Diff for /imach/src/imach.c between versions 1.5 and 1.121

version 1.5, 2001/05/02 17:42:45 version 1.121, 2006/03/16 17:45:01
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.121  2006/03/16 17:45:01  lievre
   individuals from different ages are interviewed on their health status    * imach.c (Module): Comments concerning covariates added
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    * imach.c (Module): refinements in the computation of lli if
   Health expectancies are computed from the transistions observed between    status=-2 in order to have more reliable computation if stepm is
   waves and are computed for each degree of severity of disability (number    not 1 month. Version 0.98f
   of life states). More degrees you consider, more time is necessary to  
   reach the Maximum Likelihood of the parameters involved in the model.    Revision 1.120  2006/03/16 15:10:38  lievre
   The simplest model is the multinomial logistic model where pij is    (Module): refinements in the computation of lli if
   the probabibility to be observed in state j at the second wave conditional    status=-2 in order to have more reliable computation if stepm is
   to be observed in state i at the first wave. Therefore the model is:    not 1 month. Version 0.98f
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'  
   is a covariate. If you want to have a more complex model than "constant and    Revision 1.119  2006/03/15 17:42:26  brouard
   age", you should modify the program where the markup    (Module): Bug if status = -2, the loglikelihood was
     *Covariates have to be included here again* invites you to do it.    computed as likelihood omitting the logarithm. Version O.98e
   More covariates you add, less is the speed of the convergence.  
     Revision 1.118  2006/03/14 18:20:07  brouard
   The advantage that this computer programme claims, comes from that if the    (Module): varevsij Comments added explaining the second
   delay between waves is not identical for each individual, or if some    table of variances if popbased=1 .
   individual missed an interview, the information is not rounded or lost, but    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   taken into account using an interpolation or extrapolation.    (Module): Function pstamp added
   hPijx is the probability to be    (Module): Version 0.98d
   observed in state i at age x+h conditional to the observed state i at age  
   x. The delay 'h' can be split into an exact number (nh*stepm) of    Revision 1.117  2006/03/14 17:16:22  brouard
   unobserved intermediate  states. This elementary transition (by month or    (Module): varevsij Comments added explaining the second
   quarter trimester, semester or year) is model as a multinomial logistic.    table of variances if popbased=1 .
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   and the contribution of each individual to the likelihood is simply hPijx.    (Module): Function pstamp added
     (Module): Version 0.98d
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.116  2006/03/06 10:29:27  brouard
      (Module): Variance-covariance wrong links and
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    varian-covariance of ej. is needed (Saito).
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Revision 1.115  2006/02/27 12:17:45  brouard
   from the European Union.    (Module): One freematrix added in mlikeli! 0.98c
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.114  2006/02/26 12:57:58  brouard
   can be accessed at http://euroreves.ined.fr/imach .    (Module): Some improvements in processing parameter
   **********************************************************************/    filename with strsep.
    
 #include <math.h>    Revision 1.113  2006/02/24 14:20:24  brouard
 #include <stdio.h>    (Module): Memory leaks checks with valgrind and:
 #include <stdlib.h>    datafile was not closed, some imatrix were not freed and on matrix
 #include <unistd.h>    allocation too.
   
 #define MAXLINE 256    Revision 1.112  2006/01/30 09:55:26  brouard
 #define FILENAMELENGTH 80    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 /*#define DEBUG*/  
 #define windows    Revision 1.111  2006/01/25 20:38:18  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    (Module): Lots of cleaning and bugs added (Gompertz)
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    (Module): Comments can be added in data file. Missing date values
     can be a simple dot '.'.
   
     Revision 1.110  2006/01/25 00:51:50  brouard
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    (Module): Lots of cleaning and bugs added (Gompertz)
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.109  2006/01/24 19:37:15  brouard
 #define NINTERVMAX 8    (Module): Comments (lines starting with a #) are allowed in data.
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.108  2006/01/19 18:05:42  lievre
 #define NCOVMAX 8 /* Maximum number of covariates */    Gnuplot problem appeared...
 #define MAXN 20000    To be fixed
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.107  2006/01/19 16:20:37  brouard
 #define AGEBASE 40    Test existence of gnuplot in imach path
   
     Revision 1.106  2006/01/19 13:24:36  brouard
 int nvar;    Some cleaning and links added in html output
 static int cptcov;  
 int cptcovn;    Revision 1.105  2006/01/05 20:23:19  lievre
 int npar=NPARMAX;    *** empty log message ***
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.104  2005/09/30 16:11:43  lievre
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): sump fixed, loop imx fixed, and simplifications.
     (Module): If the status is missing at the last wave but we know
 int *wav; /* Number of waves for this individuual 0 is possible */    that the person is alive, then we can code his/her status as -2
 int maxwav; /* Maxim number of waves */    (instead of missing=-1 in earlier versions) and his/her
 int mle, weightopt;    contributions to the likelihood is 1 - Prob of dying from last
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    the healthy state at last known wave). Version is 0.98
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.103  2005/09/30 15:54:49  lievre
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    (Module): sump fixed, loop imx fixed, and simplifications.
 FILE *ficgp, *fichtm;  
 FILE *ficreseij;    Revision 1.102  2004/09/15 17:31:30  brouard
   char filerese[FILENAMELENGTH];    Add the possibility to read data file including tab characters.
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    Revision 1.101  2004/09/15 10:38:38  brouard
  FILE  *ficresvpl;    Fix on curr_time
   char fileresvpl[FILENAMELENGTH];  
     Revision 1.100  2004/07/12 18:29:06  brouard
     Add version for Mac OS X. Just define UNIX in Makefile
   
     Revision 1.99  2004/06/05 08:57:40  brouard
 #define NR_END 1    *** empty log message ***
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    Revision 1.98  2004/05/16 15:05:56  brouard
     New version 0.97 . First attempt to estimate force of mortality
 #define NRANSI    directly from the data i.e. without the need of knowing the health
 #define ITMAX 200    state at each age, but using a Gompertz model: log u =a + b*age .
     This is the basic analysis of mortality and should be done before any
 #define TOL 2.0e-4    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
 #define CGOLD 0.3819660    from other sources like vital statistic data.
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    The same imach parameter file can be used but the option for mle should be -3.
   
 #define GOLD 1.618034    Agnès, who wrote this part of the code, tried to keep most of the
 #define GLIMIT 100.0    former routines in order to include the new code within the former code.
 #define TINY 1.0e-20  
     The output is very simple: only an estimate of the intercept and of
 static double maxarg1,maxarg2;    the slope with 95% confident intervals.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Current limitations:
      A) Even if you enter covariates, i.e. with the
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #define rint(a) floor(a+0.5)    B) There is no computation of Life Expectancy nor Life Table.
   
 static double sqrarg;    Revision 1.97  2004/02/20 13:25:42  lievre
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    Version 0.96d. Population forecasting command line is (temporarily)
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    suppressed.
   
 int imx;    Revision 1.96  2003/07/15 15:38:55  brouard
 int stepm;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 /* Stepm, step in month: minimum step interpolation*/    rewritten within the same printf. Workaround: many printfs.
   
 int m,nb;    Revision 1.95  2003/07/08 07:54:34  brouard
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax;    * imach.c (Repository):
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    (Repository): Using imachwizard code to output a more meaningful covariance
 double **pmmij;    matrix (cov(a12,c31) instead of numbers.
   
 double *weight;    Revision 1.94  2003/06/27 13:00:02  brouard
 int **s; /* Status */    Just cleaning
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab;    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    exist so I changed back to asctime which exists.
 double ftolhess; /* Tolerance for computing hessian */    (Module): Version 0.96b
   
     Revision 1.92  2003/06/25 16:30:45  brouard
 static  int split( char *path, char *dirc, char *name )    (Module): On windows (cygwin) function asctime_r doesn't
 {    exist so I changed back to asctime which exists.
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    Revision 1.91  2003/06/25 15:30:29  brouard
     * imach.c (Repository): Duplicated warning errors corrected.
    l1 = strlen( path );                 /* length of path */    (Repository): Elapsed time after each iteration is now output. It
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    helps to forecast when convergence will be reached. Elapsed time
    s = strrchr( path, '\\' );           /* find last / */    is stamped in powell.  We created a new html file for the graphs
    if ( s == NULL ) {                   /* no directory, so use current */    concerning matrix of covariance. It has extension -cov.htm.
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
       if ( getwd( dirc ) == NULL ) {    mle=-1 a template is output in file "or"mypar.txt with the design
 #else    of the covariance matrix to be input.
       extern char       *getcwd( );  
     Revision 1.89  2003/06/24 12:30:52  brouard
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    (Module): Some bugs corrected for windows. Also, when
 #endif    mle=-1 a template is output in file "or"mypar.txt with the design
          return( GLOCK_ERROR_GETCWD );    of the covariance matrix to be input.
       }  
       strcpy( name, path );             /* we've got it */    Revision 1.88  2003/06/23 17:54:56  brouard
    } else {                             /* strip direcotry from path */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */    Revision 1.87  2003/06/18 12:26:01  brouard
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Version 0.96
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Revision 1.86  2003/06/17 20:04:08  brouard
       dirc[l1-l2] = 0;                  /* add zero */    (Module): Change position of html and gnuplot routines and added
    }    routine fileappend.
    l1 = strlen( dirc );                 /* length of directory */  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Revision 1.85  2003/06/17 13:12:43  brouard
    return( 0 );                         /* we're done */    * imach.c (Repository): Check when date of death was earlier that
 }    current date of interview. It may happen when the death was just
     prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
 /******************************************/    assuming that the date of death was just one stepm after the
     interview.
 void replace(char *s, char*t)    (Repository): Because some people have very long ID (first column)
 {    we changed int to long in num[] and we added a new lvector for
   int i;    memory allocation. But we also truncated to 8 characters (left
   int lg=20;    truncation)
   i=0;    (Repository): No more line truncation errors.
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Revision 1.84  2003/06/13 21:44:43  brouard
     (s[i] = t[i]);    * imach.c (Repository): Replace "freqsummary" at a correct
     if (t[i]== '\\') s[i]='/';    place. It differs from routine "prevalence" which may be called
   }    many times. Probs is memory consuming and must be used with
 }    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 int nbocc(char *s, char occ)  
 {    Revision 1.83  2003/06/10 13:39:11  lievre
   int i,j=0;    *** empty log message ***
   int lg=20;  
   i=0;    Revision 1.82  2003/06/05 15:57:20  brouard
   lg=strlen(s);    Add log in  imach.c and  fullversion number is now printed.
   for(i=0; i<= lg; i++) {  
   if  (s[i] == occ ) j++;  */
   }  /*
   return j;     Interpolated Markov Chain
 }  
     Short summary of the programme:
 void cutv(char *u,char *v, char*t, char occ)    
 {    This program computes Healthy Life Expectancies from
   int i,lg,j,p;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   i=0;    first survey ("cross") where individuals from different ages are
   for(j=0; j<=strlen(t)-1; j++) {    interviewed on their health status or degree of disability (in the
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    case of a health survey which is our main interest) -2- at least a
   }    second wave of interviews ("longitudinal") which measure each change
     (if any) in individual health status.  Health expectancies are
   lg=strlen(t);    computed from the time spent in each health state according to a
   for(j=0; j<p; j++) {    model. More health states you consider, more time is necessary to reach the
     (u[j] = t[j]);    Maximum Likelihood of the parameters involved in the model.  The
     u[p]='\0';    simplest model is the multinomial logistic model where pij is the
   }    probability to be observed in state j at the second wave
     conditional to be observed in state i at the first wave. Therefore
    for(j=0; j<= lg; j++) {    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     if (j>=(p+1))(v[j-p-1] = t[j]);    'age' is age and 'sex' is a covariate. If you want to have a more
   }    complex model than "constant and age", you should modify the program
 }    where the markup *Covariates have to be included here again* invites
     you to do it.  More covariates you add, slower the
 /********************** nrerror ********************/    convergence.
   
 void nrerror(char error_text[])    The advantage of this computer programme, compared to a simple
 {    multinomial logistic model, is clear when the delay between waves is not
   fprintf(stderr,"ERREUR ...\n");    identical for each individual. Also, if a individual missed an
   fprintf(stderr,"%s\n",error_text);    intermediate interview, the information is lost, but taken into
   exit(1);    account using an interpolation or extrapolation.  
 }  
 /*********************** vector *******************/    hPijx is the probability to be observed in state i at age x+h
 double *vector(int nl, int nh)    conditional to the observed state i at age x. The delay 'h' can be
 {    split into an exact number (nh*stepm) of unobserved intermediate
   double *v;    states. This elementary transition (by month, quarter,
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    semester or year) is modelled as a multinomial logistic.  The hPx
   if (!v) nrerror("allocation failure in vector");    matrix is simply the matrix product of nh*stepm elementary matrices
   return v-nl+NR_END;    and the contribution of each individual to the likelihood is simply
 }    hPijx.
   
 /************************ free vector ******************/    Also this programme outputs the covariance matrix of the parameters but also
 void free_vector(double*v, int nl, int nh)    of the life expectancies. It also computes the period (stable) prevalence. 
 {    
   free((FREE_ARG)(v+nl-NR_END));    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 }             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
 /************************ivector *******************************/    from the European Union.
 int *ivector(long nl,long nh)    It is copyrighted identically to a GNU software product, ie programme and
 {    software can be distributed freely for non commercial use. Latest version
   int *v;    can be accessed at http://euroreves.ined.fr/imach .
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   return v-nl+NR_END;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 }    
     **********************************************************************/
 /******************free ivector **************************/  /*
 void free_ivector(int *v, long nl, long nh)    main
 {    read parameterfile
   free((FREE_ARG)(v+nl-NR_END));    read datafile
 }    concatwav
     freqsummary
 /******************* imatrix *******************************/    if (mle >= 1)
 int **imatrix(long nrl, long nrh, long ncl, long nch)      mlikeli
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    print results files
 {    if mle==1 
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;       computes hessian
   int **m;    read end of parameter file: agemin, agemax, bage, fage, estepm
          begin-prev-date,...
   /* allocate pointers to rows */    open gnuplot file
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    open html file
   if (!m) nrerror("allocation failure 1 in matrix()");    period (stable) prevalence
   m += NR_END;     for age prevalim()
   m -= nrl;    h Pij x
      variance of p varprob
      forecasting if prevfcast==1 prevforecast call prevalence()
   /* allocate rows and set pointers to them */    health expectancies
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    Variance-covariance of DFLE
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    prevalence()
   m[nrl] += NR_END;     movingaverage()
   m[nrl] -= ncl;    varevsij() 
      if popbased==1 varevsij(,popbased)
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    total life expectancies
      Variance of period (stable) prevalence
   /* return pointer to array of pointers to rows */   end
   return m;  */
 }  
   
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)   
       int **m;  #include <math.h>
       long nch,ncl,nrh,nrl;  #include <stdio.h>
      /* free an int matrix allocated by imatrix() */  #include <stdlib.h>
 {  #include <string.h>
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #include <unistd.h>
   free((FREE_ARG) (m+nrl-NR_END));  
 }  #include <limits.h>
   #include <sys/types.h>
 /******************* matrix *******************************/  #include <sys/stat.h>
 double **matrix(long nrl, long nrh, long ncl, long nch)  #include <errno.h>
 {  extern int errno;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  /* #include <sys/time.h> */
   #include <time.h>
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #include "timeval.h"
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  /* #include <libintl.h> */
   m -= nrl;  /* #define _(String) gettext (String) */
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define MAXLINE 256
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  #define GNUPLOTPROGRAM "gnuplot"
   m[nrl] -= ncl;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   #define FILENAMELENGTH 132
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 }  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 /*************************free matrix ************************/  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define NINTERVMAX 8
   free((FREE_ARG)(m+nrl-NR_END));  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 }  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
 /******************* ma3x *******************************/  #define MAXN 20000
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  #define YEARM 12. /* Number of months per year */
 {  #define AGESUP 130
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  #define AGEBASE 40
   double ***m;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   #ifdef UNIX
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define DIRSEPARATOR '/'
   if (!m) nrerror("allocation failure 1 in matrix()");  #define CHARSEPARATOR "/"
   m += NR_END;  #define ODIRSEPARATOR '\\'
   m -= nrl;  #else
   #define DIRSEPARATOR '\\'
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define CHARSEPARATOR "\\"
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define ODIRSEPARATOR '/'
   m[nrl] += NR_END;  #endif
   m[nrl] -= ncl;  
   /* $Id$ */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /* $State$ */
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  char version[]="Imach version 0.98f, March 2006, INED-EUROREVES-Institut de longevite ";
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  char fullversion[]="$Revision$ $Date$"; 
   m[nrl][ncl] += NR_END;  char strstart[80];
   m[nrl][ncl] -= nll;  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   for (j=ncl+1; j<=nch; j++)  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
     m[nrl][j]=m[nrl][j-1]+nlay;  int nvar;
    int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   for (i=nrl+1; i<=nrh; i++) {  int npar=NPARMAX;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  int nlstate=2; /* Number of live states */
     for (j=ncl+1; j<=nch; j++)  int ndeath=1; /* Number of dead states */
       m[i][j]=m[i][j-1]+nlay;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   }  int popbased=0;
   return m;  
 }  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
 /*************************free ma3x ************************/  int jmin, jmax; /* min, max spacing between 2 waves */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
 {  int gipmx, gsw; /* Global variables on the number of contributions 
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));                     to the likelihood and the sum of weights (done by funcone)*/
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int mle, weightopt;
   free((FREE_ARG)(m+nrl-NR_END));  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 /***************** f1dim *************************/             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 extern int ncom;  double jmean; /* Mean space between 2 waves */
 extern double *pcom,*xicom;  double **oldm, **newm, **savm; /* Working pointers to matrices */
 extern double (*nrfunc)(double []);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
    FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 double f1dim(double x)  FILE *ficlog, *ficrespow;
 {  int globpr; /* Global variable for printing or not */
   int j;  double fretone; /* Only one call to likelihood */
   double f;  long ipmx; /* Number of contributions */
   double *xt;  double sw; /* Sum of weights */
    char filerespow[FILENAMELENGTH];
   xt=vector(1,ncom);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  FILE *ficresilk;
   f=(*nrfunc)(xt);  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   free_vector(xt,1,ncom);  FILE *ficresprobmorprev;
   return f;  FILE *fichtm, *fichtmcov; /* Html File */
 }  FILE *ficreseij;
   char filerese[FILENAMELENGTH];
 /*****************brent *************************/  FILE *ficresstdeij;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  char fileresstde[FILENAMELENGTH];
 {  FILE *ficrescveij;
   int iter;  char filerescve[FILENAMELENGTH];
   double a,b,d,etemp;  FILE  *ficresvij;
   double fu,fv,fw,fx;  char fileresv[FILENAMELENGTH];
   double ftemp;  FILE  *ficresvpl;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  char fileresvpl[FILENAMELENGTH];
   double e=0.0;  char title[MAXLINE];
    char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   a=(ax < cx ? ax : cx);  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   b=(ax > cx ? ax : cx);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
   x=w=v=bx;  char command[FILENAMELENGTH];
   fw=fv=fx=(*f)(x);  int  outcmd=0;
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  char filelog[FILENAMELENGTH]; /* Log file */
     printf(".");fflush(stdout);  char filerest[FILENAMELENGTH];
 #ifdef DEBUG  char fileregp[FILENAMELENGTH];
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  char popfile[FILENAMELENGTH];
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
       return fx;  struct timezone tzp;
     }  extern int gettimeofday();
     ftemp=fu;  struct tm tmg, tm, tmf, *gmtime(), *localtime();
     if (fabs(e) > tol1) {  long time_value;
       r=(x-w)*(fx-fv);  extern long time();
       q=(x-v)*(fx-fw);  char strcurr[80], strfor[80];
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  char *endptr;
       if (q > 0.0) p = -p;  long lval;
       q=fabs(q);  
       etemp=e;  #define NR_END 1
       e=d;  #define FREE_ARG char*
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  #define FTOL 1.0e-10
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  
       else {  #define NRANSI 
         d=p/q;  #define ITMAX 200 
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)  #define TOL 2.0e-4 
           d=SIGN(tol1,xm-x);  
       }  #define CGOLD 0.3819660 
     } else {  #define ZEPS 1.0e-10 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  #define GOLD 1.618034 
     fu=(*f)(u);  #define GLIMIT 100.0 
     if (fu <= fx) {  #define TINY 1.0e-20 
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)  static double maxarg1,maxarg2;
         SHFT(fv,fw,fx,fu)  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
         } else {  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
           if (u < x) a=u; else b=u;    
           if (fu <= fw || w == x) {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
             v=w;  #define rint(a) floor(a+0.5)
             w=u;  
             fv=fw;  static double sqrarg;
             fw=fu;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
           } else if (fu <= fv || v == x || v == w) {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
             v=u;  int agegomp= AGEGOMP;
             fv=fu;  
           }  int imx; 
         }  int stepm=1;
   }  /* Stepm, step in month: minimum step interpolation*/
   nrerror("Too many iterations in brent");  
   *xmin=x;  int estepm;
   return fx;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 }  
   int m,nb;
 /****************** mnbrak ***********************/  long *num;
   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
             double (*func)(double))  double **pmmij, ***probs;
 {  double *ageexmed,*agecens;
   double ulim,u,r,q, dum;  double dateintmean=0;
   double fu;  
    double *weight;
   *fa=(*func)(*ax);  int **s; /* Status */
   *fb=(*func)(*bx);  double *agedc, **covar, idx;
   if (*fb > *fa) {  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
     SHFT(dum,*ax,*bx,dum)  double *lsurv, *lpop, *tpop;
       SHFT(dum,*fb,*fa,dum)  
       }  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   *cx=(*bx)+GOLD*(*bx-*ax);  double ftolhess; /* Tolerance for computing hessian */
   *fc=(*func)(*cx);  
   while (*fb > *fc) {  /**************** split *************************/
     r=(*bx-*ax)*(*fb-*fc);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     q=(*bx-*cx)*(*fb-*fa);  {
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     ulim=(*bx)+GLIMIT*(*cx-*bx);    */ 
     if ((*bx-u)*(u-*cx) > 0.0) {    char  *ss;                            /* pointer */
       fu=(*func)(u);    int   l1, l2;                         /* length counters */
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);    l1 = strlen(path );                   /* length of path */
       if (fu < *fc) {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
           SHFT(*fb,*fc,fu,(*func)(u))    if ( ss == NULL ) {                   /* no directory, so determine current directory */
           }      strcpy( name, path );               /* we got the fullname name because no directory */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       u=ulim;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       fu=(*func)(u);      /* get current working directory */
     } else {      /*    extern  char* getcwd ( char *buf , int len);*/
       u=(*cx)+GOLD*(*cx-*bx);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
       fu=(*func)(u);        return( GLOCK_ERROR_GETCWD );
     }      }
     SHFT(*ax,*bx,*cx,u)      /* got dirc from getcwd*/
       SHFT(*fa,*fb,*fc,fu)      printf(" DIRC = %s \n",dirc);
       }    } else {                              /* strip direcotry from path */
 }      ss++;                               /* after this, the filename */
       l2 = strlen( ss );                  /* length of filename */
 /*************** linmin ************************/      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
 int ncom;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 double *pcom,*xicom;      dirc[l1-l2] = 0;                    /* add zero */
 double (*nrfunc)(double []);      printf(" DIRC2 = %s \n",dirc);
      }
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    /* We add a separator at the end of dirc if not exists */
 {    l1 = strlen( dirc );                  /* length of directory */
   double brent(double ax, double bx, double cx,    if( dirc[l1-1] != DIRSEPARATOR ){
                double (*f)(double), double tol, double *xmin);      dirc[l1] =  DIRSEPARATOR;
   double f1dim(double x);      dirc[l1+1] = 0; 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,      printf(" DIRC3 = %s \n",dirc);
               double *fc, double (*func)(double));    }
   int j;    ss = strrchr( name, '.' );            /* find last / */
   double xx,xmin,bx,ax;    if (ss >0){
   double fx,fb,fa;      ss++;
        strcpy(ext,ss);                     /* save extension */
   ncom=n;      l1= strlen( name);
   pcom=vector(1,n);      l2= strlen(ss)+1;
   xicom=vector(1,n);      strncpy( finame, name, l1-l2);
   nrfunc=func;      finame[l1-l2]= 0;
   for (j=1;j<=n;j++) {    }
     pcom[j]=p[j];  
     xicom[j]=xi[j];    return( 0 );                          /* we're done */
   }  }
   ax=0.0;  
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /******************************************/
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG  void replace_back_to_slash(char *s, char*t)
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  {
 #endif    int i;
   for (j=1;j<=n;j++) {    int lg=0;
     xi[j] *= xmin;    i=0;
     p[j] += xi[j];    lg=strlen(t);
   }    for(i=0; i<= lg; i++) {
   free_vector(xicom,1,n);      (s[i] = t[i]);
   free_vector(pcom,1,n);      if (t[i]== '\\') s[i]='/';
 }    }
   }
 /*************** powell ************************/  
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  int nbocc(char *s, char occ)
             double (*func)(double []))  {
 {    int i,j=0;
   void linmin(double p[], double xi[], int n, double *fret,    int lg=20;
               double (*func)(double []));    i=0;
   int i,ibig,j;    lg=strlen(s);
   double del,t,*pt,*ptt,*xit;    for(i=0; i<= lg; i++) {
   double fp,fptt;    if  (s[i] == occ ) j++;
   double *xits;    }
   pt=vector(1,n);    return j;
   ptt=vector(1,n);  }
   xit=vector(1,n);  
   xits=vector(1,n);  void cutv(char *u,char *v, char*t, char occ)
   *fret=(*func)(p);  {
   for (j=1;j<=n;j++) pt[j]=p[j];    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
   for (*iter=1;;++(*iter)) {       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
     fp=(*fret);       gives u="abcedf" and v="ghi2j" */
     ibig=0;    int i,lg,j,p=0;
     del=0.0;    i=0;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    for(j=0; j<=strlen(t)-1; j++) {
     for (i=1;i<=n;i++)      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       printf(" %d %.12f",i, p[i]);    }
     printf("\n");  
     for (i=1;i<=n;i++) {    lg=strlen(t);
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    for(j=0; j<p; j++) {
       fptt=(*fret);      (u[j] = t[j]);
 #ifdef DEBUG    }
       printf("fret=%lf \n",*fret);       u[p]='\0';
 #endif  
       printf("%d",i);fflush(stdout);     for(j=0; j<= lg; j++) {
       linmin(p,xit,n,fret,func);      if (j>=(p+1))(v[j-p-1] = t[j]);
       if (fabs(fptt-(*fret)) > del) {    }
         del=fabs(fptt-(*fret));  }
         ibig=i;  
       }  /********************** nrerror ********************/
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));  void nrerror(char error_text[])
       for (j=1;j<=n;j++) {  {
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    fprintf(stderr,"ERREUR ...\n");
         printf(" x(%d)=%.12e",j,xit[j]);    fprintf(stderr,"%s\n",error_text);
       }    exit(EXIT_FAILURE);
       for(j=1;j<=n;j++)  }
         printf(" p=%.12e",p[j]);  /*********************** vector *******************/
       printf("\n");  double *vector(int nl, int nh)
 #endif  {
     }    double *v;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 #ifdef DEBUG    if (!v) nrerror("allocation failure in vector");
       int k[2],l;    return v-nl+NR_END;
       k[0]=1;  }
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));  /************************ free vector ******************/
       for (j=1;j<=n;j++)  void free_vector(double*v, int nl, int nh)
         printf(" %.12e",p[j]);  {
       printf("\n");    free((FREE_ARG)(v+nl-NR_END));
       for(l=0;l<=1;l++) {  }
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  /************************ivector *******************************/
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  int *ivector(long nl,long nh)
         }  {
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    int *v;
       }    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
 #endif    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
   }
       free_vector(xit,1,n);  
       free_vector(xits,1,n);  /******************free ivector **************************/
       free_vector(ptt,1,n);  void free_ivector(int *v, long nl, long nh)
       free_vector(pt,1,n);  {
       return;    free((FREE_ARG)(v+nl-NR_END));
     }  }
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  
     for (j=1;j<=n;j++) {  /************************lvector *******************************/
       ptt[j]=2.0*p[j]-pt[j];  long *lvector(long nl,long nh)
       xit[j]=p[j]-pt[j];  {
       pt[j]=p[j];    long *v;
     }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     fptt=(*func)(ptt);    if (!v) nrerror("allocation failure in ivector");
     if (fptt < fp) {    return v-nl+NR_END;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  }
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);  /******************free lvector **************************/
         for (j=1;j<=n;j++) {  void free_lvector(long *v, long nl, long nh)
           xi[j][ibig]=xi[j][n];  {
           xi[j][n]=xit[j];    free((FREE_ARG)(v+nl-NR_END));
         }  }
 #ifdef DEBUG  
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  /******************* imatrix *******************************/
         for(j=1;j<=n;j++)  int **imatrix(long nrl, long nrh, long ncl, long nch) 
           printf(" %.12e",xit[j]);       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         printf("\n");  { 
 #endif    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       }    int **m; 
     }    
   }    /* allocate pointers to rows */ 
 }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     if (!m) nrerror("allocation failure 1 in matrix()"); 
 /**** Prevalence limit ****************/    m += NR_END; 
     m -= nrl; 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    
 {    
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    /* allocate rows and set pointers to them */ 
      matrix by transitions matrix until convergence is reached */    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   int i, ii,j,k;    m[nrl] += NR_END; 
   double min, max, maxmin, maxmax,sumnew=0.;    m[nrl] -= ncl; 
   double **matprod2();    
   double **out, cov[NCOVMAX], **pmij();    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   double **newm;    
   double agefin, delaymax=50 ; /* Max number of years to converge */    /* return pointer to array of pointers to rows */ 
     return m; 
   for (ii=1;ii<=nlstate+ndeath;ii++)  } 
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  /****************** free_imatrix *************************/
     }  void free_imatrix(m,nrl,nrh,ncl,nch)
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        int **m;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        long nch,ncl,nrh,nrl; 
     newm=savm;       /* free an int matrix allocated by imatrix() */ 
     /* Covariates have to be included here again */  { 
     cov[1]=1.;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     cov[2]=agefin;    free((FREE_ARG) (m+nrl-NR_END)); 
     if (cptcovn>0){  } 
       for (k=1; k<=cptcovn;k++) {cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];/*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/}  
     }  /******************* matrix *******************************/
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  double **matrix(long nrl, long nrh, long ncl, long nch)
   {
     savm=oldm;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     oldm=newm;    double **m;
     maxmax=0.;  
     for(j=1;j<=nlstate;j++){    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       min=1.;    if (!m) nrerror("allocation failure 1 in matrix()");
       max=0.;    m += NR_END;
       for(i=1; i<=nlstate; i++) {    m -= nrl;
         sumnew=0;  
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         prlim[i][j]= newm[i][j]/(1-sumnew);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         max=FMAX(max,prlim[i][j]);    m[nrl] += NR_END;
         min=FMIN(min,prlim[i][j]);    m[nrl] -= ncl;
       }  
       maxmin=max-min;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       maxmax=FMAX(maxmax,maxmin);    return m;
     }    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     if(maxmax < ftolpl){     */
       return prlim;  }
     }  
   }  /*************************free matrix ************************/
 }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   {
 /*************** transition probabilities **********/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  }
 {  
   double s1, s2;  /******************* ma3x *******************************/
   /*double t34;*/  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   int i,j,j1, nc, ii, jj;  {
     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     for(i=1; i<= nlstate; i++){    double ***m;
     for(j=1; j<i;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         /*s2 += param[i][j][nc]*cov[nc];*/    if (!m) nrerror("allocation failure 1 in matrix()");
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    m += NR_END;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    m -= nrl;
       }  
       ps[i][j]=s2;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     }    m[nrl] += NR_END;
     for(j=i+1; j<=nlstate+ndeath;j++){    m[nrl] -= ncl;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  
       }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       ps[i][j]=s2;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     }    m[nrl][ncl] += NR_END;
   }    m[nrl][ncl] -= nll;
   for(i=1; i<= nlstate; i++){    for (j=ncl+1; j<=nch; j++) 
      s1=0;      m[nrl][j]=m[nrl][j-1]+nlay;
     for(j=1; j<i; j++)    
       s1+=exp(ps[i][j]);    for (i=nrl+1; i<=nrh; i++) {
     for(j=i+1; j<=nlstate+ndeath; j++)      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       s1+=exp(ps[i][j]);      for (j=ncl+1; j<=nch; j++) 
     ps[i][i]=1./(s1+1.);        m[i][j]=m[i][j-1]+nlay;
     for(j=1; j<i; j++)    }
       ps[i][j]= exp(ps[i][j])*ps[i][i];    return m; 
     for(j=i+1; j<=nlstate+ndeath; j++)    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       ps[i][j]= exp(ps[i][j])*ps[i][i];             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    */
   } /* end i */  }
   
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  /*************************free ma3x ************************/
     for(jj=1; jj<= nlstate+ndeath; jj++){  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       ps[ii][jj]=0;  {
       ps[ii][ii]=1;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   }    free((FREE_ARG)(m+nrl-NR_END));
   }
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  
     for(jj=1; jj<= nlstate+ndeath; jj++){  /*************** function subdirf ***********/
      printf("%lf ",ps[ii][jj]);  char *subdirf(char fileres[])
    }  {
     printf("\n ");    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
     printf("\n ");printf("%lf ",cov[2]);*/    strcat(tmpout,"/"); /* Add to the right */
 /*    strcat(tmpout,fileres);
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    return tmpout;
   goto end;*/  }
     return ps;  
 }  /*************** function subdirf2 ***********/
   char *subdirf2(char fileres[], char *preop)
 /**************** Product of 2 matrices ******************/  {
     
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    /* Caution optionfilefiname is hidden */
 {    strcpy(tmpout,optionfilefiname);
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    strcat(tmpout,"/");
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    strcat(tmpout,preop);
   /* in, b, out are matrice of pointers which should have been initialized    strcat(tmpout,fileres);
      before: only the contents of out is modified. The function returns    return tmpout;
      a pointer to pointers identical to out */  }
   long i, j, k;  
   for(i=nrl; i<= nrh; i++)  /*************** function subdirf3 ***********/
     for(k=ncolol; k<=ncoloh; k++)  char *subdirf3(char fileres[], char *preop, char *preop2)
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  {
         out[i][k] +=in[i][j]*b[j][k];    
     /* Caution optionfilefiname is hidden */
   return out;    strcpy(tmpout,optionfilefiname);
 }    strcat(tmpout,"/");
     strcat(tmpout,preop);
     strcat(tmpout,preop2);
 /************* Higher Matrix Product ***************/    strcat(tmpout,fileres);
     return tmpout;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  }
 {  
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  /***************** f1dim *************************/
      duration (i.e. until  extern int ncom; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  extern double *pcom,*xicom;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  extern double (*nrfunc)(double []); 
      (typically every 2 years instead of every month which is too big).   
      Model is determined by parameters x and covariates have to be  double f1dim(double x) 
      included manually here.  { 
     int j; 
      */    double f;
     double *xt; 
   int i, j, d, h, k;   
   double **out, cov[NCOVMAX];    xt=vector(1,ncom); 
   double **newm;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     f=(*nrfunc)(xt); 
   /* Hstepm could be zero and should return the unit matrix */    free_vector(xt,1,ncom); 
   for (i=1;i<=nlstate+ndeath;i++)    return f; 
     for (j=1;j<=nlstate+ndeath;j++){  } 
       oldm[i][j]=(i==j ? 1.0 : 0.0);  
       po[i][j][0]=(i==j ? 1.0 : 0.0);  /*****************brent *************************/
     }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  { 
   for(h=1; h <=nhstepm; h++){    int iter; 
     for(d=1; d <=hstepm; d++){    double a,b,d,etemp;
       newm=savm;    double fu,fv,fw,fx;
       /* Covariates have to be included here again */    double ftemp;
       cov[1]=1.;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    double e=0.0; 
       if (cptcovn>0){   
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];    a=(ax < cx ? ax : cx); 
     }    b=(ax > cx ? ax : cx); 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    x=w=v=bx; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    fw=fv=fx=(*f)(x); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    for (iter=1;iter<=ITMAX;iter++) { 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      xm=0.5*(a+b); 
       savm=oldm;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       oldm=newm;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     }      printf(".");fflush(stdout);
     for(i=1; i<=nlstate+ndeath; i++)      fprintf(ficlog,".");fflush(ficlog);
       for(j=1;j<=nlstate+ndeath;j++) {  #ifdef DEBUG
         po[i][j][h]=newm[i][j];      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
          */      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       }  #endif
   } /* end h */      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   return po;        *xmin=x; 
 }        return fx; 
       } 
       ftemp=fu;
 /*************** log-likelihood *************/      if (fabs(e) > tol1) { 
 double func( double *x)        r=(x-w)*(fx-fv); 
 {        q=(x-v)*(fx-fw); 
   int i, ii, j, k, mi, d;        p=(x-v)*q-(x-w)*r; 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];        q=2.0*(q-r); 
   double **out;        if (q > 0.0) p = -p; 
   double sw; /* Sum of weights */        q=fabs(q); 
   double lli; /* Individual log likelihood */        etemp=e; 
   long ipmx;        e=d; 
   /*extern weight */        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   /* We are differentiating ll according to initial status */          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        else { 
   /*for(i=1;i<imx;i++)          d=p/q; 
 printf(" %d\n",s[4][i]);          u=x+d; 
   */          if (u-a < tol2 || b-u < tol2) 
             d=SIGN(tol1,xm-x); 
   for(k=1; k<=nlstate; k++) ll[k]=0.;        } 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      } else { 
        for(mi=1; mi<= wav[i]-1; mi++){        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       for (ii=1;ii<=nlstate+ndeath;ii++)      } 
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
             for(d=0; d<dh[mi][i]; d++){      fu=(*f)(u); 
         newm=savm;      if (fu <= fx) { 
           cov[1]=1.;        if (u >= x) a=x; else b=x; 
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        SHFT(v,w,x,u) 
           if (cptcovn>0){          SHFT(fv,fw,fx,fu) 
             for (k=1; k<=cptcovn;k++) cov[2+k]=covar[1+k-1][i];          } else { 
             }            if (u < x) a=u; else b=u; 
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            if (fu <= fw || w == x) { 
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));              v=w; 
           savm=oldm;              w=u; 
           oldm=newm;              fv=fw; 
               fw=fu; 
             } else if (fu <= fv || v == x || v == w) { 
       } /* end mult */              v=u; 
                  fv=fu; 
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);            } 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/          } 
       ipmx +=1;    } 
       sw += weight[i];    nrerror("Too many iterations in brent"); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    *xmin=x; 
     } /* end of wave */    return fx; 
   } /* end of individual */  } 
   
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  /****************** mnbrak ***********************/
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   return -l;              double (*func)(double)) 
 }  { 
     double ulim,u,r,q, dum;
     double fu; 
 /*********** Maximum Likelihood Estimation ***************/   
     *fa=(*func)(*ax); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    *fb=(*func)(*bx); 
 {    if (*fb > *fa) { 
   int i,j, iter;      SHFT(dum,*ax,*bx,dum) 
   double **xi,*delti;        SHFT(dum,*fb,*fa,dum) 
   double fret;        } 
   xi=matrix(1,npar,1,npar);    *cx=(*bx)+GOLD*(*bx-*ax); 
   for (i=1;i<=npar;i++)    *fc=(*func)(*cx); 
     for (j=1;j<=npar;j++)    while (*fb > *fc) { 
       xi[i][j]=(i==j ? 1.0 : 0.0);      r=(*bx-*ax)*(*fb-*fc); 
   printf("Powell\n");      q=(*bx-*cx)*(*fb-*fa); 
   powell(p,xi,npar,ftol,&iter,&fret,func);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
         (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));      if ((*bx-u)*(u-*cx) > 0.0) { 
         fu=(*func)(u); 
 }      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         fu=(*func)(u); 
 /**** Computes Hessian and covariance matrix ***/        if (fu < *fc) { 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 {            SHFT(*fb,*fc,fu,(*func)(u)) 
   double  **a,**y,*x,pd;            } 
   double **hess;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   int i, j,jk;        u=ulim; 
   int *indx;        fu=(*func)(u); 
       } else { 
   double hessii(double p[], double delta, int theta, double delti[]);        u=(*cx)+GOLD*(*cx-*bx); 
   double hessij(double p[], double delti[], int i, int j);        fu=(*func)(u); 
   void lubksb(double **a, int npar, int *indx, double b[]) ;      } 
   void ludcmp(double **a, int npar, int *indx, double *d) ;      SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
         } 
   hess=matrix(1,npar,1,npar);  } 
   
   printf("\nCalculation of the hessian matrix. Wait...\n");  /*************** linmin ************************/
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);  int ncom; 
     hess[i][i]=hessii(p,ftolhess,i,delti);  double *pcom,*xicom;
     /*printf(" %f ",p[i]);*/  double (*nrfunc)(double []); 
   }   
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   for (i=1;i<=npar;i++) {  { 
     for (j=1;j<=npar;j++)  {    double brent(double ax, double bx, double cx, 
       if (j>i) {                 double (*f)(double), double tol, double *xmin); 
         printf(".%d%d",i,j);fflush(stdout);    double f1dim(double x); 
         hess[i][j]=hessij(p,delti,i,j);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         hess[j][i]=hess[i][j];                double *fc, double (*func)(double)); 
       }    int j; 
     }    double xx,xmin,bx,ax; 
   }    double fx,fb,fa;
   printf("\n");   
     ncom=n; 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    pcom=vector(1,n); 
      xicom=vector(1,n); 
   a=matrix(1,npar,1,npar);    nrfunc=func; 
   y=matrix(1,npar,1,npar);    for (j=1;j<=n;j++) { 
   x=vector(1,npar);      pcom[j]=p[j]; 
   indx=ivector(1,npar);      xicom[j]=xi[j]; 
   for (i=1;i<=npar;i++)    } 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    ax=0.0; 
   ludcmp(a,npar,indx,&pd);    xx=1.0; 
     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   for (j=1;j<=npar;j++) {    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     for (i=1;i<=npar;i++) x[i]=0;  #ifdef DEBUG
     x[j]=1;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     lubksb(a,npar,indx,x);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for (i=1;i<=npar;i++){  #endif
       matcov[i][j]=x[i];    for (j=1;j<=n;j++) { 
     }      xi[j] *= xmin; 
   }      p[j] += xi[j]; 
     } 
   printf("\n#Hessian matrix#\n");    free_vector(xicom,1,n); 
   for (i=1;i<=npar;i++) {    free_vector(pcom,1,n); 
     for (j=1;j<=npar;j++) {  } 
       printf("%.3e ",hess[i][j]);  
     }  char *asc_diff_time(long time_sec, char ascdiff[])
     printf("\n");  {
   }    long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
   /* Recompute Inverse */    sec_left = (time_sec) % (60*60*24);
   for (i=1;i<=npar;i++)    hours = (sec_left) / (60*60) ;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    sec_left = (sec_left) %(60*60);
   ludcmp(a,npar,indx,&pd);    minutes = (sec_left) /60;
     sec_left = (sec_left) % (60);
   /*  printf("\n#Hessian matrix recomputed#\n");    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     return ascdiff;
   for (j=1;j<=npar;j++) {  }
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;  /*************** powell ************************/
     lubksb(a,npar,indx,x);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     for (i=1;i<=npar;i++){              double (*func)(double [])) 
       y[i][j]=x[i];  { 
       printf("%.3e ",y[i][j]);    void linmin(double p[], double xi[], int n, double *fret, 
     }                double (*func)(double [])); 
     printf("\n");    int i,ibig,j; 
   }    double del,t,*pt,*ptt,*xit;
   */    double fp,fptt;
     double *xits;
   free_matrix(a,1,npar,1,npar);    int niterf, itmp;
   free_matrix(y,1,npar,1,npar);  
   free_vector(x,1,npar);    pt=vector(1,n); 
   free_ivector(indx,1,npar);    ptt=vector(1,n); 
   free_matrix(hess,1,npar,1,npar);    xit=vector(1,n); 
     xits=vector(1,n); 
     *fret=(*func)(p); 
 }    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (*iter=1;;++(*iter)) { 
 /*************** hessian matrix ****************/      fp=(*fret); 
 double hessii( double x[], double delta, int theta, double delti[])      ibig=0; 
 {      del=0.0; 
   int i;      last_time=curr_time;
   int l=1, lmax=20;      (void) gettimeofday(&curr_time,&tzp);
   double k1,k2;      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   double p2[NPARMAX+1];      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
   double res;      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      */
   double fx;     for (i=1;i<=n;i++) {
   int k=0,kmax=10;        printf(" %d %.12f",i, p[i]);
   double l1;        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
   fx=func(x);      }
   for (i=1;i<=npar;i++) p2[i]=x[i];      printf("\n");
   for(l=0 ; l <=lmax; l++){      fprintf(ficlog,"\n");
     l1=pow(10,l);      fprintf(ficrespow,"\n");fflush(ficrespow);
     delts=delt;      if(*iter <=3){
     for(k=1 ; k <kmax; k=k+1){        tm = *localtime(&curr_time.tv_sec);
       delt = delta*(l1*k);        strcpy(strcurr,asctime(&tm));
       p2[theta]=x[theta] +delt;  /*       asctime_r(&tm,strcurr); */
       k1=func(p2)-fx;        forecast_time=curr_time; 
       p2[theta]=x[theta]-delt;        itmp = strlen(strcurr);
       k2=func(p2)-fx;        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
       /*res= (k1-2.0*fx+k2)/delt/delt; */          strcurr[itmp-1]='\0';
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
              fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
 #ifdef DEBUG        for(niterf=10;niterf<=30;niterf+=10){
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
 #endif          tmf = *localtime(&forecast_time.tv_sec);
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  /*      asctime_r(&tmf,strfor); */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          strcpy(strfor,asctime(&tmf));
         k=kmax;          itmp = strlen(strfor);
       }          if(strfor[itmp-1]=='\n')
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          strfor[itmp-1]='\0';
         k=kmax; l=lmax*10.;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       }          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){        }
         delts=delt;      }
       }      for (i=1;i<=n;i++) { 
     }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
   }        fptt=(*fret); 
   delti[theta]=delts;  #ifdef DEBUG
   return res;        printf("fret=%lf \n",*fret);
          fprintf(ficlog,"fret=%lf \n",*fret);
 }  #endif
         printf("%d",i);fflush(stdout);
 double hessij( double x[], double delti[], int thetai,int thetaj)        fprintf(ficlog,"%d",i);fflush(ficlog);
 {        linmin(p,xit,n,fret,func); 
   int i;        if (fabs(fptt-(*fret)) > del) { 
   int l=1, l1, lmax=20;          del=fabs(fptt-(*fret)); 
   double k1,k2,k3,k4,res,fx;          ibig=i; 
   double p2[NPARMAX+1];        } 
   int k;  #ifdef DEBUG
         printf("%d %.12e",i,(*fret));
   fx=func(x);        fprintf(ficlog,"%d %.12e",i,(*fret));
   for (k=1; k<=2; k++) {        for (j=1;j<=n;j++) {
     for (i=1;i<=npar;i++) p2[i]=x[i];          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     p2[thetai]=x[thetai]+delti[thetai]/k;          printf(" x(%d)=%.12e",j,xit[j]);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     k1=func(p2)-fx;        }
          for(j=1;j<=n;j++) {
     p2[thetai]=x[thetai]+delti[thetai]/k;          printf(" p=%.12e",p[j]);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          fprintf(ficlog," p=%.12e",p[j]);
     k2=func(p2)-fx;        }
          printf("\n");
     p2[thetai]=x[thetai]-delti[thetai]/k;        fprintf(ficlog,"\n");
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  #endif
     k3=func(p2)-fx;      } 
        if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     p2[thetai]=x[thetai]-delti[thetai]/k;  #ifdef DEBUG
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        int k[2],l;
     k4=func(p2)-fx;        k[0]=1;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        k[1]=-1;
 #ifdef DEBUG        printf("Max: %.12e",(*func)(p));
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        fprintf(ficlog,"Max: %.12e",(*func)(p));
 #endif        for (j=1;j<=n;j++) {
   }          printf(" %.12e",p[j]);
   return res;          fprintf(ficlog," %.12e",p[j]);
 }        }
         printf("\n");
 /************** Inverse of matrix **************/        fprintf(ficlog,"\n");
 void ludcmp(double **a, int n, int *indx, double *d)        for(l=0;l<=1;l++) {
 {          for (j=1;j<=n;j++) {
   int i,imax,j,k;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   double big,dum,sum,temp;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double *vv;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
            }
   vv=vector(1,n);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   *d=1.0;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   for (i=1;i<=n;i++) {        }
     big=0.0;  #endif
     for (j=1;j<=n;j++)  
       if ((temp=fabs(a[i][j])) > big) big=temp;  
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");        free_vector(xit,1,n); 
     vv[i]=1.0/big;        free_vector(xits,1,n); 
   }        free_vector(ptt,1,n); 
   for (j=1;j<=n;j++) {        free_vector(pt,1,n); 
     for (i=1;i<j;i++) {        return; 
       sum=a[i][j];      } 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       a[i][j]=sum;      for (j=1;j<=n;j++) { 
     }        ptt[j]=2.0*p[j]-pt[j]; 
     big=0.0;        xit[j]=p[j]-pt[j]; 
     for (i=j;i<=n;i++) {        pt[j]=p[j]; 
       sum=a[i][j];      } 
       for (k=1;k<j;k++)      fptt=(*func)(ptt); 
         sum -= a[i][k]*a[k][j];      if (fptt < fp) { 
       a[i][j]=sum;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
       if ( (dum=vv[i]*fabs(sum)) >= big) {        if (t < 0.0) { 
         big=dum;          linmin(p,xit,n,fret,func); 
         imax=i;          for (j=1;j<=n;j++) { 
       }            xi[j][ibig]=xi[j][n]; 
     }            xi[j][n]=xit[j]; 
     if (j != imax) {          }
       for (k=1;k<=n;k++) {  #ifdef DEBUG
         dum=a[imax][k];          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         a[imax][k]=a[j][k];          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         a[j][k]=dum;          for(j=1;j<=n;j++){
       }            printf(" %.12e",xit[j]);
       *d = -(*d);            fprintf(ficlog," %.12e",xit[j]);
       vv[imax]=vv[j];          }
     }          printf("\n");
     indx[j]=imax;          fprintf(ficlog,"\n");
     if (a[j][j] == 0.0) a[j][j]=TINY;  #endif
     if (j != n) {        }
       dum=1.0/(a[j][j]);      } 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    } 
     }  } 
   }  
   free_vector(vv,1,n);  /* Doesn't work */  /**** Prevalence limit (stable or period prevalence)  ****************/
 ;  
 }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   {
 void lubksb(double **a, int n, int *indx, double b[])    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
 {       matrix by transitions matrix until convergence is reached */
   int i,ii=0,ip,j;  
   double sum;    int i, ii,j,k;
      double min, max, maxmin, maxmax,sumnew=0.;
   for (i=1;i<=n;i++) {    double **matprod2();
     ip=indx[i];    double **out, cov[NCOVMAX], **pmij();
     sum=b[ip];    double **newm;
     b[ip]=b[i];    double agefin, delaymax=50 ; /* Max number of years to converge */
     if (ii)  
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    for (ii=1;ii<=nlstate+ndeath;ii++)
     else if (sum) ii=i;      for (j=1;j<=nlstate+ndeath;j++){
     b[i]=sum;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }      }
   for (i=n;i>=1;i--) {  
     sum=b[i];     cov[1]=1.;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];   
     b[i]=sum/a[i][i];   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   }    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
 }      newm=savm;
       /* Covariates have to be included here again */
 /************ Frequencies ********************/       cov[2]=agefin;
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)    
 {  /* Some frequencies */        for (k=1; k<=cptcovn;k++) {
            cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   double ***freq; /* Frequencies */        }
   double *pp;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   double pos;        for (k=1; k<=cptcovprod;k++)
   FILE *ficresp;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   char fileresp[FILENAMELENGTH];  
         /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   pp=vector(1,nlstate);        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   strcpy(fileresp,"p");      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   strcat(fileresp,fileres);  
   if((ficresp=fopen(fileresp,"w"))==NULL) {      savm=oldm;
     printf("Problem with prevalence resultfile: %s\n", fileresp);      oldm=newm;
     exit(0);      maxmax=0.;
   }      for(j=1;j<=nlstate;j++){
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        min=1.;
   j1=0;        max=0.;
         for(i=1; i<=nlstate; i++) {
   j=cptcovn;          sumnew=0;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           prlim[i][j]= newm[i][j]/(1-sumnew);
   for(k1=1; k1<=j;k1++){          max=FMAX(max,prlim[i][j]);
    for(i1=1; i1<=ncodemax[k1];i1++){          min=FMIN(min,prlim[i][j]);
        j1++;        }
         maxmin=max-min;
         for (i=-1; i<=nlstate+ndeath; i++)          maxmax=FMAX(maxmax,maxmin);
          for (jk=-1; jk<=nlstate+ndeath; jk++)        }
            for(m=agemin; m <= agemax+3; m++)      if(maxmax < ftolpl){
              freq[i][jk][m]=0;        return prlim;
              }
        for (i=1; i<=imx; i++) {    }
          bool=1;  }
          if  (cptcovn>0) {  
            for (z1=1; z1<=cptcovn; z1++)  /*************** transition probabilities ***************/ 
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;  
          }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
           if (bool==1) {  {
            for(m=firstpass; m<=lastpass-1; m++){    double s1, s2;
              if(agev[m][i]==0) agev[m][i]=agemax+1;    /*double t34;*/
              if(agev[m][i]==1) agev[m][i]=agemax+2;    int i,j,j1, nc, ii, jj;
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      for(i=1; i<= nlstate; i++){
            }        for(j=1; j<i;j++){
          }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
        }            /*s2 += param[i][j][nc]*cov[nc];*/
         if  (cptcovn>0) {            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
          fprintf(ficresp, "\n#Variable");  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);          }
        }          ps[i][j]=s2;
        fprintf(ficresp, "\n#");  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
        for(i=1; i<=nlstate;i++)        }
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        for(j=i+1; j<=nlstate+ndeath;j++){
        fprintf(ficresp, "\n");          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
                    s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   for(i=(int)agemin; i <= (int)agemax+3; i++){  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
     if(i==(int)agemax+3)          }
       printf("Total");          ps[i][j]=s2;
     else        }
       printf("Age %d", i);      }
     for(jk=1; jk <=nlstate ; jk++){      /*ps[3][2]=1;*/
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      
         pp[jk] += freq[jk][m][i];      for(i=1; i<= nlstate; i++){
     }        s1=0;
     for(jk=1; jk <=nlstate ; jk++){        for(j=1; j<i; j++)
       for(m=-1, pos=0; m <=0 ; m++)          s1+=exp(ps[i][j]);
         pos += freq[jk][m][i];        for(j=i+1; j<=nlstate+ndeath; j++)
       if(pp[jk]>=1.e-10)          s1+=exp(ps[i][j]);
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        ps[i][i]=1./(s1+1.);
       else        for(j=1; j<i; j++)
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          ps[i][j]= exp(ps[i][j])*ps[i][i];
     }        for(j=i+1; j<=nlstate+ndeath; j++)
     for(jk=1; jk <=nlstate ; jk++){          ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         pp[jk] += freq[jk][m][i];      } /* end i */
     }      
     for(jk=1,pos=0; jk <=nlstate ; jk++)      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       pos += pp[jk];        for(jj=1; jj<= nlstate+ndeath; jj++){
     for(jk=1; jk <=nlstate ; jk++){          ps[ii][jj]=0;
       if(pos>=1.e-5)          ps[ii][ii]=1;
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);        }
       else      }
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      
       if( i <= (int) agemax){  
         if(pos>=1.e-5)  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
       else  /*         printf("ddd %lf ",ps[ii][jj]); */
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  /*       } */
       }  /*       printf("\n "); */
     }  /*        } */
     for(jk=-1; jk <=nlstate+ndeath; jk++)  /*        printf("\n ");printf("%lf ",cov[2]); */
       for(m=-1; m <=nlstate+ndeath; m++)         /*
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     if(i <= (int) agemax)        goto end;*/
       fprintf(ficresp,"\n");      return ps;
     printf("\n");  }
     }  
     }  /**************** Product of 2 matrices ******************/
  }  
    double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   fclose(ficresp);  {
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   free_vector(pp,1,nlstate);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     /* in, b, out are matrice of pointers which should have been initialized 
 }  /* End of Freq */       before: only the contents of out is modified. The function returns
        a pointer to pointers identical to out */
 /************* Waves Concatenation ***************/    long i, j, k;
     for(i=nrl; i<= nrh; i++)
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)      for(k=ncolol; k<=ncoloh; k++)
 {        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          out[i][k] +=in[i][j]*b[j][k];
      Death is a valid wave (if date is known).  
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    return out;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]  }
      and mw[mi+1][i]. dh depends on stepm.  
      */  
   /************* Higher Matrix Product ***************/
   int i, mi, m;  
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 float sum=0.;  {
     /* Computes the transition matrix starting at age 'age' over 
   for(i=1; i<=imx; i++){       'nhstepm*hstepm*stepm' months (i.e. until
     mi=0;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     m=firstpass;       nhstepm*hstepm matrices. 
     while(s[m][i] <= nlstate){       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       if(s[m][i]>=1)       (typically every 2 years instead of every month which is too big 
         mw[++mi][i]=m;       for the memory).
       if(m >=lastpass)       Model is determined by parameters x and covariates have to be 
         break;       included manually here. 
       else  
         m++;       */
     }/* end while */  
     if (s[m][i] > nlstate){    int i, j, d, h, k;
       mi++;     /* Death is another wave */    double **out, cov[NCOVMAX];
       /* if(mi==0)  never been interviewed correctly before death */    double **newm;
          /* Only death is a correct wave */  
       mw[mi][i]=m;    /* Hstepm could be zero and should return the unit matrix */
     }    for (i=1;i<=nlstate+ndeath;i++)
       for (j=1;j<=nlstate+ndeath;j++){
     wav[i]=mi;        oldm[i][j]=(i==j ? 1.0 : 0.0);
     if(mi==0)        po[i][j][0]=(i==j ? 1.0 : 0.0);
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);      }
   }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(h=1; h <=nhstepm; h++){
   for(i=1; i<=imx; i++){      for(d=1; d <=hstepm; d++){
     for(mi=1; mi<wav[i];mi++){        newm=savm;
       if (stepm <=0)        /* Covariates have to be included here again */
         dh[mi][i]=1;        cov[1]=1.;
       else{        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         if (s[mw[mi+1][i]][i] > nlstate) {        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        for (k=1; k<=cptcovage;k++)
           if(j=0) j=1;  /* Survives at least one month after exam */          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         }        for (k=1; k<=cptcovprod;k++)
         else{          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  
           k=k+1;  
           if (j >= jmax) jmax=j;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
           else if (j <= jmin)jmin=j;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
           sum=sum+j;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
         }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         jk= j/stepm;        savm=oldm;
         jl= j -jk*stepm;        oldm=newm;
         ju= j -(jk+1)*stepm;      }
         if(jl <= -ju)      for(i=1; i<=nlstate+ndeath; i++)
           dh[mi][i]=jk;        for(j=1;j<=nlstate+ndeath;j++) {
         else          po[i][j][h]=newm[i][j];
           dh[mi][i]=jk+1;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
         if(dh[mi][i]==0)           */
           dh[mi][i]=1; /* At least one step */        }
       }    } /* end h */
     }    return po;
   }  }
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);  
 }  
 /*********** Tricode ****************************/  /*************** log-likelihood *************/
 void tricode(int *Tvar, int **nbcode, int imx)  double func( double *x)
 {  {
   int Ndum[80],ij, k, j, i;    int i, ii, j, k, mi, d, kk;
   int cptcode=0;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   for (k=0; k<79; k++) Ndum[k]=0;    double **out;
   for (k=1; k<=7; k++) ncodemax[k]=0;    double sw; /* Sum of weights */
      double lli; /* Individual log likelihood */
   for (j=1; j<=cptcovn; j++) {    int s1, s2;
     for (i=1; i<=imx; i++) {    double bbh, survp;
       ij=(int)(covar[Tvar[j]][i]);    long ipmx;
       Ndum[ij]++;    /*extern weight */
       if (ij > cptcode) cptcode=ij;    /* We are differentiating ll according to initial status */
     }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/    /*for(i=1;i<imx;i++) 
     for (i=0; i<=cptcode; i++) {      printf(" %d\n",s[4][i]);
       if(Ndum[i]!=0) ncodemax[j]++;    */
     }    cov[1]=1.;
    
     ij=1;    for(k=1; k<=nlstate; k++) ll[k]=0.;
     for (i=1; i<=ncodemax[j]; i++) {  
       for (k=0; k<=79; k++) {    if(mle==1){
         if (Ndum[k] != 0) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           nbcode[Tvar[j]][ij]=k;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           ij++;        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
         if (ij > ncodemax[j]) break;            for (j=1;j<=nlstate+ndeath;j++){
       }                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              }
           for(d=0; d<dh[mi][i]; d++){
   }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 /*********** Health Expectancies ****************/            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)            }
 {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   /* Health expectancies */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int i, j, nhstepm, hstepm, h;            savm=oldm;
   double age, agelim,hf;            oldm=newm;
   double ***p3mat;          } /* end mult */
          
   fprintf(ficreseij,"# Health expectancies\n");          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   fprintf(ficreseij,"# Age");          /* But now since version 0.9 we anticipate for bias at large stepm.
   for(i=1; i<=nlstate;i++)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     for(j=1; j<=nlstate;j++)           * (in months) between two waves is not a multiple of stepm, we rounded to 
       fprintf(ficreseij," %1d-%1d",i,j);           * the nearest (and in case of equal distance, to the lowest) interval but now
   fprintf(ficreseij,"\n");           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   hstepm=1*YEARM; /*  Every j years of age (in month) */           * probability in order to take into account the bias as a fraction of the way
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
            * -stepm/2 to stepm/2 .
   agelim=AGESUP;           * For stepm=1 the results are the same as for previous versions of Imach.
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */           * For stepm > 1 the results are less biased than in previous versions. 
     /* nhstepm age range expressed in number of stepm */           */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);          s1=s[mw[mi][i]][i];
     /* Typically if 20 years = 20*12/6=40 stepm */          s2=s[mw[mi+1][i]][i];
     if (stepm >= YEARM) hstepm=1;          bbh=(double)bh[mi][i]/(double)stepm; 
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */          /* bias bh is positive if real duration
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);           * is higher than the multiple of stepm and negative otherwise.
     /* Computed by stepm unit matrices, product of hstepm matrices, stored           */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            if( s2 > nlstate){ 
             /* i.e. if s2 is a death state and if the date of death is known 
                then the contribution to the likelihood is the probability to 
     for(i=1; i<=nlstate;i++)               die between last step unit time and current  step unit time, 
       for(j=1; j<=nlstate;j++)               which is also equal to probability to die before dh 
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){               minus probability to die before dh-stepm . 
           eij[i][j][(int)age] +=p3mat[i][j][h];               In version up to 0.92 likelihood was computed
         }          as if date of death was unknown. Death was treated as any other
              health state: the date of the interview describes the actual state
     hf=1;          and not the date of a change in health state. The former idea was
     if (stepm >= YEARM) hf=stepm/YEARM;          to consider that at each interview the state was recorded
     fprintf(ficreseij,"%.0f",age );          (healthy, disable or death) and IMaCh was corrected; but when we
     for(i=1; i<=nlstate;i++)          introduced the exact date of death then we should have modified
       for(j=1; j<=nlstate;j++){          the contribution of an exact death to the likelihood. This new
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);          contribution is smaller and very dependent of the step unit
       }          stepm. It is no more the probability to die between last interview
     fprintf(ficreseij,"\n");          and month of death but the probability to survive from last
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          interview up to one month before death multiplied by the
   }          probability to die within a month. Thanks to Chris
 }          Jackson for correcting this bug.  Former versions increased
           mortality artificially. The bad side is that we add another loop
 /************ Variance ******************/          which slows down the processing. The difference can be up to 10%
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          lower mortality.
 {            */
   /* Variance of health expectancies */            lli=log(out[s1][s2] - savm[s1][s2]);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;  
   double **dnewm,**doldm;          } else if  (s2==-2) {
   int i, j, nhstepm, hstepm, h;            for (j=1,survp=0. ; j<=nlstate; j++) 
   int k, cptcode;              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
    double *xp;            /*survp += out[s1][j]; */
   double **gp, **gm;            lli= log(survp);
   double ***gradg, ***trgradg;          }
   double ***p3mat;          
   double age,agelim;          else if  (s2==-4) { 
   int theta;            for (j=3,survp=0. ; j<=nlstate; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
    fprintf(ficresvij,"# Covariances of life expectancies\n");            lli= log(survp); 
   fprintf(ficresvij,"# Age");          } 
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=nlstate;j++)          else if  (s2==-5) { 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);            for (j=1,survp=0. ; j<=2; j++)  
   fprintf(ficresvij,"\n");              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             lli= log(survp); 
   xp=vector(1,npar);          } 
   dnewm=matrix(1,nlstate,1,npar);          
   doldm=matrix(1,nlstate,1,nlstate);          else{
              lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   hstepm=1*YEARM; /* Every year of age */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          } 
   agelim = AGESUP;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          /*if(lli ==000.0)*/
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     if (stepm >= YEARM) hstepm=1;          ipmx +=1;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          sw += weight[i];
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        } /* end of wave */
     gp=matrix(0,nhstepm,1,nlstate);      } /* end of individual */
     gm=matrix(0,nhstepm,1,nlstate);    }  else if(mle==2){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(theta=1; theta <=npar; theta++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(i=1; i<=npar; i++){ /* Computes gradient */        for(mi=1; mi<= wav[i]-1; mi++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          for (ii=1;ii<=nlstate+ndeath;ii++)
       }            for (j=1;j<=nlstate+ndeath;j++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(j=1; j<= nlstate; j++){            }
         for(h=0; h<=nhstepm; h++){          for(d=0; d<=dh[mi][i]; d++){
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)            newm=savm;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         }            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                }
       for(i=1; i<=npar; i++) /* Computes gradient */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         xp[i] = x[i] - (i==theta ?delti[theta]:0);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              savm=oldm;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            oldm=newm;
       for(j=1; j<= nlstate; j++){          } /* end mult */
         for(h=0; h<=nhstepm; h++){        
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          s1=s[mw[mi][i]][i];
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          s2=s[mw[mi+1][i]][i];
         }          bbh=(double)bh[mi][i]/(double)stepm; 
       }          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       for(j=1; j<= nlstate; j++)          ipmx +=1;
         for(h=0; h<=nhstepm; h++){          sw += weight[i];
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }        } /* end of wave */
     } /* End theta */      } /* end of individual */
     }  else if(mle==3){  /* exponential inter-extrapolation */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(h=0; h<=nhstepm; h++)        for(mi=1; mi<= wav[i]-1; mi++){
       for(j=1; j<=nlstate;j++)          for (ii=1;ii<=nlstate+ndeath;ii++)
         for(theta=1; theta <=npar; theta++)            for (j=1;j<=nlstate+ndeath;j++){
           trgradg[h][j][theta]=gradg[h][theta][j];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(i=1;i<=nlstate;i++)            }
       for(j=1;j<=nlstate;j++)          for(d=0; d<dh[mi][i]; d++){
         vareij[i][j][(int)age] =0.;            newm=savm;
     for(h=0;h<=nhstepm;h++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for(k=0;k<=nhstepm;k++){            for (kk=1; kk<=cptcovage;kk++) {
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);            }
         for(i=1;i<=nlstate;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           for(j=1;j<=nlstate;j++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             vareij[i][j][(int)age] += doldm[i][j];            savm=oldm;
       }            oldm=newm;
     }          } /* end mult */
     h=1;        
     if (stepm >= YEARM) h=stepm/YEARM;          s1=s[mw[mi][i]][i];
     fprintf(ficresvij,"%.0f ",age );          s2=s[mw[mi+1][i]][i];
     for(i=1; i<=nlstate;i++)          bbh=(double)bh[mi][i]/(double)stepm; 
       for(j=1; j<=nlstate;j++){          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);          ipmx +=1;
       }          sw += weight[i];
     fprintf(ficresvij,"\n");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     free_matrix(gp,0,nhstepm,1,nlstate);        } /* end of wave */
     free_matrix(gm,0,nhstepm,1,nlstate);      } /* end of individual */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   } /* End age */        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
   free_vector(xp,1,npar);            for (j=1;j<=nlstate+ndeath;j++){
   free_matrix(doldm,1,nlstate,1,npar);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_matrix(dnewm,1,nlstate,1,nlstate);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
 }          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
 /************ Variance of prevlim ******************/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            for (kk=1; kk<=cptcovage;kk++) {
 {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   /* Variance of prevalence limit */            }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          
   double **newm;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double **dnewm,**doldm;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int i, j, nhstepm, hstepm;            savm=oldm;
   int k, cptcode;            oldm=newm;
   double *xp;          } /* end mult */
   double *gp, *gm;        
   double **gradg, **trgradg;          s1=s[mw[mi][i]][i];
   double age,agelim;          s2=s[mw[mi+1][i]][i];
   int theta;          if( s2 > nlstate){ 
                lli=log(out[s1][s2] - savm[s1][s2]);
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");          }else{
   fprintf(ficresvpl,"# Age");            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   for(i=1; i<=nlstate;i++)          }
       fprintf(ficresvpl," %1d-%1d",i,i);          ipmx +=1;
   fprintf(ficresvpl,"\n");          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   xp=vector(1,npar);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   dnewm=matrix(1,nlstate,1,npar);        } /* end of wave */
   doldm=matrix(1,nlstate,1,nlstate);      } /* end of individual */
      }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   hstepm=1*YEARM; /* Every year of age */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   agelim = AGESUP;        for(mi=1; mi<= wav[i]-1; mi++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          for (ii=1;ii<=nlstate+ndeath;ii++)
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            for (j=1;j<=nlstate+ndeath;j++){
     if (stepm >= YEARM) hstepm=1;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     gradg=matrix(1,npar,1,nlstate);            }
     gp=vector(1,nlstate);          for(d=0; d<dh[mi][i]; d++){
     gm=vector(1,nlstate);            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(theta=1; theta <=npar; theta++){            for (kk=1; kk<=cptcovage;kk++) {
       for(i=1; i<=npar; i++){ /* Computes gradient */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);            }
       }          
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(i=1;i<=nlstate;i++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         gp[i] = prlim[i][i];            savm=oldm;
                oldm=newm;
       for(i=1; i<=npar; i++) /* Computes gradient */          } /* end mult */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          s1=s[mw[mi][i]][i];
       for(i=1;i<=nlstate;i++)          s2=s[mw[mi+1][i]][i];
         gm[i] = prlim[i][i];          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           ipmx +=1;
       for(i=1;i<=nlstate;i++)          sw += weight[i];
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     } /* End theta */          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         } /* end of wave */
     trgradg =matrix(1,nlstate,1,npar);      } /* end of individual */
     } /* End of if */
     for(j=1; j<=nlstate;j++)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       for(theta=1; theta <=npar; theta++)    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         trgradg[j][theta]=gradg[theta][j];    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     return -l;
     for(i=1;i<=nlstate;i++)  }
       varpl[i][(int)age] =0.;  
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  /*************** log-likelihood *************/
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  double funcone( double *x)
     for(i=1;i<=nlstate;i++)  {
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    /* Same as likeli but slower because of a lot of printf and if */
     int i, ii, j, k, mi, d, kk;
     fprintf(ficresvpl,"%.0f ",age );    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     for(i=1; i<=nlstate;i++)    double **out;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    double lli; /* Individual log likelihood */
     fprintf(ficresvpl,"\n");    double llt;
     free_vector(gp,1,nlstate);    int s1, s2;
     free_vector(gm,1,nlstate);    double bbh, survp;
     free_matrix(gradg,1,npar,1,nlstate);    /*extern weight */
     free_matrix(trgradg,1,nlstate,1,npar);    /* We are differentiating ll according to initial status */
   } /* End age */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
   free_vector(xp,1,npar);      printf(" %d\n",s[4][i]);
   free_matrix(doldm,1,nlstate,1,npar);    */
   free_matrix(dnewm,1,nlstate,1,nlstate);    cov[1]=1.;
   
 }    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 /***********************************************/      for(mi=1; mi<= wav[i]-1; mi++){
 /**************** Main Program *****************/        for (ii=1;ii<=nlstate+ndeath;ii++)
 /***********************************************/          for (j=1;j<=nlstate+ndeath;j++){
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 /*int main(int argc, char *argv[])*/            savm[ii][j]=(ii==j ? 1.0 : 0.0);
 int main()          }
 {        for(d=0; d<dh[mi][i]; d++){
           newm=savm;
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double agedeb, agefin,hf;          for (kk=1; kk<=cptcovage;kk++) {
   double agemin=1.e20, agemax=-1.e20;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }
   double fret;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   double **xi,tmp,delta;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           savm=oldm;
   double dum; /* Dummy variable */          oldm=newm;
   double ***p3mat;        } /* end mult */
   int *indx;        
   char line[MAXLINE], linepar[MAXLINE];        s1=s[mw[mi][i]][i];
   char title[MAXLINE];        s2=s[mw[mi+1][i]][i];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];        bbh=(double)bh[mi][i]/(double)stepm; 
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];        /* bias is positive if real duration
   char filerest[FILENAMELENGTH];         * is higher than the multiple of stepm and negative otherwise.
   char fileregp[FILENAMELENGTH];         */
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        if( s2 > nlstate && (mle <5) ){  /* Jackson */
   int firstobs=1, lastobs=10;          lli=log(out[s1][s2] - savm[s1][s2]);
   int sdeb, sfin; /* Status at beginning and end */        } else if  (s2==-2) {
   int c,  h , cpt,l;          for (j=1,survp=0. ; j<=nlstate; j++) 
   int ju,jl, mi;            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize;          lli= log(survp);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        }else if (mle==1){
            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   int hstepm, nhstepm;        } else if(mle==2){
   double bage, fage, age, agelim, agebase;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   double ftolpl=FTOL;        } else if(mle==3){  /* exponential inter-extrapolation */
   double **prlim;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   double *severity;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   double ***param; /* Matrix of parameters */          lli=log(out[s1][s2]); /* Original formula */
   double  *p;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   double **matcov; /* Matrix of covariance */          lli=log(out[s1][s2]); /* Original formula */
   double ***delti3; /* Scale */        } /* End of if */
   double *delti; /* Scale */        ipmx +=1;
   double ***eij, ***vareij;        sw += weight[i];
   double **varpl; /* Variances of prevalence limits by age */        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double *epj, vepp;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";        if(globpr){
   char *alph[]={"a","a","b","c","d","e"}, str[4];          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
    %11.6f %11.6f %11.6f ", \
   char z[1]="c", occ;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
 #include <sys/time.h>                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
 #include <time.h>          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];            llt +=ll[k]*gipmx/gsw;
   /* long total_usecs;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   struct timeval start_time, end_time;          }
            fprintf(ficresilk," %10.6f\n", -llt);
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        }
       } /* end of wave */
     } /* end of individual */
   printf("\nIMACH, Version 0.64a");    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   printf("\nEnter the parameter file name: ");    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 #ifdef windows    if(globpr==0){ /* First time we count the contributions and weights */
   scanf("%s",pathtot);      gipmx=ipmx;
   getcwd(pathcd, size);      gsw=sw;
   /*cygwin_split_path(pathtot,path,optionfile);    }
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    return -l;
   /* cutv(path,optionfile,pathtot,'\\');*/  }
   
 split(pathtot, path,optionfile);  
   chdir(path);  /*************** function likelione ***********/
   replace(pathc,path);  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
 #endif  {
 #ifdef unix    /* This routine should help understanding what is done with 
   scanf("%s",optionfile);       the selection of individuals/waves and
 #endif       to check the exact contribution to the likelihood.
        Plotting could be done.
 /*-------- arguments in the command line --------*/     */
     int k;
   strcpy(fileres,"r");  
   strcat(fileres, optionfile);    if(*globpri !=0){ /* Just counts and sums, no printings */
       strcpy(fileresilk,"ilk"); 
   /*---------arguments file --------*/      strcat(fileresilk,fileres);
       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        printf("Problem with resultfile: %s\n", fileresilk);
     printf("Problem with optionfile %s\n",optionfile);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     goto end;      }
   }      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   strcpy(filereso,"o");      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
   strcat(filereso,fileres);      for(k=1; k<=nlstate; k++) 
   if((ficparo=fopen(filereso,"w"))==NULL) {        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   }    }
   
   /* Reads comments: lines beginning with '#' */    *fretone=(*funcone)(p);
   while((c=getc(ficpar))=='#' && c!= EOF){    if(*globpri !=0){
     ungetc(c,ficpar);      fclose(ficresilk);
     fgets(line, MAXLINE, ficpar);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
     puts(line);      fflush(fichtm); 
     fputs(line,ficparo);    } 
   }    return;
   ungetc(c,ficpar);  }
   
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);  /*********** Maximum Likelihood Estimation ***************/
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);  
   void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   covar=matrix(1,NCOVMAX,1,n);      {
   if (strlen(model)<=1) cptcovn=0;    int i,j, iter;
   else {    double **xi;
     j=0;    double fret;
     j=nbocc(model,'+');    double fretone; /* Only one call to likelihood */
     cptcovn=j+1;    /*  char filerespow[FILENAMELENGTH];*/
   }    xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++)
   ncovmodel=2+cptcovn;      for (j=1;j<=npar;j++)
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        xi[i][j]=(i==j ? 1.0 : 0.0);
      printf("Powell\n");  fprintf(ficlog,"Powell\n");
   /* Read guess parameters */    strcpy(filerespow,"pow"); 
   /* Reads comments: lines beginning with '#' */    strcat(filerespow,fileres);
   while((c=getc(ficpar))=='#' && c!= EOF){    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     ungetc(c,ficpar);      printf("Problem with resultfile: %s\n", filerespow);
     fgets(line, MAXLINE, ficpar);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     puts(line);    }
     fputs(line,ficparo);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   }    for (i=1;i<=nlstate;i++)
   ungetc(c,ficpar);      for(j=1;j<=nlstate+ndeath;j++)
          if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(ficrespow,"\n");
     for(i=1; i <=nlstate; i++)  
     for(j=1; j <=nlstate+ndeath-1; j++){    powell(p,xi,npar,ftol,&iter,&fret,func);
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       fprintf(ficparo,"%1d%1d",i1,j1);    free_matrix(xi,1,npar,1,npar);
       printf("%1d%1d",i,j);    fclose(ficrespow);
       for(k=1; k<=ncovmodel;k++){    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         fscanf(ficpar," %lf",&param[i][j][k]);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         printf(" %lf",param[i][j][k]);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         fprintf(ficparo," %lf",param[i][j][k]);  
       }  }
       fscanf(ficpar,"\n");  
       printf("\n");  /**** Computes Hessian and covariance matrix ***/
       fprintf(ficparo,"\n");  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     }  {
      double  **a,**y,*x,pd;
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    double **hess;
   p=param[1][1];    int i, j,jk;
      int *indx;
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     ungetc(c,ficpar);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
     fgets(line, MAXLINE, ficpar);    void lubksb(double **a, int npar, int *indx, double b[]) ;
     puts(line);    void ludcmp(double **a, int npar, int *indx, double *d) ;
     fputs(line,ficparo);    double gompertz(double p[]);
   }    hess=matrix(1,npar,1,npar);
   ungetc(c,ficpar);  
     printf("\nCalculation of the hessian matrix. Wait...\n");
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    for (i=1;i<=npar;i++){
   for(i=1; i <=nlstate; i++){      printf("%d",i);fflush(stdout);
     for(j=1; j <=nlstate+ndeath-1; j++){      fprintf(ficlog,"%d",i);fflush(ficlog);
       fscanf(ficpar,"%1d%1d",&i1,&j1);     
       printf("%1d%1d",i,j);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       fprintf(ficparo,"%1d%1d",i1,j1);      
       for(k=1; k<=ncovmodel;k++){      /*  printf(" %f ",p[i]);
         fscanf(ficpar,"%le",&delti3[i][j][k]);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
         printf(" %le",delti3[i][j][k]);    }
         fprintf(ficparo," %le",delti3[i][j][k]);    
       }    for (i=1;i<=npar;i++) {
       fscanf(ficpar,"\n");      for (j=1;j<=npar;j++)  {
       printf("\n");        if (j>i) { 
       fprintf(ficparo,"\n");          printf(".%d%d",i,j);fflush(stdout);
     }          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   }          hess[i][j]=hessij(p,delti,i,j,func,npar);
   delti=delti3[1][1];          
            hess[j][i]=hess[i][j];    
   /* Reads comments: lines beginning with '#' */          /*printf(" %lf ",hess[i][j]);*/
   while((c=getc(ficpar))=='#' && c!= EOF){        }
     ungetc(c,ficpar);      }
     fgets(line, MAXLINE, ficpar);    }
     puts(line);    printf("\n");
     fputs(line,ficparo);    fprintf(ficlog,"\n");
   }  
   ungetc(c,ficpar);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
      fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   matcov=matrix(1,npar,1,npar);    
   for(i=1; i <=npar; i++){    a=matrix(1,npar,1,npar);
     fscanf(ficpar,"%s",&str);    y=matrix(1,npar,1,npar);
     printf("%s",str);    x=vector(1,npar);
     fprintf(ficparo,"%s",str);    indx=ivector(1,npar);
     for(j=1; j <=i; j++){    for (i=1;i<=npar;i++)
       fscanf(ficpar," %le",&matcov[i][j]);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       printf(" %.5le",matcov[i][j]);    ludcmp(a,npar,indx,&pd);
       fprintf(ficparo," %.5le",matcov[i][j]);  
     }    for (j=1;j<=npar;j++) {
     fscanf(ficpar,"\n");      for (i=1;i<=npar;i++) x[i]=0;
     printf("\n");      x[j]=1;
     fprintf(ficparo,"\n");      lubksb(a,npar,indx,x);
   }      for (i=1;i<=npar;i++){ 
   for(i=1; i <=npar; i++)        matcov[i][j]=x[i];
     for(j=i+1;j<=npar;j++)      }
       matcov[i][j]=matcov[j][i];    }
      
   printf("\n");    printf("\n#Hessian matrix#\n");
     fprintf(ficlog,"\n#Hessian matrix#\n");
     for (i=1;i<=npar;i++) { 
    if(mle==1){      for (j=1;j<=npar;j++) { 
     /*-------- data file ----------*/        printf("%.3e ",hess[i][j]);
     if((ficres =fopen(fileres,"w"))==NULL) {        fprintf(ficlog,"%.3e ",hess[i][j]);
       printf("Problem with resultfile: %s\n", fileres);goto end;      }
     }      printf("\n");
     fprintf(ficres,"#%s\n",version);      fprintf(ficlog,"\n");
        }
     if((fic=fopen(datafile,"r"))==NULL)    {  
       printf("Problem with datafile: %s\n", datafile);goto end;    /* Recompute Inverse */
     }    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     n= lastobs;    ludcmp(a,npar,indx,&pd);
     severity = vector(1,maxwav);  
     outcome=imatrix(1,maxwav+1,1,n);    /*  printf("\n#Hessian matrix recomputed#\n");
     num=ivector(1,n);  
     moisnais=vector(1,n);    for (j=1;j<=npar;j++) {
     annais=vector(1,n);      for (i=1;i<=npar;i++) x[i]=0;
     moisdc=vector(1,n);      x[j]=1;
     andc=vector(1,n);      lubksb(a,npar,indx,x);
     agedc=vector(1,n);      for (i=1;i<=npar;i++){ 
     cod=ivector(1,n);        y[i][j]=x[i];
     weight=vector(1,n);        printf("%.3e ",y[i][j]);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        fprintf(ficlog,"%.3e ",y[i][j]);
     mint=matrix(1,maxwav,1,n);      }
     anint=matrix(1,maxwav,1,n);      printf("\n");
     s=imatrix(1,maxwav+1,1,n);      fprintf(ficlog,"\n");
     adl=imatrix(1,maxwav+1,1,n);        }
     tab=ivector(1,NCOVMAX);    */
     ncodemax=ivector(1,8);  
     free_matrix(a,1,npar,1,npar);
     i=1;    free_matrix(y,1,npar,1,npar);
     while (fgets(line, MAXLINE, fic) != NULL)    {    free_vector(x,1,npar);
       if ((i >= firstobs) && (i <=lastobs)) {    free_ivector(indx,1,npar);
            free_matrix(hess,1,npar,1,npar);
         for (j=maxwav;j>=1;j--){  
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  
           strcpy(line,stra);  }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  /*************** hessian matrix ****************/
         }  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
          {
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    int i;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    int l=1, lmax=20;
     double k1,k2;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    double p2[NPARMAX+1];
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    double res;
     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    double fx;
         for (j=ncov;j>=1;j--){    int k=0,kmax=10;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    double l1;
         }  
         num[i]=atol(stra);    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/    for(l=0 ; l <=lmax; l++){
       l1=pow(10,l);
         i=i+1;      delts=delt;
       }      for(k=1 ; k <kmax; k=k+1){
     }        delt = delta*(l1*k);
         p2[theta]=x[theta] +delt;
     /*scanf("%d",i);*/        k1=func(p2)-fx;
   imx=i-1; /* Number of individuals */        p2[theta]=x[theta]-delt;
         k2=func(p2)-fx;
   /* Calculation of the number of parameter from char model*/        /*res= (k1-2.0*fx+k2)/delt/delt; */
   Tvar=ivector(1,8);            res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
            
   if (strlen(model) >1){  #ifdef DEBUG
     j=0;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     j=nbocc(model,'+');        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     cptcovn=j+1;  #endif
            /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     strcpy(modelsav,model);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     if (j==0) {          k=kmax;
       cutv(stra,strb,modelsav,'V'); Tvar[1]=atoi(strb);        }
     }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     else {          k=kmax; l=lmax*10.;
       for(i=j; i>=1;i--){        }
         cutv(stra,strb,modelsav,'+');        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         if (strchr(strb,'*')) {          delts=delt;
           cutv(strd,strc,strb,'*');        }
           cutv(strb,stre,strc,'V');Tvar[i+1]=ncov+1;      }
           cutv(strb,strc,strd,'V');    }
           for (k=1; k<=lastobs;k++)    delti[theta]=delts;
             covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    return res; 
         }    
         else {cutv(strd,strc,strb,'V');  }
         Tvar[i+1]=atoi(strc);  
         }  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
         strcpy(modelsav,stra);    {
       }    int i;
       cutv(strd,strc,stra,'V');    int l=1, l1, lmax=20;
       Tvar[1]=atoi(strc);    double k1,k2,k3,k4,res,fx;
     }    double p2[NPARMAX+1];
   }    int k;
   /*printf("tvar=%d ",Tvar[1]);  
   scanf("%d ",i);*/    fx=func(x);
     fclose(fic);    for (k=1; k<=2; k++) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
     if (weightopt != 1) { /* Maximisation without weights*/      p2[thetai]=x[thetai]+delti[thetai]/k;
       for(i=1;i<=n;i++) weight[i]=1.0;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     }      k1=func(p2)-fx;
     /*-calculation of age at interview from date of interview and age at death -*/    
     agev=matrix(1,maxwav,1,imx);      p2[thetai]=x[thetai]+delti[thetai]/k;
          p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     for (i=1; i<=imx; i++)  {      k2=func(p2)-fx;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    
       for(m=1; (m<= maxwav); m++){      p2[thetai]=x[thetai]-delti[thetai]/k;
         if(s[m][i] >0){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
           if (s[m][i] == nlstate+1) {      k3=func(p2)-fx;
             if(agedc[i]>0)    
               if(moisdc[i]!=99 && andc[i]!=9999)      p2[thetai]=x[thetai]-delti[thetai]/k;
               agev[m][i]=agedc[i];      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
             else{      k4=func(p2)-fx;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
               agev[m][i]=-1;  #ifdef DEBUG
             }      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           }      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           else if(s[m][i] !=9){ /* Should no more exist */  #endif
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    }
             if(mint[m][i]==99 || anint[m][i]==9999)    return res;
               agev[m][i]=1;  }
             else if(agev[m][i] <agemin){  
               agemin=agev[m][i];  /************** Inverse of matrix **************/
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  void ludcmp(double **a, int n, int *indx, double *d) 
             }  { 
             else if(agev[m][i] >agemax){    int i,imax,j,k; 
               agemax=agev[m][i];    double big,dum,sum,temp; 
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    double *vv; 
             }   
             /*agev[m][i]=anint[m][i]-annais[i];*/    vv=vector(1,n); 
             /*   agev[m][i] = age[i]+2*m;*/    *d=1.0; 
           }    for (i=1;i<=n;i++) { 
           else { /* =9 */      big=0.0; 
             agev[m][i]=1;      for (j=1;j<=n;j++) 
             s[m][i]=-1;        if ((temp=fabs(a[i][j])) > big) big=temp; 
           }      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
         }      vv[i]=1.0/big; 
         else /*= 0 Unknown */    } 
           agev[m][i]=1;    for (j=1;j<=n;j++) { 
       }      for (i=1;i<j;i++) { 
            sum=a[i][j]; 
     }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     for (i=1; i<=imx; i++)  {        a[i][j]=sum; 
       for(m=1; (m<= maxwav); m++){      } 
         if (s[m][i] > (nlstate+ndeath)) {      big=0.0; 
           printf("Error: Wrong value in nlstate or ndeath\n");        for (i=j;i<=n;i++) { 
           goto end;        sum=a[i][j]; 
         }        for (k=1;k<j;k++) 
       }          sum -= a[i][k]*a[k][j]; 
     }        a[i][j]=sum; 
         if ( (dum=vv[i]*fabs(sum)) >= big) { 
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          big=dum; 
           imax=i; 
     free_vector(severity,1,maxwav);        } 
     free_imatrix(outcome,1,maxwav+1,1,n);      } 
     free_vector(moisnais,1,n);      if (j != imax) { 
     free_vector(annais,1,n);        for (k=1;k<=n;k++) { 
     free_matrix(mint,1,maxwav,1,n);          dum=a[imax][k]; 
     free_matrix(anint,1,maxwav,1,n);          a[imax][k]=a[j][k]; 
     free_vector(moisdc,1,n);          a[j][k]=dum; 
     free_vector(andc,1,n);        } 
         *d = -(*d); 
            vv[imax]=vv[j]; 
     wav=ivector(1,imx);      } 
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      indx[j]=imax; 
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      if (a[j][j] == 0.0) a[j][j]=TINY; 
          if (j != n) { 
     /* Concatenates waves */        dum=1.0/(a[j][j]); 
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
     } 
 Tcode=ivector(1,100);    free_vector(vv,1,n);  /* Doesn't work */
    nbcode=imatrix(1,nvar,1,8);    ;
    ncodemax[1]=1;  } 
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);  
    void lubksb(double **a, int n, int *indx, double b[]) 
    codtab=imatrix(1,100,1,10);  { 
    h=0;    int i,ii=0,ip,j; 
    m=pow(2,cptcovn);    double sum; 
     
    for(k=1;k<=cptcovn; k++){    for (i=1;i<=n;i++) { 
      for(i=1; i <=(m/pow(2,k));i++){      ip=indx[i]; 
        for(j=1; j <= ncodemax[k]; j++){      sum=b[ip]; 
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){      b[ip]=b[i]; 
            h++;      if (ii) 
            if (h>m) h=1;codtab[h][k]=j;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
          }      else if (sum) ii=i; 
        }      b[i]=sum; 
      }    } 
    }    for (i=n;i>=1;i--) { 
       sum=b[i]; 
    /*for(i=1; i <=m ;i++){      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
      for(k=1; k <=cptcovn; k++){      b[i]=sum/a[i][i]; 
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);    } 
      }  } 
      printf("\n");  
    }*/  void pstamp(FILE *fichier)
    /*scanf("%d",i);*/  {
        fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
    /* Calculates basic frequencies. Computes observed prevalence at single age  }
        and prints on file fileres'p'. */  
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);  /************ Frequencies ********************/
   void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  {  /* Some frequencies */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    int first;
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    double ***freq; /* Frequencies */
        double *pp, **prop;
     /* For Powell, parameters are in a vector p[] starting at p[1]    double pos,posprop, k2, dateintsum=0,k2cpt=0;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    char fileresp[FILENAMELENGTH];
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    
        pp=vector(1,nlstate);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    prop=matrix(1,nlstate,iagemin,iagemax+3);
     strcpy(fileresp,"p");
        strcat(fileresp,fileres);
     /*--------- results files --------------*/    if((ficresp=fopen(fileresp,"w"))==NULL) {
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);      printf("Problem with prevalence resultfile: %s\n", fileresp);
          fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
    jk=1;      exit(0);
    fprintf(ficres,"# Parameters\n");    }
    printf("# Parameters\n");    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
    for(i=1,jk=1; i <=nlstate; i++){    j1=0;
      for(k=1; k <=(nlstate+ndeath); k++){    
        if (k != i)    j=cptcoveff;
          {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
            printf("%d%d ",i,k);  
            fprintf(ficres,"%1d%1d ",i,k);    first=1;
            for(j=1; j <=ncovmodel; j++){  
              printf("%f ",p[jk]);    for(k1=1; k1<=j;k1++){
              fprintf(ficres,"%f ",p[jk]);      for(i1=1; i1<=ncodemax[k1];i1++){
              jk++;        j1++;
            }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
            printf("\n");          scanf("%d", i);*/
            fprintf(ficres,"\n");        for (i=-5; i<=nlstate+ndeath; i++)  
          }          for (jk=-5; jk<=nlstate+ndeath; jk++)  
      }            for(m=iagemin; m <= iagemax+3; m++)
    }              freq[i][jk][m]=0;
   
     /* Computing hessian and covariance matrix */      for (i=1; i<=nlstate; i++)  
     ftolhess=ftol; /* Usually correct */        for(m=iagemin; m <= iagemax+3; m++)
     hesscov(matcov, p, npar, delti, ftolhess, func);          prop[i][m]=0;
     fprintf(ficres,"# Scales\n");        
     printf("# Scales\n");        dateintsum=0;
      for(i=1,jk=1; i <=nlstate; i++){        k2cpt=0;
       for(j=1; j <=nlstate+ndeath; j++){        for (i=1; i<=imx; i++) {
         if (j!=i) {          bool=1;
           fprintf(ficres,"%1d%1d",i,j);          if  (cptcovn>0) {
           printf("%1d%1d",i,j);            for (z1=1; z1<=cptcoveff; z1++) 
           for(k=1; k<=ncovmodel;k++){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
             printf(" %.5e",delti[jk]);                bool=0;
             fprintf(ficres," %.5e",delti[jk]);          }
             jk++;          if (bool==1){
           }            for(m=firstpass; m<=lastpass; m++){
           printf("\n");              k2=anint[m][i]+(mint[m][i]/12.);
           fprintf(ficres,"\n");              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
         }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                    if (m<lastpass) {
     k=1;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     fprintf(ficres,"# Covariance\n");                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     printf("# Covariance\n");                }
     for(i=1;i<=npar;i++){                
       /*  if (k>nlstate) k=1;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       i1=(i-1)/(ncovmodel*nlstate)+1;                  dateintsum=dateintsum+k2;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);                  k2cpt++;
       printf("%s%d%d",alph[k],i1,tab[i]);*/                }
       fprintf(ficres,"%3d",i);                /*}*/
       printf("%3d",i);            }
       for(j=1; j<=i;j++){          }
         fprintf(ficres," %.5e",matcov[i][j]);        }
         printf(" %.5e",matcov[i][j]);         
       }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       fprintf(ficres,"\n");        pstamp(ficresp);
       printf("\n");        if  (cptcovn>0) {
       k++;          fprintf(ficresp, "\n#********** Variable "); 
     }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
              fprintf(ficresp, "**********\n#");
     while((c=getc(ficpar))=='#' && c!= EOF){        }
       ungetc(c,ficpar);        for(i=1; i<=nlstate;i++) 
       fgets(line, MAXLINE, ficpar);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       puts(line);        fprintf(ficresp, "\n");
       fputs(line,ficparo);        
     }        for(i=iagemin; i <= iagemax+3; i++){
     ungetc(c,ficpar);          if(i==iagemax+3){
              fprintf(ficlog,"Total");
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);          }else{
                if(first==1){
     if (fage <= 2) {              first=0;
       bage = agemin;              printf("See log file for details...\n");
       fage = agemax;            }
     }            fprintf(ficlog,"Age %d", i);
           }
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");          for(jk=1; jk <=nlstate ; jk++){
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 /*------------ gnuplot -------------*/              pp[jk] += freq[jk][m][i]; 
 chdir(pathcd);          }
   if((ficgp=fopen("graph.plt","w"))==NULL) {          for(jk=1; jk <=nlstate ; jk++){
     printf("Problem with file graph.gp");goto end;            for(m=-1, pos=0; m <=0 ; m++)
   }              pos += freq[jk][m][i];
 #ifdef windows            if(pp[jk]>=1.e-10){
   fprintf(ficgp,"cd \"%s\" \n",pathc);              if(first==1){
 #endif              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 m=pow(2,cptcovn);              }
                fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
  /* 1eme*/            }else{
   for (cpt=1; cpt<= nlstate ; cpt ++) {              if(first==1)
    for (k1=1; k1<= m ; k1 ++) {                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 #ifdef windows            }
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);          }
 #endif  
 #ifdef unix          for(jk=1; jk <=nlstate ; jk++){
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 #endif              pp[jk] += freq[jk][m][i];
           }       
 for (i=1; i<= nlstate ; i ++) {          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            pos += pp[jk];
   else fprintf(ficgp," \%%*lf (\%%*lf)");            posprop += prop[jk][i];
 }          }
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          for(jk=1; jk <=nlstate ; jk++){
     for (i=1; i<= nlstate ; i ++) {            if(pos>=1.e-5){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              if(first==1)
   else fprintf(ficgp," \%%*lf (\%%*lf)");                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);            }else{
      for (i=1; i<= nlstate ; i ++) {              if(first==1)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   else fprintf(ficgp," \%%*lf (\%%*lf)");              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
 }              }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));            if( i <= iagemax){
 #ifdef unix              if(pos>=1.e-5){
 fprintf(ficgp,"\nset ter gif small size 400,300");                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 #endif                /*probs[i][jk][j1]= pp[jk]/pos;*/
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
    }              }
   }              else
   /*2 eme*/                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             }
   for (k1=1; k1<= m ; k1 ++) {          }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);          
              for(jk=-1; jk <=nlstate+ndeath; jk++)
     for (i=1; i<= nlstate+1 ; i ++) {            for(m=-1; m <=nlstate+ndeath; m++)
       k=2*i;              if(freq[jk][m][i] !=0 ) {
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);              if(first==1)
       for (j=1; j<= nlstate+1 ; j ++) {                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   else fprintf(ficgp," \%%*lf (\%%*lf)");              }
 }            if(i <= iagemax)
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            fprintf(ficresp,"\n");
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          if(first==1)
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);            printf("Others in log...\n");
       for (j=1; j<= nlstate+1 ; j ++) {          fprintf(ficlog,"\n");
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        }
         else fprintf(ficgp," \%%*lf (\%%*lf)");      }
 }      }
       fprintf(ficgp,"\" t\"\" w l 0,");    dateintmean=dateintsum/k2cpt; 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);   
       for (j=1; j<= nlstate+1 ; j ++) {    fclose(ficresp);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    free_vector(pp,1,nlstate);
 }      free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    /* End of Freq */
       else fprintf(ficgp,"\" t\"\" w l 0,");  }
     }  
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);  /************ Prevalence ********************/
   }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
    {  
   /*3eme*/    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
   for (k1=1; k1<= m ; k1 ++) {       We still use firstpass and lastpass as another selection.
     for (cpt=1; cpt<= nlstate ; cpt ++) {    */
       k=2+nlstate*(cpt-1);   
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
       for (i=1; i< nlstate ; i ++) {    double ***freq; /* Frequencies */
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    double *pp, **prop;
       }    double pos,posprop; 
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    double  y2; /* in fractional years */
     }    int iagemin, iagemax;
   }  
      iagemin= (int) agemin;
   /* CV preval stat */    iagemax= (int) agemax;
   for (k1=1; k1<= m ; k1 ++) {    /*pp=vector(1,nlstate);*/
     for (cpt=1; cpt<nlstate ; cpt ++) {    prop=matrix(1,nlstate,iagemin,iagemax+3); 
       k=3;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);    j1=0;
       for (i=1; i< nlstate ; i ++)    
         fprintf(ficgp,"+$%d",k+i+1);    j=cptcoveff;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
          
       l=3+(nlstate+ndeath)*cpt;    for(k1=1; k1<=j;k1++){
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      for(i1=1; i1<=ncodemax[k1];i1++){
       for (i=1; i< nlstate ; i ++) {        j1++;
         l=3+(nlstate+ndeath)*cpt;        
         fprintf(ficgp,"+$%d",l+i+1);        for (i=1; i<=nlstate; i++)  
       }          for(m=iagemin; m <= iagemax+3; m++)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);              prop[i][m]=0.0;
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);       
     }        for (i=1; i<=imx; i++) { /* Each individual */
   }          bool=1;
           if  (cptcovn>0) {
   /* proba elementaires */            for (z1=1; z1<=cptcoveff; z1++) 
    for(i=1,jk=1; i <=nlstate; i++){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     for(k=1; k <=(nlstate+ndeath); k++){                bool=0;
       if (k != i) {          } 
         for(j=1; j <=ncovmodel; j++){          if (bool==1) { 
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
           /*fprintf(ficgp,"%s",alph[1]);*/              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           jk++;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           fprintf(ficgp,"\n");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
     }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   prop[s[m][i]][iagemax+3] += weight[i]; 
   for(jk=1; jk <=m; jk++) {                } 
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);              }
    i=1;            } /* end selection of waves */
    for(k2=1; k2<=nlstate; k2++) {          }
      k3=i;        }
      for(k=1; k<=(nlstate+ndeath); k++) {        for(i=iagemin; i <= iagemax+3; i++){  
        if (k != k2){          
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
         for(j=3; j <=ncovmodel; j++)          } 
           fprintf(ficgp,"+p%d*%d",k2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
         fprintf(ficgp,")/(1");          for(jk=1; jk <=nlstate ; jk++){     
             if( i <=  iagemax){ 
         for(k1=1; k1 <=nlstate+1; k1=k1+2){                if(posprop>=1.e-5){ 
             fprintf(ficgp,"+exp(p%d+p%d*x",k1+k3-1,k1+k3);                probs[i][jk][j1]= prop[jk][i]/posprop;
               } 
             for(j=3; j <=ncovmodel; j++)            } 
               fprintf(ficgp,"+p%d*%d",k2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          }/* end jk */ 
             fprintf(ficgp,")");        }/* end i */ 
         }      } /* end i1 */
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    } /* end k1 */
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    
     i=i+ncovmodel;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
        }    /*free_vector(pp,1,nlstate);*/
      }    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
    }  }  /* End of prevalence */
   fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);  
    }  /************* Waves Concatenation ***************/
      
   fclose(ficgp);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
      {
 chdir(path);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     free_matrix(agev,1,maxwav,1,imx);       Death is a valid wave (if date is known).
     free_ivector(wav,1,imx);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);       and mw[mi+1][i]. dh depends on stepm.
           */
     free_imatrix(s,1,maxwav+1,1,n);  
        int i, mi, m;
        /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     free_ivector(num,1,n);       double sum=0., jmean=0.;*/
     free_vector(agedc,1,n);    int first;
     free_vector(weight,1,n);    int j, k=0,jk, ju, jl;
     /*free_matrix(covar,1,NCOVMAX,1,n);*/    double sum=0.;
     fclose(ficparo);    first=0;
     fclose(ficres);    jmin=1e+5;
    }    jmax=-1;
        jmean=0.;
    /*________fin mle=1_________*/    for(i=1; i<=imx; i++){
          mi=0;
       m=firstpass;
        while(s[m][i] <= nlstate){
     /* No more information from the sample is required now */        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
   /* Reads comments: lines beginning with '#' */          mw[++mi][i]=m;
   while((c=getc(ficpar))=='#' && c!= EOF){        if(m >=lastpass)
     ungetc(c,ficpar);          break;
     fgets(line, MAXLINE, ficpar);        else
     puts(line);          m++;
     fputs(line,ficparo);      }/* end while */
   }      if (s[m][i] > nlstate){
   ungetc(c,ficpar);        mi++;     /* Death is another wave */
          /* if(mi==0)  never been interviewed correctly before death */
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);           /* Only death is a correct wave */
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);        mw[mi][i]=m;
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);      }
 /*--------- index.htm --------*/  
       wav[i]=mi;
   if((fichtm=fopen("index.htm","w"))==NULL)    {      if(mi==0){
     printf("Problem with index.htm \n");goto end;        nbwarn++;
   }        if(first==0){
           printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
  fprintf(fichtm,"<body><ul> Imach, Version 0.64a<hr> <li>Outputs files<br><br>\n          first=1;
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n        }
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>        if(first==1){
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>        }
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>      } /* end mi==0 */
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>    } /* End individuals */
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>  
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>    for(i=1; i<=imx; i++){
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);      for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
  fprintf(fichtm," <li>Graphs</li>\n<p>");          dh[mi][i]=1;
         else{
  m=cptcovn;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
  j1=0;              if(j==0) j=1;  /* Survives at least one month after exam */
  for(k1=1; k1<=m;k1++){              else if(j<0){
    for(i1=1; i1<=ncodemax[k1];i1++){                nberr++;
        j1++;                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
        if (cptcovn > 0) {                j=1; /* Temporary Dangerous patch */
          fprintf(fichtm,"<hr>************ Results for covariates");                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
          for (cpt=1; cpt<=cptcovn;cpt++)                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
          fprintf(fichtm," ************\n<hr>");              }
        }              k=k+1;
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>              if (j >= jmax){
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);                    jmax=j;
        for(cpt=1; cpt<nlstate;cpt++){                ijmax=i;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>              }
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);              if (j <= jmin){
        }                jmin=j;
     for(cpt=1; cpt<=nlstate;cpt++) {                ijmin=i;
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident              }
 interval) in state (%d): v%s%d%d.gif <br>              sum=sum+j;
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);                /*if (j<0) printf("j=%d num=%d \n",j,i);*/
      }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
      for(cpt=1; cpt<=nlstate;cpt++) {            }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>          }
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          else{
      }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
      fprintf(fichtm,"\n<br>- Total life expectancy by age and  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
 health expectancies in states (1) and (2): e%s%d.gif<br>  
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);            k=k+1;
 fprintf(fichtm,"\n</body>");            if (j >= jmax) {
    }              jmax=j;
  }              ijmax=i;
 fclose(fichtm);            }
             else if (j <= jmin){
   /*--------------- Prevalence limit --------------*/              jmin=j;
                ijmin=i;
   strcpy(filerespl,"pl");            }
   strcat(filerespl,fileres);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;            if(j<0){
   }              nberr++;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   fprintf(ficrespl,"#Prevalence limit\n");              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   fprintf(ficrespl,"#Age ");            }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);            sum=sum+j;
   fprintf(ficrespl,"\n");          }
            jk= j/stepm;
   prlim=matrix(1,nlstate,1,nlstate);          jl= j -jk*stepm;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          ju= j -(jk+1)*stepm;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            if(jl==0){
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              dh[mi][i]=jk;
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */              bh[mi][i]=0;
   k=0;            }else{ /* We want a negative bias in order to only have interpolation ie
   agebase=agemin;                    * at the price of an extra matrix product in likelihood */
   agelim=agemax;              dh[mi][i]=jk+1;
   ftolpl=1.e-10;              bh[mi][i]=ju;
   i1=cptcovn;            }
   if (cptcovn < 1){i1=1;}          }else{
             if(jl <= -ju){
   for(cptcov=1;cptcov<=i1;cptcov++){              dh[mi][i]=jk;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              bh[mi][i]=jl;       /* bias is positive if real duration
         k=k+1;                                   * is higher than the multiple of stepm and negative otherwise.
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/                                   */
         fprintf(ficrespl,"\n#****** ");            }
         for(j=1;j<=cptcovn;j++)            else{
           fprintf(ficrespl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);              dh[mi][i]=jk+1;
         fprintf(ficrespl,"******\n");              bh[mi][i]=ju;
                    }
         for (age=agebase; age<=agelim; age++){            if(dh[mi][i]==0){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);              dh[mi][i]=1; /* At least one step */
           fprintf(ficrespl,"%.0f",age );              bh[mi][i]=ju; /* At least one step */
           for(i=1; i<=nlstate;i++)              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
           fprintf(ficrespl," %.5f", prlim[i][i]);            }
           fprintf(ficrespl,"\n");          } /* end if mle */
         }        }
       }      } /* end wave */
     }    }
   fclose(ficrespl);    jmean=sum/k;
   /*------------- h Pij x at various ages ------------*/    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
      fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);   }
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  /*********** Tricode ****************************/
   }  void tricode(int *Tvar, int **nbcode, int imx)
   printf("Computing pij: result on file '%s' \n", filerespij);  {
      
   stepsize=(int) (stepm+YEARM-1)/YEARM;    int Ndum[20],ij=1, k, j, i, maxncov=19;
   if (stepm<=24) stepsize=2;    int cptcode=0;
     cptcoveff=0; 
   agelim=AGESUP;   
   hstepm=stepsize*YEARM; /* Every year of age */    for (k=0; k<maxncov; k++) Ndum[k]=0;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    for (k=1; k<=7; k++) ncodemax[k]=0;
    
   k=0;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   for(cptcov=1;cptcov<=i1;cptcov++){      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                                 modality*/ 
       k=k+1;        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
         fprintf(ficrespij,"\n#****** ");        Ndum[ij]++; /*store the modality */
         for(j=1;j<=cptcovn;j++)        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
         fprintf(ficrespij,"******\n");                                         Tvar[j]. If V=sex and male is 0 and 
                                                 female is 1, then  cptcode=1.*/
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */      }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      for (i=0; i<=cptcode; i++) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
           oldm=oldms;savm=savms;      }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           fprintf(ficrespij,"# Age");      ij=1; 
           for(i=1; i<=nlstate;i++)      for (i=1; i<=ncodemax[j]; i++) {
             for(j=1; j<=nlstate+ndeath;j++)        for (k=0; k<= maxncov; k++) {
               fprintf(ficrespij," %1d-%1d",i,j);          if (Ndum[k] != 0) {
           fprintf(ficrespij,"\n");            nbcode[Tvar[j]][ij]=k; 
           for (h=0; h<=nhstepm; h++){            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );            
             for(i=1; i<=nlstate;i++)            ij++;
               for(j=1; j<=nlstate+ndeath;j++)          }
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          if (ij > ncodemax[j]) break; 
             fprintf(ficrespij,"\n");        }  
           }      } 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }  
           fprintf(ficrespij,"\n");  
         }   for (k=0; k< maxncov; k++) Ndum[k]=0;
     }  
   }   for (i=1; i<=ncovmodel-2; i++) { 
      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   fclose(ficrespij);     ij=Tvar[i];
      Ndum[ij]++;
   /*---------- Health expectancies and variances ------------*/   }
   
   strcpy(filerest,"t");   ij=1;
   strcat(filerest,fileres);   for (i=1; i<= maxncov; i++) {
   if((ficrest=fopen(filerest,"w"))==NULL) {     if((Ndum[i]!=0) && (i<=ncovcol)){
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;       Tvaraff[ij]=i; /*For printing */
   }       ij++;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);     }
    }
    
   strcpy(filerese,"e");   cptcoveff=ij-1; /*Number of simple covariates*/
   strcat(filerese,fileres);  }
   if((ficreseij=fopen(filerese,"w"))==NULL) {  
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  /*********** Health Expectancies ****************/
   }  
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
  strcpy(fileresv,"v");  {
   strcat(fileresv,fileres);    /* Health expectancies, no variances */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    double age, agelim, hf;
   }    double ***p3mat;
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    double eip;
   
   k=0;    pstamp(ficreseij);
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficreseij,"# Age");
       k=k+1;    for(i=1; i<=nlstate;i++){
       fprintf(ficrest,"\n#****** ");      for(j=1; j<=nlstate;j++){
       for(j=1;j<=cptcovn;j++)        fprintf(ficreseij," e%1d%1d ",i,j);
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);      }
       fprintf(ficrest,"******\n");      fprintf(ficreseij," e%1d. ",i);
     }
       fprintf(ficreseij,"\n#****** ");    fprintf(ficreseij,"\n");
       for(j=1;j<=cptcovn;j++)  
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    
       fprintf(ficreseij,"******\n");    if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
       fprintf(ficresvij,"\n#****** ");    }
       for(j=1;j<=cptcovn;j++)    else  hstepm=estepm;   
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    /* We compute the life expectancy from trapezoids spaced every estepm months
       fprintf(ficresvij,"******\n");     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);     * we are calculating an estimate of the Life Expectancy assuming a linear 
       oldm=oldms;savm=savms;     * progression in between and thus overestimating or underestimating according
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);       * to the curvature of the survival function. If, for the same date, we 
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       oldm=oldms;savm=savms;     * to compare the new estimate of Life expectancy with the same linear 
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);     * hypothesis. A more precise result, taking into account a more precise
           * curvature will be obtained if estepm is as small as stepm. */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    /* For example we decided to compute the life expectancy with the smallest unit */
       fprintf(ficrest,"\n");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
               nhstepm is the number of hstepm from age to agelim 
       hf=1;       nstepm is the number of stepm from age to agelin. 
       if (stepm >= YEARM) hf=stepm/YEARM;       Look at hpijx to understand the reason of that which relies in memory size
       epj=vector(1,nlstate+1);       and note for a fixed period like estepm months */
       for(age=bage; age <=fage ;age++){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);       survival function given by stepm (the optimization length). Unfortunately it
         fprintf(ficrest," %.0f",age);       means that if the survival funtion is printed only each two years of age and if
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           for(i=1, epj[j]=0.;i <=nlstate;i++) {       results. So we changed our mind and took the option of the best precision.
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];    */
           }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           epj[nlstate+1] +=epj[j];  
         }    agelim=AGESUP;
         for(i=1, vepp=0.;i <=nlstate;i++)    /* nhstepm age range expressed in number of stepm */
           for(j=1;j <=nlstate;j++)    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
             vepp += vareij[i][j][(int)age];    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));    /* if (stepm >= YEARM) hstepm=1;*/
         for(j=1;j <=nlstate;j++){    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }  
         fprintf(ficrest,"\n");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       }      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   }      
              hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
  fclose(ficreseij);      
  fclose(ficresvij);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   fclose(ficrest);      
   fclose(ficpar);      printf("%d|",(int)age);fflush(stdout);
   free_vector(epj,1,nlstate+1);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   /*  scanf("%d ",i); */      
       /* Computing expectancies */
   /*------- Variance limit prevalence------*/        for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
 strcpy(fileresvpl,"vpl");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   strcat(fileresvpl,fileres);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {            
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     exit(0);  
   }          }
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  
       fprintf(ficreseij,"%3.0f",age );
  k=0;      for(i=1; i<=nlstate;i++){
  for(cptcov=1;cptcov<=i1;cptcov++){        eip=0;
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for(j=1; j<=nlstate;j++){
      k=k+1;          eip +=eij[i][j][(int)age];
      fprintf(ficresvpl,"\n#****** ");          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
      for(j=1;j<=cptcovn;j++)        }
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);        fprintf(ficreseij,"%9.4f", eip );
      fprintf(ficresvpl,"******\n");      }
            fprintf(ficreseij,"\n");
      varpl=matrix(1,nlstate,(int) bage, (int) fage);      
      oldm=oldms;savm=savms;    }
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    }    printf("\n");
  }    fprintf(ficlog,"\n");
     
   fclose(ficresvpl);  }
   
   /*---------- End : free ----------------*/  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);  
    {
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    /* Covariances of health expectancies eij and of total life expectancies according
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);     to initial status i, ei. .
      */
      int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    double age, agelim, hf;
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    double ***p3matp, ***p3matm, ***varhe;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    double **dnewm,**doldm;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    double *xp, *xm;
      double **gp, **gm;
   free_matrix(matcov,1,npar,1,npar);    double ***gradg, ***trgradg;
   free_vector(delti,1,npar);    int theta;
    
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    double eip, vip;
   
   printf("End of Imach\n");    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    xp=vector(1,npar);
      xm=vector(1,npar);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    dnewm=matrix(1,nlstate*nlstate,1,npar);
   /*printf("Total time was %d uSec.\n", total_usecs);*/    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   /*------ End -----------*/    
     pstamp(ficresstdeij);
  end:    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
 #ifdef windows    fprintf(ficresstdeij,"# Age");
  chdir(pathcd);    for(i=1; i<=nlstate;i++){
 #endif      for(j=1; j<=nlstate;j++)
  system("wgnuplot graph.plt");        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
 #ifdef windows    }
   while (z[0] != 'q') {    fprintf(ficresstdeij,"\n");
     chdir(pathcd);  
     printf("\nType e to edit output files, c to start again, and q for exiting: ");    pstamp(ficrescveij);
     scanf("%s",z);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     if (z[0] == 'c') system("./imach");    fprintf(ficrescveij,"# Age");
     else if (z[0] == 'e') {    for(i=1; i<=nlstate;i++)
       chdir(path);      for(j=1; j<=nlstate;j++){
       system("index.htm");        cptj= (j-1)*nlstate+i;
     }        for(i2=1; i2<=nlstate;i2++)
     else if (z[0] == 'q') exit(0);          for(j2=1; j2<=nlstate;j2++){
   }            cptj2= (j2-1)*nlstate+i2;
 #endif            if(cptj2 <= cptj)
 }              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
       }
     fprintf(ficrescveij,"\n");
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
     nstepm=(int) rint((agelim-age)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     for (age=bage; age<=fage; age ++){ 
   
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
    
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
         for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
           }
         }
        
         for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
       
       
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       
   
        for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   
        printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
      
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
       strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like k years */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.5  
changed lines
  Added in v.1.121


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>