Diff for /imach/src/imach.c between versions 1.6 and 1.84

version 1.6, 2001/05/02 17:47:10 version 1.84, 2003/06/13 21:44:43
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.84  2003/06/13 21:44:43  brouard
   individuals from different ages are interviewed on their health status    * imach.c (Repository): Replace "freqsummary" at a correct
   or degree of  disability. At least a second wave of interviews    place. It differs from routine "prevalence" which may be called
   ("longitudinal") should  measure each new individual health status.    many times. Probs is memory consuming and must be used with
   Health expectancies are computed from the transistions observed between    parcimony.
   waves and are computed for each degree of severity of disability (number    Version 0.95a2 (should output exactly the same maximization than 0.8a2)
   of life states). More degrees you consider, more time is necessary to  
   reach the Maximum Likelihood of the parameters involved in the model.    Revision 1.83  2003/06/10 13:39:11  lievre
   The simplest model is the multinomial logistic model where pij is    *** empty log message ***
   the probabibility to be observed in state j at the second wave conditional  
   to be observed in state i at the first wave. Therefore the model is:    Revision 1.82  2003/06/05 15:57:20  brouard
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    Add log in  imach.c and  fullversion number is now printed.
   is a covariate. If you want to have a more complex model than "constant and  
   age", you should modify the program where the markup  */
     *Covariates have to be included here again* invites you to do it.  /*
   More covariates you add, less is the speed of the convergence.     Interpolated Markov Chain
   
   The advantage that this computer programme claims, comes from that if the    Short summary of the programme:
   delay between waves is not identical for each individual, or if some    
   individual missed an interview, the information is not rounded or lost, but    This program computes Healthy Life Expectancies from
   taken into account using an interpolation or extrapolation.    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   hPijx is the probability to be    first survey ("cross") where individuals from different ages are
   observed in state i at age x+h conditional to the observed state i at age    interviewed on their health status or degree of disability (in the
   x. The delay 'h' can be split into an exact number (nh*stepm) of    case of a health survey which is our main interest) -2- at least a
   unobserved intermediate  states. This elementary transition (by month or    second wave of interviews ("longitudinal") which measure each change
   quarter trimester, semester or year) is model as a multinomial logistic.    (if any) in individual health status.  Health expectancies are
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    computed from the time spent in each health state according to a
   and the contribution of each individual to the likelihood is simply hPijx.    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
   Also this programme outputs the covariance matrix of the parameters but also    simplest model is the multinomial logistic model where pij is the
   of the life expectancies. It also computes the prevalence limits.    probability to be observed in state j at the second wave
      conditional to be observed in state i at the first wave. Therefore
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
            Institut national d'études démographiques, Paris.    'age' is age and 'sex' is a covariate. If you want to have a more
   This software have been partly granted by Euro-REVES, a concerted action    complex model than "constant and age", you should modify the program
   from the European Union.    where the markup *Covariates have to be included here again* invites
   It is copyrighted identically to a GNU software product, ie programme and    you to do it.  More covariates you add, slower the
   software can be distributed freely for non commercial use. Latest version    convergence.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    The advantage of this computer programme, compared to a simple
      multinomial logistic model, is clear when the delay between waves is not
 #include <math.h>    identical for each individual. Also, if a individual missed an
 #include <stdio.h>    intermediate interview, the information is lost, but taken into
 #include <stdlib.h>    account using an interpolation or extrapolation.  
 #include <unistd.h>  
     hPijx is the probability to be observed in state i at age x+h
 #define MAXLINE 256    conditional to the observed state i at age x. The delay 'h' can be
 #define FILENAMELENGTH 80    split into an exact number (nh*stepm) of unobserved intermediate
 /*#define DEBUG*/    states. This elementary transition (by month, quarter,
 #define windows    semester or year) is modelled as a multinomial logistic.  The hPx
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    matrix is simply the matrix product of nh*stepm elementary matrices
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    and the contribution of each individual to the likelihood is simply
     hPijx.
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the stable prevalence. 
 #define NINTERVMAX 8    
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */             Institut national d'études démographiques, Paris.
 #define NCOVMAX 8 /* Maximum number of covariates */    This software have been partly granted by Euro-REVES, a concerted action
 #define MAXN 20000    from the European Union.
 #define YEARM 12. /* Number of months per year */    It is copyrighted identically to a GNU software product, ie programme and
 #define AGESUP 130    software can be distributed freely for non commercial use. Latest version
 #define AGEBASE 40    can be accessed at http://euroreves.ined.fr/imach .
   
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 int nvar;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 static int cptcov;    
 int cptcovn, cptcovage=0;    **********************************************************************/
 int npar=NPARMAX;  /*
 int nlstate=2; /* Number of live states */    main
 int ndeath=1; /* Number of dead states */    read parameterfile
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    read datafile
     concatwav
 int *wav; /* Number of waves for this individuual 0 is possible */    freqsummary
 int maxwav; /* Maxim number of waves */    if (mle >= 1)
 int mle, weightopt;      mlikeli
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    print results files
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    if mle==1 
 double **oldm, **newm, **savm; /* Working pointers to matrices */       computes hessian
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    read end of parameter file: agemin, agemax, bage, fage, estepm
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;        begin-prev-date,...
 FILE *ficgp, *fichtm;    open gnuplot file
 FILE *ficreseij;    open html file
   char filerese[FILENAMELENGTH];    stable prevalence
  FILE  *ficresvij;     for age prevalim()
   char fileresv[FILENAMELENGTH];    h Pij x
  FILE  *ficresvpl;    variance of p varprob
   char fileresvpl[FILENAMELENGTH];    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 #define NR_END 1    Variance-covariance of DFLE
 #define FREE_ARG char*    prevalence()
 #define FTOL 1.0e-10     movingaverage()
     varevsij() 
 #define NRANSI    if popbased==1 varevsij(,popbased)
 #define ITMAX 200    total life expectancies
     Variance of stable prevalence
 #define TOL 2.0e-4   end
   */
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10  
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
    
 #define GOLD 1.618034  #include <math.h>
 #define GLIMIT 100.0  #include <stdio.h>
 #define TINY 1.0e-20  #include <stdlib.h>
   #include <unistd.h>
 static double maxarg1,maxarg2;  
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #define MAXLINE 256
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #define GNUPLOTPROGRAM "gnuplot"
    /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #define FILENAMELENGTH 80
 #define rint(a) floor(a+0.5)  /*#define DEBUG*/
   #define windows
 static double sqrarg;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 int imx;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 int stepm;  
 /* Stepm, step in month: minimum step interpolation*/  #define NINTERVMAX 8
   #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 int m,nb;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  #define NCOVMAX 8 /* Maximum number of covariates */
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  #define MAXN 20000
 double **pmmij;  #define YEARM 12. /* Number of months per year */
   #define AGESUP 130
 double *weight;  #define AGEBASE 40
 int **s; /* Status */  #ifdef windows
 double *agedc, **covar, idx;  #define DIRSEPARATOR '\\'
 int **nbcode, *Tcode, *Tvar, **codtab;  #define ODIRSEPARATOR '/'
   #else
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #define DIRSEPARATOR '/'
 double ftolhess; /* Tolerance for computing hessian */  #define ODIRSEPARATOR '\\'
   #endif
   
 static  int split( char *path, char *dirc, char *name )  /* $Id$ */
 {  /* $State$ */
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */  char version[]="Imach version 0.95a2, June 2003, INED-EUROREVES ";
   char fullversion[]="$Revision$ $Date$"; 
    l1 = strlen( path );                 /* length of path */  int erreur; /* Error number */
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  int nvar;
    s = strrchr( path, '\\' );           /* find last / */  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
    if ( s == NULL ) {                   /* no directory, so use current */  int npar=NPARMAX;
 #if     defined(__bsd__)                /* get current working directory */  int nlstate=2; /* Number of live states */
       extern char       *getwd( );  int ndeath=1; /* Number of dead states */
   int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
       if ( getwd( dirc ) == NULL ) {  int popbased=0;
 #else  
       extern char       *getcwd( );  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  int jmin, jmax; /* min, max spacing between 2 waves */
 #endif  int mle, weightopt;
          return( GLOCK_ERROR_GETCWD );  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
       }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
       strcpy( name, path );             /* we've got it */  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
    } else {                             /* strip direcotry from path */             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       s++;                              /* after this, the filename */  double jmean; /* Mean space between 2 waves */
       l2 = strlen( s );                 /* length of filename */  double **oldm, **newm, **savm; /* Working pointers to matrices */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       strcpy( name, s );                /* save file name */  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  FILE *ficlog, *ficrespow;
       dirc[l1-l2] = 0;                  /* add zero */  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
    }  FILE *ficresprobmorprev;
    l1 = strlen( dirc );                 /* length of directory */  FILE *fichtm; /* Html File */
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  FILE *ficreseij;
    return( 0 );                         /* we're done */  char filerese[FILENAMELENGTH];
 }  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
   FILE  *ficresvpl;
 /******************************************/  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
 void replace(char *s, char*t)  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 {  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   int i;  
   int lg=20;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   i=0;  char filelog[FILENAMELENGTH]; /* Log file */
   lg=strlen(t);  char filerest[FILENAMELENGTH];
   for(i=0; i<= lg; i++) {  char fileregp[FILENAMELENGTH];
     (s[i] = t[i]);  char popfile[FILENAMELENGTH];
     if (t[i]== '\\') s[i]='/';  
   }  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
 }  
   #define NR_END 1
 int nbocc(char *s, char occ)  #define FREE_ARG char*
 {  #define FTOL 1.0e-10
   int i,j=0;  
   int lg=20;  #define NRANSI 
   i=0;  #define ITMAX 200 
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {  #define TOL 2.0e-4 
   if  (s[i] == occ ) j++;  
   }  #define CGOLD 0.3819660 
   return j;  #define ZEPS 1.0e-10 
 }  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
 void cutv(char *u,char *v, char*t, char occ)  #define GOLD 1.618034 
 {  #define GLIMIT 100.0 
   int i,lg,j,p=0;  #define TINY 1.0e-20 
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {  static double maxarg1,maxarg2;
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     
   lg=strlen(t);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   for(j=0; j<p; j++) {  #define rint(a) floor(a+0.5)
     (u[j] = t[j]);  
   }  static double sqrarg;
      u[p]='\0';  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  int imx; 
   }  int stepm;
 }  /* Stepm, step in month: minimum step interpolation*/
   
 /********************** nrerror ********************/  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 void nrerror(char error_text[])  
 {  int m,nb;
   fprintf(stderr,"ERREUR ...\n");  int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   fprintf(stderr,"%s\n",error_text);  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   exit(1);  double **pmmij, ***probs;
 }  double dateintmean=0;
 /*********************** vector *******************/  
 double *vector(int nl, int nh)  double *weight;
 {  int **s; /* Status */
   double *v;  double *agedc, **covar, idx;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 }  double ftolhess; /* Tolerance for computing hessian */
   
 /************************ free vector ******************/  /**************** split *************************/
 void free_vector(double*v, int nl, int nh)  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 {  {
   free((FREE_ARG)(v+nl-NR_END));    char  *ss;                            /* pointer */
 }    int   l1, l2;                         /* length counters */
   
 /************************ivector *******************************/    l1 = strlen(path );                   /* length of path */
 int *ivector(long nl,long nh)    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 {    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   int *v;    if ( ss == NULL ) {                   /* no directory, so use current */
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   if (!v) nrerror("allocation failure in ivector");        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   return v-nl+NR_END;      /* get current working directory */
 }      /*    extern  char* getcwd ( char *buf , int len);*/
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 /******************free ivector **************************/        return( GLOCK_ERROR_GETCWD );
 void free_ivector(int *v, long nl, long nh)      }
 {      strcpy( name, path );               /* we've got it */
   free((FREE_ARG)(v+nl-NR_END));    } else {                              /* strip direcotry from path */
 }      ss++;                               /* after this, the filename */
       l2 = strlen( ss );                  /* length of filename */
 /******************* imatrix *******************************/      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 int **imatrix(long nrl, long nrh, long ncl, long nch)      strcpy( name, ss );         /* save file name */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */      strncpy( dirc, path, l1 - l2 );     /* now the directory */
 {      dirc[l1-l2] = 0;                    /* add zero */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    }
   int **m;    l1 = strlen( dirc );                  /* length of directory */
    #ifdef windows
   /* allocate pointers to rows */    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #else
   if (!m) nrerror("allocation failure 1 in matrix()");    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   m += NR_END;  #endif
   m -= nrl;    ss = strrchr( name, '.' );            /* find last / */
      ss++;
      strcpy(ext,ss);                       /* save extension */
   /* allocate rows and set pointers to them */    l1= strlen( name);
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    l2= strlen(ss)+1;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    strncpy( finame, name, l1-l2);
   m[nrl] += NR_END;    finame[l1-l2]= 0;
   m[nrl] -= ncl;    return( 0 );                          /* we're done */
    }
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
    
   /* return pointer to array of pointers to rows */  /******************************************/
   return m;  
 }  void replace(char *s, char*t)
   {
 /****************** free_imatrix *************************/    int i;
 void free_imatrix(m,nrl,nrh,ncl,nch)    int lg=20;
       int **m;    i=0;
       long nch,ncl,nrh,nrl;    lg=strlen(t);
      /* free an int matrix allocated by imatrix() */    for(i=0; i<= lg; i++) {
 {      (s[i] = t[i]);
   free((FREE_ARG) (m[nrl]+ncl-NR_END));      if (t[i]== '\\') s[i]='/';
   free((FREE_ARG) (m+nrl-NR_END));    }
 }  }
   
 /******************* matrix *******************************/  int nbocc(char *s, char occ)
 double **matrix(long nrl, long nrh, long ncl, long nch)  {
 {    int i,j=0;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    int lg=20;
   double **m;    i=0;
     lg=strlen(s);
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    for(i=0; i<= lg; i++) {
   if (!m) nrerror("allocation failure 1 in matrix()");    if  (s[i] == occ ) j++;
   m += NR_END;    }
   m -= nrl;    return j;
   }
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  void cutv(char *u,char *v, char*t, char occ)
   m[nrl] += NR_END;  {
   m[nrl] -= ncl;    /* cuts string t into u and v where u is ended by char occ excluding it
        and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;       gives u="abcedf" and v="ghi2j" */
   return m;    int i,lg,j,p=0;
 }    i=0;
     for(j=0; j<=strlen(t)-1; j++) {
 /*************************free matrix ************************/      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    }
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    lg=strlen(t);
   free((FREE_ARG)(m+nrl-NR_END));    for(j=0; j<p; j++) {
 }      (u[j] = t[j]);
     }
 /******************* ma3x *******************************/       u[p]='\0';
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {     for(j=0; j<= lg; j++) {
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;      if (j>=(p+1))(v[j-p-1] = t[j]);
   double ***m;    }
   }
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");  /********************** nrerror ********************/
   m += NR_END;  
   m -= nrl;  void nrerror(char error_text[])
   {
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    fprintf(stderr,"ERREUR ...\n");
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    fprintf(stderr,"%s\n",error_text);
   m[nrl] += NR_END;    exit(EXIT_FAILURE);
   m[nrl] -= ncl;  }
   /*********************** vector *******************/
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  double *vector(int nl, int nh)
   {
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    double *v;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   m[nrl][ncl] += NR_END;    if (!v) nrerror("allocation failure in vector");
   m[nrl][ncl] -= nll;    return v-nl+NR_END;
   for (j=ncl+1; j<=nch; j++)  }
     m[nrl][j]=m[nrl][j-1]+nlay;  
    /************************ free vector ******************/
   for (i=nrl+1; i<=nrh; i++) {  void free_vector(double*v, int nl, int nh)
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  {
     for (j=ncl+1; j<=nch; j++)    free((FREE_ARG)(v+nl-NR_END));
       m[i][j]=m[i][j-1]+nlay;  }
   }  
   return m;  /************************ivector *******************************/
 }  char *cvector(long nl,long nh)
   {
 /*************************free ma3x ************************/    char *v;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    v=(char *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(char)));
 {    if (!v) nrerror("allocation failure in cvector");
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    return v-nl+NR_END;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  }
   free((FREE_ARG)(m+nrl-NR_END));  
 }  /******************free ivector **************************/
   void free_cvector(char *v, long nl, long nh)
 /***************** f1dim *************************/  {
 extern int ncom;    free((FREE_ARG)(v+nl-NR_END));
 extern double *pcom,*xicom;  }
 extern double (*nrfunc)(double []);  
    /************************ivector *******************************/
 double f1dim(double x)  int *ivector(long nl,long nh)
 {  {
   int j;    int *v;
   double f;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   double *xt;    if (!v) nrerror("allocation failure in ivector");
      return v-nl+NR_END;
   xt=vector(1,ncom);  }
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  
   f=(*nrfunc)(xt);  /******************free ivector **************************/
   free_vector(xt,1,ncom);  void free_ivector(int *v, long nl, long nh)
   return f;  {
 }    free((FREE_ARG)(v+nl-NR_END));
   }
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  /******************* imatrix *******************************/
 {  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   int iter;       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   double a,b,d,etemp;  { 
   double fu,fv,fw,fx;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   double ftemp;    int **m; 
   double p,q,r,tol1,tol2,u,v,w,x,xm;    
   double e=0.0;    /* allocate pointers to rows */ 
      m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   a=(ax < cx ? ax : cx);    if (!m) nrerror("allocation failure 1 in matrix()"); 
   b=(ax > cx ? ax : cx);    m += NR_END; 
   x=w=v=bx;    m -= nrl; 
   fw=fv=fx=(*f)(x);    
   for (iter=1;iter<=ITMAX;iter++) {    
     xm=0.5*(a+b);    /* allocate rows and set pointers to them */ 
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     printf(".");fflush(stdout);    m[nrl] += NR_END; 
 #ifdef DEBUG    m[nrl] -= ncl; 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 #endif    
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    /* return pointer to array of pointers to rows */ 
       *xmin=x;    return m; 
       return fx;  } 
     }  
     ftemp=fu;  /****************** free_imatrix *************************/
     if (fabs(e) > tol1) {  void free_imatrix(m,nrl,nrh,ncl,nch)
       r=(x-w)*(fx-fv);        int **m;
       q=(x-v)*(fx-fw);        long nch,ncl,nrh,nrl; 
       p=(x-v)*q-(x-w)*r;       /* free an int matrix allocated by imatrix() */ 
       q=2.0*(q-r);  { 
       if (q > 0.0) p = -p;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       q=fabs(q);    free((FREE_ARG) (m+nrl-NR_END)); 
       etemp=e;  } 
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  /******************* matrix *******************************/
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  double **matrix(long nrl, long nrh, long ncl, long nch)
       else {  {
         d=p/q;    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
         u=x+d;    double **m;
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       }    if (!m) nrerror("allocation failure 1 in matrix()");
     } else {    m += NR_END;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    m -= nrl;
     }  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     fu=(*f)(u);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     if (fu <= fx) {    m[nrl] += NR_END;
       if (u >= x) a=x; else b=x;    m[nrl] -= ncl;
       SHFT(v,w,x,u)  
         SHFT(fv,fw,fx,fu)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         } else {    return m;
           if (u < x) a=u; else b=u;    /* print *(*(m+1)+70) ou print m[1][70]; print m+1 or print &(m[1]) 
           if (fu <= fw || w == x) {     */
             v=w;  }
             w=u;  
             fv=fw;  /*************************free matrix ************************/
             fw=fu;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
           } else if (fu <= fv || v == x || v == w) {  {
             v=u;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
             fv=fu;    free((FREE_ARG)(m+nrl-NR_END));
           }  }
         }  
   }  /******************* ma3x *******************************/
   nrerror("Too many iterations in brent");  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   *xmin=x;  {
   return fx;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 }    double ***m;
   
 /****************** mnbrak ***********************/    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    m += NR_END;
             double (*func)(double))    m -= nrl;
 {  
   double ulim,u,r,q, dum;    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double fu;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
      m[nrl] += NR_END;
   *fa=(*func)(*ax);    m[nrl] -= ncl;
   *fb=(*func)(*bx);  
   if (*fb > *fa) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   *cx=(*bx)+GOLD*(*bx-*ax);    m[nrl][ncl] += NR_END;
   *fc=(*func)(*cx);    m[nrl][ncl] -= nll;
   while (*fb > *fc) {    for (j=ncl+1; j<=nch; j++) 
     r=(*bx-*ax)*(*fb-*fc);      m[nrl][j]=m[nrl][j-1]+nlay;
     q=(*bx-*cx)*(*fb-*fa);    
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    for (i=nrl+1; i<=nrh; i++) {
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     ulim=(*bx)+GLIMIT*(*cx-*bx);      for (j=ncl+1; j<=nch; j++) 
     if ((*bx-u)*(u-*cx) > 0.0) {        m[i][j]=m[i][j-1]+nlay;
       fu=(*func)(u);    }
     } else if ((*cx-u)*(u-ulim) > 0.0) {    return m; 
       fu=(*func)(u);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       if (fu < *fc) {             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    */
           SHFT(*fb,*fc,fu,(*func)(u))  }
           }  
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  /*************************free ma3x ************************/
       u=ulim;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       fu=(*func)(u);  {
     } else {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       u=(*cx)+GOLD*(*cx-*bx);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       fu=(*func)(u);    free((FREE_ARG)(m+nrl-NR_END));
     }  }
     SHFT(*ax,*bx,*cx,u)  
       SHFT(*fa,*fb,*fc,fu)  /***************** f1dim *************************/
       }  extern int ncom; 
 }  extern double *pcom,*xicom;
   extern double (*nrfunc)(double []); 
 /*************** linmin ************************/   
   double f1dim(double x) 
 int ncom;  { 
 double *pcom,*xicom;    int j; 
 double (*nrfunc)(double []);    double f;
      double *xt; 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))   
 {    xt=vector(1,ncom); 
   double brent(double ax, double bx, double cx,    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
                double (*f)(double), double tol, double *xmin);    f=(*nrfunc)(xt); 
   double f1dim(double x);    free_vector(xt,1,ncom); 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    return f; 
               double *fc, double (*func)(double));  } 
   int j;  
   double xx,xmin,bx,ax;  /*****************brent *************************/
   double fx,fb,fa;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
    { 
   ncom=n;    int iter; 
   pcom=vector(1,n);    double a,b,d,etemp;
   xicom=vector(1,n);    double fu,fv,fw,fx;
   nrfunc=func;    double ftemp;
   for (j=1;j<=n;j++) {    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     pcom[j]=p[j];    double e=0.0; 
     xicom[j]=xi[j];   
   }    a=(ax < cx ? ax : cx); 
   ax=0.0;    b=(ax > cx ? ax : cx); 
   xx=1.0;    x=w=v=bx; 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    fw=fv=fx=(*f)(x); 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    for (iter=1;iter<=ITMAX;iter++) { 
 #ifdef DEBUG      xm=0.5*(a+b); 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 #endif      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   for (j=1;j<=n;j++) {      printf(".");fflush(stdout);
     xi[j] *= xmin;      fprintf(ficlog,".");fflush(ficlog);
     p[j] += xi[j];  #ifdef DEBUG
   }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   free_vector(xicom,1,n);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   free_vector(pcom,1,n);      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 }  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 /*************** powell ************************/        *xmin=x; 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,        return fx; 
             double (*func)(double []))      } 
 {      ftemp=fu;
   void linmin(double p[], double xi[], int n, double *fret,      if (fabs(e) > tol1) { 
               double (*func)(double []));        r=(x-w)*(fx-fv); 
   int i,ibig,j;        q=(x-v)*(fx-fw); 
   double del,t,*pt,*ptt,*xit;        p=(x-v)*q-(x-w)*r; 
   double fp,fptt;        q=2.0*(q-r); 
   double *xits;        if (q > 0.0) p = -p; 
   pt=vector(1,n);        q=fabs(q); 
   ptt=vector(1,n);        etemp=e; 
   xit=vector(1,n);        e=d; 
   xits=vector(1,n);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   *fret=(*func)(p);          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   for (j=1;j<=n;j++) pt[j]=p[j];        else { 
   for (*iter=1;;++(*iter)) {          d=p/q; 
     fp=(*fret);          u=x+d; 
     ibig=0;          if (u-a < tol2 || b-u < tol2) 
     del=0.0;            d=SIGN(tol1,xm-x); 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);        } 
     for (i=1;i<=n;i++)      } else { 
       printf(" %d %.12f",i, p[i]);        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     printf("\n");      } 
     for (i=1;i<=n;i++) {      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      fu=(*f)(u); 
       fptt=(*fret);      if (fu <= fx) { 
 #ifdef DEBUG        if (u >= x) a=x; else b=x; 
       printf("fret=%lf \n",*fret);        SHFT(v,w,x,u) 
 #endif          SHFT(fv,fw,fx,fu) 
       printf("%d",i);fflush(stdout);          } else { 
       linmin(p,xit,n,fret,func);            if (u < x) a=u; else b=u; 
       if (fabs(fptt-(*fret)) > del) {            if (fu <= fw || w == x) { 
         del=fabs(fptt-(*fret));              v=w; 
         ibig=i;              w=u; 
       }              fv=fw; 
 #ifdef DEBUG              fw=fu; 
       printf("%d %.12e",i,(*fret));            } else if (fu <= fv || v == x || v == w) { 
       for (j=1;j<=n;j++) {              v=u; 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);              fv=fu; 
         printf(" x(%d)=%.12e",j,xit[j]);            } 
       }          } 
       for(j=1;j<=n;j++)    } 
         printf(" p=%.12e",p[j]);    nrerror("Too many iterations in brent"); 
       printf("\n");    *xmin=x; 
 #endif    return fx; 
     }  } 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  
 #ifdef DEBUG  /****************** mnbrak ***********************/
       int k[2],l;  
       k[0]=1;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       k[1]=-1;              double (*func)(double)) 
       printf("Max: %.12e",(*func)(p));  { 
       for (j=1;j<=n;j++)    double ulim,u,r,q, dum;
         printf(" %.12e",p[j]);    double fu; 
       printf("\n");   
       for(l=0;l<=1;l++) {    *fa=(*func)(*ax); 
         for (j=1;j<=n;j++) {    *fb=(*func)(*bx); 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    if (*fb > *fa) { 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);      SHFT(dum,*ax,*bx,dum) 
         }        SHFT(dum,*fb,*fa,dum) 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        } 
       }    *cx=(*bx)+GOLD*(*bx-*ax); 
 #endif    *fc=(*func)(*cx); 
     while (*fb > *fc) { 
       r=(*bx-*ax)*(*fb-*fc); 
       free_vector(xit,1,n);      q=(*bx-*cx)*(*fb-*fa); 
       free_vector(xits,1,n);      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       free_vector(ptt,1,n);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       free_vector(pt,1,n);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       return;      if ((*bx-u)*(u-*cx) > 0.0) { 
     }        fu=(*func)(u); 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     for (j=1;j<=n;j++) {        fu=(*func)(u); 
       ptt[j]=2.0*p[j]-pt[j];        if (fu < *fc) { 
       xit[j]=p[j]-pt[j];          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       pt[j]=p[j];            SHFT(*fb,*fc,fu,(*func)(u)) 
     }            } 
     fptt=(*func)(ptt);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     if (fptt < fp) {        u=ulim; 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);        fu=(*func)(u); 
       if (t < 0.0) {      } else { 
         linmin(p,xit,n,fret,func);        u=(*cx)+GOLD*(*cx-*bx); 
         for (j=1;j<=n;j++) {        fu=(*func)(u); 
           xi[j][ibig]=xi[j][n];      } 
           xi[j][n]=xit[j];      SHFT(*ax,*bx,*cx,u) 
         }        SHFT(*fa,*fb,*fc,fu) 
 #ifdef DEBUG        } 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  } 
         for(j=1;j<=n;j++)  
           printf(" %.12e",xit[j]);  /*************** linmin ************************/
         printf("\n");  
 #endif  int ncom; 
       }  double *pcom,*xicom;
     }  double (*nrfunc)(double []); 
   }   
 }  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   { 
 /**** Prevalence limit ****************/    double brent(double ax, double bx, double cx, 
                  double (*f)(double), double tol, double *xmin); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    double f1dim(double x); 
 {    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit                double *fc, double (*func)(double)); 
      matrix by transitions matrix until convergence is reached */    int j; 
     double xx,xmin,bx,ax; 
   int i, ii,j,k;    double fx,fb,fa;
   double min, max, maxmin, maxmax,sumnew=0.;   
   double **matprod2();    ncom=n; 
   double **out, cov[NCOVMAX], **pmij();    pcom=vector(1,n); 
   double **newm;    xicom=vector(1,n); 
   double agefin, delaymax=50 ; /* Max number of years to converge */    nrfunc=func; 
     for (j=1;j<=n;j++) { 
   for (ii=1;ii<=nlstate+ndeath;ii++)      pcom[j]=p[j]; 
     for (j=1;j<=nlstate+ndeath;j++){      xicom[j]=xi[j]; 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    } 
     }    ax=0.0; 
     xx=1.0; 
    cov[1]=1.;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
      *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  #ifdef DEBUG
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     newm=savm;    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     /* Covariates have to be included here again */  #endif
      cov[2]=agefin;    for (j=1;j<=n;j++) { 
        xi[j] *= xmin; 
       for (k=1; k<=cptcovn;k++) {      p[j] += xi[j]; 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];    } 
     free_vector(xicom,1,n); 
 /*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/    free_vector(pcom,1,n); 
       }  } 
       for (k=1; k<=cptcovage;k++)  
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /*************** powell ************************/
      void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);              double (*func)(double [])) 
   { 
     savm=oldm;    void linmin(double p[], double xi[], int n, double *fret, 
     oldm=newm;                double (*func)(double [])); 
     maxmax=0.;    int i,ibig,j; 
     for(j=1;j<=nlstate;j++){    double del,t,*pt,*ptt,*xit;
       min=1.;    double fp,fptt;
       max=0.;    double *xits;
       for(i=1; i<=nlstate; i++) {    pt=vector(1,n); 
         sumnew=0;    ptt=vector(1,n); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    xit=vector(1,n); 
         prlim[i][j]= newm[i][j]/(1-sumnew);    xits=vector(1,n); 
         max=FMAX(max,prlim[i][j]);    *fret=(*func)(p); 
         min=FMIN(min,prlim[i][j]);    for (j=1;j<=n;j++) pt[j]=p[j]; 
       }    for (*iter=1;;++(*iter)) { 
       maxmin=max-min;      fp=(*fret); 
       maxmax=FMAX(maxmax,maxmin);      ibig=0; 
     }      del=0.0; 
     if(maxmax < ftolpl){      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       return prlim;      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
     }      fprintf(ficrespow,"%d %.12f",*iter,*fret);
   }      for (i=1;i<=n;i++) {
 }        printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
 /*************** transition probabilities **********/        fprintf(ficrespow," %.12lf", p[i]);
       }
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      printf("\n");
 {      fprintf(ficlog,"\n");
   double s1, s2;      fprintf(ficrespow,"\n");
   /*double t34;*/      for (i=1;i<=n;i++) { 
   int i,j,j1, nc, ii, jj;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         fptt=(*fret); 
     for(i=1; i<= nlstate; i++){  #ifdef DEBUG
     for(j=1; j<i;j++){        printf("fret=%lf \n",*fret);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        fprintf(ficlog,"fret=%lf \n",*fret);
         /*s2 += param[i][j][nc]*cov[nc];*/  #endif
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        printf("%d",i);fflush(stdout);
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        fprintf(ficlog,"%d",i);fflush(ficlog);
       }        linmin(p,xit,n,fret,func); 
       ps[i][j]=s2;        if (fabs(fptt-(*fret)) > del) { 
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/          del=fabs(fptt-(*fret)); 
     }          ibig=i; 
     for(j=i+1; j<=nlstate+ndeath;j++){        } 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  #ifdef DEBUG
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        printf("%d %.12e",i,(*fret));
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        fprintf(ficlog,"%d %.12e",i,(*fret));
       }        for (j=1;j<=n;j++) {
       ps[i][j]=s2;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     }          printf(" x(%d)=%.12e",j,xit[j]);
   }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   for(i=1; i<= nlstate; i++){        }
      s1=0;        for(j=1;j<=n;j++) {
     for(j=1; j<i; j++)          printf(" p=%.12e",p[j]);
       s1+=exp(ps[i][j]);          fprintf(ficlog," p=%.12e",p[j]);
     for(j=i+1; j<=nlstate+ndeath; j++)        }
       s1+=exp(ps[i][j]);        printf("\n");
     ps[i][i]=1./(s1+1.);        fprintf(ficlog,"\n");
     for(j=1; j<i; j++)  #endif
       ps[i][j]= exp(ps[i][j])*ps[i][i];      } 
     for(j=i+1; j<=nlstate+ndeath; j++)      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       ps[i][j]= exp(ps[i][j])*ps[i][i];  #ifdef DEBUG
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        int k[2],l;
   } /* end i */        k[0]=1;
         k[1]=-1;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        printf("Max: %.12e",(*func)(p));
     for(jj=1; jj<= nlstate+ndeath; jj++){        fprintf(ficlog,"Max: %.12e",(*func)(p));
       ps[ii][jj]=0;        for (j=1;j<=n;j++) {
       ps[ii][ii]=1;          printf(" %.12e",p[j]);
     }          fprintf(ficlog," %.12e",p[j]);
   }        }
         printf("\n");
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        fprintf(ficlog,"\n");
     for(jj=1; jj<= nlstate+ndeath; jj++){        for(l=0;l<=1;l++) {
      printf("%lf ",ps[ii][jj]);          for (j=1;j<=n;j++) {
    }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     printf("\n ");            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     }            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     printf("\n ");printf("%lf ",cov[2]);*/          }
 /*          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   for(i=1; i<= npar; i++) printf("%f ",x[i]);          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   goto end;*/        }
     return ps;  #endif
 }  
   
 /**************** Product of 2 matrices ******************/        free_vector(xit,1,n); 
         free_vector(xits,1,n); 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        free_vector(ptt,1,n); 
 {        free_vector(pt,1,n); 
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times        return; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      } 
   /* in, b, out are matrice of pointers which should have been initialized      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
      before: only the contents of out is modified. The function returns      for (j=1;j<=n;j++) { 
      a pointer to pointers identical to out */        ptt[j]=2.0*p[j]-pt[j]; 
   long i, j, k;        xit[j]=p[j]-pt[j]; 
   for(i=nrl; i<= nrh; i++)        pt[j]=p[j]; 
     for(k=ncolol; k<=ncoloh; k++)      } 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      fptt=(*func)(ptt); 
         out[i][k] +=in[i][j]*b[j][k];      if (fptt < fp) { 
         t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   return out;        if (t < 0.0) { 
 }          linmin(p,xit,n,fret,func); 
           for (j=1;j<=n;j++) { 
             xi[j][ibig]=xi[j][n]; 
 /************* Higher Matrix Product ***************/            xi[j][n]=xit[j]; 
           }
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  #ifdef DEBUG
 {          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
      duration (i.e. until          for(j=1;j<=n;j++){
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.            printf(" %.12e",xit[j]);
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step            fprintf(ficlog," %.12e",xit[j]);
      (typically every 2 years instead of every month which is too big).          }
      Model is determined by parameters x and covariates have to be          printf("\n");
      included manually here.          fprintf(ficlog,"\n");
   #endif
      */        }
       } 
   int i, j, d, h, k;    } 
   double **out, cov[NCOVMAX];  } 
   double **newm;  
   /**** Prevalence limit (stable prevalence)  ****************/
   /* Hstepm could be zero and should return the unit matrix */  
   for (i=1;i<=nlstate+ndeath;i++)  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     for (j=1;j<=nlstate+ndeath;j++){  {
       oldm[i][j]=(i==j ? 1.0 : 0.0);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       po[i][j][0]=(i==j ? 1.0 : 0.0);       matrix by transitions matrix until convergence is reached */
     }  
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */    int i, ii,j,k;
   for(h=1; h <=nhstepm; h++){    double min, max, maxmin, maxmax,sumnew=0.;
     for(d=1; d <=hstepm; d++){    double **matprod2();
       newm=savm;    double **out, cov[NCOVMAX], **pmij();
       /* Covariates have to be included here again */    double **newm;
       cov[1]=1.;    double agefin, delaymax=50 ; /* Max number of years to converge */
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  
       if (cptcovn>0){    for (ii=1;ii<=nlstate+ndeath;ii++)
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];      for (j=1;j<=nlstate+ndeath;j++){
     }        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      }
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,     cov[1]=1.;
                    pmij(pmmij,cov,ncovmodel,x,nlstate));   
       savm=oldm;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       oldm=newm;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     }      newm=savm;
     for(i=1; i<=nlstate+ndeath; i++)      /* Covariates have to be included here again */
       for(j=1;j<=nlstate+ndeath;j++) {       cov[2]=agefin;
         po[i][j][h]=newm[i][j];    
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        for (k=1; k<=cptcovn;k++) {
          */          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   } /* end h */        }
   return po;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 }        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
 /*************** log-likelihood *************/        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 double func( double *x)        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 {        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   int i, ii, j, k, mi, d, kk;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;      savm=oldm;
   double sw; /* Sum of weights */      oldm=newm;
   double lli; /* Individual log likelihood */      maxmax=0.;
   long ipmx;      for(j=1;j<=nlstate;j++){
   /*extern weight */        min=1.;
   /* We are differentiating ll according to initial status */        max=0.;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        for(i=1; i<=nlstate; i++) {
   /*for(i=1;i<imx;i++)          sumnew=0;
 printf(" %d\n",s[4][i]);          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   */          prlim[i][j]= newm[i][j]/(1-sumnew);
   cov[1]=1.;          max=FMAX(max,prlim[i][j]);
           min=FMIN(min,prlim[i][j]);
   for(k=1; k<=nlstate; k++) ll[k]=0.;        }
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        maxmin=max-min;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        maxmax=FMAX(maxmax,maxmin);
        for(mi=1; mi<= wav[i]-1; mi++){      }
       for (ii=1;ii<=nlstate+ndeath;ii++)      if(maxmax < ftolpl){
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        return prlim;
             for(d=0; d<dh[mi][i]; d++){      }
               newm=savm;    }
               cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  }
               for (kk=1; kk<=cptcovage;kk++) {  
                  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  /*************** transition probabilities ***************/ 
                  /*printf("%d %d",kk,Tage[kk]);*/  
               }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
               /*cov[4]=covar[1][i]*cov[2];scanf("%d", i);*/  {
               /*cov[3]=pow(cov[2],2)/1000.;*/    double s1, s2;
     /*double t34;*/
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    int i,j,j1, nc, ii, jj;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  
           savm=oldm;      for(i=1; i<= nlstate; i++){
           oldm=newm;      for(j=1; j<i;j++){
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           /*s2 += param[i][j][nc]*cov[nc];*/
       } /* end mult */          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
              /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        }
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        ps[i][j]=s2;
       ipmx +=1;        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
       sw += weight[i];      }
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      for(j=i+1; j<=nlstate+ndeath;j++){
     } /* end of wave */        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   } /* end of individual */          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];        }
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        ps[i][j]=s2;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      }
   return -l;    }
 }      /*ps[3][2]=1;*/
   
     for(i=1; i<= nlstate; i++){
 /*********** Maximum Likelihood Estimation ***************/       s1=0;
       for(j=1; j<i; j++)
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        s1+=exp(ps[i][j]);
 {      for(j=i+1; j<=nlstate+ndeath; j++)
   int i,j, iter;        s1+=exp(ps[i][j]);
   double **xi,*delti;      ps[i][i]=1./(s1+1.);
   double fret;      for(j=1; j<i; j++)
   xi=matrix(1,npar,1,npar);        ps[i][j]= exp(ps[i][j])*ps[i][i];
   for (i=1;i<=npar;i++)      for(j=i+1; j<=nlstate+ndeath; j++)
     for (j=1;j<=npar;j++)        ps[i][j]= exp(ps[i][j])*ps[i][i];
       xi[i][j]=(i==j ? 1.0 : 0.0);      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   printf("Powell\n");    } /* end i */
   powell(p,xi,npar,ftol,&iter,&fret,func);  
     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      for(jj=1; jj<= nlstate+ndeath; jj++){
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));        ps[ii][jj]=0;
         ps[ii][ii]=1;
 }      }
     }
 /**** Computes Hessian and covariance matrix ***/  
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  
 {    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   double  **a,**y,*x,pd;      for(jj=1; jj<= nlstate+ndeath; jj++){
   double **hess;       printf("%lf ",ps[ii][jj]);
   int i, j,jk;     }
   int *indx;      printf("\n ");
       }
   double hessii(double p[], double delta, int theta, double delti[]);      printf("\n ");printf("%lf ",cov[2]);*/
   double hessij(double p[], double delti[], int i, int j);  /*
   void lubksb(double **a, int npar, int *indx, double b[]) ;    for(i=1; i<= npar; i++) printf("%f ",x[i]);
   void ludcmp(double **a, int npar, int *indx, double *d) ;    goto end;*/
       return ps;
   }
   hess=matrix(1,npar,1,npar);  
   /**************** Product of 2 matrices ******************/
   printf("\nCalculation of the hessian matrix. Wait...\n");  
   for (i=1;i<=npar;i++){  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     printf("%d",i);fflush(stdout);  {
     hess[i][i]=hessii(p,ftolhess,i,delti);    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     /*printf(" %f ",p[i]);*/       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   }    /* in, b, out are matrice of pointers which should have been initialized 
        before: only the contents of out is modified. The function returns
   for (i=1;i<=npar;i++) {       a pointer to pointers identical to out */
     for (j=1;j<=npar;j++)  {    long i, j, k;
       if (j>i) {    for(i=nrl; i<= nrh; i++)
         printf(".%d%d",i,j);fflush(stdout);      for(k=ncolol; k<=ncoloh; k++)
         hess[i][j]=hessij(p,delti,i,j);        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         hess[j][i]=hess[i][j];          out[i][k] +=in[i][j]*b[j][k];
       }  
     }    return out;
   }  }
   printf("\n");  
   
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  /************* Higher Matrix Product ***************/
    
   a=matrix(1,npar,1,npar);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   y=matrix(1,npar,1,npar);  {
   x=vector(1,npar);    /* Computes the transition matrix starting at age 'age' over 
   indx=ivector(1,npar);       'nhstepm*hstepm*stepm' months (i.e. until
   for (i=1;i<=npar;i++)       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];       nhstepm*hstepm matrices. 
   ludcmp(a,npar,indx,&pd);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
        (typically every 2 years instead of every month which is too big 
   for (j=1;j<=npar;j++) {       for the memory).
     for (i=1;i<=npar;i++) x[i]=0;       Model is determined by parameters x and covariates have to be 
     x[j]=1;       included manually here. 
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){       */
       matcov[i][j]=x[i];  
     }    int i, j, d, h, k;
   }    double **out, cov[NCOVMAX];
     double **newm;
   printf("\n#Hessian matrix#\n");  
   for (i=1;i<=npar;i++) {    /* Hstepm could be zero and should return the unit matrix */
     for (j=1;j<=npar;j++) {    for (i=1;i<=nlstate+ndeath;i++)
       printf("%.3e ",hess[i][j]);      for (j=1;j<=nlstate+ndeath;j++){
     }        oldm[i][j]=(i==j ? 1.0 : 0.0);
     printf("\n");        po[i][j][0]=(i==j ? 1.0 : 0.0);
   }      }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   /* Recompute Inverse */    for(h=1; h <=nhstepm; h++){
   for (i=1;i<=npar;i++)      for(d=1; d <=hstepm; d++){
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];        newm=savm;
   ludcmp(a,npar,indx,&pd);        /* Covariates have to be included here again */
         cov[1]=1.;
   /*  printf("\n#Hessian matrix recomputed#\n");        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   for (j=1;j<=npar;j++) {        for (k=1; k<=cptcovage;k++)
     for (i=1;i<=npar;i++) x[i]=0;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     x[j]=1;        for (k=1; k<=cptcovprod;k++)
     lubksb(a,npar,indx,x);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     for (i=1;i<=npar;i++){  
       y[i][j]=x[i];  
       printf("%.3e ",y[i][j]);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     printf("\n");        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   */        savm=oldm;
         oldm=newm;
   free_matrix(a,1,npar,1,npar);      }
   free_matrix(y,1,npar,1,npar);      for(i=1; i<=nlstate+ndeath; i++)
   free_vector(x,1,npar);        for(j=1;j<=nlstate+ndeath;j++) {
   free_ivector(indx,1,npar);          po[i][j][h]=newm[i][j];
   free_matrix(hess,1,npar,1,npar);          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
            */
         }
 }    } /* end h */
     return po;
 /*************** hessian matrix ****************/  }
 double hessii( double x[], double delta, int theta, double delti[])  
 {  
   int i;  /*************** log-likelihood *************/
   int l=1, lmax=20;  double func( double *x)
   double k1,k2;  {
   double p2[NPARMAX+1];    int i, ii, j, k, mi, d, kk;
   double res;    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    double **out;
   double fx;    double sw; /* Sum of weights */
   int k=0,kmax=10;    double lli; /* Individual log likelihood */
   double l1;    int s1, s2;
     double bbh, survp;
   fx=func(x);    long ipmx;
   for (i=1;i<=npar;i++) p2[i]=x[i];    /*extern weight */
   for(l=0 ; l <=lmax; l++){    /* We are differentiating ll according to initial status */
     l1=pow(10,l);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     delts=delt;    /*for(i=1;i<imx;i++) 
     for(k=1 ; k <kmax; k=k+1){      printf(" %d\n",s[4][i]);
       delt = delta*(l1*k);    */
       p2[theta]=x[theta] +delt;    cov[1]=1.;
       k1=func(p2)-fx;  
       p2[theta]=x[theta]-delt;    for(k=1; k<=nlstate; k++) ll[k]=0.;
       k2=func(p2)-fx;  
       /*res= (k1-2.0*fx+k2)/delt/delt; */    if(mle==1){
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
              for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 #ifdef DEBUG        for(mi=1; mi<= wav[i]-1; mi++){
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          for (ii=1;ii<=nlstate+ndeath;ii++)
 #endif            for (j=1;j<=nlstate+ndeath;j++){
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         k=kmax;            }
       }          for(d=0; d<dh[mi][i]; d++){
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */            newm=savm;
         k=kmax; l=lmax*10.;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }            for (kk=1; kk<=cptcovage;kk++) {
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         delts=delt;            }
       }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   }            savm=oldm;
   delti[theta]=delts;            oldm=newm;
   return res;          } /* end mult */
          
 }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias and large stepm.
 double hessij( double x[], double delti[], int thetai,int thetaj)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
 {           * (in months) between two waves is not a multiple of stepm, we rounded to 
   int i;           * the nearest (and in case of equal distance, to the lowest) interval but now
   int l=1, l1, lmax=20;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   double k1,k2,k3,k4,res,fx;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   double p2[NPARMAX+1];           * probability in order to take into account the bias as a fraction of the way
   int k;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
            * -stepm/2 to stepm/2 .
   fx=func(x);           * For stepm=1 the results are the same as for previous versions of Imach.
   for (k=1; k<=2; k++) {           * For stepm > 1 the results are less biased than in previous versions. 
     for (i=1;i<=npar;i++) p2[i]=x[i];           */
     p2[thetai]=x[thetai]+delti[thetai]/k;          s1=s[mw[mi][i]][i];
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          s2=s[mw[mi+1][i]][i];
     k1=func(p2)-fx;          bbh=(double)bh[mi][i]/(double)stepm; 
            /* bias is positive if real duration
     p2[thetai]=x[thetai]+delti[thetai]/k;           * is higher than the multiple of stepm and negative otherwise.
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;           */
     k2=func(p2)-fx;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
            if( s2 > nlstate){ 
     p2[thetai]=x[thetai]-delti[thetai]/k;            /* i.e. if s2 is a death state and if the date of death is known then the contribution
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;               to the likelihood is the probability to die between last step unit time and current 
     k3=func(p2)-fx;               step unit time, which is also the differences between probability to die before dh 
                 and probability to die before dh-stepm . 
     p2[thetai]=x[thetai]-delti[thetai]/k;               In version up to 0.92 likelihood was computed
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          as if date of death was unknown. Death was treated as any other
     k4=func(p2)-fx;          health state: the date of the interview describes the actual state
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          and not the date of a change in health state. The former idea was
 #ifdef DEBUG          to consider that at each interview the state was recorded
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          (healthy, disable or death) and IMaCh was corrected; but when we
 #endif          introduced the exact date of death then we should have modified
   }          the contribution of an exact death to the likelihood. This new
   return res;          contribution is smaller and very dependent of the step unit
 }          stepm. It is no more the probability to die between last interview
           and month of death but the probability to survive from last
 /************** Inverse of matrix **************/          interview up to one month before death multiplied by the
 void ludcmp(double **a, int n, int *indx, double *d)          probability to die within a month. Thanks to Chris
 {          Jackson for correcting this bug.  Former versions increased
   int i,imax,j,k;          mortality artificially. The bad side is that we add another loop
   double big,dum,sum,temp;          which slows down the processing. The difference can be up to 10%
   double *vv;          lower mortality.
              */
   vv=vector(1,n);            lli=log(out[s1][s2] - savm[s1][s2]);
   *d=1.0;          }else{
   for (i=1;i<=n;i++) {            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     big=0.0;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     for (j=1;j<=n;j++)          } 
       if ((temp=fabs(a[i][j])) > big) big=temp;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          /*if(lli ==000.0)*/
     vv[i]=1.0/big;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   }          ipmx +=1;
   for (j=1;j<=n;j++) {          sw += weight[i];
     for (i=1;i<j;i++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       sum=a[i][j];        } /* end of wave */
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];      } /* end of individual */
       a[i][j]=sum;    }  else if(mle==2){
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     big=0.0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for (i=j;i<=n;i++) {        for(mi=1; mi<= wav[i]-1; mi++){
       sum=a[i][j];          for (ii=1;ii<=nlstate+ndeath;ii++)
       for (k=1;k<j;k++)            for (j=1;j<=nlstate+ndeath;j++){
         sum -= a[i][k]*a[k][j];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       a[i][j]=sum;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if ( (dum=vv[i]*fabs(sum)) >= big) {            }
         big=dum;          for(d=0; d<=dh[mi][i]; d++){
         imax=i;            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
     if (j != imax) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for (k=1;k<=n;k++) {            }
         dum=a[imax][k];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         a[imax][k]=a[j][k];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         a[j][k]=dum;            savm=oldm;
       }            oldm=newm;
       *d = -(*d);          } /* end mult */
       vv[imax]=vv[j];        
     }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     indx[j]=imax;          /* But now since version 0.9 we anticipate for bias and large stepm.
     if (a[j][j] == 0.0) a[j][j]=TINY;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     if (j != n) {           * (in months) between two waves is not a multiple of stepm, we rounded to 
       dum=1.0/(a[j][j]);           * the nearest (and in case of equal distance, to the lowest) interval but now
       for (i=j+1;i<=n;i++) a[i][j] *= dum;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     }           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   }           * probability in order to take into account the bias as a fraction of the way
   free_vector(vv,1,n);  /* Doesn't work */           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
 ;           * -stepm/2 to stepm/2 .
 }           * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions. 
 void lubksb(double **a, int n, int *indx, double b[])           */
 {          s1=s[mw[mi][i]][i];
   int i,ii=0,ip,j;          s2=s[mw[mi+1][i]][i];
   double sum;          bbh=(double)bh[mi][i]/(double)stepm; 
            /* bias is positive if real duration
   for (i=1;i<=n;i++) {           * is higher than the multiple of stepm and negative otherwise.
     ip=indx[i];           */
     sum=b[ip];          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     b[ip]=b[i];          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     if (ii)          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     else if (sum) ii=i;          /*if(lli ==000.0)*/
     b[i]=sum;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   }          ipmx +=1;
   for (i=n;i>=1;i--) {          sw += weight[i];
     sum=b[i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        } /* end of wave */
     b[i]=sum/a[i][i];      } /* end of individual */
   }    }  else if(mle==3){  /* exponential inter-extrapolation */
 }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 /************ Frequencies ********************/        for(mi=1; mi<= wav[i]-1; mi++){
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)          for (ii=1;ii<=nlstate+ndeath;ii++)
 {  /* Some frequencies */            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double ***freq; /* Frequencies */            }
   double *pp;          for(d=0; d<dh[mi][i]; d++){
   double pos;            newm=savm;
   FILE *ficresp;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   char fileresp[FILENAMELENGTH];            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   pp=vector(1,nlstate);            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   strcpy(fileresp,"p");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   strcat(fileresp,fileres);            savm=oldm;
   if((ficresp=fopen(fileresp,"w"))==NULL) {            oldm=newm;
     printf("Problem with prevalence resultfile: %s\n", fileresp);          } /* end mult */
     exit(0);        
   }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          /* But now since version 0.9 we anticipate for bias and large stepm.
   j1=0;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
   j=cptcovn;           * the nearest (and in case of equal distance, to the lowest) interval but now
   if (cptcovn<1) {j=1;ncodemax[1]=1;}           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   for(k1=1; k1<=j;k1++){           * probability in order to take into account the bias as a fraction of the way
    for(i1=1; i1<=ncodemax[k1];i1++){           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
        j1++;           * -stepm/2 to stepm/2 .
            * For stepm=1 the results are the same as for previous versions of Imach.
         for (i=-1; i<=nlstate+ndeath; i++)             * For stepm > 1 the results are less biased than in previous versions. 
          for (jk=-1; jk<=nlstate+ndeath; jk++)             */
            for(m=agemin; m <= agemax+3; m++)          s1=s[mw[mi][i]][i];
              freq[i][jk][m]=0;          s2=s[mw[mi+1][i]][i];
                  bbh=(double)bh[mi][i]/(double)stepm; 
        for (i=1; i<=imx; i++) {          /* bias is positive if real duration
          bool=1;           * is higher than the multiple of stepm and negative otherwise.
          if  (cptcovn>0) {           */
            for (z1=1; z1<=cptcovn; z1++)          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
          }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           if (bool==1) {          /*if(lli ==000.0)*/
            for(m=firstpass; m<=lastpass-1; m++){          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
              if(agev[m][i]==0) agev[m][i]=agemax+1;          ipmx +=1;
              if(agev[m][i]==1) agev[m][i]=agemax+2;          sw += weight[i];
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];        } /* end of wave */
            }      } /* end of individual */
          }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
        }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         if  (cptcovn>0) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
          fprintf(ficresp, "\n#Variable");        for(mi=1; mi<= wav[i]-1; mi++){
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);          for (ii=1;ii<=nlstate+ndeath;ii++)
        }            for (j=1;j<=nlstate+ndeath;j++){
        fprintf(ficresp, "\n#");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
        for(i=1; i<=nlstate;i++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            }
        fprintf(ficresp, "\n");          for(d=0; d<dh[mi][i]; d++){
                    newm=savm;
   for(i=(int)agemin; i <= (int)agemax+3; i++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     if(i==(int)agemax+3)            for (kk=1; kk<=cptcovage;kk++) {
       printf("Total");              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     else            }
       printf("Age %d", i);          
     for(jk=1; jk <=nlstate ; jk++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         pp[jk] += freq[jk][m][i];            savm=oldm;
     }            oldm=newm;
     for(jk=1; jk <=nlstate ; jk++){          } /* end mult */
       for(m=-1, pos=0; m <=0 ; m++)        
         pos += freq[jk][m][i];          s1=s[mw[mi][i]][i];
       if(pp[jk]>=1.e-10)          s2=s[mw[mi+1][i]][i];
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          if( s2 > nlstate){ 
       else            lli=log(out[s1][s2] - savm[s1][s2]);
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          }else{
     }            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     for(jk=1; jk <=nlstate ; jk++){          }
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)          ipmx +=1;
         pp[jk] += freq[jk][m][i];          sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for(jk=1,pos=0; jk <=nlstate ; jk++)          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
       pos += pp[jk];        } /* end of wave */
     for(jk=1; jk <=nlstate ; jk++){      } /* end of individual */
       if(pos>=1.e-5)    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       else        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        for(mi=1; mi<= wav[i]-1; mi++){
       if( i <= (int) agemax){          for (ii=1;ii<=nlstate+ndeath;ii++)
         if(pos>=1.e-5)            for (j=1;j<=nlstate+ndeath;j++){
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       else              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);            }
       }          for(d=0; d<dh[mi][i]; d++){
     }            newm=savm;
     for(jk=-1; jk <=nlstate+ndeath; jk++)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for(m=-1; m <=nlstate+ndeath; m++)            for (kk=1; kk<=cptcovage;kk++) {
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     if(i <= (int) agemax)            }
       fprintf(ficresp,"\n");          
     printf("\n");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     }            savm=oldm;
  }            oldm=newm;
            } /* end mult */
   fclose(ficresp);        
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          s1=s[mw[mi][i]][i];
   free_vector(pp,1,nlstate);          s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 }  /* End of Freq */          ipmx +=1;
           sw += weight[i];
 /************* Waves Concatenation ***************/          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        } /* end of wave */
 {      } /* end of individual */
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    } /* End of if */
      Death is a valid wave (if date is known).    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      and mw[mi+1][i]. dh depends on stepm.    /*exit(0); */
      */    return -l;
   }
   int i, mi, m;  
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  
 float sum=0.;  /*********** Maximum Likelihood Estimation ***************/
   
   for(i=1; i<=imx; i++){  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
     mi=0;  {
     m=firstpass;    int i,j, iter;
     while(s[m][i] <= nlstate){    double **xi;
       if(s[m][i]>=1)    double fret;
         mw[++mi][i]=m;    char filerespow[FILENAMELENGTH];
       if(m >=lastpass)    xi=matrix(1,npar,1,npar);
         break;    for (i=1;i<=npar;i++)
       else      for (j=1;j<=npar;j++)
         m++;        xi[i][j]=(i==j ? 1.0 : 0.0);
     }/* end while */    printf("Powell\n");  fprintf(ficlog,"Powell\n");
     if (s[m][i] > nlstate){    strcpy(filerespow,"pow"); 
       mi++;     /* Death is another wave */    strcat(filerespow,fileres);
       /* if(mi==0)  never been interviewed correctly before death */    if((ficrespow=fopen(filerespow,"w"))==NULL) {
          /* Only death is a correct wave */      printf("Problem with resultfile: %s\n", filerespow);
       mw[mi][i]=m;      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     wav[i]=mi;    for (i=1;i<=nlstate;i++)
     if(mi==0)      for(j=1;j<=nlstate+ndeath;j++)
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   }    fprintf(ficrespow,"\n");
     powell(p,xi,npar,ftol,&iter,&fret,func);
   for(i=1; i<=imx; i++){  
     for(mi=1; mi<wav[i];mi++){    fclose(ficrespow);
       if (stepm <=0)    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         dh[mi][i]=1;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       else{    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         if (s[mw[mi+1][i]][i] > nlstate) {  
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  }
           if(j=0) j=1;  /* Survives at least one month after exam */  
         }  /**** Computes Hessian and covariance matrix ***/
         else{  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  {
           k=k+1;    double  **a,**y,*x,pd;
           if (j >= jmax) jmax=j;    double **hess;
           else if (j <= jmin)jmin=j;    int i, j,jk;
           sum=sum+j;    int *indx;
         }  
         jk= j/stepm;    double hessii(double p[], double delta, int theta, double delti[]);
         jl= j -jk*stepm;    double hessij(double p[], double delti[], int i, int j);
         ju= j -(jk+1)*stepm;    void lubksb(double **a, int npar, int *indx, double b[]) ;
         if(jl <= -ju)    void ludcmp(double **a, int npar, int *indx, double *d) ;
           dh[mi][i]=jk;  
         else    hess=matrix(1,npar,1,npar);
           dh[mi][i]=jk+1;  
         if(dh[mi][i]==0)    printf("\nCalculation of the hessian matrix. Wait...\n");
           dh[mi][i]=1; /* At least one step */    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
       }    for (i=1;i<=npar;i++){
     }      printf("%d",i);fflush(stdout);
   }      fprintf(ficlog,"%d",i);fflush(ficlog);
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);      hess[i][i]=hessii(p,ftolhess,i,delti);
 }      /*printf(" %f ",p[i]);*/
 /*********** Tricode ****************************/      /*printf(" %lf ",hess[i][i]);*/
 void tricode(int *Tvar, int **nbcode, int imx)    }
 {    
   int Ndum[80],ij=1, k, j, i, Ntvar[20];    for (i=1;i<=npar;i++) {
   int cptcode=0;      for (j=1;j<=npar;j++)  {
   for (k=0; k<79; k++) Ndum[k]=0;        if (j>i) { 
   for (k=1; k<=7; k++) ncodemax[k]=0;          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   for (j=1; j<=cptcovn; j++) {          hess[i][j]=hessij(p,delti,i,j);
     for (i=1; i<=imx; i++) {          hess[j][i]=hess[i][j];    
       ij=(int)(covar[Tvar[j]][i]);          /*printf(" %lf ",hess[i][j]);*/
       Ndum[ij]++;        }
       if (ij > cptcode) cptcode=ij;      }
     }    }
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/    printf("\n");
     for (i=0; i<=cptcode; i++) {    fprintf(ficlog,"\n");
       if(Ndum[i]!=0) ncodemax[j]++;  
     }    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
      fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     ij=1;    
     for (i=1; i<=ncodemax[j]; i++) {    a=matrix(1,npar,1,npar);
       for (k=0; k<=79; k++) {    y=matrix(1,npar,1,npar);
         if (Ndum[k] != 0) {    x=vector(1,npar);
           nbcode[Tvar[j]][ij]=k;    indx=ivector(1,npar);
           ij++;    for (i=1;i<=npar;i++)
         }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         if (ij > ncodemax[j]) break;    ludcmp(a,npar,indx,&pd);
       }    
     }    for (j=1;j<=npar;j++) {
   }        for (i=1;i<=npar;i++) x[i]=0;
        x[j]=1;
 }      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
 /*********** Health Expectancies ****************/        matcov[i][j]=x[i];
       }
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)    }
 {  
   /* Health expectancies */    printf("\n#Hessian matrix#\n");
   int i, j, nhstepm, hstepm, h;    fprintf(ficlog,"\n#Hessian matrix#\n");
   double age, agelim,hf;    for (i=1;i<=npar;i++) { 
   double ***p3mat;      for (j=1;j<=npar;j++) { 
          printf("%.3e ",hess[i][j]);
   fprintf(ficreseij,"# Health expectancies\n");        fprintf(ficlog,"%.3e ",hess[i][j]);
   fprintf(ficreseij,"# Age");      }
   for(i=1; i<=nlstate;i++)      printf("\n");
     for(j=1; j<=nlstate;j++)      fprintf(ficlog,"\n");
       fprintf(ficreseij," %1d-%1d",i,j);    }
   fprintf(ficreseij,"\n");  
     /* Recompute Inverse */
   hstepm=1*YEARM; /*  Every j years of age (in month) */    for (i=1;i<=npar;i++)
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     ludcmp(a,npar,indx,&pd);
   agelim=AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    /*  printf("\n#Hessian matrix recomputed#\n");
     /* nhstepm age range expressed in number of stepm */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);    for (j=1;j<=npar;j++) {
     /* Typically if 20 years = 20*12/6=40 stepm */      for (i=1;i<=npar;i++) x[i]=0;
     if (stepm >= YEARM) hstepm=1;      x[j]=1;
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */      lubksb(a,npar,indx,x);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (i=1;i<=npar;i++){ 
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        y[i][j]=x[i];
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        printf("%.3e ",y[i][j]);
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          fprintf(ficlog,"%.3e ",y[i][j]);
       }
       printf("\n");
     for(i=1; i<=nlstate;i++)      fprintf(ficlog,"\n");
       for(j=1; j<=nlstate;j++)    }
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){    */
           eij[i][j][(int)age] +=p3mat[i][j][h];  
         }    free_matrix(a,1,npar,1,npar);
        free_matrix(y,1,npar,1,npar);
     hf=1;    free_vector(x,1,npar);
     if (stepm >= YEARM) hf=stepm/YEARM;    free_ivector(indx,1,npar);
     fprintf(ficreseij,"%.0f",age );    free_matrix(hess,1,npar,1,npar);
     for(i=1; i<=nlstate;i++)  
       for(j=1; j<=nlstate;j++){  
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);  }
       }  
     fprintf(ficreseij,"\n");  /*************** hessian matrix ****************/
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  double hessii( double x[], double delta, int theta, double delti[])
   }  {
 }    int i;
     int l=1, lmax=20;
 /************ Variance ******************/    double k1,k2;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    double p2[NPARMAX+1];
 {    double res;
   /* Variance of health expectancies */    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    double fx;
   double **newm;    int k=0,kmax=10;
   double **dnewm,**doldm;    double l1;
   int i, j, nhstepm, hstepm, h;  
   int k, cptcode;    fx=func(x);
    double *xp;    for (i=1;i<=npar;i++) p2[i]=x[i];
   double **gp, **gm;    for(l=0 ; l <=lmax; l++){
   double ***gradg, ***trgradg;      l1=pow(10,l);
   double ***p3mat;      delts=delt;
   double age,agelim;      for(k=1 ; k <kmax; k=k+1){
   int theta;        delt = delta*(l1*k);
         p2[theta]=x[theta] +delt;
    fprintf(ficresvij,"# Covariances of life expectancies\n");        k1=func(p2)-fx;
   fprintf(ficresvij,"# Age");        p2[theta]=x[theta]-delt;
   for(i=1; i<=nlstate;i++)        k2=func(p2)-fx;
     for(j=1; j<=nlstate;j++)        /*res= (k1-2.0*fx+k2)/delt/delt; */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   fprintf(ficresvij,"\n");        
   #ifdef DEBUG
   xp=vector(1,npar);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   dnewm=matrix(1,nlstate,1,npar);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   doldm=matrix(1,nlstate,1,nlstate);  #endif
          /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   hstepm=1*YEARM; /* Every year of age */        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          k=kmax;
   agelim = AGESUP;        }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          k=kmax; l=lmax*10.;
     if (stepm >= YEARM) hstepm=1;        }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          delts=delt;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        }
     gp=matrix(0,nhstepm,1,nlstate);      }
     gm=matrix(0,nhstepm,1,nlstate);    }
     delti[theta]=delts;
     for(theta=1; theta <=npar; theta++){    return res; 
       for(i=1; i<=npar; i++){ /* Computes gradient */    
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  }
       }  
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    double hessij( double x[], double delti[], int thetai,int thetaj)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  {
       for(j=1; j<= nlstate; j++){    int i;
         for(h=0; h<=nhstepm; h++){    int l=1, l1, lmax=20;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    double k1,k2,k3,k4,res,fx;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    double p2[NPARMAX+1];
         }    int k;
       }  
        fx=func(x);
       for(i=1; i<=npar; i++) /* Computes gradient */    for (k=1; k<=2; k++) {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      for (i=1;i<=npar;i++) p2[i]=x[i];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        p2[thetai]=x[thetai]+delti[thetai]/k;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       for(j=1; j<= nlstate; j++){      k1=func(p2)-fx;
         for(h=0; h<=nhstepm; h++){    
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      p2[thetai]=x[thetai]+delti[thetai]/k;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
         }      k2=func(p2)-fx;
       }    
       for(j=1; j<= nlstate; j++)      p2[thetai]=x[thetai]-delti[thetai]/k;
         for(h=0; h<=nhstepm; h++){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      k3=func(p2)-fx;
         }    
     } /* End theta */      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
     for(h=0; h<=nhstepm; h++)  #ifdef DEBUG
       for(j=1; j<=nlstate;j++)      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
         for(theta=1; theta <=npar; theta++)      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           trgradg[h][j][theta]=gradg[h][theta][j];  #endif
     }
     for(i=1;i<=nlstate;i++)    return res;
       for(j=1;j<=nlstate;j++)  }
         vareij[i][j][(int)age] =0.;  
     for(h=0;h<=nhstepm;h++){  /************** Inverse of matrix **************/
       for(k=0;k<=nhstepm;k++){  void ludcmp(double **a, int n, int *indx, double *d) 
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  { 
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    int i,imax,j,k; 
         for(i=1;i<=nlstate;i++)    double big,dum,sum,temp; 
           for(j=1;j<=nlstate;j++)    double *vv; 
             vareij[i][j][(int)age] += doldm[i][j];   
       }    vv=vector(1,n); 
     }    *d=1.0; 
     h=1;    for (i=1;i<=n;i++) { 
     if (stepm >= YEARM) h=stepm/YEARM;      big=0.0; 
     fprintf(ficresvij,"%.0f ",age );      for (j=1;j<=n;j++) 
     for(i=1; i<=nlstate;i++)        if ((temp=fabs(a[i][j])) > big) big=temp; 
       for(j=1; j<=nlstate;j++){      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);      vv[i]=1.0/big; 
       }    } 
     fprintf(ficresvij,"\n");    for (j=1;j<=n;j++) { 
     free_matrix(gp,0,nhstepm,1,nlstate);      for (i=1;i<j;i++) { 
     free_matrix(gm,0,nhstepm,1,nlstate);        sum=a[i][j]; 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        a[i][j]=sum; 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      } 
   } /* End age */      big=0.0; 
        for (i=j;i<=n;i++) { 
   free_vector(xp,1,npar);        sum=a[i][j]; 
   free_matrix(doldm,1,nlstate,1,npar);        for (k=1;k<j;k++) 
   free_matrix(dnewm,1,nlstate,1,nlstate);          sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
 }        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           big=dum; 
 /************ Variance of prevlim ******************/          imax=i; 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        } 
 {      } 
   /* Variance of prevalence limit */      if (j != imax) { 
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        for (k=1;k<=n;k++) { 
   double **newm;          dum=a[imax][k]; 
   double **dnewm,**doldm;          a[imax][k]=a[j][k]; 
   int i, j, nhstepm, hstepm;          a[j][k]=dum; 
   int k, cptcode;        } 
   double *xp;        *d = -(*d); 
   double *gp, *gm;        vv[imax]=vv[j]; 
   double **gradg, **trgradg;      } 
   double age,agelim;      indx[j]=imax; 
   int theta;      if (a[j][j] == 0.0) a[j][j]=TINY; 
          if (j != n) { 
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");        dum=1.0/(a[j][j]); 
   fprintf(ficresvpl,"# Age");        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
   for(i=1; i<=nlstate;i++)      } 
       fprintf(ficresvpl," %1d-%1d",i,i);    } 
   fprintf(ficresvpl,"\n");    free_vector(vv,1,n);  /* Doesn't work */
   ;
   xp=vector(1,npar);  } 
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);  void lubksb(double **a, int n, int *indx, double b[]) 
    { 
   hstepm=1*YEARM; /* Every year of age */    int i,ii=0,ip,j; 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    double sum; 
   agelim = AGESUP;   
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    for (i=1;i<=n;i++) { 
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      ip=indx[i]; 
     if (stepm >= YEARM) hstepm=1;      sum=b[ip]; 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      b[ip]=b[i]; 
     gradg=matrix(1,npar,1,nlstate);      if (ii) 
     gp=vector(1,nlstate);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     gm=vector(1,nlstate);      else if (sum) ii=i; 
       b[i]=sum; 
     for(theta=1; theta <=npar; theta++){    } 
       for(i=1; i<=npar; i++){ /* Computes gradient */    for (i=n;i>=1;i--) { 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      sum=b[i]; 
       }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      b[i]=sum/a[i][i]; 
       for(i=1;i<=nlstate;i++)    } 
         gp[i] = prlim[i][i];  } 
      
       for(i=1; i<=npar; i++) /* Computes gradient */  /************ Frequencies ********************/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  {  /* Some frequencies */
       for(i=1;i<=nlstate;i++)    
         gm[i] = prlim[i][i];    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     int first;
       for(i=1;i<=nlstate;i++)    double ***freq; /* Frequencies */
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    double *pp, **prop;
     } /* End theta */    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     FILE *ficresp;
     trgradg =matrix(1,nlstate,1,npar);    char fileresp[FILENAMELENGTH];
     
     for(j=1; j<=nlstate;j++)    pp=vector(1,nlstate);
       for(theta=1; theta <=npar; theta++)    prop=matrix(1,nlstate,iagemin,iagemax+3);
         trgradg[j][theta]=gradg[theta][j];    strcpy(fileresp,"p");
     strcat(fileresp,fileres);
     for(i=1;i<=nlstate;i++)    if((ficresp=fopen(fileresp,"w"))==NULL) {
       varpl[i][(int)age] =0.;      printf("Problem with prevalence resultfile: %s\n", fileresp);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      exit(0);
     for(i=1;i<=nlstate;i++)    }
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
     j1=0;
     fprintf(ficresvpl,"%.0f ",age );    
     for(i=1; i<=nlstate;i++)    j=cptcoveff;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     fprintf(ficresvpl,"\n");  
     free_vector(gp,1,nlstate);    first=1;
     free_vector(gm,1,nlstate);  
     free_matrix(gradg,1,npar,1,nlstate);    for(k1=1; k1<=j;k1++){
     free_matrix(trgradg,1,nlstate,1,npar);      for(i1=1; i1<=ncodemax[k1];i1++){
   } /* End age */        j1++;
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   free_vector(xp,1,npar);          scanf("%d", i);*/
   free_matrix(doldm,1,nlstate,1,npar);        for (i=-1; i<=nlstate+ndeath; i++)  
   free_matrix(dnewm,1,nlstate,1,nlstate);          for (jk=-1; jk<=nlstate+ndeath; jk++)  
             for(m=iagemin; m <= iagemax+3; m++)
 }              freq[i][jk][m]=0;
   
       for (i=1; i<=nlstate; i++)  
         for(m=iagemin; m <= iagemax+3; m++)
 /***********************************************/          prop[i][m]=0;
 /**************** Main Program *****************/        
 /***********************************************/        dateintsum=0;
         k2cpt=0;
 /*int main(int argc, char *argv[])*/        for (i=1; i<=imx; i++) {
 int main()          bool=1;
 {          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
   double agedeb, agefin,hf;                bool=0;
   double agemin=1.e20, agemax=-1.e20;          }
           if (bool==1){
   double fret;            for(m=firstpass; m<=lastpass; m++){
   double **xi,tmp,delta;              k2=anint[m][i]+(mint[m][i]/12.);
               /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
   double dum; /* Dummy variable */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   double ***p3mat;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   int *indx;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   char line[MAXLINE], linepar[MAXLINE];                if (m<lastpass) {
   char title[MAXLINE];                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];                }
   char filerest[FILENAMELENGTH];                
   char fileregp[FILENAMELENGTH];                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];                  dateintsum=dateintsum+k2;
   int firstobs=1, lastobs=10;                  k2cpt++;
   int sdeb, sfin; /* Status at beginning and end */                }
   int c,  h , cpt,l;                /*}*/
   int ju,jl, mi;            }
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize;          }
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        }
           
   int hstepm, nhstepm;        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   double bage, fage, age, agelim, agebase;  
   double ftolpl=FTOL;        if  (cptcovn>0) {
   double **prlim;          fprintf(ficresp, "\n#********** Variable "); 
   double *severity;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   double ***param; /* Matrix of parameters */          fprintf(ficresp, "**********\n#");
   double  *p;        }
   double **matcov; /* Matrix of covariance */        for(i=1; i<=nlstate;i++) 
   double ***delti3; /* Scale */          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   double *delti; /* Scale */        fprintf(ficresp, "\n");
   double ***eij, ***vareij;        
   double **varpl; /* Variances of prevalence limits by age */        for(i=iagemin; i <= iagemax+3; i++){
   double *epj, vepp;          if(i==iagemax+3){
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";            fprintf(ficlog,"Total");
   char *alph[]={"a","a","b","c","d","e"}, str[4];          }else{
             if(first==1){
   char z[1]="c", occ;              first=0;
 #include <sys/time.h>              printf("See log file for details...\n");
 #include <time.h>            }
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];            fprintf(ficlog,"Age %d", i);
   /* long total_usecs;          }
   struct timeval start_time, end_time;          for(jk=1; jk <=nlstate ; jk++){
              for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */              pp[jk] += freq[jk][m][i]; 
           }
           for(jk=1; jk <=nlstate ; jk++){
   printf("\nIMACH, Version 0.64a");            for(m=-1, pos=0; m <=0 ; m++)
   printf("\nEnter the parameter file name: ");              pos += freq[jk][m][i];
             if(pp[jk]>=1.e-10){
 #ifdef windows              if(first==1){
   scanf("%s",pathtot);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   getcwd(pathcd, size);              }
   /*cygwin_split_path(pathtot,path,optionfile);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/            }else{
   /* cutv(path,optionfile,pathtot,'\\');*/              if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
 split(pathtot, path,optionfile);              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   chdir(path);            }
   replace(pathc,path);          }
 #endif  
 #ifdef unix          for(jk=1; jk <=nlstate ; jk++){
   scanf("%s",optionfile);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
 #endif              pp[jk] += freq[jk][m][i];
           }       
 /*-------- arguments in the command line --------*/          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
             pos += pp[jk];
   strcpy(fileres,"r");            posprop += prop[jk][i];
   strcat(fileres, optionfile);          }
           for(jk=1; jk <=nlstate ; jk++){
   /*---------arguments file --------*/            if(pos>=1.e-5){
               if(first==1)
   if((ficpar=fopen(optionfile,"r"))==NULL)    {                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     printf("Problem with optionfile %s\n",optionfile);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     goto end;            }else{
   }              if(first==1)
                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   strcpy(filereso,"o");              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   strcat(filereso,fileres);            }
   if((ficparo=fopen(filereso,"w"))==NULL) {            if( i <= iagemax){
     printf("Problem with Output resultfile: %s\n", filereso);goto end;              if(pos>=1.e-5){
   }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 /*probs[i][jk][j1]= pp[jk]/pos;*/
   /* Reads comments: lines beginning with '#' */                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   while((c=getc(ficpar))=='#' && c!= EOF){              }
     ungetc(c,ficpar);              else
     fgets(line, MAXLINE, ficpar);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
     puts(line);            }
     fputs(line,ficparo);          }
   }          
   ungetc(c,ficpar);          for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);              if(freq[jk][m][i] !=0 ) {
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);              if(first==1)
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   covar=matrix(0,NCOVMAX,1,n);                  }
   if (strlen(model)<=1) cptcovn=0;          if(i <= iagemax)
   else {            fprintf(ficresp,"\n");
     j=0;          if(first==1)
     j=nbocc(model,'+');            printf("Others in log...\n");
     cptcovn=j+1;          fprintf(ficlog,"\n");
   }        }
       }
   ncovmodel=2+cptcovn;    }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    dateintmean=dateintsum/k2cpt; 
     
   /* Read guess parameters */    fclose(ficresp);
   /* Reads comments: lines beginning with '#' */    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
   while((c=getc(ficpar))=='#' && c!= EOF){    free_vector(pp,1,nlstate);
     ungetc(c,ficpar);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     fgets(line, MAXLINE, ficpar);    /* End of Freq */
     puts(line);  }
     fputs(line,ficparo);  
   }  /************ Prevalence ********************/
   ungetc(c,ficpar);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
    {  
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
     for(i=1; i <=nlstate; i++)       in each health status at the date of interview (if between dateprev1 and dateprev2).
     for(j=1; j <=nlstate+ndeath-1; j++){       We still use firstpass and lastpass as another selection.
       fscanf(ficpar,"%1d%1d",&i1,&j1);    */
       fprintf(ficparo,"%1d%1d",i1,j1);   
       printf("%1d%1d",i,j);    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
       for(k=1; k<=ncovmodel;k++){    double ***freq; /* Frequencies */
         fscanf(ficpar," %lf",&param[i][j][k]);    double *pp, **prop;
         printf(" %lf",param[i][j][k]);    double pos,posprop; 
         fprintf(ficparo," %lf",param[i][j][k]);    double  y2; /* in fractional years */
       }    int iagemin, iagemax;
       fscanf(ficpar,"\n");  
       printf("\n");    iagemin= (int) agemin;
       fprintf(ficparo,"\n");    iagemax= (int) agemax;
     }    /*pp=vector(1,nlstate);*/
      prop=matrix(1,nlstate,iagemin,iagemax+3); 
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   p=param[1][1];    j1=0;
      
   /* Reads comments: lines beginning with '#' */    j=cptcoveff;
   while((c=getc(ficpar))=='#' && c!= EOF){    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     ungetc(c,ficpar);    
     fgets(line, MAXLINE, ficpar);    for(k1=1; k1<=j;k1++){
     puts(line);      for(i1=1; i1<=ncodemax[k1];i1++){
     fputs(line,ficparo);        j1++;
   }        
   ungetc(c,ficpar);        for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);            prop[i][m]=0.0;
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */       
   for(i=1; i <=nlstate; i++){        for (i=1; i<=imx; i++) { /* Each individual */
     for(j=1; j <=nlstate+ndeath-1; j++){          bool=1;
       fscanf(ficpar,"%1d%1d",&i1,&j1);          if  (cptcovn>0) {
       printf("%1d%1d",i,j);            for (z1=1; z1<=cptcoveff; z1++) 
       fprintf(ficparo,"%1d%1d",i1,j1);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       for(k=1; k<=ncovmodel;k++){                bool=0;
         fscanf(ficpar,"%le",&delti3[i][j][k]);          } 
         printf(" %le",delti3[i][j][k]);          if (bool==1) { 
         fprintf(ficparo," %le",delti3[i][j][k]);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
       fscanf(ficpar,"\n");              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       printf("\n");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       fprintf(ficparo,"\n");                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
   }                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   delti=delti3[1][1];                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                    prop[s[m][i]][(int)agev[m][i]] += weight[i];
   /* Reads comments: lines beginning with '#' */                  prop[s[m][i]][iagemax+3] += weight[i]; 
   while((c=getc(ficpar))=='#' && c!= EOF){                } 
     ungetc(c,ficpar);              }
     fgets(line, MAXLINE, ficpar);            } /* end selection of waves */
     puts(line);          }
     fputs(line,ficparo);        }
   }        for(i=iagemin; i <= iagemax+3; i++){  
   ungetc(c,ficpar);          
            for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   matcov=matrix(1,npar,1,npar);            posprop += prop[jk][i]; 
   for(i=1; i <=npar; i++){          } 
     fscanf(ficpar,"%s",&str);  
     printf("%s",str);          for(jk=1; jk <=nlstate ; jk++){     
     fprintf(ficparo,"%s",str);            if( i <=  iagemax){ 
     for(j=1; j <=i; j++){              if(posprop>=1.e-5){ 
       fscanf(ficpar," %le",&matcov[i][j]);                probs[i][jk][j1]= prop[jk][i]/posprop;
       printf(" %.5le",matcov[i][j]);              } 
       fprintf(ficparo," %.5le",matcov[i][j]);            } 
     }          }/* end jk */ 
     fscanf(ficpar,"\n");        }/* end i */ 
     printf("\n");      } /* end i1 */
     fprintf(ficparo,"\n");    } /* end k1 */
   }    
   for(i=1; i <=npar; i++)    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     for(j=i+1;j<=npar;j++)    /*free_vector(pp,1,nlstate);*/
       matcov[i][j]=matcov[j][i];    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
      }  /* End of prevalence */
   printf("\n");  
   /************* Waves Concatenation ***************/
   
     /*-------- data file ----------*/  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     if((ficres =fopen(fileres,"w"))==NULL) {  {
       printf("Problem with resultfile: %s\n", fileres);goto end;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     }       Death is a valid wave (if date is known).
     fprintf(ficres,"#%s\n",version);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     if((fic=fopen(datafile,"r"))==NULL)    {       and mw[mi+1][i]. dh depends on stepm.
       printf("Problem with datafile: %s\n", datafile);goto end;       */
     }  
     int i, mi, m;
     n= lastobs;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     severity = vector(1,maxwav);       double sum=0., jmean=0.;*/
     outcome=imatrix(1,maxwav+1,1,n);    int first;
     num=ivector(1,n);    int j, k=0,jk, ju, jl;
     moisnais=vector(1,n);    double sum=0.;
     annais=vector(1,n);    first=0;
     moisdc=vector(1,n);    jmin=1e+5;
     andc=vector(1,n);    jmax=-1;
     agedc=vector(1,n);    jmean=0.;
     cod=ivector(1,n);    for(i=1; i<=imx; i++){
     weight=vector(1,n);      mi=0;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */      m=firstpass;
     mint=matrix(1,maxwav,1,n);      while(s[m][i] <= nlstate){
     anint=matrix(1,maxwav,1,n);        if(s[m][i]>=1)
     s=imatrix(1,maxwav+1,1,n);          mw[++mi][i]=m;
     adl=imatrix(1,maxwav+1,1,n);            if(m >=lastpass)
     tab=ivector(1,NCOVMAX);          break;
     ncodemax=ivector(1,8);        else
           m++;
     i=1;      }/* end while */
     while (fgets(line, MAXLINE, fic) != NULL)    {      if (s[m][i] > nlstate){
       if ((i >= firstobs) && (i <=lastobs)) {        mi++;     /* Death is another wave */
                /* if(mi==0)  never been interviewed correctly before death */
         for (j=maxwav;j>=1;j--){           /* Only death is a correct wave */
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        mw[mi][i]=m;
           strcpy(line,stra);      }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      wav[i]=mi;
         }      if(mi==0){
                if(first==0){
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          printf("Warning! None valid information for:%d line=%d (skipped) and may be others, see log file\n",num[i],i);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          first=1;
         }
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        if(first==1){
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficlog,"Warning! None valid information for:%d line=%d (skipped)\n",num[i],i);
         }
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      } /* end mi==0 */
         for (j=ncov;j>=1;j--){    } /* End individuals */
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
         }    for(i=1; i<=imx; i++){
         num[i]=atol(stra);      for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/          dh[mi][i]=1;
         else{
         i=i+1;          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       }            if (agedc[i] < 2*AGESUP) {
     }            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
             if(j==0) j=1;  /* Survives at least one month after exam */
     /*scanf("%d",i);*/            k=k+1;
   imx=i-1; /* Number of individuals */            if (j >= jmax) jmax=j;
             if (j <= jmin) jmin=j;
   /* Calculation of the number of parameter from char model*/            sum=sum+j;
   Tvar=ivector(1,15);                /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   Tage=ivector(1,15);                  /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                if(j<0)printf("Error! Negative delay (%d to death) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   if (strlen(model) >1){            }
     j=0, j1=0;          }
     j=nbocc(model,'+');          else{
     j1=nbocc(model,'*');            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
     cptcovn=j+1;            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                k=k+1;
     strcpy(modelsav,model);            if (j >= jmax) jmax=j;
     if (j==0) {            else if (j <= jmin)jmin=j;
       if (j1==0){            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
        cutv(stra,strb,modelsav,'V');            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
        Tvar[1]=atoi(strb);            if(j<0)printf("Error! Negative delay (%d) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       }            sum=sum+j;
       else if (j1==1) {          }
        cutv(stra,strb,modelsav,'*');          jk= j/stepm;
        /*      printf("stra=%s strb=%s modelsav=%s ",stra,strb,modelsav);*/          jl= j -jk*stepm;
        Tage[1]=1; cptcovage++;          ju= j -(jk+1)*stepm;
        if (strcmp(stra,"age")==0) {          if(mle <=1){ 
          cutv(strd,strc,strb,'V');            if(jl==0){
          Tvar[1]=atoi(strc);              dh[mi][i]=jk;
        }              bh[mi][i]=0;
        else if (strcmp(strb,"age")==0) {            }else{ /* We want a negative bias in order to only have interpolation ie
          cutv(strd,strc,stra,'V');                    * at the price of an extra matrix product in likelihood */
          Tvar[1]=atoi(strc);              dh[mi][i]=jk+1;
        }              bh[mi][i]=ju;
        else {printf("Error"); exit(0);}            }
       }          }else{
     }            if(jl <= -ju){
     else {              dh[mi][i]=jk;
       for(i=j; i>=1;i--){              bh[mi][i]=jl;       /* bias is positive if real duration
         cutv(stra,strb,modelsav,'+');                                   * is higher than the multiple of stepm and negative otherwise.
         /*printf("%s %s %s\n", stra,strb,modelsav);*/                                   */
         if (strchr(strb,'*')) {            }
           cutv(strd,strc,strb,'*');            else{
           if (strcmp(strc,"age")==0) {              dh[mi][i]=jk+1;
             cutv(strb,stre,strd,'V');              bh[mi][i]=ju;
             Tvar[i+1]=atoi(stre);            }
             cptcovage++;            if(dh[mi][i]==0){
             Tage[cptcovage]=i+1;              dh[mi][i]=1; /* At least one step */
             printf("stre=%s ", stre);              bh[mi][i]=ju; /* At least one step */
           }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
           else if (strcmp(strd,"age")==0) {            }
             cutv(strb,stre,strc,'V');          }
             Tvar[i+1]=atoi(stre);        } /* end if mle */
             cptcovage++;      } /* end wave */
             Tage[cptcovage]=i+1;    }
           }    jmean=sum/k;
           else {    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
             cutv(strb,stre,strc,'V');    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
             Tvar[i+1]=ncov+1;   }
             cutv(strb,strc,strd,'V');  
             for (k=1; k<=lastobs;k++)  /*********** Tricode ****************************/
               covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];  void tricode(int *Tvar, int **nbcode, int imx)
           }  {
         }    
         else {    int Ndum[20],ij=1, k, j, i, maxncov=19;
           cutv(strd,strc,strb,'V');    int cptcode=0;
           /* printf("%s %s %s", strd,strc,strb);*/    cptcoveff=0; 
    
         Tvar[i+1]=atoi(strc);    for (k=0; k<maxncov; k++) Ndum[k]=0;
         }    for (k=1; k<=7; k++) ncodemax[k]=0;
         strcpy(modelsav,stra);    
       }    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       cutv(strd,strc,stra,'V');      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
       Tvar[1]=atoi(strc);                                 modality*/ 
     }        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   }        Ndum[ij]++; /*store the modality */
         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   /* printf("tvar=%d %d cptcovage=%d %d",Tvar[1],Tvar[2],cptcovage,Tage[1]);        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
      scanf("%d ",i);*/                                         Tvar[j]. If V=sex and male is 0 and 
     fclose(fic);                                         female is 1, then  cptcode=1.*/
       }
    if(mle==1){  
     if (weightopt != 1) { /* Maximisation without weights*/      for (i=0; i<=cptcode; i++) {
       for(i=1;i<=n;i++) weight[i]=1.0;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     }      }
     /*-calculation of age at interview from date of interview and age at death -*/  
     agev=matrix(1,maxwav,1,imx);      ij=1; 
          for (i=1; i<=ncodemax[j]; i++) {
     for (i=1; i<=imx; i++)  {        for (k=0; k<= maxncov; k++) {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          if (Ndum[k] != 0) {
       for(m=1; (m<= maxwav); m++){            nbcode[Tvar[j]][ij]=k; 
         if(s[m][i] >0){            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
           if (s[m][i] == nlstate+1) {            
             if(agedc[i]>0)            ij++;
               if(moisdc[i]!=99 && andc[i]!=9999)          }
               agev[m][i]=agedc[i];          if (ij > ncodemax[j]) break; 
             else{        }  
               printf("Warning negative age at death: %d line:%d\n",num[i],i);      } 
               agev[m][i]=-1;    }  
             }  
           }   for (k=0; k< maxncov; k++) Ndum[k]=0;
           else if(s[m][i] !=9){ /* Should no more exist */  
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);   for (i=1; i<=ncovmodel-2; i++) { 
             if(mint[m][i]==99 || anint[m][i]==9999)     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
               agev[m][i]=1;     ij=Tvar[i];
             else if(agev[m][i] <agemin){     Ndum[ij]++;
               agemin=agev[m][i];   }
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  
             }   ij=1;
             else if(agev[m][i] >agemax){   for (i=1; i<= maxncov; i++) {
               agemax=agev[m][i];     if((Ndum[i]!=0) && (i<=ncovcol)){
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/       Tvaraff[ij]=i; /*For printing */
             }       ij++;
             /*agev[m][i]=anint[m][i]-annais[i];*/     }
             /*   agev[m][i] = age[i]+2*m;*/   }
           }   
           else { /* =9 */   cptcoveff=ij-1; /*Number of simple covariates*/
             agev[m][i]=1;  }
             s[m][i]=-1;  
           }  /*********** Health Expectancies ****************/
         }  
         else /*= 0 Unknown */  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
           agev[m][i]=1;  
       }  {
        /* Health expectancies */
     }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
     for (i=1; i<=imx; i++)  {    double age, agelim, hf;
       for(m=1; (m<= maxwav); m++){    double ***p3mat,***varhe;
         if (s[m][i] > (nlstate+ndeath)) {    double **dnewm,**doldm;
           printf("Error: Wrong value in nlstate or ndeath\n");      double *xp;
           goto end;    double **gp, **gm;
         }    double ***gradg, ***trgradg;
       }    int theta;
     }  
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    xp=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
     free_vector(severity,1,maxwav);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     free_imatrix(outcome,1,maxwav+1,1,n);    
     free_vector(moisnais,1,n);    fprintf(ficreseij,"# Health expectancies\n");
     free_vector(annais,1,n);    fprintf(ficreseij,"# Age");
     free_matrix(mint,1,maxwav,1,n);    for(i=1; i<=nlstate;i++)
     free_matrix(anint,1,maxwav,1,n);      for(j=1; j<=nlstate;j++)
     free_vector(moisdc,1,n);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
     free_vector(andc,1,n);    fprintf(ficreseij,"\n");
   
        if(estepm < stepm){
     wav=ivector(1,imx);      printf ("Problem %d lower than %d\n",estepm, stepm);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    }
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    else  hstepm=estepm;   
        /* We compute the life expectancy from trapezoids spaced every estepm months
     /* Concatenates waves */     * This is mainly to measure the difference between two models: for example
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
       Tcode=ivector(1,100);     * to the curvature of the survival function. If, for the same date, we 
    nbcode=imatrix(1,nvar,1,8);       * estimate the model with stepm=1 month, we can keep estepm to 24 months
    ncodemax[1]=1;     * to compare the new estimate of Life expectancy with the same linear 
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);     * hypothesis. A more precise result, taking into account a more precise
       * curvature will be obtained if estepm is as small as stepm. */
    codtab=imatrix(1,100,1,10);  
    h=0;    /* For example we decided to compute the life expectancy with the smallest unit */
    m=pow(2,cptcovn);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         nhstepm is the number of hstepm from age to agelim 
    for(k=1;k<=cptcovn; k++){       nstepm is the number of stepm from age to agelin. 
      for(i=1; i <=(m/pow(2,k));i++){       Look at hpijx to understand the reason of that which relies in memory size
        for(j=1; j <= ncodemax[k]; j++){       and note for a fixed period like estepm months */
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
            h++;       survival function given by stepm (the optimization length). Unfortunately it
            if (h>m) h=1;codtab[h][k]=j;       means that if the survival funtion is printed only each two years of age and if
          }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        }       results. So we changed our mind and took the option of the best precision.
      }    */
    }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
    /* for(i=1; i <=m ;i++){    agelim=AGESUP;
      for(k=1; k <=cptcovn; k++){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);      /* nhstepm age range expressed in number of stepm */
      }      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
      printf("\n");      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
    }      /* if (stepm >= YEARM) hstepm=1;*/
    scanf("%d",i);*/      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    /* Calculates basic frequencies. Computes observed prevalence at single age      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
        and prints on file fileres'p'. */      gp=matrix(0,nhstepm,1,nlstate*nlstate);
    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */   
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
          hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     /* For Powell, parameters are in a vector p[] starting at p[1]  
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      /* Computing Variances of health expectancies */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  
           for(theta=1; theta <=npar; theta++){
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
            }
     /*--------- results files --------------*/        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);    
            cptj=0;
    jk=1;        for(j=1; j<= nlstate; j++){
    fprintf(ficres,"# Parameters\n");          for(i=1; i<=nlstate; i++){
    printf("# Parameters\n");            cptj=cptj+1;
    for(i=1,jk=1; i <=nlstate; i++){            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
      for(k=1; k <=(nlstate+ndeath); k++){              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
        if (k != i)            }
          {          }
            printf("%d%d ",i,k);        }
            fprintf(ficres,"%1d%1d ",i,k);       
            for(j=1; j <=ncovmodel; j++){       
              printf("%f ",p[jk]);        for(i=1; i<=npar; i++) 
              fprintf(ficres,"%f ",p[jk]);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
              jk++;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
            }        
            printf("\n");        cptj=0;
            fprintf(ficres,"\n");        for(j=1; j<= nlstate; j++){
          }          for(i=1;i<=nlstate;i++){
      }            cptj=cptj+1;
    }            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   
     /* Computing hessian and covariance matrix */              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     ftolhess=ftol; /* Usually correct */            }
     hesscov(matcov, p, npar, delti, ftolhess, func);          }
     fprintf(ficres,"# Scales\n");        }
     printf("# Scales\n");        for(j=1; j<= nlstate*nlstate; j++)
      for(i=1,jk=1; i <=nlstate; i++){          for(h=0; h<=nhstepm-1; h++){
       for(j=1; j <=nlstate+ndeath; j++){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         if (j!=i) {          }
           fprintf(ficres,"%1d%1d",i,j);       } 
           printf("%1d%1d",i,j);     
           for(k=1; k<=ncovmodel;k++){  /* End theta */
             printf(" %.5e",delti[jk]);  
             fprintf(ficres," %.5e",delti[jk]);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
             jk++;  
           }       for(h=0; h<=nhstepm-1; h++)
           printf("\n");        for(j=1; j<=nlstate*nlstate;j++)
           fprintf(ficres,"\n");          for(theta=1; theta <=npar; theta++)
         }            trgradg[h][j][theta]=gradg[h][theta][j];
       }       
       }  
           for(i=1;i<=nlstate*nlstate;i++)
     k=1;        for(j=1;j<=nlstate*nlstate;j++)
     fprintf(ficres,"# Covariance\n");          varhe[i][j][(int)age] =0.;
     printf("# Covariance\n");  
     for(i=1;i<=npar;i++){       printf("%d|",(int)age);fflush(stdout);
       /*  if (k>nlstate) k=1;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       i1=(i-1)/(ncovmodel*nlstate)+1;       for(h=0;h<=nhstepm-1;h++){
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        for(k=0;k<=nhstepm-1;k++){
       printf("%s%d%d",alph[k],i1,tab[i]);*/          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       fprintf(ficres,"%3d",i);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       printf("%3d",i);          for(i=1;i<=nlstate*nlstate;i++)
       for(j=1; j<=i;j++){            for(j=1;j<=nlstate*nlstate;j++)
         fprintf(ficres," %.5e",matcov[i][j]);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
         printf(" %.5e",matcov[i][j]);        }
       }      }
       fprintf(ficres,"\n");      /* Computing expectancies */
       printf("\n");      for(i=1; i<=nlstate;i++)
       k++;        for(j=1; j<=nlstate;j++)
     }          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     while((c=getc(ficpar))=='#' && c!= EOF){            
       ungetc(c,ficpar);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       fgets(line, MAXLINE, ficpar);  
       puts(line);          }
       fputs(line,ficparo);  
     }      fprintf(ficreseij,"%3.0f",age );
     ungetc(c,ficpar);      cptj=0;
        for(i=1; i<=nlstate;i++)
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);        for(j=1; j<=nlstate;j++){
              cptj++;
     if (fage <= 2) {          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
       bage = agemin;        }
       fage = agemax;      fprintf(ficreseij,"\n");
     }     
       free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
 /*------------ gnuplot -------------*/      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
 chdir(pathcd);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((ficgp=fopen("graph.plt","w"))==NULL) {    }
     printf("Problem with file graph.gp");goto end;    printf("\n");
   }    fprintf(ficlog,"\n");
 #ifdef windows  
   fprintf(ficgp,"cd \"%s\" \n",pathc);    free_vector(xp,1,npar);
 #endif    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
 m=pow(2,cptcovn);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
      free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
  /* 1eme*/  }
   for (cpt=1; cpt<= nlstate ; cpt ++) {  
    for (k1=1; k1<= m ; k1 ++) {  /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
 #ifdef windows  {
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);    /* Variance of health expectancies */
 #endif    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
 #ifdef unix    /* double **newm;*/
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);    double **dnewm,**doldm;
 #endif    double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
 for (i=1; i<= nlstate ; i ++) {    int k, cptcode;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double *xp;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double **gp, **gm;  /* for var eij */
 }    double ***gradg, ***trgradg; /*for var eij */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    double **gradgp, **trgradgp; /* for var p point j */
     for (i=1; i<= nlstate ; i ++) {    double *gpp, *gmp; /* for var p point j */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double ***p3mat;
 }    double age,agelim, hf;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    double ***mobaverage;
      for (i=1; i<= nlstate ; i ++) {    int theta;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    char digit[4];
   else fprintf(ficgp," \%%*lf (\%%*lf)");    char digitp[25];
 }    
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));    char fileresprobmorprev[FILENAMELENGTH];
 #ifdef unix  
 fprintf(ficgp,"\nset ter gif small size 400,300");    if(popbased==1){
 #endif      if(mobilav!=0)
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        strcpy(digitp,"-populbased-mobilav-");
    }      else strcpy(digitp,"-populbased-nomobil-");
   }    }
   /*2 eme*/    else 
       strcpy(digitp,"-stablbased-");
   for (k1=1; k1<= m ; k1 ++) {  
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);    if (mobilav!=0) {
          mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     for (i=1; i<= nlstate+1 ; i ++) {      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
       k=2*i;        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       for (j=1; j<= nlstate+1 ; j ++) {      }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    }
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      strcpy(fileresprobmorprev,"prmorprev"); 
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    sprintf(digit,"%-d",ij);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       for (j=1; j<= nlstate+1 ; j ++) {    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    strcat(fileresprobmorprev,fileres);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
 }        printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficgp,"\" t\"\" w l 0,");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    }
       for (j=1; j<= nlstate+1 ; j ++) {    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
 }      fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       else fprintf(ficgp,"\" t\"\" w l 0,");      fprintf(ficresprobmorprev," p.%-d SE",j);
     }      for(i=1; i<=nlstate;i++)
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
   }    }  
      fprintf(ficresprobmorprev,"\n");
   /*3eme*/    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
   for (k1=1; k1<= m ; k1 ++) {      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
     for (cpt=1; cpt<= nlstate ; cpt ++) {      exit(0);
       k=2+nlstate*(cpt-1);    }
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);    else{
       for (i=1; i< nlstate ; i ++) {      fprintf(ficgp,"\n# Routine varevsij");
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    }
       }    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      printf("Problem with html file: %s\n", optionfilehtm);
     }      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
   }      exit(0);
      }
   /* CV preval stat */    else{
   for (k1=1; k1<= m ; k1 ++) {      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     for (cpt=1; cpt<nlstate ; cpt ++) {      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       k=3;    }
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       for (i=1; i< nlstate ; i ++)  
         fprintf(ficgp,"+$%d",k+i+1);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    fprintf(ficresvij,"# Age");
          for(i=1; i<=nlstate;i++)
       l=3+(nlstate+ndeath)*cpt;      for(j=1; j<=nlstate;j++)
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
       for (i=1; i< nlstate ; i ++) {    fprintf(ficresvij,"\n");
         l=3+(nlstate+ndeath)*cpt;  
         fprintf(ficgp,"+$%d",l+i+1);    xp=vector(1,npar);
       }    dnewm=matrix(1,nlstate,1,npar);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      doldm=matrix(1,nlstate,1,nlstate);
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   }  
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   /* proba elementaires */    gpp=vector(nlstate+1,nlstate+ndeath);
    for(i=1,jk=1; i <=nlstate; i++){    gmp=vector(nlstate+1,nlstate+ndeath);
     for(k=1; k <=(nlstate+ndeath); k++){    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       if (k != i) {    
         for(j=1; j <=ncovmodel; j++){    if(estepm < stepm){
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/      printf ("Problem %d lower than %d\n",estepm, stepm);
           /*fprintf(ficgp,"%s",alph[1]);*/    }
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    else  hstepm=estepm;   
           jk++;    /* For example we decided to compute the life expectancy with the smallest unit */
           fprintf(ficgp,"\n");    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
         }       nhstepm is the number of hstepm from age to agelim 
       }       nstepm is the number of stepm from age to agelin. 
     }       Look at hpijx to understand the reason of that which relies in memory size
     }       and note for a fixed period like k years */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   for(jk=1; jk <=m; jk++) {       survival function given by stepm (the optimization length). Unfortunately it
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);       means that if the survival funtion is printed every two years of age and if
    i=1;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
    for(k2=1; k2<=nlstate; k2++) {       results. So we changed our mind and took the option of the best precision.
      k3=i;    */
      for(k=1; k<=(nlstate+ndeath); k++) {    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
        if (k != k2){    agelim = AGESUP;
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
         for(j=3; j <=ncovmodel; j++)      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficgp,")/(1");      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
              gp=matrix(0,nhstepm,1,nlstate);
         for(k1=1; k1 <=nlstate; k1++){        gm=matrix(0,nhstepm,1,nlstate);
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  
           for(j=3; j <=ncovmodel; j++)  
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      for(theta=1; theta <=npar; theta++){
           fprintf(ficgp,")");        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
         }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);        }
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         i=i+ncovmodel;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
        }  
      }        if (popbased==1) {
    }          if(mobilav ==0){
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);            for(i=1; i<=nlstate;i++)
   }              prlim[i][i]=probs[(int)age][i][ij];
              }else{ /* mobilav */ 
   fclose(ficgp);            for(i=1; i<=nlstate;i++)
                  prlim[i][i]=mobaverage[(int)age][i][ij];
 chdir(path);          }
     free_matrix(agev,1,maxwav,1,imx);        }
     free_ivector(wav,1,imx);    
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);        for(j=1; j<= nlstate; j++){
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);          for(h=0; h<=nhstepm; h++){
                for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     free_imatrix(s,1,maxwav+1,1,n);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
              }
            }
     free_ivector(num,1,n);        /* This for computing probability of death (h=1 means
     free_vector(agedc,1,n);           computed over hstepm matrices product = hstepm*stepm months) 
     free_vector(weight,1,n);           as a weighted average of prlim.
     /*free_matrix(covar,1,NCOVMAX,1,n);*/        */
     fclose(ficparo);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     fclose(ficres);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
    }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
            }    
    /*________fin mle=1_________*/        /* end probability of death */
      
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
            xp[i] = x[i] - (i==theta ?delti[theta]:0);
     /* No more information from the sample is required now */        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   /* Reads comments: lines beginning with '#' */        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   while((c=getc(ficpar))=='#' && c!= EOF){   
     ungetc(c,ficpar);        if (popbased==1) {
     fgets(line, MAXLINE, ficpar);          if(mobilav ==0){
     puts(line);            for(i=1; i<=nlstate;i++)
     fputs(line,ficparo);              prlim[i][i]=probs[(int)age][i][ij];
   }          }else{ /* mobilav */ 
   ungetc(c,ficpar);            for(i=1; i<=nlstate;i++)
                prlim[i][i]=mobaverage[(int)age][i][ij];
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);          }
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);        }
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);  
 /*--------- index.htm --------*/        for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
   if((fichtm=fopen("index.htm","w"))==NULL)    {            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     printf("Problem with index.htm \n");goto end;              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
   }          }
         }
  fprintf(fichtm,"<body><ul> Imach, Version 0.64a<hr> <li>Outputs files<br><br>\n        /* This for computing probability of death (h=1 means
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n           computed over hstepm matrices product = hstepm*stepm months) 
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>           as a weighted average of prlim.
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>        */
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>          for(i=1,gmp[j]=0.; i<= nlstate; i++)
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>        }    
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>        /* end probability of death */
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);  
         for(j=1; j<= nlstate; j++) /* vareij */
  fprintf(fichtm," <li>Graphs</li>\n<p>");          for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
  m=cptcovn;          }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
  j1=0;          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
  for(k1=1; k1<=m;k1++){        }
    for(i1=1; i1<=ncodemax[k1];i1++){  
        j1++;      } /* End theta */
        if (cptcovn > 0) {  
          fprintf(fichtm,"<hr>************ Results for covariates");      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
          for (cpt=1; cpt<=cptcovn;cpt++)  
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);      for(h=0; h<=nhstepm; h++) /* veij */
          fprintf(fichtm," ************\n<hr>");        for(j=1; j<=nlstate;j++)
        }          for(theta=1; theta <=npar; theta++)
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>            trgradg[h][j][theta]=gradg[h][theta][j];
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);      
        for(cpt=1; cpt<nlstate;cpt++){      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>        for(theta=1; theta <=npar; theta++)
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          trgradgp[j][theta]=gradgp[theta][j];
        }    
     for(cpt=1; cpt<=nlstate;cpt++) {  
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 interval) in state (%d): v%s%d%d.gif <br>      for(i=1;i<=nlstate;i++)
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          for(j=1;j<=nlstate;j++)
      }          vareij[i][j][(int)age] =0.;
      for(cpt=1; cpt<=nlstate;cpt++) {  
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>      for(h=0;h<=nhstepm;h++){
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);        for(k=0;k<=nhstepm;k++){
      }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 health expectancies in states (1) and (2): e%s%d.gif<br>          for(i=1;i<=nlstate;i++)
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);            for(j=1;j<=nlstate;j++)
 fprintf(fichtm,"\n</body>");              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
    }        }
  }      }
 fclose(fichtm);    
       /* pptj */
   /*--------------- Prevalence limit --------------*/      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
        matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
   strcpy(filerespl,"pl");      for(j=nlstate+1;j<=nlstate+ndeath;j++)
   strcat(filerespl,fileres);        for(i=nlstate+1;i<=nlstate+ndeath;i++)
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          varppt[j][i]=doldmp[j][i];
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      /* end ppptj */
   }      /*  x centered again */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   fprintf(ficrespl,"#Prevalence limit\n");      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   fprintf(ficrespl,"#Age ");   
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      if (popbased==1) {
   fprintf(ficrespl,"\n");        if(mobilav ==0){
            for(i=1; i<=nlstate;i++)
   prlim=matrix(1,nlstate,1,nlstate);            prlim[i][i]=probs[(int)age][i][ij];
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }else{ /* mobilav */ 
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(i=1; i<=nlstate;i++)
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            prlim[i][i]=mobaverage[(int)age][i][ij];
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      }
   k=0;               
   agebase=agemin;      /* This for computing probability of death (h=1 means
   agelim=agemax;         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
   ftolpl=1.e-10;         as a weighted average of prlim.
   i1=cptcovn;      */
   if (cptcovn < 1){i1=1;}      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   for(cptcov=1;cptcov<=i1;cptcov++){          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      }    
         k=k+1;      /* end probability of death */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  
         fprintf(ficrespl,"\n#******");      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
         for(j=1;j<=cptcovn;j++)      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
           fprintf(ficrespl," V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         fprintf(ficrespl,"******\n");        for(i=1; i<=nlstate;i++){
                  fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         for (age=agebase; age<=agelim; age++){        }
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      } 
           fprintf(ficrespl,"%.0f",age );      fprintf(ficresprobmorprev,"\n");
           for(i=1; i<=nlstate;i++)  
           fprintf(ficrespl," %.5f", prlim[i][i]);      fprintf(ficresvij,"%.0f ",age );
           fprintf(ficrespl,"\n");      for(i=1; i<=nlstate;i++)
         }        for(j=1; j<=nlstate;j++){
       }          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     }        }
   fclose(ficrespl);      fprintf(ficresvij,"\n");
   /*------------- h Pij x at various ages ------------*/      free_matrix(gp,0,nhstepm,1,nlstate);
        free_matrix(gm,0,nhstepm,1,nlstate);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }    } /* End age */
   printf("Computing pij: result on file '%s' \n", filerespij);    free_vector(gpp,nlstate+1,nlstate+ndeath);
      free_vector(gmp,nlstate+1,nlstate+ndeath);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   if (stepm<=24) stepsize=2;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   agelim=AGESUP;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   hstepm=stepsize*YEARM; /* Every year of age */    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
    /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   k=0;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
       k=k+1;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
         fprintf(ficrespij,"\n#****** ");    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
         for(j=1;j<=cptcovn;j++)    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
         fprintf(ficrespij,"******\n");  */
            fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    free_vector(xp,1,npar);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    free_matrix(doldm,1,nlstate,1,nlstate);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(dnewm,1,nlstate,1,npar);
           oldm=oldms;savm=savms;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
           fprintf(ficrespij,"# Age");    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           for(i=1; i<=nlstate;i++)    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             for(j=1; j<=nlstate+ndeath;j++)    fclose(ficresprobmorprev);
               fprintf(ficrespij," %1d-%1d",i,j);    fclose(ficgp);
           fprintf(ficrespij,"\n");    fclose(fichtm);
           for (h=0; h<=nhstepm; h++){  }  /* end varevsij */
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  
             for(i=1; i<=nlstate;i++)  /************ Variance of prevlim ******************/
               for(j=1; j<=nlstate+ndeath;j++)  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);  {
             fprintf(ficrespij,"\n");    /* Variance of prevalence limit */
           }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double **newm;
           fprintf(ficrespij,"\n");    double **dnewm,**doldm;
         }    int i, j, nhstepm, hstepm;
     }    int k, cptcode;
   }    double *xp;
     double *gp, *gm;
   fclose(ficrespij);    double **gradg, **trgradg;
     double age,agelim;
   /*---------- Health expectancies and variances ------------*/    int theta;
      
   strcpy(filerest,"t");    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   strcat(filerest,fileres);    fprintf(ficresvpl,"# Age");
   if((ficrest=fopen(filerest,"w"))==NULL) {    for(i=1; i<=nlstate;i++)
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        fprintf(ficresvpl," %1d-%1d",i,i);
   }    fprintf(ficresvpl,"\n");
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
   strcpy(filerese,"e");    doldm=matrix(1,nlstate,1,nlstate);
   strcat(filerese,fileres);    
   if((ficreseij=fopen(filerese,"w"))==NULL) {    hstepm=1*YEARM; /* Every year of age */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
   }    agelim = AGESUP;
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
  strcpy(fileresv,"v");      if (stepm >= YEARM) hstepm=1;
   strcat(fileresv,fileres);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {      gradg=matrix(1,npar,1,nlstate);
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      gp=vector(1,nlstate);
   }      gm=vector(1,nlstate);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
       for(theta=1; theta <=npar; theta++){
   k=0;        for(i=1; i<=npar; i++){ /* Computes gradient */
   for(cptcov=1;cptcov<=i1;cptcov++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        }
       k=k+1;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       fprintf(ficrest,"\n#****** ");        for(i=1;i<=nlstate;i++)
       for(j=1;j<=cptcovn;j++)          gp[i] = prlim[i][i];
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);      
       fprintf(ficrest,"******\n");        for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
       fprintf(ficreseij,"\n#****** ");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       for(j=1;j<=cptcovn;j++)        for(i=1;i<=nlstate;i++)
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);          gm[i] = prlim[i][i];
       fprintf(ficreseij,"******\n");  
         for(i=1;i<=nlstate;i++)
       fprintf(ficresvij,"\n#****** ");          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       for(j=1;j<=cptcovn;j++)      } /* End theta */
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);  
       fprintf(ficresvij,"******\n");      trgradg =matrix(1,nlstate,1,npar);
   
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      for(j=1; j<=nlstate;j++)
       oldm=oldms;savm=savms;        for(theta=1; theta <=npar; theta++)
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);            trgradg[j][theta]=gradg[theta][j];
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;      for(i=1;i<=nlstate;i++)
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        varpl[i][(int)age] =0.;
            matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);      for(i=1;i<=nlstate;i++)
       fprintf(ficrest,"\n");        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
          
       hf=1;      fprintf(ficresvpl,"%.0f ",age );
       if (stepm >= YEARM) hf=stepm/YEARM;      for(i=1; i<=nlstate;i++)
       epj=vector(1,nlstate+1);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       for(age=bage; age <=fage ;age++){      fprintf(ficresvpl,"\n");
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      free_vector(gp,1,nlstate);
         fprintf(ficrest," %.0f",age);      free_vector(gm,1,nlstate);
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){      free_matrix(gradg,1,npar,1,nlstate);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      free_matrix(trgradg,1,nlstate,1,npar);
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];    } /* End age */
           }  
           epj[nlstate+1] +=epj[j];    free_vector(xp,1,npar);
         }    free_matrix(doldm,1,nlstate,1,npar);
         for(i=1, vepp=0.;i <=nlstate;i++)    free_matrix(dnewm,1,nlstate,1,nlstate);
           for(j=1;j <=nlstate;j++)  
             vepp += vareij[i][j][(int)age];  }
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));  
         for(j=1;j <=nlstate;j++){  /************ Variance of one-step probabilities  ******************/
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
         }  {
         fprintf(ficrest,"\n");    int i, j=0,  i1, k1, l1, t, tj;
       }    int k2, l2, j1,  z1;
     }    int k=0,l, cptcode;
   }    int first=1, first1;
            double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
  fclose(ficreseij);    double **dnewm,**doldm;
  fclose(ficresvij);    double *xp;
   fclose(ficrest);    double *gp, *gm;
   fclose(ficpar);    double **gradg, **trgradg;
   free_vector(epj,1,nlstate+1);    double **mu;
   /*  scanf("%d ",i); */    double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   /*------- Variance limit prevalence------*/      int theta;
     char fileresprob[FILENAMELENGTH];
 strcpy(fileresvpl,"vpl");    char fileresprobcov[FILENAMELENGTH];
   strcat(fileresvpl,fileres);    char fileresprobcor[FILENAMELENGTH];
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    double ***varpij;
     exit(0);  
   }    strcpy(fileresprob,"prob"); 
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
  k=0;      printf("Problem with resultfile: %s\n", fileresprob);
  for(cptcov=1;cptcov<=i1;cptcov++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    }
      k=k+1;    strcpy(fileresprobcov,"probcov"); 
      fprintf(ficresvpl,"\n#****** ");    strcat(fileresprobcov,fileres);
      for(j=1;j<=cptcovn;j++)    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);      printf("Problem with resultfile: %s\n", fileresprobcov);
      fprintf(ficresvpl,"******\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
          }
      varpl=matrix(1,nlstate,(int) bage, (int) fage);    strcpy(fileresprobcor,"probcor"); 
      oldm=oldms;savm=savms;    strcat(fileresprobcor,fileres);
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
    }      printf("Problem with resultfile: %s\n", fileresprobcor);
  }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
   fclose(ficresvpl);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   /*---------- End : free ----------------*/    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
      printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    
      fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
      fprintf(ficresprob,"# Age");
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(ficresprobcov,"# Age");
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    fprintf(ficresprobcov,"# Age");
    
   free_matrix(matcov,1,npar,1,npar);  
   free_vector(delti,1,npar);    for(i=1; i<=nlstate;i++)
        for(j=1; j<=(nlstate+ndeath);j++){
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
   printf("End of Imach\n");        fprintf(ficresprobcor," p%1d-%1d ",i,j);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      }  
     /* fprintf(ficresprob,"\n");
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    fprintf(ficresprobcov,"\n");
   /*printf("Total time was %d uSec.\n", total_usecs);*/    fprintf(ficresprobcor,"\n");
   /*------ End -----------*/   */
    xp=vector(1,npar);
  end:    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
 #ifdef windows    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
  chdir(pathcd);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
 #endif    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
  system("wgnuplot graph.plt");    first=1;
     if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
 #ifdef windows      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
   while (z[0] != 'q') {      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
     chdir(pathcd);      exit(0);
     printf("\nType e to edit output files, c to start again, and q for exiting: ");    }
     scanf("%s",z);    else{
     if (z[0] == 'c') system("./imach");      fprintf(ficgp,"\n# Routine varprob");
     else if (z[0] == 'e') {    }
       chdir(path);    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
       system("index.htm");      printf("Problem with html file: %s\n", optionfilehtm);
     }      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
     else if (z[0] == 'q') exit(0);      exit(0);
   }    }
 #endif    else{
 }      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       fprintf(fichtm,"\n");
   
       fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
       fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
   
     }
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
                       fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
                       fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtm," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fclose(ficgp);
     fclose(fichtm);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
     /*char optionfilehtm[FILENAMELENGTH];*/
     if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
       fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
     }
   
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n
    - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n
    - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n
    - Life expectancies by age and initial health status (estepm=%2d months): 
      <a href=\"e%s\">e%s</a> <br>\n</li>", \
     jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br>
   <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>
   <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>
   <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>
   <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and
   health expectancies in states (1) and (2): e%s%d.png<br>
   <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n
    - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
    - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n
    - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n 
    - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n
    - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed and period prevalence (with confident
   interval) in state (%d): v%s%d%d.png <br>
   <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   fclose(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
     if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
       fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
     }
   
     /*#ifdef windows */
       fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   m=pow(2,cptcoveff);
     
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fclose(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[80],pathc[80],pathcd[80],pathtot[80],model[80];
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   #include <sys/time.h>
   #include <time.h>
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
    
     /* long total_usecs;
        struct timeval start_time, end_time;
     
        gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     replace(pathc,path);
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s",version);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       goto end;
     }
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) {
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++)
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
           fprintf(ficlog," %.5le",matcov[i][j]);
         }
         else
           fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=ivector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %d on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %d on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %d line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%d %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
   \n
   Total number of observations=%d <br>\n
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
   <hr  size=\"2\" color=\"#EC5E5E\">
    <ul><li><h4>Parameter files</h4>\n
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
    - Log file of the run: <a href=\"%s\">%s</a><br>\n
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,agemin,agemax,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
      fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_ivector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     
     /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
     /*printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.6  
changed lines
  Added in v.1.84


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>