Diff for /imach/src/imach.c between versions 1.5 and 1.91

version 1.5, 2001/05/02 17:42:45 version 1.91, 2003/06/25 15:30:29
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.91  2003/06/25 15:30:29  brouard
   individuals from different ages are interviewed on their health status    * imach.c (Repository): Duplicated warning errors corrected.
   or degree of  disability. At least a second wave of interviews    (Repository): Elapsed time after each iteration is now output. It
   ("longitudinal") should  measure each new individual health status.    helps to forecast when convergence will be reached. Elapsed time
   Health expectancies are computed from the transistions observed between    is stamped in powell.  We created a new html file for the graphs
   waves and are computed for each degree of severity of disability (number    concerning matrix of covariance. It has extension -cov.htm.
   of life states). More degrees you consider, more time is necessary to  
   reach the Maximum Likelihood of the parameters involved in the model.    Revision 1.90  2003/06/24 12:34:15  brouard
   The simplest model is the multinomial logistic model where pij is    (Module): Some bugs corrected for windows. Also, when
   the probabibility to be observed in state j at the second wave conditional    mle=-1 a template is output in file "or"mypar.txt with the design
   to be observed in state i at the first wave. Therefore the model is:    of the covariance matrix to be input.
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'  
   is a covariate. If you want to have a more complex model than "constant and    Revision 1.89  2003/06/24 12:30:52  brouard
   age", you should modify the program where the markup    (Module): Some bugs corrected for windows. Also, when
     *Covariates have to be included here again* invites you to do it.    mle=-1 a template is output in file "or"mypar.txt with the design
   More covariates you add, less is the speed of the convergence.    of the covariance matrix to be input.
   
   The advantage that this computer programme claims, comes from that if the    Revision 1.88  2003/06/23 17:54:56  brouard
   delay between waves is not identical for each individual, or if some    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   individual missed an interview, the information is not rounded or lost, but  
   taken into account using an interpolation or extrapolation.    Revision 1.87  2003/06/18 12:26:01  brouard
   hPijx is the probability to be    Version 0.96
   observed in state i at age x+h conditional to the observed state i at age  
   x. The delay 'h' can be split into an exact number (nh*stepm) of    Revision 1.86  2003/06/17 20:04:08  brouard
   unobserved intermediate  states. This elementary transition (by month or    (Module): Change position of html and gnuplot routines and added
   quarter trimester, semester or year) is model as a multinomial logistic.    routine fileappend.
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply hPijx.    Revision 1.85  2003/06/17 13:12:43  brouard
     * imach.c (Repository): Check when date of death was earlier that
   Also this programme outputs the covariance matrix of the parameters but also    current date of interview. It may happen when the death was just
   of the life expectancies. It also computes the prevalence limits.    prior to the death. In this case, dh was negative and likelihood
      was wrong (infinity). We still send an "Error" but patch by
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    assuming that the date of death was just one stepm after the
            Institut national d'études démographiques, Paris.    interview.
   This software have been partly granted by Euro-REVES, a concerted action    (Repository): Because some people have very long ID (first column)
   from the European Union.    we changed int to long in num[] and we added a new lvector for
   It is copyrighted identically to a GNU software product, ie programme and    memory allocation. But we also truncated to 8 characters (left
   software can be distributed freely for non commercial use. Latest version    truncation)
   can be accessed at http://euroreves.ined.fr/imach .    (Repository): No more line truncation errors.
   **********************************************************************/  
      Revision 1.84  2003/06/13 21:44:43  brouard
 #include <math.h>    * imach.c (Repository): Replace "freqsummary" at a correct
 #include <stdio.h>    place. It differs from routine "prevalence" which may be called
 #include <stdlib.h>    many times. Probs is memory consuming and must be used with
 #include <unistd.h>    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define MAXLINE 256  
 #define FILENAMELENGTH 80    Revision 1.83  2003/06/10 13:39:11  lievre
 /*#define DEBUG*/    *** empty log message ***
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.82  2003/06/05 15:57:20  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Add log in  imach.c and  fullversion number is now printed.
   
   */
   /*
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */     Interpolated Markov Chain
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
     Short summary of the programme:
 #define NINTERVMAX 8    
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    This program computes Healthy Life Expectancies from
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #define NCOVMAX 8 /* Maximum number of covariates */    first survey ("cross") where individuals from different ages are
 #define MAXN 20000    interviewed on their health status or degree of disability (in the
 #define YEARM 12. /* Number of months per year */    case of a health survey which is our main interest) -2- at least a
 #define AGESUP 130    second wave of interviews ("longitudinal") which measure each change
 #define AGEBASE 40    (if any) in individual health status.  Health expectancies are
     computed from the time spent in each health state according to a
     model. More health states you consider, more time is necessary to reach the
 int nvar;    Maximum Likelihood of the parameters involved in the model.  The
 static int cptcov;    simplest model is the multinomial logistic model where pij is the
 int cptcovn;    probability to be observed in state j at the second wave
 int npar=NPARMAX;    conditional to be observed in state i at the first wave. Therefore
 int nlstate=2; /* Number of live states */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 int ndeath=1; /* Number of dead states */    'age' is age and 'sex' is a covariate. If you want to have a more
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    complex model than "constant and age", you should modify the program
     where the markup *Covariates have to be included here again* invites
 int *wav; /* Number of waves for this individuual 0 is possible */    you to do it.  More covariates you add, slower the
 int maxwav; /* Maxim number of waves */    convergence.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    The advantage of this computer programme, compared to a simple
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    multinomial logistic model, is clear when the delay between waves is not
 double **oldm, **newm, **savm; /* Working pointers to matrices */    identical for each individual. Also, if a individual missed an
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    intermediate interview, the information is lost, but taken into
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    account using an interpolation or extrapolation.  
 FILE *ficgp, *fichtm;  
 FILE *ficreseij;    hPijx is the probability to be observed in state i at age x+h
   char filerese[FILENAMELENGTH];    conditional to the observed state i at age x. The delay 'h' can be
  FILE  *ficresvij;    split into an exact number (nh*stepm) of unobserved intermediate
   char fileresv[FILENAMELENGTH];    states. This elementary transition (by month, quarter,
  FILE  *ficresvpl;    semester or year) is modelled as a multinomial logistic.  The hPx
   char fileresvpl[FILENAMELENGTH];    matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
     hPijx.
   
     Also this programme outputs the covariance matrix of the parameters but also
 #define NR_END 1    of the life expectancies. It also computes the stable prevalence. 
 #define FREE_ARG char*    
 #define FTOL 1.0e-10    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 #define NRANSI    This software have been partly granted by Euro-REVES, a concerted action
 #define ITMAX 200    from the European Union.
     It is copyrighted identically to a GNU software product, ie programme and
 #define TOL 2.0e-4    software can be distributed freely for non commercial use. Latest version
     can be accessed at http://euroreves.ined.fr/imach .
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
 #define GOLD 1.618034    **********************************************************************/
 #define GLIMIT 100.0  /*
 #define TINY 1.0e-20    main
     read parameterfile
 static double maxarg1,maxarg2;    read datafile
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    concatwav
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    freqsummary
      if (mle >= 1)
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))      mlikeli
 #define rint(a) floor(a+0.5)    print results files
     if mle==1 
 static double sqrarg;       computes hessian
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}        begin-prev-date,...
     open gnuplot file
 int imx;    open html file
 int stepm;    stable prevalence
 /* Stepm, step in month: minimum step interpolation*/     for age prevalim()
     h Pij x
 int m,nb;    variance of p varprob
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax;    forecasting if prevfcast==1 prevforecast call prevalence()
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    health expectancies
 double **pmmij;    Variance-covariance of DFLE
     prevalence()
 double *weight;     movingaverage()
 int **s; /* Status */    varevsij() 
 double *agedc, **covar, idx;    if popbased==1 varevsij(,popbased)
 int **nbcode, *Tcode, *Tvar, **codtab;    total life expectancies
     Variance of stable prevalence
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */   end
 double ftolhess; /* Tolerance for computing hessian */  */
   
   
 static  int split( char *path, char *dirc, char *name )  
 {   
    char *s;                             /* pointer */  #include <math.h>
    int  l1, l2;                         /* length counters */  #include <stdio.h>
   #include <stdlib.h>
    l1 = strlen( path );                 /* length of path */  #include <unistd.h>
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
    s = strrchr( path, '\\' );           /* find last / */  #include <sys/time.h>
    if ( s == NULL ) {                   /* no directory, so use current */  #include <time.h>
 #if     defined(__bsd__)                /* get current working directory */  #include "timeval.h"
       extern char       *getwd( );  
   #define MAXLINE 256
       if ( getwd( dirc ) == NULL ) {  #define GNUPLOTPROGRAM "gnuplot"
 #else  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
       extern char       *getcwd( );  #define FILENAMELENGTH 132
   /*#define DEBUG*/
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  /*#define windows*/
 #endif  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
          return( GLOCK_ERROR_GETCWD );  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
       }  
       strcpy( name, path );             /* we've got it */  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
    } else {                             /* strip direcotry from path */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */  #define NINTERVMAX 8
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
       strcpy( name, s );                /* save file name */  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  #define NCOVMAX 8 /* Maximum number of covariates */
       dirc[l1-l2] = 0;                  /* add zero */  #define MAXN 20000
    }  #define YEARM 12. /* Number of months per year */
    l1 = strlen( dirc );                 /* length of directory */  #define AGESUP 130
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  #define AGEBASE 40
    return( 0 );                         /* we're done */  #ifdef unix
 }  #define DIRSEPARATOR '/'
   #define ODIRSEPARATOR '\\'
   #else
 /******************************************/  #define DIRSEPARATOR '\\'
   #define ODIRSEPARATOR '/'
 void replace(char *s, char*t)  #endif
 {  
   int i;  /* $Id$ */
   int lg=20;  /* $State$ */
   i=0;  
   lg=strlen(t);  char version[]="Imach version 0.96a, June 2003, INED-EUROREVES ";
   for(i=0; i<= lg; i++) {  char fullversion[]="$Revision$ $Date$"; 
     (s[i] = t[i]);  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
     if (t[i]== '\\') s[i]='/';  int nvar;
   }  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 }  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
 int nbocc(char *s, char occ)  int ndeath=1; /* Number of dead states */
 {  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int i,j=0;  int popbased=0;
   int lg=20;  
   i=0;  int *wav; /* Number of waves for this individuual 0 is possible */
   lg=strlen(s);  int maxwav; /* Maxim number of waves */
   for(i=0; i<= lg; i++) {  int jmin, jmax; /* min, max spacing between 2 waves */
   if  (s[i] == occ ) j++;  int gipmx, gsw; /* Global variables on the number of contributions 
   }                     to the likelihood and the sum of weights (done by funcone)*/
   return j;  int mle, weightopt;
 }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 void cutv(char *u,char *v, char*t, char occ)  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   int i,lg,j,p;  double jmean; /* Mean space between 2 waves */
   i=0;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   for(j=0; j<=strlen(t)-1; j++) {  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   }  FILE *ficlog, *ficrespow;
   int globpr; /* Global variable for printing or not */
   lg=strlen(t);  double fretone; /* Only one call to likelihood */
   for(j=0; j<p; j++) {  long ipmx; /* Number of contributions */
     (u[j] = t[j]);  double sw; /* Sum of weights */
     u[p]='\0';  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   }  FILE *ficresilk;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
    for(j=0; j<= lg; j++) {  FILE *ficresprobmorprev;
     if (j>=(p+1))(v[j-p-1] = t[j]);  FILE *fichtm, *fichtmcov; /* Html File */
   }  FILE *ficreseij;
 }  char filerese[FILENAMELENGTH];
   FILE  *ficresvij;
 /********************** nrerror ********************/  char fileresv[FILENAMELENGTH];
   FILE  *ficresvpl;
 void nrerror(char error_text[])  char fileresvpl[FILENAMELENGTH];
 {  char title[MAXLINE];
   fprintf(stderr,"ERREUR ...\n");  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   fprintf(stderr,"%s\n",error_text);  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   exit(1);  char tmpout[FILENAMELENGTH]; 
 }  char command[FILENAMELENGTH];
 /*********************** vector *******************/  int  outcmd=0;
 double *vector(int nl, int nh)  
 {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   double *v;  char lfileres[FILENAMELENGTH];
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  char filelog[FILENAMELENGTH]; /* Log file */
   if (!v) nrerror("allocation failure in vector");  char filerest[FILENAMELENGTH];
   return v-nl+NR_END;  char fileregp[FILENAMELENGTH];
 }  char popfile[FILENAMELENGTH];
   
 /************************ free vector ******************/  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 void free_vector(double*v, int nl, int nh)  
 {  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   free((FREE_ARG)(v+nl-NR_END));  struct timezone tzp;
 }  extern int gettimeofday();
   struct tm tmg, tm, tmf, *gmtime(), *localtime();
 /************************ivector *******************************/  long time_value;
 int *ivector(long nl,long nh)  extern long time();
 {  char strcurr[80], strfor[80];
   int *v;  
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #define NR_END 1
   if (!v) nrerror("allocation failure in ivector");  #define FREE_ARG char*
   return v-nl+NR_END;  #define FTOL 1.0e-10
 }  
   #define NRANSI 
 /******************free ivector **************************/  #define ITMAX 200 
 void free_ivector(int *v, long nl, long nh)  
 {  #define TOL 2.0e-4 
   free((FREE_ARG)(v+nl-NR_END));  
 }  #define CGOLD 0.3819660 
   #define ZEPS 1.0e-10 
 /******************* imatrix *******************************/  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #define GOLD 1.618034 
 {  #define GLIMIT 100.0 
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #define TINY 1.0e-20 
   int **m;  
    static double maxarg1,maxarg2;
   /* allocate pointers to rows */  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   if (!m) nrerror("allocation failure 1 in matrix()");    
   m += NR_END;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   m -= nrl;  #define rint(a) floor(a+0.5)
    
    static double sqrarg;
   /* allocate rows and set pointers to them */  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  int imx; 
   m[nrl] -= ncl;  int stepm;
    /* Stepm, step in month: minimum step interpolation*/
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
    int estepm;
   /* return pointer to array of pointers to rows */  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   return m;  
 }  int m,nb;
   long *num;
 /****************** free_imatrix *************************/  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
 void free_imatrix(m,nrl,nrh,ncl,nch)  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       int **m;  double **pmmij, ***probs;
       long nch,ncl,nrh,nrl;  double dateintmean=0;
      /* free an int matrix allocated by imatrix() */  
 {  double *weight;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  int **s; /* Status */
   free((FREE_ARG) (m+nrl-NR_END));  double *agedc, **covar, idx;
 }  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   
 /******************* matrix *******************************/  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 double **matrix(long nrl, long nrh, long ncl, long nch)  double ftolhess; /* Tolerance for computing hessian */
 {  
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  /**************** split *************************/
   double **m;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    char  *ss;                            /* pointer */
   if (!m) nrerror("allocation failure 1 in matrix()");    int   l1, l2;                         /* length counters */
   m += NR_END;  
   m -= nrl;    l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if ( ss == NULL ) {                   /* no directory, so use current */
   m[nrl] += NR_END;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   m[nrl] -= ncl;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       /* get current working directory */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;      /*    extern  char* getcwd ( char *buf , int len);*/
   return m;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 }        return( GLOCK_ERROR_GETCWD );
       }
 /*************************free matrix ************************/      strcpy( name, path );               /* we've got it */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    } else {                              /* strip direcotry from path */
 {      ss++;                               /* after this, the filename */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));      l2 = strlen( ss );                  /* length of filename */
   free((FREE_ARG)(m+nrl-NR_END));      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 }      strcpy( name, ss );         /* save file name */
       strncpy( dirc, path, l1 - l2 );     /* now the directory */
 /******************* ma3x *******************************/      dirc[l1-l2] = 0;                    /* add zero */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    }
 {    l1 = strlen( dirc );                  /* length of directory */
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    /*#ifdef windows
   double ***m;    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   #else
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   if (!m) nrerror("allocation failure 1 in matrix()");  #endif
   m += NR_END;    */
   m -= nrl;    ss = strrchr( name, '.' );            /* find last / */
     ss++;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    strcpy(ext,ss);                       /* save extension */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    l1= strlen( name);
   m[nrl] += NR_END;    l2= strlen(ss)+1;
   m[nrl] -= ncl;    strncpy( finame, name, l1-l2);
     finame[l1-l2]= 0;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    return( 0 );                          /* we're done */
   }
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  /******************************************/
   m[nrl][ncl] -= nll;  
   for (j=ncl+1; j<=nch; j++)  void replace_back_to_slash(char *s, char*t)
     m[nrl][j]=m[nrl][j-1]+nlay;  {
      int i;
   for (i=nrl+1; i<=nrh; i++) {    int lg=0;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    i=0;
     for (j=ncl+1; j<=nch; j++)    lg=strlen(t);
       m[i][j]=m[i][j-1]+nlay;    for(i=0; i<= lg; i++) {
   }      (s[i] = t[i]);
   return m;      if (t[i]== '\\') s[i]='/';
 }    }
   }
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  int nbocc(char *s, char occ)
 {  {
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    int i,j=0;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    int lg=20;
   free((FREE_ARG)(m+nrl-NR_END));    i=0;
 }    lg=strlen(s);
     for(i=0; i<= lg; i++) {
 /***************** f1dim *************************/    if  (s[i] == occ ) j++;
 extern int ncom;    }
 extern double *pcom,*xicom;    return j;
 extern double (*nrfunc)(double []);  }
    
 double f1dim(double x)  void cutv(char *u,char *v, char*t, char occ)
 {  {
   int j;    /* cuts string t into u and v where u is ended by char occ excluding it
   double f;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   double *xt;       gives u="abcedf" and v="ghi2j" */
      int i,lg,j,p=0;
   xt=vector(1,ncom);    i=0;
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    for(j=0; j<=strlen(t)-1; j++) {
   f=(*nrfunc)(xt);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   free_vector(xt,1,ncom);    }
   return f;  
 }    lg=strlen(t);
     for(j=0; j<p; j++) {
 /*****************brent *************************/      (u[j] = t[j]);
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    }
 {       u[p]='\0';
   int iter;  
   double a,b,d,etemp;     for(j=0; j<= lg; j++) {
   double fu,fv,fw,fx;      if (j>=(p+1))(v[j-p-1] = t[j]);
   double ftemp;    }
   double p,q,r,tol1,tol2,u,v,w,x,xm;  }
   double e=0.0;  
    /********************** nrerror ********************/
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);  void nrerror(char error_text[])
   x=w=v=bx;  {
   fw=fv=fx=(*f)(x);    fprintf(stderr,"ERREUR ...\n");
   for (iter=1;iter<=ITMAX;iter++) {    fprintf(stderr,"%s\n",error_text);
     xm=0.5*(a+b);    exit(EXIT_FAILURE);
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  }
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  /*********************** vector *******************/
     printf(".");fflush(stdout);  double *vector(int nl, int nh)
 #ifdef DEBUG  {
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    double *v;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 #endif    if (!v) nrerror("allocation failure in vector");
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    return v-nl+NR_END;
       *xmin=x;  }
       return fx;  
     }  /************************ free vector ******************/
     ftemp=fu;  void free_vector(double*v, int nl, int nh)
     if (fabs(e) > tol1) {  {
       r=(x-w)*(fx-fv);    free((FREE_ARG)(v+nl-NR_END));
       q=(x-v)*(fx-fw);  }
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);  /************************ivector *******************************/
       if (q > 0.0) p = -p;  int *ivector(long nl,long nh)
       q=fabs(q);  {
       etemp=e;    int *v;
       e=d;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    if (!v) nrerror("allocation failure in ivector");
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    return v-nl+NR_END;
       else {  }
         d=p/q;  
         u=x+d;  /******************free ivector **************************/
         if (u-a < tol2 || b-u < tol2)  void free_ivector(int *v, long nl, long nh)
           d=SIGN(tol1,xm-x);  {
       }    free((FREE_ARG)(v+nl-NR_END));
     } else {  }
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  
     }  /************************lvector *******************************/
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  long *lvector(long nl,long nh)
     fu=(*f)(u);  {
     if (fu <= fx) {    long *v;
       if (u >= x) a=x; else b=x;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       SHFT(v,w,x,u)    if (!v) nrerror("allocation failure in ivector");
         SHFT(fv,fw,fx,fu)    return v-nl+NR_END;
         } else {  }
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  /******************free lvector **************************/
             v=w;  void free_lvector(long *v, long nl, long nh)
             w=u;  {
             fv=fw;    free((FREE_ARG)(v+nl-NR_END));
             fw=fu;  }
           } else if (fu <= fv || v == x || v == w) {  
             v=u;  /******************* imatrix *******************************/
             fv=fu;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
           }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
         }  { 
   }    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   nrerror("Too many iterations in brent");    int **m; 
   *xmin=x;    
   return fx;    /* allocate pointers to rows */ 
 }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     if (!m) nrerror("allocation failure 1 in matrix()"); 
 /****************** mnbrak ***********************/    m += NR_END; 
     m -= nrl; 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    
             double (*func)(double))    
 {    /* allocate rows and set pointers to them */ 
   double ulim,u,r,q, dum;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   double fu;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
      m[nrl] += NR_END; 
   *fa=(*func)(*ax);    m[nrl] -= ncl; 
   *fb=(*func)(*bx);    
   if (*fb > *fa) {    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
     SHFT(dum,*ax,*bx,dum)    
       SHFT(dum,*fb,*fa,dum)    /* return pointer to array of pointers to rows */ 
       }    return m; 
   *cx=(*bx)+GOLD*(*bx-*ax);  } 
   *fc=(*func)(*cx);  
   while (*fb > *fc) {  /****************** free_imatrix *************************/
     r=(*bx-*ax)*(*fb-*fc);  void free_imatrix(m,nrl,nrh,ncl,nch)
     q=(*bx-*cx)*(*fb-*fa);        int **m;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/        long nch,ncl,nrh,nrl; 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));       /* free an int matrix allocated by imatrix() */ 
     ulim=(*bx)+GLIMIT*(*cx-*bx);  { 
     if ((*bx-u)*(u-*cx) > 0.0) {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       fu=(*func)(u);    free((FREE_ARG) (m+nrl-NR_END)); 
     } else if ((*cx-u)*(u-ulim) > 0.0) {  } 
       fu=(*func)(u);  
       if (fu < *fc) {  /******************* matrix *******************************/
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  double **matrix(long nrl, long nrh, long ncl, long nch)
           SHFT(*fb,*fc,fu,(*func)(u))  {
           }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    double **m;
       u=ulim;  
       fu=(*func)(u);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     } else {    if (!m) nrerror("allocation failure 1 in matrix()");
       u=(*cx)+GOLD*(*cx-*bx);    m += NR_END;
       fu=(*func)(u);    m -= nrl;
     }  
     SHFT(*ax,*bx,*cx,u)    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       SHFT(*fa,*fb,*fc,fu)    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       }    m[nrl] += NR_END;
 }    m[nrl] -= ncl;
   
 /*************** linmin ************************/    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     return m;
 int ncom;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
 double *pcom,*xicom;     */
 double (*nrfunc)(double []);  }
    
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  /*************************free matrix ************************/
 {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   double brent(double ax, double bx, double cx,  {
                double (*f)(double), double tol, double *xmin);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   double f1dim(double x);    free((FREE_ARG)(m+nrl-NR_END));
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  }
               double *fc, double (*func)(double));  
   int j;  /******************* ma3x *******************************/
   double xx,xmin,bx,ax;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   double fx,fb,fa;  {
      long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   ncom=n;    double ***m;
   pcom=vector(1,n);  
   xicom=vector(1,n);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   nrfunc=func;    if (!m) nrerror("allocation failure 1 in matrix()");
   for (j=1;j<=n;j++) {    m += NR_END;
     pcom[j]=p[j];    m -= nrl;
     xicom[j]=xi[j];  
   }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   ax=0.0;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   xx=1.0;    m[nrl] += NR_END;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    m[nrl] -= ncl;
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   for (j=1;j<=n;j++) {    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     xi[j] *= xmin;    m[nrl][ncl] += NR_END;
     p[j] += xi[j];    m[nrl][ncl] -= nll;
   }    for (j=ncl+1; j<=nch; j++) 
   free_vector(xicom,1,n);      m[nrl][j]=m[nrl][j-1]+nlay;
   free_vector(pcom,1,n);    
 }    for (i=nrl+1; i<=nrh; i++) {
       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 /*************** powell ************************/      for (j=ncl+1; j<=nch; j++) 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,        m[i][j]=m[i][j-1]+nlay;
             double (*func)(double []))    }
 {    return m; 
   void linmin(double p[], double xi[], int n, double *fret,    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
               double (*func)(double []));             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   int i,ibig,j;    */
   double del,t,*pt,*ptt,*xit;  }
   double fp,fptt;  
   double *xits;  /*************************free ma3x ************************/
   pt=vector(1,n);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   ptt=vector(1,n);  {
   xit=vector(1,n);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   xits=vector(1,n);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   *fret=(*func)(p);    free((FREE_ARG)(m+nrl-NR_END));
   for (j=1;j<=n;j++) pt[j]=p[j];  }
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  /***************** f1dim *************************/
     ibig=0;  extern int ncom; 
     del=0.0;  extern double *pcom,*xicom;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  extern double (*nrfunc)(double []); 
     for (i=1;i<=n;i++)   
       printf(" %d %.12f",i, p[i]);  double f1dim(double x) 
     printf("\n");  { 
     for (i=1;i<=n;i++) {    int j; 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    double f;
       fptt=(*fret);    double *xt; 
 #ifdef DEBUG   
       printf("fret=%lf \n",*fret);    xt=vector(1,ncom); 
 #endif    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       printf("%d",i);fflush(stdout);    f=(*nrfunc)(xt); 
       linmin(p,xit,n,fret,func);    free_vector(xt,1,ncom); 
       if (fabs(fptt-(*fret)) > del) {    return f; 
         del=fabs(fptt-(*fret));  } 
         ibig=i;  
       }  /*****************brent *************************/
 #ifdef DEBUG  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       printf("%d %.12e",i,(*fret));  { 
       for (j=1;j<=n;j++) {    int iter; 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    double a,b,d,etemp;
         printf(" x(%d)=%.12e",j,xit[j]);    double fu,fv,fw,fx;
       }    double ftemp;
       for(j=1;j<=n;j++)    double p,q,r,tol1,tol2,u,v,w,x,xm; 
         printf(" p=%.12e",p[j]);    double e=0.0; 
       printf("\n");   
 #endif    a=(ax < cx ? ax : cx); 
     }    b=(ax > cx ? ax : cx); 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    x=w=v=bx; 
 #ifdef DEBUG    fw=fv=fx=(*f)(x); 
       int k[2],l;    for (iter=1;iter<=ITMAX;iter++) { 
       k[0]=1;      xm=0.5*(a+b); 
       k[1]=-1;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       printf("Max: %.12e",(*func)(p));      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       for (j=1;j<=n;j++)      printf(".");fflush(stdout);
         printf(" %.12e",p[j]);      fprintf(ficlog,".");fflush(ficlog);
       printf("\n");  #ifdef DEBUG
       for(l=0;l<=1;l++) {      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
         for (j=1;j<=n;j++) {      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  #endif
         }      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        *xmin=x; 
       }        return fx; 
 #endif      } 
       ftemp=fu;
       if (fabs(e) > tol1) { 
       free_vector(xit,1,n);        r=(x-w)*(fx-fv); 
       free_vector(xits,1,n);        q=(x-v)*(fx-fw); 
       free_vector(ptt,1,n);        p=(x-v)*q-(x-w)*r; 
       free_vector(pt,1,n);        q=2.0*(q-r); 
       return;        if (q > 0.0) p = -p; 
     }        q=fabs(q); 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");        etemp=e; 
     for (j=1;j<=n;j++) {        e=d; 
       ptt[j]=2.0*p[j]-pt[j];        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       xit[j]=p[j]-pt[j];          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       pt[j]=p[j];        else { 
     }          d=p/q; 
     fptt=(*func)(ptt);          u=x+d; 
     if (fptt < fp) {          if (u-a < tol2 || b-u < tol2) 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);            d=SIGN(tol1,xm-x); 
       if (t < 0.0) {        } 
         linmin(p,xit,n,fret,func);      } else { 
         for (j=1;j<=n;j++) {        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
           xi[j][ibig]=xi[j][n];      } 
           xi[j][n]=xit[j];      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
         }      fu=(*f)(u); 
 #ifdef DEBUG      if (fu <= fx) { 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        if (u >= x) a=x; else b=x; 
         for(j=1;j<=n;j++)        SHFT(v,w,x,u) 
           printf(" %.12e",xit[j]);          SHFT(fv,fw,fx,fu) 
         printf("\n");          } else { 
 #endif            if (u < x) a=u; else b=u; 
       }            if (fu <= fw || w == x) { 
     }              v=w; 
   }              w=u; 
 }              fv=fw; 
               fw=fu; 
 /**** Prevalence limit ****************/            } else if (fu <= fv || v == x || v == w) { 
               v=u; 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)              fv=fu; 
 {            } 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit          } 
      matrix by transitions matrix until convergence is reached */    } 
     nrerror("Too many iterations in brent"); 
   int i, ii,j,k;    *xmin=x; 
   double min, max, maxmin, maxmax,sumnew=0.;    return fx; 
   double **matprod2();  } 
   double **out, cov[NCOVMAX], **pmij();  
   double **newm;  /****************** mnbrak ***********************/
   double agefin, delaymax=50 ; /* Max number of years to converge */  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   for (ii=1;ii<=nlstate+ndeath;ii++)              double (*func)(double)) 
     for (j=1;j<=nlstate+ndeath;j++){  { 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    double ulim,u,r,q, dum;
     }    double fu; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */   
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    *fa=(*func)(*ax); 
     newm=savm;    *fb=(*func)(*bx); 
     /* Covariates have to be included here again */    if (*fb > *fa) { 
     cov[1]=1.;      SHFT(dum,*ax,*bx,dum) 
     cov[2]=agefin;        SHFT(dum,*fb,*fa,dum) 
     if (cptcovn>0){        } 
       for (k=1; k<=cptcovn;k++) {cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];/*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/}    *cx=(*bx)+GOLD*(*bx-*ax); 
     }    *fc=(*func)(*cx); 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
     savm=oldm;      q=(*bx-*cx)*(*fb-*fa); 
     oldm=newm;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     maxmax=0.;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     for(j=1;j<=nlstate;j++){      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       min=1.;      if ((*bx-u)*(u-*cx) > 0.0) { 
       max=0.;        fu=(*func)(u); 
       for(i=1; i<=nlstate; i++) {      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         sumnew=0;        fu=(*func)(u); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        if (fu < *fc) { 
         prlim[i][j]= newm[i][j]/(1-sumnew);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
         max=FMAX(max,prlim[i][j]);            SHFT(*fb,*fc,fu,(*func)(u)) 
         min=FMIN(min,prlim[i][j]);            } 
       }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
       maxmin=max-min;        u=ulim; 
       maxmax=FMAX(maxmax,maxmin);        fu=(*func)(u); 
     }      } else { 
     if(maxmax < ftolpl){        u=(*cx)+GOLD*(*cx-*bx); 
       return prlim;        fu=(*func)(u); 
     }      } 
   }      SHFT(*ax,*bx,*cx,u) 
 }        SHFT(*fa,*fb,*fc,fu) 
         } 
 /*************** transition probabilities **********/  } 
   
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  /*************** linmin ************************/
 {  
   double s1, s2;  int ncom; 
   /*double t34;*/  double *pcom,*xicom;
   int i,j,j1, nc, ii, jj;  double (*nrfunc)(double []); 
    
     for(i=1; i<= nlstate; i++){  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     for(j=1; j<i;j++){  { 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    double brent(double ax, double bx, double cx, 
         /*s2 += param[i][j][nc]*cov[nc];*/                 double (*f)(double), double tol, double *xmin); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    double f1dim(double x); 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       }                double *fc, double (*func)(double)); 
       ps[i][j]=s2;    int j; 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    double xx,xmin,bx,ax; 
     }    double fx,fb,fa;
     for(j=i+1; j<=nlstate+ndeath;j++){   
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    ncom=n; 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    pcom=vector(1,n); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    xicom=vector(1,n); 
       }    nrfunc=func; 
       ps[i][j]=s2;    for (j=1;j<=n;j++) { 
     }      pcom[j]=p[j]; 
   }      xicom[j]=xi[j]; 
   for(i=1; i<= nlstate; i++){    } 
      s1=0;    ax=0.0; 
     for(j=1; j<i; j++)    xx=1.0; 
       s1+=exp(ps[i][j]);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     for(j=i+1; j<=nlstate+ndeath; j++)    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       s1+=exp(ps[i][j]);  #ifdef DEBUG
     ps[i][i]=1./(s1+1.);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     for(j=1; j<i; j++)    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       ps[i][j]= exp(ps[i][j])*ps[i][i];  #endif
     for(j=i+1; j<=nlstate+ndeath; j++)    for (j=1;j<=n;j++) { 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      xi[j] *= xmin; 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      p[j] += xi[j]; 
   } /* end i */    } 
     free_vector(xicom,1,n); 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    free_vector(pcom,1,n); 
     for(jj=1; jj<= nlstate+ndeath; jj++){  } 
       ps[ii][jj]=0;  
       ps[ii][ii]=1;  char *asc_diff_time(long time_sec, char ascdiff[])
     }  {
   }    long sec_left, days, hours, minutes;
     days = (time_sec) / (60*60*24);
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    sec_left = (time_sec) % (60*60*24);
     for(jj=1; jj<= nlstate+ndeath; jj++){    hours = (sec_left) / (60*60) ;
      printf("%lf ",ps[ii][jj]);    sec_left = (sec_left) %(60*60);
    }    minutes = (sec_left) /60;
     printf("\n ");    sec_left = (sec_left) % (60);
     }    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
     printf("\n ");printf("%lf ",cov[2]);*/    return ascdiff;
 /*  }
   for(i=1; i<= npar; i++) printf("%f ",x[i]);  
   goto end;*/  /*************** powell ************************/
     return ps;  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
 }              double (*func)(double [])) 
   { 
 /**************** Product of 2 matrices ******************/    void linmin(double p[], double xi[], int n, double *fret, 
                 double (*func)(double [])); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    int i,ibig,j; 
 {    double del,t,*pt,*ptt,*xit;
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    double fp,fptt;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    double *xits;
   /* in, b, out are matrice of pointers which should have been initialized    int niterf, itmp;
      before: only the contents of out is modified. The function returns  
      a pointer to pointers identical to out */    pt=vector(1,n); 
   long i, j, k;    ptt=vector(1,n); 
   for(i=nrl; i<= nrh; i++)    xit=vector(1,n); 
     for(k=ncolol; k<=ncoloh; k++)    xits=vector(1,n); 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    *fret=(*func)(p); 
         out[i][k] +=in[i][j]*b[j][k];    for (j=1;j<=n;j++) pt[j]=p[j]; 
     for (*iter=1;;++(*iter)) { 
   return out;      fp=(*fret); 
 }      ibig=0; 
       del=0.0; 
       last_time=curr_time;
 /************* Higher Matrix Product ***************/      (void) gettimeofday(&curr_time,&tzp);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
 {      fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      for (i=1;i<=n;i++) {
      duration (i.e. until        printf(" %d %.12f",i, p[i]);
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        fprintf(ficlog," %d %.12lf",i, p[i]);
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        fprintf(ficrespow," %.12lf", p[i]);
      (typically every 2 years instead of every month which is too big).      }
      Model is determined by parameters x and covariates have to be      printf("\n");
      included manually here.      fprintf(ficlog,"\n");
       fprintf(ficrespow,"\n");fflush(ficrespow);
      */      if(*iter <=3){
         tm = *localtime(&curr_time.tv_sec);
   int i, j, d, h, k;        asctime_r(&tm,strcurr);
   double **out, cov[NCOVMAX];        forecast_time=curr_time;
   double **newm;        itmp = strlen(strcurr);
         if(strcurr[itmp-1]=='\n')
   /* Hstepm could be zero and should return the unit matrix */          strcurr[itmp-1]='\0';
   for (i=1;i<=nlstate+ndeath;i++)        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
     for (j=1;j<=nlstate+ndeath;j++){        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
       oldm[i][j]=(i==j ? 1.0 : 0.0);        for(niterf=10;niterf<=30;niterf+=10){
       po[i][j][0]=(i==j ? 1.0 : 0.0);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
     }          tmf = *localtime(&forecast_time.tv_sec);
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */          asctime_r(&tmf,strfor);
   for(h=1; h <=nhstepm; h++){  /*      strcpy(strfor,asctime(&tmf)); */
     for(d=1; d <=hstepm; d++){          itmp = strlen(strfor);
       newm=savm;          if(strfor[itmp-1]=='\n')
       /* Covariates have to be included here again */          strfor[itmp-1]='\0';
       cov[1]=1.;          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
       if (cptcovn>0){        }
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];      }
     }      for (i=1;i<=n;i++) { 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        fptt=(*fret); 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  #ifdef DEBUG
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        printf("fret=%lf \n",*fret);
       savm=oldm;        fprintf(ficlog,"fret=%lf \n",*fret);
       oldm=newm;  #endif
     }        printf("%d",i);fflush(stdout);
     for(i=1; i<=nlstate+ndeath; i++)        fprintf(ficlog,"%d",i);fflush(ficlog);
       for(j=1;j<=nlstate+ndeath;j++) {        linmin(p,xit,n,fret,func); 
         po[i][j][h]=newm[i][j];        if (fabs(fptt-(*fret)) > del) { 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);          del=fabs(fptt-(*fret)); 
          */          ibig=i; 
       }        } 
   } /* end h */  #ifdef DEBUG
   return po;        printf("%d %.12e",i,(*fret));
 }        fprintf(ficlog,"%d %.12e",i,(*fret));
         for (j=1;j<=n;j++) {
           xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
 /*************** log-likelihood *************/          printf(" x(%d)=%.12e",j,xit[j]);
 double func( double *x)          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 {        }
   int i, ii, j, k, mi, d;        for(j=1;j<=n;j++) {
   double l, ll[NLSTATEMAX], cov[NCOVMAX];          printf(" p=%.12e",p[j]);
   double **out;          fprintf(ficlog," p=%.12e",p[j]);
   double sw; /* Sum of weights */        }
   double lli; /* Individual log likelihood */        printf("\n");
   long ipmx;        fprintf(ficlog,"\n");
   /*extern weight */  #endif
   /* We are differentiating ll according to initial status */      } 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   /*for(i=1;i<imx;i++)  #ifdef DEBUG
 printf(" %d\n",s[4][i]);        int k[2],l;
   */        k[0]=1;
         k[1]=-1;
   for(k=1; k<=nlstate; k++) ll[k]=0.;        printf("Max: %.12e",(*func)(p));
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        fprintf(ficlog,"Max: %.12e",(*func)(p));
        for(mi=1; mi<= wav[i]-1; mi++){        for (j=1;j<=n;j++) {
       for (ii=1;ii<=nlstate+ndeath;ii++)          printf(" %.12e",p[j]);
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);          fprintf(ficlog," %.12e",p[j]);
             for(d=0; d<dh[mi][i]; d++){        }
         newm=savm;        printf("\n");
           cov[1]=1.;        fprintf(ficlog,"\n");
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        for(l=0;l<=1;l++) {
           if (cptcovn>0){          for (j=1;j<=n;j++) {
             for (k=1; k<=cptcovn;k++) cov[2+k]=covar[1+k-1][i];            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             }            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          }
           savm=oldm;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           oldm=newm;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }
   #endif
       } /* end mult */  
      
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        free_vector(xit,1,n); 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        free_vector(xits,1,n); 
       ipmx +=1;        free_vector(ptt,1,n); 
       sw += weight[i];        free_vector(pt,1,n); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        return; 
     } /* end of wave */      } 
   } /* end of individual */      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (j=1;j<=n;j++) { 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        ptt[j]=2.0*p[j]-pt[j]; 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        xit[j]=p[j]-pt[j]; 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        pt[j]=p[j]; 
   return -l;      } 
 }      fptt=(*func)(ptt); 
       if (fptt < fp) { 
         t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
 /*********** Maximum Likelihood Estimation ***************/        if (t < 0.0) { 
           linmin(p,xit,n,fret,func); 
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          for (j=1;j<=n;j++) { 
 {            xi[j][ibig]=xi[j][n]; 
   int i,j, iter;            xi[j][n]=xit[j]; 
   double **xi,*delti;          }
   double fret;  #ifdef DEBUG
   xi=matrix(1,npar,1,npar);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for (i=1;i<=npar;i++)          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
     for (j=1;j<=npar;j++)          for(j=1;j<=n;j++){
       xi[i][j]=(i==j ? 1.0 : 0.0);            printf(" %.12e",xit[j]);
   printf("Powell\n");            fprintf(ficlog," %.12e",xit[j]);
   powell(p,xi,npar,ftol,&iter,&fret,func);          }
           printf("\n");
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          fprintf(ficlog,"\n");
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));  #endif
         }
 }      } 
     } 
 /**** Computes Hessian and covariance matrix ***/  } 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  
 {  /**** Prevalence limit (stable prevalence)  ****************/
   double  **a,**y,*x,pd;  
   double **hess;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   int i, j,jk;  {
   int *indx;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
        matrix by transitions matrix until convergence is reached */
   double hessii(double p[], double delta, int theta, double delti[]);  
   double hessij(double p[], double delti[], int i, int j);    int i, ii,j,k;
   void lubksb(double **a, int npar, int *indx, double b[]) ;    double min, max, maxmin, maxmax,sumnew=0.;
   void ludcmp(double **a, int npar, int *indx, double *d) ;    double **matprod2();
     double **out, cov[NCOVMAX], **pmij();
     double **newm;
   hess=matrix(1,npar,1,npar);    double agefin, delaymax=50 ; /* Max number of years to converge */
   
   printf("\nCalculation of the hessian matrix. Wait...\n");    for (ii=1;ii<=nlstate+ndeath;ii++)
   for (i=1;i<=npar;i++){      for (j=1;j<=nlstate+ndeath;j++){
     printf("%d",i);fflush(stdout);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     hess[i][i]=hessii(p,ftolhess,i,delti);      }
     /*printf(" %f ",p[i]);*/  
   }     cov[1]=1.;
    
   for (i=1;i<=npar;i++) {   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for (j=1;j<=npar;j++)  {    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       if (j>i) {      newm=savm;
         printf(".%d%d",i,j);fflush(stdout);      /* Covariates have to be included here again */
         hess[i][j]=hessij(p,delti,i,j);       cov[2]=agefin;
         hess[j][i]=hess[i][j];    
       }        for (k=1; k<=cptcovn;k++) {
     }          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   printf("\n");        }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        for (k=1; k<=cptcovprod;k++)
            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   a=matrix(1,npar,1,npar);  
   y=matrix(1,npar,1,npar);        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   x=vector(1,npar);        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   indx=ivector(1,npar);        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   for (i=1;i<=npar;i++)      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  
   ludcmp(a,npar,indx,&pd);      savm=oldm;
       oldm=newm;
   for (j=1;j<=npar;j++) {      maxmax=0.;
     for (i=1;i<=npar;i++) x[i]=0;      for(j=1;j<=nlstate;j++){
     x[j]=1;        min=1.;
     lubksb(a,npar,indx,x);        max=0.;
     for (i=1;i<=npar;i++){        for(i=1; i<=nlstate; i++) {
       matcov[i][j]=x[i];          sumnew=0;
     }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   }          prlim[i][j]= newm[i][j]/(1-sumnew);
           max=FMAX(max,prlim[i][j]);
   printf("\n#Hessian matrix#\n");          min=FMIN(min,prlim[i][j]);
   for (i=1;i<=npar;i++) {        }
     for (j=1;j<=npar;j++) {        maxmin=max-min;
       printf("%.3e ",hess[i][j]);        maxmax=FMAX(maxmax,maxmin);
     }      }
     printf("\n");      if(maxmax < ftolpl){
   }        return prlim;
       }
   /* Recompute Inverse */    }
   for (i=1;i<=npar;i++)  }
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  
   ludcmp(a,npar,indx,&pd);  /*************** transition probabilities ***************/ 
   
   /*  printf("\n#Hessian matrix recomputed#\n");  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
   for (j=1;j<=npar;j++) {    double s1, s2;
     for (i=1;i<=npar;i++) x[i]=0;    /*double t34;*/
     x[j]=1;    int i,j,j1, nc, ii, jj;
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){      for(i=1; i<= nlstate; i++){
       y[i][j]=x[i];      for(j=1; j<i;j++){
       printf("%.3e ",y[i][j]);        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     }          /*s2 += param[i][j][nc]*cov[nc];*/
     printf("\n");          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   }          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
   */        }
         ps[i][j]=s2;
   free_matrix(a,1,npar,1,npar);        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   free_matrix(y,1,npar,1,npar);      }
   free_vector(x,1,npar);      for(j=i+1; j<=nlstate+ndeath;j++){
   free_ivector(indx,1,npar);        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   free_matrix(hess,1,npar,1,npar);          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
         }
 }        ps[i][j]=s2;
       }
 /*************** hessian matrix ****************/    }
 double hessii( double x[], double delta, int theta, double delti[])      /*ps[3][2]=1;*/
 {  
   int i;    for(i=1; i<= nlstate; i++){
   int l=1, lmax=20;       s1=0;
   double k1,k2;      for(j=1; j<i; j++)
   double p2[NPARMAX+1];        s1+=exp(ps[i][j]);
   double res;      for(j=i+1; j<=nlstate+ndeath; j++)
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        s1+=exp(ps[i][j]);
   double fx;      ps[i][i]=1./(s1+1.);
   int k=0,kmax=10;      for(j=1; j<i; j++)
   double l1;        ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(j=i+1; j<=nlstate+ndeath; j++)
   fx=func(x);        ps[i][j]= exp(ps[i][j])*ps[i][i];
   for (i=1;i<=npar;i++) p2[i]=x[i];      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   for(l=0 ; l <=lmax; l++){    } /* end i */
     l1=pow(10,l);  
     delts=delt;    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     for(k=1 ; k <kmax; k=k+1){      for(jj=1; jj<= nlstate+ndeath; jj++){
       delt = delta*(l1*k);        ps[ii][jj]=0;
       p2[theta]=x[theta] +delt;        ps[ii][ii]=1;
       k1=func(p2)-fx;      }
       p2[theta]=x[theta]-delt;    }
       k2=func(p2)-fx;  
       /*res= (k1-2.0*fx+k2)/delt/delt; */  
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
            for(jj=1; jj<= nlstate+ndeath; jj++){
 #ifdef DEBUG       printf("%lf ",ps[ii][jj]);
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);     }
 #endif      printf("\n ");
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */      }
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){      printf("\n ");printf("%lf ",cov[2]);*/
         k=kmax;  /*
       }    for(i=1; i<= npar; i++) printf("%f ",x[i]);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    goto end;*/
         k=kmax; l=lmax*10.;      return ps;
       }  }
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  
         delts=delt;  /**************** Product of 2 matrices ******************/
       }  
     }  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   }  {
   delti[theta]=delts;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   return res;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
      /* in, b, out are matrice of pointers which should have been initialized 
 }       before: only the contents of out is modified. The function returns
        a pointer to pointers identical to out */
 double hessij( double x[], double delti[], int thetai,int thetaj)    long i, j, k;
 {    for(i=nrl; i<= nrh; i++)
   int i;      for(k=ncolol; k<=ncoloh; k++)
   int l=1, l1, lmax=20;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   double k1,k2,k3,k4,res,fx;          out[i][k] +=in[i][j]*b[j][k];
   double p2[NPARMAX+1];  
   int k;    return out;
   }
   fx=func(x);  
   for (k=1; k<=2; k++) {  
     for (i=1;i<=npar;i++) p2[i]=x[i];  /************* Higher Matrix Product ***************/
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     k1=func(p2)-fx;  {
      /* Computes the transition matrix starting at age 'age' over 
     p2[thetai]=x[thetai]+delti[thetai]/k;       'nhstepm*hstepm*stepm' months (i.e. until
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     k2=func(p2)-fx;       nhstepm*hstepm matrices. 
         Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     p2[thetai]=x[thetai]-delti[thetai]/k;       (typically every 2 years instead of every month which is too big 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;       for the memory).
     k3=func(p2)-fx;       Model is determined by parameters x and covariates have to be 
         included manually here. 
     p2[thetai]=x[thetai]-delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;       */
     k4=func(p2)-fx;  
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    int i, j, d, h, k;
 #ifdef DEBUG    double **out, cov[NCOVMAX];
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);    double **newm;
 #endif  
   }    /* Hstepm could be zero and should return the unit matrix */
   return res;    for (i=1;i<=nlstate+ndeath;i++)
 }      for (j=1;j<=nlstate+ndeath;j++){
         oldm[i][j]=(i==j ? 1.0 : 0.0);
 /************** Inverse of matrix **************/        po[i][j][0]=(i==j ? 1.0 : 0.0);
 void ludcmp(double **a, int n, int *indx, double *d)      }
 {    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   int i,imax,j,k;    for(h=1; h <=nhstepm; h++){
   double big,dum,sum,temp;      for(d=1; d <=hstepm; d++){
   double *vv;        newm=savm;
          /* Covariates have to be included here again */
   vv=vector(1,n);        cov[1]=1.;
   *d=1.0;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   for (i=1;i<=n;i++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     big=0.0;        for (k=1; k<=cptcovage;k++)
     for (j=1;j<=n;j++)          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       if ((temp=fabs(a[i][j])) > big) big=temp;        for (k=1; k<=cptcovprod;k++)
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     vv[i]=1.0/big;  
   }  
   for (j=1;j<=n;j++) {        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     for (i=1;i<j;i++) {        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       sum=a[i][j];        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       a[i][j]=sum;        savm=oldm;
     }        oldm=newm;
     big=0.0;      }
     for (i=j;i<=n;i++) {      for(i=1; i<=nlstate+ndeath; i++)
       sum=a[i][j];        for(j=1;j<=nlstate+ndeath;j++) {
       for (k=1;k<j;k++)          po[i][j][h]=newm[i][j];
         sum -= a[i][k]*a[k][j];          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       a[i][j]=sum;           */
       if ( (dum=vv[i]*fabs(sum)) >= big) {        }
         big=dum;    } /* end h */
         imax=i;    return po;
       }  }
     }  
     if (j != imax) {  
       for (k=1;k<=n;k++) {  /*************** log-likelihood *************/
         dum=a[imax][k];  double func( double *x)
         a[imax][k]=a[j][k];  {
         a[j][k]=dum;    int i, ii, j, k, mi, d, kk;
       }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       *d = -(*d);    double **out;
       vv[imax]=vv[j];    double sw; /* Sum of weights */
     }    double lli; /* Individual log likelihood */
     indx[j]=imax;    int s1, s2;
     if (a[j][j] == 0.0) a[j][j]=TINY;    double bbh, survp;
     if (j != n) {    long ipmx;
       dum=1.0/(a[j][j]);    /*extern weight */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    /* We are differentiating ll according to initial status */
     }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   }    /*for(i=1;i<imx;i++) 
   free_vector(vv,1,n);  /* Doesn't work */      printf(" %d\n",s[4][i]);
 ;    */
 }    cov[1]=1.;
   
 void lubksb(double **a, int n, int *indx, double b[])    for(k=1; k<=nlstate; k++) ll[k]=0.;
 {  
   int i,ii=0,ip,j;    if(mle==1){
   double sum;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
          for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (i=1;i<=n;i++) {        for(mi=1; mi<= wav[i]-1; mi++){
     ip=indx[i];          for (ii=1;ii<=nlstate+ndeath;ii++)
     sum=b[ip];            for (j=1;j<=nlstate+ndeath;j++){
     b[ip]=b[i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (ii)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];            }
     else if (sum) ii=i;          for(d=0; d<dh[mi][i]; d++){
     b[i]=sum;            newm=savm;
   }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for (i=n;i>=1;i--) {            for (kk=1; kk<=cptcovage;kk++) {
     sum=b[i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];            }
     b[i]=sum/a[i][i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 }            savm=oldm;
             oldm=newm;
 /************ Frequencies ********************/          } /* end mult */
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)        
 {  /* Some frequencies */          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
            /* But now since version 0.9 we anticipate for bias and large stepm.
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   double ***freq; /* Frequencies */           * (in months) between two waves is not a multiple of stepm, we rounded to 
   double *pp;           * the nearest (and in case of equal distance, to the lowest) interval but now
   double pos;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   FILE *ficresp;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   char fileresp[FILENAMELENGTH];           * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   pp=vector(1,nlstate);           * -stepm/2 to stepm/2 .
            * For stepm=1 the results are the same as for previous versions of Imach.
   strcpy(fileresp,"p");           * For stepm > 1 the results are less biased than in previous versions. 
   strcat(fileresp,fileres);           */
   if((ficresp=fopen(fileresp,"w"))==NULL) {          s1=s[mw[mi][i]][i];
     printf("Problem with prevalence resultfile: %s\n", fileresp);          s2=s[mw[mi+1][i]][i];
     exit(0);          bbh=(double)bh[mi][i]/(double)stepm; 
   }          /* bias is positive if real duration
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);           * is higher than the multiple of stepm and negative otherwise.
   j1=0;           */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   j=cptcovn;          if( s2 > nlstate){ 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}            /* i.e. if s2 is a death state and if the date of death is known then the contribution
                to the likelihood is the probability to die between last step unit time and current 
   for(k1=1; k1<=j;k1++){               step unit time, which is also the differences between probability to die before dh 
    for(i1=1; i1<=ncodemax[k1];i1++){               and probability to die before dh-stepm . 
        j1++;               In version up to 0.92 likelihood was computed
           as if date of death was unknown. Death was treated as any other
         for (i=-1; i<=nlstate+ndeath; i++)            health state: the date of the interview describes the actual state
          for (jk=-1; jk<=nlstate+ndeath; jk++)            and not the date of a change in health state. The former idea was
            for(m=agemin; m <= agemax+3; m++)          to consider that at each interview the state was recorded
              freq[i][jk][m]=0;          (healthy, disable or death) and IMaCh was corrected; but when we
                  introduced the exact date of death then we should have modified
        for (i=1; i<=imx; i++) {          the contribution of an exact death to the likelihood. This new
          bool=1;          contribution is smaller and very dependent of the step unit
          if  (cptcovn>0) {          stepm. It is no more the probability to die between last interview
            for (z1=1; z1<=cptcovn; z1++)          and month of death but the probability to survive from last
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;          interview up to one month before death multiplied by the
          }          probability to die within a month. Thanks to Chris
           if (bool==1) {          Jackson for correcting this bug.  Former versions increased
            for(m=firstpass; m<=lastpass-1; m++){          mortality artificially. The bad side is that we add another loop
              if(agev[m][i]==0) agev[m][i]=agemax+1;          which slows down the processing. The difference can be up to 10%
              if(agev[m][i]==1) agev[m][i]=agemax+2;          lower mortality.
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            */
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];            lli=log(out[s1][s2] - savm[s1][s2]);
            }          }else{
          }            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
        }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
         if  (cptcovn>0) {          } 
          fprintf(ficresp, "\n#Variable");          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);          /*if(lli ==000.0)*/
        }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
        fprintf(ficresp, "\n#");          ipmx +=1;
        for(i=1; i<=nlstate;i++)          sw += weight[i];
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
        fprintf(ficresp, "\n");        } /* end of wave */
              } /* end of individual */
   for(i=(int)agemin; i <= (int)agemax+3; i++){    }  else if(mle==2){
     if(i==(int)agemax+3)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       printf("Total");        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     else        for(mi=1; mi<= wav[i]-1; mi++){
       printf("Age %d", i);          for (ii=1;ii<=nlstate+ndeath;ii++)
     for(jk=1; jk <=nlstate ; jk++){            for (j=1;j<=nlstate+ndeath;j++){
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         pp[jk] += freq[jk][m][i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
     for(jk=1; jk <=nlstate ; jk++){          for(d=0; d<=dh[mi][i]; d++){
       for(m=-1, pos=0; m <=0 ; m++)            newm=savm;
         pos += freq[jk][m][i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       if(pp[jk]>=1.e-10)            for (kk=1; kk<=cptcovage;kk++) {
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       else            }
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(jk=1; jk <=nlstate ; jk++){            savm=oldm;
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)            oldm=newm;
         pp[jk] += freq[jk][m][i];          } /* end mult */
     }        
     for(jk=1,pos=0; jk <=nlstate ; jk++)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       pos += pp[jk];          /* But now since version 0.9 we anticipate for bias and large stepm.
     for(jk=1; jk <=nlstate ; jk++){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       if(pos>=1.e-5)           * (in months) between two waves is not a multiple of stepm, we rounded to 
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);           * the nearest (and in case of equal distance, to the lowest) interval but now
       else           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       if( i <= (int) agemax){           * probability in order to take into account the bias as a fraction of the way
         if(pos>=1.e-5)           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);           * -stepm/2 to stepm/2 .
       else           * For stepm=1 the results are the same as for previous versions of Imach.
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);           * For stepm > 1 the results are less biased than in previous versions. 
       }           */
     }          s1=s[mw[mi][i]][i];
     for(jk=-1; jk <=nlstate+ndeath; jk++)          s2=s[mw[mi+1][i]][i];
       for(m=-1; m <=nlstate+ndeath; m++)          bbh=(double)bh[mi][i]/(double)stepm; 
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          /* bias is positive if real duration
     if(i <= (int) agemax)           * is higher than the multiple of stepm and negative otherwise.
       fprintf(ficresp,"\n");           */
     printf("\n");          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     }          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
  }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
            /*if(lli ==000.0)*/
   fclose(ficresp);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          ipmx +=1;
   free_vector(pp,1,nlstate);          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 }  /* End of Freq */        } /* end of wave */
       } /* end of individual */
 /************* Waves Concatenation ***************/    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 {        for(mi=1; mi<= wav[i]-1; mi++){
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.          for (ii=1;ii<=nlstate+ndeath;ii++)
      Death is a valid wave (if date is known).            for (j=1;j<=nlstate+ndeath;j++){
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      and mw[mi+1][i]. dh depends on stepm.            }
      */          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
   int i, mi, m;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            for (kk=1; kk<=cptcovage;kk++) {
 float sum=0.;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   for(i=1; i<=imx; i++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     mi=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     m=firstpass;            savm=oldm;
     while(s[m][i] <= nlstate){            oldm=newm;
       if(s[m][i]>=1)          } /* end mult */
         mw[++mi][i]=m;        
       if(m >=lastpass)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         break;          /* But now since version 0.9 we anticipate for bias and large stepm.
       else           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         m++;           * (in months) between two waves is not a multiple of stepm, we rounded to 
     }/* end while */           * the nearest (and in case of equal distance, to the lowest) interval but now
     if (s[m][i] > nlstate){           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       mi++;     /* Death is another wave */           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       /* if(mi==0)  never been interviewed correctly before death */           * probability in order to take into account the bias as a fraction of the way
          /* Only death is a correct wave */           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       mw[mi][i]=m;           * -stepm/2 to stepm/2 .
     }           * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions. 
     wav[i]=mi;           */
     if(mi==0)          s1=s[mw[mi][i]][i];
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          s2=s[mw[mi+1][i]][i];
   }          bbh=(double)bh[mi][i]/(double)stepm; 
           /* bias is positive if real duration
   for(i=1; i<=imx; i++){           * is higher than the multiple of stepm and negative otherwise.
     for(mi=1; mi<wav[i];mi++){           */
       if (stepm <=0)          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
         dh[mi][i]=1;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       else{          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         if (s[mw[mi+1][i]][i] > nlstate) {          /*if(lli ==000.0)*/
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           if(j=0) j=1;  /* Survives at least one month after exam */          ipmx +=1;
         }          sw += weight[i];
         else{          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        } /* end of wave */
           k=k+1;      } /* end of individual */
           if (j >= jmax) jmax=j;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
           else if (j <= jmin)jmin=j;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           sum=sum+j;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
         jk= j/stepm;          for (ii=1;ii<=nlstate+ndeath;ii++)
         jl= j -jk*stepm;            for (j=1;j<=nlstate+ndeath;j++){
         ju= j -(jk+1)*stepm;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if(jl <= -ju)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           dh[mi][i]=jk;            }
         else          for(d=0; d<dh[mi][i]; d++){
           dh[mi][i]=jk+1;            newm=savm;
         if(dh[mi][i]==0)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           dh[mi][i]=1; /* At least one step */            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }            }
   }          
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 /*********** Tricode ****************************/            savm=oldm;
 void tricode(int *Tvar, int **nbcode, int imx)            oldm=newm;
 {          } /* end mult */
   int Ndum[80],ij, k, j, i;        
   int cptcode=0;          s1=s[mw[mi][i]][i];
   for (k=0; k<79; k++) Ndum[k]=0;          s2=s[mw[mi+1][i]][i];
   for (k=1; k<=7; k++) ncodemax[k]=0;          if( s2 > nlstate){ 
              lli=log(out[s1][s2] - savm[s1][s2]);
   for (j=1; j<=cptcovn; j++) {          }else{
     for (i=1; i<=imx; i++) {            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       ij=(int)(covar[Tvar[j]][i]);          }
       Ndum[ij]++;          ipmx +=1;
       if (ij > cptcode) cptcode=ij;          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     for (i=0; i<=cptcode; i++) {        } /* end of wave */
       if(Ndum[i]!=0) ncodemax[j]++;      } /* end of individual */
     }    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     ij=1;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for (i=1; i<=ncodemax[j]; i++) {        for(mi=1; mi<= wav[i]-1; mi++){
       for (k=0; k<=79; k++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
         if (Ndum[k] != 0) {            for (j=1;j<=nlstate+ndeath;j++){
           nbcode[Tvar[j]][ij]=k;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           ij++;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }            }
         if (ij > ncodemax[j]) break;          for(d=0; d<dh[mi][i]; d++){
       }              newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }              for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   }            }
           
 /*********** Health Expectancies ****************/            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)            savm=oldm;
 {            oldm=newm;
   /* Health expectancies */          } /* end mult */
   int i, j, nhstepm, hstepm, h;        
   double age, agelim,hf;          s1=s[mw[mi][i]][i];
   double ***p3mat;          s2=s[mw[mi+1][i]][i];
            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   fprintf(ficreseij,"# Health expectancies\n");          ipmx +=1;
   fprintf(ficreseij,"# Age");          sw += weight[i];
   for(i=1; i<=nlstate;i++)          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(j=1; j<=nlstate;j++)          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       fprintf(ficreseij," %1d-%1d",i,j);        } /* end of wave */
   fprintf(ficreseij,"\n");      } /* end of individual */
     } /* End of if */
   hstepm=1*YEARM; /*  Every j years of age (in month) */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   agelim=AGESUP;    return -l;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  }
     /* nhstepm age range expressed in number of stepm */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);  /*************** log-likelihood *************/
     /* Typically if 20 years = 20*12/6=40 stepm */  double funcone( double *x)
     if (stepm >= YEARM) hstepm=1;  {
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */    /* Same as likeli but slower because of a lot of printf and if */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int i, ii, j, k, mi, d, kk;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    double l, ll[NLSTATEMAX], cov[NCOVMAX];
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    double **out;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      double lli; /* Individual log likelihood */
     double llt;
     int s1, s2;
     for(i=1; i<=nlstate;i++)    double bbh, survp;
       for(j=1; j<=nlstate;j++)    /*extern weight */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){    /* We are differentiating ll according to initial status */
           eij[i][j][(int)age] +=p3mat[i][j][h];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
         }    /*for(i=1;i<imx;i++) 
          printf(" %d\n",s[4][i]);
     hf=1;    */
     if (stepm >= YEARM) hf=stepm/YEARM;    cov[1]=1.;
     fprintf(ficreseij,"%.0f",age );  
     for(i=1; i<=nlstate;i++)    for(k=1; k<=nlstate; k++) ll[k]=0.;
       for(j=1; j<=nlstate;j++){  
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     fprintf(ficreseij,"\n");      for(mi=1; mi<= wav[i]-1; mi++){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        for (ii=1;ii<=nlstate+ndeath;ii++)
   }          for (j=1;j<=nlstate+ndeath;j++){
 }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);
 /************ Variance ******************/          }
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        for(d=0; d<dh[mi][i]; d++){
 {          newm=savm;
   /* Variance of health expectancies */          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/          for (kk=1; kk<=cptcovage;kk++) {
   double **newm;            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double **dnewm,**doldm;          }
   int i, j, nhstepm, hstepm, h;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int k, cptcode;                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
    double *xp;          savm=oldm;
   double **gp, **gm;          oldm=newm;
   double ***gradg, ***trgradg;        } /* end mult */
   double ***p3mat;        
   double age,agelim;        s1=s[mw[mi][i]][i];
   int theta;        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
    fprintf(ficresvij,"# Covariances of life expectancies\n");        /* bias is positive if real duration
   fprintf(ficresvij,"# Age");         * is higher than the multiple of stepm and negative otherwise.
   for(i=1; i<=nlstate;i++)         */
     for(j=1; j<=nlstate;j++)        if( s2 > nlstate && (mle <5) ){  /* Jackson */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);          lli=log(out[s1][s2] - savm[s1][s2]);
   fprintf(ficresvij,"\n");        } else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   xp=vector(1,npar);        } else if(mle==2){
   dnewm=matrix(1,nlstate,1,npar);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   doldm=matrix(1,nlstate,1,nlstate);        } else if(mle==3){  /* exponential inter-extrapolation */
            lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   hstepm=1*YEARM; /* Every year of age */        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          lli=log(out[s1][s2]); /* Original formula */
   agelim = AGESUP;        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          lli=log(out[s1][s2]); /* Original formula */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        } /* End of if */
     if (stepm >= YEARM) hstepm=1;        ipmx +=1;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        sw += weight[i];
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     gp=matrix(0,nhstepm,1,nlstate);        if(globpr){
     gm=matrix(0,nhstepm,1,nlstate);          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
    %10.6f %10.6f %10.6f ", \
     for(theta=1; theta <=npar; theta++){                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       for(i=1; i<=npar; i++){ /* Computes gradient */                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       }            llt +=ll[k]*gipmx/gsw;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          }
       for(j=1; j<= nlstate; j++){          fprintf(ficresilk," %10.6f\n", -llt);
         for(h=0; h<=nhstepm; h++){        }
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      } /* end of wave */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    } /* end of individual */
         }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
       }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
        l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       for(i=1; i<=npar; i++) /* Computes gradient */    if(globpr==0){ /* First time we count the contributions and weights */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      gipmx=ipmx;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        gsw=sw;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    }
       for(j=1; j<= nlstate; j++){    return -l;
         for(h=0; h<=nhstepm; h++){  }
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  char *subdirf(char fileres[])
         }  {
       }    /* Caution optionfilefiname is hidden */
       for(j=1; j<= nlstate; j++)    strcpy(tmpout,optionfilefiname);
         for(h=0; h<=nhstepm; h++){    strcat(tmpout,"/"); /* Add to the right */
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    strcat(tmpout,fileres);
         }    return tmpout;
     } /* End theta */  }
   
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);  char *subdirf2(char fileres[], char *preop)
   {
     for(h=0; h<=nhstepm; h++)    
       for(j=1; j<=nlstate;j++)    strcpy(tmpout,optionfilefiname);
         for(theta=1; theta <=npar; theta++)    strcat(tmpout,"/");
           trgradg[h][j][theta]=gradg[h][theta][j];    strcat(tmpout,preop);
     strcat(tmpout,fileres);
     for(i=1;i<=nlstate;i++)    return tmpout;
       for(j=1;j<=nlstate;j++)  }
         vareij[i][j][(int)age] =0.;  char *subdirf3(char fileres[], char *preop, char *preop2)
     for(h=0;h<=nhstepm;h++){  {
       for(k=0;k<=nhstepm;k++){    
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    strcpy(tmpout,optionfilefiname);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    strcat(tmpout,"/");
         for(i=1;i<=nlstate;i++)    strcat(tmpout,preop);
           for(j=1;j<=nlstate;j++)    strcat(tmpout,preop2);
             vareij[i][j][(int)age] += doldm[i][j];    strcat(tmpout,fileres);
       }    return tmpout;
     }  }
     h=1;  
     if (stepm >= YEARM) h=stepm/YEARM;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     fprintf(ficresvij,"%.0f ",age );  {
     for(i=1; i<=nlstate;i++)    /* This routine should help understanding what is done with 
       for(j=1; j<=nlstate;j++){       the selection of individuals/waves and
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);       to check the exact contribution to the likelihood.
       }       Plotting could be done.
     fprintf(ficresvij,"\n");     */
     free_matrix(gp,0,nhstepm,1,nlstate);    int k;
     free_matrix(gm,0,nhstepm,1,nlstate);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    if(*globpri !=0){ /* Just counts and sums, no printings */
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      strcpy(fileresilk,"ilk"); 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      strcat(fileresilk,fileres);
   } /* End age */      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
          printf("Problem with resultfile: %s\n", fileresilk);
   free_vector(xp,1,npar);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   free_matrix(doldm,1,nlstate,1,npar);      }
   free_matrix(dnewm,1,nlstate,1,nlstate);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
 }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       for(k=1; k<=nlstate; k++) 
 /************ Variance of prevlim ******************/        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 {    }
   /* Variance of prevalence limit */  
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    *fretone=(*funcone)(p);
   double **newm;    if(*globpri !=0){
   double **dnewm,**doldm;      fclose(ficresilk);
   int i, j, nhstepm, hstepm;      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   int k, cptcode;      fflush(fichtm); 
   double *xp;    } 
   double *gp, *gm;    return;
   double **gradg, **trgradg;  }
   double age,agelim;  
   int theta;  
      /*********** Maximum Likelihood Estimation ***************/
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");  
   fprintf(ficresvpl,"# Age");  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   for(i=1; i<=nlstate;i++)  {
       fprintf(ficresvpl," %1d-%1d",i,i);    int i,j, iter;
   fprintf(ficresvpl,"\n");    double **xi;
     double fret;
   xp=vector(1,npar);    double fretone; /* Only one call to likelihood */
   dnewm=matrix(1,nlstate,1,npar);    char filerespow[FILENAMELENGTH];
   doldm=matrix(1,nlstate,1,nlstate);    xi=matrix(1,npar,1,npar);
      for (i=1;i<=npar;i++)
   hstepm=1*YEARM; /* Every year of age */      for (j=1;j<=npar;j++)
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        xi[i][j]=(i==j ? 1.0 : 0.0);
   agelim = AGESUP;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    strcpy(filerespow,"pow"); 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    strcat(filerespow,fileres);
     if (stepm >= YEARM) hstepm=1;    if((ficrespow=fopen(filerespow,"w"))==NULL) {
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      printf("Problem with resultfile: %s\n", filerespow);
     gradg=matrix(1,npar,1,nlstate);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     gp=vector(1,nlstate);    }
     gm=vector(1,nlstate);    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for (i=1;i<=nlstate;i++)
     for(theta=1; theta <=npar; theta++){      for(j=1;j<=nlstate+ndeath;j++)
       for(i=1; i<=npar; i++){ /* Computes gradient */        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    fprintf(ficrespow,"\n");
       }  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    powell(p,xi,npar,ftol,&iter,&fret,func);
       for(i=1;i<=nlstate;i++)  
         gp[i] = prlim[i][i];    fclose(ficrespow);
        printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       for(i=1; i<=npar; i++) /* Computes gradient */    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)  }
         gm[i] = prlim[i][i];  
   /**** Computes Hessian and covariance matrix ***/
       for(i=1;i<=nlstate;i++)  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  {
     } /* End theta */    double  **a,**y,*x,pd;
     double **hess;
     trgradg =matrix(1,nlstate,1,npar);    int i, j,jk;
     int *indx;
     for(j=1; j<=nlstate;j++)  
       for(theta=1; theta <=npar; theta++)    double hessii(double p[], double delta, int theta, double delti[]);
         trgradg[j][theta]=gradg[theta][j];    double hessij(double p[], double delti[], int i, int j);
     void lubksb(double **a, int npar, int *indx, double b[]) ;
     for(i=1;i<=nlstate;i++)    void ludcmp(double **a, int npar, int *indx, double *d) ;
       varpl[i][(int)age] =0.;  
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    hess=matrix(1,npar,1,npar);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  
     for(i=1;i<=nlstate;i++)    printf("\nCalculation of the hessian matrix. Wait...\n");
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     for (i=1;i<=npar;i++){
     fprintf(ficresvpl,"%.0f ",age );      printf("%d",i);fflush(stdout);
     for(i=1; i<=nlstate;i++)      fprintf(ficlog,"%d",i);fflush(ficlog);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      hess[i][i]=hessii(p,ftolhess,i,delti);
     fprintf(ficresvpl,"\n");      /*printf(" %f ",p[i]);*/
     free_vector(gp,1,nlstate);      /*printf(" %lf ",hess[i][i]);*/
     free_vector(gm,1,nlstate);    }
     free_matrix(gradg,1,npar,1,nlstate);    
     free_matrix(trgradg,1,nlstate,1,npar);    for (i=1;i<=npar;i++) {
   } /* End age */      for (j=1;j<=npar;j++)  {
         if (j>i) { 
   free_vector(xp,1,npar);          printf(".%d%d",i,j);fflush(stdout);
   free_matrix(doldm,1,nlstate,1,npar);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   free_matrix(dnewm,1,nlstate,1,nlstate);          hess[i][j]=hessij(p,delti,i,j);
           hess[j][i]=hess[i][j];    
 }          /*printf(" %lf ",hess[i][j]);*/
         }
       }
     }
 /***********************************************/    printf("\n");
 /**************** Main Program *****************/    fprintf(ficlog,"\n");
 /***********************************************/  
     printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 /*int main(int argc, char *argv[])*/    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
 int main()    
 {    a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;    x=vector(1,npar);
   double agedeb, agefin,hf;    indx=ivector(1,npar);
   double agemin=1.e20, agemax=-1.e20;    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   double fret;    ludcmp(a,npar,indx,&pd);
   double **xi,tmp,delta;  
     for (j=1;j<=npar;j++) {
   double dum; /* Dummy variable */      for (i=1;i<=npar;i++) x[i]=0;
   double ***p3mat;      x[j]=1;
   int *indx;      lubksb(a,npar,indx,x);
   char line[MAXLINE], linepar[MAXLINE];      for (i=1;i<=npar;i++){ 
   char title[MAXLINE];        matcov[i][j]=x[i];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];      }
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];    }
   char filerest[FILENAMELENGTH];  
   char fileregp[FILENAMELENGTH];    printf("\n#Hessian matrix#\n");
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    fprintf(ficlog,"\n#Hessian matrix#\n");
   int firstobs=1, lastobs=10;    for (i=1;i<=npar;i++) { 
   int sdeb, sfin; /* Status at beginning and end */      for (j=1;j<=npar;j++) { 
   int c,  h , cpt,l;        printf("%.3e ",hess[i][j]);
   int ju,jl, mi;        fprintf(ficlog,"%.3e ",hess[i][j]);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize;      }
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;      printf("\n");
        fprintf(ficlog,"\n");
   int hstepm, nhstepm;    }
   double bage, fage, age, agelim, agebase;  
   double ftolpl=FTOL;    /* Recompute Inverse */
   double **prlim;    for (i=1;i<=npar;i++)
   double *severity;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   double ***param; /* Matrix of parameters */    ludcmp(a,npar,indx,&pd);
   double  *p;  
   double **matcov; /* Matrix of covariance */    /*  printf("\n#Hessian matrix recomputed#\n");
   double ***delti3; /* Scale */  
   double *delti; /* Scale */    for (j=1;j<=npar;j++) {
   double ***eij, ***vareij;      for (i=1;i<=npar;i++) x[i]=0;
   double **varpl; /* Variances of prevalence limits by age */      x[j]=1;
   double *epj, vepp;      lubksb(a,npar,indx,x);
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";      for (i=1;i<=npar;i++){ 
   char *alph[]={"a","a","b","c","d","e"}, str[4];        y[i][j]=x[i];
         printf("%.3e ",y[i][j]);
   char z[1]="c", occ;        fprintf(ficlog,"%.3e ",y[i][j]);
 #include <sys/time.h>      }
 #include <time.h>      printf("\n");
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      fprintf(ficlog,"\n");
   /* long total_usecs;    }
   struct timeval start_time, end_time;    */
    
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
     free_vector(x,1,npar);
   printf("\nIMACH, Version 0.64a");    free_ivector(indx,1,npar);
   printf("\nEnter the parameter file name: ");    free_matrix(hess,1,npar,1,npar);
   
 #ifdef windows  
   scanf("%s",pathtot);  }
   getcwd(pathcd, size);  
   /*cygwin_split_path(pathtot,path,optionfile);  /*************** hessian matrix ****************/
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  double hessii( double x[], double delta, int theta, double delti[])
   /* cutv(path,optionfile,pathtot,'\\');*/  {
     int i;
 split(pathtot, path,optionfile);    int l=1, lmax=20;
   chdir(path);    double k1,k2;
   replace(pathc,path);    double p2[NPARMAX+1];
 #endif    double res;
 #ifdef unix    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   scanf("%s",optionfile);    double fx;
 #endif    int k=0,kmax=10;
     double l1;
 /*-------- arguments in the command line --------*/  
     fx=func(x);
   strcpy(fileres,"r");    for (i=1;i<=npar;i++) p2[i]=x[i];
   strcat(fileres, optionfile);    for(l=0 ; l <=lmax; l++){
       l1=pow(10,l);
   /*---------arguments file --------*/      delts=delt;
       for(k=1 ; k <kmax; k=k+1){
   if((ficpar=fopen(optionfile,"r"))==NULL)    {        delt = delta*(l1*k);
     printf("Problem with optionfile %s\n",optionfile);        p2[theta]=x[theta] +delt;
     goto end;        k1=func(p2)-fx;
   }        p2[theta]=x[theta]-delt;
         k2=func(p2)-fx;
   strcpy(filereso,"o");        /*res= (k1-2.0*fx+k2)/delt/delt; */
   strcat(filereso,fileres);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   if((ficparo=fopen(filereso,"w"))==NULL) {        
     printf("Problem with Output resultfile: %s\n", filereso);goto end;  #ifdef DEBUG
   }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   /* Reads comments: lines beginning with '#' */  #endif
   while((c=getc(ficpar))=='#' && c!= EOF){        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     ungetc(c,ficpar);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
     fgets(line, MAXLINE, ficpar);          k=kmax;
     puts(line);        }
     fputs(line,ficparo);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   }          k=kmax; l=lmax*10.;
   ungetc(c,ficpar);        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          delts=delt;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);        }
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);      }
     }
   covar=matrix(1,NCOVMAX,1,n);        delti[theta]=delts;
   if (strlen(model)<=1) cptcovn=0;    return res; 
   else {    
     j=0;  }
     j=nbocc(model,'+');  
     cptcovn=j+1;  double hessij( double x[], double delti[], int thetai,int thetaj)
   }  {
     int i;
   ncovmodel=2+cptcovn;    int l=1, l1, lmax=20;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    double k1,k2,k3,k4,res,fx;
      double p2[NPARMAX+1];
   /* Read guess parameters */    int k;
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    fx=func(x);
     ungetc(c,ficpar);    for (k=1; k<=2; k++) {
     fgets(line, MAXLINE, ficpar);      for (i=1;i<=npar;i++) p2[i]=x[i];
     puts(line);      p2[thetai]=x[thetai]+delti[thetai]/k;
     fputs(line,ficparo);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   }      k1=func(p2)-fx;
   ungetc(c,ficpar);    
        p2[thetai]=x[thetai]+delti[thetai]/k;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     for(i=1; i <=nlstate; i++)      k2=func(p2)-fx;
     for(j=1; j <=nlstate+ndeath-1; j++){    
       fscanf(ficpar,"%1d%1d",&i1,&j1);      p2[thetai]=x[thetai]-delti[thetai]/k;
       fprintf(ficparo,"%1d%1d",i1,j1);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       printf("%1d%1d",i,j);      k3=func(p2)-fx;
       for(k=1; k<=ncovmodel;k++){    
         fscanf(ficpar," %lf",&param[i][j][k]);      p2[thetai]=x[thetai]-delti[thetai]/k;
         printf(" %lf",param[i][j][k]);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         fprintf(ficparo," %lf",param[i][j][k]);      k4=func(p2)-fx;
       }      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       fscanf(ficpar,"\n");  #ifdef DEBUG
       printf("\n");      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficparo,"\n");      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     }  #endif
      }
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    return res;
   p=param[1][1];  }
    
   /* Reads comments: lines beginning with '#' */  /************** Inverse of matrix **************/
   while((c=getc(ficpar))=='#' && c!= EOF){  void ludcmp(double **a, int n, int *indx, double *d) 
     ungetc(c,ficpar);  { 
     fgets(line, MAXLINE, ficpar);    int i,imax,j,k; 
     puts(line);    double big,dum,sum,temp; 
     fputs(line,ficparo);    double *vv; 
   }   
   ungetc(c,ficpar);    vv=vector(1,n); 
     *d=1.0; 
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    for (i=1;i<=n;i++) { 
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */      big=0.0; 
   for(i=1; i <=nlstate; i++){      for (j=1;j<=n;j++) 
     for(j=1; j <=nlstate+ndeath-1; j++){        if ((temp=fabs(a[i][j])) > big) big=temp; 
       fscanf(ficpar,"%1d%1d",&i1,&j1);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       printf("%1d%1d",i,j);      vv[i]=1.0/big; 
       fprintf(ficparo,"%1d%1d",i1,j1);    } 
       for(k=1; k<=ncovmodel;k++){    for (j=1;j<=n;j++) { 
         fscanf(ficpar,"%le",&delti3[i][j][k]);      for (i=1;i<j;i++) { 
         printf(" %le",delti3[i][j][k]);        sum=a[i][j]; 
         fprintf(ficparo," %le",delti3[i][j][k]);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       }        a[i][j]=sum; 
       fscanf(ficpar,"\n");      } 
       printf("\n");      big=0.0; 
       fprintf(ficparo,"\n");      for (i=j;i<=n;i++) { 
     }        sum=a[i][j]; 
   }        for (k=1;k<j;k++) 
   delti=delti3[1][1];          sum -= a[i][k]*a[k][j]; 
          a[i][j]=sum; 
   /* Reads comments: lines beginning with '#' */        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   while((c=getc(ficpar))=='#' && c!= EOF){          big=dum; 
     ungetc(c,ficpar);          imax=i; 
     fgets(line, MAXLINE, ficpar);        } 
     puts(line);      } 
     fputs(line,ficparo);      if (j != imax) { 
   }        for (k=1;k<=n;k++) { 
   ungetc(c,ficpar);          dum=a[imax][k]; 
            a[imax][k]=a[j][k]; 
   matcov=matrix(1,npar,1,npar);          a[j][k]=dum; 
   for(i=1; i <=npar; i++){        } 
     fscanf(ficpar,"%s",&str);        *d = -(*d); 
     printf("%s",str);        vv[imax]=vv[j]; 
     fprintf(ficparo,"%s",str);      } 
     for(j=1; j <=i; j++){      indx[j]=imax; 
       fscanf(ficpar," %le",&matcov[i][j]);      if (a[j][j] == 0.0) a[j][j]=TINY; 
       printf(" %.5le",matcov[i][j]);      if (j != n) { 
       fprintf(ficparo," %.5le",matcov[i][j]);        dum=1.0/(a[j][j]); 
     }        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     fscanf(ficpar,"\n");      } 
     printf("\n");    } 
     fprintf(ficparo,"\n");    free_vector(vv,1,n);  /* Doesn't work */
   }  ;
   for(i=1; i <=npar; i++)  } 
     for(j=i+1;j<=npar;j++)  
       matcov[i][j]=matcov[j][i];  void lubksb(double **a, int n, int *indx, double b[]) 
      { 
   printf("\n");    int i,ii=0,ip,j; 
     double sum; 
    
    if(mle==1){    for (i=1;i<=n;i++) { 
     /*-------- data file ----------*/      ip=indx[i]; 
     if((ficres =fopen(fileres,"w"))==NULL) {      sum=b[ip]; 
       printf("Problem with resultfile: %s\n", fileres);goto end;      b[ip]=b[i]; 
     }      if (ii) 
     fprintf(ficres,"#%s\n",version);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
          else if (sum) ii=i; 
     if((fic=fopen(datafile,"r"))==NULL)    {      b[i]=sum; 
       printf("Problem with datafile: %s\n", datafile);goto end;    } 
     }    for (i=n;i>=1;i--) { 
       sum=b[i]; 
     n= lastobs;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     severity = vector(1,maxwav);      b[i]=sum/a[i][i]; 
     outcome=imatrix(1,maxwav+1,1,n);    } 
     num=ivector(1,n);  } 
     moisnais=vector(1,n);  
     annais=vector(1,n);  /************ Frequencies ********************/
     moisdc=vector(1,n);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
     andc=vector(1,n);  {  /* Some frequencies */
     agedc=vector(1,n);    
     cod=ivector(1,n);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     weight=vector(1,n);    int first;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    double ***freq; /* Frequencies */
     mint=matrix(1,maxwav,1,n);    double *pp, **prop;
     anint=matrix(1,maxwav,1,n);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     s=imatrix(1,maxwav+1,1,n);    FILE *ficresp;
     adl=imatrix(1,maxwav+1,1,n);        char fileresp[FILENAMELENGTH];
     tab=ivector(1,NCOVMAX);    
     ncodemax=ivector(1,8);    pp=vector(1,nlstate);
     prop=matrix(1,nlstate,iagemin,iagemax+3);
     i=1;    strcpy(fileresp,"p");
     while (fgets(line, MAXLINE, fic) != NULL)    {    strcat(fileresp,fileres);
       if ((i >= firstobs) && (i <=lastobs)) {    if((ficresp=fopen(fileresp,"w"))==NULL) {
              printf("Problem with prevalence resultfile: %s\n", fileresp);
         for (j=maxwav;j>=1;j--){      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      exit(0);
           strcpy(line,stra);    }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    j1=0;
         }    
            j=cptcoveff;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  
     first=1;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        j1++;
         for (j=ncov;j>=1;j--){        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          scanf("%d", i);*/
         }        for (i=-1; i<=nlstate+ndeath; i++)  
         num[i]=atol(stra);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
             for(m=iagemin; m <= iagemax+3; m++)
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/              freq[i][jk][m]=0;
   
         i=i+1;      for (i=1; i<=nlstate; i++)  
       }        for(m=iagemin; m <= iagemax+3; m++)
     }          prop[i][m]=0;
         
     /*scanf("%d",i);*/        dateintsum=0;
   imx=i-1; /* Number of individuals */        k2cpt=0;
         for (i=1; i<=imx; i++) {
   /* Calculation of the number of parameter from char model*/          bool=1;
   Tvar=ivector(1,8);              if  (cptcovn>0) {
                for (z1=1; z1<=cptcoveff; z1++) 
   if (strlen(model) >1){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     j=0;                bool=0;
     j=nbocc(model,'+');          }
     cptcovn=j+1;          if (bool==1){
                for(m=firstpass; m<=lastpass; m++){
     strcpy(modelsav,model);              k2=anint[m][i]+(mint[m][i]/12.);
     if (j==0) {              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
       cutv(stra,strb,modelsav,'V'); Tvar[1]=atoi(strb);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     else {                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
       for(i=j; i>=1;i--){                if (m<lastpass) {
         cutv(stra,strb,modelsav,'+');                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         if (strchr(strb,'*')) {                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
           cutv(strd,strc,strb,'*');                }
           cutv(strb,stre,strc,'V');Tvar[i+1]=ncov+1;                
           cutv(strb,strc,strd,'V');                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
           for (k=1; k<=lastobs;k++)                  dateintsum=dateintsum+k2;
             covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                  k2cpt++;
         }                }
         else {cutv(strd,strc,strb,'V');                /*}*/
         Tvar[i+1]=atoi(strc);            }
         }          }
         strcpy(modelsav,stra);          }
       }         
       cutv(strd,strc,stra,'V');        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       Tvar[1]=atoi(strc);  
     }        if  (cptcovn>0) {
   }          fprintf(ficresp, "\n#********** Variable "); 
   /*printf("tvar=%d ",Tvar[1]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   scanf("%d ",i);*/          fprintf(ficresp, "**********\n#");
     fclose(fic);        }
         for(i=1; i<=nlstate;i++) 
     if (weightopt != 1) { /* Maximisation without weights*/          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       for(i=1;i<=n;i++) weight[i]=1.0;        fprintf(ficresp, "\n");
     }        
     /*-calculation of age at interview from date of interview and age at death -*/        for(i=iagemin; i <= iagemax+3; i++){
     agev=matrix(1,maxwav,1,imx);          if(i==iagemax+3){
                fprintf(ficlog,"Total");
     for (i=1; i<=imx; i++)  {          }else{
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);            if(first==1){
       for(m=1; (m<= maxwav); m++){              first=0;
         if(s[m][i] >0){              printf("See log file for details...\n");
           if (s[m][i] == nlstate+1) {            }
             if(agedc[i]>0)            fprintf(ficlog,"Age %d", i);
               if(moisdc[i]!=99 && andc[i]!=9999)          }
               agev[m][i]=agedc[i];          for(jk=1; jk <=nlstate ; jk++){
             else{            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
               printf("Warning negative age at death: %d line:%d\n",num[i],i);              pp[jk] += freq[jk][m][i]; 
               agev[m][i]=-1;          }
             }          for(jk=1; jk <=nlstate ; jk++){
           }            for(m=-1, pos=0; m <=0 ; m++)
           else if(s[m][i] !=9){ /* Should no more exist */              pos += freq[jk][m][i];
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);            if(pp[jk]>=1.e-10){
             if(mint[m][i]==99 || anint[m][i]==9999)              if(first==1){
               agev[m][i]=1;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             else if(agev[m][i] <agemin){              }
               agemin=agev[m][i];              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/            }else{
             }              if(first==1)
             else if(agev[m][i] >agemax){                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               agemax=agev[m][i];              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/            }
             }          }
             /*agev[m][i]=anint[m][i]-annais[i];*/  
             /*   agev[m][i] = age[i]+2*m;*/          for(jk=1; jk <=nlstate ; jk++){
           }            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
           else { /* =9 */              pp[jk] += freq[jk][m][i];
             agev[m][i]=1;          }       
             s[m][i]=-1;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
           }            pos += pp[jk];
         }            posprop += prop[jk][i];
         else /*= 0 Unknown */          }
           agev[m][i]=1;          for(jk=1; jk <=nlstate ; jk++){
       }            if(pos>=1.e-5){
                  if(first==1)
     }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     for (i=1; i<=imx; i++)  {              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       for(m=1; (m<= maxwav); m++){            }else{
         if (s[m][i] > (nlstate+ndeath)) {              if(first==1)
           printf("Error: Wrong value in nlstate or ndeath\n");                  printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           goto end;              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         }            }
       }            if( i <= iagemax){
     }              if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);                /*probs[i][jk][j1]= pp[jk]/pos;*/
                 /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
     free_vector(severity,1,maxwav);              }
     free_imatrix(outcome,1,maxwav+1,1,n);              else
     free_vector(moisnais,1,n);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     free_vector(annais,1,n);            }
     free_matrix(mint,1,maxwav,1,n);          }
     free_matrix(anint,1,maxwav,1,n);          
     free_vector(moisdc,1,n);          for(jk=-1; jk <=nlstate+ndeath; jk++)
     free_vector(andc,1,n);            for(m=-1; m <=nlstate+ndeath; m++)
               if(freq[jk][m][i] !=0 ) {
                  if(first==1)
     wav=ivector(1,imx);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);              }
              if(i <= iagemax)
     /* Concatenates waves */            fprintf(ficresp,"\n");
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          if(first==1)
             printf("Others in log...\n");
           fprintf(ficlog,"\n");
 Tcode=ivector(1,100);        }
    nbcode=imatrix(1,nvar,1,8);        }
    ncodemax[1]=1;    }
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);    dateintmean=dateintsum/k2cpt; 
     
    codtab=imatrix(1,100,1,10);    fclose(ficresp);
    h=0;    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
    m=pow(2,cptcovn);    free_vector(pp,1,nlstate);
      free_matrix(prop,1,nlstate,iagemin, iagemax+3);
    for(k=1;k<=cptcovn; k++){    /* End of Freq */
      for(i=1; i <=(m/pow(2,k));i++){  }
        for(j=1; j <= ncodemax[k]; j++){  
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){  /************ Prevalence ********************/
            h++;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
            if (h>m) h=1;codtab[h][k]=j;  {  
          }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        }       in each health status at the date of interview (if between dateprev1 and dateprev2).
      }       We still use firstpass and lastpass as another selection.
    }    */
    
    /*for(i=1; i <=m ;i++){    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
      for(k=1; k <=cptcovn; k++){    double ***freq; /* Frequencies */
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);    double *pp, **prop;
      }    double pos,posprop; 
      printf("\n");    double  y2; /* in fractional years */
    }*/    int iagemin, iagemax;
    /*scanf("%d",i);*/  
        iagemin= (int) agemin;
    /* Calculates basic frequencies. Computes observed prevalence at single age    iagemax= (int) agemax;
        and prints on file fileres'p'. */    /*pp=vector(1,nlstate);*/
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    j1=0;
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    j=cptcoveff;
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    
        for(k1=1; k1<=j;k1++){
     /* For Powell, parameters are in a vector p[] starting at p[1]      for(i1=1; i1<=ncodemax[k1];i1++){
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */        j1++;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */        
            for (i=1; i<=nlstate; i++)  
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          for(m=iagemin; m <= iagemax+3; m++)
             prop[i][m]=0.0;
           
     /*--------- results files --------------*/        for (i=1; i<=imx; i++) { /* Each individual */
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);          bool=1;
              if  (cptcovn>0) {
    jk=1;            for (z1=1; z1<=cptcoveff; z1++) 
    fprintf(ficres,"# Parameters\n");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
    printf("# Parameters\n");                bool=0;
    for(i=1,jk=1; i <=nlstate; i++){          } 
      for(k=1; k <=(nlstate+ndeath); k++){          if (bool==1) { 
        if (k != i)            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
          {              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
            printf("%d%d ",i,k);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
            fprintf(ficres,"%1d%1d ",i,k);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
            for(j=1; j <=ncovmodel; j++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
              printf("%f ",p[jk]);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
              fprintf(ficres,"%f ",p[jk]);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
              jk++;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
            }                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
            printf("\n");                  prop[s[m][i]][iagemax+3] += weight[i]; 
            fprintf(ficres,"\n");                } 
          }              }
      }            } /* end selection of waves */
    }          }
         }
     /* Computing hessian and covariance matrix */        for(i=iagemin; i <= iagemax+3; i++){  
     ftolhess=ftol; /* Usually correct */          
     hesscov(matcov, p, npar, delti, ftolhess, func);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     fprintf(ficres,"# Scales\n");            posprop += prop[jk][i]; 
     printf("# Scales\n");          } 
      for(i=1,jk=1; i <=nlstate; i++){  
       for(j=1; j <=nlstate+ndeath; j++){          for(jk=1; jk <=nlstate ; jk++){     
         if (j!=i) {            if( i <=  iagemax){ 
           fprintf(ficres,"%1d%1d",i,j);              if(posprop>=1.e-5){ 
           printf("%1d%1d",i,j);                probs[i][jk][j1]= prop[jk][i]/posprop;
           for(k=1; k<=ncovmodel;k++){              } 
             printf(" %.5e",delti[jk]);            } 
             fprintf(ficres," %.5e",delti[jk]);          }/* end jk */ 
             jk++;        }/* end i */ 
           }      } /* end i1 */
           printf("\n");    } /* end k1 */
           fprintf(ficres,"\n");    
         }    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
       }    /*free_vector(pp,1,nlstate);*/
       }    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
      }  /* End of prevalence */
     k=1;  
     fprintf(ficres,"# Covariance\n");  /************* Waves Concatenation ***************/
     printf("# Covariance\n");  
     for(i=1;i<=npar;i++){  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
       /*  if (k>nlstate) k=1;  {
       i1=(i-1)/(ncovmodel*nlstate)+1;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);       Death is a valid wave (if date is known).
       printf("%s%d%d",alph[k],i1,tab[i]);*/       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
       fprintf(ficres,"%3d",i);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       printf("%3d",i);       and mw[mi+1][i]. dh depends on stepm.
       for(j=1; j<=i;j++){       */
         fprintf(ficres," %.5e",matcov[i][j]);  
         printf(" %.5e",matcov[i][j]);    int i, mi, m;
       }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
       fprintf(ficres,"\n");       double sum=0., jmean=0.;*/
       printf("\n");    int first;
       k++;    int j, k=0,jk, ju, jl;
     }    double sum=0.;
        first=0;
     while((c=getc(ficpar))=='#' && c!= EOF){    jmin=1e+5;
       ungetc(c,ficpar);    jmax=-1;
       fgets(line, MAXLINE, ficpar);    jmean=0.;
       puts(line);    for(i=1; i<=imx; i++){
       fputs(line,ficparo);      mi=0;
     }      m=firstpass;
     ungetc(c,ficpar);      while(s[m][i] <= nlstate){
          if(s[m][i]>=1)
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);          mw[++mi][i]=m;
            if(m >=lastpass)
     if (fage <= 2) {          break;
       bage = agemin;        else
       fage = agemax;          m++;
     }      }/* end while */
       if (s[m][i] > nlstate){
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        mi++;     /* Death is another wave */
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);        /* if(mi==0)  never been interviewed correctly before death */
 /*------------ gnuplot -------------*/           /* Only death is a correct wave */
 chdir(pathcd);        mw[mi][i]=m;
   if((ficgp=fopen("graph.plt","w"))==NULL) {      }
     printf("Problem with file graph.gp");goto end;  
   }      wav[i]=mi;
 #ifdef windows      if(mi==0){
   fprintf(ficgp,"cd \"%s\" \n",pathc);        nbwarn++;
 #endif        if(first==0){
 m=pow(2,cptcovn);          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
            first=1;
  /* 1eme*/        }
   for (cpt=1; cpt<= nlstate ; cpt ++) {        if(first==1){
    for (k1=1; k1<= m ; k1 ++) {          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
         }
 #ifdef windows      } /* end mi==0 */
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);    } /* End individuals */
 #endif  
 #ifdef unix    for(i=1; i<=imx; i++){
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);      for(mi=1; mi<wav[i];mi++){
 #endif        if (stepm <=0)
           dh[mi][i]=1;
 for (i=1; i<= nlstate ; i ++) {        else{
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   else fprintf(ficgp," \%%*lf (\%%*lf)");            if (agedc[i] < 2*AGESUP) {
 }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);              if(j==0) j=1;  /* Survives at least one month after exam */
     for (i=1; i<= nlstate ; i ++) {              else if(j<0){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                nberr++;
   else fprintf(ficgp," \%%*lf (\%%*lf)");                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 }                j=1; /* Temporary Dangerous patch */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
      for (i=1; i<= nlstate ; i ++) {                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
   else fprintf(ficgp," \%%*lf (\%%*lf)");              }
 }                k=k+1;
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));              if (j >= jmax) jmax=j;
 #ifdef unix              if (j <= jmin) jmin=j;
 fprintf(ficgp,"\nset ter gif small size 400,300");              sum=sum+j;
 #endif              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
    }            }
   }          }
   /*2 eme*/          else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   for (k1=1; k1<= m ; k1 ++) {            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);            k=k+1;
                if (j >= jmax) jmax=j;
     for (i=1; i<= nlstate+1 ; i ++) {            else if (j <= jmin)jmin=j;
       k=2*i;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       for (j=1; j<= nlstate+1 ; j ++) {            if(j<0){
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");              nberr++;
   else fprintf(ficgp," \%%*lf (\%%*lf)");              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 }                fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");            }
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);            sum=sum+j;
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);          }
       for (j=1; j<= nlstate+1 ; j ++) {          jk= j/stepm;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          jl= j -jk*stepm;
         else fprintf(ficgp," \%%*lf (\%%*lf)");          ju= j -(jk+1)*stepm;
 }            if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
       fprintf(ficgp,"\" t\"\" w l 0,");            if(jl==0){
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);              dh[mi][i]=jk;
       for (j=1; j<= nlstate+1 ; j ++) {              bh[mi][i]=0;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            }else{ /* We want a negative bias in order to only have interpolation ie
   else fprintf(ficgp," \%%*lf (\%%*lf)");                    * at the price of an extra matrix product in likelihood */
 }                dh[mi][i]=jk+1;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");              bh[mi][i]=ju;
       else fprintf(ficgp,"\" t\"\" w l 0,");            }
     }          }else{
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);            if(jl <= -ju){
   }              dh[mi][i]=jk;
                bh[mi][i]=jl;       /* bias is positive if real duration
   /*3eme*/                                   * is higher than the multiple of stepm and negative otherwise.
                                    */
   for (k1=1; k1<= m ; k1 ++) {            }
     for (cpt=1; cpt<= nlstate ; cpt ++) {            else{
       k=2+nlstate*(cpt-1);              dh[mi][i]=jk+1;
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);              bh[mi][i]=ju;
       for (i=1; i< nlstate ; i ++) {            }
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);            if(dh[mi][i]==0){
       }              dh[mi][i]=1; /* At least one step */
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);              bh[mi][i]=ju; /* At least one step */
     }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
   }            }
            } /* end if mle */
   /* CV preval stat */        }
   for (k1=1; k1<= m ; k1 ++) {      } /* end wave */
     for (cpt=1; cpt<nlstate ; cpt ++) {    }
       k=3;    jmean=sum/k;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       for (i=1; i< nlstate ; i ++)    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
         fprintf(ficgp,"+$%d",k+i+1);   }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);  
        /*********** Tricode ****************************/
       l=3+(nlstate+ndeath)*cpt;  void tricode(int *Tvar, int **nbcode, int imx)
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  {
       for (i=1; i< nlstate ; i ++) {    
         l=3+(nlstate+ndeath)*cpt;    int Ndum[20],ij=1, k, j, i, maxncov=19;
         fprintf(ficgp,"+$%d",l+i+1);    int cptcode=0;
       }    cptcoveff=0; 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);     
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    for (k=0; k<maxncov; k++) Ndum[k]=0;
     }    for (k=1; k<=7; k++) ncodemax[k]=0;
   }  
     for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   /* proba elementaires */      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
    for(i=1,jk=1; i <=nlstate; i++){                                 modality*/ 
     for(k=1; k <=(nlstate+ndeath); k++){        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
       if (k != i) {        Ndum[ij]++; /*store the modality */
         for(j=1; j <=ncovmodel; j++){        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
           /*fprintf(ficgp,"%s",alph[1]);*/                                         Tvar[j]. If V=sex and male is 0 and 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);                                         female is 1, then  cptcode=1.*/
           jk++;      }
           fprintf(ficgp,"\n");  
         }      for (i=0; i<=cptcode; i++) {
       }        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     }      }
     }  
       ij=1; 
   for(jk=1; jk <=m; jk++) {      for (i=1; i<=ncodemax[j]; i++) {
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);        for (k=0; k<= maxncov; k++) {
    i=1;          if (Ndum[k] != 0) {
    for(k2=1; k2<=nlstate; k2++) {            nbcode[Tvar[j]][ij]=k; 
      k3=i;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
      for(k=1; k<=(nlstate+ndeath); k++) {            
        if (k != k2){            ij++;
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          }
           if (ij > ncodemax[j]) break; 
         for(j=3; j <=ncovmodel; j++)        }  
           fprintf(ficgp,"+p%d*%d",k2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      } 
         fprintf(ficgp,")/(1");    }  
   
         for(k1=1; k1 <=nlstate+1; k1=k1+2){     for (k=0; k< maxncov; k++) Ndum[k]=0;
             fprintf(ficgp,"+exp(p%d+p%d*x",k1+k3-1,k1+k3);  
    for (i=1; i<=ncovmodel-2; i++) { 
             for(j=3; j <=ncovmodel; j++)     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
               fprintf(ficgp,"+p%d*%d",k2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);     ij=Tvar[i];
             fprintf(ficgp,")");     Ndum[ij]++;
         }   }
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);  
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");   ij=1;
     i=i+ncovmodel;   for (i=1; i<= maxncov; i++) {
        }     if((Ndum[i]!=0) && (i<=ncovcol)){
      }       Tvaraff[ij]=i; /*For printing */
    }       ij++;
   fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);     }
    }   }
       
   fclose(ficgp);   cptcoveff=ij-1; /*Number of simple covariates*/
      }
 chdir(path);  
     free_matrix(agev,1,maxwav,1,imx);  /*********** Health Expectancies ****************/
     free_ivector(wav,1,imx);  
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
      {
     free_imatrix(s,1,maxwav+1,1,n);    /* Health expectancies */
        int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
        double age, agelim, hf;
     free_ivector(num,1,n);    double ***p3mat,***varhe;
     free_vector(agedc,1,n);    double **dnewm,**doldm;
     free_vector(weight,1,n);    double *xp;
     /*free_matrix(covar,1,NCOVMAX,1,n);*/    double **gp, **gm;
     fclose(ficparo);    double ***gradg, ***trgradg;
     fclose(ficres);    int theta;
    }  
        varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
    /*________fin mle=1_________*/    xp=vector(1,npar);
        dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
      
     /* No more information from the sample is required now */    fprintf(ficreseij,"# Health expectancies\n");
   /* Reads comments: lines beginning with '#' */    fprintf(ficreseij,"# Age");
   while((c=getc(ficpar))=='#' && c!= EOF){    for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);      for(j=1; j<=nlstate;j++)
     fgets(line, MAXLINE, ficpar);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
     puts(line);    fprintf(ficreseij,"\n");
     fputs(line,ficparo);  
   }    if(estepm < stepm){
   ungetc(c,ficpar);      printf ("Problem %d lower than %d\n",estepm, stepm);
      }
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    else  hstepm=estepm;   
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);    /* We compute the life expectancy from trapezoids spaced every estepm months
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);     * This is mainly to measure the difference between two models: for example
 /*--------- index.htm --------*/     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
   if((fichtm=fopen("index.htm","w"))==NULL)    {     * progression in between and thus overestimating or underestimating according
     printf("Problem with index.htm \n");goto end;     * to the curvature of the survival function. If, for the same date, we 
   }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
  fprintf(fichtm,"<body><ul> Imach, Version 0.64a<hr> <li>Outputs files<br><br>\n     * hypothesis. A more precise result, taking into account a more precise
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n     * curvature will be obtained if estepm is as small as stepm. */
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>  
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>    /* For example we decided to compute the life expectancy with the smallest unit */
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>       nhstepm is the number of hstepm from age to agelim 
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>       nstepm is the number of stepm from age to agelin. 
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>       Look at hpijx to understand the reason of that which relies in memory size
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>       and note for a fixed period like estepm months */
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
  fprintf(fichtm," <li>Graphs</li>\n<p>");       means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
  m=cptcovn;       results. So we changed our mind and took the option of the best precision.
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
  j1=0;  
  for(k1=1; k1<=m;k1++){    agelim=AGESUP;
    for(i1=1; i1<=ncodemax[k1];i1++){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        j1++;      /* nhstepm age range expressed in number of stepm */
        if (cptcovn > 0) {      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
          fprintf(fichtm,"<hr>************ Results for covariates");      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
          for (cpt=1; cpt<=cptcovn;cpt++)      /* if (stepm >= YEARM) hstepm=1;*/
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
          fprintf(fichtm," ************\n<hr>");      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>      gp=matrix(0,nhstepm,1,nlstate*nlstate);
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);          gm=matrix(0,nhstepm,1,nlstate*nlstate);
        for(cpt=1; cpt<nlstate;cpt++){  
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>      /* Computed by stepm unit matrices, product of hstepm matrices, stored
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
        }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
     for(cpt=1; cpt<=nlstate;cpt++) {   
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident  
 interval) in state (%d): v%s%d%d.gif <br>      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    
      }      /* Computing Variances of health expectancies */
      for(cpt=1; cpt<=nlstate;cpt++) {  
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>       for(theta=1; theta <=npar; theta++){
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);        for(i=1; i<=npar; i++){ 
      }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        }
 health expectancies in states (1) and (2): e%s%d.gif<br>        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);    
 fprintf(fichtm,"\n</body>");        cptj=0;
    }        for(j=1; j<= nlstate; j++){
  }          for(i=1; i<=nlstate; i++){
 fclose(fichtm);            cptj=cptj+1;
             for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   /*--------------- Prevalence limit --------------*/              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
              }
   strcpy(filerespl,"pl");          }
   strcat(filerespl,fileres);        }
   if((ficrespl=fopen(filerespl,"w"))==NULL) {       
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;       
   }        for(i=1; i<=npar; i++) 
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   fprintf(ficrespl,"#Prevalence limit\n");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   fprintf(ficrespl,"#Age ");        
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        cptj=0;
   fprintf(ficrespl,"\n");        for(j=1; j<= nlstate; j++){
            for(i=1;i<=nlstate;i++){
   prlim=matrix(1,nlstate,1,nlstate);            cptj=cptj+1;
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            }
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          }
   k=0;        }
   agebase=agemin;        for(j=1; j<= nlstate*nlstate; j++)
   agelim=agemax;          for(h=0; h<=nhstepm-1; h++){
   ftolpl=1.e-10;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   i1=cptcovn;          }
   if (cptcovn < 1){i1=1;}       } 
      
   for(cptcov=1;cptcov<=i1;cptcov++){  /* End theta */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
         k=k+1;       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  
         fprintf(ficrespl,"\n#****** ");       for(h=0; h<=nhstepm-1; h++)
         for(j=1;j<=cptcovn;j++)        for(j=1; j<=nlstate*nlstate;j++)
           fprintf(ficrespl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);          for(theta=1; theta <=npar; theta++)
         fprintf(ficrespl,"******\n");            trgradg[h][j][theta]=gradg[h][theta][j];
               
         for (age=agebase; age<=agelim; age++){  
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);       for(i=1;i<=nlstate*nlstate;i++)
           fprintf(ficrespl,"%.0f",age );        for(j=1;j<=nlstate*nlstate;j++)
           for(i=1; i<=nlstate;i++)          varhe[i][j][(int)age] =0.;
           fprintf(ficrespl," %.5f", prlim[i][i]);  
           fprintf(ficrespl,"\n");       printf("%d|",(int)age);fflush(stdout);
         }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       }       for(h=0;h<=nhstepm-1;h++){
     }        for(k=0;k<=nhstepm-1;k++){
   fclose(ficrespl);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   /*------------- h Pij x at various ages ------------*/          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
            for(i=1;i<=nlstate*nlstate;i++)
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);            for(j=1;j<=nlstate*nlstate;j++)
   if((ficrespij=fopen(filerespij,"w"))==NULL) {              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        }
   }      }
   printf("Computing pij: result on file '%s' \n", filerespij);      /* Computing expectancies */
        for(i=1; i<=nlstate;i++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;        for(j=1; j<=nlstate;j++)
   if (stepm<=24) stepsize=2;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   agelim=AGESUP;            
   hstepm=stepsize*YEARM; /* Every year of age */  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  
            }
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){      fprintf(ficreseij,"%3.0f",age );
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      cptj=0;
       k=k+1;      for(i=1; i<=nlstate;i++)
         fprintf(ficrespij,"\n#****** ");        for(j=1; j<=nlstate;j++){
         for(j=1;j<=cptcovn;j++)          cptj++;
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
         fprintf(ficrespij,"******\n");        }
              fprintf(ficreseij,"\n");
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */     
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
           oldm=oldms;savm=savms;      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"# Age");    }
           for(i=1; i<=nlstate;i++)    printf("\n");
             for(j=1; j<=nlstate+ndeath;j++)    fprintf(ficlog,"\n");
               fprintf(ficrespij," %1d-%1d",i,j);  
           fprintf(ficrespij,"\n");    free_vector(xp,1,npar);
           for (h=0; h<=nhstepm; h++){    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
             for(i=1; i<=nlstate;i++)    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
               for(j=1; j<=nlstate+ndeath;j++)  }
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  
             fprintf(ficrespij,"\n");  /************ Variance ******************/
           }  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  {
           fprintf(ficrespij,"\n");    /* Variance of health expectancies */
         }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     }    /* double **newm;*/
   }    double **dnewm,**doldm;
     double **dnewmp,**doldmp;
   fclose(ficrespij);    int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
   /*---------- Health expectancies and variances ------------*/    double *xp;
     double **gp, **gm;  /* for var eij */
   strcpy(filerest,"t");    double ***gradg, ***trgradg; /*for var eij */
   strcat(filerest,fileres);    double **gradgp, **trgradgp; /* for var p point j */
   if((ficrest=fopen(filerest,"w"))==NULL) {    double *gpp, *gmp; /* for var p point j */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   }    double ***p3mat;
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    double age,agelim, hf;
     double ***mobaverage;
     int theta;
   strcpy(filerese,"e");    char digit[4];
   strcat(filerese,fileres);    char digitp[25];
   if((ficreseij=fopen(filerese,"w"))==NULL) {  
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    char fileresprobmorprev[FILENAMELENGTH];
   }  
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    if(popbased==1){
       if(mobilav!=0)
  strcpy(fileresv,"v");        strcpy(digitp,"-populbased-mobilav-");
   strcat(fileresv,fileres);      else strcpy(digitp,"-populbased-nomobil-");
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    }
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    else 
   }      strcpy(digitp,"-stablbased-");
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
     if (mobilav!=0) {
   k=0;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   for(cptcov=1;cptcov<=i1;cptcov++){      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       k=k+1;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       fprintf(ficrest,"\n#****** ");      }
       for(j=1;j<=cptcovn;j++)    }
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");    strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
       fprintf(ficreseij,"\n#****** ");    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
       for(j=1;j<=cptcovn;j++)    strcat(fileresprobmorprev,digit); /* Tvar to be done */
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
       fprintf(ficreseij,"******\n");    strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       fprintf(ficresvij,"\n#****** ");      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       for(j=1;j<=cptcovn;j++)      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    }
       fprintf(ficresvij,"******\n");    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       oldm=oldms;savm=savms;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      fprintf(ficresprobmorprev," p.%-d SE",j);
       oldm=oldms;savm=savms;      for(i=1; i<=nlstate;i++)
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
          }  
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    fprintf(ficresprobmorprev,"\n");
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    fprintf(ficgp,"\n# Routine varevsij");
       fprintf(ficrest,"\n");    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
            fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       hf=1;  /*   } */
       if (stepm >= YEARM) hf=stepm/YEARM;    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       epj=vector(1,nlstate+1);  
       for(age=bage; age <=fage ;age++){    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    fprintf(ficresvij,"# Age");
         fprintf(ficrest," %.0f",age);    for(i=1; i<=nlstate;i++)
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      for(j=1; j<=nlstate;j++)
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];    fprintf(ficresvij,"\n");
           }  
           epj[nlstate+1] +=epj[j];    xp=vector(1,npar);
         }    dnewm=matrix(1,nlstate,1,npar);
         for(i=1, vepp=0.;i <=nlstate;i++)    doldm=matrix(1,nlstate,1,nlstate);
           for(j=1;j <=nlstate;j++)    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
             vepp += vareij[i][j][(int)age];    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));  
         for(j=1;j <=nlstate;j++){    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));    gpp=vector(nlstate+1,nlstate+ndeath);
         }    gmp=vector(nlstate+1,nlstate+ndeath);
         fprintf(ficrest,"\n");    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       }    
     }    if(estepm < stepm){
   }      printf ("Problem %d lower than %d\n",estepm, stepm);
            }
  fclose(ficreseij);    else  hstepm=estepm;   
  fclose(ficresvij);    /* For example we decided to compute the life expectancy with the smallest unit */
   fclose(ficrest);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   fclose(ficpar);       nhstepm is the number of hstepm from age to agelim 
   free_vector(epj,1,nlstate+1);       nstepm is the number of stepm from age to agelin. 
   /*  scanf("%d ",i); */       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like k years */
   /*------- Variance limit prevalence------*/      /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
 strcpy(fileresvpl,"vpl");       means that if the survival funtion is printed every two years of age and if
   strcat(fileresvpl,fileres);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {       results. So we changed our mind and took the option of the best precision.
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    */
     exit(0);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   }    agelim = AGESUP;
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
  k=0;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
  for(cptcov=1;cptcov<=i1;cptcov++){      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
      k=k+1;      gp=matrix(0,nhstepm,1,nlstate);
      fprintf(ficresvpl,"\n#****** ");      gm=matrix(0,nhstepm,1,nlstate);
      for(j=1;j<=cptcovn;j++)  
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);  
      fprintf(ficresvpl,"******\n");      for(theta=1; theta <=npar; theta++){
              for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
      varpl=matrix(1,nlstate,(int) bage, (int) fage);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
      oldm=oldms;savm=savms;        }
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
    }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
  }  
         if (popbased==1) {
   fclose(ficresvpl);          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
   /*---------- End : free ----------------*/              prlim[i][i]=probs[(int)age][i][ij];
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          }else{ /* mobilav */ 
              for(i=1; i<=nlstate;i++)
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);              prlim[i][i]=mobaverage[(int)age][i][ij];
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          }
          }
      
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);        for(j=1; j<= nlstate; j++){
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);          for(h=0; h<=nhstepm; h++){
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
            }
   free_matrix(matcov,1,npar,1,npar);        }
   free_vector(delti,1,npar);        /* This for computing probability of death (h=1 means
             computed over hstepm matrices product = hstepm*stepm months) 
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);           as a weighted average of prlim.
         */
   printf("End of Imach\n");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */          for(i=1,gpp[j]=0.; i<= nlstate; i++)
              gpp[j] += prlim[i][i]*p3mat[i][j][1];
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        }    
   /*printf("Total time was %d uSec.\n", total_usecs);*/        /* end probability of death */
   /*------ End -----------*/  
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
  end:          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 #ifdef windows        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
  chdir(pathcd);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 #endif   
  system("wgnuplot graph.plt");        if (popbased==1) {
           if(mobilav ==0){
 #ifdef windows            for(i=1; i<=nlstate;i++)
   while (z[0] != 'q') {              prlim[i][i]=probs[(int)age][i][ij];
     chdir(pathcd);          }else{ /* mobilav */ 
     printf("\nType e to edit output files, c to start again, and q for exiting: ");            for(i=1; i<=nlstate;i++)
     scanf("%s",z);              prlim[i][i]=mobaverage[(int)age][i][ij];
     if (z[0] == 'c') system("./imach");          }
     else if (z[0] == 'e') {        }
       chdir(path);  
       system("index.htm");        for(j=1; j<= nlstate; j++){
     }          for(h=0; h<=nhstepm; h++){
     else if (z[0] == 'q') exit(0);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   }              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 #endif          }
 }        }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
      
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Computing matrix of variance-covariance of step probabilities</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Computing matrix of variance-covariance of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
     /*char optionfilehtm[FILENAMELENGTH];*/
   /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
   /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
   /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
   /*   } */
   
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>", \
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
    - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            rfileres,rfileres,\
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
            subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
   interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     }
   
   } /* end of prwizard */
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start):%s",strstart);
     fprintf(ficlog,"Localtime (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     strcpy(lfileres,fileres);
     strcat(lfileres,"/");
     strcat(lfileres,optionfilefiname);
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.5  
changed lines
  Added in v.1.91


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>