Diff for /imach/src/imach.c between versions 1.5 and 1.161

version 1.5, 2001/05/02 17:42:45 version 1.161, 2014/09/15 20:41:41
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.161  2014/09/15 20:41:41  brouard
   individuals from different ages are interviewed on their health status    Summary: Problem with macro SQR on Intel compiler
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.160  2014/09/02 09:24:05  brouard
   Health expectancies are computed from the transistions observed between    *** empty log message ***
   waves and are computed for each degree of severity of disability (number  
   of life states). More degrees you consider, more time is necessary to    Revision 1.159  2014/09/01 10:34:10  brouard
   reach the Maximum Likelihood of the parameters involved in the model.    Summary: WIN32
   The simplest model is the multinomial logistic model where pij is    Author: Brouard
   the probabibility to be observed in state j at the second wave conditional  
   to be observed in state i at the first wave. Therefore the model is:    Revision 1.158  2014/08/27 17:11:51  brouard
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    *** empty log message ***
   is a covariate. If you want to have a more complex model than "constant and  
   age", you should modify the program where the markup    Revision 1.157  2014/08/27 16:26:55  brouard
     *Covariates have to be included here again* invites you to do it.    Summary: Preparing windows Visual studio version
   More covariates you add, less is the speed of the convergence.    Author: Brouard
   
   The advantage that this computer programme claims, comes from that if the    In order to compile on Visual studio, time.h is now correct and time_t
   delay between waves is not identical for each individual, or if some    and tm struct should be used. difftime should be used but sometimes I
   individual missed an interview, the information is not rounded or lost, but    just make the differences in raw time format (time(&now).
   taken into account using an interpolation or extrapolation.    Trying to suppress #ifdef LINUX
   hPijx is the probability to be    Add xdg-open for __linux in order to open default browser.
   observed in state i at age x+h conditional to the observed state i at age  
   x. The delay 'h' can be split into an exact number (nh*stepm) of    Revision 1.156  2014/08/25 20:10:10  brouard
   unobserved intermediate  states. This elementary transition (by month or    *** empty log message ***
   quarter trimester, semester or year) is model as a multinomial logistic.  
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.155  2014/08/25 18:32:34  brouard
   and the contribution of each individual to the likelihood is simply hPijx.    Summary: New compile, minor changes
     Author: Brouard
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.154  2014/06/20 17:32:08  brouard
      Summary: Outputs now all graphs of convergence to period prevalence
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.153  2014/06/20 16:45:46  brouard
   This software have been partly granted by Euro-REVES, a concerted action    Summary: If 3 live state, convergence to period prevalence on same graph
   from the European Union.    Author: Brouard
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Revision 1.152  2014/06/18 17:54:09  brouard
   can be accessed at http://euroreves.ined.fr/imach .    Summary: open browser, use gnuplot on same dir than imach if not found in the path
   **********************************************************************/  
      Revision 1.151  2014/06/18 16:43:30  brouard
 #include <math.h>    *** empty log message ***
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.150  2014/06/18 16:42:35  brouard
 #include <unistd.h>    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
     Author: brouard
 #define MAXLINE 256  
 #define FILENAMELENGTH 80    Revision 1.149  2014/06/18 15:51:14  brouard
 /*#define DEBUG*/    Summary: Some fixes in parameter files errors
 #define windows    Author: Nicolas Brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.148  2014/06/17 17:38:48  brouard
     Summary: Nothing new
     Author: Brouard
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Just a new packaging for OS/X version 0.98nS
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Revision 1.147  2014/06/16 10:33:11  brouard
 #define NINTERVMAX 8    *** empty log message ***
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.146  2014/06/16 10:20:28  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    Summary: Merge
 #define MAXN 20000    Author: Brouard
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Merge, before building revised version.
 #define AGEBASE 40  
     Revision 1.145  2014/06/10 21:23:15  brouard
     Summary: Debugging with valgrind
 int nvar;    Author: Nicolas Brouard
 static int cptcov;  
 int cptcovn;    Lot of changes in order to output the results with some covariates
 int npar=NPARMAX;    After the Edimburgh REVES conference 2014, it seems mandatory to
 int nlstate=2; /* Number of live states */    improve the code.
 int ndeath=1; /* Number of dead states */    No more memory valgrind error but a lot has to be done in order to
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    continue the work of splitting the code into subroutines.
     Also, decodemodel has been improved. Tricode is still not
 int *wav; /* Number of waves for this individuual 0 is possible */    optimal. nbcode should be improved. Documentation has been added in
 int maxwav; /* Maxim number of waves */    the source code.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Revision 1.143  2014/01/26 09:45:38  brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
 FILE *ficgp, *fichtm;  
 FILE *ficreseij;    Revision 1.142  2014/01/26 03:57:36  brouard
   char filerese[FILENAMELENGTH];    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
  FILE  *ficresvij;  
   char fileresv[FILENAMELENGTH];    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    Revision 1.141  2014/01/26 02:42:01  brouard
     * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
     Revision 1.140  2011/09/02 10:37:54  brouard
     Summary: times.h is ok with mingw32 now.
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.139  2010/06/14 07:50:17  brouard
 #define FTOL 1.0e-10    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
     I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 #define NRANSI  
 #define ITMAX 200    Revision 1.138  2010/04/30 18:19:40  brouard
     *** empty log message ***
 #define TOL 2.0e-4  
     Revision 1.137  2010/04/29 18:11:38  brouard
 #define CGOLD 0.3819660    (Module): Checking covariates for more complex models
 #define ZEPS 1.0e-10    than V1+V2. A lot of change to be done. Unstable.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Revision 1.136  2010/04/26 20:30:53  brouard
 #define GOLD 1.618034    (Module): merging some libgsl code. Fixing computation
 #define GLIMIT 100.0    of likelione (using inter/intrapolation if mle = 0) in order to
 #define TINY 1.0e-20    get same likelihood as if mle=1.
     Some cleaning of code and comments added.
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    Revision 1.135  2009/10/29 15:33:14  brouard
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
    
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.134  2009/10/29 13:18:53  brouard
 #define rint(a) floor(a+0.5)    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
   
 static double sqrarg;    Revision 1.133  2009/07/06 10:21:25  brouard
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    just nforces
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.132  2009/07/06 08:22:05  brouard
 int imx;    Many tings
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/    Revision 1.131  2009/06/20 16:22:47  brouard
     Some dimensions resccaled
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax;    Revision 1.130  2009/05/26 06:44:34  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    (Module): Max Covariate is now set to 20 instead of 8. A
 double **pmmij;    lot of cleaning with variables initialized to 0. Trying to make
     V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
 double *weight;  
 int **s; /* Status */    Revision 1.129  2007/08/31 13:49:27  lievre
 double *agedc, **covar, idx;    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
 int **nbcode, *Tcode, *Tvar, **codtab;  
     Revision 1.128  2006/06/30 13:02:05  brouard
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    (Module): Clarifications on computing e.j
 double ftolhess; /* Tolerance for computing hessian */  
     Revision 1.127  2006/04/28 18:11:50  brouard
     (Module): Yes the sum of survivors was wrong since
 static  int split( char *path, char *dirc, char *name )    imach-114 because nhstepm was no more computed in the age
 {    loop. Now we define nhstepma in the age loop.
    char *s;                             /* pointer */    (Module): In order to speed up (in case of numerous covariates) we
    int  l1, l2;                         /* length counters */    compute health expectancies (without variances) in a first step
     and then all the health expectancies with variances or standard
    l1 = strlen( path );                 /* length of path */    deviation (needs data from the Hessian matrices) which slows the
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    computation.
    s = strrchr( path, '\\' );           /* find last / */    In the future we should be able to stop the program is only health
    if ( s == NULL ) {                   /* no directory, so use current */    expectancies and graph are needed without standard deviations.
 #if     defined(__bsd__)                /* get current working directory */  
       extern char       *getwd( );    Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
       if ( getwd( dirc ) == NULL ) {    imach-114 because nhstepm was no more computed in the age
 #else    loop. Now we define nhstepma in the age loop.
       extern char       *getcwd( );    Version 0.98h
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Revision 1.125  2006/04/04 15:20:31  lievre
 #endif    Errors in calculation of health expectancies. Age was not initialized.
          return( GLOCK_ERROR_GETCWD );    Forecasting file added.
       }  
       strcpy( name, path );             /* we've got it */    Revision 1.124  2006/03/22 17:13:53  lievre
    } else {                             /* strip direcotry from path */    Parameters are printed with %lf instead of %f (more numbers after the comma).
       s++;                              /* after this, the filename */    The log-likelihood is printed in the log file
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.123  2006/03/20 10:52:43  brouard
       strcpy( name, s );                /* save file name */    * imach.c (Module): <title> changed, corresponds to .htm file
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    name. <head> headers where missing.
       dirc[l1-l2] = 0;                  /* add zero */  
    }    * imach.c (Module): Weights can have a decimal point as for
    l1 = strlen( dirc );                 /* length of directory */    English (a comma might work with a correct LC_NUMERIC environment,
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    otherwise the weight is truncated).
    return( 0 );                         /* we're done */    Modification of warning when the covariates values are not 0 or
 }    1.
     Version 0.98g
   
 /******************************************/    Revision 1.122  2006/03/20 09:45:41  brouard
     (Module): Weights can have a decimal point as for
 void replace(char *s, char*t)    English (a comma might work with a correct LC_NUMERIC environment,
 {    otherwise the weight is truncated).
   int i;    Modification of warning when the covariates values are not 0 or
   int lg=20;    1.
   i=0;    Version 0.98g
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {    Revision 1.121  2006/03/16 17:45:01  lievre
     (s[i] = t[i]);    * imach.c (Module): Comments concerning covariates added
     if (t[i]== '\\') s[i]='/';  
   }    * imach.c (Module): refinements in the computation of lli if
 }    status=-2 in order to have more reliable computation if stepm is
     not 1 month. Version 0.98f
 int nbocc(char *s, char occ)  
 {    Revision 1.120  2006/03/16 15:10:38  lievre
   int i,j=0;    (Module): refinements in the computation of lli if
   int lg=20;    status=-2 in order to have more reliable computation if stepm is
   i=0;    not 1 month. Version 0.98f
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {    Revision 1.119  2006/03/15 17:42:26  brouard
   if  (s[i] == occ ) j++;    (Module): Bug if status = -2, the loglikelihood was
   }    computed as likelihood omitting the logarithm. Version O.98e
   return j;  
 }    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
 void cutv(char *u,char *v, char*t, char occ)    table of variances if popbased=1 .
 {    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   int i,lg,j,p;    (Module): Function pstamp added
   i=0;    (Module): Version 0.98d
   for(j=0; j<=strlen(t)-1; j++) {  
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    Revision 1.117  2006/03/14 17:16:22  brouard
   }    (Module): varevsij Comments added explaining the second
     table of variances if popbased=1 .
   lg=strlen(t);    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   for(j=0; j<p; j++) {    (Module): Function pstamp added
     (u[j] = t[j]);    (Module): Version 0.98d
     u[p]='\0';  
   }    Revision 1.116  2006/03/06 10:29:27  brouard
     (Module): Variance-covariance wrong links and
    for(j=0; j<= lg; j++) {    varian-covariance of ej. is needed (Saito).
     if (j>=(p+1))(v[j-p-1] = t[j]);  
   }    Revision 1.115  2006/02/27 12:17:45  brouard
 }    (Module): One freematrix added in mlikeli! 0.98c
   
 /********************** nrerror ********************/    Revision 1.114  2006/02/26 12:57:58  brouard
     (Module): Some improvements in processing parameter
 void nrerror(char error_text[])    filename with strsep.
 {  
   fprintf(stderr,"ERREUR ...\n");    Revision 1.113  2006/02/24 14:20:24  brouard
   fprintf(stderr,"%s\n",error_text);    (Module): Memory leaks checks with valgrind and:
   exit(1);    datafile was not closed, some imatrix were not freed and on matrix
 }    allocation too.
 /*********************** vector *******************/  
 double *vector(int nl, int nh)    Revision 1.112  2006/01/30 09:55:26  brouard
 {    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    Revision 1.111  2006/01/25 20:38:18  brouard
   if (!v) nrerror("allocation failure in vector");    (Module): Lots of cleaning and bugs added (Gompertz)
   return v-nl+NR_END;    (Module): Comments can be added in data file. Missing date values
 }    can be a simple dot '.'.
   
 /************************ free vector ******************/    Revision 1.110  2006/01/25 00:51:50  brouard
 void free_vector(double*v, int nl, int nh)    (Module): Lots of cleaning and bugs added (Gompertz)
 {  
   free((FREE_ARG)(v+nl-NR_END));    Revision 1.109  2006/01/24 19:37:15  brouard
 }    (Module): Comments (lines starting with a #) are allowed in data.
   
 /************************ivector *******************************/    Revision 1.108  2006/01/19 18:05:42  lievre
 int *ivector(long nl,long nh)    Gnuplot problem appeared...
 {    To be fixed
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    Revision 1.107  2006/01/19 16:20:37  brouard
   if (!v) nrerror("allocation failure in ivector");    Test existence of gnuplot in imach path
   return v-nl+NR_END;  
 }    Revision 1.106  2006/01/19 13:24:36  brouard
     Some cleaning and links added in html output
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)    Revision 1.105  2006/01/05 20:23:19  lievre
 {    *** empty log message ***
   free((FREE_ARG)(v+nl-NR_END));  
 }    Revision 1.104  2005/09/30 16:11:43  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
 /******************* imatrix *******************************/    (Module): If the status is missing at the last wave but we know
 int **imatrix(long nrl, long nrh, long ncl, long nch)    that the person is alive, then we can code his/her status as -2
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    (instead of missing=-1 in earlier versions) and his/her
 {    contributions to the likelihood is 1 - Prob of dying from last
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
   int **m;    the healthy state at last known wave). Version is 0.98
    
   /* allocate pointers to rows */    Revision 1.103  2005/09/30 15:54:49  lievre
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    (Module): sump fixed, loop imx fixed, and simplifications.
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.102  2004/09/15 17:31:30  brouard
   m -= nrl;    Add the possibility to read data file including tab characters.
    
      Revision 1.101  2004/09/15 10:38:38  brouard
   /* allocate rows and set pointers to them */    Fix on curr_time
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.100  2004/07/12 18:29:06  brouard
   m[nrl] += NR_END;    Add version for Mac OS X. Just define UNIX in Makefile
   m[nrl] -= ncl;  
      Revision 1.99  2004/06/05 08:57:40  brouard
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    *** empty log message ***
    
   /* return pointer to array of pointers to rows */    Revision 1.98  2004/05/16 15:05:56  brouard
   return m;    New version 0.97 . First attempt to estimate force of mortality
 }    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
 /****************** free_imatrix *************************/    This is the basic analysis of mortality and should be done before any
 void free_imatrix(m,nrl,nrh,ncl,nch)    other analysis, in order to test if the mortality estimated from the
       int **m;    cross-longitudinal survey is different from the mortality estimated
       long nch,ncl,nrh,nrl;    from other sources like vital statistic data.
      /* free an int matrix allocated by imatrix() */  
 {    The same imach parameter file can be used but the option for mle should be -3.
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));    Agnès, who wrote this part of the code, tried to keep most of the
 }    former routines in order to include the new code within the former code.
   
 /******************* matrix *******************************/    The output is very simple: only an estimate of the intercept and of
 double **matrix(long nrl, long nrh, long ncl, long nch)    the slope with 95% confident intervals.
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    Current limitations:
   double **m;    A) Even if you enter covariates, i.e. with the
     model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    B) There is no computation of Life Expectancy nor Life Table.
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.97  2004/02/20 13:25:42  lievre
   m -= nrl;    Version 0.96d. Population forecasting command line is (temporarily)
     suppressed.
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    Revision 1.96  2003/07/15 15:38:55  brouard
   m[nrl] += NR_END;    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   m[nrl] -= ncl;    rewritten within the same printf. Workaround: many printfs.
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Revision 1.95  2003/07/08 07:54:34  brouard
   return m;    * imach.c (Repository):
 }    (Repository): Using imachwizard code to output a more meaningful covariance
     matrix (cov(a12,c31) instead of numbers.
 /*************************free matrix ************************/  
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    Revision 1.94  2003/06/27 13:00:02  brouard
 {    Just cleaning
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  
   free((FREE_ARG)(m+nrl-NR_END));    Revision 1.93  2003/06/25 16:33:55  brouard
 }    (Module): On windows (cygwin) function asctime_r doesn't
     exist so I changed back to asctime which exists.
 /******************* ma3x *******************************/    (Module): Version 0.96b
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {    Revision 1.92  2003/06/25 16:30:45  brouard
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    (Module): On windows (cygwin) function asctime_r doesn't
   double ***m;    exist so I changed back to asctime which exists.
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    Revision 1.91  2003/06/25 15:30:29  brouard
   if (!m) nrerror("allocation failure 1 in matrix()");    * imach.c (Repository): Duplicated warning errors corrected.
   m += NR_END;    (Repository): Elapsed time after each iteration is now output. It
   m -= nrl;    helps to forecast when convergence will be reached. Elapsed time
     is stamped in powell.  We created a new html file for the graphs
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    concerning matrix of covariance. It has extension -cov.htm.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.90  2003/06/24 12:34:15  brouard
   m[nrl] -= ncl;    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    of the covariance matrix to be input.
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    Revision 1.89  2003/06/24 12:30:52  brouard
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    (Module): Some bugs corrected for windows. Also, when
   m[nrl][ncl] += NR_END;    mle=-1 a template is output in file "or"mypar.txt with the design
   m[nrl][ncl] -= nll;    of the covariance matrix to be input.
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;    Revision 1.88  2003/06/23 17:54:56  brouard
      * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    Revision 1.87  2003/06/18 12:26:01  brouard
     for (j=ncl+1; j<=nch; j++)    Version 0.96
       m[i][j]=m[i][j-1]+nlay;  
   }    Revision 1.86  2003/06/17 20:04:08  brouard
   return m;    (Module): Change position of html and gnuplot routines and added
 }    routine fileappend.
   
 /*************************free ma3x ************************/    Revision 1.85  2003/06/17 13:12:43  brouard
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    * imach.c (Repository): Check when date of death was earlier that
 {    current date of interview. It may happen when the death was just
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    prior to the death. In this case, dh was negative and likelihood
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    was wrong (infinity). We still send an "Error" but patch by
   free((FREE_ARG)(m+nrl-NR_END));    assuming that the date of death was just one stepm after the
 }    interview.
     (Repository): Because some people have very long ID (first column)
 /***************** f1dim *************************/    we changed int to long in num[] and we added a new lvector for
 extern int ncom;    memory allocation. But we also truncated to 8 characters (left
 extern double *pcom,*xicom;    truncation)
 extern double (*nrfunc)(double []);    (Repository): No more line truncation errors.
    
 double f1dim(double x)    Revision 1.84  2003/06/13 21:44:43  brouard
 {    * imach.c (Repository): Replace "freqsummary" at a correct
   int j;    place. It differs from routine "prevalence" which may be called
   double f;    many times. Probs is memory consuming and must be used with
   double *xt;    parcimony.
      Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    Revision 1.83  2003/06/10 13:39:11  lievre
   f=(*nrfunc)(xt);    *** empty log message ***
   free_vector(xt,1,ncom);  
   return f;    Revision 1.82  2003/06/05 15:57:20  brouard
 }    Add log in  imach.c and  fullversion number is now printed.
   
 /*****************brent *************************/  */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  /*
 {     Interpolated Markov Chain
   int iter;  
   double a,b,d,etemp;    Short summary of the programme:
   double fu,fv,fw,fx;    
   double ftemp;    This program computes Healthy Life Expectancies from
   double p,q,r,tol1,tol2,u,v,w,x,xm;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   double e=0.0;    first survey ("cross") where individuals from different ages are
      interviewed on their health status or degree of disability (in the
   a=(ax < cx ? ax : cx);    case of a health survey which is our main interest) -2- at least a
   b=(ax > cx ? ax : cx);    second wave of interviews ("longitudinal") which measure each change
   x=w=v=bx;    (if any) in individual health status.  Health expectancies are
   fw=fv=fx=(*f)(x);    computed from the time spent in each health state according to a
   for (iter=1;iter<=ITMAX;iter++) {    model. More health states you consider, more time is necessary to reach the
     xm=0.5*(a+b);    Maximum Likelihood of the parameters involved in the model.  The
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    simplest model is the multinomial logistic model where pij is the
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    probability to be observed in state j at the second wave
     printf(".");fflush(stdout);    conditional to be observed in state i at the first wave. Therefore
 #ifdef DEBUG    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    'age' is age and 'sex' is a covariate. If you want to have a more
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    complex model than "constant and age", you should modify the program
 #endif    where the markup *Covariates have to be included here again* invites
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    you to do it.  More covariates you add, slower the
       *xmin=x;    convergence.
       return fx;  
     }    The advantage of this computer programme, compared to a simple
     ftemp=fu;    multinomial logistic model, is clear when the delay between waves is not
     if (fabs(e) > tol1) {    identical for each individual. Also, if a individual missed an
       r=(x-w)*(fx-fv);    intermediate interview, the information is lost, but taken into
       q=(x-v)*(fx-fw);    account using an interpolation or extrapolation.  
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);    hPijx is the probability to be observed in state i at age x+h
       if (q > 0.0) p = -p;    conditional to the observed state i at age x. The delay 'h' can be
       q=fabs(q);    split into an exact number (nh*stepm) of unobserved intermediate
       etemp=e;    states. This elementary transition (by month, quarter,
       e=d;    semester or year) is modelled as a multinomial logistic.  The hPx
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    matrix is simply the matrix product of nh*stepm elementary matrices
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    and the contribution of each individual to the likelihood is simply
       else {    hPijx.
         d=p/q;  
         u=x+d;    Also this programme outputs the covariance matrix of the parameters but also
         if (u-a < tol2 || b-u < tol2)    of the life expectancies. It also computes the period (stable) prevalence. 
           d=SIGN(tol1,xm-x);    
       }    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
     } else {             Institut national d'études démographiques, Paris.
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    This software have been partly granted by Euro-REVES, a concerted action
     }    from the European Union.
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    It is copyrighted identically to a GNU software product, ie programme and
     fu=(*f)(u);    software can be distributed freely for non commercial use. Latest version
     if (fu <= fx) {    can be accessed at http://euroreves.ined.fr/imach .
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
         SHFT(fv,fw,fx,fu)    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
         } else {    
           if (u < x) a=u; else b=u;    **********************************************************************/
           if (fu <= fw || w == x) {  /*
             v=w;    main
             w=u;    read parameterfile
             fv=fw;    read datafile
             fw=fu;    concatwav
           } else if (fu <= fv || v == x || v == w) {    freqsummary
             v=u;    if (mle >= 1)
             fv=fu;      mlikeli
           }    print results files
         }    if mle==1 
   }       computes hessian
   nrerror("Too many iterations in brent");    read end of parameter file: agemin, agemax, bage, fage, estepm
   *xmin=x;        begin-prev-date,...
   return fx;    open gnuplot file
 }    open html file
     period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
 /****************** mnbrak ***********************/     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
                                     | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,      freexexit2 possible for memory heap.
             double (*func)(double))  
 {    h Pij x                         | pij_nom  ficrestpij
   double ulim,u,r,q, dum;     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
   double fu;         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
           1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
   if (*fb > *fa) {         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
     SHFT(dum,*ax,*bx,dum)    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
       SHFT(dum,*fb,*fa,dum)     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
       }     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
   *cx=(*bx)+GOLD*(*bx-*ax);  
   *fc=(*func)(*cx);    forecasting if prevfcast==1 prevforecast call prevalence()
   while (*fb > *fc) {    health expectancies
     r=(*bx-*ax)*(*fb-*fc);    Variance-covariance of DFLE
     q=(*bx-*cx)*(*fb-*fa);    prevalence()
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/     movingaverage()
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    varevsij() 
     ulim=(*bx)+GLIMIT*(*cx-*bx);    if popbased==1 varevsij(,popbased)
     if ((*bx-u)*(u-*cx) > 0.0) {    total life expectancies
       fu=(*func)(u);    Variance of period (stable) prevalence
     } else if ((*cx-u)*(u-ulim) > 0.0) {   end
       fu=(*func)(u);  */
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  
           }   
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  #include <math.h>
       u=ulim;  #include <stdio.h>
       fu=(*func)(u);  #include <stdlib.h>
     } else {  #include <string.h>
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);  #ifdef _WIN32
     }  #include <io.h>
     SHFT(*ax,*bx,*cx,u)  #else
       SHFT(*fa,*fb,*fc,fu)  #include <unistd.h>
       }  #endif
 }  
   #include <limits.h>
 /*************** linmin ************************/  #include <sys/types.h>
   #include <sys/stat.h>
 int ncom;  #include <errno.h>
 double *pcom,*xicom;  /* extern int errno; */
 double (*nrfunc)(double []);  
    /* #ifdef LINUX */
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  /* #include <time.h> */
 {  /* #include "timeval.h" */
   double brent(double ax, double bx, double cx,  /* #else */
                double (*f)(double), double tol, double *xmin);  /* #include <sys/time.h> */
   double f1dim(double x);  /* #endif */
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  
               double *fc, double (*func)(double));  #include <time.h>
   int j;  
   double xx,xmin,bx,ax;  #ifdef GSL
   double fx,fb,fa;  #include <gsl/gsl_errno.h>
    #include <gsl/gsl_multimin.h>
   ncom=n;  #endif
   pcom=vector(1,n);  
   xicom=vector(1,n);  /* #include <libintl.h> */
   nrfunc=func;  /* #define _(String) gettext (String) */
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
     xicom[j]=xi[j];  
   }  #define GNUPLOTPROGRAM "gnuplot"
   ax=0.0;  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   xx=1.0;  #define FILENAMELENGTH 132
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 #ifdef DEBUG  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
   for (j=1;j<=n;j++) {  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
     xi[j] *= xmin;  
     p[j] += xi[j];  #define NINTERVMAX 8
   }  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
   free_vector(xicom,1,n);  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
   free_vector(pcom,1,n);  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
 }  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
   #define MAXN 20000
 /*************** powell ************************/  #define YEARM 12. /**< Number of months per year */
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  #define AGESUP 130
             double (*func)(double []))  #define AGEBASE 40
 {  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
   void linmin(double p[], double xi[], int n, double *fret,  #ifdef _WIN32
               double (*func)(double []));  #define DIRSEPARATOR '\\'
   int i,ibig,j;  #define CHARSEPARATOR "\\"
   double del,t,*pt,*ptt,*xit;  #define ODIRSEPARATOR '/'
   double fp,fptt;  #else
   double *xits;  #define DIRSEPARATOR '/'
   pt=vector(1,n);  #define CHARSEPARATOR "/"
   ptt=vector(1,n);  #define ODIRSEPARATOR '\\'
   xit=vector(1,n);  #endif
   xits=vector(1,n);  
   *fret=(*func)(p);  /* $Id$ */
   for (j=1;j<=n;j++) pt[j]=p[j];  /* $State$ */
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  char version[]="Imach version 0.98nX, August 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
     ibig=0;  char fullversion[]="$Revision$ $Date$"; 
     del=0.0;  char strstart[80];
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
     for (i=1;i<=n;i++)  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       printf(" %d %.12f",i, p[i]);  int nvar=0, nforce=0; /* Number of variables, number of forces */
     printf("\n");  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
     for (i=1;i<=n;i++) {  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
       fptt=(*fret);  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
 #ifdef DEBUG  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
       printf("fret=%lf \n",*fret);  int cptcovprodnoage=0; /**< Number of covariate products without age */   
 #endif  int cptcoveff=0; /* Total number of covariates to vary for printing results */
       printf("%d",i);fflush(stdout);  int cptcov=0; /* Working variable */
       linmin(p,xit,n,fret,func);  int npar=NPARMAX;
       if (fabs(fptt-(*fret)) > del) {  int nlstate=2; /* Number of live states */
         del=fabs(fptt-(*fret));  int ndeath=1; /* Number of dead states */
         ibig=i;  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       }  int popbased=0;
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));  int *wav; /* Number of waves for this individuual 0 is possible */
       for (j=1;j<=n;j++) {  int maxwav=0; /* Maxim number of waves */
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
         printf(" x(%d)=%.12e",j,xit[j]);  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
       }  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
       for(j=1;j<=n;j++)                     to the likelihood and the sum of weights (done by funcone)*/
         printf(" p=%.12e",p[j]);  int mle=1, weightopt=0;
       printf("\n");  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 #endif  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
     }  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 #ifdef DEBUG  double jmean=1; /* Mean space between 2 waves */
       int k[2],l;  double **matprod2(); /* test */
       k[0]=1;  double **oldm, **newm, **savm; /* Working pointers to matrices */
       k[1]=-1;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       printf("Max: %.12e",(*func)(p));  /*FILE *fic ; */ /* Used in readdata only */
       for (j=1;j<=n;j++)  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
         printf(" %.12e",p[j]);  FILE *ficlog, *ficrespow;
       printf("\n");  int globpr=0; /* Global variable for printing or not */
       for(l=0;l<=1;l++) {  double fretone; /* Only one call to likelihood */
         for (j=1;j<=n;j++) {  long ipmx=0; /* Number of contributions */
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  double sw; /* Sum of weights */
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  char filerespow[FILENAMELENGTH];
         }  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  FILE *ficresilk;
       }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 #endif  FILE *ficresprobmorprev;
   FILE *fichtm, *fichtmcov; /* Html File */
   FILE *ficreseij;
       free_vector(xit,1,n);  char filerese[FILENAMELENGTH];
       free_vector(xits,1,n);  FILE *ficresstdeij;
       free_vector(ptt,1,n);  char fileresstde[FILENAMELENGTH];
       free_vector(pt,1,n);  FILE *ficrescveij;
       return;  char filerescve[FILENAMELENGTH];
     }  FILE  *ficresvij;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  char fileresv[FILENAMELENGTH];
     for (j=1;j<=n;j++) {  FILE  *ficresvpl;
       ptt[j]=2.0*p[j]-pt[j];  char fileresvpl[FILENAMELENGTH];
       xit[j]=p[j]-pt[j];  char title[MAXLINE];
       pt[j]=p[j];  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
     }  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
     fptt=(*func)(ptt);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
     if (fptt < fp) {  char command[FILENAMELENGTH];
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  int  outcmd=0;
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
         for (j=1;j<=n;j++) {  
           xi[j][ibig]=xi[j][n];  char filelog[FILENAMELENGTH]; /* Log file */
           xi[j][n]=xit[j];  char filerest[FILENAMELENGTH];
         }  char fileregp[FILENAMELENGTH];
 #ifdef DEBUG  char popfile[FILENAMELENGTH];
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++)  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
           printf(" %.12e",xit[j]);  
         printf("\n");  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
 #endif  /* struct timezone tzp; */
       }  /* extern int gettimeofday(); */
     }  struct tm tml, *gmtime(), *localtime();
   }  
 }  extern time_t time();
   
 /**** Prevalence limit ****************/  struct tm start_time, end_time, curr_time, last_time, forecast_time;
   time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  struct tm tm;
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  char strcurr[80], strfor[80];
      matrix by transitions matrix until convergence is reached */  
   char *endptr;
   int i, ii,j,k;  long lval;
   double min, max, maxmin, maxmax,sumnew=0.;  double dval;
   double **matprod2();  
   double **out, cov[NCOVMAX], **pmij();  #define NR_END 1
   double **newm;  #define FREE_ARG char*
   double agefin, delaymax=50 ; /* Max number of years to converge */  #define FTOL 1.0e-10
   
   for (ii=1;ii<=nlstate+ndeath;ii++)  #define NRANSI 
     for (j=1;j<=nlstate+ndeath;j++){  #define ITMAX 200 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }  #define TOL 2.0e-4 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  #define CGOLD 0.3819660 
     newm=savm;  #define ZEPS 1.0e-10 
     /* Covariates have to be included here again */  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
     cov[1]=1.;  
     cov[2]=agefin;  #define GOLD 1.618034 
     if (cptcovn>0){  #define GLIMIT 100.0 
       for (k=1; k<=cptcovn;k++) {cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];/*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/}  #define TINY 1.0e-20 
     }  
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     savm=oldm;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     oldm=newm;    
     maxmax=0.;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     for(j=1;j<=nlstate;j++){  #define rint(a) floor(a+0.5)
       min=1.;  
       max=0.;  static double sqrarg;
       for(i=1; i<=nlstate; i++) {  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
         sumnew=0;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  int agegomp= AGEGOMP;
         prlim[i][j]= newm[i][j]/(1-sumnew);  
         max=FMAX(max,prlim[i][j]);  int imx; 
         min=FMIN(min,prlim[i][j]);  int stepm=1;
       }  /* Stepm, step in month: minimum step interpolation*/
       maxmin=max-min;  
       maxmax=FMAX(maxmax,maxmin);  int estepm;
     }  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
     if(maxmax < ftolpl){  
       return prlim;  int m,nb;
     }  long *num;
   }  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 }  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double **pmmij, ***probs;
 /*************** transition probabilities **********/  double *ageexmed,*agecens;
   double dateintmean=0;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  
 {  double *weight;
   double s1, s2;  int **s; /* Status */
   /*double t34;*/  double *agedc;
   int i,j,j1, nc, ii, jj;  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
                     * covar=matrix(0,NCOVMAX,1,n); 
     for(i=1; i<= nlstate; i++){                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
     for(j=1; j<i;j++){  double  idx; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
         /*s2 += param[i][j][nc]*cov[nc];*/  int *Ndum; /** Freq of modality (tricode */
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  int **codtab; /**< codtab=imatrix(1,100,1,10); */
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
       }  double *lsurv, *lpop, *tpop;
       ps[i][j]=s2;  
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
     }  double ftolhess; /**< Tolerance for computing hessian */
     for(j=i+1; j<=nlstate+ndeath;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /**************** split *************************/
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  {
       }    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       ps[i][j]=s2;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
     }    */ 
   }    char  *ss;                            /* pointer */
   for(i=1; i<= nlstate; i++){    int   l1, l2;                         /* length counters */
      s1=0;  
     for(j=1; j<i; j++)    l1 = strlen(path );                   /* length of path */
       s1+=exp(ps[i][j]);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     for(j=i+1; j<=nlstate+ndeath; j++)    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       s1+=exp(ps[i][j]);    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     ps[i][i]=1./(s1+1.);      strcpy( name, path );               /* we got the fullname name because no directory */
     for(j=1; j<i; j++)      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       ps[i][j]= exp(ps[i][j])*ps[i][i];        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
     for(j=i+1; j<=nlstate+ndeath; j++)      /* get current working directory */
       ps[i][j]= exp(ps[i][j])*ps[i][i];      /*    extern  char* getcwd ( char *buf , int len);*/
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   } /* end i */        return( GLOCK_ERROR_GETCWD );
       }
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      /* got dirc from getcwd*/
     for(jj=1; jj<= nlstate+ndeath; jj++){      printf(" DIRC = %s \n",dirc);
       ps[ii][jj]=0;    } else {                              /* strip direcotry from path */
       ps[ii][ii]=1;      ss++;                               /* after this, the filename */
     }      l2 = strlen( ss );                  /* length of filename */
   }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     for(jj=1; jj<= nlstate+ndeath; jj++){      dirc[l1-l2] = 0;                    /* add zero */
      printf("%lf ",ps[ii][jj]);      printf(" DIRC2 = %s \n",dirc);
    }    }
     printf("\n ");    /* We add a separator at the end of dirc if not exists */
     }    l1 = strlen( dirc );                  /* length of directory */
     printf("\n ");printf("%lf ",cov[2]);*/    if( dirc[l1-1] != DIRSEPARATOR ){
 /*      dirc[l1] =  DIRSEPARATOR;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      dirc[l1+1] = 0; 
   goto end;*/      printf(" DIRC3 = %s \n",dirc);
     return ps;    }
 }    ss = strrchr( name, '.' );            /* find last / */
     if (ss >0){
 /**************** Product of 2 matrices ******************/      ss++;
       strcpy(ext,ss);                     /* save extension */
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      l1= strlen( name);
 {      l2= strlen(ss)+1;
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      strncpy( finame, name, l1-l2);
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      finame[l1-l2]= 0;
   /* in, b, out are matrice of pointers which should have been initialized    }
      before: only the contents of out is modified. The function returns  
      a pointer to pointers identical to out */    return( 0 );                          /* we're done */
   long i, j, k;  }
   for(i=nrl; i<= nrh; i++)  
     for(k=ncolol; k<=ncoloh; k++)  
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  /******************************************/
         out[i][k] +=in[i][j]*b[j][k];  
   void replace_back_to_slash(char *s, char*t)
   return out;  {
 }    int i;
     int lg=0;
     i=0;
 /************* Higher Matrix Product ***************/    lg=strlen(t);
     for(i=0; i<= lg; i++) {
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      (s[i] = t[i]);
 {      if (t[i]== '\\') s[i]='/';
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    }
      duration (i.e. until  }
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  char *trimbb(char *out, char *in)
      (typically every 2 years instead of every month which is too big).  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
      Model is determined by parameters x and covariates have to be    char *s;
      included manually here.    s=out;
     while (*in != '\0'){
      */      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
         in++;
   int i, j, d, h, k;      }
   double **out, cov[NCOVMAX];      *out++ = *in++;
   double **newm;    }
     *out='\0';
   /* Hstepm could be zero and should return the unit matrix */    return s;
   for (i=1;i<=nlstate+ndeath;i++)  }
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[i][j]=(i==j ? 1.0 : 0.0);  char *cutl(char *blocc, char *alocc, char *in, char occ)
       po[i][j][0]=(i==j ? 1.0 : 0.0);  {
     }    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
   for(h=1; h <=nhstepm; h++){       gives blocc="abcdef2ghi" and alocc="j".
     for(d=1; d <=hstepm; d++){       If occ is not found blocc is null and alocc is equal to in. Returns blocc
       newm=savm;    */
       /* Covariates have to be included here again */    char *s, *t;
       cov[1]=1.;    t=in;s=in;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    while ((*in != occ) && (*in != '\0')){
       if (cptcovn>0){      *alocc++ = *in++;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];    }
     }    if( *in == occ){
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      *(alocc)='\0';
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      s=++in;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    }
                    pmij(pmmij,cov,ncovmodel,x,nlstate));   
       savm=oldm;    if (s == t) {/* occ not found */
       oldm=newm;      *(alocc-(in-s))='\0';
     }      in=s;
     for(i=1; i<=nlstate+ndeath; i++)    }
       for(j=1;j<=nlstate+ndeath;j++) {    while ( *in != '\0'){
         po[i][j][h]=newm[i][j];      *blocc++ = *in++;
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    }
          */  
       }    *blocc='\0';
   } /* end h */    return t;
   return po;  }
 }  char *cutv(char *blocc, char *alocc, char *in, char occ)
   {
     /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
 /*************** log-likelihood *************/       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
 double func( double *x)       gives blocc="abcdef2ghi" and alocc="j".
 {       If occ is not found blocc is null and alocc is equal to in. Returns alocc
   int i, ii, j, k, mi, d;    */
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    char *s, *t;
   double **out;    t=in;s=in;
   double sw; /* Sum of weights */    while (*in != '\0'){
   double lli; /* Individual log likelihood */      while( *in == occ){
   long ipmx;        *blocc++ = *in++;
   /*extern weight */        s=in;
   /* We are differentiating ll according to initial status */      }
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      *blocc++ = *in++;
   /*for(i=1;i<imx;i++)    }
 printf(" %d\n",s[4][i]);    if (s == t) /* occ not found */
   */      *(blocc-(in-s))='\0';
     else
   for(k=1; k<=nlstate; k++) ll[k]=0.;      *(blocc-(in-s)-1)='\0';
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    in=s;
        for(mi=1; mi<= wav[i]-1; mi++){    while ( *in != '\0'){
       for (ii=1;ii<=nlstate+ndeath;ii++)      *alocc++ = *in++;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    }
             for(d=0; d<dh[mi][i]; d++){  
         newm=savm;    *alocc='\0';
           cov[1]=1.;    return s;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  }
           if (cptcovn>0){  
             for (k=1; k<=cptcovn;k++) cov[2+k]=covar[1+k-1][i];  int nbocc(char *s, char occ)
             }  {
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    int i,j=0;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    int lg=20;
           savm=oldm;    i=0;
           oldm=newm;    lg=strlen(s);
     for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
       } /* end mult */    }
        return j;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  }
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  
       ipmx +=1;  /* void cutv(char *u,char *v, char*t, char occ) */
       sw += weight[i];  /* { */
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
     } /* end of wave */  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
   } /* end of individual */  /*      gives u="abcdef2ghi" and v="j" *\/ */
   /*   int i,lg,j,p=0; */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  /*   i=0; */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  /*   lg=strlen(t); */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  /*   for(j=0; j<=lg-1; j++) { */
   return -l;  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
 }  /*   } */
   
   /*   for(j=0; j<p; j++) { */
 /*********** Maximum Likelihood Estimation ***************/  /*     (u[j] = t[j]); */
   /*   } */
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  /*      u[p]='\0'; */
 {  
   int i,j, iter;  /*    for(j=0; j<= lg; j++) { */
   double **xi,*delti;  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
   double fret;  /*   } */
   xi=matrix(1,npar,1,npar);  /* } */
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++)  #ifdef _WIN32
       xi[i][j]=(i==j ? 1.0 : 0.0);  char * strsep(char **pp, const char *delim)
   printf("Powell\n");  {
   powell(p,xi,npar,ftol,&iter,&fret,func);    char *p, *q;
            
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    if ((p = *pp) == NULL)
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));      return 0;
     if ((q = strpbrk (p, delim)) != NULL)
 }    {
       *pp = q + 1;
 /**** Computes Hessian and covariance matrix ***/      *q = '\0';
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    }
 {    else
   double  **a,**y,*x,pd;      *pp = 0;
   double **hess;    return p;
   int i, j,jk;  }
   int *indx;  #endif
   
   double hessii(double p[], double delta, int theta, double delti[]);  /********************** nrerror ********************/
   double hessij(double p[], double delti[], int i, int j);  
   void lubksb(double **a, int npar, int *indx, double b[]) ;  void nrerror(char error_text[])
   void ludcmp(double **a, int npar, int *indx, double *d) ;  {
     fprintf(stderr,"ERREUR ...\n");
     fprintf(stderr,"%s\n",error_text);
   hess=matrix(1,npar,1,npar);    exit(EXIT_FAILURE);
   }
   printf("\nCalculation of the hessian matrix. Wait...\n");  /*********************** vector *******************/
   for (i=1;i<=npar;i++){  double *vector(int nl, int nh)
     printf("%d",i);fflush(stdout);  {
     hess[i][i]=hessii(p,ftolhess,i,delti);    double *v;
     /*printf(" %f ",p[i]);*/    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   }    if (!v) nrerror("allocation failure in vector");
     return v-nl+NR_END;
   for (i=1;i<=npar;i++) {  }
     for (j=1;j<=npar;j++)  {  
       if (j>i) {  /************************ free vector ******************/
         printf(".%d%d",i,j);fflush(stdout);  void free_vector(double*v, int nl, int nh)
         hess[i][j]=hessij(p,delti,i,j);  {
         hess[j][i]=hess[i][j];    free((FREE_ARG)(v+nl-NR_END));
       }  }
     }  
   }  /************************ivector *******************************/
   printf("\n");  int *ivector(long nl,long nh)
   {
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    int *v;
      v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   a=matrix(1,npar,1,npar);    if (!v) nrerror("allocation failure in ivector");
   y=matrix(1,npar,1,npar);    return v-nl+NR_END;
   x=vector(1,npar);  }
   indx=ivector(1,npar);  
   for (i=1;i<=npar;i++)  /******************free ivector **************************/
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  void free_ivector(int *v, long nl, long nh)
   ludcmp(a,npar,indx,&pd);  {
     free((FREE_ARG)(v+nl-NR_END));
   for (j=1;j<=npar;j++) {  }
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;  /************************lvector *******************************/
     lubksb(a,npar,indx,x);  long *lvector(long nl,long nh)
     for (i=1;i<=npar;i++){  {
       matcov[i][j]=x[i];    long *v;
     }    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   }    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
   printf("\n#Hessian matrix#\n");  }
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++) {  /******************free lvector **************************/
       printf("%.3e ",hess[i][j]);  void free_lvector(long *v, long nl, long nh)
     }  {
     printf("\n");    free((FREE_ARG)(v+nl-NR_END));
   }  }
   
   /* Recompute Inverse */  /******************* imatrix *******************************/
   for (i=1;i<=npar;i++)  int **imatrix(long nrl, long nrh, long ncl, long nch) 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   ludcmp(a,npar,indx,&pd);  { 
     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   /*  printf("\n#Hessian matrix recomputed#\n");    int **m; 
     
   for (j=1;j<=npar;j++) {    /* allocate pointers to rows */ 
     for (i=1;i<=npar;i++) x[i]=0;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     x[j]=1;    if (!m) nrerror("allocation failure 1 in matrix()"); 
     lubksb(a,npar,indx,x);    m += NR_END; 
     for (i=1;i<=npar;i++){    m -= nrl; 
       y[i][j]=x[i];    
       printf("%.3e ",y[i][j]);    
     }    /* allocate rows and set pointers to them */ 
     printf("\n");    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   */    m[nrl] += NR_END; 
     m[nrl] -= ncl; 
   free_matrix(a,1,npar,1,npar);    
   free_matrix(y,1,npar,1,npar);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   free_vector(x,1,npar);    
   free_ivector(indx,1,npar);    /* return pointer to array of pointers to rows */ 
   free_matrix(hess,1,npar,1,npar);    return m; 
   } 
   
 }  /****************** free_imatrix *************************/
   void free_imatrix(m,nrl,nrh,ncl,nch)
 /*************** hessian matrix ****************/        int **m;
 double hessii( double x[], double delta, int theta, double delti[])        long nch,ncl,nrh,nrl; 
 {       /* free an int matrix allocated by imatrix() */ 
   int i;  { 
   int l=1, lmax=20;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   double k1,k2;    free((FREE_ARG) (m+nrl-NR_END)); 
   double p2[NPARMAX+1];  } 
   double res;  
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  /******************* matrix *******************************/
   double fx;  double **matrix(long nrl, long nrh, long ncl, long nch)
   int k=0,kmax=10;  {
   double l1;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     double **m;
   fx=func(x);  
   for (i=1;i<=npar;i++) p2[i]=x[i];    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   for(l=0 ; l <=lmax; l++){    if (!m) nrerror("allocation failure 1 in matrix()");
     l1=pow(10,l);    m += NR_END;
     delts=delt;    m -= nrl;
     for(k=1 ; k <kmax; k=k+1){  
       delt = delta*(l1*k);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       p2[theta]=x[theta] +delt;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       k1=func(p2)-fx;    m[nrl] += NR_END;
       p2[theta]=x[theta]-delt;    m[nrl] -= ncl;
       k2=func(p2)-fx;  
       /*res= (k1-2.0*fx+k2)/delt/delt; */    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    return m;
          /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
 #ifdef DEBUG  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
 #endif     */
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  }
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;  /*************************free matrix ************************/
       }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  {
         k=kmax; l=lmax*10.;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       }    free((FREE_ARG)(m+nrl-NR_END));
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  }
         delts=delt;  
       }  /******************* ma3x *******************************/
     }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   }  {
   delti[theta]=delts;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   return res;    double ***m;
    
 }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
 double hessij( double x[], double delti[], int thetai,int thetaj)    m += NR_END;
 {    m -= nrl;
   int i;  
   int l=1, l1, lmax=20;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double k1,k2,k3,k4,res,fx;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   double p2[NPARMAX+1];    m[nrl] += NR_END;
   int k;    m[nrl] -= ncl;
   
   fx=func(x);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for (k=1; k<=2; k++) {  
     for (i=1;i<=npar;i++) p2[i]=x[i];    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     p2[thetai]=x[thetai]+delti[thetai]/k;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    m[nrl][ncl] += NR_END;
     k1=func(p2)-fx;    m[nrl][ncl] -= nll;
      for (j=ncl+1; j<=nch; j++) 
     p2[thetai]=x[thetai]+delti[thetai]/k;      m[nrl][j]=m[nrl][j-1]+nlay;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    
     k2=func(p2)-fx;    for (i=nrl+1; i<=nrh; i++) {
        m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     p2[thetai]=x[thetai]-delti[thetai]/k;      for (j=ncl+1; j<=nch; j++) 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        m[i][j]=m[i][j-1]+nlay;
     k3=func(p2)-fx;    }
      return m; 
     p2[thetai]=x[thetai]-delti[thetai]/k;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     k4=func(p2)-fx;    */
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  }
 #ifdef DEBUG  
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  /*************************free ma3x ************************/
 #endif  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   }  {
   return res;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     free((FREE_ARG)(m+nrl-NR_END));
 /************** Inverse of matrix **************/  }
 void ludcmp(double **a, int n, int *indx, double *d)  
 {  /*************** function subdirf ***********/
   int i,imax,j,k;  char *subdirf(char fileres[])
   double big,dum,sum,temp;  {
   double *vv;    /* Caution optionfilefiname is hidden */
      strcpy(tmpout,optionfilefiname);
   vv=vector(1,n);    strcat(tmpout,"/"); /* Add to the right */
   *d=1.0;    strcat(tmpout,fileres);
   for (i=1;i<=n;i++) {    return tmpout;
     big=0.0;  }
     for (j=1;j<=n;j++)  
       if ((temp=fabs(a[i][j])) > big) big=temp;  /*************** function subdirf2 ***********/
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");  char *subdirf2(char fileres[], char *preop)
     vv[i]=1.0/big;  {
   }    
   for (j=1;j<=n;j++) {    /* Caution optionfilefiname is hidden */
     for (i=1;i<j;i++) {    strcpy(tmpout,optionfilefiname);
       sum=a[i][j];    strcat(tmpout,"/");
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];    strcat(tmpout,preop);
       a[i][j]=sum;    strcat(tmpout,fileres);
     }    return tmpout;
     big=0.0;  }
     for (i=j;i<=n;i++) {  
       sum=a[i][j];  /*************** function subdirf3 ***********/
       for (k=1;k<j;k++)  char *subdirf3(char fileres[], char *preop, char *preop2)
         sum -= a[i][k]*a[k][j];  {
       a[i][j]=sum;    
       if ( (dum=vv[i]*fabs(sum)) >= big) {    /* Caution optionfilefiname is hidden */
         big=dum;    strcpy(tmpout,optionfilefiname);
         imax=i;    strcat(tmpout,"/");
       }    strcat(tmpout,preop);
     }    strcat(tmpout,preop2);
     if (j != imax) {    strcat(tmpout,fileres);
       for (k=1;k<=n;k++) {    return tmpout;
         dum=a[imax][k];  }
         a[imax][k]=a[j][k];  
         a[j][k]=dum;  /***************** f1dim *************************/
       }  extern int ncom; 
       *d = -(*d);  extern double *pcom,*xicom;
       vv[imax]=vv[j];  extern double (*nrfunc)(double []); 
     }   
     indx[j]=imax;  double f1dim(double x) 
     if (a[j][j] == 0.0) a[j][j]=TINY;  { 
     if (j != n) {    int j; 
       dum=1.0/(a[j][j]);    double f;
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    double *xt; 
     }   
   }    xt=vector(1,ncom); 
   free_vector(vv,1,n);  /* Doesn't work */    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 ;    f=(*nrfunc)(xt); 
 }    free_vector(xt,1,ncom); 
     return f; 
 void lubksb(double **a, int n, int *indx, double b[])  } 
 {  
   int i,ii=0,ip,j;  /*****************brent *************************/
   double sum;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
    { 
   for (i=1;i<=n;i++) {    int iter; 
     ip=indx[i];    double a,b,d,etemp;
     sum=b[ip];    double fu=0,fv,fw,fx;
     b[ip]=b[i];    double ftemp;
     if (ii)    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    double e=0.0; 
     else if (sum) ii=i;   
     b[i]=sum;    a=(ax < cx ? ax : cx); 
   }    b=(ax > cx ? ax : cx); 
   for (i=n;i>=1;i--) {    x=w=v=bx; 
     sum=b[i];    fw=fv=fx=(*f)(x); 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    for (iter=1;iter<=ITMAX;iter++) { 
     b[i]=sum/a[i][i];      xm=0.5*(a+b); 
   }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(".");fflush(stdout);
 /************ Frequencies ********************/      fprintf(ficlog,".");fflush(ficlog);
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)  #ifdef DEBUG
 {  /* Some frequencies */      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
        fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   double ***freq; /* Frequencies */  #endif
   double *pp;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   double pos;        *xmin=x; 
   FILE *ficresp;        return fx; 
   char fileresp[FILENAMELENGTH];      } 
       ftemp=fu;
   pp=vector(1,nlstate);      if (fabs(e) > tol1) { 
         r=(x-w)*(fx-fv); 
   strcpy(fileresp,"p");        q=(x-v)*(fx-fw); 
   strcat(fileresp,fileres);        p=(x-v)*q-(x-w)*r; 
   if((ficresp=fopen(fileresp,"w"))==NULL) {        q=2.0*(q-r); 
     printf("Problem with prevalence resultfile: %s\n", fileresp);        if (q > 0.0) p = -p; 
     exit(0);        q=fabs(q); 
   }        etemp=e; 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        e=d; 
   j1=0;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   j=cptcovn;        else { 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          d=p/q; 
           u=x+d; 
   for(k1=1; k1<=j;k1++){          if (u-a < tol2 || b-u < tol2) 
    for(i1=1; i1<=ncodemax[k1];i1++){            d=SIGN(tol1,xm-x); 
        j1++;        } 
       } else { 
         for (i=-1; i<=nlstate+ndeath; i++)          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
          for (jk=-1; jk<=nlstate+ndeath; jk++)        } 
            for(m=agemin; m <= agemax+3; m++)      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
              freq[i][jk][m]=0;      fu=(*f)(u); 
              if (fu <= fx) { 
        for (i=1; i<=imx; i++) {        if (u >= x) a=x; else b=x; 
          bool=1;        SHFT(v,w,x,u) 
          if  (cptcovn>0) {          SHFT(fv,fw,fx,fu) 
            for (z1=1; z1<=cptcovn; z1++)          } else { 
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;            if (u < x) a=u; else b=u; 
          }            if (fu <= fw || w == x) { 
           if (bool==1) {              v=w; 
            for(m=firstpass; m<=lastpass-1; m++){              w=u; 
              if(agev[m][i]==0) agev[m][i]=agemax+1;              fv=fw; 
              if(agev[m][i]==1) agev[m][i]=agemax+2;              fw=fu; 
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            } else if (fu <= fv || v == x || v == w) { 
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];              v=u; 
            }              fv=fu; 
          }            } 
        }          } 
         if  (cptcovn>0) {    } 
          fprintf(ficresp, "\n#Variable");    nrerror("Too many iterations in brent"); 
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);    *xmin=x; 
        }    return fx; 
        fprintf(ficresp, "\n#");  } 
        for(i=1; i<=nlstate;i++)  
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  /****************** mnbrak ***********************/
        fprintf(ficresp, "\n");  
          void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   for(i=(int)agemin; i <= (int)agemax+3; i++){              double (*func)(double)) 
     if(i==(int)agemax+3)  { 
       printf("Total");    double ulim,u,r,q, dum;
     else    double fu; 
       printf("Age %d", i);   
     for(jk=1; jk <=nlstate ; jk++){    *fa=(*func)(*ax); 
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    *fb=(*func)(*bx); 
         pp[jk] += freq[jk][m][i];    if (*fb > *fa) { 
     }      SHFT(dum,*ax,*bx,dum) 
     for(jk=1; jk <=nlstate ; jk++){        SHFT(dum,*fb,*fa,dum) 
       for(m=-1, pos=0; m <=0 ; m++)        } 
         pos += freq[jk][m][i];    *cx=(*bx)+GOLD*(*bx-*ax); 
       if(pp[jk]>=1.e-10)    *fc=(*func)(*cx); 
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    while (*fb > *fc) { 
       else      r=(*bx-*ax)*(*fb-*fc); 
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      q=(*bx-*cx)*(*fb-*fa); 
     }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     for(jk=1; jk <=nlstate ; jk++){        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)      ulim=(*bx)+GLIMIT*(*cx-*bx); 
         pp[jk] += freq[jk][m][i];      if ((*bx-u)*(u-*cx) > 0.0) { 
     }        fu=(*func)(u); 
     for(jk=1,pos=0; jk <=nlstate ; jk++)      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       pos += pp[jk];        fu=(*func)(u); 
     for(jk=1; jk <=nlstate ; jk++){        if (fu < *fc) { 
       if(pos>=1.e-5)          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);            SHFT(*fb,*fc,fu,(*func)(u)) 
       else            } 
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       if( i <= (int) agemax){        u=ulim; 
         if(pos>=1.e-5)        fu=(*func)(u); 
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      } else { 
       else        u=(*cx)+GOLD*(*cx-*bx); 
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        fu=(*func)(u); 
       }      } 
     }      SHFT(*ax,*bx,*cx,u) 
     for(jk=-1; jk <=nlstate+ndeath; jk++)        SHFT(*fa,*fb,*fc,fu) 
       for(m=-1; m <=nlstate+ndeath; m++)        } 
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  } 
     if(i <= (int) agemax)  
       fprintf(ficresp,"\n");  /*************** linmin ************************/
     printf("\n");  
     }  int ncom; 
     }  double *pcom,*xicom;
  }  double (*nrfunc)(double []); 
     
   fclose(ficresp);  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  { 
   free_vector(pp,1,nlstate);    double brent(double ax, double bx, double cx, 
                  double (*f)(double), double tol, double *xmin); 
 }  /* End of Freq */    double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 /************* Waves Concatenation ***************/                double *fc, double (*func)(double)); 
     int j; 
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    double xx,xmin,bx,ax; 
 {    double fx,fb,fa;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.   
      Death is a valid wave (if date is known).    ncom=n; 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    pcom=vector(1,n); 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    xicom=vector(1,n); 
      and mw[mi+1][i]. dh depends on stepm.    nrfunc=func; 
      */    for (j=1;j<=n;j++) { 
       pcom[j]=p[j]; 
   int i, mi, m;      xicom[j]=xi[j]; 
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    } 
 float sum=0.;    ax=0.0; 
     xx=1.0; 
   for(i=1; i<=imx; i++){    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     mi=0;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     m=firstpass;  #ifdef DEBUG
     while(s[m][i] <= nlstate){    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       if(s[m][i]>=1)    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         mw[++mi][i]=m;  #endif
       if(m >=lastpass)    for (j=1;j<=n;j++) { 
         break;      xi[j] *= xmin; 
       else      p[j] += xi[j]; 
         m++;    } 
     }/* end while */    free_vector(xicom,1,n); 
     if (s[m][i] > nlstate){    free_vector(pcom,1,n); 
       mi++;     /* Death is another wave */  } 
       /* if(mi==0)  never been interviewed correctly before death */  
          /* Only death is a correct wave */  char *asc_diff_time(long time_sec, char ascdiff[])
       mw[mi][i]=m;  {
     }    long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
     wav[i]=mi;    sec_left = (time_sec) % (60*60*24);
     if(mi==0)    hours = (sec_left) / (60*60) ;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    sec_left = (sec_left) %(60*60);
   }    minutes = (sec_left) /60;
     sec_left = (sec_left) % (60);
   for(i=1; i<=imx; i++){    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
     for(mi=1; mi<wav[i];mi++){    return ascdiff;
       if (stepm <=0)  }
         dh[mi][i]=1;  
       else{  /*************** powell ************************/
         if (s[mw[mi+1][i]][i] > nlstate) {  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);              double (*func)(double [])) 
           if(j=0) j=1;  /* Survives at least one month after exam */  { 
         }    void linmin(double p[], double xi[], int n, double *fret, 
         else{                double (*func)(double [])); 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    int i,ibig,j; 
           k=k+1;    double del,t,*pt,*ptt,*xit;
           if (j >= jmax) jmax=j;    double fp,fptt;
           else if (j <= jmin)jmin=j;    double *xits;
           sum=sum+j;    int niterf, itmp;
         }  
         jk= j/stepm;    pt=vector(1,n); 
         jl= j -jk*stepm;    ptt=vector(1,n); 
         ju= j -(jk+1)*stepm;    xit=vector(1,n); 
         if(jl <= -ju)    xits=vector(1,n); 
           dh[mi][i]=jk;    *fret=(*func)(p); 
         else    for (j=1;j<=n;j++) pt[j]=p[j]; 
           dh[mi][i]=jk+1;      rcurr_time = time(NULL);  
         if(dh[mi][i]==0)    for (*iter=1;;++(*iter)) { 
           dh[mi][i]=1; /* At least one step */      fp=(*fret); 
       }      ibig=0; 
     }      del=0.0; 
   }      rlast_time=rcurr_time;
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);      /* (void) gettimeofday(&curr_time,&tzp); */
 }      rcurr_time = time(NULL);  
 /*********** Tricode ****************************/      curr_time = *localtime(&rcurr_time);
 void tricode(int *Tvar, int **nbcode, int imx)      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
 {      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
   int Ndum[80],ij, k, j, i;  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
   int cptcode=0;     for (i=1;i<=n;i++) {
   for (k=0; k<79; k++) Ndum[k]=0;        printf(" %d %.12f",i, p[i]);
   for (k=1; k<=7; k++) ncodemax[k]=0;        fprintf(ficlog," %d %.12lf",i, p[i]);
          fprintf(ficrespow," %.12lf", p[i]);
   for (j=1; j<=cptcovn; j++) {      }
     for (i=1; i<=imx; i++) {      printf("\n");
       ij=(int)(covar[Tvar[j]][i]);      fprintf(ficlog,"\n");
       Ndum[ij]++;      fprintf(ficrespow,"\n");fflush(ficrespow);
       if (ij > cptcode) cptcode=ij;      if(*iter <=3){
     }        tml = *localtime(&rcurr_time);
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/        strcpy(strcurr,asctime(&tml));
     for (i=0; i<=cptcode; i++) {  /*       asctime_r(&tm,strcurr); */
       if(Ndum[i]!=0) ncodemax[j]++;        rforecast_time=rcurr_time; 
     }        itmp = strlen(strcurr);
          if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     ij=1;          strcurr[itmp-1]='\0';
     for (i=1; i<=ncodemax[j]; i++) {        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
       for (k=0; k<=79; k++) {        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
         if (Ndum[k] != 0) {        for(niterf=10;niterf<=30;niterf+=10){
           nbcode[Tvar[j]][ij]=k;          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
           ij++;          forecast_time = *localtime(&rforecast_time);
         }  /*      asctime_r(&tmf,strfor); */
         if (ij > ncodemax[j]) break;          strcpy(strfor,asctime(&forecast_time));
       }            itmp = strlen(strfor);
     }          if(strfor[itmp-1]=='\n')
   }            strfor[itmp-1]='\0';
           printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
   }          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
         }
 /*********** Health Expectancies ****************/      }
       for (i=1;i<=n;i++) { 
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 {        fptt=(*fret); 
   /* Health expectancies */  #ifdef DEBUG
   int i, j, nhstepm, hstepm, h;        printf("fret=%lf \n",*fret);
   double age, agelim,hf;        fprintf(ficlog,"fret=%lf \n",*fret);
   double ***p3mat;  #endif
          printf("%d",i);fflush(stdout);
   fprintf(ficreseij,"# Health expectancies\n");        fprintf(ficlog,"%d",i);fflush(ficlog);
   fprintf(ficreseij,"# Age");        linmin(p,xit,n,fret,func); 
   for(i=1; i<=nlstate;i++)        if (fabs(fptt-(*fret)) > del) { 
     for(j=1; j<=nlstate;j++)          del=fabs(fptt-(*fret)); 
       fprintf(ficreseij," %1d-%1d",i,j);          ibig=i; 
   fprintf(ficreseij,"\n");        } 
   #ifdef DEBUG
   hstepm=1*YEARM; /*  Every j years of age (in month) */        printf("%d %.12e",i,(*fret));
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
   agelim=AGESUP;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          printf(" x(%d)=%.12e",j,xit[j]);
     /* nhstepm age range expressed in number of stepm */          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);        }
     /* Typically if 20 years = 20*12/6=40 stepm */        for(j=1;j<=n;j++) {
     if (stepm >= YEARM) hstepm=1;          printf(" p=%.12e",p[j]);
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */          fprintf(ficlog," p=%.12e",p[j]);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        printf("\n");
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        fprintf(ficlog,"\n");
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    #endif
       } 
       if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     for(i=1; i<=nlstate;i++)  #ifdef DEBUG
       for(j=1; j<=nlstate;j++)        int k[2],l;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){        k[0]=1;
           eij[i][j][(int)age] +=p3mat[i][j][h];        k[1]=-1;
         }        printf("Max: %.12e",(*func)(p));
            fprintf(ficlog,"Max: %.12e",(*func)(p));
     hf=1;        for (j=1;j<=n;j++) {
     if (stepm >= YEARM) hf=stepm/YEARM;          printf(" %.12e",p[j]);
     fprintf(ficreseij,"%.0f",age );          fprintf(ficlog," %.12e",p[j]);
     for(i=1; i<=nlstate;i++)        }
       for(j=1; j<=nlstate;j++){        printf("\n");
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);        fprintf(ficlog,"\n");
       }        for(l=0;l<=1;l++) {
     fprintf(ficreseij,"\n");          for (j=1;j<=n;j++) {
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }
 /************ Variance ******************/          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
 {        }
   /* Variance of health expectancies */  #endif
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   double **newm;  
   double **dnewm,**doldm;        free_vector(xit,1,n); 
   int i, j, nhstepm, hstepm, h;        free_vector(xits,1,n); 
   int k, cptcode;        free_vector(ptt,1,n); 
    double *xp;        free_vector(pt,1,n); 
   double **gp, **gm;        return; 
   double ***gradg, ***trgradg;      } 
   double ***p3mat;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   double age,agelim;      for (j=1;j<=n;j++) { /* Computes an extrapolated point */
   int theta;        ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
    fprintf(ficresvij,"# Covariances of life expectancies\n");        pt[j]=p[j]; 
   fprintf(ficresvij,"# Age");      } 
   for(i=1; i<=nlstate;i++)      fptt=(*func)(ptt); 
     for(j=1; j<=nlstate;j++)      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        /* x1 f1=fp x2 f2=*fret x3 f3=fptt, xm fm */
   fprintf(ficresvij,"\n");        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
         /* Let f"(x2) be the 2nd derivative equal everywhere. Then the parabolic through (x1,f1), (x2,f2) and (x3,f3)
   xp=vector(1,npar);           will reach at f3 = fm + h^2/2 f''m  ; f" = (f1 -2f2 +f3 ) / h**2 */
   dnewm=matrix(1,nlstate,1,npar);        /* f1-f3 = delta(2h) = 2 h**2 f'' = 2(f1- 2f2 +f3) */
   doldm=matrix(1,nlstate,1,nlstate);        /* Thus we compare delta(2h) with observed f1-f3 */
          /* or best gain on one ancient line 'del' with total gain f1-f2 = f1 - f2 - 'del' with del */ 
   hstepm=1*YEARM; /* Every year of age */        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del);
   agelim = AGESUP;        t= t- del*SQR(fp-fptt);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        printf("t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
     if (stepm >= YEARM) hstepm=1;  #ifdef DEBUG
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
     gp=matrix(0,nhstepm,1,nlstate);               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
     gm=matrix(0,nhstepm,1,nlstate);        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
         fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
     for(theta=1; theta <=npar; theta++){  #endif
       for(i=1; i<=npar; i++){ /* Computes gradient */        if (t < 0.0) { /* Then we use it for last direction */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          linmin(p,xit,n,fret,func); /* computes mean on the extrapolated direction.*/
       }          for (j=1;j<=n;j++) { 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              xi[j][ibig]=xi[j][n]; /* Replace the direction with biggest decrease by n */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            xi[j][n]=xit[j];      /* and nth direction by the extrapolated */
       for(j=1; j<= nlstate; j++){          }
         for(h=0; h<=nhstepm; h++){          printf("Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)          fprintf(ficlog,"Gaining to use average direction of P0 P%d instead of biggest increase direction :\n",n,ibig);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }  #ifdef DEBUG
       }          for(j=1;j<=n;j++){
                printf(" %.12e",xit[j]);
       for(i=1; i<=npar; i++) /* Computes gradient */            fprintf(ficlog," %.12e",xit[j]);
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            printf("\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          fprintf(ficlog,"\n");
       for(j=1; j<= nlstate; j++){  #endif
         for(h=0; h<=nhstepm; h++){        }
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      } 
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    } 
         }  } 
       }  
       for(j=1; j<= nlstate; j++)  /**** Prevalence limit (stable or period prevalence)  ****************/
         for(h=0; h<=nhstepm; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
         }  {
     } /* End theta */    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
        matrix by transitions matrix until convergence is reached */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  
     int i, ii,j,k;
     for(h=0; h<=nhstepm; h++)    double min, max, maxmin, maxmax,sumnew=0.;
       for(j=1; j<=nlstate;j++)    /* double **matprod2(); */ /* test */
         for(theta=1; theta <=npar; theta++)    double **out, cov[NCOVMAX+1], **pmij();
           trgradg[h][j][theta]=gradg[h][theta][j];    double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
     for(i=1;i<=nlstate;i++)  
       for(j=1;j<=nlstate;j++)    for (ii=1;ii<=nlstate+ndeath;ii++)
         vareij[i][j][(int)age] =0.;      for (j=1;j<=nlstate+ndeath;j++){
     for(h=0;h<=nhstepm;h++){        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(k=0;k<=nhstepm;k++){      }
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);     cov[1]=1.;
         for(i=1;i<=nlstate;i++)   
           for(j=1;j<=nlstate;j++)   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
             vareij[i][j][(int)age] += doldm[i][j];    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       }      newm=savm;
     }      /* Covariates have to be included here again */
     h=1;      cov[2]=agefin;
     if (stepm >= YEARM) h=stepm/YEARM;      
     fprintf(ficresvij,"%.0f ",age );      for (k=1; k<=cptcovn;k++) {
     for(i=1; i<=nlstate;i++)        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       for(j=1; j<=nlstate;j++){        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);      }
       }      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
     fprintf(ficresvij,"\n");      /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
     free_matrix(gp,0,nhstepm,1,nlstate);      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
     free_matrix(gm,0,nhstepm,1,nlstate);      
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   } /* End age */      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
        /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
   free_vector(xp,1,npar);      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
   free_matrix(doldm,1,nlstate,1,npar);      
   free_matrix(dnewm,1,nlstate,1,nlstate);      savm=oldm;
       oldm=newm;
 }      maxmax=0.;
       for(j=1;j<=nlstate;j++){
 /************ Variance of prevlim ******************/        min=1.;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        max=0.;
 {        for(i=1; i<=nlstate; i++) {
   /* Variance of prevalence limit */          sumnew=0;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   double **newm;          prlim[i][j]= newm[i][j]/(1-sumnew);
   double **dnewm,**doldm;          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
   int i, j, nhstepm, hstepm;          max=FMAX(max,prlim[i][j]);
   int k, cptcode;          min=FMIN(min,prlim[i][j]);
   double *xp;        }
   double *gp, *gm;        maxmin=max-min;
   double **gradg, **trgradg;        maxmax=FMAX(maxmax,maxmin);
   double age,agelim;      }
   int theta;      if(maxmax < ftolpl){
            return prlim;
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");      }
   fprintf(ficresvpl,"# Age");    }
   for(i=1; i<=nlstate;i++)  }
       fprintf(ficresvpl," %1d-%1d",i,i);  
   fprintf(ficresvpl,"\n");  /*************** transition probabilities ***************/ 
   
   xp=vector(1,npar);  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   dnewm=matrix(1,nlstate,1,npar);  {
   doldm=matrix(1,nlstate,1,nlstate);    /* According to parameters values stored in x and the covariate's values stored in cov,
         computes the probability to be observed in state j being in state i by appying the
   hstepm=1*YEARM; /* Every year of age */       model to the ncovmodel covariates (including constant and age).
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
   agelim = AGESUP;       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */       ncth covariate in the global vector x is given by the formula:
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
     if (stepm >= YEARM) hstepm=1;       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
     gradg=matrix(1,npar,1,nlstate);       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
     gp=vector(1,nlstate);       Outputs ps[i][j] the probability to be observed in j being in j according to
     gm=vector(1,nlstate);       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
     */
     for(theta=1; theta <=npar; theta++){    double s1, lnpijopii;
       for(i=1; i<=npar; i++){ /* Computes gradient */    /*double t34;*/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    int i,j,j1, nc, ii, jj;
       }  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for(i=1; i<= nlstate; i++){
       for(i=1;i<=nlstate;i++)        for(j=1; j<i;j++){
         gp[i] = prlim[i][i];          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                /*lnpijopii += param[i][j][nc]*cov[nc];*/
       for(i=1; i<=npar; i++) /* Computes gradient */            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          }
       for(i=1;i<=nlstate;i++)          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         gm[i] = prlim[i][i];  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
         }
       for(i=1;i<=nlstate;i++)        for(j=i+1; j<=nlstate+ndeath;j++){
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
     } /* End theta */            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
             lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
     trgradg =matrix(1,nlstate,1,npar);  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
           }
     for(j=1; j<=nlstate;j++)          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
       for(theta=1; theta <=npar; theta++)        }
         trgradg[j][theta]=gradg[theta][j];      }
       
     for(i=1;i<=nlstate;i++)      for(i=1; i<= nlstate; i++){
       varpl[i][(int)age] =0.;        s1=0;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        for(j=1; j<i; j++){
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
     for(i=1;i<=nlstate;i++)          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        }
         for(j=i+1; j<=nlstate+ndeath; j++){
     fprintf(ficresvpl,"%.0f ",age );          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
     for(i=1; i<=nlstate;i++)          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        }
     fprintf(ficresvpl,"\n");        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
     free_vector(gp,1,nlstate);        ps[i][i]=1./(s1+1.);
     free_vector(gm,1,nlstate);        /* Computing other pijs */
     free_matrix(gradg,1,npar,1,nlstate);        for(j=1; j<i; j++)
     free_matrix(trgradg,1,nlstate,1,npar);          ps[i][j]= exp(ps[i][j])*ps[i][i];
   } /* End age */        for(j=i+1; j<=nlstate+ndeath; j++)
           ps[i][j]= exp(ps[i][j])*ps[i][i];
   free_vector(xp,1,npar);        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   free_matrix(doldm,1,nlstate,1,npar);      } /* end i */
   free_matrix(dnewm,1,nlstate,1,nlstate);      
       for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
 }        for(jj=1; jj<= nlstate+ndeath; jj++){
           ps[ii][jj]=0;
           ps[ii][ii]=1;
         }
 /***********************************************/      }
 /**************** Main Program *****************/      
 /***********************************************/      
       /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
 /*int main(int argc, char *argv[])*/      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
 int main()      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
 {      /*   } */
       /*   printf("\n "); */
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;      /* } */
   double agedeb, agefin,hf;      /* printf("\n ");printf("%lf ",cov[2]);*/
   double agemin=1.e20, agemax=-1.e20;      /*
         for(i=1; i<= npar; i++) printf("%f ",x[i]);
   double fret;        goto end;*/
   double **xi,tmp,delta;      return ps;
   }
   double dum; /* Dummy variable */  
   double ***p3mat;  /**************** Product of 2 matrices ******************/
   int *indx;  
   char line[MAXLINE], linepar[MAXLINE];  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
   char title[MAXLINE];  {
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   char filerest[FILENAMELENGTH];    /* in, b, out are matrice of pointers which should have been initialized 
   char fileregp[FILENAMELENGTH];       before: only the contents of out is modified. The function returns
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];       a pointer to pointers identical to out */
   int firstobs=1, lastobs=10;    int i, j, k;
   int sdeb, sfin; /* Status at beginning and end */    for(i=nrl; i<= nrh; i++)
   int c,  h , cpt,l;      for(k=ncolol; k<=ncoloh; k++){
   int ju,jl, mi;        out[i][k]=0.;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize;        for(j=ncl; j<=nch; j++)
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          out[i][k] +=in[i][j]*b[j][k];
        }
   int hstepm, nhstepm;    return out;
   double bage, fage, age, agelim, agebase;  }
   double ftolpl=FTOL;  
   double **prlim;  
   double *severity;  /************* Higher Matrix Product ***************/
   double ***param; /* Matrix of parameters */  
   double  *p;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   double **matcov; /* Matrix of covariance */  {
   double ***delti3; /* Scale */    /* Computes the transition matrix starting at age 'age' over 
   double *delti; /* Scale */       'nhstepm*hstepm*stepm' months (i.e. until
   double ***eij, ***vareij;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   double **varpl; /* Variances of prevalence limits by age */       nhstepm*hstepm matrices. 
   double *epj, vepp;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";       (typically every 2 years instead of every month which is too big 
   char *alph[]={"a","a","b","c","d","e"}, str[4];       for the memory).
        Model is determined by parameters x and covariates have to be 
   char z[1]="c", occ;       included manually here. 
 #include <sys/time.h>  
 #include <time.h>       */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  
   /* long total_usecs;    int i, j, d, h, k;
   struct timeval start_time, end_time;    double **out, cov[NCOVMAX+1];
      double **newm;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */  
     /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=nlstate+ndeath;i++)
   printf("\nIMACH, Version 0.64a");      for (j=1;j<=nlstate+ndeath;j++){
   printf("\nEnter the parameter file name: ");        oldm[i][j]=(i==j ? 1.0 : 0.0);
         po[i][j][0]=(i==j ? 1.0 : 0.0);
 #ifdef windows      }
   scanf("%s",pathtot);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   getcwd(pathcd, size);    for(h=1; h <=nhstepm; h++){
   /*cygwin_split_path(pathtot,path,optionfile);      for(d=1; d <=hstepm; d++){
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/        newm=savm;
   /* cutv(path,optionfile,pathtot,'\\');*/        /* Covariates have to be included here again */
         cov[1]=1.;
 split(pathtot, path,optionfile);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   chdir(path);        for (k=1; k<=cptcovn;k++) 
   replace(pathc,path);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 #endif        for (k=1; k<=cptcovage;k++)
 #ifdef unix          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   scanf("%s",optionfile);        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
 #endif          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
 /*-------- arguments in the command line --------*/  
         /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   strcpy(fileres,"r");        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   strcat(fileres, optionfile);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                      pmij(pmmij,cov,ncovmodel,x,nlstate));
   /*---------arguments file --------*/        savm=oldm;
         oldm=newm;
   if((ficpar=fopen(optionfile,"r"))==NULL)    {      }
     printf("Problem with optionfile %s\n",optionfile);      for(i=1; i<=nlstate+ndeath; i++)
     goto end;        for(j=1;j<=nlstate+ndeath;j++) {
   }          po[i][j][h]=newm[i][j];
           /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   strcpy(filereso,"o");        }
   strcat(filereso,fileres);      /*printf("h=%d ",h);*/
   if((ficparo=fopen(filereso,"w"))==NULL) {    } /* end h */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;  /*     printf("\n H=%d \n",h); */
   }    return po;
   }
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  /*************** log-likelihood *************/
     fgets(line, MAXLINE, ficpar);  double func( double *x)
     puts(line);  {
     fputs(line,ficparo);    int i, ii, j, k, mi, d, kk;
   }    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   ungetc(c,ficpar);    double **out;
     double sw; /* Sum of weights */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    double lli; /* Individual log likelihood */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);    int s1, s2;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    double bbh, survp;
     long ipmx;
   covar=matrix(1,NCOVMAX,1,n);        /*extern weight */
   if (strlen(model)<=1) cptcovn=0;    /* We are differentiating ll according to initial status */
   else {    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     j=0;    /*for(i=1;i<imx;i++) 
     j=nbocc(model,'+');      printf(" %d\n",s[4][i]);
     cptcovn=j+1;    */
   }    cov[1]=1.;
   
   ncovmodel=2+cptcovn;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  
      if(mle==1){
   /* Read guess parameters */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   /* Reads comments: lines beginning with '#' */        /* Computes the values of the ncovmodel covariates of the model
   while((c=getc(ficpar))=='#' && c!= EOF){           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
     ungetc(c,ficpar);           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
     fgets(line, MAXLINE, ficpar);           to be observed in j being in i according to the model.
     puts(line);         */
     fputs(line,ficparo);        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
   }          cov[2+k]=covar[Tvar[k]][i];
   ungetc(c,ficpar);        }
          /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
     for(i=1; i <=nlstate; i++)           has been calculated etc */
     for(j=1; j <=nlstate+ndeath-1; j++){        for(mi=1; mi<= wav[i]-1; mi++){
       fscanf(ficpar,"%1d%1d",&i1,&j1);          for (ii=1;ii<=nlstate+ndeath;ii++)
       fprintf(ficparo,"%1d%1d",i1,j1);            for (j=1;j<=nlstate+ndeath;j++){
       printf("%1d%1d",i,j);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(k=1; k<=ncovmodel;k++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         fscanf(ficpar," %lf",&param[i][j][k]);            }
         printf(" %lf",param[i][j][k]);          for(d=0; d<dh[mi][i]; d++){
         fprintf(ficparo," %lf",param[i][j][k]);            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       fscanf(ficpar,"\n");            for (kk=1; kk<=cptcovage;kk++) {
       printf("\n");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
       fprintf(ficparo,"\n");            }
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;            savm=oldm;
   p=param[1][1];            oldm=newm;
            } /* end mult */
   /* Reads comments: lines beginning with '#' */        
   while((c=getc(ficpar))=='#' && c!= EOF){          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     ungetc(c,ficpar);          /* But now since version 0.9 we anticipate for bias at large stepm.
     fgets(line, MAXLINE, ficpar);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     puts(line);           * (in months) between two waves is not a multiple of stepm, we rounded to 
     fputs(line,ficparo);           * the nearest (and in case of equal distance, to the lowest) interval but now
   }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   ungetc(c,ficpar);           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */           * -stepm/2 to stepm/2 .
   for(i=1; i <=nlstate; i++){           * For stepm=1 the results are the same as for previous versions of Imach.
     for(j=1; j <=nlstate+ndeath-1; j++){           * For stepm > 1 the results are less biased than in previous versions. 
       fscanf(ficpar,"%1d%1d",&i1,&j1);           */
       printf("%1d%1d",i,j);          s1=s[mw[mi][i]][i];
       fprintf(ficparo,"%1d%1d",i1,j1);          s2=s[mw[mi+1][i]][i];
       for(k=1; k<=ncovmodel;k++){          bbh=(double)bh[mi][i]/(double)stepm; 
         fscanf(ficpar,"%le",&delti3[i][j][k]);          /* bias bh is positive if real duration
         printf(" %le",delti3[i][j][k]);           * is higher than the multiple of stepm and negative otherwise.
         fprintf(ficparo," %le",delti3[i][j][k]);           */
       }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       fscanf(ficpar,"\n");          if( s2 > nlstate){ 
       printf("\n");            /* i.e. if s2 is a death state and if the date of death is known 
       fprintf(ficparo,"\n");               then the contribution to the likelihood is the probability to 
     }               die between last step unit time and current  step unit time, 
   }               which is also equal to probability to die before dh 
   delti=delti3[1][1];               minus probability to die before dh-stepm . 
                 In version up to 0.92 likelihood was computed
   /* Reads comments: lines beginning with '#' */          as if date of death was unknown. Death was treated as any other
   while((c=getc(ficpar))=='#' && c!= EOF){          health state: the date of the interview describes the actual state
     ungetc(c,ficpar);          and not the date of a change in health state. The former idea was
     fgets(line, MAXLINE, ficpar);          to consider that at each interview the state was recorded
     puts(line);          (healthy, disable or death) and IMaCh was corrected; but when we
     fputs(line,ficparo);          introduced the exact date of death then we should have modified
   }          the contribution of an exact death to the likelihood. This new
   ungetc(c,ficpar);          contribution is smaller and very dependent of the step unit
            stepm. It is no more the probability to die between last interview
   matcov=matrix(1,npar,1,npar);          and month of death but the probability to survive from last
   for(i=1; i <=npar; i++){          interview up to one month before death multiplied by the
     fscanf(ficpar,"%s",&str);          probability to die within a month. Thanks to Chris
     printf("%s",str);          Jackson for correcting this bug.  Former versions increased
     fprintf(ficparo,"%s",str);          mortality artificially. The bad side is that we add another loop
     for(j=1; j <=i; j++){          which slows down the processing. The difference can be up to 10%
       fscanf(ficpar," %le",&matcov[i][j]);          lower mortality.
       printf(" %.5le",matcov[i][j]);            */
       fprintf(ficparo," %.5le",matcov[i][j]);            lli=log(out[s1][s2] - savm[s1][s2]);
     }  
     fscanf(ficpar,"\n");  
     printf("\n");          } else if  (s2==-2) {
     fprintf(ficparo,"\n");            for (j=1,survp=0. ; j<=nlstate; j++) 
   }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   for(i=1; i <=npar; i++)            /*survp += out[s1][j]; */
     for(j=i+1;j<=npar;j++)            lli= log(survp);
       matcov[i][j]=matcov[j][i];          }
              
   printf("\n");          else if  (s2==-4) { 
             for (j=3,survp=0. ; j<=nlstate; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
    if(mle==1){            lli= log(survp); 
     /*-------- data file ----------*/          } 
     if((ficres =fopen(fileres,"w"))==NULL) {  
       printf("Problem with resultfile: %s\n", fileres);goto end;          else if  (s2==-5) { 
     }            for (j=1,survp=0. ; j<=2; j++)  
     fprintf(ficres,"#%s\n",version);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                lli= log(survp); 
     if((fic=fopen(datafile,"r"))==NULL)    {          } 
       printf("Problem with datafile: %s\n", datafile);goto end;          
     }          else{
             lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     n= lastobs;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     severity = vector(1,maxwav);          } 
     outcome=imatrix(1,maxwav+1,1,n);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     num=ivector(1,n);          /*if(lli ==000.0)*/
     moisnais=vector(1,n);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     annais=vector(1,n);          ipmx +=1;
     moisdc=vector(1,n);          sw += weight[i];
     andc=vector(1,n);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     agedc=vector(1,n);        } /* end of wave */
     cod=ivector(1,n);      } /* end of individual */
     weight=vector(1,n);    }  else if(mle==2){
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     mint=matrix(1,maxwav,1,n);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     anint=matrix(1,maxwav,1,n);        for(mi=1; mi<= wav[i]-1; mi++){
     s=imatrix(1,maxwav+1,1,n);          for (ii=1;ii<=nlstate+ndeath;ii++)
     adl=imatrix(1,maxwav+1,1,n);                for (j=1;j<=nlstate+ndeath;j++){
     tab=ivector(1,NCOVMAX);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     ncodemax=ivector(1,8);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
     i=1;          for(d=0; d<=dh[mi][i]; d++){
     while (fgets(line, MAXLINE, fic) != NULL)    {            newm=savm;
       if ((i >= firstobs) && (i <=lastobs)) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                    for (kk=1; kk<=cptcovage;kk++) {
         for (j=maxwav;j>=1;j--){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);            }
           strcpy(line,stra);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            savm=oldm;
         }            oldm=newm;
                  } /* end mult */
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          bbh=(double)bh[mi][i]/(double)stepm; 
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           ipmx +=1;
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          sw += weight[i];
         for (j=ncov;j>=1;j--){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        } /* end of wave */
         }      } /* end of individual */
         num[i]=atol(stra);    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
         i=i+1;          for (ii=1;ii<=nlstate+ndeath;ii++)
       }            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
     /*scanf("%d",i);*/            }
   imx=i-1; /* Number of individuals */          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
   /* Calculation of the number of parameter from char model*/            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   Tvar=ivector(1,8);                for (kk=1; kk<=cptcovage;kk++) {
                  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   if (strlen(model) >1){            }
     j=0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     j=nbocc(model,'+');                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     cptcovn=j+1;            savm=oldm;
                oldm=newm;
     strcpy(modelsav,model);          } /* end mult */
     if (j==0) {        
       cutv(stra,strb,modelsav,'V'); Tvar[1]=atoi(strb);          s1=s[mw[mi][i]][i];
     }          s2=s[mw[mi+1][i]][i];
     else {          bbh=(double)bh[mi][i]/(double)stepm; 
       for(i=j; i>=1;i--){          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         cutv(stra,strb,modelsav,'+');          ipmx +=1;
         if (strchr(strb,'*')) {          sw += weight[i];
           cutv(strd,strc,strb,'*');          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           cutv(strb,stre,strc,'V');Tvar[i+1]=ncov+1;        } /* end of wave */
           cutv(strb,strc,strd,'V');      } /* end of individual */
           for (k=1; k<=lastobs;k++)    }else if (mle==4){  /* ml=4 no inter-extrapolation */
             covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         else {cutv(strd,strc,strb,'V');        for(mi=1; mi<= wav[i]-1; mi++){
         Tvar[i+1]=atoi(strc);          for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
         strcpy(modelsav,stra);                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       cutv(strd,strc,stra,'V');            }
       Tvar[1]=atoi(strc);          for(d=0; d<dh[mi][i]; d++){
     }            newm=savm;
   }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   /*printf("tvar=%d ",Tvar[1]);            for (kk=1; kk<=cptcovage;kk++) {
   scanf("%d ",i);*/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     fclose(fic);            }
           
     if (weightopt != 1) { /* Maximisation without weights*/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(i=1;i<=n;i++) weight[i]=1.0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
     /*-calculation of age at interview from date of interview and age at death -*/            oldm=newm;
     agev=matrix(1,maxwav,1,imx);          } /* end mult */
            
     for (i=1; i<=imx; i++)  {          s1=s[mw[mi][i]][i];
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          s2=s[mw[mi+1][i]][i];
       for(m=1; (m<= maxwav); m++){          if( s2 > nlstate){ 
         if(s[m][i] >0){            lli=log(out[s1][s2] - savm[s1][s2]);
           if (s[m][i] == nlstate+1) {          }else{
             if(agedc[i]>0)            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
               if(moisdc[i]!=99 && andc[i]!=9999)          }
               agev[m][i]=agedc[i];          ipmx +=1;
             else{          sw += weight[i];
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
               agev[m][i]=-1;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
             }        } /* end of wave */
           }      } /* end of individual */
           else if(s[m][i] !=9){ /* Should no more exist */    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
             if(mint[m][i]==99 || anint[m][i]==9999)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
               agev[m][i]=1;        for(mi=1; mi<= wav[i]-1; mi++){
             else if(agev[m][i] <agemin){          for (ii=1;ii<=nlstate+ndeath;ii++)
               agemin=agev[m][i];            for (j=1;j<=nlstate+ndeath;j++){
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             else if(agev[m][i] >agemax){            }
               agemax=agev[m][i];          for(d=0; d<dh[mi][i]; d++){
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/            newm=savm;
             }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             /*agev[m][i]=anint[m][i]-annais[i];*/            for (kk=1; kk<=cptcovage;kk++) {
             /*   agev[m][i] = age[i]+2*m;*/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }            }
           else { /* =9 */          
             agev[m][i]=1;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             s[m][i]=-1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           }            savm=oldm;
         }            oldm=newm;
         else /*= 0 Unknown */          } /* end mult */
           agev[m][i]=1;        
       }          s1=s[mw[mi][i]][i];
              s2=s[mw[mi+1][i]][i];
     }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     for (i=1; i<=imx; i++)  {          ipmx +=1;
       for(m=1; (m<= maxwav); m++){          sw += weight[i];
         if (s[m][i] > (nlstate+ndeath)) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           printf("Error: Wrong value in nlstate or ndeath\n");            /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
           goto end;        } /* end of wave */
         }      } /* end of individual */
       }    } /* End of if */
     }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     return -l;
     free_vector(severity,1,maxwav);  }
     free_imatrix(outcome,1,maxwav+1,1,n);  
     free_vector(moisnais,1,n);  /*************** log-likelihood *************/
     free_vector(annais,1,n);  double funcone( double *x)
     free_matrix(mint,1,maxwav,1,n);  {
     free_matrix(anint,1,maxwav,1,n);    /* Same as likeli but slower because of a lot of printf and if */
     free_vector(moisdc,1,n);    int i, ii, j, k, mi, d, kk;
     free_vector(andc,1,n);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     double **out;
        double lli; /* Individual log likelihood */
     wav=ivector(1,imx);    double llt;
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    int s1, s2;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    double bbh, survp;
        /*extern weight */
     /* Concatenates waves */    /* We are differentiating ll according to initial status */
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
 Tcode=ivector(1,100);    */
    nbcode=imatrix(1,nvar,1,8);      cov[1]=1.;
    ncodemax[1]=1;  
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);    for(k=1; k<=nlstate; k++) ll[k]=0.;
    
    codtab=imatrix(1,100,1,10);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
    h=0;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
    m=pow(2,cptcovn);      for(mi=1; mi<= wav[i]-1; mi++){
          for (ii=1;ii<=nlstate+ndeath;ii++)
    for(k=1;k<=cptcovn; k++){          for (j=1;j<=nlstate+ndeath;j++){
      for(i=1; i <=(m/pow(2,k));i++){            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
        for(j=1; j <= ncodemax[k]; j++){            savm[ii][j]=(ii==j ? 1.0 : 0.0);
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){          }
            h++;        for(d=0; d<dh[mi][i]; d++){
            if (h>m) h=1;codtab[h][k]=j;          newm=savm;
          }          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
        }          for (kk=1; kk<=cptcovage;kk++) {
      }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
    }          }
           /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
    /*for(i=1; i <=m ;i++){          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
      for(k=1; k <=cptcovn; k++){                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
      }          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
      printf("\n");          savm=oldm;
    }*/          oldm=newm;
    /*scanf("%d",i);*/        } /* end mult */
            
    /* Calculates basic frequencies. Computes observed prevalence at single age        s1=s[mw[mi][i]][i];
        and prints on file fileres'p'. */        s2=s[mw[mi+1][i]][i];
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);        bbh=(double)bh[mi][i]/(double)stepm; 
         /* bias is positive if real duration
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         * is higher than the multiple of stepm and negative otherwise.
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          lli=log(out[s1][s2] - savm[s1][s2]);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        } else if  (s2==-2) {
              for (j=1,survp=0. ; j<=nlstate; j++) 
     /* For Powell, parameters are in a vector p[] starting at p[1]            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          lli= log(survp);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */        }else if (mle==1){
              lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        } else if(mle==2){
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
            } else if(mle==3){  /* exponential inter-extrapolation */
     /*--------- results files --------------*/          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);        } else if (mle==4){  /* mle=4 no inter-extrapolation */
              lli=log(out[s1][s2]); /* Original formula */
    jk=1;        } else{  /* mle=0 back to 1 */
    fprintf(ficres,"# Parameters\n");          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
    printf("# Parameters\n");          /*lli=log(out[s1][s2]); */ /* Original formula */
    for(i=1,jk=1; i <=nlstate; i++){        } /* End of if */
      for(k=1; k <=(nlstate+ndeath); k++){        ipmx +=1;
        if (k != i)        sw += weight[i];
          {        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
            printf("%d%d ",i,k);        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
            fprintf(ficres,"%1d%1d ",i,k);        if(globpr){
            for(j=1; j <=ncovmodel; j++){          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
              printf("%f ",p[jk]);   %11.6f %11.6f %11.6f ", \
              fprintf(ficres,"%f ",p[jk]);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
              jk++;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
            }          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
            printf("\n");            llt +=ll[k]*gipmx/gsw;
            fprintf(ficres,"\n");            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
          }          }
      }          fprintf(ficresilk," %10.6f\n", -llt);
    }        }
       } /* end of wave */
     /* Computing hessian and covariance matrix */    } /* end of individual */
     ftolhess=ftol; /* Usually correct */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     hesscov(matcov, p, npar, delti, ftolhess, func);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     fprintf(ficres,"# Scales\n");    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     printf("# Scales\n");    if(globpr==0){ /* First time we count the contributions and weights */
      for(i=1,jk=1; i <=nlstate; i++){      gipmx=ipmx;
       for(j=1; j <=nlstate+ndeath; j++){      gsw=sw;
         if (j!=i) {    }
           fprintf(ficres,"%1d%1d",i,j);    return -l;
           printf("%1d%1d",i,j);  }
           for(k=1; k<=ncovmodel;k++){  
             printf(" %.5e",delti[jk]);  
             fprintf(ficres," %.5e",delti[jk]);  /*************** function likelione ***********/
             jk++;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
           }  {
           printf("\n");    /* This routine should help understanding what is done with 
           fprintf(ficres,"\n");       the selection of individuals/waves and
         }       to check the exact contribution to the likelihood.
       }       Plotting could be done.
       }     */
        int k;
     k=1;  
     fprintf(ficres,"# Covariance\n");    if(*globpri !=0){ /* Just counts and sums, no printings */
     printf("# Covariance\n");      strcpy(fileresilk,"ilk"); 
     for(i=1;i<=npar;i++){      strcat(fileresilk,fileres);
       /*  if (k>nlstate) k=1;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       i1=(i-1)/(ncovmodel*nlstate)+1;        printf("Problem with resultfile: %s\n", fileresilk);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       printf("%s%d%d",alph[k],i1,tab[i]);*/      }
       fprintf(ficres,"%3d",i);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       printf("%3d",i);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       for(j=1; j<=i;j++){      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
         fprintf(ficres," %.5e",matcov[i][j]);      for(k=1; k<=nlstate; k++) 
         printf(" %.5e",matcov[i][j]);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       }      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
       fprintf(ficres,"\n");    }
       printf("\n");  
       k++;    *fretone=(*funcone)(p);
     }    if(*globpri !=0){
          fclose(ficresilk);
     while((c=getc(ficpar))=='#' && c!= EOF){      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       ungetc(c,ficpar);      fflush(fichtm); 
       fgets(line, MAXLINE, ficpar);    } 
       puts(line);    return;
       fputs(line,ficparo);  }
     }  
     ungetc(c,ficpar);  
    /*********** Maximum Likelihood Estimation ***************/
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  
      void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     if (fage <= 2) {  {
       bage = agemin;    int i,j, iter;
       fage = agemax;    double **xi;
     }    double fret;
     double fretone; /* Only one call to likelihood */
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    /*  char filerespow[FILENAMELENGTH];*/
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    xi=matrix(1,npar,1,npar);
 /*------------ gnuplot -------------*/    for (i=1;i<=npar;i++)
 chdir(pathcd);      for (j=1;j<=npar;j++)
   if((ficgp=fopen("graph.plt","w"))==NULL) {        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Problem with file graph.gp");goto end;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   }    strcpy(filerespow,"pow"); 
 #ifdef windows    strcat(filerespow,fileres);
   fprintf(ficgp,"cd \"%s\" \n",pathc);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
 #endif      printf("Problem with resultfile: %s\n", filerespow);
 m=pow(2,cptcovn);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
      }
  /* 1eme*/    fprintf(ficrespow,"# Powell\n# iter -2*LL");
   for (cpt=1; cpt<= nlstate ; cpt ++) {    for (i=1;i<=nlstate;i++)
    for (k1=1; k1<= m ; k1 ++) {      for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 #ifdef windows    fprintf(ficrespow,"\n");
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);  
 #endif    powell(p,xi,npar,ftol,&iter,&fret,func);
 #ifdef unix  
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);    free_matrix(xi,1,npar,1,npar);
 #endif    fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
 for (i=1; i<= nlstate ; i ++) {    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }  }
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);  
     for (i=1; i<= nlstate ; i ++) {  /**** Computes Hessian and covariance matrix ***/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   else fprintf(ficgp," \%%*lf (\%%*lf)");  {
 }    double  **a,**y,*x,pd;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    double **hess;
      for (i=1; i<= nlstate ; i ++) {    int i, j,jk;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    int *indx;
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
 #ifdef unix    void lubksb(double **a, int npar, int *indx, double b[]) ;
 fprintf(ficgp,"\nset ter gif small size 400,300");    void ludcmp(double **a, int npar, int *indx, double *d) ;
 #endif    double gompertz(double p[]);
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    hess=matrix(1,npar,1,npar);
    }  
   }    printf("\nCalculation of the hessian matrix. Wait...\n");
   /*2 eme*/    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
   for (k1=1; k1<= m ; k1 ++) {      printf("%d",i);fflush(stdout);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);      fprintf(ficlog,"%d",i);fflush(ficlog);
         
     for (i=1; i<= nlstate+1 ; i ++) {       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
       k=2*i;      
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      /*  printf(" %f ",p[i]);
       for (j=1; j<= nlstate+1 ; j ++) {          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    }
   else fprintf(ficgp," \%%*lf (\%%*lf)");    
 }      for (i=1;i<=npar;i++) {
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      for (j=1;j<=npar;j++)  {
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        if (j>i) { 
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);          printf(".%d%d",i,j);fflush(stdout);
       for (j=1; j<= nlstate+1 ; j ++) {          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          hess[i][j]=hessij(p,delti,i,j,func,npar);
         else fprintf(ficgp," \%%*lf (\%%*lf)");          
 }            hess[j][i]=hess[i][j];    
       fprintf(ficgp,"\" t\"\" w l 0,");          /*printf(" %lf ",hess[i][j]);*/
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        }
       for (j=1; j<= nlstate+1 ; j ++) {      }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    }
   else fprintf(ficgp," \%%*lf (\%%*lf)");    printf("\n");
 }      fprintf(ficlog,"\n");
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  
       else fprintf(ficgp,"\" t\"\" w l 0,");    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     }    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    
   }    a=matrix(1,npar,1,npar);
      y=matrix(1,npar,1,npar);
   /*3eme*/    x=vector(1,npar);
     indx=ivector(1,npar);
   for (k1=1; k1<= m ; k1 ++) {    for (i=1;i<=npar;i++)
     for (cpt=1; cpt<= nlstate ; cpt ++) {      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
       k=2+nlstate*(cpt-1);    ludcmp(a,npar,indx,&pd);
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);  
       for (i=1; i< nlstate ; i ++) {    for (j=1;j<=npar;j++) {
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);      for (i=1;i<=npar;i++) x[i]=0;
       }      x[j]=1;
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      lubksb(a,npar,indx,x);
     }      for (i=1;i<=npar;i++){ 
   }        matcov[i][j]=x[i];
        }
   /* CV preval stat */    }
   for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<nlstate ; cpt ++) {    printf("\n#Hessian matrix#\n");
       k=3;    fprintf(ficlog,"\n#Hessian matrix#\n");
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);    for (i=1;i<=npar;i++) { 
       for (i=1; i< nlstate ; i ++)      for (j=1;j<=npar;j++) { 
         fprintf(ficgp,"+$%d",k+i+1);        printf("%.3e ",hess[i][j]);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        fprintf(ficlog,"%.3e ",hess[i][j]);
            }
       l=3+(nlstate+ndeath)*cpt;      printf("\n");
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      fprintf(ficlog,"\n");
       for (i=1; i< nlstate ; i ++) {    }
         l=3+(nlstate+ndeath)*cpt;  
         fprintf(ficgp,"+$%d",l+i+1);    /* Recompute Inverse */
       }    for (i=1;i<=npar;i++)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    ludcmp(a,npar,indx,&pd);
     }  
   }    /*  printf("\n#Hessian matrix recomputed#\n");
   
   /* proba elementaires */    for (j=1;j<=npar;j++) {
    for(i=1,jk=1; i <=nlstate; i++){      for (i=1;i<=npar;i++) x[i]=0;
     for(k=1; k <=(nlstate+ndeath); k++){      x[j]=1;
       if (k != i) {      lubksb(a,npar,indx,x);
         for(j=1; j <=ncovmodel; j++){      for (i=1;i<=npar;i++){ 
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/        y[i][j]=x[i];
           /*fprintf(ficgp,"%s",alph[1]);*/        printf("%.3e ",y[i][j]);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        fprintf(ficlog,"%.3e ",y[i][j]);
           jk++;      }
           fprintf(ficgp,"\n");      printf("\n");
         }      fprintf(ficlog,"\n");
       }    }
     }    */
     }  
     free_matrix(a,1,npar,1,npar);
   for(jk=1; jk <=m; jk++) {    free_matrix(y,1,npar,1,npar);
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);    free_vector(x,1,npar);
    i=1;    free_ivector(indx,1,npar);
    for(k2=1; k2<=nlstate; k2++) {    free_matrix(hess,1,npar,1,npar);
      k3=i;  
      for(k=1; k<=(nlstate+ndeath); k++) {  
        if (k != k2){  }
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  
   /*************** hessian matrix ****************/
         for(j=3; j <=ncovmodel; j++)  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
           fprintf(ficgp,"+p%d*%d",k2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  {
         fprintf(ficgp,")/(1");    int i;
     int l=1, lmax=20;
         for(k1=1; k1 <=nlstate+1; k1=k1+2){      double k1,k2;
             fprintf(ficgp,"+exp(p%d+p%d*x",k1+k3-1,k1+k3);    double p2[MAXPARM+1]; /* identical to x */
     double res;
             for(j=3; j <=ncovmodel; j++)    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
               fprintf(ficgp,"+p%d*%d",k2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    double fx;
             fprintf(ficgp,")");    int k=0,kmax=10;
         }    double l1;
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);  
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    fx=func(x);
     i=i+ncovmodel;    for (i=1;i<=npar;i++) p2[i]=x[i];
        }    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
      }      l1=pow(10,l);
    }      delts=delt;
   fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);      for(k=1 ; k <kmax; k=k+1){
    }        delt = delta*(l1*k);
            p2[theta]=x[theta] +delt;
   fclose(ficgp);        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
            p2[theta]=x[theta]-delt;
 chdir(path);        k2=func(p2)-fx;
     free_matrix(agev,1,maxwav,1,imx);        /*res= (k1-2.0*fx+k2)/delt/delt; */
     free_ivector(wav,1,imx);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  #ifdef DEBUGHESS
            printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     free_imatrix(s,1,maxwav+1,1,n);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
      #endif
            /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     free_ivector(num,1,n);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     free_vector(agedc,1,n);          k=kmax;
     free_vector(weight,1,n);        }
     /*free_matrix(covar,1,NCOVMAX,1,n);*/        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     fclose(ficparo);          k=kmax; l=lmax*10.;
     fclose(ficres);        }
    }        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
              delts=delt;
    /*________fin mle=1_________*/        }
          }
     }
      delti[theta]=delts;
     /* No more information from the sample is required now */    return res; 
   /* Reads comments: lines beginning with '#' */    
   while((c=getc(ficpar))=='#' && c!= EOF){  }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     puts(line);  {
     fputs(line,ficparo);    int i;
   }    int l=1, l1, lmax=20;
   ungetc(c,ficpar);    double k1,k2,k3,k4,res,fx;
      double p2[MAXPARM+1];
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    int k;
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);  
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    fx=func(x);
 /*--------- index.htm --------*/    for (k=1; k<=2; k++) {
       for (i=1;i<=npar;i++) p2[i]=x[i];
   if((fichtm=fopen("index.htm","w"))==NULL)    {      p2[thetai]=x[thetai]+delti[thetai]/k;
     printf("Problem with index.htm \n");goto end;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   }      k1=func(p2)-fx;
     
  fprintf(fichtm,"<body><ul> Imach, Version 0.64a<hr> <li>Outputs files<br><br>\n      p2[thetai]=x[thetai]+delti[thetai]/k;
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>      k2=func(p2)-fx;
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>    
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>      p2[thetai]=x[thetai]-delti[thetai]/k;
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>      k3=func(p2)-fx;
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>    
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>      p2[thetai]=x[thetai]-delti[thetai]/k;
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       k4=func(p2)-fx;
  fprintf(fichtm," <li>Graphs</li>\n<p>");      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   #ifdef DEBUG
  m=cptcovn;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   #endif
  j1=0;    }
  for(k1=1; k1<=m;k1++){    return res;
    for(i1=1; i1<=ncodemax[k1];i1++){  }
        j1++;  
        if (cptcovn > 0) {  /************** Inverse of matrix **************/
          fprintf(fichtm,"<hr>************ Results for covariates");  void ludcmp(double **a, int n, int *indx, double *d) 
          for (cpt=1; cpt<=cptcovn;cpt++)  { 
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);    int i,imax,j,k; 
          fprintf(fichtm," ************\n<hr>");    double big,dum,sum,temp; 
        }    double *vv; 
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>   
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        vv=vector(1,n); 
        for(cpt=1; cpt<nlstate;cpt++){    *d=1.0; 
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    for (i=1;i<=n;i++) { 
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      big=0.0; 
        }      for (j=1;j<=n;j++) 
     for(cpt=1; cpt<=nlstate;cpt++) {        if ((temp=fabs(a[i][j])) > big) big=temp; 
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
 interval) in state (%d): v%s%d%d.gif <br>      vv[i]=1.0/big; 
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      } 
      }    for (j=1;j<=n;j++) { 
      for(cpt=1; cpt<=nlstate;cpt++) {      for (i=1;i<j;i++) { 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>        sum=a[i][j]; 
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
      }        a[i][j]=sum; 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      } 
 health expectancies in states (1) and (2): e%s%d.gif<br>      big=0.0; 
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);      for (i=j;i<=n;i++) { 
 fprintf(fichtm,"\n</body>");        sum=a[i][j]; 
    }        for (k=1;k<j;k++) 
  }          sum -= a[i][k]*a[k][j]; 
 fclose(fichtm);        a[i][j]=sum; 
         if ( (dum=vv[i]*fabs(sum)) >= big) { 
   /*--------------- Prevalence limit --------------*/          big=dum; 
            imax=i; 
   strcpy(filerespl,"pl");        } 
   strcat(filerespl,fileres);      } 
   if((ficrespl=fopen(filerespl,"w"))==NULL) {      if (j != imax) { 
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;        for (k=1;k<=n;k++) { 
   }          dum=a[imax][k]; 
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          a[imax][k]=a[j][k]; 
   fprintf(ficrespl,"#Prevalence limit\n");          a[j][k]=dum; 
   fprintf(ficrespl,"#Age ");        } 
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        *d = -(*d); 
   fprintf(ficrespl,"\n");        vv[imax]=vv[j]; 
        } 
   prlim=matrix(1,nlstate,1,nlstate);      indx[j]=imax; 
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      if (a[j][j] == 0.0) a[j][j]=TINY; 
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      if (j != n) { 
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        dum=1.0/(a[j][j]); 
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      } 
   k=0;    } 
   agebase=agemin;    free_vector(vv,1,n);  /* Doesn't work */
   agelim=agemax;  ;
   ftolpl=1.e-10;  } 
   i1=cptcovn;  
   if (cptcovn < 1){i1=1;}  void lubksb(double **a, int n, int *indx, double b[]) 
   { 
   for(cptcov=1;cptcov<=i1;cptcov++){    int i,ii=0,ip,j; 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double sum; 
         k=k+1;   
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    for (i=1;i<=n;i++) { 
         fprintf(ficrespl,"\n#****** ");      ip=indx[i]; 
         for(j=1;j<=cptcovn;j++)      sum=b[ip]; 
           fprintf(ficrespl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);      b[ip]=b[i]; 
         fprintf(ficrespl,"******\n");      if (ii) 
                for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         for (age=agebase; age<=agelim; age++){      else if (sum) ii=i; 
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      b[i]=sum; 
           fprintf(ficrespl,"%.0f",age );    } 
           for(i=1; i<=nlstate;i++)    for (i=n;i>=1;i--) { 
           fprintf(ficrespl," %.5f", prlim[i][i]);      sum=b[i]; 
           fprintf(ficrespl,"\n");      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
         }      b[i]=sum/a[i][i]; 
       }    } 
     }  } 
   fclose(ficrespl);  
   /*------------- h Pij x at various ages ------------*/  void pstamp(FILE *fichier)
    {
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  }
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  
   }  /************ Frequencies ********************/
   printf("Computing pij: result on file '%s' \n", filerespij);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
    {  /* Some frequencies */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    
   if (stepm<=24) stepsize=2;    int i, m, jk, k1,i1, j1, bool, z1,j;
     int first;
   agelim=AGESUP;    double ***freq; /* Frequencies */
   hstepm=stepsize*YEARM; /* Every year of age */    double *pp, **prop;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    double pos,posprop, k2, dateintsum=0,k2cpt=0;
      char fileresp[FILENAMELENGTH];
   k=0;    
   for(cptcov=1;cptcov<=i1;cptcov++){    pp=vector(1,nlstate);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    prop=matrix(1,nlstate,iagemin,iagemax+3);
       k=k+1;    strcpy(fileresp,"p");
         fprintf(ficrespij,"\n#****** ");    strcat(fileresp,fileres);
         for(j=1;j<=cptcovn;j++)    if((ficresp=fopen(fileresp,"w"))==NULL) {
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);      printf("Problem with prevalence resultfile: %s\n", fileresp);
         fprintf(ficrespij,"******\n");      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
              exit(0);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */    }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    j1=0;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    
           oldm=oldms;savm=savms;    j=cptcoveff;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      if (cptcovn<1) {j=1;ncodemax[1]=1;}
           fprintf(ficrespij,"# Age");  
           for(i=1; i<=nlstate;i++)    first=1;
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %1d-%1d",i,j);    /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
           fprintf(ficrespij,"\n");    /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
           for (h=0; h<=nhstepm; h++){    /*    j1++;
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  */
             for(i=1; i<=nlstate;i++)    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
               for(j=1; j<=nlstate+ndeath;j++)        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          scanf("%d", i);*/
             fprintf(ficrespij,"\n");        for (i=-5; i<=nlstate+ndeath; i++)  
           }          for (jk=-5; jk<=nlstate+ndeath; jk++)  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(m=iagemin; m <= iagemax+3; m++)
           fprintf(ficrespij,"\n");              freq[i][jk][m]=0;
         }        
     }        for (i=1; i<=nlstate; i++)  
   }          for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0;
   fclose(ficrespij);        
         dateintsum=0;
   /*---------- Health expectancies and variances ------------*/        k2cpt=0;
         for (i=1; i<=imx; i++) {
   strcpy(filerest,"t");          bool=1;
   strcat(filerest,fileres);          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
   if((ficrest=fopen(filerest,"w"))==NULL) {            for (z1=1; z1<=cptcoveff; z1++)       
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
   }                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);                bool=0;
                 /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
                   bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
   strcpy(filerese,"e");                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
   strcat(filerese,fileres);                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
   if((ficreseij=fopen(filerese,"w"))==NULL) {              } 
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          }
   }   
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          if (bool==1){
             for(m=firstpass; m<=lastpass; m++){
  strcpy(fileresv,"v");              k2=anint[m][i]+(mint[m][i]/12.);
   strcat(fileresv,fileres);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   if((ficresvij=fopen(fileresv,"w"))==NULL) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);                if (m<lastpass) {
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   k=0;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   for(cptcov=1;cptcov<=i1;cptcov++){                }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                
       k=k+1;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
       fprintf(ficrest,"\n#****** ");                  dateintsum=dateintsum+k2;
       for(j=1;j<=cptcovn;j++)                  k2cpt++;
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);                }
       fprintf(ficrest,"******\n");                /*}*/
             }
       fprintf(ficreseij,"\n#****** ");          }
       for(j=1;j<=cptcovn;j++)        } /* end i */
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);         
       fprintf(ficreseij,"******\n");        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         pstamp(ficresp);
       fprintf(ficresvij,"\n#****** ");        if  (cptcovn>0) {
       for(j=1;j<=cptcovn;j++)          fprintf(ficresp, "\n#********** Variable "); 
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       fprintf(ficresvij,"******\n");          fprintf(ficresp, "**********\n#");
           fprintf(ficlog, "\n#********** Variable "); 
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       oldm=oldms;savm=savms;          fprintf(ficlog, "**********\n#");
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);          }
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        for(i=1; i<=nlstate;i++) 
       oldm=oldms;savm=savms;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        fprintf(ficresp, "\n");
              
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        for(i=iagemin; i <= iagemax+3; i++){
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          if(i==iagemax+3){
       fprintf(ficrest,"\n");            fprintf(ficlog,"Total");
                  }else{
       hf=1;            if(first==1){
       if (stepm >= YEARM) hf=stepm/YEARM;              first=0;
       epj=vector(1,nlstate+1);              printf("See log file for details...\n");
       for(age=bage; age <=fage ;age++){            }
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);            fprintf(ficlog,"Age %d", i);
         fprintf(ficrest," %.0f",age);          }
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          for(jk=1; jk <=nlstate ; jk++){
           for(i=1, epj[j]=0.;i <=nlstate;i++) {            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];              pp[jk] += freq[jk][m][i]; 
           }          }
           epj[nlstate+1] +=epj[j];          for(jk=1; jk <=nlstate ; jk++){
         }            for(m=-1, pos=0; m <=0 ; m++)
         for(i=1, vepp=0.;i <=nlstate;i++)              pos += freq[jk][m][i];
           for(j=1;j <=nlstate;j++)            if(pp[jk]>=1.e-10){
             vepp += vareij[i][j][(int)age];              if(first==1){
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         for(j=1;j <=nlstate;j++){              }
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         }            }else{
         fprintf(ficrest,"\n");              if(first==1)
       }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   }            }
                  }
  fclose(ficreseij);  
  fclose(ficresvij);          for(jk=1; jk <=nlstate ; jk++){
   fclose(ficrest);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   fclose(ficpar);              pp[jk] += freq[jk][m][i];
   free_vector(epj,1,nlstate+1);          }       
   /*  scanf("%d ",i); */          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             pos += pp[jk];
   /*------- Variance limit prevalence------*/              posprop += prop[jk][i];
           }
 strcpy(fileresvpl,"vpl");          for(jk=1; jk <=nlstate ; jk++){
   strcat(fileresvpl,fileres);            if(pos>=1.e-5){
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {              if(first==1)
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     exit(0);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   }            }else{
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);              if(first==1)
                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
  k=0;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
  for(cptcov=1;cptcov<=i1;cptcov++){            }
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            if( i <= iagemax){
      k=k+1;              if(pos>=1.e-5){
      fprintf(ficresvpl,"\n#****** ");                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
      for(j=1;j<=cptcovn;j++)                /*probs[i][jk][j1]= pp[jk]/pos;*/
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
      fprintf(ficresvpl,"******\n");              }
                    else
      varpl=matrix(1,nlstate,(int) bage, (int) fage);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
      oldm=oldms;savm=savms;            }
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          }
    }          
  }          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
   fclose(ficresvpl);              if(freq[jk][m][i] !=0 ) {
               if(first==1)
   /*---------- End : free ----------------*/                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                }
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          if(i <= iagemax)
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);            fprintf(ficresp,"\n");
            if(first==1)
              printf("Others in log...\n");
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);          fprintf(ficlog,"\n");
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);        }
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        /*}*/
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    }
      dateintmean=dateintsum/k2cpt; 
   free_matrix(matcov,1,npar,1,npar);   
   free_vector(delti,1,npar);    fclose(ficresp);
      free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    free_vector(pp,1,nlstate);
     free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   printf("End of Imach\n");    /* End of Freq */
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  }
    
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  /************ Prevalence ********************/
   /*printf("Total time was %d uSec.\n", total_usecs);*/  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   /*------ End -----------*/  {  
     /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
  end:       in each health status at the date of interview (if between dateprev1 and dateprev2).
 #ifdef windows       We still use firstpass and lastpass as another selection.
  chdir(pathcd);    */
 #endif   
  system("wgnuplot graph.plt");    int i, m, jk, k1, i1, j1, bool, z1,j;
     double ***freq; /* Frequencies */
 #ifdef windows    double *pp, **prop;
   while (z[0] != 'q') {    double pos,posprop; 
     chdir(pathcd);    double  y2; /* in fractional years */
     printf("\nType e to edit output files, c to start again, and q for exiting: ");    int iagemin, iagemax;
     scanf("%s",z);    int first; /** to stop verbosity which is redirected to log file */
     if (z[0] == 'c') system("./imach");  
     else if (z[0] == 'e') {    iagemin= (int) agemin;
       chdir(path);    iagemax= (int) agemax;
       system("index.htm");    /*pp=vector(1,nlstate);*/
     }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     else if (z[0] == 'q') exit(0);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   }    j1=0;
 #endif    
 }    /*j=cptcoveff;*/
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
     first=1;
     for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
       /*for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;*/
         
         for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0.0;
        
         for (i=1; i<=imx; i++) { /* Each individual */
           bool=1;
           if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
           } 
           if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                 if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   prop[s[m][i]][iagemax+3] += weight[i]; 
                 } 
               }
             } /* end selection of waves */
           }
         }
         for(i=iagemin; i <= iagemax+3; i++){  
           for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
             posprop += prop[jk][i]; 
           } 
           
           for(jk=1; jk <=nlstate ; jk++){     
             if( i <=  iagemax){ 
               if(posprop>=1.e-5){ 
                 probs[i][jk][j1]= prop[jk][i]/posprop;
               } else{
                 if(first==1){
                   first=0;
                   printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
                 }
               }
             } 
           }/* end jk */ 
         }/* end i */ 
       /*} *//* end i1 */
     } /* end j1 */
     
     /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     /*free_vector(pp,1,nlstate);*/
     free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  /* End of prevalence */
   
   /************* Waves Concatenation ***************/
   
   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   {
     /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
        dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
        */
   
     int i, mi, m;
     /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        double sum=0., jmean=0.;*/
     int first;
     int j, k=0,jk, ju, jl;
     double sum=0.;
     first=0;
     jmin=1e+5;
     jmax=-1;
     jmean=0.;
     for(i=1; i<=imx; i++){
       mi=0;
       m=firstpass;
       while(s[m][i] <= nlstate){
         if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           mw[++mi][i]=m;
         if(m >=lastpass)
           break;
         else
           m++;
       }/* end while */
       if (s[m][i] > nlstate){
         mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
            /* Only death is a correct wave */
         mw[mi][i]=m;
       }
   
       wav[i]=mi;
       if(mi==0){
         nbwarn++;
         if(first==0){
           printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
         }
         if(first==1){
           fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
         }
       } /* end mi==0 */
     } /* End individuals */
   
     for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
           dh[mi][i]=1;
         else{
           if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
             if (agedc[i] < 2*AGESUP) {
               j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
               if(j==0) j=1;  /* Survives at least one month after exam */
               else if(j<0){
                 nberr++;
                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 j=1; /* Temporary Dangerous patch */
                 printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                 fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
               }
               k=k+1;
               if (j >= jmax){
                 jmax=j;
                 ijmax=i;
               }
               if (j <= jmin){
                 jmin=j;
                 ijmin=i;
               }
               sum=sum+j;
               /*if (j<0) printf("j=%d num=%d \n",j,i);*/
               /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             }
           }
           else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   
             k=k+1;
             if (j >= jmax) {
               jmax=j;
               ijmax=i;
             }
             else if (j <= jmin){
               jmin=j;
               ijmin=i;
             }
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
             if(j<0){
               nberr++;
               printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
             }
             sum=sum+j;
           }
           jk= j/stepm;
           jl= j -jk*stepm;
           ju= j -(jk+1)*stepm;
           if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
             if(jl==0){
               dh[mi][i]=jk;
               bh[mi][i]=0;
             }else{ /* We want a negative bias in order to only have interpolation ie
                     * to avoid the price of an extra matrix product in likelihood */
               dh[mi][i]=jk+1;
               bh[mi][i]=ju;
             }
           }else{
             if(jl <= -ju){
               dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
                                    * is higher than the multiple of stepm and negative otherwise.
                                    */
             }
             else{
               dh[mi][i]=jk+1;
               bh[mi][i]=ju;
             }
             if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
               bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
             }
           } /* end if mle */
         }
       } /* end wave */
     }
     jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
    }
   
   /*********** Tricode ****************************/
   void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
   {
     /**< Uses cptcovn+2*cptcovprod as the number of covariates */
     /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
     /* Boring subroutine which should only output nbcode[Tvar[j]][k]
      * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
     /* nbcode[Tvar[j]][1]= 
     */
   
     int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     int modmaxcovj=0; /* Modality max of covariates j */
     int cptcode=0; /* Modality max of covariates j */
     int modmincovj=0; /* Modality min of covariates j */
   
   
     cptcoveff=0; 
    
     for (k=-1; k < maxncov; k++) Ndum[k]=0;
     for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   
     /* Loop on covariates without age and products */
     for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
       for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
                                  modality of this covariate Vj*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
                                       * If product of Vn*Vm, still boolean *:
                                       * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
                                       * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
         /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
                                         modality of the nth covariate of individual i. */
         if (ij > modmaxcovj)
           modmaxcovj=ij; 
         else if (ij < modmincovj) 
           modmincovj=ij; 
         if ((ij < -1) && (ij > NCOVMAX)){
           printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
           exit(1);
         }else
         Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
         /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         /* getting the maximum value of the modality of the covariate
            (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
            female is 1, then modmaxcovj=1.*/
       }
       printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
       cptcode=modmaxcovj;
       /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
      /*for (i=0; i<=cptcode; i++) {*/
       for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
         printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
         if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
           ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
         }
         /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
            historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
       } /* Ndum[-1] number of undefined modalities */
   
       /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
       /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
       /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
          modmincovj=3; modmaxcovj = 7;
          There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
          which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
          variables V1_1 and V1_2.
          nbcode[Tvar[j]][ij]=k;
          nbcode[Tvar[j]][1]=0;
          nbcode[Tvar[j]][2]=1;
          nbcode[Tvar[j]][3]=2;
       */
       ij=1; /* ij is similar to i but can jumps over null modalities */
       for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
         for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
           /*recode from 0 */
           if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
             nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
                                        k is a modality. If we have model=V1+V1*sex 
                                        then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
             ij++;
           }
           if (ij > ncodemax[j]) break; 
         }  /* end of loop on */
       } /* end of loop on modality */ 
     } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
     
    for (k=-1; k< maxncov; k++) Ndum[k]=0; 
     
     for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
      ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
      Ndum[ij]++; 
    } 
   
    ij=1;
    for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
      /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
      if((Ndum[i]!=0) && (i<=ncovcol)){
        /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
        Tvaraff[ij]=i; /*For printing (unclear) */
        ij++;
      }else
          Tvaraff[ij]=0;
    }
    ij--;
    cptcoveff=ij; /*Number of total covariates*/
   
   }
   
   
   /*********** Health Expectancies ****************/
   
   void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
   {
     /* Health expectancies, no variances */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
     double ***p3mat;
     double eip;
   
     pstamp(ficreseij);
     fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++){
         fprintf(ficreseij," e%1d%1d ",i,j);
       }
       fprintf(ficreseij," e%1d. ",i);
     }
     fprintf(ficreseij,"\n");
   
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     agelim=AGESUP;
     /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       
   /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
       printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       
       /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0;
         for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
           fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
         fprintf(ficreseij,"%9.4f", eip );
       }
       fprintf(ficreseij,"\n");
       
     }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
     
   }
   
   void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
   {
     /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .
     */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
     double **dnewm,**doldm;
     double *xp, *xm;
     double **gp, **gm;
     double ***gradg, ***trgradg;
     int theta;
   
     double eip, vip;
   
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
     xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
     pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
     }
     fprintf(ficresstdeij,"\n");
   
     pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
       }
     fprintf(ficrescveij,"\n");
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
         for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
           }
         }
        
         for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
       
       
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       
   
        for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   
        printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
   
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
      
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
       strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence from each state (1 to %d) to period (stable) prevalence in state %d <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">",nlstate, cpt, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    avoid:
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.", dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ = *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int i1, j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.5  
changed lines
  Added in v.1.161


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>