Diff for /imach/src/imach.c between versions 1.13 and 1.65

version 1.13, 2002/02/20 17:02:08 version 1.65, 2002/12/11 16:58:19
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************             Interpolated Markov Chain
   This program computes Healthy Life Expectancies from cross-longitudinal  
   data. Cross-longitudinal consist in a first survey ("cross") where    Short summary of the programme:
   individuals from different ages are interviewed on their health status    
   or degree of  disability. At least a second wave of interviews    This program computes Healthy Life Expectancies from
   ("longitudinal") should  measure each new individual health status.    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   Health expectancies are computed from the transistions observed between    first survey ("cross") where individuals from different ages are
   waves and are computed for each degree of severity of disability (number    interviewed on their health status or degree of disability (in the
   of life states). More degrees you consider, more time is necessary to    case of a health survey which is our main interest) -2- at least a
   reach the Maximum Likelihood of the parameters involved in the model.    second wave of interviews ("longitudinal") which measure each change
   The simplest model is the multinomial logistic model where pij is    (if any) in individual health status.  Health expectancies are
   the probabibility to be observed in state j at the second wave conditional    computed from the time spent in each health state according to a
   to be observed in state i at the first wave. Therefore the model is:    model. More health states you consider, more time is necessary to reach the
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    Maximum Likelihood of the parameters involved in the model.  The
   is a covariate. If you want to have a more complex model than "constant and    simplest model is the multinomial logistic model where pij is the
   age", you should modify the program where the markup    probability to be observed in state j at the second wave
     *Covariates have to be included here again* invites you to do it.    conditional to be observed in state i at the first wave. Therefore
   More covariates you add, less is the speed of the convergence.    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
   The advantage that this computer programme claims, comes from that if the    complex model than "constant and age", you should modify the program
   delay between waves is not identical for each individual, or if some    where the markup *Covariates have to be included here again* invites
   individual missed an interview, the information is not rounded or lost, but    you to do it.  More covariates you add, slower the
   taken into account using an interpolation or extrapolation.    convergence.
   hPijx is the probability to be  
   observed in state i at age x+h conditional to the observed state i at age    The advantage of this computer programme, compared to a simple
   x. The delay 'h' can be split into an exact number (nh*stepm) of    multinomial logistic model, is clear when the delay between waves is not
   unobserved intermediate  states. This elementary transition (by month or    identical for each individual. Also, if a individual missed an
   quarter trimester, semester or year) is model as a multinomial logistic.    intermediate interview, the information is lost, but taken into
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    account using an interpolation or extrapolation.  
   and the contribution of each individual to the likelihood is simply hPijx.  
     hPijx is the probability to be observed in state i at age x+h
   Also this programme outputs the covariance matrix of the parameters but also    conditional to the observed state i at age x. The delay 'h' can be
   of the life expectancies. It also computes the prevalence limits.    split into an exact number (nh*stepm) of unobserved intermediate
      states. This elementary transition (by month or quarter trimester,
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    semester or year) is model as a multinomial logistic.  The hPx
            Institut national d'études démographiques, Paris.    matrix is simply the matrix product of nh*stepm elementary matrices
   This software have been partly granted by Euro-REVES, a concerted action    and the contribution of each individual to the likelihood is simply
   from the European Union.    hPijx.
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Also this programme outputs the covariance matrix of the parameters but also
   can be accessed at http://euroreves.ined.fr/imach .    of the life expectancies. It also computes the stable prevalence. 
   **********************************************************************/    
      Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #include <math.h>             Institut national d'études démographiques, Paris.
 #include <stdio.h>    This software have been partly granted by Euro-REVES, a concerted action
 #include <stdlib.h>    from the European Union.
 #include <unistd.h>    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 #define MAXLINE 256    can be accessed at http://euroreves.ined.fr/imach .
 #define FILENAMELENGTH 80    **********************************************************************/
 /*#define DEBUG*/   
 #define windows  #include <math.h>
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  #include <stdio.h>
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  #include <stdlib.h>
   #include <unistd.h>
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  #define MAXLINE 256
   #define GNUPLOTPROGRAM "gnuplot"
 #define NINTERVMAX 8  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  #define FILENAMELENGTH 80
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  /*#define DEBUG*/
 #define NCOVMAX 8 /* Maximum number of covariates */  #define windows
 #define MAXN 20000  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 #define YEARM 12. /* Number of months per year */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #define AGESUP 130  
 #define AGEBASE 40  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 int nvar;  #define NINTERVMAX 8
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 int npar=NPARMAX;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 int nlstate=2; /* Number of live states */  #define NCOVMAX 8 /* Maximum number of covariates */
 int ndeath=1; /* Number of dead states */  #define MAXN 20000
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  #define YEARM 12. /* Number of months per year */
   #define AGESUP 130
 int *wav; /* Number of waves for this individuual 0 is possible */  #define AGEBASE 40
 int maxwav; /* Maxim number of waves */  #ifdef windows
 int jmin, jmax; /* min, max spacing between 2 waves */  #define DIRSEPARATOR '\\'
 int mle, weightopt;  #define ODIRSEPARATOR '/'
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  #else
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  #define DIRSEPARATOR '/'
 double jmean; /* Mean space between 2 waves */  #define ODIRSEPARATOR '\\'
 double **oldm, **newm, **savm; /* Working pointers to matrices */  #endif
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;  char version[80]="Imach version 0.9, November 2002, INED-EUROREVES ";
 FILE *ficgp, *fichtm,*ficresprob;  int erreur; /* Error number */
 FILE *ficreseij;  int nvar;
   char filerese[FILENAMELENGTH];  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
  FILE  *ficresvij;  int npar=NPARMAX;
   char fileresv[FILENAMELENGTH];  int nlstate=2; /* Number of live states */
  FILE  *ficresvpl;  int ndeath=1; /* Number of dead states */
   char fileresvpl[FILENAMELENGTH];  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
 #define NR_END 1  
 #define FREE_ARG char*  int *wav; /* Number of waves for this individuual 0 is possible */
 #define FTOL 1.0e-10  int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
 #define NRANSI  int mle, weightopt;
 #define ITMAX 200  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 #define TOL 2.0e-4  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
 #define CGOLD 0.3819660  double jmean; /* Mean space between 2 waves */
 #define ZEPS 1.0e-10  double **oldm, **newm, **savm; /* Working pointers to matrices */
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 #define GOLD 1.618034  FILE *ficlog;
 #define GLIMIT 100.0  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 #define TINY 1.0e-20  FILE *ficresprobmorprev;
   FILE *fichtm; /* Html File */
 static double maxarg1,maxarg2;  FILE *ficreseij;
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  char filerese[FILENAMELENGTH];
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  FILE  *ficresvij;
    char fileresv[FILENAMELENGTH];
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  FILE  *ficresvpl;
 #define rint(a) floor(a+0.5)  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 static double sqrarg;  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 int imx;  char filelog[FILENAMELENGTH]; /* Log file */
 int stepm;  char filerest[FILENAMELENGTH];
 /* Stepm, step in month: minimum step interpolation*/  char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij, ***probs, ***mobaverage;  #define NR_END 1
   #define FREE_ARG char*
 double *weight;  #define FTOL 1.0e-10
 int **s; /* Status */  
 double *agedc, **covar, idx;  #define NRANSI 
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  #define ITMAX 200 
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #define TOL 2.0e-4 
 double ftolhess; /* Tolerance for computing hessian */  
   #define CGOLD 0.3819660 
 /**************** split *************************/  #define ZEPS 1.0e-10 
 static  int split( char *path, char *dirc, char *name )  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 {  
    char *s;                             /* pointer */  #define GOLD 1.618034 
    int  l1, l2;                         /* length counters */  #define GLIMIT 100.0 
   #define TINY 1.0e-20 
    l1 = strlen( path );                 /* length of path */  
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  static double maxarg1,maxarg2;
    s = strrchr( path, '\\' );           /* find last / */  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
    if ( s == NULL ) {                   /* no directory, so use current */  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 #if     defined(__bsd__)                /* get current working directory */    
       extern char       *getwd( );  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
       if ( getwd( dirc ) == NULL ) {  
 #else  static double sqrarg;
       extern char       *getcwd( );  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif  int imx; 
          return( GLOCK_ERROR_GETCWD );  int stepm;
       }  /* Stepm, step in month: minimum step interpolation*/
       strcpy( name, path );             /* we've got it */  
    } else {                             /* strip direcotry from path */  int estepm;
       s++;                              /* after this, the filename */  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  int m,nb;
       strcpy( name, s );                /* save file name */  int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       dirc[l1-l2] = 0;                  /* add zero */  double **pmmij, ***probs;
    }  double dateintmean=0;
    l1 = strlen( dirc );                 /* length of directory */  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  double *weight;
    return( 0 );                         /* we're done */  int **s; /* Status */
 }  double *agedc, **covar, idx;
   int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   
 /******************************************/  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double ftolhess; /* Tolerance for computing hessian */
 void replace(char *s, char*t)  
 {  /**************** split *************************/
   int i;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   int lg=20;  {
   i=0;    char  *ss;                            /* pointer */
   lg=strlen(t);    int   l1, l2;                         /* length counters */
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);    l1 = strlen(path );                   /* length of path */
     if (t[i]== '\\') s[i]='/';    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   }    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 }    if ( ss == NULL ) {                   /* no directory, so use current */
       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 int nbocc(char *s, char occ)        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 {  #if     defined(__bsd__)                /* get current working directory */
   int i,j=0;      extern char *getwd( );
   int lg=20;  
   i=0;      if ( getwd( dirc ) == NULL ) {
   lg=strlen(s);  #else
   for(i=0; i<= lg; i++) {      extern char *getcwd( );
   if  (s[i] == occ ) j++;  
   }      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   return j;  #endif
 }        return( GLOCK_ERROR_GETCWD );
       }
 void cutv(char *u,char *v, char*t, char occ)      strcpy( name, path );               /* we've got it */
 {    } else {                              /* strip direcotry from path */
   int i,lg,j,p=0;      ss++;                               /* after this, the filename */
   i=0;      l2 = strlen( ss );                  /* length of filename */
   for(j=0; j<=strlen(t)-1; j++) {      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;      strcpy( name, ss );         /* save file name */
   }      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       dirc[l1-l2] = 0;                    /* add zero */
   lg=strlen(t);    }
   for(j=0; j<p; j++) {    l1 = strlen( dirc );                  /* length of directory */
     (u[j] = t[j]);  #ifdef windows
   }    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
      u[p]='\0';  #else
     if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
    for(j=0; j<= lg; j++) {  #endif
     if (j>=(p+1))(v[j-p-1] = t[j]);    ss = strrchr( name, '.' );            /* find last / */
   }    ss++;
 }    strcpy(ext,ss);                       /* save extension */
     l1= strlen( name);
 /********************** nrerror ********************/    l2= strlen(ss)+1;
     strncpy( finame, name, l1-l2);
 void nrerror(char error_text[])    finame[l1-l2]= 0;
 {    return( 0 );                          /* we're done */
   fprintf(stderr,"ERREUR ...\n");  }
   fprintf(stderr,"%s\n",error_text);  
   exit(1);  
 }  /******************************************/
 /*********************** vector *******************/  
 double *vector(int nl, int nh)  void replace(char *s, char*t)
 {  {
   double *v;    int i;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    int lg=20;
   if (!v) nrerror("allocation failure in vector");    i=0;
   return v-nl+NR_END;    lg=strlen(t);
 }    for(i=0; i<= lg; i++) {
       (s[i] = t[i]);
 /************************ free vector ******************/      if (t[i]== '\\') s[i]='/';
 void free_vector(double*v, int nl, int nh)    }
 {  }
   free((FREE_ARG)(v+nl-NR_END));  
 }  int nbocc(char *s, char occ)
   {
 /************************ivector *******************************/    int i,j=0;
 int *ivector(long nl,long nh)    int lg=20;
 {    i=0;
   int *v;    lg=strlen(s);
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    for(i=0; i<= lg; i++) {
   if (!v) nrerror("allocation failure in ivector");    if  (s[i] == occ ) j++;
   return v-nl+NR_END;    }
 }    return j;
   }
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)  void cutv(char *u,char *v, char*t, char occ)
 {  {
   free((FREE_ARG)(v+nl-NR_END));    /* cuts string t into u and v where u is ended by char occ excluding it
 }       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
        gives u="abcedf" and v="ghi2j" */
 /******************* imatrix *******************************/    int i,lg,j,p=0;
 int **imatrix(long nrl, long nrh, long ncl, long nch)    i=0;
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    for(j=0; j<=strlen(t)-1; j++) {
 {      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    }
   int **m;  
      lg=strlen(t);
   /* allocate pointers to rows */    for(j=0; j<p; j++) {
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));      (u[j] = t[j]);
   if (!m) nrerror("allocation failure 1 in matrix()");    }
   m += NR_END;       u[p]='\0';
   m -= nrl;  
       for(j=0; j<= lg; j++) {
        if (j>=(p+1))(v[j-p-1] = t[j]);
   /* allocate rows and set pointers to them */    }
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  /********************** nrerror ********************/
   m[nrl] -= ncl;  
    void nrerror(char error_text[])
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  {
      fprintf(stderr,"ERREUR ...\n");
   /* return pointer to array of pointers to rows */    fprintf(stderr,"%s\n",error_text);
   return m;    exit(EXIT_FAILURE);
 }  }
   /*********************** vector *******************/
 /****************** free_imatrix *************************/  double *vector(int nl, int nh)
 void free_imatrix(m,nrl,nrh,ncl,nch)  {
       int **m;    double *v;
       long nch,ncl,nrh,nrl;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
      /* free an int matrix allocated by imatrix() */    if (!v) nrerror("allocation failure in vector");
 {    return v-nl+NR_END;
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  }
   free((FREE_ARG) (m+nrl-NR_END));  
 }  /************************ free vector ******************/
   void free_vector(double*v, int nl, int nh)
 /******************* matrix *******************************/  {
 double **matrix(long nrl, long nrh, long ncl, long nch)    free((FREE_ARG)(v+nl-NR_END));
 {  }
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  /************************ivector *******************************/
   int *ivector(long nl,long nh)
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  {
   if (!m) nrerror("allocation failure 1 in matrix()");    int *v;
   m += NR_END;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   m -= nrl;    if (!v) nrerror("allocation failure in ivector");
     return v-nl+NR_END;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  /******************free ivector **************************/
   m[nrl] -= ncl;  void free_ivector(int *v, long nl, long nh)
   {
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    free((FREE_ARG)(v+nl-NR_END));
   return m;  }
 }  
   /******************* imatrix *******************************/
 /*************************free matrix ************************/  int **imatrix(long nrl, long nrh, long ncl, long nch) 
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 {  { 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   free((FREE_ARG)(m+nrl-NR_END));    int **m; 
 }    
     /* allocate pointers to rows */ 
 /******************* ma3x *******************************/    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    if (!m) nrerror("allocation failure 1 in matrix()"); 
 {    m += NR_END; 
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    m -= nrl; 
   double ***m;    
     
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    /* allocate rows and set pointers to them */ 
   if (!m) nrerror("allocation failure 1 in matrix()");    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   m += NR_END;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   m -= nrl;    m[nrl] += NR_END; 
     m[nrl] -= ncl; 
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   m[nrl] += NR_END;    
   m[nrl] -= ncl;    /* return pointer to array of pointers to rows */ 
     return m; 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  } 
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  /****************** free_imatrix *************************/
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  void free_imatrix(m,nrl,nrh,ncl,nch)
   m[nrl][ncl] += NR_END;        int **m;
   m[nrl][ncl] -= nll;        long nch,ncl,nrh,nrl; 
   for (j=ncl+1; j<=nch; j++)       /* free an int matrix allocated by imatrix() */ 
     m[nrl][j]=m[nrl][j-1]+nlay;  { 
      free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   for (i=nrl+1; i<=nrh; i++) {    free((FREE_ARG) (m+nrl-NR_END)); 
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  } 
     for (j=ncl+1; j<=nch; j++)  
       m[i][j]=m[i][j-1]+nlay;  /******************* matrix *******************************/
   }  double **matrix(long nrl, long nrh, long ncl, long nch)
   return m;  {
 }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     double **m;
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 {    if (!m) nrerror("allocation failure 1 in matrix()");
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    m += NR_END;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    m -= nrl;
   free((FREE_ARG)(m+nrl-NR_END));  
 }    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 /***************** f1dim *************************/    m[nrl] += NR_END;
 extern int ncom;    m[nrl] -= ncl;
 extern double *pcom,*xicom;  
 extern double (*nrfunc)(double []);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
      return m;
 double f1dim(double x)  }
 {  
   int j;  /*************************free matrix ************************/
   double f;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   double *xt;  {
      free((FREE_ARG)(m[nrl]+ncl-NR_END));
   xt=vector(1,ncom);    free((FREE_ARG)(m+nrl-NR_END));
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  }
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  /******************* ma3x *******************************/
   return f;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 }  {
     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 /*****************brent *************************/    double ***m;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  
 {    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   int iter;    if (!m) nrerror("allocation failure 1 in matrix()");
   double a,b,d,etemp;    m += NR_END;
   double fu,fv,fw,fx;    m -= nrl;
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double e=0.0;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
      m[nrl] += NR_END;
   a=(ax < cx ? ax : cx);    m[nrl] -= ncl;
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     xm=0.5*(a+b);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    m[nrl][ncl] += NR_END;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    m[nrl][ncl] -= nll;
     printf(".");fflush(stdout);    for (j=ncl+1; j<=nch; j++) 
 #ifdef DEBUG      m[nrl][j]=m[nrl][j-1]+nlay;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    for (i=nrl+1; i<=nrh; i++) {
 #endif      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){      for (j=ncl+1; j<=nch; j++) 
       *xmin=x;        m[i][j]=m[i][j-1]+nlay;
       return fx;    }
     }    return m;
     ftemp=fu;  }
     if (fabs(e) > tol1) {  
       r=(x-w)*(fx-fv);  /*************************free ma3x ************************/
       q=(x-v)*(fx-fw);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       p=(x-v)*q-(x-w)*r;  {
       q=2.0*(q-r);    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       if (q > 0.0) p = -p;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       q=fabs(q);    free((FREE_ARG)(m+nrl-NR_END));
       etemp=e;  }
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  /***************** f1dim *************************/
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  extern int ncom; 
       else {  extern double *pcom,*xicom;
         d=p/q;  extern double (*nrfunc)(double []); 
         u=x+d;   
         if (u-a < tol2 || b-u < tol2)  double f1dim(double x) 
           d=SIGN(tol1,xm-x);  { 
       }    int j; 
     } else {    double f;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    double *xt; 
     }   
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    xt=vector(1,ncom); 
     fu=(*f)(u);    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     if (fu <= fx) {    f=(*nrfunc)(xt); 
       if (u >= x) a=x; else b=x;    free_vector(xt,1,ncom); 
       SHFT(v,w,x,u)    return f; 
         SHFT(fv,fw,fx,fu)  } 
         } else {  
           if (u < x) a=u; else b=u;  /*****************brent *************************/
           if (fu <= fw || w == x) {  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
             v=w;  { 
             w=u;    int iter; 
             fv=fw;    double a,b,d,etemp;
             fw=fu;    double fu,fv,fw,fx;
           } else if (fu <= fv || v == x || v == w) {    double ftemp;
             v=u;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
             fv=fu;    double e=0.0; 
           }   
         }    a=(ax < cx ? ax : cx); 
   }    b=(ax > cx ? ax : cx); 
   nrerror("Too many iterations in brent");    x=w=v=bx; 
   *xmin=x;    fw=fv=fx=(*f)(x); 
   return fx;    for (iter=1;iter<=ITMAX;iter++) { 
 }      xm=0.5*(a+b); 
       tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 /****************** mnbrak ***********************/      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(".");fflush(stdout);
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,      fprintf(ficlog,".");fflush(ficlog);
             double (*func)(double))  #ifdef DEBUG
 {      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double ulim,u,r,q, dum;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double fu;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
    #endif
   *fa=(*func)(*ax);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   *fb=(*func)(*bx);        *xmin=x; 
   if (*fb > *fa) {        return fx; 
     SHFT(dum,*ax,*bx,dum)      } 
       SHFT(dum,*fb,*fa,dum)      ftemp=fu;
       }      if (fabs(e) > tol1) { 
   *cx=(*bx)+GOLD*(*bx-*ax);        r=(x-w)*(fx-fv); 
   *fc=(*func)(*cx);        q=(x-v)*(fx-fw); 
   while (*fb > *fc) {        p=(x-v)*q-(x-w)*r; 
     r=(*bx-*ax)*(*fb-*fc);        q=2.0*(q-r); 
     q=(*bx-*cx)*(*fb-*fa);        if (q > 0.0) p = -p; 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/        q=fabs(q); 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));        etemp=e; 
     ulim=(*bx)+GLIMIT*(*cx-*bx);        e=d; 
     if ((*bx-u)*(u-*cx) > 0.0) {        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       fu=(*func)(u);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     } else if ((*cx-u)*(u-ulim) > 0.0) {        else { 
       fu=(*func)(u);          d=p/q; 
       if (fu < *fc) {          u=x+d; 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))          if (u-a < tol2 || b-u < tol2) 
           SHFT(*fb,*fc,fu,(*func)(u))            d=SIGN(tol1,xm-x); 
           }        } 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      } else { 
       u=ulim;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       fu=(*func)(u);      } 
     } else {      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       u=(*cx)+GOLD*(*cx-*bx);      fu=(*f)(u); 
       fu=(*func)(u);      if (fu <= fx) { 
     }        if (u >= x) a=x; else b=x; 
     SHFT(*ax,*bx,*cx,u)        SHFT(v,w,x,u) 
       SHFT(*fa,*fb,*fc,fu)          SHFT(fv,fw,fx,fu) 
       }          } else { 
 }            if (u < x) a=u; else b=u; 
             if (fu <= fw || w == x) { 
 /*************** linmin ************************/              v=w; 
               w=u; 
 int ncom;              fv=fw; 
 double *pcom,*xicom;              fw=fu; 
 double (*nrfunc)(double []);            } else if (fu <= fv || v == x || v == w) { 
                v=u; 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))              fv=fu; 
 {            } 
   double brent(double ax, double bx, double cx,          } 
                double (*f)(double), double tol, double *xmin);    } 
   double f1dim(double x);    nrerror("Too many iterations in brent"); 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    *xmin=x; 
               double *fc, double (*func)(double));    return fx; 
   int j;  } 
   double xx,xmin,bx,ax;  
   double fx,fb,fa;  /****************** mnbrak ***********************/
    
   ncom=n;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   pcom=vector(1,n);              double (*func)(double)) 
   xicom=vector(1,n);  { 
   nrfunc=func;    double ulim,u,r,q, dum;
   for (j=1;j<=n;j++) {    double fu; 
     pcom[j]=p[j];   
     xicom[j]=xi[j];    *fa=(*func)(*ax); 
   }    *fb=(*func)(*bx); 
   ax=0.0;    if (*fb > *fa) { 
   xx=1.0;      SHFT(dum,*ax,*bx,dum) 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);        SHFT(dum,*fb,*fa,dum) 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);        } 
 #ifdef DEBUG    *cx=(*bx)+GOLD*(*bx-*ax); 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    *fc=(*func)(*cx); 
 #endif    while (*fb > *fc) { 
   for (j=1;j<=n;j++) {      r=(*bx-*ax)*(*fb-*fc); 
     xi[j] *= xmin;      q=(*bx-*cx)*(*fb-*fa); 
     p[j] += xi[j];      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   }        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   free_vector(xicom,1,n);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
   free_vector(pcom,1,n);      if ((*bx-u)*(u-*cx) > 0.0) { 
 }        fu=(*func)(u); 
       } else if ((*cx-u)*(u-ulim) > 0.0) { 
 /*************** powell ************************/        fu=(*func)(u); 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,        if (fu < *fc) { 
             double (*func)(double []))          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 {            SHFT(*fb,*fc,fu,(*func)(u)) 
   void linmin(double p[], double xi[], int n, double *fret,            } 
               double (*func)(double []));      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   int i,ibig,j;        u=ulim; 
   double del,t,*pt,*ptt,*xit;        fu=(*func)(u); 
   double fp,fptt;      } else { 
   double *xits;        u=(*cx)+GOLD*(*cx-*bx); 
   pt=vector(1,n);        fu=(*func)(u); 
   ptt=vector(1,n);      } 
   xit=vector(1,n);      SHFT(*ax,*bx,*cx,u) 
   xits=vector(1,n);        SHFT(*fa,*fb,*fc,fu) 
   *fret=(*func)(p);        } 
   for (j=1;j<=n;j++) pt[j]=p[j];  } 
   for (*iter=1;;++(*iter)) {  
     fp=(*fret);  /*************** linmin ************************/
     ibig=0;  
     del=0.0;  int ncom; 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  double *pcom,*xicom;
     for (i=1;i<=n;i++)  double (*nrfunc)(double []); 
       printf(" %d %.12f",i, p[i]);   
     printf("\n");  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     for (i=1;i<=n;i++) {  { 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    double brent(double ax, double bx, double cx, 
       fptt=(*fret);                 double (*f)(double), double tol, double *xmin); 
 #ifdef DEBUG    double f1dim(double x); 
       printf("fret=%lf \n",*fret);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 #endif                double *fc, double (*func)(double)); 
       printf("%d",i);fflush(stdout);    int j; 
       linmin(p,xit,n,fret,func);    double xx,xmin,bx,ax; 
       if (fabs(fptt-(*fret)) > del) {    double fx,fb,fa;
         del=fabs(fptt-(*fret));   
         ibig=i;    ncom=n; 
       }    pcom=vector(1,n); 
 #ifdef DEBUG    xicom=vector(1,n); 
       printf("%d %.12e",i,(*fret));    nrfunc=func; 
       for (j=1;j<=n;j++) {    for (j=1;j<=n;j++) { 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);      pcom[j]=p[j]; 
         printf(" x(%d)=%.12e",j,xit[j]);      xicom[j]=xi[j]; 
       }    } 
       for(j=1;j<=n;j++)    ax=0.0; 
         printf(" p=%.12e",p[j]);    xx=1.0; 
       printf("\n");    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
 #endif    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     }  #ifdef DEBUG
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 #ifdef DEBUG    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       int k[2],l;  #endif
       k[0]=1;    for (j=1;j<=n;j++) { 
       k[1]=-1;      xi[j] *= xmin; 
       printf("Max: %.12e",(*func)(p));      p[j] += xi[j]; 
       for (j=1;j<=n;j++)    } 
         printf(" %.12e",p[j]);    free_vector(xicom,1,n); 
       printf("\n");    free_vector(pcom,1,n); 
       for(l=0;l<=1;l++) {  } 
         for (j=1;j<=n;j++) {  
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  /*************** powell ************************/
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
         }              double (*func)(double [])) 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  { 
       }    void linmin(double p[], double xi[], int n, double *fret, 
 #endif                double (*func)(double [])); 
     int i,ibig,j; 
     double del,t,*pt,*ptt,*xit;
       free_vector(xit,1,n);    double fp,fptt;
       free_vector(xits,1,n);    double *xits;
       free_vector(ptt,1,n);    pt=vector(1,n); 
       free_vector(pt,1,n);    ptt=vector(1,n); 
       return;    xit=vector(1,n); 
     }    xits=vector(1,n); 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    *fret=(*func)(p); 
     for (j=1;j<=n;j++) {    for (j=1;j<=n;j++) pt[j]=p[j]; 
       ptt[j]=2.0*p[j]-pt[j];    for (*iter=1;;++(*iter)) { 
       xit[j]=p[j]-pt[j];      fp=(*fret); 
       pt[j]=p[j];      ibig=0; 
     }      del=0.0; 
     fptt=(*func)(ptt);      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
     if (fptt < fp) {      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);      for (i=1;i<=n;i++) 
       if (t < 0.0) {        printf(" %d %.12f",i, p[i]);
         linmin(p,xit,n,fret,func);      fprintf(ficlog," %d %.12f",i, p[i]);
         for (j=1;j<=n;j++) {      printf("\n");
           xi[j][ibig]=xi[j][n];      fprintf(ficlog,"\n");
           xi[j][n]=xit[j];      for (i=1;i<=n;i++) { 
         }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
 #ifdef DEBUG        fptt=(*fret); 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  #ifdef DEBUG
         for(j=1;j<=n;j++)        printf("fret=%lf \n",*fret);
           printf(" %.12e",xit[j]);        fprintf(ficlog,"fret=%lf \n",*fret);
         printf("\n");  #endif
 #endif        printf("%d",i);fflush(stdout);
       }        fprintf(ficlog,"%d",i);fflush(ficlog);
     }        linmin(p,xit,n,fret,func); 
   }        if (fabs(fptt-(*fret)) > del) { 
 }          del=fabs(fptt-(*fret)); 
           ibig=i; 
 /**** Prevalence limit ****************/        } 
   #ifdef DEBUG
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)        printf("%d %.12e",i,(*fret));
 {        fprintf(ficlog,"%d %.12e",i,(*fret));
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit        for (j=1;j<=n;j++) {
      matrix by transitions matrix until convergence is reached */          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
   int i, ii,j,k;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   double min, max, maxmin, maxmax,sumnew=0.;        }
   double **matprod2();        for(j=1;j<=n;j++) {
   double **out, cov[NCOVMAX], **pmij();          printf(" p=%.12e",p[j]);
   double **newm;          fprintf(ficlog," p=%.12e",p[j]);
   double agefin, delaymax=50 ; /* Max number of years to converge */        }
         printf("\n");
   for (ii=1;ii<=nlstate+ndeath;ii++)        fprintf(ficlog,"\n");
     for (j=1;j<=nlstate+ndeath;j++){  #endif
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      } 
     }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   #ifdef DEBUG
    cov[1]=1.;        int k[2],l;
          k[0]=1;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */        k[1]=-1;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        printf("Max: %.12e",(*func)(p));
     newm=savm;        fprintf(ficlog,"Max: %.12e",(*func)(p));
     /* Covariates have to be included here again */        for (j=1;j<=n;j++) {
      cov[2]=agefin;          printf(" %.12e",p[j]);
            fprintf(ficlog," %.12e",p[j]);
       for (k=1; k<=cptcovn;k++) {        }
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        printf("\n");
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/        fprintf(ficlog,"\n");
       }        for(l=0;l<=1;l++) {
       for (k=1; k<=cptcovage;k++)          for (j=1;j<=n;j++) {
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
       for (k=1; k<=cptcovprod;k++)            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           }
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  #endif
   
     savm=oldm;  
     oldm=newm;        free_vector(xit,1,n); 
     maxmax=0.;        free_vector(xits,1,n); 
     for(j=1;j<=nlstate;j++){        free_vector(ptt,1,n); 
       min=1.;        free_vector(pt,1,n); 
       max=0.;        return; 
       for(i=1; i<=nlstate; i++) {      } 
         sumnew=0;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      for (j=1;j<=n;j++) { 
         prlim[i][j]= newm[i][j]/(1-sumnew);        ptt[j]=2.0*p[j]-pt[j]; 
         max=FMAX(max,prlim[i][j]);        xit[j]=p[j]-pt[j]; 
         min=FMIN(min,prlim[i][j]);        pt[j]=p[j]; 
       }      } 
       maxmin=max-min;      fptt=(*func)(ptt); 
       maxmax=FMAX(maxmax,maxmin);      if (fptt < fp) { 
     }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     if(maxmax < ftolpl){        if (t < 0.0) { 
       return prlim;          linmin(p,xit,n,fret,func); 
     }          for (j=1;j<=n;j++) { 
   }            xi[j][ibig]=xi[j][n]; 
 }            xi[j][n]=xit[j]; 
           }
 /*************** transition probabilities ***************/  #ifdef DEBUG
           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
 {          for(j=1;j<=n;j++){
   double s1, s2;            printf(" %.12e",xit[j]);
   /*double t34;*/            fprintf(ficlog," %.12e",xit[j]);
   int i,j,j1, nc, ii, jj;          }
           printf("\n");
     for(i=1; i<= nlstate; i++){          fprintf(ficlog,"\n");
     for(j=1; j<i;j++){  #endif
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        }
         /*s2 += param[i][j][nc]*cov[nc];*/      } 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    } 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  } 
       }  
       ps[i][j]=s2;  /**** Prevalence limit (stable prevalence)  ****************/
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  
     }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     for(j=i+1; j<=nlstate+ndeath;j++){  {
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];       matrix by transitions matrix until convergence is reached */
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  
       }    int i, ii,j,k;
       ps[i][j]=(s2);    double min, max, maxmin, maxmax,sumnew=0.;
     }    double **matprod2();
   }    double **out, cov[NCOVMAX], **pmij();
     /*ps[3][2]=1;*/    double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
   for(i=1; i<= nlstate; i++){  
      s1=0;    for (ii=1;ii<=nlstate+ndeath;ii++)
     for(j=1; j<i; j++)      for (j=1;j<=nlstate+ndeath;j++){
       s1+=exp(ps[i][j]);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(j=i+1; j<=nlstate+ndeath; j++)      }
       s1+=exp(ps[i][j]);  
     ps[i][i]=1./(s1+1.);     cov[1]=1.;
     for(j=1; j<i; j++)   
       ps[i][j]= exp(ps[i][j])*ps[i][i];   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(j=i+1; j<=nlstate+ndeath; j++)    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       ps[i][j]= exp(ps[i][j])*ps[i][i];      newm=savm;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      /* Covariates have to be included here again */
   } /* end i */       cov[2]=agefin;
     
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        for (k=1; k<=cptcovn;k++) {
     for(jj=1; jj<= nlstate+ndeath; jj++){          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       ps[ii][jj]=0;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       ps[ii][ii]=1;        }
     }        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   }        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
     for(jj=1; jj<= nlstate+ndeath; jj++){        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
      printf("%lf ",ps[ii][jj]);        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
    }      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     printf("\n ");  
     }      savm=oldm;
     printf("\n ");printf("%lf ",cov[2]);*/      oldm=newm;
 /*      maxmax=0.;
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      for(j=1;j<=nlstate;j++){
   goto end;*/        min=1.;
     return ps;        max=0.;
 }        for(i=1; i<=nlstate; i++) {
           sumnew=0;
 /**************** Product of 2 matrices ******************/          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           prlim[i][j]= newm[i][j]/(1-sumnew);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)          max=FMAX(max,prlim[i][j]);
 {          min=FMIN(min,prlim[i][j]);
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        }
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        maxmin=max-min;
   /* in, b, out are matrice of pointers which should have been initialized        maxmax=FMAX(maxmax,maxmin);
      before: only the contents of out is modified. The function returns      }
      a pointer to pointers identical to out */      if(maxmax < ftolpl){
   long i, j, k;        return prlim;
   for(i=nrl; i<= nrh; i++)      }
     for(k=ncolol; k<=ncoloh; k++)    }
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  }
         out[i][k] +=in[i][j]*b[j][k];  
   /*************** transition probabilities ***************/ 
   return out;  
 }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
     double s1, s2;
 /************* Higher Matrix Product ***************/    /*double t34;*/
     int i,j,j1, nc, ii, jj;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  
 {      for(i=1; i<= nlstate; i++){
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      for(j=1; j<i;j++){
      duration (i.e. until        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.          /*s2 += param[i][j][nc]*cov[nc];*/
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
      (typically every 2 years instead of every month which is too big).          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
      Model is determined by parameters x and covariates have to be        }
      included manually here.        ps[i][j]=s2;
         /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
      */      }
       for(j=i+1; j<=nlstate+ndeath;j++){
   int i, j, d, h, k;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   double **out, cov[NCOVMAX];          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   double **newm;          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
         }
   /* Hstepm could be zero and should return the unit matrix */        ps[i][j]=s2;
   for (i=1;i<=nlstate+ndeath;i++)      }
     for (j=1;j<=nlstate+ndeath;j++){    }
       oldm[i][j]=(i==j ? 1.0 : 0.0);      /*ps[3][2]=1;*/
       po[i][j][0]=(i==j ? 1.0 : 0.0);  
     }    for(i=1; i<= nlstate; i++){
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */       s1=0;
   for(h=1; h <=nhstepm; h++){      for(j=1; j<i; j++)
     for(d=1; d <=hstepm; d++){        s1+=exp(ps[i][j]);
       newm=savm;      for(j=i+1; j<=nlstate+ndeath; j++)
       /* Covariates have to be included here again */        s1+=exp(ps[i][j]);
       cov[1]=1.;      ps[i][i]=1./(s1+1.);
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      for(j=1; j<i; j++)
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        ps[i][j]= exp(ps[i][j])*ps[i][i];
       for (k=1; k<=cptcovage;k++)      for(j=i+1; j<=nlstate+ndeath; j++)
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        ps[i][j]= exp(ps[i][j])*ps[i][i];
       for (k=1; k<=cptcovprod;k++)      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    } /* end i */
   
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      for(jj=1; jj<= nlstate+ndeath; jj++){
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        ps[ii][jj]=0;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        ps[ii][ii]=1;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      }
       savm=oldm;    }
       oldm=newm;  
     }  
     for(i=1; i<=nlstate+ndeath; i++)    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
       for(j=1;j<=nlstate+ndeath;j++) {      for(jj=1; jj<= nlstate+ndeath; jj++){
         po[i][j][h]=newm[i][j];       printf("%lf ",ps[ii][jj]);
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);     }
          */      printf("\n ");
       }      }
   } /* end h */      printf("\n ");printf("%lf ",cov[2]);*/
   return po;  /*
 }    for(i=1; i<= npar; i++) printf("%f ",x[i]);
     goto end;*/
       return ps;
 /*************** log-likelihood *************/  }
 double func( double *x)  
 {  /**************** Product of 2 matrices ******************/
   int i, ii, j, k, mi, d, kk;  
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   double **out;  {
   double sw; /* Sum of weights */    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   double lli; /* Individual log likelihood */       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   long ipmx;    /* in, b, out are matrice of pointers which should have been initialized 
   /*extern weight */       before: only the contents of out is modified. The function returns
   /* We are differentiating ll according to initial status */       a pointer to pointers identical to out */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    long i, j, k;
   /*for(i=1;i<imx;i++)    for(i=nrl; i<= nrh; i++)
     printf(" %d\n",s[4][i]);      for(k=ncolol; k<=ncoloh; k++)
   */        for(j=ncl,out[i][k]=0.; j<=nch; j++)
   cov[1]=1.;          out[i][k] +=in[i][j]*b[j][k];
   
   for(k=1; k<=nlstate; k++) ll[k]=0.;    return out;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  }
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
     for(mi=1; mi<= wav[i]-1; mi++){  
       for (ii=1;ii<=nlstate+ndeath;ii++)  /************* Higher Matrix Product ***************/
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
       for(d=0; d<dh[mi][i]; d++){  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         newm=savm;  {
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month 
         for (kk=1; kk<=cptcovage;kk++) {       duration (i.e. until
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];       age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices. 
         }       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
               (typically every 2 years instead of every month which is too big).
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,       Model is determined by parameters x and covariates have to be 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));       included manually here. 
         savm=oldm;  
         oldm=newm;       */
          
            int i, j, d, h, k;
       } /* end mult */    double **out, cov[NCOVMAX];
          double **newm;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    /* Hstepm could be zero and should return the unit matrix */
       ipmx +=1;    for (i=1;i<=nlstate+ndeath;i++)
       sw += weight[i];      for (j=1;j<=nlstate+ndeath;j++){
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        oldm[i][j]=(i==j ? 1.0 : 0.0);
     } /* end of wave */        po[i][j][0]=(i==j ? 1.0 : 0.0);
   } /* end of individual */      }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    for(h=1; h <=nhstepm; h++){
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      for(d=1; d <=hstepm; d++){
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        newm=savm;
   return -l;        /* Covariates have to be included here again */
 }        cov[1]=1.;
         cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 /*********** Maximum Likelihood Estimation ***************/        for (k=1; k<=cptcovage;k++)
           cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        for (k=1; k<=cptcovprod;k++)
 {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   int i,j, iter;  
   double **xi,*delti;  
   double fret;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   xi=matrix(1,npar,1,npar);        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   for (i=1;i<=npar;i++)        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     for (j=1;j<=npar;j++)                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       xi[i][j]=(i==j ? 1.0 : 0.0);        savm=oldm;
   printf("Powell\n");        oldm=newm;
   powell(p,xi,npar,ftol,&iter,&fret,func);      }
       for(i=1; i<=nlstate+ndeath; i++)
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        for(j=1;j<=nlstate+ndeath;j++) {
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));          po[i][j][h]=newm[i][j];
           /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
 }           */
         }
 /**** Computes Hessian and covariance matrix ***/    } /* end h */
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    return po;
 {  }
   double  **a,**y,*x,pd;  
   double **hess;  
   int i, j,jk;  /*************** log-likelihood *************/
   int *indx;  double func( double *x)
   {
   double hessii(double p[], double delta, int theta, double delti[]);    int i, ii, j, k, mi, d, kk;
   double hessij(double p[], double delti[], int i, int j);    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   void lubksb(double **a, int npar, int *indx, double b[]) ;    double **out;
   void ludcmp(double **a, int npar, int *indx, double *d) ;    double sw; /* Sum of weights */
     double lli; /* Individual log likelihood */
   hess=matrix(1,npar,1,npar);    int s1, s2;
     double bbh;
   printf("\nCalculation of the hessian matrix. Wait...\n");    long ipmx;
   for (i=1;i<=npar;i++){    /*extern weight */
     printf("%d",i);fflush(stdout);    /* We are differentiating ll according to initial status */
     hess[i][i]=hessii(p,ftolhess,i,delti);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     /*printf(" %f ",p[i]);*/    /*for(i=1;i<imx;i++) 
     /*printf(" %lf ",hess[i][i]);*/      printf(" %d\n",s[4][i]);
   }    */
      cov[1]=1.;
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++)  {    for(k=1; k<=nlstate; k++) ll[k]=0.;
       if (j>i) {  
         printf(".%d%d",i,j);fflush(stdout);    if(mle==1){
         hess[i][j]=hessij(p,delti,i,j);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         hess[j][i]=hess[i][j];            for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         /*printf(" %lf ",hess[i][j]);*/        for(mi=1; mi<= wav[i]-1; mi++){
       }          for (ii=1;ii<=nlstate+ndeath;ii++)
     }            for (j=1;j<=nlstate+ndeath;j++){
   }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   printf("\n");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   a=matrix(1,npar,1,npar);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   y=matrix(1,npar,1,npar);            for (kk=1; kk<=cptcovage;kk++) {
   x=vector(1,npar);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   indx=ivector(1,npar);            }
   for (i=1;i<=npar;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   ludcmp(a,npar,indx,&pd);            savm=oldm;
             oldm=newm;
   for (j=1;j<=npar;j++) {          } /* end mult */
     for (i=1;i<=npar;i++) x[i]=0;        
     x[j]=1;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     lubksb(a,npar,indx,x);          /* But now since version 0.9 we anticipate for bias and large stepm.
     for (i=1;i<=npar;i++){           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       matcov[i][j]=x[i];           * (in months) between two waves is not a multiple of stepm, we rounded to 
     }           * the nearest (and in case of equal distance, to the lowest) interval but now
   }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   printf("\n#Hessian matrix#\n");           * probability in order to take into account the bias as a fraction of the way
   for (i=1;i<=npar;i++) {           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     for (j=1;j<=npar;j++) {           * -stepm/2 to stepm/2 .
       printf("%.3e ",hess[i][j]);           * For stepm=1 the results are the same as for previous versions of Imach.
     }           * For stepm > 1 the results are less biased than in previous versions. 
     printf("\n");           */
   }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   /* Recompute Inverse */          bbh=(double)bh[mi][i]/(double)stepm; 
   for (i=1;i<=npar;i++)          /* bias is positive if real duration
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];           * is higher than the multiple of stepm and negative otherwise.
   ludcmp(a,npar,indx,&pd);           */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   /*  printf("\n#Hessian matrix recomputed#\n");          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));  /* linear interpolation */
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   for (j=1;j<=npar;j++) {          /*if(lli ==000.0)*/
     for (i=1;i<=npar;i++) x[i]=0;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     x[j]=1;          ipmx +=1;
     lubksb(a,npar,indx,x);          sw += weight[i];
     for (i=1;i<=npar;i++){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       y[i][j]=x[i];        } /* end of wave */
       printf("%.3e ",y[i][j]);      } /* end of individual */
     }    }  else if(mle==2){
     printf("\n");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   */        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   free_matrix(a,1,npar,1,npar);            for (j=1;j<=nlstate+ndeath;j++){
   free_matrix(y,1,npar,1,npar);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_vector(x,1,npar);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_ivector(indx,1,npar);            }
   free_matrix(hess,1,npar,1,npar);          for(d=0; d<=dh[mi][i]; d++){
             newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 /*************** hessian matrix ****************/            }
 double hessii( double x[], double delta, int theta, double delti[])            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int i;            savm=oldm;
   int l=1, lmax=20;            oldm=newm;
   double k1,k2;          } /* end mult */
   double p2[NPARMAX+1];        
   double res;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          /* But now since version 0.9 we anticipate for bias and large stepm.
   double fx;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   int k=0,kmax=10;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   double l1;           * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
   fx=func(x);           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   for (i=1;i<=npar;i++) p2[i]=x[i];           * probability in order to take into account the bias as a fraction of the way
   for(l=0 ; l <=lmax; l++){           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     l1=pow(10,l);           * -stepm/2 to stepm/2 .
     delts=delt;           * For stepm=1 the results are the same as for previous versions of Imach.
     for(k=1 ; k <kmax; k=k+1){           * For stepm > 1 the results are less biased than in previous versions. 
       delt = delta*(l1*k);           */
       p2[theta]=x[theta] +delt;          s1=s[mw[mi][i]][i];
       k1=func(p2)-fx;          s2=s[mw[mi+1][i]][i];
       p2[theta]=x[theta]-delt;          bbh=(double)bh[mi][i]/(double)stepm; 
       k2=func(p2)-fx;          /* bias is positive if real duration
       /*res= (k1-2.0*fx+k2)/delt/delt; */           * is higher than the multiple of stepm and negative otherwise.
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */           */
                lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
 #ifdef DEBUG          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
 #endif          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          /*if(lli ==000.0)*/
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         k=kmax;          ipmx +=1;
       }          sw += weight[i];
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         k=kmax; l=lmax*10.;        } /* end of wave */
       }      } /* end of individual */
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){    }  else if(mle==3){  /* exponential inter-extrapolation */
         delts=delt;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     }        for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
   delti[theta]=delts;            for (j=1;j<=nlstate+ndeath;j++){
   return res;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                savm[ii][j]=(ii==j ? 1.0 : 0.0);
 }            }
           for(d=0; d<dh[mi][i]; d++){
 double hessij( double x[], double delti[], int thetai,int thetaj)            newm=savm;
 {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   int i;            for (kk=1; kk<=cptcovage;kk++) {
   int l=1, l1, lmax=20;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double k1,k2,k3,k4,res,fx;            }
   double p2[NPARMAX+1];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int k;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
   fx=func(x);            oldm=newm;
   for (k=1; k<=2; k++) {          } /* end mult */
     for (i=1;i<=npar;i++) p2[i]=x[i];        
     p2[thetai]=x[thetai]+delti[thetai]/k;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          /* But now since version 0.9 we anticipate for bias and large stepm.
     k1=func(p2)-fx;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
             * (in months) between two waves is not a multiple of stepm, we rounded to 
     p2[thetai]=x[thetai]+delti[thetai]/k;           * the nearest (and in case of equal distance, to the lowest) interval but now
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     k2=func(p2)-fx;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
             * probability in order to take into account the bias as a fraction of the way
     p2[thetai]=x[thetai]-delti[thetai]/k;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;           * -stepm/2 to stepm/2 .
     k3=func(p2)-fx;           * For stepm=1 the results are the same as for previous versions of Imach.
             * For stepm > 1 the results are less biased than in previous versions. 
     p2[thetai]=x[thetai]-delti[thetai]/k;           */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          s1=s[mw[mi][i]][i];
     k4=func(p2)-fx;          s2=s[mw[mi+1][i]][i];
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          bbh=(double)bh[mi][i]/(double)stepm; 
 #ifdef DEBUG          /* bias is positive if real duration
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);           * is higher than the multiple of stepm and negative otherwise.
 #endif           */
   }          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
   return res;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
 }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
 /************** Inverse of matrix **************/          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 void ludcmp(double **a, int n, int *indx, double *d)          ipmx +=1;
 {          sw += weight[i];
   int i,imax,j,k;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double big,dum,sum,temp;        } /* end of wave */
   double *vv;      } /* end of individual */
      }else{  /* ml=4 no inter-extrapolation */
   vv=vector(1,n);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   *d=1.0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (i=1;i<=n;i++) {        for(mi=1; mi<= wav[i]-1; mi++){
     big=0.0;          for (ii=1;ii<=nlstate+ndeath;ii++)
     for (j=1;j<=n;j++)            for (j=1;j<=nlstate+ndeath;j++){
       if ((temp=fabs(a[i][j])) > big) big=temp;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     vv[i]=1.0/big;            }
   }          for(d=0; d<dh[mi][i]; d++){
   for (j=1;j<=n;j++) {            newm=savm;
     for (i=1;i<j;i++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       sum=a[i][j];            for (kk=1; kk<=cptcovage;kk++) {
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       a[i][j]=sum;            }
     }          
     big=0.0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for (i=j;i<=n;i++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       sum=a[i][j];            savm=oldm;
       for (k=1;k<j;k++)            oldm=newm;
         sum -= a[i][k]*a[k][j];          } /* end mult */
       a[i][j]=sum;        
       if ( (dum=vv[i]*fabs(sum)) >= big) {          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         big=dum;          ipmx +=1;
         imax=i;          sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }        } /* end of wave */
     if (j != imax) {      } /* end of individual */
       for (k=1;k<=n;k++) {    } /* End of if */
         dum=a[imax][k];    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         a[imax][k]=a[j][k];    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         a[j][k]=dum;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       }    return -l;
       *d = -(*d);  }
       vv[imax]=vv[j];  
     }  
     indx[j]=imax;  /*********** Maximum Likelihood Estimation ***************/
     if (a[j][j] == 0.0) a[j][j]=TINY;  
     if (j != n) {  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       dum=1.0/(a[j][j]);  {
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    int i,j, iter;
     }    double **xi,*delti;
   }    double fret;
   free_vector(vv,1,n);  /* Doesn't work */    xi=matrix(1,npar,1,npar);
 ;    for (i=1;i<=npar;i++)
 }      for (j=1;j<=npar;j++)
         xi[i][j]=(i==j ? 1.0 : 0.0);
 void lubksb(double **a, int n, int *indx, double b[])    printf("Powell\n");  fprintf(ficlog,"Powell\n");
 {    powell(p,xi,npar,ftol,&iter,&fret,func);
   int i,ii=0,ip,j;  
   double sum;     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
      fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   for (i=1;i<=n;i++) {    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     ip=indx[i];  
     sum=b[ip];  }
     b[ip]=b[i];  
     if (ii)  /**** Computes Hessian and covariance matrix ***/
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     else if (sum) ii=i;  {
     b[i]=sum;    double  **a,**y,*x,pd;
   }    double **hess;
   for (i=n;i>=1;i--) {    int i, j,jk;
     sum=b[i];    int *indx;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];  
     b[i]=sum/a[i][i];    double hessii(double p[], double delta, int theta, double delti[]);
   }    double hessij(double p[], double delti[], int i, int j);
 }    void lubksb(double **a, int npar, int *indx, double b[]) ;
     void ludcmp(double **a, int npar, int *indx, double *d) ;
 /************ Frequencies ********************/  
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)    hess=matrix(1,npar,1,npar);
 {  /* Some frequencies */  
      printf("\nCalculation of the hessian matrix. Wait...\n");
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   double ***freq; /* Frequencies */    for (i=1;i<=npar;i++){
   double *pp;      printf("%d",i);fflush(stdout);
   double pos;      fprintf(ficlog,"%d",i);fflush(ficlog);
   FILE *ficresp;      hess[i][i]=hessii(p,ftolhess,i,delti);
   char fileresp[FILENAMELENGTH];      /*printf(" %f ",p[i]);*/
       /*printf(" %lf ",hess[i][i]);*/
   pp=vector(1,nlstate);    }
  probs= ma3x(1,130 ,1,8, 1,8);    
   strcpy(fileresp,"p");    for (i=1;i<=npar;i++) {
   strcat(fileresp,fileres);      for (j=1;j<=npar;j++)  {
   if((ficresp=fopen(fileresp,"w"))==NULL) {        if (j>i) { 
     printf("Problem with prevalence resultfile: %s\n", fileresp);          printf(".%d%d",i,j);fflush(stdout);
     exit(0);          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   }          hess[i][j]=hessij(p,delti,i,j);
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          hess[j][i]=hess[i][j];    
   j1=0;          /*printf(" %lf ",hess[i][j]);*/
         }
   j=cptcoveff;      }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    }
     printf("\n");
   for(k1=1; k1<=j;k1++){    fprintf(ficlog,"\n");
    for(i1=1; i1<=ncodemax[k1];i1++){  
        j1++;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
          scanf("%d", i);*/    
         for (i=-1; i<=nlstate+ndeath; i++)      a=matrix(1,npar,1,npar);
          for (jk=-1; jk<=nlstate+ndeath; jk++)      y=matrix(1,npar,1,npar);
            for(m=agemin; m <= agemax+3; m++)    x=vector(1,npar);
              freq[i][jk][m]=0;    indx=ivector(1,npar);
            for (i=1;i<=npar;i++)
        for (i=1; i<=imx; i++) {      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
          bool=1;    ludcmp(a,npar,indx,&pd);
          if  (cptcovn>0) {  
            for (z1=1; z1<=cptcoveff; z1++)    for (j=1;j<=npar;j++) {
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      for (i=1;i<=npar;i++) x[i]=0;
                bool=0;      x[j]=1;
          }      lubksb(a,npar,indx,x);
           if (bool==1) {      for (i=1;i<=npar;i++){ 
            for(m=firstpass; m<=lastpass-1; m++){        matcov[i][j]=x[i];
              if(agev[m][i]==0) agev[m][i]=agemax+1;      }
              if(agev[m][i]==1) agev[m][i]=agemax+2;    }
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    printf("\n#Hessian matrix#\n");
            }    fprintf(ficlog,"\n#Hessian matrix#\n");
          }    for (i=1;i<=npar;i++) { 
        }      for (j=1;j<=npar;j++) { 
         if  (cptcovn>0) {        printf("%.3e ",hess[i][j]);
          fprintf(ficresp, "\n#********** Variable ");        fprintf(ficlog,"%.3e ",hess[i][j]);
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      }
        fprintf(ficresp, "**********\n#");      printf("\n");
         }      fprintf(ficlog,"\n");
        for(i=1; i<=nlstate;i++)    }
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);  
        fprintf(ficresp, "\n");    /* Recompute Inverse */
            for (i=1;i<=npar;i++)
   for(i=(int)agemin; i <= (int)agemax+3; i++){      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     if(i==(int)agemax+3)    ludcmp(a,npar,indx,&pd);
       printf("Total");  
     else    /*  printf("\n#Hessian matrix recomputed#\n");
       printf("Age %d", i);  
     for(jk=1; jk <=nlstate ; jk++){    for (j=1;j<=npar;j++) {
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)      for (i=1;i<=npar;i++) x[i]=0;
         pp[jk] += freq[jk][m][i];      x[j]=1;
     }      lubksb(a,npar,indx,x);
     for(jk=1; jk <=nlstate ; jk++){      for (i=1;i<=npar;i++){ 
       for(m=-1, pos=0; m <=0 ; m++)        y[i][j]=x[i];
         pos += freq[jk][m][i];        printf("%.3e ",y[i][j]);
       if(pp[jk]>=1.e-10)        fprintf(ficlog,"%.3e ",y[i][j]);
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      }
       else      printf("\n");
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      fprintf(ficlog,"\n");
     }    }
     for(jk=1; jk <=nlstate ; jk++){    */
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)  
         pp[jk] += freq[jk][m][i];    free_matrix(a,1,npar,1,npar);
     }    free_matrix(y,1,npar,1,npar);
     for(jk=1,pos=0; jk <=nlstate ; jk++)    free_vector(x,1,npar);
       pos += pp[jk];    free_ivector(indx,1,npar);
     for(jk=1; jk <=nlstate ; jk++){    free_matrix(hess,1,npar,1,npar);
       if(pos>=1.e-5)  
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);  
       else  }
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
       if( i <= (int) agemax){  /*************** hessian matrix ****************/
         if(pos>=1.e-5){  double hessii( double x[], double delta, int theta, double delti[])
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  {
           probs[i][jk][j1]= pp[jk]/pos;    int i;
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    int l=1, lmax=20;
         }    double k1,k2;
       else    double p2[NPARMAX+1];
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    double res;
       }    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     }    double fx;
     for(jk=-1; jk <=nlstate+ndeath; jk++)    int k=0,kmax=10;
       for(m=-1; m <=nlstate+ndeath; m++)    double l1;
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  
     if(i <= (int) agemax)    fx=func(x);
       fprintf(ficresp,"\n");    for (i=1;i<=npar;i++) p2[i]=x[i];
     printf("\n");    for(l=0 ; l <=lmax; l++){
     }      l1=pow(10,l);
     }      delts=delt;
  }      for(k=1 ; k <kmax; k=k+1){
          delt = delta*(l1*k);
   fclose(ficresp);        p2[theta]=x[theta] +delt;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        k1=func(p2)-fx;
   free_vector(pp,1,nlstate);        p2[theta]=x[theta]-delt;
         k2=func(p2)-fx;
 }  /* End of Freq */        /*res= (k1-2.0*fx+k2)/delt/delt; */
         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 /************* Waves Concatenation ***************/        
   #ifdef DEBUG
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 {        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  #endif
      Death is a valid wave (if date is known).        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          k=kmax;
      and mw[mi+1][i]. dh depends on stepm.        }
      */        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
           k=kmax; l=lmax*10.;
   int i, mi, m;        }
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
      double sum=0., jmean=0.;*/          delts=delt;
         }
   int j, k=0,jk, ju, jl;      }
   double sum=0.;    }
   jmin=1e+5;    delti[theta]=delts;
   jmax=-1;    return res; 
   jmean=0.;    
   for(i=1; i<=imx; i++){  }
     mi=0;  
     m=firstpass;  double hessij( double x[], double delti[], int thetai,int thetaj)
     while(s[m][i] <= nlstate){  {
       if(s[m][i]>=1)    int i;
         mw[++mi][i]=m;    int l=1, l1, lmax=20;
       if(m >=lastpass)    double k1,k2,k3,k4,res,fx;
         break;    double p2[NPARMAX+1];
       else    int k;
         m++;  
     }/* end while */    fx=func(x);
     if (s[m][i] > nlstate){    for (k=1; k<=2; k++) {
       mi++;     /* Death is another wave */      for (i=1;i<=npar;i++) p2[i]=x[i];
       /* if(mi==0)  never been interviewed correctly before death */      p2[thetai]=x[thetai]+delti[thetai]/k;
          /* Only death is a correct wave */      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       mw[mi][i]=m;      k1=func(p2)-fx;
     }    
       p2[thetai]=x[thetai]+delti[thetai]/k;
     wav[i]=mi;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     if(mi==0)      k2=func(p2)-fx;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    
   }      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   for(i=1; i<=imx; i++){      k3=func(p2)-fx;
     for(mi=1; mi<wav[i];mi++){    
       if (stepm <=0)      p2[thetai]=x[thetai]-delti[thetai]/k;
         dh[mi][i]=1;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       else{      k4=func(p2)-fx;
         if (s[mw[mi+1][i]][i] > nlstate) {      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
           if (agedc[i] < 2*AGESUP) {  #ifdef DEBUG
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           if(j==0) j=1;  /* Survives at least one month after exam */      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           k=k+1;  #endif
           if (j >= jmax) jmax=j;    }
           if (j <= jmin) jmin=j;    return res;
           sum=sum+j;  }
           /* if (j<10) printf("j=%d num=%d ",j,i); */  
           }  /************** Inverse of matrix **************/
         }  void ludcmp(double **a, int n, int *indx, double *d) 
         else{  { 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    int i,imax,j,k; 
           k=k+1;    double big,dum,sum,temp; 
           if (j >= jmax) jmax=j;    double *vv; 
           else if (j <= jmin)jmin=j;   
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    vv=vector(1,n); 
           sum=sum+j;    *d=1.0; 
         }    for (i=1;i<=n;i++) { 
         jk= j/stepm;      big=0.0; 
         jl= j -jk*stepm;      for (j=1;j<=n;j++) 
         ju= j -(jk+1)*stepm;        if ((temp=fabs(a[i][j])) > big) big=temp; 
         if(jl <= -ju)      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
           dh[mi][i]=jk;      vv[i]=1.0/big; 
         else    } 
           dh[mi][i]=jk+1;    for (j=1;j<=n;j++) { 
         if(dh[mi][i]==0)      for (i=1;i<j;i++) { 
           dh[mi][i]=1; /* At least one step */        sum=a[i][j]; 
       }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     }        a[i][j]=sum; 
   }      } 
   jmean=sum/k;      big=0.0; 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      for (i=j;i<=n;i++) { 
  }        sum=a[i][j]; 
 /*********** Tricode ****************************/        for (k=1;k<j;k++) 
 void tricode(int *Tvar, int **nbcode, int imx)          sum -= a[i][k]*a[k][j]; 
 {        a[i][j]=sum; 
   int Ndum[20],ij=1, k, j, i;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   int cptcode=0;          big=dum; 
   cptcoveff=0;          imax=i; 
          } 
   for (k=0; k<19; k++) Ndum[k]=0;      } 
   for (k=1; k<=7; k++) ncodemax[k]=0;      if (j != imax) { 
         for (k=1;k<=n;k++) { 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          dum=a[imax][k]; 
     for (i=1; i<=imx; i++) {          a[imax][k]=a[j][k]; 
       ij=(int)(covar[Tvar[j]][i]);          a[j][k]=dum; 
       Ndum[ij]++;        } 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/        *d = -(*d); 
       if (ij > cptcode) cptcode=ij;        vv[imax]=vv[j]; 
     }      } 
       indx[j]=imax; 
     for (i=0; i<=cptcode; i++) {      if (a[j][j] == 0.0) a[j][j]=TINY; 
       if(Ndum[i]!=0) ncodemax[j]++;      if (j != n) { 
     }        dum=1.0/(a[j][j]); 
     ij=1;        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
     } 
     for (i=1; i<=ncodemax[j]; i++) {    free_vector(vv,1,n);  /* Doesn't work */
       for (k=0; k<=19; k++) {  ;
         if (Ndum[k] != 0) {  } 
           nbcode[Tvar[j]][ij]=k;  
           ij++;  void lubksb(double **a, int n, int *indx, double b[]) 
         }  { 
         if (ij > ncodemax[j]) break;    int i,ii=0,ip,j; 
       }      double sum; 
     }   
   }      for (i=1;i<=n;i++) { 
       ip=indx[i]; 
  for (k=0; k<19; k++) Ndum[k]=0;      sum=b[ip]; 
       b[ip]=b[i]; 
  for (i=1; i<=ncovmodel-2; i++) {      if (ii) 
       ij=Tvar[i];        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       Ndum[ij]++;      else if (sum) ii=i; 
     }      b[i]=sum; 
     } 
  ij=1;    for (i=n;i>=1;i--) { 
  for (i=1; i<=10; i++) {      sum=b[i]; 
    if((Ndum[i]!=0) && (i<=ncov)){      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
      Tvaraff[ij]=i;      b[i]=sum/a[i][i]; 
      ij++;    } 
    }  } 
  }  
    /************ Frequencies ********************/
     cptcoveff=ij-1;  void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)
 }  {  /* Some frequencies */
     
 /*********** Health Expectancies ****************/    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     int first;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)    double ***freq; /* Frequencies */
 {    double *pp;
   /* Health expectancies */    double pos, k2, dateintsum=0,k2cpt=0;
   int i, j, nhstepm, hstepm, h;    FILE *ficresp;
   double age, agelim,hf;    char fileresp[FILENAMELENGTH];
   double ***p3mat;    
      pp=vector(1,nlstate);
   fprintf(ficreseij,"# Health expectancies\n");    probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(ficreseij,"# Age");    strcpy(fileresp,"p");
   for(i=1; i<=nlstate;i++)    strcat(fileresp,fileres);
     for(j=1; j<=nlstate;j++)    if((ficresp=fopen(fileresp,"w"))==NULL) {
       fprintf(ficreseij," %1d-%1d",i,j);      printf("Problem with prevalence resultfile: %s\n", fileresp);
   fprintf(ficreseij,"\n");      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
   hstepm=1*YEARM; /*  Every j years of age (in month) */    }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);
     j1=0;
   agelim=AGESUP;    
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    j=cptcoveff;
     /* nhstepm age range expressed in number of stepm */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);  
     /* Typically if 20 years = 20*12/6=40 stepm */    first=1;
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */    for(k1=1; k1<=j;k1++){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for(i1=1; i1<=ncodemax[k1];i1++){
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        j1++;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            scanf("%d", i);*/
         for (i=-1; i<=nlstate+ndeath; i++)  
           for (jk=-1; jk<=nlstate+ndeath; jk++)  
     for(i=1; i<=nlstate;i++)            for(m=agemin; m <= agemax+3; m++)
       for(j=1; j<=nlstate;j++)              freq[i][jk][m]=0;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){        
           eij[i][j][(int)age] +=p3mat[i][j][h];        dateintsum=0;
         }        k2cpt=0;
            for (i=1; i<=imx; i++) {
     hf=1;          bool=1;
     if (stepm >= YEARM) hf=stepm/YEARM;          if  (cptcovn>0) {
     fprintf(ficreseij,"%.0f",age );            for (z1=1; z1<=cptcoveff; z1++) 
     for(i=1; i<=nlstate;i++)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       for(j=1; j<=nlstate;j++){                bool=0;
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);          }
       }          if (bool==1){
     fprintf(ficreseij,"\n");            for(m=firstpass; m<=lastpass; m++){
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              k2=anint[m][i]+(mint[m][i]/12.);
   }              if ((k2>=dateprev1) && (k2<=dateprev2)) {
 }                if(agev[m][i]==0) agev[m][i]=agemax+1;
                 if(agev[m][i]==1) agev[m][i]=agemax+2;
 /************ Variance ******************/                if (m<lastpass) {
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
 {                  freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];
   /* Variance of health expectancies */                }
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/                
   double **newm;                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {
   double **dnewm,**doldm;                  dateintsum=dateintsum+k2;
   int i, j, nhstepm, hstepm, h;                  k2cpt++;
   int k, cptcode;                }
   double *xp;              }
   double **gp, **gm;            }
   double ***gradg, ***trgradg;          }
   double ***p3mat;        }
   double age,agelim;         
   int theta;        fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   
    fprintf(ficresvij,"# Covariances of life expectancies\n");        if  (cptcovn>0) {
   fprintf(ficresvij,"# Age");          fprintf(ficresp, "\n#********** Variable "); 
   for(i=1; i<=nlstate;i++)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     for(j=1; j<=nlstate;j++)          fprintf(ficresp, "**********\n#");
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        }
   fprintf(ficresvij,"\n");        for(i=1; i<=nlstate;i++) 
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   xp=vector(1,npar);        fprintf(ficresp, "\n");
   dnewm=matrix(1,nlstate,1,npar);        
   doldm=matrix(1,nlstate,1,nlstate);        for(i=(int)agemin; i <= (int)agemax+3; i++){
            if(i==(int)agemax+3){
   hstepm=1*YEARM; /* Every year of age */            fprintf(ficlog,"Total");
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          }else{
   agelim = AGESUP;            if(first==1){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              first=0;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              printf("See log file for details...\n");
     if (stepm >= YEARM) hstepm=1;            }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */            fprintf(ficlog,"Age %d", i);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          for(jk=1; jk <=nlstate ; jk++){
     gp=matrix(0,nhstepm,1,nlstate);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     gm=matrix(0,nhstepm,1,nlstate);              pp[jk] += freq[jk][m][i]; 
           }
     for(theta=1; theta <=npar; theta++){          for(jk=1; jk <=nlstate ; jk++){
       for(i=1; i<=npar; i++){ /* Computes gradient */            for(m=-1, pos=0; m <=0 ; m++)
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              pos += freq[jk][m][i];
       }            if(pp[jk]>=1.e-10){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                if(first==1){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       for(j=1; j<= nlstate; j++){              }
         for(h=0; h<=nhstepm; h++){              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)            }else{
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];              if(first==1)
         }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       }              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                }
       for(i=1; i<=npar; i++) /* Computes gradient */          }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            for(jk=1; jk <=nlstate ; jk++){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       for(j=1; j<= nlstate; j++){              pp[jk] += freq[jk][m][i];
         for(h=0; h<=nhstepm; h++){          }
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          for(jk=1,pos=0; jk <=nlstate ; jk++)
         }            pos += pp[jk];
       }          for(jk=1; jk <=nlstate ; jk++){
       for(j=1; j<= nlstate; j++)            if(pos>=1.e-5){
         for(h=0; h<=nhstepm; h++){              if(first==1)
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
         }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     } /* End theta */            }else{
               if(first==1)
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     for(h=0; h<=nhstepm; h++)            }
       for(j=1; j<=nlstate;j++)            if( i <= (int) agemax){
         for(theta=1; theta <=npar; theta++)              if(pos>=1.e-5){
           trgradg[h][j][theta]=gradg[h][theta][j];                fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);
                 probs[i][jk][j1]= pp[jk]/pos;
     for(i=1;i<=nlstate;i++)                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       for(j=1;j<=nlstate;j++)              }
         vareij[i][j][(int)age] =0.;              else
     for(h=0;h<=nhstepm;h++){                fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);
       for(k=0;k<=nhstepm;k++){            }
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          }
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          
         for(i=1;i<=nlstate;i++)          for(jk=-1; jk <=nlstate+ndeath; jk++)
           for(j=1;j<=nlstate;j++)            for(m=-1; m <=nlstate+ndeath; m++)
             vareij[i][j][(int)age] += doldm[i][j];              if(freq[jk][m][i] !=0 ) {
       }              if(first==1)
     }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     h=1;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     if (stepm >= YEARM) h=stepm/YEARM;              }
     fprintf(ficresvij,"%.0f ",age );          if(i <= (int) agemax)
     for(i=1; i<=nlstate;i++)            fprintf(ficresp,"\n");
       for(j=1; j<=nlstate;j++){          if(first==1)
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);            printf("Others in log...\n");
       }          fprintf(ficlog,"\n");
     fprintf(ficresvij,"\n");        }
     free_matrix(gp,0,nhstepm,1,nlstate);      }
     free_matrix(gm,0,nhstepm,1,nlstate);    }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    dateintmean=dateintsum/k2cpt; 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);   
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fclose(ficresp);
   } /* End age */    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);
      free_vector(pp,1,nlstate);
   free_vector(xp,1,npar);    
   free_matrix(doldm,1,nlstate,1,npar);    /* End of Freq */
   free_matrix(dnewm,1,nlstate,1,nlstate);  }
   
 }  /************ Prevalence ********************/
   void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)
 /************ Variance of prevlim ******************/  {  /* Some frequencies */
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)   
 {    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
   /* Variance of prevalence limit */    double ***freq; /* Frequencies */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    double *pp;
   double **newm;    double pos, k2;
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm;    pp=vector(1,nlstate);
   int k, cptcode;    
   double *xp;    freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);
   double *gp, *gm;    j1=0;
   double **gradg, **trgradg;    
   double age,agelim;    j=cptcoveff;
   int theta;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
        
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    for(k1=1; k1<=j;k1++){
   fprintf(ficresvpl,"# Age");      for(i1=1; i1<=ncodemax[k1];i1++){
   for(i=1; i<=nlstate;i++)        j1++;
       fprintf(ficresvpl," %1d-%1d",i,i);        
   fprintf(ficresvpl,"\n");        for (i=-1; i<=nlstate+ndeath; i++)  
           for (jk=-1; jk<=nlstate+ndeath; jk++)  
   xp=vector(1,npar);            for(m=agemin; m <= agemax+3; m++)
   dnewm=matrix(1,nlstate,1,npar);              freq[i][jk][m]=0;
   doldm=matrix(1,nlstate,1,nlstate);       
          for (i=1; i<=imx; i++) {
   hstepm=1*YEARM; /* Every year of age */          bool=1;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          if  (cptcovn>0) {
   agelim = AGESUP;            for (z1=1; z1<=cptcoveff; z1++) 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                bool=0;
     if (stepm >= YEARM) hstepm=1;          } 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          if (bool==1) { 
     gradg=matrix(1,npar,1,nlstate);            for(m=firstpass; m<=lastpass; m++){
     gp=vector(1,nlstate);              k2=anint[m][i]+(mint[m][i]/12.);
     gm=vector(1,nlstate);              if ((k2>=dateprev1) && (k2<=dateprev2)) {
                 if(agev[m][i]==0) agev[m][i]=agemax+1;
     for(theta=1; theta <=npar; theta++){                if(agev[m][i]==1) agev[m][i]=agemax+2;
       for(i=1; i<=npar; i++){ /* Computes gradient */                if (m<lastpass) {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                  if (calagedate>0) 
       }                    freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                  else
       for(i=1;i<=nlstate;i++)                    freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
         gp[i] = prlim[i][i];                  freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i]; 
                    }
       for(i=1; i<=npar; i++) /* Computes gradient */              }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          }
       for(i=1;i<=nlstate;i++)        }
         gm[i] = prlim[i][i];        for(i=(int)agemin; i <= (int)agemax+3; i++){ 
           for(jk=1; jk <=nlstate ; jk++){
       for(i=1;i<=nlstate;i++)            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];              pp[jk] += freq[jk][m][i]; 
     } /* End theta */          }
           for(jk=1; jk <=nlstate ; jk++){
     trgradg =matrix(1,nlstate,1,npar);            for(m=-1, pos=0; m <=0 ; m++)
               pos += freq[jk][m][i];
     for(j=1; j<=nlstate;j++)          }
       for(theta=1; theta <=npar; theta++)          
         trgradg[j][theta]=gradg[theta][j];          for(jk=1; jk <=nlstate ; jk++){
             for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
     for(i=1;i<=nlstate;i++)              pp[jk] += freq[jk][m][i];
       varpl[i][(int)age] =0.;          }
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];
     for(i=1;i<=nlstate;i++)          
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */          for(jk=1; jk <=nlstate ; jk++){    
             if( i <= (int) agemax){
     fprintf(ficresvpl,"%.0f ",age );              if(pos>=1.e-5){
     for(i=1; i<=nlstate;i++)                probs[i][jk][j1]= pp[jk]/pos;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));              }
     fprintf(ficresvpl,"\n");            }
     free_vector(gp,1,nlstate);          }/* end jk */
     free_vector(gm,1,nlstate);        }/* end i */
     free_matrix(gradg,1,npar,1,nlstate);      } /* end i1 */
     free_matrix(trgradg,1,nlstate,1,npar);    } /* end k1 */
   } /* End age */  
     
   free_vector(xp,1,npar);    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);
   free_matrix(doldm,1,nlstate,1,npar);    free_vector(pp,1,nlstate);
   free_matrix(dnewm,1,nlstate,1,nlstate);    
   }  /* End of Freq */
 }  
   /************* Waves Concatenation ***************/
 /************ Variance of one-step probabilities  ******************/  
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 {  {
   int i, j;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   int k=0, cptcode;       Death is a valid wave (if date is known).
   double **dnewm,**doldm;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   double *xp;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   double *gp, *gm;       and mw[mi+1][i]. dh depends on stepm.
   double **gradg, **trgradg;       */
   double age,agelim, cov[NCOVMAX];  
   int theta;    int i, mi, m;
   char fileresprob[FILENAMELENGTH];    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        double sum=0., jmean=0.;*/
   strcpy(fileresprob,"prob");    int first;
   strcat(fileresprob,fileres);    int j, k=0,jk, ju, jl;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    double sum=0.;
     printf("Problem with resultfile: %s\n", fileresprob);    first=0;
   }    jmin=1e+5;
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);    jmax=-1;
      jmean=0.;
     for(i=1; i<=imx; i++){
   xp=vector(1,npar);      mi=0;
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      m=firstpass;
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));      while(s[m][i] <= nlstate){
          if(s[m][i]>=1)
   cov[1]=1;          mw[++mi][i]=m;
   for (age=bage; age<=fage; age ++){        if(m >=lastpass)
     cov[2]=age;          break;
     gradg=matrix(1,npar,1,9);        else
     trgradg=matrix(1,9,1,npar);          m++;
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      }/* end while */
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      if (s[m][i] > nlstate){
            mi++;     /* Death is another wave */
     for(theta=1; theta <=npar; theta++){        /* if(mi==0)  never been interviewed correctly before death */
       for(i=1; i<=npar; i++)           /* Only death is a correct wave */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        mw[mi][i]=m;
            }
       pmij(pmmij,cov,ncovmodel,xp,nlstate);  
          wav[i]=mi;
       k=0;      if(mi==0){
       for(i=1; i<= (nlstate+ndeath); i++){        if(first==0){
         for(j=1; j<=(nlstate+ndeath);j++){          printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);
            k=k+1;          first=1;
           gp[k]=pmmij[i][j];        }
         }        if(first==1){
       }          fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);
         }
       for(i=1; i<=npar; i++)      } /* end mi==0 */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    }
      
     for(i=1; i<=imx; i++){
       pmij(pmmij,cov,ncovmodel,xp,nlstate);      for(mi=1; mi<wav[i];mi++){
       k=0;        if (stepm <=0)
       for(i=1; i<=(nlstate+ndeath); i++){          dh[mi][i]=1;
         for(j=1; j<=(nlstate+ndeath);j++){        else{
           k=k+1;          if (s[mw[mi+1][i]][i] > nlstate) {
           gm[k]=pmmij[i][j];            if (agedc[i] < 2*AGESUP) {
         }            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       }            if(j==0) j=1;  /* Survives at least one month after exam */
                  k=k+1;
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)            if (j >= jmax) jmax=j;
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];              if (j <= jmin) jmin=j;
     }            sum=sum+j;
             /*if (j<0) printf("j=%d num=%d \n",j,i); */
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)            }
       for(theta=1; theta <=npar; theta++)          }
       trgradg[j][theta]=gradg[theta][j];          else{
              j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);            k=k+1;
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);            if (j >= jmax) jmax=j;
             else if (j <= jmin)jmin=j;
      pmij(pmmij,cov,ncovmodel,x,nlstate);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             sum=sum+j;
      k=0;          }
      for(i=1; i<=(nlstate+ndeath); i++){          jk= j/stepm;
        for(j=1; j<=(nlstate+ndeath);j++){          jl= j -jk*stepm;
          k=k+1;          ju= j -(jk+1)*stepm;
          gm[k]=pmmij[i][j];          if(mle <=1){ 
         }            if(jl==0){
      }              dh[mi][i]=jk;
                    bh[mi][i]=0;
      /*printf("\n%d ",(int)age);            }else{ /* We want a negative bias in order to only have interpolation ie
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){                    * at the price of an extra matrix product in likelihood */
                      dh[mi][i]=jk+1;
               bh[mi][i]=ju;
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));            }
      }*/          }else{
             if(jl <= -ju){
   fprintf(ficresprob,"\n%d ",(int)age);              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){                                   * is higher than the multiple of stepm and negative otherwise.
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);                                   */
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);            }
   }            else{
               dh[mi][i]=jk+1;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));              bh[mi][i]=ju;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));            }
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            if(dh[mi][i]==0){
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              dh[mi][i]=1; /* At least one step */
 }              bh[mi][i]=ju; /* At least one step */
  free_vector(xp,1,npar);              printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);
 fclose(ficresprob);            }
  exit(0);            if(i==298 || i==287 || i==763 ||i==1061)printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d",bh[mi][i],ju,jl,dh[mi][i],jk,stepm);
 }          }
         } /* end if mle */
 /***********************************************/      } /* end wave */
 /**************** Main Program *****************/    }
 /***********************************************/    jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
 /*int main(int argc, char *argv[])*/    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
 int main()   }
 {  
   /*********** Tricode ****************************/
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;  void tricode(int *Tvar, int **nbcode, int imx)
   double agedeb, agefin,hf;  {
   double agemin=1.e20, agemax=-1.e20;    
     int Ndum[20],ij=1, k, j, i, maxncov=19;
   double fret;    int cptcode=0;
   double **xi,tmp,delta;    cptcoveff=0; 
    
   double dum; /* Dummy variable */    for (k=0; k<maxncov; k++) Ndum[k]=0;
   double ***p3mat;    for (k=1; k<=7; k++) ncodemax[k]=0;
   int *indx;  
   char line[MAXLINE], linepar[MAXLINE];    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   char title[MAXLINE];      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];                                 modality*/ 
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   char filerest[FILENAMELENGTH];        Ndum[ij]++; /*store the modality */
   char fileregp[FILENAMELENGTH];        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   int firstobs=1, lastobs=10;                                         Tvar[j]. If V=sex and male is 0 and 
   int sdeb, sfin; /* Status at beginning and end */                                         female is 1, then  cptcode=1.*/
   int c,  h , cpt,l;      }
   int ju,jl, mi;  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      for (i=0; i<=cptcode; i++) {
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
        }
   int hstepm, nhstepm;  
   double bage, fage, age, agelim, agebase;      ij=1; 
   double ftolpl=FTOL;      for (i=1; i<=ncodemax[j]; i++) {
   double **prlim;        for (k=0; k<= maxncov; k++) {
   double *severity;          if (Ndum[k] != 0) {
   double ***param; /* Matrix of parameters */            nbcode[Tvar[j]][ij]=k; 
   double  *p;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   double **matcov; /* Matrix of covariance */            
   double ***delti3; /* Scale */            ij++;
   double *delti; /* Scale */          }
   double ***eij, ***vareij;          if (ij > ncodemax[j]) break; 
   double **varpl; /* Variances of prevalence limits by age */        }  
   double *epj, vepp;      } 
   double kk1;    }  
   
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";   for (k=0; k< maxncov; k++) Ndum[k]=0;
   char *alph[]={"a","a","b","c","d","e"}, str[4];  
    for (i=1; i<=ncovmodel-2; i++) { 
      /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   char z[1]="c", occ;     ij=Tvar[i];
 #include <sys/time.h>     Ndum[ij]++;
 #include <time.h>   }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  
   /* long total_usecs;   ij=1;
   struct timeval start_time, end_time;   for (i=1; i<= maxncov; i++) {
       if((Ndum[i]!=0) && (i<=ncovcol)){
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */       Tvaraff[ij]=i; /*For printing */
        ij++;
      }
   printf("\nIMACH, Version 0.64b");   }
   printf("\nEnter the parameter file name: ");   
    cptcoveff=ij-1; /*Number of simple covariates*/
 #ifdef windows  }
   scanf("%s",pathtot);  
   getcwd(pathcd, size);  /*********** Health Expectancies ****************/
   /*cygwin_split_path(pathtot,path,optionfile);  
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
   /* cutv(path,optionfile,pathtot,'\\');*/  
   {
 split(pathtot, path,optionfile);    /* Health expectancies */
   chdir(path);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   replace(pathc,path);    double age, agelim, hf;
 #endif    double ***p3mat,***varhe;
 #ifdef unix    double **dnewm,**doldm;
   scanf("%s",optionfile);    double *xp;
 #endif    double **gp, **gm;
     double ***gradg, ***trgradg;
 /*-------- arguments in the command line --------*/    int theta;
   
   strcpy(fileres,"r");    varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);
   strcat(fileres, optionfile);    xp=vector(1,npar);
     dnewm=matrix(1,nlstate*2,1,npar);
   /*---------arguments file --------*/    doldm=matrix(1,nlstate*2,1,nlstate*2);
     
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    fprintf(ficreseij,"# Health expectancies\n");
     printf("Problem with optionfile %s\n",optionfile);    fprintf(ficreseij,"# Age");
     goto end;    for(i=1; i<=nlstate;i++)
   }      for(j=1; j<=nlstate;j++)
         fprintf(ficreseij," %1d-%1d (SE)",i,j);
   strcpy(filereso,"o");    fprintf(ficreseij,"\n");
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) {    if(estepm < stepm){
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      printf ("Problem %d lower than %d\n",estepm, stepm);
   }    }
     else  hstepm=estepm;   
   /* Reads comments: lines beginning with '#' */    /* We compute the life expectancy from trapezoids spaced every estepm months
   while((c=getc(ficpar))=='#' && c!= EOF){     * This is mainly to measure the difference between two models: for example
     ungetc(c,ficpar);     * if stepm=24 months pijx are given only every 2 years and by summing them
     fgets(line, MAXLINE, ficpar);     * we are calculating an estimate of the Life Expectancy assuming a linear 
     puts(line);     * progression inbetween and thus overestimating or underestimating according
     fputs(line,ficparo);     * to the curvature of the survival function. If, for the same date, we 
   }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   ungetc(c,ficpar);     * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);     * curvature will be obtained if estepm is as small as stepm. */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);  
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   covar=matrix(0,NCOVMAX,1,n);       nhstepm is the number of hstepm from age to agelim 
   cptcovn=0;       nstepm is the number of stepm from age to agelin. 
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
   ncovmodel=2+cptcovn;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */       survival function given by stepm (the optimization length). Unfortunately it
         means that if the survival funtion is printed only each two years of age and if
   /* Read guess parameters */       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   /* Reads comments: lines beginning with '#' */       results. So we changed our mind and took the option of the best precision.
   while((c=getc(ficpar))=='#' && c!= EOF){    */
     ungetc(c,ficpar);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     fgets(line, MAXLINE, ficpar);  
     puts(line);    agelim=AGESUP;
     fputs(line,ficparo);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   }      /* nhstepm age range expressed in number of stepm */
   ungetc(c,ficpar);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
        /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      /* if (stepm >= YEARM) hstepm=1;*/
     for(i=1; i <=nlstate; i++)      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     for(j=1; j <=nlstate+ndeath-1; j++){      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fscanf(ficpar,"%1d%1d",&i1,&j1);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);
       fprintf(ficparo,"%1d%1d",i1,j1);      gp=matrix(0,nhstepm,1,nlstate*2);
       printf("%1d%1d",i,j);      gm=matrix(0,nhstepm,1,nlstate*2);
       for(k=1; k<=ncovmodel;k++){  
         fscanf(ficpar," %lf",&param[i][j][k]);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
         printf(" %lf",param[i][j][k]);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         fprintf(ficparo," %lf",param[i][j][k]);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
       }   
       fscanf(ficpar,"\n");  
       printf("\n");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       fprintf(ficparo,"\n");  
     }      /* Computing Variances of health expectancies */
    
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
   p=param[1][1];          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          }
   /* Reads comments: lines beginning with '#' */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);        cptj=0;
     fgets(line, MAXLINE, ficpar);        for(j=1; j<= nlstate; j++){
     puts(line);          for(i=1; i<=nlstate; i++){
     fputs(line,ficparo);            cptj=cptj+1;
   }            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   ungetc(c,ficpar);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             }
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          }
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */        }
   for(i=1; i <=nlstate; i++){       
     for(j=1; j <=nlstate+ndeath-1; j++){       
       fscanf(ficpar,"%1d%1d",&i1,&j1);        for(i=1; i<=npar; i++) 
       printf("%1d%1d",i,j);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       fprintf(ficparo,"%1d%1d",i1,j1);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       for(k=1; k<=ncovmodel;k++){        
         fscanf(ficpar,"%le",&delti3[i][j][k]);        cptj=0;
         printf(" %le",delti3[i][j][k]);        for(j=1; j<= nlstate; j++){
         fprintf(ficparo," %le",delti3[i][j][k]);          for(i=1;i<=nlstate;i++){
       }            cptj=cptj+1;
       fscanf(ficpar,"\n");            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
       printf("\n");              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
       fprintf(ficparo,"\n");            }
     }          }
   }        }
   delti=delti3[1][1];        for(j=1; j<= nlstate*2; j++)
            for(h=0; h<=nhstepm-1; h++){
   /* Reads comments: lines beginning with '#' */            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);       } 
     fgets(line, MAXLINE, ficpar);     
     puts(line);  /* End theta */
     fputs(line,ficparo);  
   }       trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);
   ungetc(c,ficpar);  
         for(h=0; h<=nhstepm-1; h++)
   matcov=matrix(1,npar,1,npar);        for(j=1; j<=nlstate*2;j++)
   for(i=1; i <=npar; i++){          for(theta=1; theta <=npar; theta++)
     fscanf(ficpar,"%s",&str);            trgradg[h][j][theta]=gradg[h][theta][j];
     printf("%s",str);       
     fprintf(ficparo,"%s",str);  
     for(j=1; j <=i; j++){       for(i=1;i<=nlstate*2;i++)
       fscanf(ficpar," %le",&matcov[i][j]);        for(j=1;j<=nlstate*2;j++)
       printf(" %.5le",matcov[i][j]);          varhe[i][j][(int)age] =0.;
       fprintf(ficparo," %.5le",matcov[i][j]);  
     }       printf("%d|",(int)age);fflush(stdout);
     fscanf(ficpar,"\n");       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     printf("\n");       for(h=0;h<=nhstepm-1;h++){
     fprintf(ficparo,"\n");        for(k=0;k<=nhstepm-1;k++){
   }          matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);
   for(i=1; i <=npar; i++)          matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);
     for(j=i+1;j<=npar;j++)          for(i=1;i<=nlstate*2;i++)
       matcov[i][j]=matcov[j][i];            for(j=1;j<=nlstate*2;j++)
                  varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
   printf("\n");        }
       }
       /* Computing expectancies */
     /*-------- data file ----------*/      for(i=1; i<=nlstate;i++)
     if((ficres =fopen(fileres,"w"))==NULL) {        for(j=1; j<=nlstate;j++)
       printf("Problem with resultfile: %s\n", fileres);goto end;          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     }            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     fprintf(ficres,"#%s\n",version);            
      /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     if((fic=fopen(datafile,"r"))==NULL)    {  
       printf("Problem with datafile: %s\n", datafile);goto end;          }
     }  
       fprintf(ficreseij,"%3.0f",age );
     n= lastobs;      cptj=0;
     severity = vector(1,maxwav);      for(i=1; i<=nlstate;i++)
     outcome=imatrix(1,maxwav+1,1,n);        for(j=1; j<=nlstate;j++){
     num=ivector(1,n);          cptj++;
     moisnais=vector(1,n);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
     annais=vector(1,n);        }
     moisdc=vector(1,n);      fprintf(ficreseij,"\n");
     andc=vector(1,n);     
     agedc=vector(1,n);      free_matrix(gm,0,nhstepm,1,nlstate*2);
     cod=ivector(1,n);      free_matrix(gp,0,nhstepm,1,nlstate*2);
     weight=vector(1,n);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);
     mint=matrix(1,maxwav,1,n);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     anint=matrix(1,maxwav,1,n);    }
     s=imatrix(1,maxwav+1,1,n);    printf("\n");
     adl=imatrix(1,maxwav+1,1,n);        fprintf(ficlog,"\n");
     tab=ivector(1,NCOVMAX);  
     ncodemax=ivector(1,8);    free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*2,1,npar);
     i=1;    free_matrix(doldm,1,nlstate*2,1,nlstate*2);
     while (fgets(line, MAXLINE, fic) != NULL)    {    free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);
       if ((i >= firstobs) && (i <=lastobs)) {  }
          
         for (j=maxwav;j>=1;j--){  /************ Variance ******************/
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
           strcpy(line,stra);  {
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    /* Variance of health expectancies */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
         }    /* double **newm;*/
            double **dnewm,**doldm;
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    double **dnewmp,**doldmp;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    double *xp;
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);    double **gradgp, **trgradgp; /* for var p point j */
         for (j=ncov;j>=1;j--){    double *gpp, *gmp; /* for var p point j */
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
         }    double ***p3mat;
         num[i]=atol(stra);    double age,agelim, hf;
            double ***mobaverage;
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    int theta;
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    char digit[4];
     char digitp[25];
         i=i+1;  
       }    char fileresprobmorprev[FILENAMELENGTH];
     }  
     /* printf("ii=%d", ij);    if(popbased==1){
        scanf("%d",i);*/      if(mobilav!=0)
   imx=i-1; /* Number of individuals */        strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
   /* for (i=1; i<=imx; i++){    }
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    else 
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;      strcpy(digitp,"-stablbased-");
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;  
   }    if (mobilav!=0) {
   for (i=1; i<=imx; i++) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   /* Calculation of the number of parameter from char model*/        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   Tvar=ivector(1,15);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   Tprod=ivector(1,15);      }
   Tvaraff=ivector(1,15);    }
   Tvard=imatrix(1,15,1,2);  
   Tage=ivector(1,15);          strcpy(fileresprobmorprev,"prmorprev"); 
        sprintf(digit,"%-d",ij);
   if (strlen(model) >1){    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     j=0, j1=0, k1=1, k2=1;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
     j=nbocc(model,'+');    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     j1=nbocc(model,'*');    strcat(fileresprobmorprev,fileres);
     cptcovn=j+1;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
     cptcovprod=j1;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
          fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
        }
     strcpy(modelsav,model);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
       printf("Error. Non available option model=%s ",model);    fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");
       goto end;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
          fprintf(ficresprobmorprev," p.%-d SE",j);
     for(i=(j+1); i>=1;i--){      for(i=1; i<=nlstate;i++)
       cutv(stra,strb,modelsav,'+');        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);    }  
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    fprintf(ficresprobmorprev,"\n");
       /*scanf("%d",i);*/    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       if (strchr(strb,'*')) {      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
         cutv(strd,strc,strb,'*');      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
         if (strcmp(strc,"age")==0) {      exit(0);
           cptcovprod--;    }
           cutv(strb,stre,strd,'V');    else{
           Tvar[i]=atoi(stre);      fprintf(ficgp,"\n# Routine varevsij");
           cptcovage++;    }
             Tage[cptcovage]=i;    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
             /*printf("stre=%s ", stre);*/      printf("Problem with html file: %s\n", optionfilehtm);
         }      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
         else if (strcmp(strd,"age")==0) {      exit(0);
           cptcovprod--;    }
           cutv(strb,stre,strc,'V');    else{
           Tvar[i]=atoi(stre);      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
           cptcovage++;      fprintf(fichtm,"\n<br>%s (à revoir) <br>\n",digitp);
           Tage[cptcovage]=i;    }
         }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         else {  
           cutv(strb,stre,strc,'V');    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
           Tvar[i]=ncov+k1;    fprintf(ficresvij,"# Age");
           cutv(strb,strc,strd,'V');    for(i=1; i<=nlstate;i++)
           Tprod[k1]=i;      for(j=1; j<=nlstate;j++)
           Tvard[k1][1]=atoi(strc);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
           Tvard[k1][2]=atoi(stre);    fprintf(ficresvij,"\n");
           Tvar[cptcovn+k2]=Tvard[k1][1];  
           Tvar[cptcovn+k2+1]=Tvard[k1][2];    xp=vector(1,npar);
           for (k=1; k<=lastobs;k++)    dnewm=matrix(1,nlstate,1,npar);
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    doldm=matrix(1,nlstate,1,nlstate);
           k1++;    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
           k2=k2+2;    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         }  
       }    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
       else {    gpp=vector(nlstate+1,nlstate+ndeath);
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    gmp=vector(nlstate+1,nlstate+ndeath);
        /*  scanf("%d",i);*/    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       cutv(strd,strc,strb,'V');    
       Tvar[i]=atoi(strc);    if(estepm < stepm){
       }      printf ("Problem %d lower than %d\n",estepm, stepm);
       strcpy(modelsav,stra);      }
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    else  hstepm=estepm;   
         scanf("%d",i);*/    /* For example we decided to compute the life expectancy with the smallest unit */
     }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 }       nhstepm is the number of hstepm from age to agelim 
         nstepm is the number of stepm from age to agelin. 
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);       Look at hpijx to understand the reason of that which relies in memory size
   printf("cptcovprod=%d ", cptcovprod);       and note for a fixed period like k years */
   scanf("%d ",i);*/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     fclose(fic);       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
     /*  if(mle==1){*/       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     if (weightopt != 1) { /* Maximisation without weights*/       results. So we changed our mind and took the option of the best precision.
       for(i=1;i<=n;i++) weight[i]=1.0;    */
     }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     /*-calculation of age at interview from date of interview and age at death -*/    agelim = AGESUP;
     agev=matrix(1,maxwav,1,imx);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
    for (i=1; i<=imx; i++)      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
      for(m=2; (m<= maxwav); m++)      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
          anint[m][i]=9999;      gp=matrix(0,nhstepm,1,nlstate);
          s[m][i]=-1;      gm=matrix(0,nhstepm,1,nlstate);
        }  
      
     for (i=1; i<=imx; i++)  {      for(theta=1; theta <=npar; theta++){
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        for(i=1; i<=npar; i++){ /* Computes gradient */
       for(m=1; (m<= maxwav); m++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         if(s[m][i] >0){        }
           if (s[m][i] == nlstate+1) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
             if(agedc[i]>0)        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
               if(moisdc[i]!=99 && andc[i]!=9999)  
               agev[m][i]=agedc[i];        if (popbased==1) {
             else {          if(mobilav ==0){
               if (andc[i]!=9999){            for(i=1; i<=nlstate;i++)
               printf("Warning negative age at death: %d line:%d\n",num[i],i);              prlim[i][i]=probs[(int)age][i][ij];
               agev[m][i]=-1;          }else{ /* mobilav */ 
               }            for(i=1; i<=nlstate;i++)
             }              prlim[i][i]=mobaverage[(int)age][i][ij];
           }          }
           else if(s[m][i] !=9){ /* Should no more exist */        }
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    
             if(mint[m][i]==99 || anint[m][i]==9999)        for(j=1; j<= nlstate; j++){
               agev[m][i]=1;          for(h=0; h<=nhstepm; h++){
             else if(agev[m][i] <agemin){            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               agemin=agev[m][i];              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          }
             }        }
             else if(agev[m][i] >agemax){        /* This for computing forces of mortality (h=1)as a weighted average */
               agemax=agev[m][i];        for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/          for(i=1; i<= nlstate; i++)
             }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
             /*agev[m][i]=anint[m][i]-annais[i];*/        }    
             /*   agev[m][i] = age[i]+2*m;*/        /* end force of mortality */
           }  
           else { /* =9 */        for(i=1; i<=npar; i++) /* Computes gradient */
             agev[m][i]=1;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
             s[m][i]=-1;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         }   
         else /*= 0 Unknown */        if (popbased==1) {
           agev[m][i]=1;          if(mobilav ==0){
       }            for(i=1; i<=nlstate;i++)
                  prlim[i][i]=probs[(int)age][i][ij];
     }          }else{ /* mobilav */ 
     for (i=1; i<=imx; i++)  {            for(i=1; i<=nlstate;i++)
       for(m=1; (m<= maxwav); m++){              prlim[i][i]=mobaverage[(int)age][i][ij];
         if (s[m][i] > (nlstate+ndeath)) {          }
           printf("Error: Wrong value in nlstate or ndeath\n");          }
           goto end;  
         }        for(j=1; j<= nlstate; j++){
       }          for(h=0; h<=nhstepm; h++){
     }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);          }
         }
     free_vector(severity,1,maxwav);        /* This for computing force of mortality (h=1)as a weighted average */
     free_imatrix(outcome,1,maxwav+1,1,n);        for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){
     free_vector(moisnais,1,n);          for(i=1; i<= nlstate; i++)
     free_vector(annais,1,n);            gmp[j] += prlim[i][i]*p3mat[i][j][1];
     free_matrix(mint,1,maxwav,1,n);        }    
     free_matrix(anint,1,maxwav,1,n);        /* end force of mortality */
     free_vector(moisdc,1,n);  
     free_vector(andc,1,n);        for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
                gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     wav=ivector(1,imx);          }
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     mw=imatrix(1,lastpass-firstpass+1,1,imx);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
            }
     /* Concatenates waves */  
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
       Tcode=ivector(1,100);  
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);      for(h=0; h<=nhstepm; h++) /* veij */
       ncodemax[1]=1;        for(j=1; j<=nlstate;j++)
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);          for(theta=1; theta <=npar; theta++)
                  trgradg[h][j][theta]=gradg[h][theta][j];
    codtab=imatrix(1,100,1,10);  
    h=0;      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
    m=pow(2,cptcoveff);        for(theta=1; theta <=npar; theta++)
            trgradgp[j][theta]=gradgp[theta][j];
    for(k=1;k<=cptcoveff; k++){  
      for(i=1; i <=(m/pow(2,k));i++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        for(j=1; j <= ncodemax[k]; j++){      for(i=1;i<=nlstate;i++)
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        for(j=1;j<=nlstate;j++)
            h++;          vareij[i][j][(int)age] =0.;
            if (h>m) h=1;codtab[h][k]=j;  
          }      for(h=0;h<=nhstepm;h++){
        }        for(k=0;k<=nhstepm;k++){
      }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
    }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
    /*for(i=1; i <=m ;i++){              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
      for(k=1; k <=cptcovn; k++){        }
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);      }
      }  
      printf("\n");      /* pptj */
    }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
    scanf("%d",i);*/      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
          for(j=nlstate+1;j<=nlstate+ndeath;j++)
    /* Calculates basic frequencies. Computes observed prevalence at single age        for(i=nlstate+1;i<=nlstate+ndeath;i++)
        and prints on file fileres'p'. */          varppt[j][i]=doldmp[j][i];
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);      /* end ppptj */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      if (popbased==1) {
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        if(mobilav ==0){
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          for(i=1; i<=nlstate;i++)
                  prlim[i][i]=probs[(int)age][i][ij];
     /* For Powell, parameters are in a vector p[] starting at p[1]        }else{ /* mobilav */ 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          for(i=1; i<=nlstate;i++)
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */            prlim[i][i]=mobaverage[(int)age][i][ij];
         }
     if(mle==1){      }
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);      
     }      /* This for computing force of mortality (h=1)as a weighted average */
          for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){
     /*--------- results files --------------*/        for(i=1; i<= nlstate; i++)
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
          }    
    jk=1;      /* end force of mortality */
    fprintf(ficres,"# Parameters\n");  
    printf("# Parameters\n");      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
    for(i=1,jk=1; i <=nlstate; i++){      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
      for(k=1; k <=(nlstate+ndeath); k++){        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
        if (k != i)        for(i=1; i<=nlstate;i++){
          {          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
            printf("%d%d ",i,k);        }
            fprintf(ficres,"%1d%1d ",i,k);      } 
            for(j=1; j <=ncovmodel; j++){      fprintf(ficresprobmorprev,"\n");
              printf("%f ",p[jk]);  
              fprintf(ficres,"%f ",p[jk]);      fprintf(ficresvij,"%.0f ",age );
              jk++;      for(i=1; i<=nlstate;i++)
            }        for(j=1; j<=nlstate;j++){
            printf("\n");          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
            fprintf(ficres,"\n");        }
          }      fprintf(ficresvij,"\n");
      }      free_matrix(gp,0,nhstepm,1,nlstate);
    }      free_matrix(gm,0,nhstepm,1,nlstate);
  if(mle==1){      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
     /* Computing hessian and covariance matrix */      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     ftolhess=ftol; /* Usually correct */      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     hesscov(matcov, p, npar, delti, ftolhess, func);    } /* End age */
  }    free_vector(gpp,nlstate+1,nlstate+ndeath);
     fprintf(ficres,"# Scales\n");    free_vector(gmp,nlstate+1,nlstate+ndeath);
     printf("# Scales\n");    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
      for(i=1,jk=1; i <=nlstate; i++){    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       for(j=1; j <=nlstate+ndeath; j++){    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
         if (j!=i) {    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
           fprintf(ficres,"%1d%1d",i,j);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
           printf("%1d%1d",i,j);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);
           for(k=1; k<=ncovmodel;k++){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);
             printf(" %.5e",delti[jk]);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);
             fprintf(ficres," %.5e",delti[jk]);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
             jk++;    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,digitp,digit);
           }    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
           printf("\n");  */
           fprintf(ficres,"\n");    fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);
         }  
       }    free_vector(xp,1,npar);
       }    free_matrix(doldm,1,nlstate,1,nlstate);
        free_matrix(dnewm,1,nlstate,1,npar);
     k=1;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     fprintf(ficres,"# Covariance\n");    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     printf("# Covariance\n");    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     for(i=1;i<=npar;i++){    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       /*  if (k>nlstate) k=1;    fclose(ficresprobmorprev);
       i1=(i-1)/(ncovmodel*nlstate)+1;    fclose(ficgp);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    fclose(fichtm);
       printf("%s%d%d",alph[k],i1,tab[i]);*/  }
       fprintf(ficres,"%3d",i);  
       printf("%3d",i);  /************ Variance of prevlim ******************/
       for(j=1; j<=i;j++){  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
         fprintf(ficres," %.5e",matcov[i][j]);  {
         printf(" %.5e",matcov[i][j]);    /* Variance of prevalence limit */
       }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
       fprintf(ficres,"\n");    double **newm;
       printf("\n");    double **dnewm,**doldm;
       k++;    int i, j, nhstepm, hstepm;
     }    int k, cptcode;
        double *xp;
     while((c=getc(ficpar))=='#' && c!= EOF){    double *gp, *gm;
       ungetc(c,ficpar);    double **gradg, **trgradg;
       fgets(line, MAXLINE, ficpar);    double age,agelim;
       puts(line);    int theta;
       fputs(line,ficparo);     
     }    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     ungetc(c,ficpar);    fprintf(ficresvpl,"# Age");
      for(i=1; i<=nlstate;i++)
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);        fprintf(ficresvpl," %1d-%1d",i,i);
        fprintf(ficresvpl,"\n");
     if (fage <= 2) {  
       bage = agemin;    xp=vector(1,npar);
       fage = agemax;    dnewm=matrix(1,nlstate,1,npar);
     }    doldm=matrix(1,nlstate,1,nlstate);
     
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    hstepm=1*YEARM; /* Every year of age */
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
        for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 /*------------ gnuplot -------------*/      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
 chdir(pathcd);      if (stepm >= YEARM) hstepm=1;
   if((ficgp=fopen("graph.plt","w"))==NULL) {      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     printf("Problem with file graph.gp");goto end;      gradg=matrix(1,npar,1,nlstate);
   }      gp=vector(1,nlstate);
 #ifdef windows      gm=vector(1,nlstate);
   fprintf(ficgp,"cd \"%s\" \n",pathc);  
 #endif      for(theta=1; theta <=npar; theta++){
 m=pow(2,cptcoveff);        for(i=1; i<=npar; i++){ /* Computes gradient */
            xp[i] = x[i] + (i==theta ?delti[theta]:0);
  /* 1eme*/        }
   for (cpt=1; cpt<= nlstate ; cpt ++) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    for (k1=1; k1<= m ; k1 ++) {        for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
 #ifdef windows      
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);        for(i=1; i<=npar; i++) /* Computes gradient */
 #endif          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 #ifdef unix        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);        for(i=1;i<=nlstate;i++)
 #endif          gm[i] = prlim[i][i];
   
 for (i=1; i<= nlstate ; i ++) {        for(i=1;i<=nlstate;i++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   else fprintf(ficgp," \%%*lf (\%%*lf)");      } /* End theta */
 }  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);      trgradg =matrix(1,nlstate,1,npar);
     for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      for(j=1; j<=nlstate;j++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(theta=1; theta <=npar; theta++)
 }          trgradg[j][theta]=gradg[theta][j];
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);  
      for (i=1; i<= nlstate ; i ++) {      for(i=1;i<=nlstate;i++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        varpl[i][(int)age] =0.;
   else fprintf(ficgp," \%%*lf (\%%*lf)");      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 }        matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      for(i=1;i<=nlstate;i++)
 #ifdef unix        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
 fprintf(ficgp,"\nset ter gif small size 400,300");  
 #endif      fprintf(ficresvpl,"%.0f ",age );
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      for(i=1; i<=nlstate;i++)
    }        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
   }      fprintf(ficresvpl,"\n");
   /*2 eme*/      free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
   for (k1=1; k1<= m ; k1 ++) {      free_matrix(gradg,1,npar,1,nlstate);
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);      free_matrix(trgradg,1,nlstate,1,npar);
        } /* End age */
     for (i=1; i<= nlstate+1 ; i ++) {  
       k=2*i;    free_vector(xp,1,npar);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    free_matrix(doldm,1,nlstate,1,npar);
       for (j=1; j<= nlstate+1 ; j ++) {    free_matrix(dnewm,1,nlstate,1,nlstate);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");  }
 }    
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");  /************ Variance of one-step probabilities  ******************/
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);  {
       for (j=1; j<= nlstate+1 ; j ++) {    int i, j=0,  i1, k1, l1, t, tj;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    int k2, l2, j1,  z1;
         else fprintf(ficgp," \%%*lf (\%%*lf)");    int k=0,l, cptcode;
 }      int first=1, first1;
       fprintf(ficgp,"\" t\"\" w l 0,");    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    double **dnewm,**doldm;
       for (j=1; j<= nlstate+1 ; j ++) {    double *xp;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double *gp, *gm;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double **gradg, **trgradg;
 }      double **mu;
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    double age,agelim, cov[NCOVMAX];
       else fprintf(ficgp,"\" t\"\" w l 0,");    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     }    int theta;
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    char fileresprob[FILENAMELENGTH];
   }    char fileresprobcov[FILENAMELENGTH];
      char fileresprobcor[FILENAMELENGTH];
   /*3eme*/  
     double ***varpij;
   for (k1=1; k1<= m ; k1 ++) {  
     for (cpt=1; cpt<= nlstate ; cpt ++) {    strcpy(fileresprob,"prob"); 
       k=2+nlstate*(cpt-1);    strcat(fileresprob,fileres);
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       for (i=1; i< nlstate ; i ++) {      printf("Problem with resultfile: %s\n", fileresprob);
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
       }    }
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    strcpy(fileresprobcov,"probcov"); 
     }    strcat(fileresprobcov,fileres);
   }    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", fileresprobcov);
   /* CV preval stat */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   for (k1=1; k1<= m ; k1 ++) {    }
     for (cpt=1; cpt<nlstate ; cpt ++) {    strcpy(fileresprobcor,"probcor"); 
       k=3;    strcat(fileresprobcor,fileres);
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       for (i=1; i< nlstate ; i ++)      printf("Problem with resultfile: %s\n", fileresprobcor);
         fprintf(ficgp,"+$%d",k+i+1);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    }
          printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       l=3+(nlstate+ndeath)*cpt;    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       for (i=1; i< nlstate ; i ++) {    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         l=3+(nlstate+ndeath)*cpt;    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         fprintf(ficgp,"+$%d",l+i+1);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       }    
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    fprintf(ficresprob,"# Age");
     }    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   }      fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   /* proba elementaires */    fprintf(ficresprobcov,"# Age");
    for(i=1,jk=1; i <=nlstate; i++){  
     for(k=1; k <=(nlstate+ndeath); k++){  
       if (k != i) {    for(i=1; i<=nlstate;i++)
         for(j=1; j <=ncovmodel; j++){      for(j=1; j<=(nlstate+ndeath);j++){
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
           /*fprintf(ficgp,"%s",alph[1]);*/        fprintf(ficresprobcov," p%1d-%1d ",i,j);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
           jk++;      }  
           fprintf(ficgp,"\n");    fprintf(ficresprob,"\n");
         }    fprintf(ficresprobcov,"\n");
       }    fprintf(ficresprobcor,"\n");
     }    xp=vector(1,npar);
     }    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   for(jk=1; jk <=m; jk++) {    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
    i=1;    first=1;
    for(k2=1; k2<=nlstate; k2++) {    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
      k3=i;      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
      for(k=1; k<=(nlstate+ndeath); k++) {      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
        if (k != k2){      exit(0);
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    }
 ij=1;    else{
         for(j=3; j <=ncovmodel; j++) {      fprintf(ficgp,"\n# Routine varprob");
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    }
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
             ij++;      printf("Problem with html file: %s\n", optionfilehtm);
           }      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
           else      exit(0);
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    }
         }    else{
           fprintf(ficgp,")/(1");      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
              fprintf(fichtm,"\n");
         for(k1=1; k1 <=nlstate; k1++){    
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
 ij=1;      fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
           for(j=3; j <=ncovmodel; j++){      fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    }
             ij++;  
           }    cov[1]=1;
           else    tj=cptcoveff;
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
           }    j1=0;
           fprintf(ficgp,")");    for(t=1; t<=tj;t++){
         }      for(i1=1; i1<=ncodemax[t];i1++){ 
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);        j1++;
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        if  (cptcovn>0) {
         i=i+ncovmodel;          fprintf(ficresprob, "\n#********** Variable "); 
        }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      }          fprintf(ficresprob, "**********\n#");
    }          fprintf(ficresprobcov, "\n#********** Variable "); 
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(ficresprobcov, "**********\n#");
              
   fclose(ficgp);          fprintf(ficgp, "\n#********** Variable "); 
              for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 chdir(path);          fprintf(ficgp, "**********\n#");
     free_matrix(agev,1,maxwav,1,imx);          
     free_ivector(wav,1,imx);          
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
              fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     free_imatrix(s,1,maxwav+1,1,n);          
              fprintf(ficresprobcor, "\n#********** Variable ");    
              for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     free_ivector(num,1,n);          fprintf(ficgp, "**********\n#");    
     free_vector(agedc,1,n);        }
     free_vector(weight,1,n);        
     /*free_matrix(covar,1,NCOVMAX,1,n);*/        for (age=bage; age<=fage; age ++){ 
     fclose(ficparo);          cov[2]=age;
     fclose(ficres);          for (k=1; k<=cptcovn;k++) {
     /*  }*/            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
              }
    /*________fin mle=1_________*/          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
              for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
            
     /* No more information from the sample is required now */          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   /* Reads comments: lines beginning with '#' */          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){          gp=vector(1,(nlstate)*(nlstate+ndeath));
     ungetc(c,ficpar);          gm=vector(1,(nlstate)*(nlstate+ndeath));
     fgets(line, MAXLINE, ficpar);      
     puts(line);          for(theta=1; theta <=npar; theta++){
     fputs(line,ficparo);            for(i=1; i<=npar; i++)
   }              xp[i] = x[i] + (i==theta ?delti[theta]:0);
   ungetc(c,ficpar);            
              pmij(pmmij,cov,ncovmodel,xp,nlstate);
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);            
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);            k=0;
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);            for(i=1; i<= (nlstate); i++){
 /*--------- index.htm --------*/              for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
   strcpy(optionfilehtm,optionfile);                gp[k]=pmmij[i][j];
   strcat(optionfilehtm,".htm");              }
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {            }
     printf("Problem with %s \n",optionfilehtm);goto end;            
   }            for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:0);
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.64b </font> <hr size=\"2\" color=\"#EC5E5E\">      
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>            pmij(pmmij,cov,ncovmodel,xp,nlstate);
 Total number of observations=%d <br>            k=0;
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>            for(i=1; i<=(nlstate); i++){
 <hr  size=\"2\" color=\"#EC5E5E\">              for(j=1; j<=(nlstate+ndeath);j++){
 <li>Outputs files<br><br>\n                k=k+1;
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n                gm[k]=pmmij[i][j];
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>              }
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>            }
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>       
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>              gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];  
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>          }
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>  
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
  fprintf(fichtm," <li>Graphs</li><p>");              trgradg[j][theta]=gradg[theta][j];
           
  m=cptcoveff;          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
  j1=0;          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
  for(k1=1; k1<=m;k1++){          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
    for(i1=1; i1<=ncodemax[k1];i1++){          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
        j1++;  
        if (cptcovn > 0) {          pmij(pmmij,cov,ncovmodel,x,nlstate);
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");          
          for (cpt=1; cpt<=cptcoveff;cpt++)          k=0;
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);          for(i=1; i<=(nlstate); i++){
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            for(j=1; j<=(nlstate+ndeath);j++){
        }              k=k+1;
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>              mu[k][(int) age]=pmmij[i][j];
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);                }
        for(cpt=1; cpt<nlstate;cpt++){          }
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
        }              varpij[i][j][(int)age] = doldm[i][j];
     for(cpt=1; cpt<=nlstate;cpt++) {  
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident          /*printf("\n%d ",(int)age);
 interval) in state (%d): v%s%d%d.gif <br>            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);              printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
      }            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
      for(cpt=1; cpt<=nlstate;cpt++) {            }*/
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>  
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          fprintf(ficresprob,"\n%d ",(int)age);
      }          fprintf(ficresprobcov,"\n%d ",(int)age);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          fprintf(ficresprobcor,"\n%d ",(int)age);
 health expectancies in states (1) and (2): e%s%d.gif<br>  
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
 fprintf(fichtm,"\n</body>");            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
    }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
  }            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
 fclose(fichtm);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
   /*--------------- Prevalence limit --------------*/          i=0;
            for (k=1; k<=(nlstate);k++){
   strcpy(filerespl,"pl");            for (l=1; l<=(nlstate+ndeath);l++){ 
   strcat(filerespl,fileres);              i=i++;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   }              for (j=1; j<=i;j++){
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   fprintf(ficrespl,"#Prevalence limit\n");                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   fprintf(ficrespl,"#Age ");              }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);            }
   fprintf(ficrespl,"\n");          }/* end of loop for state */
          } /* end of loop for age */
   prlim=matrix(1,nlstate,1,nlstate);  
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        /* Confidence intervalle of pij  */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        /*
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficgp,"\nset noparametric;unset label");
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   k=0;          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   agebase=agemin;          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   agelim=agemax;          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   ftolpl=1.e-10;          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   i1=cptcoveff;        */
   if (cptcovn < 1){i1=1;}  
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   for(cptcov=1;cptcov<=i1;cptcov++){        first1=1;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        for (k2=1; k2<=(nlstate);k2++){
         k=k+1;          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/            if(l2==k2) continue;
         fprintf(ficrespl,"\n#******");            j=(k2-1)*(nlstate+ndeath)+l2;
         for(j=1;j<=cptcoveff;j++)            for (k1=1; k1<=(nlstate);k1++){
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
         fprintf(ficrespl,"******\n");                if(l1==k1) continue;
                        i=(k1-1)*(nlstate+ndeath)+l1;
         for (age=agebase; age<=agelim; age++){                if(i<=j) continue;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                for (age=bage; age<=fage; age ++){ 
           fprintf(ficrespl,"%.0f",age );                  if ((int)age %5==0){
           for(i=1; i<=nlstate;i++)                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
           fprintf(ficrespl," %.5f", prlim[i][i]);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
           fprintf(ficrespl,"\n");                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
         }                    mu1=mu[i][(int) age]/stepm*YEARM ;
       }                    mu2=mu[j][(int) age]/stepm*YEARM;
     }                    c12=cv12/sqrt(v1*v2);
   fclose(ficrespl);                    /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   /*------------- h Pij x at various ages ------------*/                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                      /* Eigen vectors */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   if((ficrespij=fopen(filerespij,"w"))==NULL) {                    /*v21=sqrt(1.-v11*v11); *//* error */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;                    v21=(lc1-v1)/cv12*v11;
   }                    v12=-v21;
   printf("Computing pij: result on file '%s' \n", filerespij);                    v22=v11;
                      tnalp=v21/v11;
   stepsize=(int) (stepm+YEARM-1)/YEARM;                    if(first1==1){
   /*if (stepm<=24) stepsize=2;*/                      first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   agelim=AGESUP;                    }
   hstepm=stepsize*YEARM; /* Every year of age */                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */                    /*printf(fignu*/
                      /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   k=0;                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   for(cptcov=1;cptcov<=i1;cptcov++){                    if(first==1){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                      first=0;
       k=k+1;                      fprintf(ficgp,"\nset parametric;unset label");
         fprintf(ficrespij,"\n#****** ");                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
         for(j=1;j<=cptcoveff;j++)                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
         fprintf(ficrespij,"******\n");                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
                              fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
           oldm=oldms;savm=savms;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                                mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
           fprintf(ficrespij,"# Age");                    }else{
           for(i=1; i<=nlstate;i++)                      first=0;
             for(j=1; j<=nlstate+ndeath;j++)                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
               fprintf(ficrespij," %1d-%1d",i,j);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
           fprintf(ficrespij,"\n");                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           for (h=0; h<=nhstepm; h++){                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
             for(i=1; i<=nlstate;i++)                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
               for(j=1; j<=nlstate+ndeath;j++)                    }/* if first */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                  } /* age mod 5 */
             fprintf(ficrespij,"\n");                } /* end loop age */
           }                fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                first=1;
           fprintf(ficrespij,"\n");              } /*l12 */
         }            } /* k12 */
     }          } /*l1 */
   }        }/* k1 */
       } /* loop covariates */
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/    }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   fclose(ficrespij);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
   exit(0);    fclose(ficresprob);
   /*---------- Forecasting ------------------*/    fclose(ficresprobcov);
     fclose(ficresprobcor);
   strcpy(fileresf,"f");    fclose(ficgp);
   strcat(fileresf,fileres);    fclose(fichtm);
   if((ficresf=fopen(fileresf,"w"))==NULL) {  }
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;  
   }  
   printf("Computing forecasting: result on file '%s' \n", fileresf);  /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   /* Mobile average */                    int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   /* for (agedeb=bage; agedeb<=fage; agedeb++)                    int popforecast, int estepm ,\
     for (i=1; i<=nlstate;i++)                    double jprev1, double mprev1,double anprev1, \
       for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++)                    double jprev2, double mprev2,double anprev2){
       printf("%f %d i=%d j1=%d\n", probs[(int)agedeb][i][cptcod],(int) agedeb,i,cptcod);*/    int jj1, k1, i1, cpt;
     /*char optionfilehtm[FILENAMELENGTH];*/
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
   mobaverage= ma3x(1,130 ,1,8, 1,8);      fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
   for (agedeb=bage+3; agedeb<=fage-2; agedeb++)    }
     for (i=1; i<=nlstate;i++)  
       for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n
         mobaverage[(int)agedeb][i][cptcod]=0.;   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n
     - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n
   for (agedeb=bage+4; agedeb<=fage; agedeb++){   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n
     for (i=1; i<=nlstate;i++){   - Life expectancies by age and initial health status (estepm=%2d months): 
       for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){     <a href=\"e%s\">e%s</a> <br>\n</li>", \
         for (cpt=0;cpt<=4;cpt++){    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];  
           }  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  
       }   m=cptcoveff;
     }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   }  
    jj1=0;
 /* if (cptcod==2) printf("m=%f p=%f %d age=%d ",mobaverage[(int)agedeb-2][i][cptcod],probs[(int)agedeb-cpt][i][cptcod],cpt,(int)agedeb-2);*/   for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
   stepsize=(int) (stepm+YEARM-1)/YEARM;       if (cptcovn > 0) {
   if (stepm<=24) stepsize=2;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
   agelim=AGESUP;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   hstepm=stepsize*YEARM; /* Every year of age */         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */       }
   hstepm=12;       /* Pij */
    k=0;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>
   for(cptcov=1;cptcov<=i1;cptcov++){  <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){       /* Quasi-incidences */
       k=k+1;       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>
       fprintf(ficresf,"\n#****** ");  <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
       for(j=1;j<=cptcoveff;j++) {         /* Stable prevalence in each health state */
         fprintf(ficresf,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);         for(cpt=1; cpt<nlstate;cpt++){
       }           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>
        <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
       fprintf(ficresf,"******\n");         }
        for(cpt=1; cpt<=nlstate;cpt++) {
       fprintf(ficresf,"# StartingAge FinalAge Horizon(in years)");          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);  <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
        }
       for (agedeb=fage; agedeb>=bage; agedeb--){       fprintf(fichtm,"\n<br>- Total life expectancy by age and
         fprintf(ficresf,"\n%d %.f %.f 0 ",k,agedeb, agedeb);  health expectancies in states (1) and (2): e%s%d.png<br>
         for(j=1; j<=nlstate;j++)  <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
           fprintf(ficresf,"%.3f ",mobaverage[(int)agedeb][j][cptcod]);     } /* end i1 */
       }   }/* End k1 */
       for(j=1; j<=ndeath;j++) fprintf(ficresf,"0.");   fprintf(fichtm,"</ul>");
   
       for (cpt=1; cpt<=8;cpt++)    
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n
           - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
         nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */   - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n
         /*printf("stepm=%d hstepm=%d nhstepm=%d \n",stepm,hstepm,nhstepm);*/   - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n 
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n
         oldm=oldms;savm=savms;   - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
                   if(popforecast==1) fprintf(fichtm,"\n
         for (h=0; h<=nhstepm; h++){   - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n
           - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n
           if (h*hstepm/YEARM*stepm==cpt)          <br>",fileres,fileres,fileres,fileres);
  fprintf(ficresf,"\n%d %.f %.f %.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm, h*hstepm/YEARM*stepm);   else 
               fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);
           for(j=1; j<=nlstate+ndeath;j++) {  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
             kk1=0.;  
             for(i=1; i<=nlstate;i++) {           m=cptcoveff;
               /*   kk1=kk1+p3mat[i][j][h]*probs[(int)agedeb][i][cptcod];*/   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb][i][cptcod];  
             }   jj1=0;
               for(k1=1; k1<=m;k1++){
             if (h*hstepm/YEARM*stepm==cpt)     for(i1=1; i1<=ncodemax[k1];i1++){
               fprintf(ficresf," %.5f ", kk1);       jj1++;
           }       if (cptcovn > 0) {
           }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         for (cpt=1; cpt<=cptcoveff;cpt++) 
         }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     }       }
   fclose(ficresf);       for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident
   /*---------- Health expectancies and variances ------------*/  interval) in state (%d): v%s%d%d.png <br>
   <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
   strcpy(filerest,"t");       }
   strcat(filerest,fileres);     } /* end i1 */
   if((ficrest=fopen(filerest,"w"))==NULL) {   }/* End k1 */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;   fprintf(fichtm,"</ul>");
   }  fclose(fichtm);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  }
   
   /******************* Gnuplot file **************/
   strcpy(filerese,"e");  void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   strcat(filerese,fileres);  
   if((ficreseij=fopen(filerese,"w"))==NULL) {    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    int ng;
   }    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      printf("Problem with file %s",optionfilegnuplot);
       fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
  strcpy(fileresv,"v");    }
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    /*#ifdef windows */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      fprintf(ficgp,"cd \"%s\" \n",pathc);
   }      /*#endif */
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  m=pow(2,cptcoveff);
     
   k=0;   /* 1eme*/
   for(cptcov=1;cptcov<=i1;cptcov++){    for (cpt=1; cpt<= nlstate ; cpt ++) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){     for (k1=1; k1<= m ; k1 ++) {
       k=k+1;       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
       fprintf(ficrest,"\n#****** ");       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);       for (i=1; i<= nlstate ; i ++) {
       fprintf(ficrest,"******\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
       fprintf(ficreseij,"\n#****** ");       }
       for(j=1;j<=cptcoveff;j++)       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);       for (i=1; i<= nlstate ; i ++) {
       fprintf(ficreseij,"******\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
       fprintf(ficresvij,"\n#****** ");       } 
       for(j=1;j<=cptcoveff;j++)       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1); 
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);       for (i=1; i<= nlstate ; i ++) {
       fprintf(ficresvij,"******\n");         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);       }  
       oldm=oldms;savm=savms;       fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);       }
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    }
       oldm=oldms;savm=savms;    /*2 eme*/
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    
          for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       fprintf(ficrest,"\n");      
              for (i=1; i<= nlstate+1 ; i ++) {
       hf=1;        k=2*i;
       if (stepm >= YEARM) hf=stepm/YEARM;        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
       epj=vector(1,nlstate+1);        for (j=1; j<= nlstate+1 ; j ++) {
       for(age=bage; age <=fage ;age++){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          else fprintf(ficgp," \%%*lf (\%%*lf)");
         fprintf(ficrest," %.0f",age);        }   
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
           }        for (j=1; j<= nlstate+1 ; j ++) {
           epj[nlstate+1] +=epj[j];          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         }          else fprintf(ficgp," \%%*lf (\%%*lf)");
         for(i=1, vepp=0.;i <=nlstate;i++)        }   
           for(j=1;j <=nlstate;j++)        fprintf(ficgp,"\" t\"\" w l 0,");
             vepp += vareij[i][j][(int)age];        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));        for (j=1; j<= nlstate+1 ; j ++) {
         for(j=1;j <=nlstate;j++){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }        }   
         fprintf(ficrest,"\n");        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
       }        else fprintf(ficgp,"\" t\"\" w l 0,");
     }      }
   }    }
            
            /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
  fclose(ficreseij);      for (cpt=1; cpt<= nlstate ; cpt ++) {
  fclose(ficresvij);        k=2+nlstate*(2*cpt-2);
   fclose(ficrest);        fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
   fclose(ficpar);        fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
   free_vector(epj,1,nlstate+1);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   /*  scanf("%d ",i); */          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   /*------- Variance limit prevalence------*/            fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
 strcpy(fileresvpl,"vpl");          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   strcat(fileresvpl,fileres);          
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {        */
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);        for (i=1; i< nlstate ; i ++) {
     exit(0);          fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
   }          
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);        } 
       }
  k=0;    }
  for(cptcov=1;cptcov<=i1;cptcov++){    
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /* CV preval stat */
      k=k+1;    for (k1=1; k1<= m ; k1 ++) { 
      fprintf(ficresvpl,"\n#****** ");      for (cpt=1; cpt<nlstate ; cpt ++) {
      for(j=1;j<=cptcoveff;j++)        k=3;
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
      fprintf(ficresvpl,"******\n");        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
              
      varpl=matrix(1,nlstate,(int) bage, (int) fage);        for (i=1; i< nlstate ; i ++)
      oldm=oldms;savm=savms;          fprintf(ficgp,"+$%d",k+i+1);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
    }        
  }        l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
   fclose(ficresvpl);        for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
   /*---------- End : free ----------------*/          fprintf(ficgp,"+$%d",l+i+1);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);        }
          fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      } 
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    }  
      
      /* proba elementaires */
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    for(i=1,jk=1; i <=nlstate; i++){
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      for(k=1; k <=(nlstate+ndeath); k++){
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);        if (k != i) {
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);          for(j=1; j <=ncovmodel; j++){
              fprintf(ficgp,"p%d=%f ",jk,p[jk]);
   free_matrix(matcov,1,npar,1,npar);            jk++; 
   free_vector(delti,1,npar);            fprintf(ficgp,"\n");
            }
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        }
       }
   printf("End of Imach\n");     }
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  
       for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/       for(jk=1; jk <=m; jk++) {
   /*printf("Total time was %d uSec.\n", total_usecs);*/         fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
   /*------ End -----------*/         if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
  end:           fprintf(ficgp,"\nset title \"Probability\"\n");
 #ifdef windows         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
  chdir(pathcd);         i=1;
 #endif         for(k2=1; k2<=nlstate; k2++) {
             k3=i;
  system("..\\gp37mgw\\wgnuplot graph.plt");           for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
 #ifdef windows               if(ng==2)
   while (z[0] != 'q') {                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
     chdir(pathcd);               else
     printf("\nType e to edit output files, c to start again, and q for exiting: ");                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
     scanf("%s",z);               ij=1;
     if (z[0] == 'c') system("./imach");               for(j=3; j <=ncovmodel; j++) {
     else if (z[0] == 'e') {                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       chdir(path);                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       system(optionfilehtm);                   ij++;
     }                 }
     else if (z[0] == 'q') exit(0);                 else
   }                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
 #endif               }
 }               fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fclose(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
    agelim=AGESUP;
    calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;
   
     prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);
    
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
     
     fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean); 
     
     for(cptcov=1;cptcov<=i2;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# StartingAge FinalAge");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);
         
         
         for (cpt=0; cpt<=(anproj2-anproj1);cpt++) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);   
   
           for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedate+YEARM*cpt)) {
                 fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                   
                 }
                 if (h==(int)(calagedate+12*cpt)){
                   fprintf(ficresf," %.3f", kk1);
                           
                 }
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
       }
     }
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   /************** Forecasting ******************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedate, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedate+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedate+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedate+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1); 
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   }
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[80],pathc[80],pathcd[80],pathtot[80],model[80];
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   #include <sys/time.h>
   #include <time.h>
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
    
     /* long total_usecs;
        struct timeval start_time, end_time;
     
        gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     getcwd(pathcd, size);
   
     printf("\n%s",version);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     replace(pathc,path);
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s",version);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       goto end;
     }
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) {
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++)
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     delti=delti3[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
           fprintf(ficlog," %.5le",matcov[i][j]);
         }
         else
           fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=ivector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=1; (m<= maxwav); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if(moisdc[i]!=99 && andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if (andc[i]!=9999){
                   printf("Warning negative age at death: %d line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Should no more exist */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if(mint[m][i]==99 || anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=1; (m<= maxwav); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle==1){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+mprev1/12.+jprev1/365.;
     dateprev2=anprev2+mprev2/12.+jprev2/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);
     fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);
     fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);
   
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
   \n
   Total number of observations=%d <br>\n
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
   <hr  size=\"2\" color=\"#EC5E5E\">
    <ul><li><h4>Parameter files</h4>\n
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
    - Log file of the run: <a href=\"%s\">%s</a><br>\n
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
     fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_ivector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f",age );
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Age");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
   
     /*---------- Forecasting ------------------*/
     if((stepm == 1) && (strcmp(model,".")==0)){
       prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);
       if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);
     } 
     else{
       erreur=108;
       printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);
       fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     calagedate=-1;
   
     prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     free_vector(delti,1,npar);
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fprintf(fichtm,"\n</body>");
     fclose(fichtm);
     fclose(ficgp);
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     
     /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
     /*printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting: %s\n",plotcmd);fflush(stdout);
     system(plotcmd);
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.13  
changed lines
  Added in v.1.65


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>