Higher Matrix Product ***************/
       for(j=1;j<=nlstate+ndeath;j++) {  
         po[i][j][h]=newm[i][j];  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  {
          */    /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month 
       }       duration (i.e. until
   } /* end h */       age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices. 
   return po;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
 }       (typically every 2 years instead of every month which is too big).
        Model is determined by parameters x and covariates have to be 
        included manually here. 
 /*************** log-likelihood *************/  
 double func( double *x)       */
 {  
   int i, ii, j, k, mi, d, kk;    int i, j, d, h, k;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    double **out, cov[NCOVMAX];
   double **out;    double **newm;
   double sw; /* Sum of weights */  
   double lli; /* Individual log likelihood */    /* Hstepm could be zero and should return the unit matrix */
   long ipmx;    for (i=1;i<=nlstate+ndeath;i++)
   /*extern weight */      for (j=1;j<=nlstate+ndeath;j++){
   /* We are differentiating ll according to initial status */        oldm[i][j]=(i==j ? 1.0 : 0.0);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        po[i][j][0]=(i==j ? 1.0 : 0.0);
   /*for(i=1;i<imx;i++)      }
     printf(" %d\n",s[4][i]);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   */    for(h=1; h <=nhstepm; h++){
   cov[1]=1.;      for(d=1; d <=hstepm; d++){
         newm=savm;
   for(k=1; k<=nlstate; k++) ll[k]=0.;        /* Covariates have to be included here again */
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        cov[1]=1.;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     for(mi=1; mi<= wav[i]-1; mi++){        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       for (ii=1;ii<=nlstate+ndeath;ii++)        for (k=1; k<=cptcovage;k++)
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for(d=0; d<dh[mi][i]; d++){        for (k=1; k<=cptcovprod;k++)
         newm=savm;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
         for (kk=1; kk<=cptcovage;kk++) {  
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
                out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,                     pmij(pmmij,cov,ncovmodel,x,nlstate));
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        savm=oldm;
         savm=oldm;        oldm=newm;
         oldm=newm;      }
              for(i=1; i<=nlstate+ndeath; i++)
                for(j=1;j<=nlstate+ndeath;j++) {
       } /* end mult */          po[i][j][h]=newm[i][j];
                /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);           */
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        }
       ipmx +=1;    } /* end h */
       sw += weight[i];    return po;
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  }
     } /* end of wave */  
   } /* end of individual */  
   /*************** log-likelihood *************/
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  double func( double *x)
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  {
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    int i, ii, j, k, mi, d, kk;
   return -l;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
 }    double **out;
     double sw; /* Sum of weights */
     double lli; /* Individual log likelihood */
 /*********** Maximum Likelihood Estimation ***************/    long ipmx;
     /*extern weight */
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    /* We are differentiating ll according to initial status */
 {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   int i,j, iter;    /*for(i=1;i<imx;i++) 
   double **xi,*delti;      printf(" %d\n",s[4][i]);
   double fret;    */
   xi=matrix(1,npar,1,npar);    cov[1]=1.;
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++)    for(k=1; k<=nlstate; k++) ll[k]=0.;
       xi[i][j]=(i==j ? 1.0 : 0.0);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   printf("Powell\n");      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   powell(p,xi,npar,ftol,&iter,&fret,func);      for(mi=1; mi<= wav[i]-1; mi++){
         for (ii=1;ii<=nlstate+ndeath;ii++)
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
 }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for (kk=1; kk<=cptcovage;kk++) {
 /**** Computes Hessian and covariance matrix ***/            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          }
 {          
   double  **a,**y,*x,pd;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double **hess;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int i, j,jk;          savm=oldm;
   int *indx;          oldm=newm;
           
   double hessii(double p[], double delta, int theta, double delti[]);          
   double hessij(double p[], double delti[], int i, int j);        } /* end mult */
   void lubksb(double **a, int npar, int *indx, double b[]) ;        
   void ludcmp(double **a, int npar, int *indx, double *d) ;        lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);
         /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/
   hess=matrix(1,npar,1,npar);        ipmx +=1;
         sw += weight[i];
   printf("\nCalculation of the hessian matrix. Wait...\n");        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for (i=1;i<=npar;i++){      } /* end of wave */
     printf("%d",i);fflush(stdout);    } /* end of individual */
     hess[i][i]=hessii(p,ftolhess,i,delti);  
     /*printf(" %f ",p[i]);*/    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /*printf(" %lf ",hess[i][i]);*/    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   }    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      return -l;
   for (i=1;i<=npar;i++) {  }
     for (j=1;j<=npar;j++)  {  
       if (j>i) {  
         printf(".%d%d",i,j);fflush(stdout);  /*********** Maximum Likelihood Estimation ***************/
         hess[i][j]=hessij(p,delti,i,j);  
         hess[j][i]=hess[i][j];      void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         /*printf(" %lf ",hess[i][j]);*/  {
       }    int i,j, iter;
     }    double **xi,*delti;
   }    double fret;
   printf("\n");    xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++)
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");      for (j=1;j<=npar;j++)
          xi[i][j]=(i==j ? 1.0 : 0.0);
   a=matrix(1,npar,1,npar);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   y=matrix(1,npar,1,npar);    powell(p,xi,npar,ftol,&iter,&fret,func);
   x=vector(1,npar);  
   indx=ivector(1,npar);     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   for (i=1;i<=npar;i++)    fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   ludcmp(a,npar,indx,&pd);  
   }
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;  /**** Computes Hessian and covariance matrix ***/
     x[j]=1;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     lubksb(a,npar,indx,x);  {
     for (i=1;i<=npar;i++){    double  **a,**y,*x,pd;
       matcov[i][j]=x[i];    double **hess;
     }    int i, j,jk;
   }    int *indx;
   
   printf("\n#Hessian matrix#\n");    double hessii(double p[], double delta, int theta, double delti[]);
   for (i=1;i<=npar;i++) {    double hessij(double p[], double delti[], int i, int j);
     for (j=1;j<=npar;j++) {    void lubksb(double **a, int npar, int *indx, double b[]) ;
       printf("%.3e ",hess[i][j]);    void ludcmp(double **a, int npar, int *indx, double *d) ;
     }  
     printf("\n");    hess=matrix(1,npar,1,npar);
   }  
     printf("\nCalculation of the hessian matrix. Wait...\n");
   /* Recompute Inverse */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   for (i=1;i<=npar;i++)    for (i=1;i<=npar;i++){
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      printf("%d",i);fflush(stdout);
   ludcmp(a,npar,indx,&pd);      fprintf(ficlog,"%d",i);fflush(ficlog);
       hess[i][i]=hessii(p,ftolhess,i,delti);
   /*  printf("\n#Hessian matrix recomputed#\n");      /*printf(" %f ",p[i]);*/
       /*printf(" %lf ",hess[i][i]);*/
   for (j=1;j<=npar;j++) {    }
     for (i=1;i<=npar;i++) x[i]=0;    
     x[j]=1;    for (i=1;i<=npar;i++) {
     lubksb(a,npar,indx,x);      for (j=1;j<=npar;j++)  {
     for (i=1;i<=npar;i++){        if (j>i) { 
       y[i][j]=x[i];          printf(".%d%d",i,j);fflush(stdout);
       printf("%.3e ",y[i][j]);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     }          hess[i][j]=hessij(p,delti,i,j);
     printf("\n");          hess[j][i]=hess[i][j];    
   }          /*printf(" %lf ",hess[i][j]);*/
   */        }
       }
   free_matrix(a,1,npar,1,npar);    }
   free_matrix(y,1,npar,1,npar);    printf("\n");
   free_vector(x,1,npar);    fprintf(ficlog,"\n");
   free_ivector(indx,1,npar);  
   free_matrix(hess,1,npar,1,npar);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     
 }    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
 /*************** hessian matrix ****************/    x=vector(1,npar);
 double hessii( double x[], double delta, int theta, double delti[])    indx=ivector(1,npar);
 {    for (i=1;i<=npar;i++)
   int i;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   int l=1, lmax=20;    ludcmp(a,npar,indx,&pd);
   double k1,k2;  
   double p2[NPARMAX+1];    for (j=1;j<=npar;j++) {
   double res;      for (i=1;i<=npar;i++) x[i]=0;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      x[j]=1;
   double fx;      lubksb(a,npar,indx,x);
   int k=0,kmax=10;      for (i=1;i<=npar;i++){ 
   double l1;        matcov[i][j]=x[i];
       }
   fx=func(x);    }
   for (i=1;i<=npar;i++) p2[i]=x[i];  
   for(l=0 ; l <=lmax; l++){    printf("\n#Hessian matrix#\n");
     l1=pow(10,l);    fprintf(ficlog,"\n#Hessian matrix#\n");
     delts=delt;    for (i=1;i<=npar;i++) { 
     for(k=1 ; k <kmax; k=k+1){      for (j=1;j<=npar;j++) { 
       delt = delta*(l1*k);        printf("%.3e ",hess[i][j]);
       p2[theta]=x[theta] +delt;        fprintf(ficlog,"%.3e ",hess[i][j]);
       k1=func(p2)-fx;      }
       p2[theta]=x[theta]-delt;      printf("\n");
       k2=func(p2)-fx;      fprintf(ficlog,"\n");
       /*res= (k1-2.0*fx+k2)/delt/delt; */    }
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  
          /* Recompute Inverse */
 #ifdef DEBUG    for (i=1;i<=npar;i++)
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
 #endif    ludcmp(a,npar,indx,&pd);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    /*  printf("\n#Hessian matrix recomputed#\n");
         k=kmax;  
       }    for (j=1;j<=npar;j++) {
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */      for (i=1;i<=npar;i++) x[i]=0;
         k=kmax; l=lmax*10.;      x[j]=1;
       }      lubksb(a,npar,indx,x);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){      for (i=1;i<=npar;i++){ 
         delts=delt;        y[i][j]=x[i];
       }        printf("%.3e ",y[i][j]);
     }        fprintf(ficlog,"%.3e ",y[i][j]);
   }      }
   delti[theta]=delts;      printf("\n");
   return res;      fprintf(ficlog,"\n");
      }
 }    */
   
 double hessij( double x[], double delti[], int thetai,int thetaj)    free_matrix(a,1,npar,1,npar);
 {    free_matrix(y,1,npar,1,npar);
   int i;    free_vector(x,1,npar);
   int l=1, l1, lmax=20;    free_ivector(indx,1,npar);
   double k1,k2,k3,k4,res,fx;    free_matrix(hess,1,npar,1,npar);
   double p2[NPARMAX+1];  
   int k;  
   }
   fx=func(x);  
   for (k=1; k<=2; k++) {  /*************** hessian matrix ****************/
     for (i=1;i<=npar;i++) p2[i]=x[i];  double hessii( double x[], double delta, int theta, double delti[])
     p2[thetai]=x[thetai]+delti[thetai]/k;  {
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    int i;
     k1=func(p2)-fx;    int l=1, lmax=20;
      double k1,k2;
     p2[thetai]=x[thetai]+delti[thetai]/k;    double p2[NPARMAX+1];
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    double res;
     k2=func(p2)-fx;    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
      double fx;
     p2[thetai]=x[thetai]-delti[thetai]/k;    int k=0,kmax=10;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    double l1;
     k3=func(p2)-fx;  
      fx=func(x);
     p2[thetai]=x[thetai]-delti[thetai]/k;    for (i=1;i<=npar;i++) p2[i]=x[i];
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    for(l=0 ; l <=lmax; l++){
     k4=func(p2)-fx;      l1=pow(10,l);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      delts=delt;
 #ifdef DEBUG      for(k=1 ; k <kmax; k=k+1){
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        delt = delta*(l1*k);
 #endif        p2[theta]=x[theta] +delt;
   }        k1=func(p2)-fx;
   return res;        p2[theta]=x[theta]-delt;
 }        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
 /************** Inverse of matrix **************/        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 void ludcmp(double **a, int n, int *indx, double *d)        
 {  #ifdef DEBUG
   int i,imax,j,k;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   double big,dum,sum,temp;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   double *vv;  #endif
          /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   vv=vector(1,n);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   *d=1.0;          k=kmax;
   for (i=1;i<=n;i++) {        }
     big=0.0;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     for (j=1;j<=n;j++)          k=kmax; l=lmax*10.;
       if ((temp=fabs(a[i][j])) > big) big=temp;        }
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     vv[i]=1.0/big;          delts=delt;
   }        }
   for (j=1;j<=n;j++) {      }
     for (i=1;i<j;i++) {    }
       sum=a[i][j];    delti[theta]=delts;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    return res; 
       a[i][j]=sum;    
     }  }
     big=0.0;  
     for (i=j;i<=n;i++) {  double hessij( double x[], double delti[], int thetai,int thetaj)
       sum=a[i][j];  {
       for (k=1;k<j;k++)    int i;
         sum -= a[i][k]*a[k][j];    int l=1, l1, lmax=20;
       a[i][j]=sum;    double k1,k2,k3,k4,res,fx;
       if ( (dum=vv[i]*fabs(sum)) >= big) {    double p2[NPARMAX+1];
         big=dum;    int k;
         imax=i;  
       }    fx=func(x);
     }    for (k=1; k<=2; k++) {
     if (j != imax) {      for (i=1;i<=npar;i++) p2[i]=x[i];
       for (k=1;k<=n;k++) {      p2[thetai]=x[thetai]+delti[thetai]/k;
         dum=a[imax][k];      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         a[imax][k]=a[j][k];      k1=func(p2)-fx;
         a[j][k]=dum;    
       }      p2[thetai]=x[thetai]+delti[thetai]/k;
       *d = -(*d);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       vv[imax]=vv[j];      k2=func(p2)-fx;
     }    
     indx[j]=imax;      p2[thetai]=x[thetai]-delti[thetai]/k;
     if (a[j][j] == 0.0) a[j][j]=TINY;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     if (j != n) {      k3=func(p2)-fx;
       dum=1.0/(a[j][j]);    
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      p2[thetai]=x[thetai]-delti[thetai]/k;
     }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   }      k4=func(p2)-fx;
   free_vector(vv,1,n);  /* Doesn't work */      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 ;  #ifdef DEBUG
 }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 void lubksb(double **a, int n, int *indx, double b[])  #endif
 {    }
   int i,ii=0,ip,j;    return res;
   double sum;  }
    
   for (i=1;i<=n;i++) {  /************** Inverse of matrix **************/
     ip=indx[i];  void ludcmp(double **a, int n, int *indx, double *d) 
     sum=b[ip];  { 
     b[ip]=b[i];    int i,imax,j,k; 
     if (ii)    double big,dum,sum,temp; 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    double *vv; 
     else if (sum) ii=i;   
     b[i]=sum;    vv=vector(1,n); 
   }    *d=1.0; 
   for (i=n;i>=1;i--) {    for (i=1;i<=n;i++) { 
     sum=b[i];      big=0.0; 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      for (j=1;j<=n;j++) 
     b[i]=sum/a[i][i];        if ((temp=fabs(a[i][j])) > big) big=temp; 
   }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 }      vv[i]=1.0/big; 
     } 
 /************ Frequencies ********************/    for (j=1;j<=n;j++) { 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)      for (i=1;i<j;i++) { 
 {  /* Some frequencies */        sum=a[i][j]; 
          for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;        a[i][j]=sum; 
   double ***freq; /* Frequencies */      } 
   double *pp;      big=0.0; 
   double pos, k2, dateintsum=0,k2cpt=0;      for (i=j;i<=n;i++) { 
   FILE *ficresp;        sum=a[i][j]; 
   char fileresp[FILENAMELENGTH];        for (k=1;k<j;k++) 
            sum -= a[i][k]*a[k][j]; 
   pp=vector(1,nlstate);        a[i][j]=sum; 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   strcpy(fileresp,"p");          big=dum; 
   strcat(fileresp,fileres);          imax=i; 
   if((ficresp=fopen(fileresp,"w"))==NULL) {        } 
     printf("Problem with prevalence resultfile: %s\n", fileresp);      } 
     exit(0);      if (j != imax) { 
   }        for (k=1;k<=n;k++) { 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          dum=a[imax][k]; 
   j1=0;          a[imax][k]=a[j][k]; 
            a[j][k]=dum; 
   j=cptcoveff;        } 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        *d = -(*d); 
          vv[imax]=vv[j]; 
   for(k1=1; k1<=j;k1++){      } 
     for(i1=1; i1<=ncodemax[k1];i1++){      indx[j]=imax; 
       j1++;      if (a[j][j] == 0.0) a[j][j]=TINY; 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      if (j != n) { 
         scanf("%d", i);*/        dum=1.0/(a[j][j]); 
       for (i=-1; i<=nlstate+ndeath; i++)          for (i=j+1;i<=n;i++) a[i][j] *= dum; 
         for (jk=-1; jk<=nlstate+ndeath; jk++)        } 
           for(m=agemin; m <= agemax+3; m++)    } 
             freq[i][jk][m]=0;    free_vector(vv,1,n);  /* Doesn't work */
        ;
       dateintsum=0;  } 
       k2cpt=0;  
       for (i=1; i<=imx; i++) {  void lubksb(double **a, int n, int *indx, double b[]) 
         bool=1;  { 
         if  (cptcovn>0) {    int i,ii=0,ip,j; 
           for (z1=1; z1<=cptcoveff; z1++)    double sum; 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])   
               bool=0;    for (i=1;i<=n;i++) { 
         }      ip=indx[i]; 
         if (bool==1) {      sum=b[ip]; 
           for(m=firstpass; m<=lastpass; m++){      b[ip]=b[i]; 
             k2=anint[m][i]+(mint[m][i]/12.);      if (ii) 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
               if(agev[m][i]==0) agev[m][i]=agemax+1;      else if (sum) ii=i; 
               if(agev[m][i]==1) agev[m][i]=agemax+2;      b[i]=sum; 
               if (m<lastpass) {    } 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    for (i=n;i>=1;i--) { 
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      sum=b[i]; 
               }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
                    b[i]=sum/a[i][i]; 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    } 
                 dateintsum=dateintsum+k2;  } 
                 k2cpt++;  
               }  /************ Frequencies ********************/
             }  void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)
           }  {  /* Some frequencies */
         }    
       }    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
            int first;
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    double ***freq; /* Frequencies */
     double *pp;
       if  (cptcovn>0) {    double pos, k2, dateintsum=0,k2cpt=0;
         fprintf(ficresp, "\n#********** Variable ");    FILE *ficresp;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    char fileresp[FILENAMELENGTH];
         fprintf(ficresp, "**********\n#");    
       }    pp=vector(1,nlstate);
       for(i=1; i<=nlstate;i++)    probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    strcpy(fileresp,"p");
       fprintf(ficresp, "\n");    strcat(fileresp,fileres);
          if((ficresp=fopen(fileresp,"w"))==NULL) {
       for(i=(int)agemin; i <= (int)agemax+3; i++){      printf("Problem with prevalence resultfile: %s\n", fileresp);
         if(i==(int)agemax+3)      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
           printf("Total");      exit(0);
         else    }
           printf("Age %d", i);    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);
         for(jk=1; jk <=nlstate ; jk++){    j1=0;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    
             pp[jk] += freq[jk][m][i];    j=cptcoveff;
         }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pos=0; m <=0 ; m++)    first=1;
             pos += freq[jk][m][i];  
           if(pp[jk]>=1.e-10)    for(k1=1; k1<=j;k1++){
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      for(i1=1; i1<=ncodemax[k1];i1++){
           else        j1++;
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         }          scanf("%d", i);*/
         for (i=-1; i<=nlstate+ndeath; i++)  
         for(jk=1; jk <=nlstate ; jk++){          for (jk=-1; jk<=nlstate+ndeath; jk++)  
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)            for(m=agemin; m <= agemax+3; m++)
             pp[jk] += freq[jk][m][i];              freq[i][jk][m]=0;
         }        
         dateintsum=0;
         for(jk=1,pos=0; jk <=nlstate ; jk++)        k2cpt=0;
           pos += pp[jk];        for (i=1; i<=imx; i++) {
         for(jk=1; jk <=nlstate ; jk++){          bool=1;
           if(pos>=1.e-5)          if  (cptcovn>0) {
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            for (z1=1; z1<=cptcoveff; z1++) 
           else              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);                bool=0;
           if( i <= (int) agemax){          }
             if(pos>=1.e-5){          if (bool==1) {
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            for(m=firstpass; m<=lastpass; m++){
               probs[i][jk][j1]= pp[jk]/pos;              k2=anint[m][i]+(mint[m][i]/12.);
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/              if ((k2>=dateprev1) && (k2<=dateprev2)) {
             }                if(agev[m][i]==0) agev[m][i]=agemax+1;
             else                if(agev[m][i]==1) agev[m][i]=agemax+2;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);                if (m<lastpass) {
           }                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         }                  freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];
                        }
         for(jk=-1; jk <=nlstate+ndeath; jk++)                
           for(m=-1; m <=nlstate+ndeath; m++)                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);                  dateintsum=dateintsum+k2;
         if(i <= (int) agemax)                  k2cpt++;
           fprintf(ficresp,"\n");                }
         printf("\n");              }
       }            }
     }          }
   }        }
   dateintmean=dateintsum/k2cpt;         
          fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   fclose(ficresp);  
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        if  (cptcovn>0) {
   free_vector(pp,1,nlstate);          fprintf(ficresp, "\n#********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /* End of Freq */          fprintf(ficresp, "**********\n#");
 }        }
         for(i=1; i<=nlstate;i++) 
 /************ Prevalence ********************/          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        fprintf(ficresp, "\n");
 {  /* Some frequencies */        
          for(i=(int)agemin; i <= (int)agemax+3; i++){
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          if(i==(int)agemax+3){
   double ***freq; /* Frequencies */            fprintf(ficlog,"Total");
   double *pp;          }else{
   double pos, k2;            if(first==1){
               first=0;
   pp=vector(1,nlstate);              printf("See log file for details...\n");
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);            }
              fprintf(ficlog,"Age %d", i);
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          }
   j1=0;          for(jk=1; jk <=nlstate ; jk++){
              for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   j=cptcoveff;              pp[jk] += freq[jk][m][i]; 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          }
            for(jk=1; jk <=nlstate ; jk++){
   for(k1=1; k1<=j;k1++){            for(m=-1, pos=0; m <=0 ; m++)
     for(i1=1; i1<=ncodemax[k1];i1++){              pos += freq[jk][m][i];
       j1++;            if(pp[jk]>=1.e-10){
                    if(first==1){
       for (i=-1; i<=nlstate+ndeath; i++)                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         for (jk=-1; jk<=nlstate+ndeath; jk++)                }
           for(m=agemin; m <= agemax+3; m++)              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             freq[i][jk][m]=0;            }else{
                    if(first==1)
       for (i=1; i<=imx; i++) {                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         bool=1;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         if  (cptcovn>0) {            }
           for (z1=1; z1<=cptcoveff; z1++)          }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  
               bool=0;          for(jk=1; jk <=nlstate ; jk++){
         }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
         if (bool==1) {              pp[jk] += freq[jk][m][i];
           for(m=firstpass; m<=lastpass; m++){          }
             k2=anint[m][i]+(mint[m][i]/12.);  
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          for(jk=1,pos=0; jk <=nlstate ; jk++)
               if(agev[m][i]==0) agev[m][i]=agemax+1;            pos += pp[jk];
               if(agev[m][i]==1) agev[m][i]=agemax+2;          for(jk=1; jk <=nlstate ; jk++){
               if (m<lastpass) {            if(pos>=1.e-5){
                 if (calagedate>0)              if(first==1)
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                 else              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            }else{
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];              if(first==1)
               }                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           }            }
         }            if( i <= (int) agemax){
       }              if(pos>=1.e-5){
       for(i=(int)agemin; i <= (int)agemax+3; i++){                fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);
         for(jk=1; jk <=nlstate ; jk++){                probs[i][jk][j1]= pp[jk]/pos;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
             pp[jk] += freq[jk][m][i];              }
         }              else
         for(jk=1; jk <=nlstate ; jk++){                fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);
           for(m=-1, pos=0; m <=0 ; m++)            }
             pos += freq[jk][m][i];          }
         }          
                  for(jk=-1; jk <=nlstate+ndeath; jk++)
         for(jk=1; jk <=nlstate ; jk++){            for(m=-1; m <=nlstate+ndeath; m++)
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)              if(freq[jk][m][i] !=0 ) {
             pp[jk] += freq[jk][m][i];              if(first==1)
         }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                        fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];              }
                  if(i <= (int) agemax)
         for(jk=1; jk <=nlstate ; jk++){                fprintf(ficresp,"\n");
           if( i <= (int) agemax){          if(first==1)
             if(pos>=1.e-5){            printf("Others in log...\n");
               probs[i][jk][j1]= pp[jk]/pos;          fprintf(ficlog,"\n");
             }        }
           }      }
         }    }
            dateintmean=dateintsum/k2cpt; 
       }   
     }    fclose(ficresp);
   }    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);
     free_vector(pp,1,nlstate);
      
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    /* End of Freq */
   free_vector(pp,1,nlstate);  }
    
 }  /* End of Freq */  /************ Prevalence ********************/
   void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)
 /************* Waves Concatenation ***************/  {  /* Some frequencies */
    
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
 {    double ***freq; /* Frequencies */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    double *pp;
      Death is a valid wave (if date is known).    double pos, k2;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    pp=vector(1,nlstate);
      and mw[mi+1][i]. dh depends on stepm.    
      */    freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);
     j1=0;
   int i, mi, m;    
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    j=cptcoveff;
      double sum=0., jmean=0.;*/    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
   int j, k=0,jk, ju, jl;    for(k1=1; k1<=j;k1++){
   double sum=0.;      for(i1=1; i1<=ncodemax[k1];i1++){
   jmin=1e+5;        j1++;
   jmax=-1;        
   jmean=0.;        for (i=-1; i<=nlstate+ndeath; i++)  
   for(i=1; i<=imx; i++){          for (jk=-1; jk<=nlstate+ndeath; jk++)  
     mi=0;            for(m=agemin; m <= agemax+3; m++)
     m=firstpass;              freq[i][jk][m]=0;
     while(s[m][i] <= nlstate){       
       if(s[m][i]>=1)        for (i=1; i<=imx; i++) {
         mw[++mi][i]=m;          bool=1;
       if(m >=lastpass)          if  (cptcovn>0) {
         break;            for (z1=1; z1<=cptcoveff; z1++) 
       else              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         m++;                bool=0;
     }/* end while */          } 
     if (s[m][i] > nlstate){          if (bool==1) { 
       mi++;     /* Death is another wave */            for(m=firstpass; m<=lastpass; m++){
       /* if(mi==0)  never been interviewed correctly before death */              k2=anint[m][i]+(mint[m][i]/12.);
          /* Only death is a correct wave */              if ((k2>=dateprev1) && (k2<=dateprev2)) {
       mw[mi][i]=m;                if(agev[m][i]==0) agev[m][i]=agemax+1;
     }                if(agev[m][i]==1) agev[m][i]=agemax+2;
                 if (m<lastpass) {
     wav[i]=mi;                  if (calagedate>0) 
     if(mi==0)                    freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);                  else
   }                    freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i]; 
   for(i=1; i<=imx; i++){                }
     for(mi=1; mi<wav[i];mi++){              }
       if (stepm <=0)            }
         dh[mi][i]=1;          }
       else{        }
         if (s[mw[mi+1][i]][i] > nlstate) {        for(i=(int)agemin; i <= (int)agemax+3; i++){ 
           if (agedc[i] < 2*AGESUP) {          for(jk=1; jk <=nlstate ; jk++){
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
           if(j==0) j=1;  /* Survives at least one month after exam */              pp[jk] += freq[jk][m][i]; 
           k=k+1;          }
           if (j >= jmax) jmax=j;          for(jk=1; jk <=nlstate ; jk++){
           if (j <= jmin) jmin=j;            for(m=-1, pos=0; m <=0 ; m++)
           sum=sum+j;              pos += freq[jk][m][i];
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          }
           }          
         }          for(jk=1; jk <=nlstate ; jk++){
         else{            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));              pp[jk] += freq[jk][m][i];
           k=k+1;          }
           if (j >= jmax) jmax=j;          
           else if (j <= jmin)jmin=j;          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          
           sum=sum+j;          for(jk=1; jk <=nlstate ; jk++){    
         }            if( i <= (int) agemax){
         jk= j/stepm;              if(pos>=1.e-5){
         jl= j -jk*stepm;                probs[i][jk][j1]= pp[jk]/pos;
         ju= j -(jk+1)*stepm;              }
         if(jl <= -ju)            }
           dh[mi][i]=jk;          }/* end jk */
         else        }/* end i */
           dh[mi][i]=jk+1;      } /* end i1 */
         if(dh[mi][i]==0)    } /* end k1 */
           dh[mi][i]=1; /* At least one step */  
       }    
     }    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);
   }    free_vector(pp,1,nlstate);
   jmean=sum/k;    
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  }  /* End of Freq */
  }  
 /*********** Tricode ****************************/  /************* Waves Concatenation ***************/
 void tricode(int *Tvar, int **nbcode, int imx)  
 {  void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   int Ndum[20],ij=1, k, j, i;  {
   int cptcode=0;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   cptcoveff=0;       Death is a valid wave (if date is known).
         mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   for (k=0; k<19; k++) Ndum[k]=0;       dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]
   for (k=1; k<=7; k++) ncodemax[k]=0;       and mw[mi+1][i]. dh depends on stepm.
        */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {  
     for (i=1; i<=imx; i++) {    int i, mi, m;
       ij=(int)(covar[Tvar[j]][i]);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       Ndum[ij]++;       double sum=0., jmean=0.;*/
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    int first;
       if (ij > cptcode) cptcode=ij;    int j, k=0,jk, ju, jl;
     }    double sum=0.;
     first=0;
     for (i=0; i<=cptcode; i++) {    jmin=1e+5;
       if(Ndum[i]!=0) ncodemax[j]++;    jmax=-1;
     }    jmean=0.;
     ij=1;    for(i=1; i<=imx; i++){
       mi=0;
       m=firstpass;
     for (i=1; i<=ncodemax[j]; i++) {      while(s[m][i] <= nlstate){
       for (k=0; k<=19; k++) {        if(s[m][i]>=1)
         if (Ndum[k] != 0) {          mw[++mi][i]=m;
           nbcode[Tvar[j]][ij]=k;        if(m >=lastpass)
                    break;
           ij++;        else
         }          m++;
         if (ij > ncodemax[j]) break;      }/* end while */
       }        if (s[m][i] > nlstate){
     }        mi++;     /* Death is another wave */
   }          /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
  for (k=0; k<19; k++) Ndum[k]=0;        mw[mi][i]=m;
       }
  for (i=1; i<=ncovmodel-2; i++) {  
       ij=Tvar[i];      wav[i]=mi;
       Ndum[ij]++;      if(mi==0){
     }        if(first==0){
           printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);
  ij=1;          first=1;
  for (i=1; i<=10; i++) {        }
    if((Ndum[i]!=0) && (i<=ncovcol)){        if(first==1){
      Tvaraff[ij]=i;          fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);
      ij++;        }
    }      } /* end mi==0 */
  }    }
    
     cptcoveff=ij-1;    for(i=1; i<=imx; i++){
 }      for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
 /*********** Health Expectancies ****************/          dh[mi][i]=1;
         else{
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )          if (s[mw[mi+1][i]][i] > nlstate) {
             if (agedc[i] < 2*AGESUP) {
 {            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
   /* Health expectancies */            if(j==0) j=1;  /* Survives at least one month after exam */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;            k=k+1;
   double age, agelim, hf;            if (j >= jmax) jmax=j;
   double ***p3mat,***varhe;            if (j <= jmin) jmin=j;
   double **dnewm,**doldm;            sum=sum+j;
   double *xp;            /*if (j<0) printf("j=%d num=%d \n",j,i); */
   double **gp, **gm;            }
   double ***gradg, ***trgradg;          }
   int theta;          else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);            k=k+1;
   xp=vector(1,npar);            if (j >= jmax) jmax=j;
   dnewm=matrix(1,nlstate*2,1,npar);            else if (j <= jmin)jmin=j;
   doldm=matrix(1,nlstate*2,1,nlstate*2);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
              sum=sum+j;
   fprintf(ficreseij,"# Health expectancies\n");          }
   fprintf(ficreseij,"# Age");          jk= j/stepm;
   for(i=1; i<=nlstate;i++)          jl= j -jk*stepm;
     for(j=1; j<=nlstate;j++)          ju= j -(jk+1)*stepm;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);          if(jl <= -ju)
   fprintf(ficreseij,"\n");            dh[mi][i]=jk;
           else
   if(estepm < stepm){            dh[mi][i]=jk+1;
     printf ("Problem %d lower than %d\n",estepm, stepm);          if(dh[mi][i]==0)
   }            dh[mi][i]=1; /* At least one step */
   else  hstepm=estepm;          }
   /* We compute the life expectancy from trapezoids spaced every estepm months      }
    * This is mainly to measure the difference between two models: for example    }
    * if stepm=24 months pijx are given only every 2 years and by summing them    jmean=sum/k;
    * we are calculating an estimate of the Life Expectancy assuming a linear    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
    * progression inbetween and thus overestimating or underestimating according    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
    * to the curvature of the survival function. If, for the same date, we   }
    * estimate the model with stepm=1 month, we can keep estepm to 24 months  
    * to compare the new estimate of Life expectancy with the same linear  /*********** Tricode ****************************/
    * hypothesis. A more precise result, taking into account a more precise  void tricode(int *Tvar, int **nbcode, int imx)
    * curvature will be obtained if estepm is as small as stepm. */  {
     int Ndum[20],ij=1, k, j, i;
   /* For example we decided to compute the life expectancy with the smallest unit */    int cptcode=0;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    cptcoveff=0; 
      nhstepm is the number of hstepm from age to agelim   
      nstepm is the number of stepm from age to agelin.    for (k=0; k<19; k++) Ndum[k]=0;
      Look at hpijx to understand the reason of that which relies in memory size    for (k=1; k<=7; k++) ncodemax[k]=0;
      and note for a fixed period like estepm months */  
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
      survival function given by stepm (the optimization length). Unfortunately it      for (i=1; i<=imx; i++) {
      means that if the survival funtion is printed only each two years of age and if        ij=(int)(covar[Tvar[j]][i]);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same        Ndum[ij]++; 
      results. So we changed our mind and took the option of the best precision.        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   */        if (ij > cptcode) cptcode=ij; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */      }
   
   agelim=AGESUP;      for (i=0; i<=cptcode; i++) {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        if(Ndum[i]!=0) ncodemax[j]++;
     /* nhstepm age range expressed in number of stepm */      }
     nstepm=(int) rint((agelim-age)*YEARM/stepm);      ij=1; 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */  
     /* if (stepm >= YEARM) hstepm=1;*/  
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      for (i=1; i<=ncodemax[j]; i++) {
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for (k=0; k<=19; k++) {
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);          if (Ndum[k] != 0) {
     gp=matrix(0,nhstepm,1,nlstate*2);            nbcode[Tvar[j]][ij]=k; 
     gm=matrix(0,nhstepm,1,nlstate*2);            
             ij++;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          if (ij > ncodemax[j]) break; 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          }  
        } 
     }  
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  
    for (k=0; k<19; k++) Ndum[k]=0;
     /* Computing Variances of health expectancies */  
    for (i=1; i<=ncovmodel-2; i++) {
      for(theta=1; theta <=npar; theta++){     ij=Tvar[i];
       for(i=1; i<=npar; i++){     Ndum[ij]++; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);   }
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);     ij=1;
     for (i=1; i<=10; i++) {
       cptj=0;     if((Ndum[i]!=0) && (i<=ncovcol)){
       for(j=1; j<= nlstate; j++){       Tvaraff[ij]=i; 
         for(i=1; i<=nlstate; i++){       ij++;
           cptj=cptj+1;     }
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){   }
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;   
           }   cptcoveff=ij-1;
         }  }
       }  
        /*********** Health Expectancies ****************/
        
       for(i=1; i<=npar; i++)  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    {
          /* Health expectancies */
       cptj=0;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
       for(j=1; j<= nlstate; j++){    double age, agelim, hf;
         for(i=1;i<=nlstate;i++){    double ***p3mat,***varhe;
           cptj=cptj+1;    double **dnewm,**doldm;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    double *xp;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    double **gp, **gm;
           }    double ***gradg, ***trgradg;
         }    int theta;
       }  
          varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);
        xp=vector(1,npar);
     dnewm=matrix(1,nlstate*2,1,npar);
       for(j=1; j<= nlstate*2; j++)    doldm=matrix(1,nlstate*2,1,nlstate*2);
         for(h=0; h<=nhstepm-1; h++){    
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    fprintf(ficreseij,"# Health expectancies\n");
         }    fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++)
      }      for(j=1; j<=nlstate;j++)
            fprintf(ficreseij," %1d-%1d (SE)",i,j);
 /* End theta */    fprintf(ficreseij,"\n");
   
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
      for(h=0; h<=nhstepm-1; h++)    }
       for(j=1; j<=nlstate*2;j++)    else  hstepm=estepm;   
         for(theta=1; theta <=npar; theta++)    /* We compute the life expectancy from trapezoids spaced every estepm months
         trgradg[h][j][theta]=gradg[h][theta][j];     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      for(i=1;i<=nlstate*2;i++)     * progression inbetween and thus overestimating or underestimating according
       for(j=1;j<=nlstate*2;j++)     * to the curvature of the survival function. If, for the same date, we 
         varhe[i][j][(int)age] =0.;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      printf("%d|",(int)age);fflush(stdout);     * hypothesis. A more precise result, taking into account a more precise
     for(h=0;h<=nhstepm-1;h++){     * curvature will be obtained if estepm is as small as stepm. */
       for(k=0;k<=nhstepm-1;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    /* For example we decided to compute the life expectancy with the smallest unit */
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         for(i=1;i<=nlstate*2;i++)       nhstepm is the number of hstepm from age to agelim 
           for(j=1;j<=nlstate*2;j++)       nstepm is the number of stepm from age to agelin. 
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;       Look at hpijx to understand the reason of that which relies in memory size
       }       and note for a fixed period like estepm months */
     }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
             means that if the survival funtion is printed only each two years of age and if
     /* Computing expectancies */       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     for(i=1; i<=nlstate;i++)       results. So we changed our mind and took the option of the best precision.
       for(j=1; j<=nlstate;j++)    */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;  
              agelim=AGESUP;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       /* nhstepm age range expressed in number of stepm */
         }      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     fprintf(ficreseij,"%3.0f",age );      /* if (stepm >= YEARM) hstepm=1;*/
     cptj=0;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     for(i=1; i<=nlstate;i++)      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for(j=1; j<=nlstate;j++){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);
         cptj++;      gp=matrix(0,nhstepm,1,nlstate*2);
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      gm=matrix(0,nhstepm,1,nlstate*2);
       }  
     fprintf(ficreseij,"\n");      /* Computed by stepm unit matrices, product of hstepm matrices, stored
             in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     free_matrix(gm,0,nhstepm,1,nlstate*2);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
     free_matrix(gp,0,nhstepm,1,nlstate*2);   
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   }      /* Computing Variances of health expectancies */
   free_vector(xp,1,npar);  
   free_matrix(dnewm,1,nlstate*2,1,npar);       for(theta=1; theta <=npar; theta++){
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);        for(i=1; i<=npar; i++){ 
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
 }        }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 /************ Variance ******************/    
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)        cptj=0;
 {        for(j=1; j<= nlstate; j++){
   /* Variance of health expectancies */          for(i=1; i<=nlstate; i++){
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            cptj=cptj+1;
   double **newm;            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   double **dnewm,**doldm;              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   int i, j, nhstepm, hstepm, h, nstepm ;            }
   int k, cptcode;          }
   double *xp;        }
   double **gp, **gm;       
   double ***gradg, ***trgradg;       
   double ***p3mat;        for(i=1; i<=npar; i++) 
   double age,agelim, hf;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   int theta;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");        cptj=0;
   fprintf(ficresvij,"# Age");        for(j=1; j<= nlstate; j++){
   for(i=1; i<=nlstate;i++)          for(i=1;i<=nlstate;i++){
     for(j=1; j<=nlstate;j++)            cptj=cptj+1;
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   fprintf(ficresvij,"\n");              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             }
   xp=vector(1,npar);          }
   dnewm=matrix(1,nlstate,1,npar);        }
   doldm=matrix(1,nlstate,1,nlstate);        for(j=1; j<= nlstate*2; j++)
            for(h=0; h<=nhstepm-1; h++){
   if(estepm < stepm){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     printf ("Problem %d lower than %d\n",estepm, stepm);          }
   }       } 
   else  hstepm=estepm;       
   /* For example we decided to compute the life expectancy with the smallest unit */  /* End theta */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.  
      nhstepm is the number of hstepm from age to agelim       trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);
      nstepm is the number of stepm from age to agelin.  
      Look at hpijx to understand the reason of that which relies in memory size       for(h=0; h<=nhstepm-1; h++)
      and note for a fixed period like k years */        for(j=1; j<=nlstate*2;j++)
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          for(theta=1; theta <=npar; theta++)
      survival function given by stepm (the optimization length). Unfortunately it            trgradg[h][j][theta]=gradg[h][theta][j];
      means that if the survival funtion is printed only each two years of age and if       
      you sum them up and add 1 year (area under the trapezoids) you won't get the same  
      results. So we changed our mind and took the option of the best precision.       for(i=1;i<=nlstate*2;i++)
   */        for(j=1;j<=nlstate*2;j++)
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          varhe[i][j][(int)age] =0.;
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */       printf("%d|",(int)age);fflush(stdout);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */       for(h=0;h<=nhstepm-1;h++){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for(k=0;k<=nhstepm-1;k++){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);
     gp=matrix(0,nhstepm,1,nlstate);          matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);
     gm=matrix(0,nhstepm,1,nlstate);          for(i=1;i<=nlstate*2;i++)
             for(j=1;j<=nlstate*2;j++)
     for(theta=1; theta <=npar; theta++){              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
       for(i=1; i<=npar; i++){ /* Computes gradient */        }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      }
       }      /* Computing expectancies */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for(i=1; i<=nlstate;i++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
       if (popbased==1) {            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
         for(i=1; i<=nlstate;i++)            
           prlim[i][i]=probs[(int)age][i][ij];  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       }  
            }
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){      fprintf(ficreseij,"%3.0f",age );
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      cptj=0;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      for(i=1; i<=nlstate;i++)
         }        for(j=1; j<=nlstate;j++){
       }          cptj++;
              fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
       for(i=1; i<=npar; i++) /* Computes gradient */        }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      fprintf(ficreseij,"\n");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);       
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      free_matrix(gm,0,nhstepm,1,nlstate*2);
        free_matrix(gp,0,nhstepm,1,nlstate*2);
       if (popbased==1) {      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);
         for(i=1; i<=nlstate;i++)      free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);
           prlim[i][i]=probs[(int)age][i][ij];      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }    }
     printf("\n");
       for(j=1; j<= nlstate; j++){    fprintf(ficlog,"\n");
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    free_vector(xp,1,npar);
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    free_matrix(dnewm,1,nlstate*2,1,npar);
         }    free_matrix(doldm,1,nlstate*2,1,nlstate*2);
       }    free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);
   }
       for(j=1; j<= nlstate; j++)  
         for(h=0; h<=nhstepm; h++){  /************ Variance ******************/
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
         }  {
     } /* End theta */    /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    /* double **newm;*/
     double **dnewm,**doldm;
     for(h=0; h<=nhstepm; h++)    double **dnewmp,**doldmp;
       for(j=1; j<=nlstate;j++)    int i, j, nhstepm, hstepm, h, nstepm ;
         for(theta=1; theta <=npar; theta++)    int k, cptcode;
           trgradg[h][j][theta]=gradg[h][theta][j];    double *xp;
     double **gp, **gm;  /* for var eij */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    double ***gradg, ***trgradg; /*for var eij */
     for(i=1;i<=nlstate;i++)    double **gradgp, **trgradgp; /* for var p point j */
       for(j=1;j<=nlstate;j++)    double *gpp, *gmp; /* for var p point j */
         vareij[i][j][(int)age] =0.;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     for(h=0;h<=nhstepm;h++){    double age,agelim, hf;
       for(k=0;k<=nhstepm;k++){    double ***mobaverage;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    int theta;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    char digit[4];
         for(i=1;i<=nlstate;i++)    char digitp[16];
           for(j=1;j<=nlstate;j++)  
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    char fileresprobmorprev[FILENAMELENGTH];
       }  
     }    if(popbased==1)
       strcpy(digitp,"-populbased-");
     fprintf(ficresvij,"%.0f ",age );    else
     for(i=1; i<=nlstate;i++)      strcpy(digitp,"-stablbased-");
       for(j=1; j<=nlstate;j++){    if(mobilav==1)
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);      strcat(digitp,"mobilav-");
       }    else
     fprintf(ficresvij,"\n");      strcat(digitp,"nomobil-");
     free_matrix(gp,0,nhstepm,1,nlstate);    if (mobilav==1) {
     free_matrix(gm,0,nhstepm,1,nlstate);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      movingaverage(probs, bage, fage, mobaverage);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   } /* End age */    strcpy(fileresprobmorprev,"prmorprev"); 
      sprintf(digit,"%-d",ij);
   free_vector(xp,1,npar);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   free_matrix(doldm,1,nlstate,1,npar);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   free_matrix(dnewm,1,nlstate,1,nlstate);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
 }    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
 /************ Variance of prevlim ******************/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    }
 {    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   /* Variance of prevalence limit */    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");
   double **newm;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   double **dnewm,**doldm;    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   int i, j, nhstepm, hstepm;      fprintf(ficresprobmorprev," p.%-d SE",j);
   int k, cptcode;      for(i=1; i<=nlstate;i++)
   double *xp;        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   double *gp, *gm;    }  
   double **gradg, **trgradg;    fprintf(ficresprobmorprev,"\n");
   double age,agelim;    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
   int theta;      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
          fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");      exit(0);
   fprintf(ficresvpl,"# Age");    }
   for(i=1; i<=nlstate;i++)    else{
       fprintf(ficresvpl," %1d-%1d",i,i);      fprintf(ficgp,"\n# Routine varevsij");
   fprintf(ficresvpl,"\n");    }
     if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
   xp=vector(1,npar);      printf("Problem with html file: %s\n", optionfilehtm);
   dnewm=matrix(1,nlstate,1,npar);      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
   doldm=matrix(1,nlstate,1,nlstate);      exit(0);
      }
   hstepm=1*YEARM; /* Every year of age */    else{
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   agelim = AGESUP;      fprintf(fichtm,"\n<br>%s (à revoir) <br>\n",digitp);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    }
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
     gradg=matrix(1,npar,1,nlstate);    fprintf(ficresvij,"# Age");
     gp=vector(1,nlstate);    for(i=1; i<=nlstate;i++)
     gm=vector(1,nlstate);      for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
     for(theta=1; theta <=npar; theta++){    fprintf(ficresvij,"\n");
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    xp=vector(1,npar);
       }    dnewm=matrix(1,nlstate,1,npar);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    doldm=matrix(1,nlstate,1,nlstate);
       for(i=1;i<=nlstate;i++)    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
         gp[i] = prlim[i][i];    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      
       for(i=1; i<=npar; i++) /* Computes gradient */    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    gpp=vector(nlstate+1,nlstate+ndeath);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    gmp=vector(nlstate+1,nlstate+ndeath);
       for(i=1;i<=nlstate;i++)    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         gm[i] = prlim[i][i];    
     if(estepm < stepm){
       for(i=1;i<=nlstate;i++)      printf ("Problem %d lower than %d\n",estepm, stepm);
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    }
     } /* End theta */    else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     trgradg =matrix(1,nlstate,1,npar);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
     for(j=1; j<=nlstate;j++)       nstepm is the number of stepm from age to agelin. 
       for(theta=1; theta <=npar; theta++)       Look at hpijx to understand the reason of that which relies in memory size
         trgradg[j][theta]=gradg[theta][j];       and note for a fixed period like k years */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     for(i=1;i<=nlstate;i++)       survival function given by stepm (the optimization length). Unfortunately it
       varpl[i][(int)age] =0.;       means that if the survival funtion is printed only each two years of age and if
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);       results. So we changed our mind and took the option of the best precision.
     for(i=1;i<=nlstate;i++)    */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     fprintf(ficresvpl,"%.0f ",age );    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     for(i=1; i<=nlstate;i++)      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     fprintf(ficresvpl,"\n");      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_vector(gp,1,nlstate);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     free_vector(gm,1,nlstate);      gp=matrix(0,nhstepm,1,nlstate);
     free_matrix(gradg,1,npar,1,nlstate);      gm=matrix(0,nhstepm,1,nlstate);
     free_matrix(trgradg,1,nlstate,1,npar);  
   } /* End age */  
       for(theta=1; theta <=npar; theta++){
   free_vector(xp,1,npar);        for(i=1; i<=npar; i++){ /* Computes gradient */
   free_matrix(doldm,1,nlstate,1,npar);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   free_matrix(dnewm,1,nlstate,1,nlstate);        }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
 /************ Variance of one-step probabilities  ******************/        if (popbased==1) {
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)          if(mobilav !=1){
 {            for(i=1; i<=nlstate;i++)
   int i, j, i1, k1, j1, z1;              prlim[i][i]=probs[(int)age][i][ij];
   int k=0, cptcode;          }else{ /* mobilav=1 */ 
   double **dnewm,**doldm;            for(i=1; i<=nlstate;i++)
   double *xp;              prlim[i][i]=mobaverage[(int)age][i][ij];
   double *gp, *gm;          }
   double **gradg, **trgradg;        }
   double age,agelim, cov[NCOVMAX];    
   int theta;        for(j=1; j<= nlstate; j++){
   char fileresprob[FILENAMELENGTH];          for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   strcpy(fileresprob,"prob");              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   strcat(fileresprob,fileres);          }
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        }
     printf("Problem with resultfile: %s\n", fileresprob);        /* This for computing forces of mortality (h=1)as a weighted average */
   }        for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);          for(i=1; i<= nlstate; i++)
              gpp[j] += prlim[i][i]*p3mat[i][j][1];
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");        }    
   fprintf(ficresprob,"# Age");        /* end force of mortality */
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=(nlstate+ndeath);j++)        for(i=1; i<=npar; i++) /* Computes gradient */
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   fprintf(ficresprob,"\n");   
         if (popbased==1) {
           if(mobilav !=1){
   xp=vector(1,npar);            for(i=1; i<=nlstate;i++)
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              prlim[i][i]=probs[(int)age][i][ij];
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));          }else{ /* mobilav=1 */ 
              for(i=1; i<=nlstate;i++)
   cov[1]=1;              prlim[i][i]=mobaverage[(int)age][i][ij];
   j=cptcoveff;          }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        }
   j1=0;  
   for(k1=1; k1<=1;k1++){        for(j=1; j<= nlstate; j++){
     for(i1=1; i1<=ncodemax[k1];i1++){          for(h=0; h<=nhstepm; h++){
     j1++;            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
     if  (cptcovn>0) {          }
       fprintf(ficresprob, "\n#********** Variable ");        }
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        /* This for computing force of mortality (h=1)as a weighted average */
       fprintf(ficresprob, "**********\n#");        for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){
     }          for(i=1; i<= nlstate; i++)
                gmp[j] += prlim[i][i]*p3mat[i][j][1];
       for (age=bage; age<=fage; age ++){        }    
         cov[2]=age;        /* end force of mortality */
         for (k=1; k<=cptcovn;k++) {  
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];        for(j=1; j<= nlstate; j++) /* vareij */
                    for(h=0; h<=nhstepm; h++){
         }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];          }
         for (k=1; k<=cptcovprod;k++)        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
                }
         gradg=matrix(1,npar,1,9);  
         trgradg=matrix(1,9,1,npar);      } /* End theta */
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));  
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
      
         for(theta=1; theta <=npar; theta++){      for(h=0; h<=nhstepm; h++) /* veij */
           for(i=1; i<=npar; i++)        for(j=1; j<=nlstate;j++)
             xp[i] = x[i] + (i==theta ?delti[theta]:0);          for(theta=1; theta <=npar; theta++)
                      trgradg[h][j][theta]=gradg[h][theta][j];
           pmij(pmmij,cov,ncovmodel,xp,nlstate);  
                for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
           k=0;        for(theta=1; theta <=npar; theta++)
           for(i=1; i<= (nlstate+ndeath); i++){          trgradgp[j][theta]=gradgp[theta][j];
             for(j=1; j<=(nlstate+ndeath);j++){  
               k=k+1;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
               gp[k]=pmmij[i][j];      for(i=1;i<=nlstate;i++)
             }        for(j=1;j<=nlstate;j++)
           }          vareij[i][j][(int)age] =0.;
            
           for(i=1; i<=npar; i++)      for(h=0;h<=nhstepm;h++){
             xp[i] = x[i] - (i==theta ?delti[theta]:0);        for(k=0;k<=nhstepm;k++){
              matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           k=0;          for(i=1;i<=nlstate;i++)
           for(i=1; i<=(nlstate+ndeath); i++){            for(j=1;j<=nlstate;j++)
             for(j=1; j<=(nlstate+ndeath);j++){              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
               k=k+1;        }
               gm[k]=pmmij[i][j];      }
             }  
           }      /* pptj */
            matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];        for(j=nlstate+1;j<=nlstate+ndeath;j++)
         }        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)      /* end ppptj */
           for(theta=1; theta <=npar; theta++)      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
             trgradg[j][theta]=gradg[theta][j];      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
           
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);      if (popbased==1) {
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);        if(mobilav !=1){
                  for(i=1; i<=nlstate;i++)
         pmij(pmmij,cov,ncovmodel,x,nlstate);            prlim[i][i]=probs[(int)age][i][ij];
                }else{ /* mobilav=1 */ 
         k=0;          for(i=1; i<=nlstate;i++)
         for(i=1; i<=(nlstate+ndeath); i++){            prlim[i][i]=mobaverage[(int)age][i][ij];
           for(j=1; j<=(nlstate+ndeath);j++){        }
             k=k+1;      }
             gm[k]=pmmij[i][j];      
           }      /* This for computing force of mortality (h=1)as a weighted average */
         }      for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){
              for(i=1; i<= nlstate; i++)
      /*printf("\n%d ",(int)age);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      }    
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      /* end force of mortality */
      }*/  
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
         fprintf(ficresprob,"\n%d ",(int)age);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)        for(i=1; i<=nlstate;i++){
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
          }
       }      } 
     }      fprintf(ficresprobmorprev,"\n");
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));  
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      fprintf(ficresvij,"%.0f ",age );
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      for(i=1; i<=nlstate;i++)
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        for(j=1; j<=nlstate;j++){
   }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
   free_vector(xp,1,npar);        }
   fclose(ficresprob);      fprintf(ficresvij,"\n");
        free_matrix(gp,0,nhstepm,1,nlstate);
 }      free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
 /******************* Printing html file ***********/      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   int lastpass, int stepm, int weightopt, char model[],\    } /* End age */
                   int imx,int jmin, int jmax, double jmeanint,char optionfile[], \    free_vector(gpp,nlstate+1,nlstate+ndeath);
                   char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\    free_vector(gmp,nlstate+1,nlstate+ndeath);
                   char version[], int popforecast, int estepm ,/* \ */    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
                   double jprev1, double mprev1,double anprev1, \    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                   double jprev2, double mprev2,double anprev2){    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   int jj1, k1, i1, cpt;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   FILE *fichtm;    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*char optionfilehtm[FILENAMELENGTH];*/    fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);
   strcpy(optionfilehtm,optionfile);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);
   strcat(optionfilehtm,".htm");    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,digitp,digit);
     printf("Problem with %s \n",optionfilehtm), exit(0);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   }  */
     fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n  
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    free_vector(xp,1,npar);
 \n    free_matrix(doldm,1,nlstate,1,nlstate);
 Total number of observations=%d <br>\n    free_matrix(dnewm,1,nlstate,1,npar);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
 <hr  size=\"2\" color=\"#EC5E5E\">    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
  <ul><li>Parameter files<br>\n    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);    fclose(ficresprobmorprev);
     fclose(ficgp);
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n    fclose(fichtm);
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n  
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n  }
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n  
  - Life expectancies by age and initial health status (estepm=%2d months):  /************ Variance of prevlim ******************/
    <a href=\"e%s\">e%s</a> <br>\n</li>", \  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);  {
     /* Variance of prevalence limit */
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    double **newm;
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    double **dnewm,**doldm;
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    int i, j, nhstepm, hstepm;
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    int k, cptcode;
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    double *xp;
     double *gp, *gm;
  if(popforecast==1) fprintf(fichtm,"\n    double **gradg, **trgradg;
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    double age,agelim;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    int theta;
         <br>",fileres,fileres,fileres,fileres);     
  else    fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    fprintf(ficresvpl,"# Age");
 fprintf(fichtm," <li>Graphs</li><p>");    for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
  m=cptcoveff;    fprintf(ficresvpl,"\n");
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
     xp=vector(1,npar);
  jj1=0;    dnewm=matrix(1,nlstate,1,npar);
  for(k1=1; k1<=m;k1++){    doldm=matrix(1,nlstate,1,nlstate);
    for(i1=1; i1<=ncodemax[k1];i1++){    
        jj1++;    hstepm=1*YEARM; /* Every year of age */
        if (cptcovn > 0) {    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    agelim = AGESUP;
          for (cpt=1; cpt<=cptcoveff;cpt++)    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      if (stepm >= YEARM) hstepm=1;
        }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
        /* Pij */      gradg=matrix(1,npar,1,nlstate);
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>      gp=vector(1,nlstate);
 <img src=\"pe%s%d1.png\">",strtok(optionfile, "."),jj1,stepm,strtok(optionfile, "."),jj1);          gm=vector(1,nlstate);
        /* Quasi-incidences */  
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>      for(theta=1; theta <=npar; theta++){
 <img src=\"pe%s%d2.png\">",strtok(optionfile, "."),jj1,stepm,strtok(optionfile, "."),jj1);            for(i=1; i<=npar; i++){ /* Computes gradient */
        /* Stable prevalence in each health state */          xp[i] = x[i] + (i==theta ?delti[theta]:0);
        for(cpt=1; cpt<nlstate;cpt++){        }
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        for(i=1;i<=nlstate;i++)
        }          gp[i] = prlim[i][i];
     for(cpt=1; cpt<=nlstate;cpt++) {      
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        for(i=1; i<=npar; i++) /* Computes gradient */
 interval) in state (%d): v%s%d%d.png <br>          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      }        for(i=1;i<=nlstate;i++)
      for(cpt=1; cpt<=nlstate;cpt++) {          gm[i] = prlim[i][i];
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>  
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        for(i=1;i<=nlstate;i++)
      }          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      } /* End theta */
 health expectancies in states (1) and (2): e%s%d.png<br>  
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      trgradg =matrix(1,nlstate,1,npar);
 fprintf(fichtm,"\n</body>");  
    }      for(j=1; j<=nlstate;j++)
    }        for(theta=1; theta <=npar; theta++)
 fclose(fichtm);          trgradg[j][theta]=gradg[theta][j];
 }  
       for(i=1;i<=nlstate;i++)
 /******************* Gnuplot file **************/        varpl[i][(int)age] =0.;
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;      for(i=1;i<=nlstate;i++)
   int ng;        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   strcpy(optionfilegnuplot,optionfilefiname);  
   strcat(optionfilegnuplot,".gp.txt");      fprintf(ficresvpl,"%.0f ",age );
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {      for(i=1; i<=nlstate;i++)
     printf("Problem with file %s",optionfilegnuplot);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   }      fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
 #ifdef windows      free_vector(gm,1,nlstate);
     fprintf(ficgp,"cd \"%s\" \n",pathc);      free_matrix(gradg,1,npar,1,nlstate);
 #endif      free_matrix(trgradg,1,nlstate,1,npar);
 m=pow(2,cptcoveff);    } /* End age */
    
  /* 1eme*/    free_vector(xp,1,npar);
   for (cpt=1; cpt<= nlstate ; cpt ++) {    free_matrix(doldm,1,nlstate,1,npar);
    for (k1=1; k1<= m ; k1 ++) {    free_matrix(dnewm,1,nlstate,1,nlstate);
   
 #ifdef windows  }
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);  
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);  /************ Variance of one-step probabilities  ******************/
 #endif  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
 #ifdef unix  {
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    int i, j=0,  i1, k1, l1, t, tj;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);    int k2, l2, j1,  z1;
 #endif    int k=0,l, cptcode;
     int first=1, first1;
 for (i=1; i<= nlstate ; i ++) {    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double **dnewm,**doldm;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double *xp;
 }    double *gp, *gm;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    double **gradg, **trgradg;
     for (i=1; i<= nlstate ; i ++) {    double **mu;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double age,agelim, cov[NCOVMAX];
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
 }    int theta;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    char fileresprob[FILENAMELENGTH];
      for (i=1; i<= nlstate ; i ++) {    char fileresprobcov[FILENAMELENGTH];
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    char fileresprobcor[FILENAMELENGTH];
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      double ***varpij;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  
 #ifdef unix    strcpy(fileresprob,"prob"); 
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");    strcat(fileresprob,fileres);
 #endif    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
    }      printf("Problem with resultfile: %s\n", fileresprob);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   /*2 eme*/    }
     strcpy(fileresprobcov,"probcov"); 
   for (k1=1; k1<= m ; k1 ++) {    strcat(fileresprobcov,fileres);
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);      printf("Problem with resultfile: %s\n", fileresprobcov);
          fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     for (i=1; i<= nlstate+1 ; i ++) {    }
       k=2*i;    strcpy(fileresprobcor,"probcor"); 
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    strcat(fileresprobcor,fileres);
       for (j=1; j<= nlstate+1 ; j ++) {    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      printf("Problem with resultfile: %s\n", fileresprobcor);
   else fprintf(ficgp," \%%*lf (\%%*lf)");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
 }      }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 }      
       fprintf(ficgp,"\" t\"\" w l 0,");    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    fprintf(ficresprob,"# Age");
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficresprobcov,"# Age");
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
 }      fprintf(ficresprobcov,"# Age");
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  
       else fprintf(ficgp,"\" t\"\" w l 0,");  
     }    for(i=1; i<=nlstate;i++)
   }      for(j=1; j<=(nlstate+ndeath);j++){
          fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   /*3eme*/        fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
   for (k1=1; k1<= m ; k1 ++) {      }  
     for (cpt=1; cpt<= nlstate ; cpt ++) {    fprintf(ficresprob,"\n");
       k=2+nlstate*(2*cpt-2);    fprintf(ficresprobcov,"\n");
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    fprintf(ficresprobcor,"\n");
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    xp=vector(1,npar);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    first=1;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
 */      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
       for (i=1; i< nlstate ; i ++) {      exit(0);
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    }
     else{
       }      fprintf(ficgp,"\n# Routine varprob");
     }    }
   }    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
        printf("Problem with html file: %s\n", optionfilehtm);
   /* CV preval stat */      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
     for (k1=1; k1<= m ; k1 ++) {      exit(0);
     for (cpt=1; cpt<nlstate ; cpt ++) {    }
       k=3;    else{
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);      fprintf(fichtm,"\n");
   
       for (i=1; i< nlstate ; i ++)      fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
         fprintf(ficgp,"+$%d",k+i+1);      fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);      fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
        
       l=3+(nlstate+ndeath)*cpt;    }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  
       for (i=1; i< nlstate ; i ++) {   
         l=3+(nlstate+ndeath)*cpt;    cov[1]=1;
         fprintf(ficgp,"+$%d",l+i+1);    tj=cptcoveff;
       }    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      j1=0;
     }    for(t=1; t<=tj;t++){
   }        for(i1=1; i1<=ncodemax[t];i1++){ 
          j1++;
   /* proba elementaires */        
    for(i=1,jk=1; i <=nlstate; i++){        if  (cptcovn>0) {
     for(k=1; k <=(nlstate+ndeath); k++){          fprintf(ficresprob, "\n#********** Variable "); 
       if (k != i) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         for(j=1; j <=ncovmodel; j++){          fprintf(ficresprob, "**********\n#");
                  fprintf(ficresprobcov, "\n#********** Variable "); 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           jk++;          fprintf(ficresprobcov, "**********\n#");
           fprintf(ficgp,"\n");          
         }          fprintf(ficgp, "\n#********** Variable "); 
       }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }          fprintf(ficgp, "**********\n#");
    }          
           
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
      for(jk=1; jk <=m; jk++) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
        if (ng==2)          
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");          fprintf(ficresprobcor, "\n#********** Variable ");    
        else          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
          fprintf(ficgp,"\nset title \"Probability\"\n");          fprintf(ficgp, "**********\n#");    
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        }
        i=1;        
        for(k2=1; k2<=nlstate; k2++) {        for (age=bage; age<=fage; age ++){ 
          k3=i;          cov[2]=age;
          for(k=1; k<=(nlstate+ndeath); k++) {          for (k=1; k<=cptcovn;k++) {
            if (k != k2){            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
              if(ng==2)          }
                fprintf(ficgp," %f*exp(p%d+p%d*x",stepm/YEARM,i,i+1);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
              else          for (k=1; k<=cptcovprod;k++)
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
              ij=1;          
              for(j=3; j <=ncovmodel; j++) {          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          gp=vector(1,(nlstate)*(nlstate+ndeath));
                  ij++;          gm=vector(1,(nlstate)*(nlstate+ndeath));
                }      
                else          for(theta=1; theta <=npar; theta++){
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            for(i=1; i<=npar; i++)
              }              xp[i] = x[i] + (i==theta ?delti[theta]:0);
              fprintf(ficgp,")/(1");            
                          pmij(pmmij,cov,ncovmodel,xp,nlstate);
              for(k1=1; k1 <=nlstate; k1++){              
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);            k=0;
                ij=1;            for(i=1; i<= (nlstate); i++){
                for(j=3; j <=ncovmodel; j++){              for(j=1; j<=(nlstate+ndeath);j++){
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {                k=k+1;
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);                gp[k]=pmmij[i][j];
                    ij++;              }
                  }            }
                  else            
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            for(i=1; i<=npar; i++)
                }              xp[i] = x[i] - (i==theta ?delti[theta]:0);
                fprintf(ficgp,")");      
              }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);            k=0;
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");            for(i=1; i<=(nlstate); i++){
              i=i+ncovmodel;              for(j=1; j<=(nlstate+ndeath);j++){
            }                k=k+1;
          }                gm[k]=pmmij[i][j];
        }              }
      }            }
    }       
    fclose(ficgp);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
 }  /* end gnuplot */              gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];  
           }
   
 /*************** Moving average **************/          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){            for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
   int i, cpt, cptcod;          
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
       for (i=1; i<=nlstate;i++)          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)          
           mobaverage[(int)agedeb][i][cptcod]=0.;          pmij(pmmij,cov,ncovmodel,x,nlstate);
              
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){          k=0;
       for (i=1; i<=nlstate;i++){          for(i=1; i<=(nlstate); i++){
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            for(j=1; j<=(nlstate+ndeath);j++){
           for (cpt=0;cpt<=4;cpt++){              k=k+1;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];              mu[k][(int) age]=pmmij[i][j];
           }            }
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;          }
         }          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
       }            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     }              varpij[i][j][(int)age] = doldm[i][j];
      
 }          /*printf("\n%d ",(int)age);
        for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
          printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 /************** Forecasting ******************/         fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){       }*/
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          fprintf(ficresprob,"\n%d ",(int)age);
   int *popage;          fprintf(ficresprobcov,"\n%d ",(int)age);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          fprintf(ficresprobcor,"\n%d ",(int)age);
   double *popeffectif,*popcount;  
   double ***p3mat;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   char fileresf[FILENAMELENGTH];            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
  agelim=AGESUP;            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          i=0;
            for (k=1; k<=(nlstate);k++){
              for (l=1; l<=(nlstate+ndeath);l++){ 
   strcpy(fileresf,"f");              i=i++;
   strcat(fileresf,fileres);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   if((ficresf=fopen(fileresf,"w"))==NULL) {              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
     printf("Problem with forecast resultfile: %s\n", fileresf);              for (j=1; j<=i;j++){
   }                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   printf("Computing forecasting: result on file '%s' \n", fileresf);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            }
           }/* end of loop for state */
   if (mobilav==1) {        } /* end of loop for age */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);        /* Confidence intervalle of pij  */
   }        /*
         fprintf(ficgp,"\nset noparametric;unset label");
   stepsize=(int) (stepm+YEARM-1)/YEARM;        fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   if (stepm<=12) stepsize=1;        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   agelim=AGESUP;        fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   hstepm=1;        fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   hstepm=hstepm/stepm;        */
   yp1=modf(dateintmean,&yp);  
   anprojmean=yp;        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   yp2=modf((yp1*12),&yp);        first1=1;
   mprojmean=yp;        for (k2=1; k2<=(nlstate);k2++){
   yp1=modf((yp2*30.5),&yp);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   jprojmean=yp;            if(l2==k2) continue;
   if(jprojmean==0) jprojmean=1;            j=(k2-1)*(nlstate+ndeath)+l2;
   if(mprojmean==0) jprojmean=1;            for (k1=1; k1<=(nlstate);k1++){
                for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);                if(l1==k1) continue;
                  i=(k1-1)*(nlstate+ndeath)+l1;
   for(cptcov=1;cptcov<=i2;cptcov++){                if(i<=j) continue;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){                for (age=bage; age<=fage; age ++){ 
       k=k+1;                  if ((int)age %5==0){
       fprintf(ficresf,"\n#******");                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
       for(j=1;j<=cptcoveff;j++) {                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
       }                    mu1=mu[i][(int) age]/stepm*YEARM ;
       fprintf(ficresf,"******\n");                    mu2=mu[j][(int) age]/stepm*YEARM;
       fprintf(ficresf,"# StartingAge FinalAge");                    c12=cv12/sqrt(v1*v2);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);                    /* Computing eigen value of matrix of covariance */
                          lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                          lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {                    /* Eigen vectors */
         fprintf(ficresf,"\n");                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);                      /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){                    v12=-v21;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                    v22=v11;
           nhstepm = nhstepm/hstepm;                    tnalp=v21/v11;
                              if(first1==1){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                      first1=0;
           oldm=oldms;savm=savms;                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                      }
                            fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           for (h=0; h<=nhstepm; h++){                    /*printf(fignu*/
             if (h==(int) (calagedate+YEARM*cpt)) {                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
             }                    if(first==1){
             for(j=1; j<=nlstate+ndeath;j++) {                      first=0;
               kk1=0.;kk2=0;                      fprintf(ficgp,"\nset parametric;unset label");
               for(i=1; i<=nlstate;i++) {                                    fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                 if (mobilav==1)                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
                 else {                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                 }                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
                                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
               }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
               if (h==(int)(calagedate+12*cpt)){                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                 fprintf(ficresf," %.3f", kk1);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                                      mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
               }                    }else{
             }                      first=0;
           }                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
         }                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
       }                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                            }/* if first */
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                  } /* age mod 5 */
                 } /* end loop age */
   fclose(ficresf);                fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
 }                first=1;
 /************** Forecasting ******************/              } /*l12 */
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){            } /* k12 */
            } /*l1 */
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        }/* k1 */
   int *popage;      } /* loop covariates */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   double *popeffectif,*popcount;      free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   double ***p3mat,***tabpop,***tabpopprev;      free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
   char filerespop[FILENAMELENGTH];      free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
       free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
   agelim=AGESUP;    free_vector(xp,1,npar);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    fclose(ficresprob);
      fclose(ficresprobcov);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    fclose(ficresprobcor);
      fclose(ficgp);
      fclose(fichtm);
   strcpy(filerespop,"pop");  }
   strcat(filerespop,fileres);  
   if((ficrespop=fopen(filerespop,"w"))==NULL) {  
     printf("Problem with forecast resultfile: %s\n", filerespop);  /******************* Printing html file ***********/
   }  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   printf("Computing forecasting: result on file '%s' \n", filerespop);                    int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   if (cptcoveff==0) ncodemax[cptcoveff]=1;                    int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
   if (mobilav==1) {                    double jprev2, double mprev2,double anprev2){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    int jj1, k1, i1, cpt;
     movingaverage(agedeb, fage, ageminpar, mobaverage);    /*char optionfilehtm[FILENAMELENGTH];*/
   }    if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
   stepsize=(int) (stepm+YEARM-1)/YEARM;      fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
   if (stepm<=12) stepsize=1;    }
    
   agelim=AGESUP;     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n
     - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n
   hstepm=1;   - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n
   hstepm=hstepm/stepm;   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n
     - Life expectancies by age and initial health status (estepm=%2d months): 
   if (popforecast==1) {     <a href=\"e%s\">e%s</a> <br>\n</li>", \
     if((ficpop=fopen(popfile,"r"))==NULL) {    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
       printf("Problem with population file : %s\n",popfile);exit(0);  
     }  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
     popage=ivector(0,AGESUP);  
     popeffectif=vector(0,AGESUP);   m=cptcoveff;
     popcount=vector(0,AGESUP);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
      
     i=1;     jj1=0;
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;   for(k1=1; k1<=m;k1++){
         for(i1=1; i1<=ncodemax[k1];i1++){
     imx=i;       jj1++;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];       if (cptcovn > 0) {
   }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
   for(cptcov=1;cptcov<=i2;cptcov++){           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       k=k+1;       }
       fprintf(ficrespop,"\n#******");       /* Pij */
       for(j=1;j<=cptcoveff;j++) {       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
       }       /* Quasi-incidences */
       fprintf(ficrespop,"******\n");       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>
       fprintf(ficrespop,"# Age");  <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);         /* Stable prevalence in each health state */
       if (popforecast==1)  fprintf(ficrespop," [Population]");         for(cpt=1; cpt<nlstate;cpt++){
                 fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>
       for (cpt=0; cpt<=0;cpt++) {  <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);           }
               for(cpt=1; cpt<=nlstate;cpt++) {
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
           nhstepm = nhstepm/hstepm;       }
                 fprintf(fichtm,"\n<br>- Total life expectancy by age and
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  health expectancies in states (1) and (2): e%s%d.png<br>
           oldm=oldms;savm=savms;  <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);       } /* end i1 */
           }/* End k1 */
           for (h=0; h<=nhstepm; h++){   fprintf(fichtm,"</ul>");
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n
             for(j=1; j<=nlstate+ndeath;j++) {   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n
               kk1=0.;kk2=0;   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
               for(i=1; i<=nlstate;i++) {                 - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n
                 if (mobilav==1)   - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n 
                 else {   - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];   - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
                 }  
               }   if(popforecast==1) fprintf(fichtm,"\n
               if (h==(int)(calagedate+12*cpt)){   - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;   - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n
                   /*fprintf(ficrespop," %.3f", kk1);          <br>",fileres,fileres,fileres,fileres);
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/   else 
               }     fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);
             }  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
             for(i=1; i<=nlstate;i++){  
               kk1=0.;   m=cptcoveff;
                 for(j=1; j<=nlstate;j++){   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  
                 }   jj1=0;
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];   for(k1=1; k1<=m;k1++){
             }     for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)       if (cptcovn > 0) {
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           }         for (cpt=1; cpt<=cptcoveff;cpt++) 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
         }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       }       }
         for(cpt=1; cpt<=nlstate;cpt++) {
   /******/         fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident
   interval) in state (%d): v%s%d%d.png <br>
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);         }
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){     } /* end i1 */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);   }/* End k1 */
           nhstepm = nhstepm/hstepm;   fprintf(fichtm,"</ul>");
            fclose(fichtm);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  }
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    /******************* Gnuplot file **************/
           for (h=0; h<=nhstepm; h++){  void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
             }    int ng;
             for(j=1; j<=nlstate+ndeath;j++) {    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
               kk1=0.;kk2=0;      printf("Problem with file %s",optionfilegnuplot);
               for(i=1; i<=nlstate;i++) {                    fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];        }
               }  
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);  #ifdef windows
             }      fprintf(ficgp,"cd \"%s\" \n",pathc);
           }  #endif
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  m=pow(2,cptcoveff);
         }    
       }   /* 1eme*/
    }    for (cpt=1; cpt<= nlstate ; cpt ++) {
   }     for (k1=1; k1<= m ; k1 ++) {
         fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
   
   if (popforecast==1) {       for (i=1; i<= nlstate ; i ++) {
     free_ivector(popage,0,AGESUP);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     free_vector(popeffectif,0,AGESUP);         else fprintf(ficgp," \%%*lf (\%%*lf)");
     free_vector(popcount,0,AGESUP);       }
   }       fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);       for (i=1; i<= nlstate ; i ++) {
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   fclose(ficrespop);         else fprintf(ficgp," \%%*lf (\%%*lf)");
 }       } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1); 
 /***********************************************/       for (i=1; i<= nlstate ; i ++) {
 /**************** Main Program *****************/         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
 /***********************************************/         else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
 int main(int argc, char *argv[])       fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
 {     }
     }
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    /*2 eme*/
   double agedeb, agefin,hf;    
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;    for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
   double fret;      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
   double **xi,tmp,delta;      
       for (i=1; i<= nlstate+1 ; i ++) {
   double dum; /* Dummy variable */        k=2*i;
   double ***p3mat;        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
   int *indx;        for (j=1; j<= nlstate+1 ; j ++) {
   char line[MAXLINE], linepar[MAXLINE];          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   char title[MAXLINE];          else fprintf(ficgp," \%%*lf (\%%*lf)");
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];        }   
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
          else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
   char filerest[FILENAMELENGTH];          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   char fileregp[FILENAMELENGTH];          else fprintf(ficgp," \%%*lf (\%%*lf)");
   char popfile[FILENAMELENGTH];        }   
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        fprintf(ficgp,"\" t\"\" w l 0,");
   int firstobs=1, lastobs=10;        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
   int sdeb, sfin; /* Status at beginning and end */        for (j=1; j<= nlstate+1 ; j ++) {
   int c,  h , cpt,l;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   int ju,jl, mi;          else fprintf(ficgp," \%%*lf (\%%*lf)");
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        }   
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
   int mobilav=0,popforecast=0;        else fprintf(ficgp,"\" t\"\" w l 0,");
   int hstepm, nhstepm;      }
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    }
     
   double bage, fage, age, agelim, agebase;    /*3eme*/
   double ftolpl=FTOL;    
   double **prlim;    for (k1=1; k1<= m ; k1 ++) { 
   double *severity;      for (cpt=1; cpt<= nlstate ; cpt ++) {
   double ***param; /* Matrix of parameters */        k=2+nlstate*(2*cpt-2);
   double  *p;        fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
   double **matcov; /* Matrix of covariance */        fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
   double ***delti3; /* Scale */        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   double *delti; /* Scale */          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   double ***eij, ***vareij;          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   double **varpl; /* Variances of prevalence limits by age */          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   double *epj, vepp;          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   double kk1, kk2;          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;          
          */
         for (i=1; i< nlstate ; i ++) {
   char version[80]="Imach version 0.8d, May 2002, INED-EUROREVES ";          fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
   char *alph[]={"a","a","b","c","d","e"}, str[4];          
         } 
       }
   char z[1]="c", occ;    }
 #include <sys/time.h>    
 #include <time.h>    /* CV preval stat */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    for (k1=1; k1<= m ; k1 ++) { 
        for (cpt=1; cpt<nlstate ; cpt ++) {
   /* long total_usecs;        k=3;
   struct timeval start_time, end_time;        fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
          fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        
   getcwd(pathcd, size);        for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
   printf("\n%s",version);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   if(argc <=1){        
     printf("\nEnter the parameter file name: ");        l=3+(nlstate+ndeath)*cpt;
     scanf("%s",pathtot);        fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
   }        for (i=1; i< nlstate ; i ++) {
   else{          l=3+(nlstate+ndeath)*cpt;
     strcpy(pathtot,argv[1]);          fprintf(ficgp,"+$%d",l+i+1);
   }        }
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
   /*cygwin_split_path(pathtot,path,optionfile);      } 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    }  
   /* cutv(path,optionfile,pathtot,'\\');*/    
     /* proba elementaires */
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    for(i=1,jk=1; i <=nlstate; i++){
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      for(k=1; k <=(nlstate+ndeath); k++){
   chdir(path);        if (k != i) {
   replace(pathc,path);          for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
 /*-------- arguments in the command line --------*/            jk++; 
             fprintf(ficgp,"\n");
   strcpy(fileres,"r");          }
   strcat(fileres, optionfilefiname);        }
   strcat(fileres,".txt");    /* Other files have txt extension */      }
      }
   /*---------arguments file --------*/  
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   if((ficpar=fopen(optionfile,"r"))==NULL)    {       for(jk=1; jk <=m; jk++) {
     printf("Problem with optionfile %s\n",optionfile);         fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
     goto end;         if (ng==2)
   }           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
   strcpy(filereso,"o");           fprintf(ficgp,"\nset title \"Probability\"\n");
   strcat(filereso,fileres);         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
   if((ficparo=fopen(filereso,"w"))==NULL) {         i=1;
     printf("Problem with Output resultfile: %s\n", filereso);goto end;         for(k2=1; k2<=nlstate; k2++) {
   }           k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
   /* Reads comments: lines beginning with '#' */             if (k != k2){
   while((c=getc(ficpar))=='#' && c!= EOF){               if(ng==2)
     ungetc(c,ficpar);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
     fgets(line, MAXLINE, ficpar);               else
     puts(line);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
     fputs(line,ficparo);               ij=1;
   }               for(j=3; j <=ncovmodel; j++) {
   ungetc(c,ficpar);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);                   ij++;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);                 }
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);                 else
 while((c=getc(ficpar))=='#' && c!= EOF){                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     ungetc(c,ficpar);               }
     fgets(line, MAXLINE, ficpar);               fprintf(ficgp,")/(1");
     puts(line);               
     fputs(line,ficparo);               for(k1=1; k1 <=nlstate; k1++){   
   }                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
   ungetc(c,ficpar);                 ij=1;
                   for(j=3; j <=ncovmodel; j++){
                       if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   covar=matrix(0,NCOVMAX,1,n);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   cptcovn=0;                     ij++;
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;                   }
                    else
   ncovmodel=2+cptcovn;                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */                 }
                   fprintf(ficgp,")");
   /* Read guess parameters */               }
   /* Reads comments: lines beginning with '#' */               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
   while((c=getc(ficpar))=='#' && c!= EOF){               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
     ungetc(c,ficpar);               i=i+ncovmodel;
     fgets(line, MAXLINE, ficpar);             }
     puts(line);           } /* end k */
     fputs(line,ficparo);         } /* end k2 */
   }       } /* end jk */
   ungetc(c,ficpar);     } /* end ng */
       fclose(ficgp); 
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  }  /* end gnuplot */
     for(i=1; i <=nlstate; i++)  
     for(j=1; j <=nlstate+ndeath-1; j++){  
       fscanf(ficpar,"%1d%1d",&i1,&j1);  /*************** Moving average **************/
       fprintf(ficparo,"%1d%1d",i1,j1);  void movingaverage(double ***probs, double bage,double fage, double ***mobaverage){
       printf("%1d%1d",i,j);  
       for(k=1; k<=ncovmodel;k++){    int i, cpt, cptcod;
         fscanf(ficpar," %lf",&param[i][j][k]);    double age;
         printf(" %lf",param[i][j][k]);    for (age=bage; age<=fage; age++)
         fprintf(ficparo," %lf",param[i][j][k]);      for (i=1; i<=nlstate;i++)
       }        for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)
       fscanf(ficpar,"\n");          mobaverage[(int)age][i][cptcod]=0.;
       printf("\n");    
       fprintf(ficparo,"\n");    for (age=bage+4; age<=fage; age++){
     }      for (i=1; i<=nlstate;i++){
          for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;          for (cpt=0;cpt<=4;cpt++){
             mobaverage[(int)age-2][i][cptcod]=mobaverage[(int)age-2][i][cptcod]+probs[(int)age-cpt][i][cptcod];
   p=param[1][1];          }
            mobaverage[(int)age-2][i][cptcod]=mobaverage[(int)age-2][i][cptcod]/5;
   /* Reads comments: lines beginning with '#' */        }
   while((c=getc(ficpar))=='#' && c!= EOF){      }
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);    
     puts(line);  }
     fputs(line,ficparo);  
   }  
   ungetc(c,ficpar);  /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
   for(i=1; i <=nlstate; i++){    int *popage;
     for(j=1; j <=nlstate+ndeath-1; j++){    double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    double *popeffectif,*popcount;
       printf("%1d%1d",i,j);    double ***p3mat;
       fprintf(ficparo,"%1d%1d",i1,j1);    char fileresf[FILENAMELENGTH];
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar,"%le",&delti3[i][j][k]);   agelim=AGESUP;
         printf(" %le",delti3[i][j][k]);  calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;
         fprintf(ficparo," %le",delti3[i][j][k]);  
       }    prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);
       fscanf(ficpar,"\n");   
       printf("\n");   
       fprintf(ficparo,"\n");    strcpy(fileresf,"f"); 
     }    strcat(fileresf,fileres);
   }    if((ficresf=fopen(fileresf,"w"))==NULL) {
   delti=delti3[1][1];      printf("Problem with forecast resultfile: %s\n", fileresf);
        fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
   /* Reads comments: lines beginning with '#' */    }
   while((c=getc(ficpar))=='#' && c!= EOF){    printf("Computing forecasting: result on file '%s' \n", fileresf);
     ungetc(c,ficpar);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
     fgets(line, MAXLINE, ficpar);  
     puts(line);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
     fputs(line,ficparo);  
   }    if (mobilav==1) {
   ungetc(c,ficpar);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        movingaverage(probs, ageminpar,fage, mobaverage);
   matcov=matrix(1,npar,1,npar);    }
   for(i=1; i <=npar; i++){  
     fscanf(ficpar,"%s",&str);    stepsize=(int) (stepm+YEARM-1)/YEARM;
     printf("%s",str);    if (stepm<=12) stepsize=1;
     fprintf(ficparo,"%s",str);    
     for(j=1; j <=i; j++){    agelim=AGESUP;
       fscanf(ficpar," %le",&matcov[i][j]);    
       printf(" %.5le",matcov[i][j]);    hstepm=1;
       fprintf(ficparo," %.5le",matcov[i][j]);    hstepm=hstepm/stepm; 
     }    yp1=modf(dateintmean,&yp);
     fscanf(ficpar,"\n");    anprojmean=yp;
     printf("\n");    yp2=modf((yp1*12),&yp);
     fprintf(ficparo,"\n");    mprojmean=yp;
   }    yp1=modf((yp2*30.5),&yp);
   for(i=1; i <=npar; i++)    jprojmean=yp;
     for(j=i+1;j<=npar;j++)    if(jprojmean==0) jprojmean=1;
       matcov[i][j]=matcov[j][i];    if(mprojmean==0) jprojmean=1;
        
   printf("\n");    fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean); 
     
     for(cptcov=1;cptcov<=i2;cptcov++){
     /*-------- Rewriting paramater file ----------*/      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
      strcpy(rfileres,"r");    /* "Rparameterfile */        k=k+1;
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        fprintf(ficresf,"\n#******");
      strcat(rfileres,".");    /* */        for(j=1;j<=cptcoveff;j++) {
      strcat(rfileres,optionfilext);    /* Other files have txt extension */          fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     if((ficres =fopen(rfileres,"w"))==NULL) {        }
       printf("Problem writing new parameter file: %s\n", fileres);goto end;        fprintf(ficresf,"******\n");
     }        fprintf(ficresf,"# StartingAge FinalAge");
     fprintf(ficres,"#%s\n",version);        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);
            
     /*-------- data file ----------*/        
     if((fic=fopen(datafile,"r"))==NULL)    {        for (cpt=0; cpt<=(anproj2-anproj1);cpt++) { 
       printf("Problem with datafile: %s\n", datafile);goto end;          fprintf(ficresf,"\n");
     }          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);   
   
     n= lastobs;          for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ 
     severity = vector(1,maxwav);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
     outcome=imatrix(1,maxwav+1,1,n);            nhstepm = nhstepm/hstepm; 
     num=ivector(1,n);            
     moisnais=vector(1,n);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     annais=vector(1,n);            oldm=oldms;savm=savms;
     moisdc=vector(1,n);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
     andc=vector(1,n);          
     agedc=vector(1,n);            for (h=0; h<=nhstepm; h++){
     cod=ivector(1,n);              if (h==(int) (calagedate+YEARM*cpt)) {
     weight=vector(1,n);                fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */              } 
     mint=matrix(1,maxwav,1,n);              for(j=1; j<=nlstate+ndeath;j++) {
     anint=matrix(1,maxwav,1,n);                kk1=0.;kk2=0;
     s=imatrix(1,maxwav+1,1,n);                for(i=1; i<=nlstate;i++) {              
     adl=imatrix(1,maxwav+1,1,n);                      if (mobilav==1) 
     tab=ivector(1,NCOVMAX);                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
     ncodemax=ivector(1,8);                  else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
     i=1;                  }
     while (fgets(line, MAXLINE, fic) != NULL)    {                  
       if ((i >= firstobs) && (i <=lastobs)) {                }
                        if (h==(int)(calagedate+12*cpt)){
         for (j=maxwav;j>=1;j--){                  fprintf(ficresf," %.3f", kk1);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);                          
           strcpy(line,stra);                }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);              }
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            }
         }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                  }
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        }
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      }
     }
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);         
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    fclose(ficresf);
         for (j=ncovcol;j>=1;j--){  }
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  /************** Forecasting ******************/
         }  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
         num[i]=atol(stra);    
            int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    int *popage;
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
         i=i+1;    double ***p3mat,***tabpop,***tabpopprev;
       }    char filerespop[FILENAMELENGTH];
     }  
     /* printf("ii=%d", ij);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        scanf("%d",i);*/    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   imx=i-1; /* Number of individuals */    agelim=AGESUP;
     calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
   /* for (i=1; i<=imx; i++){    
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    
     }*/    strcpy(filerespop,"pop"); 
    /*  for (i=1; i<=imx; i++){    strcat(filerespop,fileres);
      if (s[4][i]==9)  s[4][i]=-1;    if((ficrespop=fopen(filerespop,"w"))==NULL) {
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/      printf("Problem with forecast resultfile: %s\n", filerespop);
        fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
      }
   /* Calculation of the number of parameter from char model*/    printf("Computing forecasting: result on file '%s' \n", filerespop);
   Tvar=ivector(1,15);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   Tprod=ivector(1,15);  
   Tvaraff=ivector(1,15);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   Tvard=imatrix(1,15,1,2);  
   Tage=ivector(1,15);          if (mobilav==1) {
          mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   if (strlen(model) >1){      movingaverage(probs, ageminpar, fage, mobaverage);
     j=0, j1=0, k1=1, k2=1;    }
     j=nbocc(model,'+');  
     j1=nbocc(model,'*');    stepsize=(int) (stepm+YEARM-1)/YEARM;
     cptcovn=j+1;    if (stepm<=12) stepsize=1;
     cptcovprod=j1;    
        agelim=AGESUP;
     strcpy(modelsav,model);    
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    hstepm=1;
       printf("Error. Non available option model=%s ",model);    hstepm=hstepm/stepm; 
       goto end;    
     }    if (popforecast==1) {
          if((ficpop=fopen(popfile,"r"))==NULL) {
     for(i=(j+1); i>=1;i--){        printf("Problem with population file : %s\n",popfile);exit(0);
       cutv(stra,strb,modelsav,'+');        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);      } 
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/      popage=ivector(0,AGESUP);
       /*scanf("%d",i);*/      popeffectif=vector(0,AGESUP);
       if (strchr(strb,'*')) {      popcount=vector(0,AGESUP);
         cutv(strd,strc,strb,'*');      
         if (strcmp(strc,"age")==0) {      i=1;   
           cptcovprod--;      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
           cutv(strb,stre,strd,'V');     
           Tvar[i]=atoi(stre);      imx=i;
           cptcovage++;      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
             Tage[cptcovage]=i;    }
             /*printf("stre=%s ", stre);*/  
         }    for(cptcov=1;cptcov<=i2;cptcov++){
         else if (strcmp(strd,"age")==0) {     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
           cptcovprod--;        k=k+1;
           cutv(strb,stre,strc,'V');        fprintf(ficrespop,"\n#******");
           Tvar[i]=atoi(stre);        for(j=1;j<=cptcoveff;j++) {
           cptcovage++;          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           Tage[cptcovage]=i;        }
         }        fprintf(ficrespop,"******\n");
         else {        fprintf(ficrespop,"# Age");
           cutv(strb,stre,strc,'V');        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
           Tvar[i]=ncovcol+k1;        if (popforecast==1)  fprintf(ficrespop," [Population]");
           cutv(strb,strc,strd,'V');        
           Tprod[k1]=i;        for (cpt=0; cpt<=0;cpt++) { 
           Tvard[k1][1]=atoi(strc);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           Tvard[k1][2]=atoi(stre);          
           Tvar[cptcovn+k2]=Tvard[k1][1];          for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ 
           Tvar[cptcovn+k2+1]=Tvard[k1][2];            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
           for (k=1; k<=lastobs;k++)            nhstepm = nhstepm/hstepm; 
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];            
           k1++;            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           k2=k2+2;            oldm=oldms;savm=savms;
         }            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
       }          
       else {            for (h=0; h<=nhstepm; h++){
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/              if (h==(int) (calagedate+YEARM*cpt)) {
        /*  scanf("%d",i);*/                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
       cutv(strd,strc,strb,'V');              } 
       Tvar[i]=atoi(strc);              for(j=1; j<=nlstate+ndeath;j++) {
       }                kk1=0.;kk2=0;
       strcpy(modelsav,stra);                  for(i=1; i<=nlstate;i++) {              
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                  if (mobilav==1) 
         scanf("%d",i);*/                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
     }                  else {
 }                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                    }
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);                }
   printf("cptcovprod=%d ", cptcovprod);                if (h==(int)(calagedate+12*cpt)){
   scanf("%d ",i);*/                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
     fclose(fic);                    /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
     /*  if(mle==1){*/                }
     if (weightopt != 1) { /* Maximisation without weights*/              }
       for(i=1;i<=n;i++) weight[i]=1.0;              for(i=1; i<=nlstate;i++){
     }                kk1=0.;
     /*-calculation of age at interview from date of interview and age at death -*/                  for(j=1; j<=nlstate;j++){
     agev=matrix(1,maxwav,1,imx);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
     for (i=1; i<=imx; i++) {                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];
       for(m=2; (m<= maxwav); m++) {              }
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){  
          anint[m][i]=9999;              if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++) 
          s[m][i]=-1;                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
        }            }
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }          }
     }        }
    
     for (i=1; i<=imx; i++)  {    /******/
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  
       for(m=1; (m<= maxwav); m++){        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
         if(s[m][i] >0){          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           if (s[m][i] >= nlstate+1) {          for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ 
             if(agedc[i]>0)            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
               if(moisdc[i]!=99 && andc[i]!=9999)            nhstepm = nhstepm/hstepm; 
                 agev[m][i]=agedc[i];            
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            else {            oldm=oldms;savm=savms;
               if (andc[i]!=9999){            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
               printf("Warning negative age at death: %d line:%d\n",num[i],i);            for (h=0; h<=nhstepm; h++){
               agev[m][i]=-1;              if (h==(int) (calagedate+YEARM*cpt)) {
               }                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
             }              } 
           }              for(j=1; j<=nlstate+ndeath;j++) {
           else if(s[m][i] !=9){ /* Should no more exist */                kk1=0.;kk2=0;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);                for(i=1; i<=nlstate;i++) {              
             if(mint[m][i]==99 || anint[m][i]==9999)                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
               agev[m][i]=1;                }
             else if(agev[m][i] <agemin){                if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1); 
               agemin=agev[m][i];              }
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/            }
             }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             else if(agev[m][i] >agemax){          }
               agemax=agev[m][i];        }
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/     } 
             }    }
             /*agev[m][i]=anint[m][i]-annais[i];*/   
             /*   agev[m][i] = age[i]+2*m;*/    if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           }  
           else { /* =9 */    if (popforecast==1) {
             agev[m][i]=1;      free_ivector(popage,0,AGESUP);
             s[m][i]=-1;      free_vector(popeffectif,0,AGESUP);
           }      free_vector(popcount,0,AGESUP);
         }    }
         else /*= 0 Unknown */    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           agev[m][i]=1;    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       }    fclose(ficrespop);
      }
     }  
     for (i=1; i<=imx; i++)  {  /***********************************************/
       for(m=1; (m<= maxwav); m++){  /**************** Main Program *****************/
         if (s[m][i] > (nlstate+ndeath)) {  /***********************************************/
           printf("Error: Wrong value in nlstate or ndeath\n");    
           goto end;  int main(int argc, char *argv[])
         }  {
       }  
     }    int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;
     double agedeb, agefin,hf;
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     free_vector(severity,1,maxwav);    double fret;
     free_imatrix(outcome,1,maxwav+1,1,n);    double **xi,tmp,delta;
     free_vector(moisnais,1,n);  
     free_vector(annais,1,n);    double dum; /* Dummy variable */
     /* free_matrix(mint,1,maxwav,1,n);    double ***p3mat;
        free_matrix(anint,1,maxwav,1,n);*/    double ***mobaverage;
     free_vector(moisdc,1,n);    int *indx;
     free_vector(andc,1,n);    char line[MAXLINE], linepar[MAXLINE];
     char path[80],pathc[80],pathcd[80],pathtot[80],model[80];
        int firstobs=1, lastobs=10;
     wav=ivector(1,imx);    int sdeb, sfin; /* Status at beginning and end */
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    int c,  h , cpt,l;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    int ju,jl, mi;
        int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     /* Concatenates waves */    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab; 
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;
       Tcode=ivector(1,100);  
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    double bage, fage, age, agelim, agebase;
       ncodemax[1]=1;    double ftolpl=FTOL;
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    double **prlim;
          double *severity;
    codtab=imatrix(1,100,1,10);    double ***param; /* Matrix of parameters */
    h=0;    double  *p;
    m=pow(2,cptcoveff);    double **matcov; /* Matrix of covariance */
      double ***delti3; /* Scale */
    for(k=1;k<=cptcoveff; k++){    double *delti; /* Scale */
      for(i=1; i <=(m/pow(2,k));i++){    double ***eij, ***vareij;
        for(j=1; j <= ncodemax[k]; j++){    double **varpl; /* Variances of prevalence limits by age */
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    double *epj, vepp;
            h++;    double kk1, kk2;
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;    double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    
          }  
        }    char *alph[]={"a","a","b","c","d","e"}, str[4];
      }  
    }  
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);    char z[1]="c", occ;
       codtab[1][2]=1;codtab[2][2]=2; */  #include <sys/time.h>
    /* for(i=1; i <=m ;i++){  #include <time.h>
       for(k=1; k <=cptcovn; k++){    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);   
       }    /* long total_usecs;
       printf("\n");    struct timeval start_time, end_time;
       }    
       scanf("%d",i);*/    gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
        getcwd(pathcd, size);
    /* Calculates basic frequencies. Computes observed prevalence at single age  
        and prints on file fileres'p'. */    printf("\n%s",version);
     if(argc <=1){
          printf("\nEnter the parameter file name: ");
          scanf("%s",pathtot);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    else{
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      strcpy(pathtot,argv[1]);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
          /*cygwin_split_path(pathtot,path,optionfile);
     /* For Powell, parameters are in a vector p[] starting at p[1]      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    /* cutv(path,optionfile,pathtot,'\\');*/
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     if(mle==1){     printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    chdir(path);
     }    replace(pathc,path);
      
     /*--------- results files --------------*/  /*-------- arguments in the command line --------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);  
      /* Log file */
     strcat(filelog, optionfilefiname);
    jk=1;    strcat(filelog,".log");    /* */
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    if((ficlog=fopen(filelog,"w"))==NULL)    {
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");      printf("Problem with logfile %s\n",filelog);
    for(i=1,jk=1; i <=nlstate; i++){      goto end;
      for(k=1; k <=(nlstate+ndeath); k++){    }
        if (k != i)    fprintf(ficlog,"Log filename:%s\n",filelog);
          {    fprintf(ficlog,"\n%s",version);
            printf("%d%d ",i,k);    fprintf(ficlog,"\nEnter the parameter file name: ");
            fprintf(ficres,"%1d%1d ",i,k);    fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
            for(j=1; j <=ncovmodel; j++){    fflush(ficlog);
              printf("%f ",p[jk]);  
              fprintf(ficres,"%f ",p[jk]);    /* */
              jk++;    strcpy(fileres,"r");
            }    strcat(fileres, optionfilefiname);
            printf("\n");    strcat(fileres,".txt");    /* Other files have txt extension */
            fprintf(ficres,"\n");  
          }    /*---------arguments file --------*/
      }  
    }    if((ficpar=fopen(optionfile,"r"))==NULL)    {
  if(mle==1){      printf("Problem with optionfile %s\n",optionfile);
     /* Computing hessian and covariance matrix */      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
     ftolhess=ftol; /* Usually correct */      goto end;
     hesscov(matcov, p, npar, delti, ftolhess, func);    }
  }  
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    strcpy(filereso,"o");
     printf("# Scales (for hessian or gradient estimation)\n");    strcat(filereso,fileres);
      for(i=1,jk=1; i <=nlstate; i++){    if((ficparo=fopen(filereso,"w"))==NULL) {
       for(j=1; j <=nlstate+ndeath; j++){      printf("Problem with Output resultfile: %s\n", filereso);
         if (j!=i) {      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
           fprintf(ficres,"%1d%1d",i,j);      goto end;
           printf("%1d%1d",i,j);    }
           for(k=1; k<=ncovmodel;k++){  
             printf(" %.5e",delti[jk]);    /* Reads comments: lines beginning with '#' */
             fprintf(ficres," %.5e",delti[jk]);    while((c=getc(ficpar))=='#' && c!= EOF){
             jk++;      ungetc(c,ficpar);
           }      fgets(line, MAXLINE, ficpar);
           printf("\n");      puts(line);
           fprintf(ficres,"\n");      fputs(line,ficparo);
         }    }
       }    ungetc(c,ficpar);
      }  
        fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     k=1;    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  while((c=getc(ficpar))=='#' && c!= EOF){
     for(i=1;i<=npar;i++){      ungetc(c,ficpar);
       /*  if (k>nlstate) k=1;      fgets(line, MAXLINE, ficpar);
       i1=(i-1)/(ncovmodel*nlstate)+1;      puts(line);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);      fputs(line,ficparo);
       printf("%s%d%d",alph[k],i1,tab[i]);*/    }
       fprintf(ficres,"%3d",i);    ungetc(c,ficpar);
       printf("%3d",i);    
       for(j=1; j<=i;j++){     
         fprintf(ficres," %.5e",matcov[i][j]);    covar=matrix(0,NCOVMAX,1,n); 
         printf(" %.5e",matcov[i][j]);    cptcovn=0; 
       }    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
       fprintf(ficres,"\n");  
       printf("\n");    ncovmodel=2+cptcovn;
       k++;    nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     }    
        /* Read guess parameters */
     while((c=getc(ficpar))=='#' && c!= EOF){    /* Reads comments: lines beginning with '#' */
       ungetc(c,ficpar);    while((c=getc(ficpar))=='#' && c!= EOF){
       fgets(line, MAXLINE, ficpar);      ungetc(c,ficpar);
       puts(line);      fgets(line, MAXLINE, ficpar);
       fputs(line,ficparo);      puts(line);
     }      fputs(line,ficparo);
     ungetc(c,ficpar);    }
     estepm=0;    ungetc(c,ficpar);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);    
     if (estepm==0 || estepm < stepm) estepm=stepm;    param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     if (fage <= 2) {      for(i=1; i <=nlstate; i++)
       bage = ageminpar;      for(j=1; j <=nlstate+ndeath-1; j++){
       fage = agemaxpar;        fscanf(ficpar,"%1d%1d",&i1,&j1);
     }        fprintf(ficparo,"%1d%1d",i1,j1);
            if(mle==1)
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          printf("%1d%1d",i,j);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        fprintf(ficlog,"%1d%1d",i,j);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        for(k=1; k<=ncovmodel;k++){
            fscanf(ficpar," %lf",&param[i][j][k]);
     while((c=getc(ficpar))=='#' && c!= EOF){          if(mle==1){
     ungetc(c,ficpar);            printf(" %lf",param[i][j][k]);
     fgets(line, MAXLINE, ficpar);            fprintf(ficlog," %lf",param[i][j][k]);
     puts(line);          }
     fputs(line,ficparo);          else
   }            fprintf(ficlog," %lf",param[i][j][k]);
   ungetc(c,ficpar);          fprintf(ficparo," %lf",param[i][j][k]);
          }
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);        fscanf(ficpar,"\n");
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        if(mle==1)
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          printf("\n");
              fprintf(ficlog,"\n");
   while((c=getc(ficpar))=='#' && c!= EOF){        fprintf(ficparo,"\n");
     ungetc(c,ficpar);      }
     fgets(line, MAXLINE, ficpar);    
     puts(line);      npar= (nlstate+ndeath-1)*nlstate*ncovmodel;
     fputs(line,ficparo);  
   }    p=param[1][1];
   ungetc(c,ficpar);    
      /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
    dateprev1=anprev1+mprev1/12.+jprev1/365.;      ungetc(c,ficpar);
    dateprev2=anprev2+mprev2/12.+jprev2/365.;      fgets(line, MAXLINE, ficpar);
       puts(line);
   fscanf(ficpar,"pop_based=%d\n",&popbased);      fputs(line,ficparo);
   fprintf(ficparo,"pop_based=%d\n",popbased);      }
   fprintf(ficres,"pop_based=%d\n",popbased);      ungetc(c,ficpar);
    
   while((c=getc(ficpar))=='#' && c!= EOF){    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     ungetc(c,ficpar);    delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */
     fgets(line, MAXLINE, ficpar);    for(i=1; i <=nlstate; i++){
     puts(line);      for(j=1; j <=nlstate+ndeath-1; j++){
     fputs(line,ficparo);        fscanf(ficpar,"%1d%1d",&i1,&j1);
   }        printf("%1d%1d",i,j);
   ungetc(c,ficpar);        fprintf(ficparo,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);          fscanf(ficpar,"%le",&delti3[i][j][k]);
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          printf(" %le",delti3[i][j][k]);
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          fprintf(ficparo," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
 while((c=getc(ficpar))=='#' && c!= EOF){        printf("\n");
     ungetc(c,ficpar);        fprintf(ficparo,"\n");
     fgets(line, MAXLINE, ficpar);      }
     puts(line);    }
     fputs(line,ficparo);    delti=delti3[1][1];
   }    
   ungetc(c,ficpar);    /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);      ungetc(c,ficpar);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      fgets(line, MAXLINE, ficpar);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);      puts(line);
       fputs(line,ficparo);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    }
     ungetc(c,ficpar);
 /*------------ gnuplot -------------*/    
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);    matcov=matrix(1,npar,1,npar);
      for(i=1; i <=npar; i++){
 /*------------ free_vector  -------------*/      fscanf(ficpar,"%s",&str);
  chdir(path);      if(mle==1)
          printf("%s",str);
  free_ivector(wav,1,imx);      fprintf(ficlog,"%s",str);
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      fprintf(ficparo,"%s",str);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);        for(j=1; j <=i; j++){
  free_ivector(num,1,n);        fscanf(ficpar," %le",&matcov[i][j]);
  free_vector(agedc,1,n);        if(mle==1){
  /*free_matrix(covar,1,NCOVMAX,1,n);*/          printf(" %.5le",matcov[i][j]);
  fclose(ficparo);          fprintf(ficlog," %.5le",matcov[i][j]);
  fclose(ficres);        }
         else
 /*--------- index.htm --------*/          fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);      }
       fscanf(ficpar,"\n");
        if(mle==1)
   /*--------------- Prevalence limit --------------*/        printf("\n");
        fprintf(ficlog,"\n");
   strcpy(filerespl,"pl");      fprintf(ficparo,"\n");
   strcat(filerespl,fileres);    }
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    for(i=1; i <=npar; i++)
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      for(j=i+1;j<=npar;j++)
   }        matcov[i][j]=matcov[j][i];
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);     
   fprintf(ficrespl,"#Prevalence limit\n");    if(mle==1)
   fprintf(ficrespl,"#Age ");      printf("\n");
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    fprintf(ficlog,"\n");
   fprintf(ficrespl,"\n");  
    
   prlim=matrix(1,nlstate,1,nlstate);      /*-------- Rewriting paramater file ----------*/
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       strcpy(rfileres,"r");    /* "Rparameterfile */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       strcat(rfileres,".");    /* */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       strcat(rfileres,optionfilext);    /* Other files have txt extension */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      if((ficres =fopen(rfileres,"w"))==NULL) {
   k=0;        printf("Problem writing new parameter file: %s\n", fileres);goto end;
   agebase=ageminpar;        fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
   agelim=agemaxpar;      }
   ftolpl=1.e-10;      fprintf(ficres,"#%s\n",version);
   i1=cptcoveff;      
   if (cptcovn < 1){i1=1;}      /*-------- data file ----------*/
       if((fic=fopen(datafile,"r"))==NULL)    {
   for(cptcov=1;cptcov<=i1;cptcov++){        printf("Problem with datafile: %s\n", datafile);goto end;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
         k=k+1;      }
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  
         fprintf(ficrespl,"\n#******");      n= lastobs;
         for(j=1;j<=cptcoveff;j++)      severity = vector(1,maxwav);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      outcome=imatrix(1,maxwav+1,1,n);
         fprintf(ficrespl,"******\n");      num=ivector(1,n);
              moisnais=vector(1,n);
         for (age=agebase; age<=agelim; age++){      annais=vector(1,n);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      moisdc=vector(1,n);
           fprintf(ficrespl,"%.0f",age );      andc=vector(1,n);
           for(i=1; i<=nlstate;i++)      agedc=vector(1,n);
           fprintf(ficrespl," %.5f", prlim[i][i]);      cod=ivector(1,n);
           fprintf(ficrespl,"\n");      weight=vector(1,n);
         }      for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
       }      mint=matrix(1,maxwav,1,n);
     }      anint=matrix(1,maxwav,1,n);
   fclose(ficrespl);      s=imatrix(1,maxwav+1,1,n);
       adl=imatrix(1,maxwav+1,1,n);    
   /*------------- h Pij x at various ages ------------*/      tab=ivector(1,NCOVMAX);
        ncodemax=ivector(1,8);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      i=1;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      while (fgets(line, MAXLINE, fic) != NULL)    {
   }        if ((i >= firstobs) && (i <=lastobs)) {
   printf("Computing pij: result on file '%s' \n", filerespij);          
            for (j=maxwav;j>=1;j--){
   stepsize=(int) (stepm+YEARM-1)/YEARM;            cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
   /*if (stepm<=24) stepsize=2;*/            strcpy(line,stra);
             cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
   agelim=AGESUP;            cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
   hstepm=stepsize*YEARM; /* Every year of age */          }
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */          
            cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
   k=0;          cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
       k=k+1;          cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
         fprintf(ficrespij,"\n#****** ");  
         for(j=1;j<=cptcoveff;j++)          cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for (j=ncovcol;j>=1;j--){
         fprintf(ficrespij,"******\n");            cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
                  } 
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          num[i]=atol(stra);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            i=i+1;
           fprintf(ficrespij,"# Age");        }
           for(i=1; i<=nlstate;i++)      } 
             for(j=1; j<=nlstate+ndeath;j++)      /* printf("ii=%d", ij);
               fprintf(ficrespij," %1d-%1d",i,j);         scanf("%d",i);*/
           fprintf(ficrespij,"\n");    imx=i-1; /* Number of individuals */
            for (h=0; h<=nhstepm; h++){  
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    /* for (i=1; i<=imx; i++){
             for(i=1; i<=nlstate;i++)      if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
               for(j=1; j<=nlstate+ndeath;j++)      if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
             fprintf(ficrespij,"\n");      }*/
              }     /*  for (i=1; i<=imx; i++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       if (s[4][i]==9)  s[4][i]=-1; 
           fprintf(ficrespij,"\n");       printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
         }    
     }   
   }    /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
   fclose(ficrespij);    Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
   /*---------- Forecasting ------------------*/    if (strlen(model) >1){
   if((stepm == 1) && (strcmp(model,".")==0)){      j=0, j1=0, k1=1, k2=1;
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);      j=nbocc(model,'+');
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);      j1=nbocc(model,'*');
   }      cptcovn=j+1;
   else{      cptcovprod=j1;
     erreur=108;      
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);      strcpy(modelsav,model); 
   }      if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
          printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
   /*---------- Health expectancies and variances ------------*/        goto end;
       }
   strcpy(filerest,"t");      
   strcat(filerest,fileres);      for(i=(j+1); i>=1;i--){
   if((ficrest=fopen(filerest,"w"))==NULL) {        cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */
   }        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
   printf("Computing Total LEs with variances: file '%s' \n", filerest);        /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
   strcpy(filerese,"e");          if (strcmp(strc,"age")==0) { /* Vn*age */
   strcat(filerese,fileres);            cptcovprod--;
   if((ficreseij=fopen(filerese,"w"))==NULL) {            cutv(strb,stre,strd,'V');
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);            Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
   }            cptcovage++;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);              Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
  strcpy(fileresv,"v");          }
   strcat(fileresv,fileres);          else if (strcmp(strd,"age")==0) { /* or age*Vn */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {            cptcovprod--;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);            cutv(strb,stre,strc,'V');
   }            Tvar[i]=atoi(stre);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);            cptcovage++;
   calagedate=-1;            Tage[cptcovage]=i;
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          }
           else {  /* Age is not in the model */
   k=0;            cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
   for(cptcov=1;cptcov<=i1;cptcov++){            Tvar[i]=ncovcol+k1;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
       k=k+1;            Tprod[k1]=i;
       fprintf(ficrest,"\n#****** ");            Tvard[k1][1]=atoi(strc); /* m*/
       for(j=1;j<=cptcoveff;j++)            Tvard[k1][2]=atoi(stre); /* n */
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            Tvar[cptcovn+k2]=Tvard[k1][1];
       fprintf(ficrest,"******\n");            Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
       fprintf(ficreseij,"\n#****** ");              covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
       for(j=1;j<=cptcoveff;j++)            k1++;
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);            k2=k2+2;
       fprintf(ficreseij,"******\n");          }
         }
       fprintf(ficresvij,"\n#****** ");        else { /* no more sum */
       for(j=1;j<=cptcoveff;j++)          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         /*  scanf("%d",i);*/
       fprintf(ficresvij,"******\n");        cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        }
       oldm=oldms;savm=savms;        strcpy(modelsav,stra);  
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);          /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
            scanf("%d",i);*/
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      } /* end of loop + */
       oldm=oldms;savm=savms;    } /* end model */
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);    
        /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
      fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    scanf("%d ",i);*/
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      fclose(fic);
       fprintf(ficrest,"\n");  
       /*  if(mle==1){*/
       epj=vector(1,nlstate+1);      if (weightopt != 1) { /* Maximisation without weights*/
       for(age=bage; age <=fage ;age++){        for(i=1;i<=n;i++) weight[i]=1.0;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      }
         if (popbased==1) {      /*-calculation of age at interview from date of interview and age at death -*/
           for(i=1; i<=nlstate;i++)      agev=matrix(1,maxwav,1,imx);
             prlim[i][i]=probs[(int)age][i][k];  
         }      for (i=1; i<=imx; i++) {
                for(m=2; (m<= maxwav); m++) {
         fprintf(ficrest," %4.0f",age);         if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){           anint[m][i]=9999;
           for(i=1, epj[j]=0.;i <=nlstate;i++) {           s[m][i]=-1;
             epj[j] += prlim[i][i]*eij[i][j][(int)age];         }
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/       if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;
           }        }
           epj[nlstate+1] +=epj[j];      }
         }  
       for (i=1; i<=imx; i++)  {
         for(i=1, vepp=0.;i <=nlstate;i++)        agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
           for(j=1;j <=nlstate;j++)        for(m=1; (m<= maxwav); m++){
             vepp += vareij[i][j][(int)age];          if(s[m][i] >0){
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));            if (s[m][i] >= nlstate+1) {
         for(j=1;j <=nlstate;j++){              if(agedc[i]>0)
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));                if(moisdc[i]!=99 && andc[i]!=9999)
         }                  agev[m][i]=agedc[i];
         fprintf(ficrest,"\n");              /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
       }             else {
     }                if (andc[i]!=9999){
   }                printf("Warning negative age at death: %d line:%d\n",num[i],i);
 free_matrix(mint,1,maxwav,1,n);                fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);                agev[m][i]=-1;
     free_vector(weight,1,n);                }
   fclose(ficreseij);              }
   fclose(ficresvij);            }
   fclose(ficrest);            else if(s[m][i] !=9){ /* Should no more exist */
   fclose(ficpar);              agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
   free_vector(epj,1,nlstate+1);              if(mint[m][i]==99 || anint[m][i]==9999)
                  agev[m][i]=1;
   /*------- Variance limit prevalence------*/                else if(agev[m][i] <agemin){ 
                 agemin=agev[m][i];
   strcpy(fileresvpl,"vpl");                /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
   strcat(fileresvpl,fileres);              }
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {              else if(agev[m][i] >agemax){
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);                agemax=agev[m][i];
     exit(0);               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
   }              }
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);              /*agev[m][i]=anint[m][i]-annais[i];*/
               /*   agev[m][i] = age[i]+2*m;*/
   k=0;            }
   for(cptcov=1;cptcov<=i1;cptcov++){            else { /* =9 */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              agev[m][i]=1;
       k=k+1;              s[m][i]=-1;
       fprintf(ficresvpl,"\n#****** ");            }
       for(j=1;j<=cptcoveff;j++)          }
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          else /*= 0 Unknown */
       fprintf(ficresvpl,"******\n");            agev[m][i]=1;
              }
       varpl=matrix(1,nlstate,(int) bage, (int) fage);      
       oldm=oldms;savm=savms;      }
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      for (i=1; i<=imx; i++)  {
     }        for(m=1; (m<= maxwav); m++){
  }          if (s[m][i] > (nlstate+ndeath)) {
             printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);   
   fclose(ficresvpl);            fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);   
             goto end;
   /*---------- End : free ----------------*/          }
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        }
        }
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);  
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);  printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
    
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      free_vector(severity,1,maxwav);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      free_imatrix(outcome,1,maxwav+1,1,n);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);      free_vector(moisnais,1,n);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      free_vector(annais,1,n);
        /* free_matrix(mint,1,maxwav,1,n);
   free_matrix(matcov,1,npar,1,npar);         free_matrix(anint,1,maxwav,1,n);*/
   free_vector(delti,1,npar);      free_vector(moisdc,1,n);
   free_matrix(agev,1,maxwav,1,imx);      free_vector(andc,1,n);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);  
      
   if(erreur >0)      wav=ivector(1,imx);
     printf("End of Imach with error or warning %d\n",erreur);      dh=imatrix(1,lastpass-firstpass+1,1,imx);
   else   printf("End of Imach\n");      mw=imatrix(1,lastpass-firstpass+1,1,imx);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */     
        /* Concatenates waves */
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   /*printf("Total time was %d uSec.\n", total_usecs);*/  
   /*------ End -----------*/  
         Tcode=ivector(1,100);
         nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
  end:        ncodemax[1]=1;
 #ifdef windows        if (cptcovn > 0) tricode(Tvar,nbcode,imx);
   /* chdir(pathcd);*/        
 #endif     codtab=imatrix(1,100,1,10);
  /*system("wgnuplot graph.plt");*/     h=0;
  /*system("../gp37mgw/wgnuplot graph.plt");*/     m=pow(2,cptcoveff);
  /*system("cd ../gp37mgw");*/   
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/     for(k=1;k<=cptcoveff; k++){
  strcpy(plotcmd,GNUPLOTPROGRAM);       for(i=1; i <=(m/pow(2,k));i++){
  strcat(plotcmd," ");         for(j=1; j <= ncodemax[k]; j++){
  strcat(plotcmd,optionfilegnuplot);           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
  system(plotcmd);             h++;
              if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
 #ifdef windows             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
   while (z[0] != 'q') {           } 
     /* chdir(path); */         }
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");       }
     scanf("%s",z);     } 
     if (z[0] == 'c') system("./imach");     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
     else if (z[0] == 'e') system(optionfilehtm);        codtab[1][2]=1;codtab[2][2]=2; */
     else if (z[0] == 'g') system(plotcmd);     /* for(i=1; i <=m ;i++){ 
     else if (z[0] == 'q') exit(0);        for(k=1; k <=cptcovn; k++){
   }        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
 #endif        }
 }        printf("\n");
         }
         scanf("%d",i);*/
       
      /* Calculates basic frequencies. Computes observed prevalence at single age
          and prints on file fileres'p'. */
   
       
      
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
        
       /* For Powell, parameters are in a vector p[] starting at p[1]
          so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
       p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
       if(mle==1){
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
      jk=1;
      fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
      printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
      fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
      for(i=1,jk=1; i <=nlstate; i++){
        for(k=1; k <=(nlstate+ndeath); k++){
          if (k != i) 
            {
              printf("%d%d ",i,k);
              fprintf(ficlog,"%d%d ",i,k);
              fprintf(ficres,"%1d%1d ",i,k);
              for(j=1; j <=ncovmodel; j++){
                printf("%f ",p[jk]);
                fprintf(ficlog,"%f ",p[jk]);
                fprintf(ficres,"%f ",p[jk]);
                jk++; 
              }
              printf("\n");
              fprintf(ficlog,"\n");
              fprintf(ficres,"\n");
            }
        }
      }
      if(mle==1){
        /* Computing hessian and covariance matrix */
        ftolhess=ftol; /* Usually correct */
        hesscov(matcov, p, npar, delti, ftolhess, func);
      }
      fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
      printf("# Scales (for hessian or gradient estimation)\n");
      fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
      for(i=1,jk=1; i <=nlstate; i++){
        for(j=1; j <=nlstate+ndeath; j++){
          if (j!=i) {
            fprintf(ficres,"%1d%1d",i,j);
            printf("%1d%1d",i,j);
            fprintf(ficlog,"%1d%1d",i,j);
            for(k=1; k<=ncovmodel;k++){
              printf(" %.5e",delti[jk]);
              fprintf(ficlog," %.5e",delti[jk]);
              fprintf(ficres," %.5e",delti[jk]);
              jk++;
            }
            printf("\n");
            fprintf(ficlog,"\n");
            fprintf(ficres,"\n");
          }
        }
      }
      
      k=1;
      fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
      if(mle==1)
        printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
      fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
      for(i=1;i<=npar;i++){
        /*  if (k>nlstate) k=1;
            i1=(i-1)/(ncovmodel*nlstate)+1; 
            fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
            printf("%s%d%d",alph[k],i1,tab[i]);*/
        fprintf(ficres,"%3d",i);
        if(mle==1)
          printf("%3d",i);
        fprintf(ficlog,"%3d",i);
        for(j=1; j<=i;j++){
          fprintf(ficres," %.5e",matcov[i][j]);
          if(mle==1)
            printf(" %.5e",matcov[i][j]);
          fprintf(ficlog," %.5e",matcov[i][j]);
        }
        fprintf(ficres,"\n");
        if(mle==1)
          printf("\n");
        fprintf(ficlog,"\n");
        k++;
      }
      
      while((c=getc(ficpar))=='#' && c!= EOF){
        ungetc(c,ficpar);
        fgets(line, MAXLINE, ficpar);
        puts(line);
        fputs(line,ficparo);
      }
      ungetc(c,ficpar);
      estepm=0;
      fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
      if (estepm==0 || estepm < stepm) estepm=stepm;
      if (fage <= 2) {
        bage = ageminpar;
        fage = agemaxpar;
      }
      
      fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
      fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
      while((c=getc(ficpar))=='#' && c!= EOF){
        ungetc(c,ficpar);
        fgets(line, MAXLINE, ficpar);
        puts(line);
        fputs(line,ficparo);
      }
      ungetc(c,ficpar);
     
      fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
      fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,&mobilav);
      fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,&mobilav);
      
      while((c=getc(ficpar))=='#' && c!= EOF){
        ungetc(c,ficpar);
        fgets(line, MAXLINE, ficpar);
        puts(line);
        fputs(line,ficparo);
      }
      ungetc(c,ficpar);
    
   
      dateprev1=anprev1+mprev1/12.+jprev1/365.;
      dateprev2=anprev2+mprev2/12.+jprev2/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);
   fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);
   fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);
   
   
   while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     fclose(ficgp);
    printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
   /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
   \n
   Total number of observations=%d <br>\n
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
   <hr  size=\"2\" color=\"#EC5E5E\">
    <ul><li><h4>Parameter files</h4>\n
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
    - Log file of the run: <a href=\"%s\">%s</a><br>\n
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
     fclose(fichtm);
   
    printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
   /*------------ free_vector  -------------*/
    chdir(path);
    
    free_ivector(wav,1,imx);
    free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
    free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
    free_ivector(num,1,n);
    free_vector(agedc,1,n);
    /*free_matrix(covar,1,NCOVMAX,1,n);*/
    fclose(ficparo);
    fclose(ficres);
   
   
     /*--------------- Prevalence limit --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing prevalence limit: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Prevalence limit\n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
     k=0;
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f",age );
             for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     k=0;
     for(cptcov=1;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Age");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
              for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
                }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
   
     /*---------- Forecasting ------------------*/
     if((stepm == 1) && (strcmp(model,".")==0)){
       prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);
       if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);
     } 
     else{
       erreur=108;
       printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);
       fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     calagedate=-1;
     prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);
     if (mobilav==1) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       movingaverage(probs, ageminpar, fage, mobaverage);
     }
   
     k=0;
     for(cptcov=1;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
          }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav !=1){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav=1 */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
       }
     }
   free_matrix(mint,1,maxwav,1,n);
       free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);
       free_vector(weight,1,n);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     free_vector(epj,1,nlstate+1);
     
     /*------- Variance limit prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);
   
     k=0;
     for(cptcov=1;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
        varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
       }
    }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
     
     free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
     free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
     
     
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
    
     free_matrix(matcov,1,npar,1,npar);
     free_vector(delti,1,npar);
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fprintf(fichtm,"\n</body>");
     fclose(fichtm);
     fclose(ficgp);
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     
     /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
     /*printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
   
    end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
    strcpy(plotcmd,GNUPLOTPROGRAM);
    strcat(plotcmd," ");
    strcat(plotcmd,optionfilegnuplot);
    system(plotcmd);
   
   #ifdef windows
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
   #endif 
   }
   
   

Removed from v.1.43  
changed lines
  Added in v.1.53


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>