Diff for /imach/src/imach.c between versions 1.6 and 1.88

version 1.6, 2001/05/02 17:47:10 version 1.88, 2003/06/23 17:54:56
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.88  2003/06/23 17:54:56  brouard
   individuals from different ages are interviewed on their health status    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   or degree of  disability. At least a second wave of interviews  
   ("longitudinal") should  measure each new individual health status.    Revision 1.87  2003/06/18 12:26:01  brouard
   Health expectancies are computed from the transistions observed between    Version 0.96
   waves and are computed for each degree of severity of disability (number  
   of life states). More degrees you consider, more time is necessary to    Revision 1.86  2003/06/17 20:04:08  brouard
   reach the Maximum Likelihood of the parameters involved in the model.    (Module): Change position of html and gnuplot routines and added
   The simplest model is the multinomial logistic model where pij is    routine fileappend.
   the probabibility to be observed in state j at the second wave conditional  
   to be observed in state i at the first wave. Therefore the model is:    Revision 1.85  2003/06/17 13:12:43  brouard
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    * imach.c (Repository): Check when date of death was earlier that
   is a covariate. If you want to have a more complex model than "constant and    current date of interview. It may happen when the death was just
   age", you should modify the program where the markup    prior to the death. In this case, dh was negative and likelihood
     *Covariates have to be included here again* invites you to do it.    was wrong (infinity). We still send an "Error" but patch by
   More covariates you add, less is the speed of the convergence.    assuming that the date of death was just one stepm after the
     interview.
   The advantage that this computer programme claims, comes from that if the    (Repository): Because some people have very long ID (first column)
   delay between waves is not identical for each individual, or if some    we changed int to long in num[] and we added a new lvector for
   individual missed an interview, the information is not rounded or lost, but    memory allocation. But we also truncated to 8 characters (left
   taken into account using an interpolation or extrapolation.    truncation)
   hPijx is the probability to be    (Repository): No more line truncation errors.
   observed in state i at age x+h conditional to the observed state i at age  
   x. The delay 'h' can be split into an exact number (nh*stepm) of    Revision 1.84  2003/06/13 21:44:43  brouard
   unobserved intermediate  states. This elementary transition (by month or    * imach.c (Repository): Replace "freqsummary" at a correct
   quarter trimester, semester or year) is model as a multinomial logistic.    place. It differs from routine "prevalence" which may be called
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    many times. Probs is memory consuming and must be used with
   and the contribution of each individual to the likelihood is simply hPijx.    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    Revision 1.83  2003/06/10 13:39:11  lievre
      *** empty log message ***
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.82  2003/06/05 15:57:20  brouard
   This software have been partly granted by Euro-REVES, a concerted action    Add log in  imach.c and  fullversion number is now printed.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and  */
   software can be distributed freely for non commercial use. Latest version  /*
   can be accessed at http://euroreves.ined.fr/imach .     Interpolated Markov Chain
   **********************************************************************/  
      Short summary of the programme:
 #include <math.h>    
 #include <stdio.h>    This program computes Healthy Life Expectancies from
 #include <stdlib.h>    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 #include <unistd.h>    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 #define MAXLINE 256    case of a health survey which is our main interest) -2- at least a
 #define FILENAMELENGTH 80    second wave of interviews ("longitudinal") which measure each change
 /*#define DEBUG*/    (if any) in individual health status.  Health expectancies are
 #define windows    computed from the time spent in each health state according to a
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    model. More health states you consider, more time is necessary to reach the
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    probability to be observed in state j at the second wave
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    conditional to be observed in state i at the first wave. Therefore
     the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
 #define NINTERVMAX 8    'age' is age and 'sex' is a covariate. If you want to have a more
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    complex model than "constant and age", you should modify the program
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    where the markup *Covariates have to be included here again* invites
 #define NCOVMAX 8 /* Maximum number of covariates */    you to do it.  More covariates you add, slower the
 #define MAXN 20000    convergence.
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    The advantage of this computer programme, compared to a simple
 #define AGEBASE 40    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
 int nvar;    account using an interpolation or extrapolation.  
 static int cptcov;  
 int cptcovn, cptcovage=0;    hPijx is the probability to be observed in state i at age x+h
 int npar=NPARMAX;    conditional to the observed state i at age x. The delay 'h' can be
 int nlstate=2; /* Number of live states */    split into an exact number (nh*stepm) of unobserved intermediate
 int ndeath=1; /* Number of dead states */    states. This elementary transition (by month, quarter,
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
 int *wav; /* Number of waves for this individuual 0 is possible */    and the contribution of each individual to the likelihood is simply
 int maxwav; /* Maxim number of waves */    hPijx.
 int mle, weightopt;  
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Also this programme outputs the covariance matrix of the parameters but also
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    of the life expectancies. It also computes the stable prevalence. 
 double **oldm, **newm, **savm; /* Working pointers to matrices */    
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;             Institut national d'études démographiques, Paris.
 FILE *ficgp, *fichtm;    This software have been partly granted by Euro-REVES, a concerted action
 FILE *ficreseij;    from the European Union.
   char filerese[FILENAMELENGTH];    It is copyrighted identically to a GNU software product, ie programme and
  FILE  *ficresvij;    software can be distributed freely for non commercial use. Latest version
   char fileresv[FILENAMELENGTH];    can be accessed at http://euroreves.ined.fr/imach .
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define NR_END 1    
 #define FREE_ARG char*    **********************************************************************/
 #define FTOL 1.0e-10  /*
     main
 #define NRANSI    read parameterfile
 #define ITMAX 200    read datafile
     concatwav
 #define TOL 2.0e-4    freqsummary
     if (mle >= 1)
 #define CGOLD 0.3819660      mlikeli
 #define ZEPS 1.0e-10    print results files
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    if mle==1 
        computes hessian
 #define GOLD 1.618034    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define GLIMIT 100.0        begin-prev-date,...
 #define TINY 1.0e-20    open gnuplot file
     open html file
 static double maxarg1,maxarg2;    stable prevalence
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))     for age prevalim()
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    h Pij x
      variance of p varprob
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    forecasting if prevfcast==1 prevforecast call prevalence()
 #define rint(a) floor(a+0.5)    health expectancies
     Variance-covariance of DFLE
 static double sqrarg;    prevalence()
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)     movingaverage()
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    varevsij() 
     if popbased==1 varevsij(,popbased)
 int imx;    total life expectancies
 int stepm;    Variance of stable prevalence
 /* Stepm, step in month: minimum step interpolation*/   end
   */
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  
 double **pmmij;   
   #include <math.h>
 double *weight;  #include <stdio.h>
 int **s; /* Status */  #include <stdlib.h>
 double *agedc, **covar, idx;  #include <unistd.h>
 int **nbcode, *Tcode, *Tvar, **codtab;  
   #include <sys/time.h>
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #include <time.h>
 double ftolhess; /* Tolerance for computing hessian */  #include "timeval.h"
   
   #define MAXLINE 256
 static  int split( char *path, char *dirc, char *name )  #define GNUPLOTPROGRAM "gnuplot"
 {  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
    char *s;                             /* pointer */  #define FILENAMELENGTH 132
    int  l1, l2;                         /* length counters */  /*#define DEBUG*/
   /*#define windows*/
    l1 = strlen( path );                 /* length of path */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
    s = strrchr( path, '\\' );           /* find last / */  
    if ( s == NULL ) {                   /* no directory, so use current */  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 #if     defined(__bsd__)                /* get current working directory */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
       extern char       *getwd( );  
   #define NINTERVMAX 8
       if ( getwd( dirc ) == NULL ) {  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #else  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
       extern char       *getcwd( );  #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  #define YEARM 12. /* Number of months per year */
 #endif  #define AGESUP 130
          return( GLOCK_ERROR_GETCWD );  #define AGEBASE 40
       }  #ifdef unix
       strcpy( name, path );             /* we've got it */  #define DIRSEPARATOR '/'
    } else {                             /* strip direcotry from path */  #define ODIRSEPARATOR '\\'
       s++;                              /* after this, the filename */  #else
       l2 = strlen( s );                 /* length of filename */  #define DIRSEPARATOR '\\'
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  #define ODIRSEPARATOR '/'
       strcpy( name, s );                /* save file name */  #endif
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */  /* $Id$ */
    }  /* $State$ */
    l1 = strlen( dirc );                 /* length of directory */  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  char version[]="Imach version 0.96a, June 2003, INED-EUROREVES ";
    return( 0 );                         /* we're done */  char fullversion[]="$Revision$ $Date$"; 
 }  int erreur; /* Error number */
   int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 /******************************************/  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
 void replace(char *s, char*t)  int ndeath=1; /* Number of dead states */
 {  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int i;  int popbased=0;
   int lg=20;  
   i=0;  int *wav; /* Number of waves for this individuual 0 is possible */
   lg=strlen(t);  int maxwav; /* Maxim number of waves */
   for(i=0; i<= lg; i++) {  int jmin, jmax; /* min, max spacing between 2 waves */
     (s[i] = t[i]);  int gipmx, gsw; /* Global variables on the number of contributions 
     if (t[i]== '\\') s[i]='/';                     to the likelihood and the sum of weights (done by funcone)*/
   }  int mle, weightopt;
 }  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 int nbocc(char *s, char occ)  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 {             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   int i,j=0;  double jmean; /* Mean space between 2 waves */
   int lg=20;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   i=0;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   lg=strlen(s);  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   for(i=0; i<= lg; i++) {  FILE *ficlog, *ficrespow;
   if  (s[i] == occ ) j++;  int globpr; /* Global variable for printing or not */
   }  double fretone; /* Only one call to likelihood */
   return j;  long ipmx; /* Number of contributions */
 }  double sw; /* Sum of weights */
   char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 void cutv(char *u,char *v, char*t, char occ)  FILE *ficresilk;
 {  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   int i,lg,j,p=0;  FILE *ficresprobmorprev;
   i=0;  FILE *fichtm; /* Html File */
   for(j=0; j<=strlen(t)-1; j++) {  FILE *ficreseij;
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  char filerese[FILENAMELENGTH];
   }  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
   lg=strlen(t);  FILE  *ficresvpl;
   for(j=0; j<p; j++) {  char fileresvpl[FILENAMELENGTH];
     (u[j] = t[j]);  char title[MAXLINE];
   }  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
      u[p]='\0';  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   char tmpout[FILENAMELENGTH]; 
    for(j=0; j<= lg; j++) {  char command[FILENAMELENGTH];
     if (j>=(p+1))(v[j-p-1] = t[j]);  int  outcmd=0;
   }  
 }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   char lfileres[FILENAMELENGTH];
 /********************** nrerror ********************/  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
 void nrerror(char error_text[])  char fileregp[FILENAMELENGTH];
 {  char popfile[FILENAMELENGTH];
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
   exit(1);  
 }  #define NR_END 1
 /*********************** vector *******************/  #define FREE_ARG char*
 double *vector(int nl, int nh)  #define FTOL 1.0e-10
 {  
   double *v;  #define NRANSI 
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #define ITMAX 200 
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;  #define TOL 2.0e-4 
 }  
   #define CGOLD 0.3819660 
 /************************ free vector ******************/  #define ZEPS 1.0e-10 
 void free_vector(double*v, int nl, int nh)  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 {  
   free((FREE_ARG)(v+nl-NR_END));  #define GOLD 1.618034 
 }  #define GLIMIT 100.0 
   #define TINY 1.0e-20 
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)  static double maxarg1,maxarg2;
 {  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   int *v;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    
   if (!v) nrerror("allocation failure in ivector");  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   return v-nl+NR_END;  #define rint(a) floor(a+0.5)
 }  
   static double sqrarg;
 /******************free ivector **************************/  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 void free_ivector(int *v, long nl, long nh)  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 {  
   free((FREE_ARG)(v+nl-NR_END));  int imx; 
 }  int stepm;
   /* Stepm, step in month: minimum step interpolation*/
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)  int estepm;
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  int m,nb;
   int **m;  long *num;
    int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   /* allocate pointers to rows */  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  double **pmmij, ***probs;
   if (!m) nrerror("allocation failure 1 in matrix()");  double dateintmean=0;
   m += NR_END;  
   m -= nrl;  double *weight;
    int **s; /* Status */
    double *agedc, **covar, idx;
   /* allocate rows and set pointers to them */  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   m[nrl] += NR_END;  double ftolhess; /* Tolerance for computing hessian */
   m[nrl] -= ncl;  
    /**************** split *************************/
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
    {
   /* return pointer to array of pointers to rows */    char  *ss;                            /* pointer */
   return m;    int   l1, l2;                         /* length counters */
 }  
     l1 = strlen(path );                   /* length of path */
 /****************** free_imatrix *************************/    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 void free_imatrix(m,nrl,nrh,ncl,nch)    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       int **m;    if ( ss == NULL ) {                   /* no directory, so use current */
       long nch,ncl,nrh,nrl;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
      /* free an int matrix allocated by imatrix() */        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 {      /* get current working directory */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));      /*    extern  char* getcwd ( char *buf , int len);*/
   free((FREE_ARG) (m+nrl-NR_END));      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 }        return( GLOCK_ERROR_GETCWD );
       }
 /******************* matrix *******************************/      strcpy( name, path );               /* we've got it */
 double **matrix(long nrl, long nrh, long ncl, long nch)    } else {                              /* strip direcotry from path */
 {      ss++;                               /* after this, the filename */
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;      l2 = strlen( ss );                  /* length of filename */
   double **m;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   if (!m) nrerror("allocation failure 1 in matrix()");      dirc[l1-l2] = 0;                    /* add zero */
   m += NR_END;    }
   m -= nrl;    l1 = strlen( dirc );                  /* length of directory */
     /*#ifdef windows
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #else
   m[nrl] += NR_END;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   m[nrl] -= ncl;  #endif
     */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    ss = strrchr( name, '.' );            /* find last / */
   return m;    ss++;
 }    strcpy(ext,ss);                       /* save extension */
     l1= strlen( name);
 /*************************free matrix ************************/    l2= strlen(ss)+1;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    strncpy( finame, name, l1-l2);
 {    finame[l1-l2]= 0;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    return( 0 );                          /* we're done */
   free((FREE_ARG)(m+nrl-NR_END));  }
 }  
   
 /******************* ma3x *******************************/  /******************************************/
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  void replace(char *s, char*t)
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  {
   double ***m;    int i;
     int lg=20;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    i=0;
   if (!m) nrerror("allocation failure 1 in matrix()");    lg=strlen(t);
   m += NR_END;    for(i=0; i<= lg; i++) {
   m -= nrl;      (s[i] = t[i]);
       if (t[i]== '\\') s[i]='/';
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  }
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  int nbocc(char *s, char occ)
   {
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    int i,j=0;
     int lg=20;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    i=0;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    lg=strlen(s);
   m[nrl][ncl] += NR_END;    for(i=0; i<= lg; i++) {
   m[nrl][ncl] -= nll;    if  (s[i] == occ ) j++;
   for (j=ncl+1; j<=nch; j++)    }
     m[nrl][j]=m[nrl][j-1]+nlay;    return j;
    }
   for (i=nrl+1; i<=nrh; i++) {  
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  void cutv(char *u,char *v, char*t, char occ)
     for (j=ncl+1; j<=nch; j++)  {
       m[i][j]=m[i][j-1]+nlay;    /* cuts string t into u and v where u is ended by char occ excluding it
   }       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   return m;       gives u="abcedf" and v="ghi2j" */
 }    int i,lg,j,p=0;
     i=0;
 /*************************free ma3x ************************/    for(j=0; j<=strlen(t)-1; j++) {
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 {    }
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    lg=strlen(t);
   free((FREE_ARG)(m+nrl-NR_END));    for(j=0; j<p; j++) {
 }      (u[j] = t[j]);
     }
 /***************** f1dim *************************/       u[p]='\0';
 extern int ncom;  
 extern double *pcom,*xicom;     for(j=0; j<= lg; j++) {
 extern double (*nrfunc)(double []);      if (j>=(p+1))(v[j-p-1] = t[j]);
      }
 double f1dim(double x)  }
 {  
   int j;  /********************** nrerror ********************/
   double f;  
   double *xt;  void nrerror(char error_text[])
    {
   xt=vector(1,ncom);    fprintf(stderr,"ERREUR ...\n");
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    fprintf(stderr,"%s\n",error_text);
   f=(*nrfunc)(xt);    exit(EXIT_FAILURE);
   free_vector(xt,1,ncom);  }
   return f;  /*********************** vector *******************/
 }  double *vector(int nl, int nh)
   {
 /*****************brent *************************/    double *v;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 {    if (!v) nrerror("allocation failure in vector");
   int iter;    return v-nl+NR_END;
   double a,b,d,etemp;  }
   double fu,fv,fw,fx;  
   double ftemp;  /************************ free vector ******************/
   double p,q,r,tol1,tol2,u,v,w,x,xm;  void free_vector(double*v, int nl, int nh)
   double e=0.0;  {
      free((FREE_ARG)(v+nl-NR_END));
   a=(ax < cx ? ax : cx);  }
   b=(ax > cx ? ax : cx);  
   x=w=v=bx;  /************************ivector *******************************/
   fw=fv=fx=(*f)(x);  int *ivector(long nl,long nh)
   for (iter=1;iter<=ITMAX;iter++) {  {
     xm=0.5*(a+b);    int *v;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    if (!v) nrerror("allocation failure in ivector");
     printf(".");fflush(stdout);    return v-nl+NR_END;
 #ifdef DEBUG  }
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  /******************free ivector **************************/
 #endif  void free_ivector(int *v, long nl, long nh)
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  {
       *xmin=x;    free((FREE_ARG)(v+nl-NR_END));
       return fx;  }
     }  
     ftemp=fu;  /************************lvector *******************************/
     if (fabs(e) > tol1) {  long *lvector(long nl,long nh)
       r=(x-w)*(fx-fv);  {
       q=(x-v)*(fx-fw);    long *v;
       p=(x-v)*q-(x-w)*r;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       q=2.0*(q-r);    if (!v) nrerror("allocation failure in ivector");
       if (q > 0.0) p = -p;    return v-nl+NR_END;
       q=fabs(q);  }
       etemp=e;  
       e=d;  /******************free lvector **************************/
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  void free_lvector(long *v, long nl, long nh)
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  {
       else {    free((FREE_ARG)(v+nl-NR_END));
         d=p/q;  }
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)  /******************* imatrix *******************************/
           d=SIGN(tol1,xm-x);  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     } else {  { 
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     }    int **m; 
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    
     fu=(*f)(u);    /* allocate pointers to rows */ 
     if (fu <= fx) {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       if (u >= x) a=x; else b=x;    if (!m) nrerror("allocation failure 1 in matrix()"); 
       SHFT(v,w,x,u)    m += NR_END; 
         SHFT(fv,fw,fx,fu)    m -= nrl; 
         } else {    
           if (u < x) a=u; else b=u;    
           if (fu <= fw || w == x) {    /* allocate rows and set pointers to them */ 
             v=w;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
             w=u;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
             fv=fw;    m[nrl] += NR_END; 
             fw=fu;    m[nrl] -= ncl; 
           } else if (fu <= fv || v == x || v == w) {    
             v=u;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
             fv=fu;    
           }    /* return pointer to array of pointers to rows */ 
         }    return m; 
   }  } 
   nrerror("Too many iterations in brent");  
   *xmin=x;  /****************** free_imatrix *************************/
   return fx;  void free_imatrix(m,nrl,nrh,ncl,nch)
 }        int **m;
         long nch,ncl,nrh,nrl; 
 /****************** mnbrak ***********************/       /* free an int matrix allocated by imatrix() */ 
   { 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
             double (*func)(double))    free((FREE_ARG) (m+nrl-NR_END)); 
 {  } 
   double ulim,u,r,q, dum;  
   double fu;  /******************* matrix *******************************/
    double **matrix(long nrl, long nrh, long ncl, long nch)
   *fa=(*func)(*ax);  {
   *fb=(*func)(*bx);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   if (*fb > *fa) {    double **m;
     SHFT(dum,*ax,*bx,dum)  
       SHFT(dum,*fb,*fa,dum)    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       }    if (!m) nrerror("allocation failure 1 in matrix()");
   *cx=(*bx)+GOLD*(*bx-*ax);    m += NR_END;
   *fc=(*func)(*cx);    m -= nrl;
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     q=(*bx-*cx)*(*fb-*fa);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    m[nrl] += NR_END;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    m[nrl] -= ncl;
     ulim=(*bx)+GLIMIT*(*cx-*bx);  
     if ((*bx-u)*(u-*cx) > 0.0) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       fu=(*func)(u);    return m;
     } else if ((*cx-u)*(u-ulim) > 0.0) {    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
       fu=(*func)(u);     */
       if (fu < *fc) {  }
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  
           SHFT(*fb,*fc,fu,(*func)(u))  /*************************free matrix ************************/
           }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  {
       u=ulim;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       fu=(*func)(u);    free((FREE_ARG)(m+nrl-NR_END));
     } else {  }
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);  /******************* ma3x *******************************/
     }  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     SHFT(*ax,*bx,*cx,u)  {
       SHFT(*fa,*fb,*fc,fu)    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       }    double ***m;
 }  
     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 /*************** linmin ************************/    if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
 int ncom;    m -= nrl;
 double *pcom,*xicom;  
 double (*nrfunc)(double []);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
      if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    m[nrl] += NR_END;
 {    m[nrl] -= ncl;
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double f1dim(double x);  
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
               double *fc, double (*func)(double));    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   int j;    m[nrl][ncl] += NR_END;
   double xx,xmin,bx,ax;    m[nrl][ncl] -= nll;
   double fx,fb,fa;    for (j=ncl+1; j<=nch; j++) 
        m[nrl][j]=m[nrl][j-1]+nlay;
   ncom=n;    
   pcom=vector(1,n);    for (i=nrl+1; i<=nrh; i++) {
   xicom=vector(1,n);      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   nrfunc=func;      for (j=ncl+1; j<=nch; j++) 
   for (j=1;j<=n;j++) {        m[i][j]=m[i][j-1]+nlay;
     pcom[j]=p[j];    }
     xicom[j]=xi[j];    return m; 
   }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   ax=0.0;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   xx=1.0;    */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  }
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  
 #ifdef DEBUG  /*************************free ma3x ************************/
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 #endif  {
   for (j=1;j<=n;j++) {    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     xi[j] *= xmin;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     p[j] += xi[j];    free((FREE_ARG)(m+nrl-NR_END));
   }  }
   free_vector(xicom,1,n);  
   free_vector(pcom,1,n);  /***************** f1dim *************************/
 }  extern int ncom; 
   extern double *pcom,*xicom;
 /*************** powell ************************/  extern double (*nrfunc)(double []); 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,   
             double (*func)(double []))  double f1dim(double x) 
 {  { 
   void linmin(double p[], double xi[], int n, double *fret,    int j; 
               double (*func)(double []));    double f;
   int i,ibig,j;    double *xt; 
   double del,t,*pt,*ptt,*xit;   
   double fp,fptt;    xt=vector(1,ncom); 
   double *xits;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
   pt=vector(1,n);    f=(*nrfunc)(xt); 
   ptt=vector(1,n);    free_vector(xt,1,ncom); 
   xit=vector(1,n);    return f; 
   xits=vector(1,n);  } 
   *fret=(*func)(p);  
   for (j=1;j<=n;j++) pt[j]=p[j];  /*****************brent *************************/
   for (*iter=1;;++(*iter)) {  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     fp=(*fret);  { 
     ibig=0;    int iter; 
     del=0.0;    double a,b,d,etemp;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    double fu,fv,fw,fx;
     for (i=1;i<=n;i++)    double ftemp;
       printf(" %d %.12f",i, p[i]);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     printf("\n");    double e=0.0; 
     for (i=1;i<=n;i++) {   
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    a=(ax < cx ? ax : cx); 
       fptt=(*fret);    b=(ax > cx ? ax : cx); 
 #ifdef DEBUG    x=w=v=bx; 
       printf("fret=%lf \n",*fret);    fw=fv=fx=(*f)(x); 
 #endif    for (iter=1;iter<=ITMAX;iter++) { 
       printf("%d",i);fflush(stdout);      xm=0.5*(a+b); 
       linmin(p,xit,n,fret,func);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
       if (fabs(fptt-(*fret)) > del) {      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         del=fabs(fptt-(*fret));      printf(".");fflush(stdout);
         ibig=i;      fprintf(ficlog,".");fflush(ficlog);
       }  #ifdef DEBUG
 #ifdef DEBUG      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       printf("%d %.12e",i,(*fret));      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       for (j=1;j<=n;j++) {      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  #endif
         printf(" x(%d)=%.12e",j,xit[j]);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
       }        *xmin=x; 
       for(j=1;j<=n;j++)        return fx; 
         printf(" p=%.12e",p[j]);      } 
       printf("\n");      ftemp=fu;
 #endif      if (fabs(e) > tol1) { 
     }        r=(x-w)*(fx-fv); 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {        q=(x-v)*(fx-fw); 
 #ifdef DEBUG        p=(x-v)*q-(x-w)*r; 
       int k[2],l;        q=2.0*(q-r); 
       k[0]=1;        if (q > 0.0) p = -p; 
       k[1]=-1;        q=fabs(q); 
       printf("Max: %.12e",(*func)(p));        etemp=e; 
       for (j=1;j<=n;j++)        e=d; 
         printf(" %.12e",p[j]);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       printf("\n");          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       for(l=0;l<=1;l++) {        else { 
         for (j=1;j<=n;j++) {          d=p/q; 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];          u=x+d; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);          if (u-a < tol2 || b-u < tol2) 
         }            d=SIGN(tol1,xm-x); 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        } 
       }      } else { 
 #endif        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       free_vector(xit,1,n);      fu=(*f)(u); 
       free_vector(xits,1,n);      if (fu <= fx) { 
       free_vector(ptt,1,n);        if (u >= x) a=x; else b=x; 
       free_vector(pt,1,n);        SHFT(v,w,x,u) 
       return;          SHFT(fv,fw,fx,fu) 
     }          } else { 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");            if (u < x) a=u; else b=u; 
     for (j=1;j<=n;j++) {            if (fu <= fw || w == x) { 
       ptt[j]=2.0*p[j]-pt[j];              v=w; 
       xit[j]=p[j]-pt[j];              w=u; 
       pt[j]=p[j];              fv=fw; 
     }              fw=fu; 
     fptt=(*func)(ptt);            } else if (fu <= fv || v == x || v == w) { 
     if (fptt < fp) {              v=u; 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);              fv=fu; 
       if (t < 0.0) {            } 
         linmin(p,xit,n,fret,func);          } 
         for (j=1;j<=n;j++) {    } 
           xi[j][ibig]=xi[j][n];    nrerror("Too many iterations in brent"); 
           xi[j][n]=xit[j];    *xmin=x; 
         }    return fx; 
 #ifdef DEBUG  } 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++)  /****************** mnbrak ***********************/
           printf(" %.12e",xit[j]);  
         printf("\n");  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 #endif              double (*func)(double)) 
       }  { 
     }    double ulim,u,r,q, dum;
   }    double fu; 
 }   
     *fa=(*func)(*ax); 
 /**** Prevalence limit ****************/    *fb=(*func)(*bx); 
     if (*fb > *fa) { 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)      SHFT(dum,*ax,*bx,dum) 
 {        SHFT(dum,*fb,*fa,dum) 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit        } 
      matrix by transitions matrix until convergence is reached */    *cx=(*bx)+GOLD*(*bx-*ax); 
     *fc=(*func)(*cx); 
   int i, ii,j,k;    while (*fb > *fc) { 
   double min, max, maxmin, maxmax,sumnew=0.;      r=(*bx-*ax)*(*fb-*fc); 
   double **matprod2();      q=(*bx-*cx)*(*fb-*fa); 
   double **out, cov[NCOVMAX], **pmij();      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   double **newm;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   double agefin, delaymax=50 ; /* Max number of years to converge */      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       if ((*bx-u)*(u-*cx) > 0.0) { 
   for (ii=1;ii<=nlstate+ndeath;ii++)        fu=(*func)(u); 
     for (j=1;j<=nlstate+ndeath;j++){      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        fu=(*func)(u); 
     }        if (fu < *fc) { 
           SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
    cov[1]=1.;            SHFT(*fb,*fc,fu,(*func)(u)) 
              } 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        u=ulim; 
     newm=savm;        fu=(*func)(u); 
     /* Covariates have to be included here again */      } else { 
      cov[2]=agefin;        u=(*cx)+GOLD*(*cx-*bx); 
          fu=(*func)(u); 
       for (k=1; k<=cptcovn;k++) {      } 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];      SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
 /*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/        } 
       }  } 
       for (k=1; k<=cptcovage;k++)  
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /*************** linmin ************************/
      
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  int ncom; 
   double *pcom,*xicom;
     savm=oldm;  double (*nrfunc)(double []); 
     oldm=newm;   
     maxmax=0.;  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     for(j=1;j<=nlstate;j++){  { 
       min=1.;    double brent(double ax, double bx, double cx, 
       max=0.;                 double (*f)(double), double tol, double *xmin); 
       for(i=1; i<=nlstate; i++) {    double f1dim(double x); 
         sumnew=0;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];                double *fc, double (*func)(double)); 
         prlim[i][j]= newm[i][j]/(1-sumnew);    int j; 
         max=FMAX(max,prlim[i][j]);    double xx,xmin,bx,ax; 
         min=FMIN(min,prlim[i][j]);    double fx,fb,fa;
       }   
       maxmin=max-min;    ncom=n; 
       maxmax=FMAX(maxmax,maxmin);    pcom=vector(1,n); 
     }    xicom=vector(1,n); 
     if(maxmax < ftolpl){    nrfunc=func; 
       return prlim;    for (j=1;j<=n;j++) { 
     }      pcom[j]=p[j]; 
   }      xicom[j]=xi[j]; 
 }    } 
     ax=0.0; 
 /*************** transition probabilities **********/    xx=1.0; 
     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 {  #ifdef DEBUG
   double s1, s2;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   /*double t34;*/    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   int i,j,j1, nc, ii, jj;  #endif
     for (j=1;j<=n;j++) { 
     for(i=1; i<= nlstate; i++){      xi[j] *= xmin; 
     for(j=1; j<i;j++){      p[j] += xi[j]; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    } 
         /*s2 += param[i][j][nc]*cov[nc];*/    free_vector(xicom,1,n); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    free_vector(pcom,1,n); 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/  } 
       }  
       ps[i][j]=s2;  /*************** powell ************************/
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     }              double (*func)(double [])) 
     for(j=i+1; j<=nlstate+ndeath;j++){  { 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    void linmin(double p[], double xi[], int n, double *fret, 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];                double (*func)(double [])); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    int i,ibig,j; 
       }    double del,t,*pt,*ptt,*xit;
       ps[i][j]=s2;    double fp,fptt;
     }    double *xits;
   }    pt=vector(1,n); 
   for(i=1; i<= nlstate; i++){    ptt=vector(1,n); 
      s1=0;    xit=vector(1,n); 
     for(j=1; j<i; j++)    xits=vector(1,n); 
       s1+=exp(ps[i][j]);    *fret=(*func)(p); 
     for(j=i+1; j<=nlstate+ndeath; j++)    for (j=1;j<=n;j++) pt[j]=p[j]; 
       s1+=exp(ps[i][j]);    for (*iter=1;;++(*iter)) { 
     ps[i][i]=1./(s1+1.);      fp=(*fret); 
     for(j=1; j<i; j++)      ibig=0; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];      del=0.0; 
     for(j=i+1; j<=nlstate+ndeath; j++)      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       ps[i][j]= exp(ps[i][j])*ps[i][i];      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      fprintf(ficrespow,"%d %.12f",*iter,*fret);
   } /* end i */      for (i=1;i<=n;i++) {
         printf(" %d %.12f",i, p[i]);
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        fprintf(ficlog," %d %.12lf",i, p[i]);
     for(jj=1; jj<= nlstate+ndeath; jj++){        fprintf(ficrespow," %.12lf", p[i]);
       ps[ii][jj]=0;      }
       ps[ii][ii]=1;      printf("\n");
     }      fprintf(ficlog,"\n");
   }      fprintf(ficrespow,"\n");
       for (i=1;i<=n;i++) { 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     for(jj=1; jj<= nlstate+ndeath; jj++){        fptt=(*fret); 
      printf("%lf ",ps[ii][jj]);  #ifdef DEBUG
    }        printf("fret=%lf \n",*fret);
     printf("\n ");        fprintf(ficlog,"fret=%lf \n",*fret);
     }  #endif
     printf("\n ");printf("%lf ",cov[2]);*/        printf("%d",i);fflush(stdout);
 /*        fprintf(ficlog,"%d",i);fflush(ficlog);
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        linmin(p,xit,n,fret,func); 
   goto end;*/        if (fabs(fptt-(*fret)) > del) { 
     return ps;          del=fabs(fptt-(*fret)); 
 }          ibig=i; 
         } 
 /**************** Product of 2 matrices ******************/  #ifdef DEBUG
         printf("%d %.12e",i,(*fret));
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        fprintf(ficlog,"%d %.12e",i,(*fret));
 {        for (j=1;j<=n;j++) {
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */          printf(" x(%d)=%.12e",j,xit[j]);
   /* in, b, out are matrice of pointers which should have been initialized          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
      before: only the contents of out is modified. The function returns        }
      a pointer to pointers identical to out */        for(j=1;j<=n;j++) {
   long i, j, k;          printf(" p=%.12e",p[j]);
   for(i=nrl; i<= nrh; i++)          fprintf(ficlog," p=%.12e",p[j]);
     for(k=ncolol; k<=ncoloh; k++)        }
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        printf("\n");
         out[i][k] +=in[i][j]*b[j][k];        fprintf(ficlog,"\n");
   #endif
   return out;      } 
 }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   #ifdef DEBUG
         int k[2],l;
 /************* Higher Matrix Product ***************/        k[0]=1;
         k[1]=-1;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        printf("Max: %.12e",(*func)(p));
 {        fprintf(ficlog,"Max: %.12e",(*func)(p));
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month        for (j=1;j<=n;j++) {
      duration (i.e. until          printf(" %.12e",p[j]);
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.          fprintf(ficlog," %.12e",p[j]);
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        }
      (typically every 2 years instead of every month which is too big).        printf("\n");
      Model is determined by parameters x and covariates have to be        fprintf(ficlog,"\n");
      included manually here.        for(l=0;l<=1;l++) {
           for (j=1;j<=n;j++) {
      */            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   int i, j, d, h, k;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double **out, cov[NCOVMAX];          }
   double **newm;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   /* Hstepm could be zero and should return the unit matrix */        }
   for (i=1;i<=nlstate+ndeath;i++)  #endif
     for (j=1;j<=nlstate+ndeath;j++){  
       oldm[i][j]=(i==j ? 1.0 : 0.0);  
       po[i][j][0]=(i==j ? 1.0 : 0.0);        free_vector(xit,1,n); 
     }        free_vector(xits,1,n); 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        free_vector(ptt,1,n); 
   for(h=1; h <=nhstepm; h++){        free_vector(pt,1,n); 
     for(d=1; d <=hstepm; d++){        return; 
       newm=savm;      } 
       /* Covariates have to be included here again */      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       cov[1]=1.;      for (j=1;j<=n;j++) { 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        ptt[j]=2.0*p[j]-pt[j]; 
       if (cptcovn>0){        xit[j]=p[j]-pt[j]; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];        pt[j]=p[j]; 
     }      } 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      fptt=(*func)(ptt); 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/      if (fptt < fp) { 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        if (t < 0.0) { 
       savm=oldm;          linmin(p,xit,n,fret,func); 
       oldm=newm;          for (j=1;j<=n;j++) { 
     }            xi[j][ibig]=xi[j][n]; 
     for(i=1; i<=nlstate+ndeath; i++)            xi[j][n]=xit[j]; 
       for(j=1;j<=nlstate+ndeath;j++) {          }
         po[i][j][h]=newm[i][j];  #ifdef DEBUG
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
          */          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       }          for(j=1;j<=n;j++){
   } /* end h */            printf(" %.12e",xit[j]);
   return po;            fprintf(ficlog," %.12e",xit[j]);
 }          }
           printf("\n");
           fprintf(ficlog,"\n");
 /*************** log-likelihood *************/  #endif
 double func( double *x)        }
 {      } 
   int i, ii, j, k, mi, d, kk;    } 
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  } 
   double **out;  
   double sw; /* Sum of weights */  /**** Prevalence limit (stable prevalence)  ****************/
   double lli; /* Individual log likelihood */  
   long ipmx;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   /*extern weight */  {
   /* We are differentiating ll according to initial status */    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/       matrix by transitions matrix until convergence is reached */
   /*for(i=1;i<imx;i++)  
 printf(" %d\n",s[4][i]);    int i, ii,j,k;
   */    double min, max, maxmin, maxmax,sumnew=0.;
   cov[1]=1.;    double **matprod2();
     double **out, cov[NCOVMAX], **pmij();
   for(k=1; k<=nlstate; k++) ll[k]=0.;    double **newm;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    double agefin, delaymax=50 ; /* Max number of years to converge */
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
        for(mi=1; mi<= wav[i]-1; mi++){    for (ii=1;ii<=nlstate+ndeath;ii++)
       for (ii=1;ii<=nlstate+ndeath;ii++)      for (j=1;j<=nlstate+ndeath;j++){
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             for(d=0; d<dh[mi][i]; d++){      }
               newm=savm;  
               cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;     cov[1]=1.;
               for (kk=1; kk<=cptcovage;kk++) {   
                  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
                  /*printf("%d %d",kk,Tage[kk]);*/    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
               }      newm=savm;
               /*cov[4]=covar[1][i]*cov[2];scanf("%d", i);*/      /* Covariates have to be included here again */
               /*cov[3]=pow(cov[2],2)/1000.;*/       cov[2]=agefin;
     
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        for (k=1; k<=cptcovn;k++) {
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           savm=oldm;          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
           oldm=newm;        }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
       } /* end mult */          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
      
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       ipmx +=1;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       sw += weight[i];      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  
     } /* end of wave */      savm=oldm;
   } /* end of individual */      oldm=newm;
       maxmax=0.;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      for(j=1;j<=nlstate;j++){
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        min=1.;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        max=0.;
   return -l;        for(i=1; i<=nlstate; i++) {
 }          sumnew=0;
           for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           prlim[i][j]= newm[i][j]/(1-sumnew);
 /*********** Maximum Likelihood Estimation ***************/          max=FMAX(max,prlim[i][j]);
           min=FMIN(min,prlim[i][j]);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        }
 {        maxmin=max-min;
   int i,j, iter;        maxmax=FMAX(maxmax,maxmin);
   double **xi,*delti;      }
   double fret;      if(maxmax < ftolpl){
   xi=matrix(1,npar,1,npar);        return prlim;
   for (i=1;i<=npar;i++)      }
     for (j=1;j<=npar;j++)    }
       xi[i][j]=(i==j ? 1.0 : 0.0);  }
   printf("Powell\n");  
   powell(p,xi,npar,ftol,&iter,&fret,func);  /*************** transition probabilities ***************/ 
   
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));  {
     double s1, s2;
 }    /*double t34;*/
     int i,j,j1, nc, ii, jj;
 /**** Computes Hessian and covariance matrix ***/  
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))      for(i=1; i<= nlstate; i++){
 {      for(j=1; j<i;j++){
   double  **a,**y,*x,pd;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   double **hess;          /*s2 += param[i][j][nc]*cov[nc];*/
   int i, j,jk;          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   int *indx;          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
         }
   double hessii(double p[], double delta, int theta, double delti[]);        ps[i][j]=s2;
   double hessij(double p[], double delti[], int i, int j);        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   void lubksb(double **a, int npar, int *indx, double b[]) ;      }
   void ludcmp(double **a, int npar, int *indx, double *d) ;      for(j=i+1; j<=nlstate+ndeath;j++){
         for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   hess=matrix(1,npar,1,npar);          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
         }
   printf("\nCalculation of the hessian matrix. Wait...\n");        ps[i][j]=s2;
   for (i=1;i<=npar;i++){      }
     printf("%d",i);fflush(stdout);    }
     hess[i][i]=hessii(p,ftolhess,i,delti);      /*ps[3][2]=1;*/
     /*printf(" %f ",p[i]);*/  
   }    for(i=1; i<= nlstate; i++){
        s1=0;
   for (i=1;i<=npar;i++) {      for(j=1; j<i; j++)
     for (j=1;j<=npar;j++)  {        s1+=exp(ps[i][j]);
       if (j>i) {      for(j=i+1; j<=nlstate+ndeath; j++)
         printf(".%d%d",i,j);fflush(stdout);        s1+=exp(ps[i][j]);
         hess[i][j]=hessij(p,delti,i,j);      ps[i][i]=1./(s1+1.);
         hess[j][i]=hess[i][j];      for(j=1; j<i; j++)
       }        ps[i][j]= exp(ps[i][j])*ps[i][i];
     }      for(j=i+1; j<=nlstate+ndeath; j++)
   }        ps[i][j]= exp(ps[i][j])*ps[i][i];
   printf("\n");      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     } /* end i */
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  
      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   a=matrix(1,npar,1,npar);      for(jj=1; jj<= nlstate+ndeath; jj++){
   y=matrix(1,npar,1,npar);        ps[ii][jj]=0;
   x=vector(1,npar);        ps[ii][ii]=1;
   indx=ivector(1,npar);      }
   for (i=1;i<=npar;i++)    }
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  
   ludcmp(a,npar,indx,&pd);  
     /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   for (j=1;j<=npar;j++) {      for(jj=1; jj<= nlstate+ndeath; jj++){
     for (i=1;i<=npar;i++) x[i]=0;       printf("%lf ",ps[ii][jj]);
     x[j]=1;     }
     lubksb(a,npar,indx,x);      printf("\n ");
     for (i=1;i<=npar;i++){      }
       matcov[i][j]=x[i];      printf("\n ");printf("%lf ",cov[2]);*/
     }  /*
   }    for(i=1; i<= npar; i++) printf("%f ",x[i]);
     goto end;*/
   printf("\n#Hessian matrix#\n");      return ps;
   for (i=1;i<=npar;i++) {  }
     for (j=1;j<=npar;j++) {  
       printf("%.3e ",hess[i][j]);  /**************** Product of 2 matrices ******************/
     }  
     printf("\n");  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   }  {
     /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   /* Recompute Inverse */       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   for (i=1;i<=npar;i++)    /* in, b, out are matrice of pointers which should have been initialized 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];       before: only the contents of out is modified. The function returns
   ludcmp(a,npar,indx,&pd);       a pointer to pointers identical to out */
     long i, j, k;
   /*  printf("\n#Hessian matrix recomputed#\n");    for(i=nrl; i<= nrh; i++)
       for(k=ncolol; k<=ncoloh; k++)
   for (j=1;j<=npar;j++) {        for(j=ncl,out[i][k]=0.; j<=nch; j++)
     for (i=1;i<=npar;i++) x[i]=0;          out[i][k] +=in[i][j]*b[j][k];
     x[j]=1;  
     lubksb(a,npar,indx,x);    return out;
     for (i=1;i<=npar;i++){  }
       y[i][j]=x[i];  
       printf("%.3e ",y[i][j]);  
     }  /************* Higher Matrix Product ***************/
     printf("\n");  
   }  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   */  {
     /* Computes the transition matrix starting at age 'age' over 
   free_matrix(a,1,npar,1,npar);       'nhstepm*hstepm*stepm' months (i.e. until
   free_matrix(y,1,npar,1,npar);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
   free_vector(x,1,npar);       nhstepm*hstepm matrices. 
   free_ivector(indx,1,npar);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   free_matrix(hess,1,npar,1,npar);       (typically every 2 years instead of every month which is too big 
        for the memory).
        Model is determined by parameters x and covariates have to be 
 }       included manually here. 
   
 /*************** hessian matrix ****************/       */
 double hessii( double x[], double delta, int theta, double delti[])  
 {    int i, j, d, h, k;
   int i;    double **out, cov[NCOVMAX];
   int l=1, lmax=20;    double **newm;
   double k1,k2;  
   double p2[NPARMAX+1];    /* Hstepm could be zero and should return the unit matrix */
   double res;    for (i=1;i<=nlstate+ndeath;i++)
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;      for (j=1;j<=nlstate+ndeath;j++){
   double fx;        oldm[i][j]=(i==j ? 1.0 : 0.0);
   int k=0,kmax=10;        po[i][j][0]=(i==j ? 1.0 : 0.0);
   double l1;      }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   fx=func(x);    for(h=1; h <=nhstepm; h++){
   for (i=1;i<=npar;i++) p2[i]=x[i];      for(d=1; d <=hstepm; d++){
   for(l=0 ; l <=lmax; l++){        newm=savm;
     l1=pow(10,l);        /* Covariates have to be included here again */
     delts=delt;        cov[1]=1.;
     for(k=1 ; k <kmax; k=k+1){        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
       delt = delta*(l1*k);        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       p2[theta]=x[theta] +delt;        for (k=1; k<=cptcovage;k++)
       k1=func(p2)-fx;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       p2[theta]=x[theta]-delt;        for (k=1; k<=cptcovprod;k++)
       k2=func(p2)-fx;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       /*res= (k1-2.0*fx+k2)/delt/delt; */  
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  
              /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 #ifdef DEBUG        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
 #endif                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        savm=oldm;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        oldm=newm;
         k=kmax;      }
       }      for(i=1; i<=nlstate+ndeath; i++)
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        for(j=1;j<=nlstate+ndeath;j++) {
         k=kmax; l=lmax*10.;          po[i][j][h]=newm[i][j];
       }          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){           */
         delts=delt;        }
       }    } /* end h */
     }    return po;
   }  }
   delti[theta]=delts;  
   return res;  
    /*************** log-likelihood *************/
 }  double func( double *x)
   {
 double hessij( double x[], double delti[], int thetai,int thetaj)    int i, ii, j, k, mi, d, kk;
 {    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   int i;    double **out;
   int l=1, l1, lmax=20;    double sw; /* Sum of weights */
   double k1,k2,k3,k4,res,fx;    double lli; /* Individual log likelihood */
   double p2[NPARMAX+1];    int s1, s2;
   int k;    double bbh, survp;
     long ipmx;
   fx=func(x);    /*extern weight */
   for (k=1; k<=2; k++) {    /* We are differentiating ll according to initial status */
     for (i=1;i<=npar;i++) p2[i]=x[i];    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     p2[thetai]=x[thetai]+delti[thetai]/k;    /*for(i=1;i<imx;i++) 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      printf(" %d\n",s[4][i]);
     k1=func(p2)-fx;    */
      cov[1]=1.;
     p2[thetai]=x[thetai]+delti[thetai]/k;  
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    for(k=1; k<=nlstate; k++) ll[k]=0.;
     k2=func(p2)-fx;  
      if(mle==1){
     p2[thetai]=x[thetai]-delti[thetai]/k;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     k3=func(p2)-fx;        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
     p2[thetai]=x[thetai]-delti[thetai]/k;            for (j=1;j<=nlstate+ndeath;j++){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     k4=func(p2)-fx;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */            }
 #ifdef DEBUG          for(d=0; d<dh[mi][i]; d++){
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);            newm=savm;
 #endif            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
   return res;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /************** Inverse of matrix **************/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 void ludcmp(double **a, int n, int *indx, double *d)            savm=oldm;
 {            oldm=newm;
   int i,imax,j,k;          } /* end mult */
   double big,dum,sum,temp;        
   double *vv;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
            /* But now since version 0.9 we anticipate for bias and large stepm.
   vv=vector(1,n);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   *d=1.0;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   for (i=1;i<=n;i++) {           * the nearest (and in case of equal distance, to the lowest) interval but now
     big=0.0;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     for (j=1;j<=n;j++)           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       if ((temp=fabs(a[i][j])) > big) big=temp;           * probability in order to take into account the bias as a fraction of the way
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     vv[i]=1.0/big;           * -stepm/2 to stepm/2 .
   }           * For stepm=1 the results are the same as for previous versions of Imach.
   for (j=1;j<=n;j++) {           * For stepm > 1 the results are less biased than in previous versions. 
     for (i=1;i<j;i++) {           */
       sum=a[i][j];          s1=s[mw[mi][i]][i];
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          s2=s[mw[mi+1][i]][i];
       a[i][j]=sum;          bbh=(double)bh[mi][i]/(double)stepm; 
     }          /* bias is positive if real duration
     big=0.0;           * is higher than the multiple of stepm and negative otherwise.
     for (i=j;i<=n;i++) {           */
       sum=a[i][j];          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       for (k=1;k<j;k++)          if( s2 > nlstate){ 
         sum -= a[i][k]*a[k][j];            /* i.e. if s2 is a death state and if the date of death is known then the contribution
       a[i][j]=sum;               to the likelihood is the probability to die between last step unit time and current 
       if ( (dum=vv[i]*fabs(sum)) >= big) {               step unit time, which is also the differences between probability to die before dh 
         big=dum;               and probability to die before dh-stepm . 
         imax=i;               In version up to 0.92 likelihood was computed
       }          as if date of death was unknown. Death was treated as any other
     }          health state: the date of the interview describes the actual state
     if (j != imax) {          and not the date of a change in health state. The former idea was
       for (k=1;k<=n;k++) {          to consider that at each interview the state was recorded
         dum=a[imax][k];          (healthy, disable or death) and IMaCh was corrected; but when we
         a[imax][k]=a[j][k];          introduced the exact date of death then we should have modified
         a[j][k]=dum;          the contribution of an exact death to the likelihood. This new
       }          contribution is smaller and very dependent of the step unit
       *d = -(*d);          stepm. It is no more the probability to die between last interview
       vv[imax]=vv[j];          and month of death but the probability to survive from last
     }          interview up to one month before death multiplied by the
     indx[j]=imax;          probability to die within a month. Thanks to Chris
     if (a[j][j] == 0.0) a[j][j]=TINY;          Jackson for correcting this bug.  Former versions increased
     if (j != n) {          mortality artificially. The bad side is that we add another loop
       dum=1.0/(a[j][j]);          which slows down the processing. The difference can be up to 10%
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          lower mortality.
     }            */
   }            lli=log(out[s1][s2] - savm[s1][s2]);
   free_vector(vv,1,n);  /* Doesn't work */          }else{
 ;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           } 
 void lubksb(double **a, int n, int *indx, double b[])          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 {          /*if(lli ==000.0)*/
   int i,ii=0,ip,j;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   double sum;          ipmx +=1;
            sw += weight[i];
   for (i=1;i<=n;i++) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     ip=indx[i];        } /* end of wave */
     sum=b[ip];      } /* end of individual */
     b[ip]=b[i];    }  else if(mle==2){
     if (ii)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     else if (sum) ii=i;        for(mi=1; mi<= wav[i]-1; mi++){
     b[i]=sum;          for (ii=1;ii<=nlstate+ndeath;ii++)
   }            for (j=1;j<=nlstate+ndeath;j++){
   for (i=n;i>=1;i--) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     sum=b[i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];            }
     b[i]=sum/a[i][i];          for(d=0; d<=dh[mi][i]; d++){
   }            newm=savm;
 }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
 /************ Frequencies ********************/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)            }
 {  /* Some frequencies */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;            savm=oldm;
   double ***freq; /* Frequencies */            oldm=newm;
   double *pp;          } /* end mult */
   double pos;        
   FILE *ficresp;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   char fileresp[FILENAMELENGTH];          /* But now since version 0.9 we anticipate for bias and large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay 
   pp=vector(1,nlstate);           * (in months) between two waves is not a multiple of stepm, we rounded to 
            * the nearest (and in case of equal distance, to the lowest) interval but now
   strcpy(fileresp,"p");           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   strcat(fileresp,fileres);           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   if((ficresp=fopen(fileresp,"w"))==NULL) {           * probability in order to take into account the bias as a fraction of the way
     printf("Problem with prevalence resultfile: %s\n", fileresp);           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     exit(0);           * -stepm/2 to stepm/2 .
   }           * For stepm=1 the results are the same as for previous versions of Imach.
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);           * For stepm > 1 the results are less biased than in previous versions. 
   j1=0;           */
           s1=s[mw[mi][i]][i];
   j=cptcovn;          s2=s[mw[mi+1][i]][i];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          bbh=(double)bh[mi][i]/(double)stepm; 
           /* bias is positive if real duration
   for(k1=1; k1<=j;k1++){           * is higher than the multiple of stepm and negative otherwise.
    for(i1=1; i1<=ncodemax[k1];i1++){           */
        j1++;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         for (i=-1; i<=nlstate+ndeath; i++)            /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
          for (jk=-1; jk<=nlstate+ndeath; jk++)            /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
            for(m=agemin; m <= agemax+3; m++)          /*if(lli ==000.0)*/
              freq[i][jk][m]=0;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
                  ipmx +=1;
        for (i=1; i<=imx; i++) {          sw += weight[i];
          bool=1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          if  (cptcovn>0) {        } /* end of wave */
            for (z1=1; z1<=cptcovn; z1++)      } /* end of individual */
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;    }  else if(mle==3){  /* exponential inter-extrapolation */
          }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           if (bool==1) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
            for(m=firstpass; m<=lastpass-1; m++){        for(mi=1; mi<= wav[i]-1; mi++){
              if(agev[m][i]==0) agev[m][i]=agemax+1;          for (ii=1;ii<=nlstate+ndeath;ii++)
              if(agev[m][i]==1) agev[m][i]=agemax+2;            for (j=1;j<=nlstate+ndeath;j++){
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];              savm[ii][j]=(ii==j ? 1.0 : 0.0);
            }            }
          }          for(d=0; d<dh[mi][i]; d++){
        }            newm=savm;
         if  (cptcovn>0) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
          fprintf(ficresp, "\n#Variable");            for (kk=1; kk<=cptcovage;kk++) {
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        }            }
        fprintf(ficresp, "\n#");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
        for(i=1; i<=nlstate;i++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);            savm=oldm;
        fprintf(ficresp, "\n");            oldm=newm;
                  } /* end mult */
   for(i=(int)agemin; i <= (int)agemax+3; i++){        
     if(i==(int)agemax+3)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       printf("Total");          /* But now since version 0.9 we anticipate for bias and large stepm.
     else           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       printf("Age %d", i);           * (in months) between two waves is not a multiple of stepm, we rounded to 
     for(jk=1; jk <=nlstate ; jk++){           * the nearest (and in case of equal distance, to the lowest) interval but now
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
         pp[jk] += freq[jk][m][i];           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     }           * probability in order to take into account the bias as a fraction of the way
     for(jk=1; jk <=nlstate ; jk++){           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       for(m=-1, pos=0; m <=0 ; m++)           * -stepm/2 to stepm/2 .
         pos += freq[jk][m][i];           * For stepm=1 the results are the same as for previous versions of Imach.
       if(pp[jk]>=1.e-10)           * For stepm > 1 the results are less biased than in previous versions. 
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);           */
       else          s1=s[mw[mi][i]][i];
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);          s2=s[mw[mi+1][i]][i];
     }          bbh=(double)bh[mi][i]/(double)stepm; 
     for(jk=1; jk <=nlstate ; jk++){          /* bias is positive if real duration
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)           * is higher than the multiple of stepm and negative otherwise.
         pp[jk] += freq[jk][m][i];           */
     }          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
     for(jk=1,pos=0; jk <=nlstate ; jk++)          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       pos += pp[jk];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     for(jk=1; jk <=nlstate ; jk++){          /*if(lli ==000.0)*/
       if(pos>=1.e-5)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          ipmx +=1;
       else          sw += weight[i];
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       if( i <= (int) agemax){        } /* end of wave */
         if(pos>=1.e-5)      } /* end of individual */
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       else      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       }        for(mi=1; mi<= wav[i]-1; mi++){
     }          for (ii=1;ii<=nlstate+ndeath;ii++)
     for(jk=-1; jk <=nlstate+ndeath; jk++)            for (j=1;j<=nlstate+ndeath;j++){
       for(m=-1; m <=nlstate+ndeath; m++)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     if(i <= (int) agemax)            }
       fprintf(ficresp,"\n");          for(d=0; d<dh[mi][i]; d++){
     printf("\n");            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
  }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
   fclose(ficresp);          
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   free_vector(pp,1,nlstate);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 }  /* End of Freq */            oldm=newm;
           } /* end mult */
 /************* Waves Concatenation ***************/        
           s1=s[mw[mi][i]][i];
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          s2=s[mw[mi+1][i]][i];
 {          if( s2 > nlstate){ 
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            lli=log(out[s1][s2] - savm[s1][s2]);
      Death is a valid wave (if date is known).          }else{
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          }
      and mw[mi+1][i]. dh depends on stepm.          ipmx +=1;
      */          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int i, mi, m;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;        } /* end of wave */
 float sum=0.;      } /* end of individual */
     }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   for(i=1; i<=imx; i++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     mi=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     m=firstpass;        for(mi=1; mi<= wav[i]-1; mi++){
     while(s[m][i] <= nlstate){          for (ii=1;ii<=nlstate+ndeath;ii++)
       if(s[m][i]>=1)            for (j=1;j<=nlstate+ndeath;j++){
         mw[++mi][i]=m;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       if(m >=lastpass)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         break;            }
       else          for(d=0; d<dh[mi][i]; d++){
         m++;            newm=savm;
     }/* end while */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     if (s[m][i] > nlstate){            for (kk=1; kk<=cptcovage;kk++) {
       mi++;     /* Death is another wave */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       /* if(mi==0)  never been interviewed correctly before death */            }
          /* Only death is a correct wave */          
       mw[mi][i]=m;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
     wav[i]=mi;            oldm=newm;
     if(mi==0)          } /* end mult */
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        
   }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   for(i=1; i<=imx; i++){          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     for(mi=1; mi<wav[i];mi++){          ipmx +=1;
       if (stepm <=0)          sw += weight[i];
         dh[mi][i]=1;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       else{          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         if (s[mw[mi+1][i]][i] > nlstate) {        } /* end of wave */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      } /* end of individual */
           if(j=0) j=1;  /* Survives at least one month after exam */    } /* End of if */
         }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         else{    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           k=k+1;    return -l;
           if (j >= jmax) jmax=j;  }
           else if (j <= jmin)jmin=j;  
           sum=sum+j;  /*************** log-likelihood *************/
         }  double funcone( double *x)
         jk= j/stepm;  {
         jl= j -jk*stepm;    /* Same as likeli but slower because of a lot of printf and if */
         ju= j -(jk+1)*stepm;    int i, ii, j, k, mi, d, kk;
         if(jl <= -ju)    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           dh[mi][i]=jk;    double **out;
         else    double lli; /* Individual log likelihood */
           dh[mi][i]=jk+1;    double llt;
         if(dh[mi][i]==0)    int s1, s2;
           dh[mi][i]=1; /* At least one step */    double bbh, survp;
       }    /*extern weight */
     }    /* We are differentiating ll according to initial status */
   }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);    /*for(i=1;i<imx;i++) 
 }      printf(" %d\n",s[4][i]);
 /*********** Tricode ****************************/    */
 void tricode(int *Tvar, int **nbcode, int imx)    cov[1]=1.;
 {  
   int Ndum[80],ij=1, k, j, i, Ntvar[20];    for(k=1; k<=nlstate; k++) ll[k]=0.;
   int cptcode=0;  
   for (k=0; k<79; k++) Ndum[k]=0;    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for (k=1; k<=7; k++) ncodemax[k]=0;      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(mi=1; mi<= wav[i]-1; mi++){
   for (j=1; j<=cptcovn; j++) {        for (ii=1;ii<=nlstate+ndeath;ii++)
     for (i=1; i<=imx; i++) {          for (j=1;j<=nlstate+ndeath;j++){
       ij=(int)(covar[Tvar[j]][i]);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       Ndum[ij]++;            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       if (ij > cptcode) cptcode=ij;          }
     }        for(d=0; d<dh[mi][i]; d++){
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/          newm=savm;
     for (i=0; i<=cptcode; i++) {          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       if(Ndum[i]!=0) ncodemax[j]++;          for (kk=1; kk<=cptcovage;kk++) {
     }            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
            }
     ij=1;          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for (i=1; i<=ncodemax[j]; i++) {                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       for (k=0; k<=79; k++) {          savm=oldm;
         if (Ndum[k] != 0) {          oldm=newm;
           nbcode[Tvar[j]][ij]=k;        } /* end mult */
           ij++;        
         }        s1=s[mw[mi][i]][i];
         if (ij > ncodemax[j]) break;        s2=s[mw[mi+1][i]][i];
       }          bbh=(double)bh[mi][i]/(double)stepm; 
     }        /* bias is positive if real duration
   }           * is higher than the multiple of stepm and negative otherwise.
           */
 }        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
 /*********** Health Expectancies ****************/        } else if (mle==1){
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)        } else if(mle==2){
 {          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   /* Health expectancies */        } else if(mle==3){  /* exponential inter-extrapolation */
   int i, j, nhstepm, hstepm, h;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   double age, agelim,hf;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   double ***p3mat;          lli=log(out[s1][s2]); /* Original formula */
          } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
   fprintf(ficreseij,"# Health expectancies\n");          lli=log(out[s1][s2]); /* Original formula */
   fprintf(ficreseij,"# Age");        } /* End of if */
   for(i=1; i<=nlstate;i++)        ipmx +=1;
     for(j=1; j<=nlstate;j++)        sw += weight[i];
       fprintf(ficreseij," %1d-%1d",i,j);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   fprintf(ficreseij,"\n");  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         if(globpr){
   hstepm=1*YEARM; /*  Every j years of age (in month) */          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */   %10.6f %10.6f %10.6f ", \
                   num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   agelim=AGESUP;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
     /* nhstepm age range expressed in number of stepm */            llt +=ll[k]*gipmx/gsw;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
     /* Typically if 20 years = 20*12/6=40 stepm */          }
     if (stepm >= YEARM) hstepm=1;          fprintf(ficresilk," %10.6f\n", -llt);
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */        }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      } /* end of wave */
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    } /* end of individual */
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);      /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
     if(globpr==0){ /* First time we count the contributions and weights */
     for(i=1; i<=nlstate;i++)      gipmx=ipmx;
       for(j=1; j<=nlstate;j++)      gsw=sw;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){    }
           eij[i][j][(int)age] +=p3mat[i][j][h];    return -l;
         }  }
      
     hf=1;  char *subdirf(char fileres[])
     if (stepm >= YEARM) hf=stepm/YEARM;  {
     fprintf(ficreseij,"%.0f",age );    
     for(i=1; i<=nlstate;i++)    strcpy(tmpout,optionfilefiname);
       for(j=1; j<=nlstate;j++){    strcat(tmpout,"/"); /* Add to the right */
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);    strcat(tmpout,fileres);
       }    return tmpout;
     fprintf(ficreseij,"\n");  }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
   }  char *subdirf2(char fileres[], char *preop)
 }  {
     
 /************ Variance ******************/    strcpy(tmpout,optionfilefiname);
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    strcat(tmpout,"/");
 {    strcat(tmpout,preop);
   /* Variance of health expectancies */    strcat(tmpout,fileres);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    return tmpout;
   double **newm;  }
   double **dnewm,**doldm;  char *subdirf3(char fileres[], char *preop, char *preop2)
   int i, j, nhstepm, hstepm, h;  {
   int k, cptcode;    
    double *xp;    strcpy(tmpout,optionfilefiname);
   double **gp, **gm;    strcat(tmpout,"/");
   double ***gradg, ***trgradg;    strcat(tmpout,preop);
   double ***p3mat;    strcat(tmpout,preop2);
   double age,agelim;    strcat(tmpout,fileres);
   int theta;    return tmpout;
   }
    fprintf(ficresvij,"# Covariances of life expectancies\n");  
   fprintf(ficresvij,"# Age");  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   for(i=1; i<=nlstate;i++)  {
     for(j=1; j<=nlstate;j++)    /* This routine should help understanding what is done with 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);       the selection of individuals/waves and
   fprintf(ficresvij,"\n");       to check the exact contribution to the likelihood.
        Plotting could be done.
   xp=vector(1,npar);     */
   dnewm=matrix(1,nlstate,1,npar);    int k;
   doldm=matrix(1,nlstate,1,nlstate);  
      if(*globpri !=0){ /* Just counts and sums, no printings */
   hstepm=1*YEARM; /* Every year of age */      strcpy(fileresilk,"ilk"); 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      strcat(fileresilk,fileres);
   agelim = AGESUP;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        printf("Problem with resultfile: %s\n", fileresilk);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
     if (stepm >= YEARM) hstepm=1;      }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
     gp=matrix(0,nhstepm,1,nlstate);      for(k=1; k<=nlstate; k++) 
     gm=matrix(0,nhstepm,1,nlstate);        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     for(theta=1; theta <=npar; theta++){    }
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    *fretone=(*funcone)(p);
       }    if(*globpri !=0){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        fclose(ficresilk);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       for(j=1; j<= nlstate; j++){      fflush(fichtm); 
         for(h=0; h<=nhstepm; h++){    } 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    return;
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  }
         }  
       }  
      /*********** Maximum Likelihood Estimation ***************/
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int i,j, iter;
       for(j=1; j<= nlstate; j++){    double **xi;
         for(h=0; h<=nhstepm; h++){    double fret;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    double fretone; /* Only one call to likelihood */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    char filerespow[FILENAMELENGTH];
         }    xi=matrix(1,npar,1,npar);
       }    for (i=1;i<=npar;i++)
       for(j=1; j<= nlstate; j++)      for (j=1;j<=npar;j++)
         for(h=0; h<=nhstepm; h++){        xi[i][j]=(i==j ? 1.0 : 0.0);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         }    strcpy(filerespow,"pow"); 
     } /* End theta */    strcat(filerespow,fileres);
     if((ficrespow=fopen(filerespow,"w"))==NULL) {
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      printf("Problem with resultfile: %s\n", filerespow);
       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     for(h=0; h<=nhstepm; h++)    }
       for(j=1; j<=nlstate;j++)    fprintf(ficrespow,"# Powell\n# iter -2*LL");
         for(theta=1; theta <=npar; theta++)    for (i=1;i<=nlstate;i++)
           trgradg[h][j][theta]=gradg[h][theta][j];      for(j=1;j<=nlstate+ndeath;j++)
         if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     for(i=1;i<=nlstate;i++)    fprintf(ficrespow,"\n");
       for(j=1;j<=nlstate;j++)  
         vareij[i][j][(int)age] =0.;    powell(p,xi,npar,ftol,&iter,&fret,func);
     for(h=0;h<=nhstepm;h++){  
       for(k=0;k<=nhstepm;k++){    fclose(ficrespow);
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         for(i=1;i<=nlstate;i++)    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           for(j=1;j<=nlstate;j++)  
             vareij[i][j][(int)age] += doldm[i][j];  }
       }  
     }  /**** Computes Hessian and covariance matrix ***/
     h=1;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
     if (stepm >= YEARM) h=stepm/YEARM;  {
     fprintf(ficresvij,"%.0f ",age );    double  **a,**y,*x,pd;
     for(i=1; i<=nlstate;i++)    double **hess;
       for(j=1; j<=nlstate;j++){    int i, j,jk;
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);    int *indx;
       }  
     fprintf(ficresvij,"\n");    double hessii(double p[], double delta, int theta, double delti[]);
     free_matrix(gp,0,nhstepm,1,nlstate);    double hessij(double p[], double delti[], int i, int j);
     free_matrix(gm,0,nhstepm,1,nlstate);    void lubksb(double **a, int npar, int *indx, double b[]) ;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    void ludcmp(double **a, int npar, int *indx, double *d) ;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);  
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    hess=matrix(1,npar,1,npar);
   } /* End age */  
      printf("\nCalculation of the hessian matrix. Wait...\n");
   free_vector(xp,1,npar);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   free_matrix(doldm,1,nlstate,1,npar);    for (i=1;i<=npar;i++){
   free_matrix(dnewm,1,nlstate,1,nlstate);      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
 }      hess[i][i]=hessii(p,ftolhess,i,delti);
       /*printf(" %f ",p[i]);*/
 /************ Variance of prevlim ******************/      /*printf(" %lf ",hess[i][i]);*/
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    }
 {    
   /* Variance of prevalence limit */    for (i=1;i<=npar;i++) {
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/      for (j=1;j<=npar;j++)  {
   double **newm;        if (j>i) { 
   double **dnewm,**doldm;          printf(".%d%d",i,j);fflush(stdout);
   int i, j, nhstepm, hstepm;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   int k, cptcode;          hess[i][j]=hessij(p,delti,i,j);
   double *xp;          hess[j][i]=hess[i][j];    
   double *gp, *gm;          /*printf(" %lf ",hess[i][j]);*/
   double **gradg, **trgradg;        }
   double age,agelim;      }
   int theta;    }
        printf("\n");
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    fprintf(ficlog,"\n");
   fprintf(ficresvpl,"# Age");  
   for(i=1; i<=nlstate;i++)    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
       fprintf(ficresvpl," %1d-%1d",i,i);    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   fprintf(ficresvpl,"\n");    
     a=matrix(1,npar,1,npar);
   xp=vector(1,npar);    y=matrix(1,npar,1,npar);
   dnewm=matrix(1,nlstate,1,npar);    x=vector(1,npar);
   doldm=matrix(1,nlstate,1,nlstate);    indx=ivector(1,npar);
      for (i=1;i<=npar;i++)
   hstepm=1*YEARM; /* Every year of age */      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    ludcmp(a,npar,indx,&pd);
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    for (j=1;j<=npar;j++) {
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      for (i=1;i<=npar;i++) x[i]=0;
     if (stepm >= YEARM) hstepm=1;      x[j]=1;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      lubksb(a,npar,indx,x);
     gradg=matrix(1,npar,1,nlstate);      for (i=1;i<=npar;i++){ 
     gp=vector(1,nlstate);        matcov[i][j]=x[i];
     gm=vector(1,nlstate);      }
     }
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */    printf("\n#Hessian matrix#\n");
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    fprintf(ficlog,"\n#Hessian matrix#\n");
       }    for (i=1;i<=npar;i++) { 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for (j=1;j<=npar;j++) { 
       for(i=1;i<=nlstate;i++)        printf("%.3e ",hess[i][j]);
         gp[i] = prlim[i][i];        fprintf(ficlog,"%.3e ",hess[i][j]);
          }
       for(i=1; i<=npar; i++) /* Computes gradient */      printf("\n");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      fprintf(ficlog,"\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    }
       for(i=1;i<=nlstate;i++)  
         gm[i] = prlim[i][i];    /* Recompute Inverse */
     for (i=1;i<=npar;i++)
       for(i=1;i<=nlstate;i++)      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    ludcmp(a,npar,indx,&pd);
     } /* End theta */  
     /*  printf("\n#Hessian matrix recomputed#\n");
     trgradg =matrix(1,nlstate,1,npar);  
     for (j=1;j<=npar;j++) {
     for(j=1; j<=nlstate;j++)      for (i=1;i<=npar;i++) x[i]=0;
       for(theta=1; theta <=npar; theta++)      x[j]=1;
         trgradg[j][theta]=gradg[theta][j];      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
     for(i=1;i<=nlstate;i++)        y[i][j]=x[i];
       varpl[i][(int)age] =0.;        printf("%.3e ",y[i][j]);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        fprintf(ficlog,"%.3e ",y[i][j]);
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      }
     for(i=1;i<=nlstate;i++)      printf("\n");
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      fprintf(ficlog,"\n");
     }
     fprintf(ficresvpl,"%.0f ",age );    */
     for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    free_matrix(a,1,npar,1,npar);
     fprintf(ficresvpl,"\n");    free_matrix(y,1,npar,1,npar);
     free_vector(gp,1,nlstate);    free_vector(x,1,npar);
     free_vector(gm,1,nlstate);    free_ivector(indx,1,npar);
     free_matrix(gradg,1,npar,1,nlstate);    free_matrix(hess,1,npar,1,npar);
     free_matrix(trgradg,1,nlstate,1,npar);  
   } /* End age */  
   }
   free_vector(xp,1,npar);  
   free_matrix(doldm,1,nlstate,1,npar);  /*************** hessian matrix ****************/
   free_matrix(dnewm,1,nlstate,1,nlstate);  double hessii( double x[], double delta, int theta, double delti[])
   {
 }    int i;
     int l=1, lmax=20;
     double k1,k2;
     double p2[NPARMAX+1];
 /***********************************************/    double res;
 /**************** Main Program *****************/    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
 /***********************************************/    double fx;
     int k=0,kmax=10;
 /*int main(int argc, char *argv[])*/    double l1;
 int main()  
 {    fx=func(x);
     for (i=1;i<=npar;i++) p2[i]=x[i];
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;    for(l=0 ; l <=lmax; l++){
   double agedeb, agefin,hf;      l1=pow(10,l);
   double agemin=1.e20, agemax=-1.e20;      delts=delt;
       for(k=1 ; k <kmax; k=k+1){
   double fret;        delt = delta*(l1*k);
   double **xi,tmp,delta;        p2[theta]=x[theta] +delt;
         k1=func(p2)-fx;
   double dum; /* Dummy variable */        p2[theta]=x[theta]-delt;
   double ***p3mat;        k2=func(p2)-fx;
   int *indx;        /*res= (k1-2.0*fx+k2)/delt/delt; */
   char line[MAXLINE], linepar[MAXLINE];        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
   char title[MAXLINE];        
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  #ifdef DEBUG
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   char filerest[FILENAMELENGTH];        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   char fileregp[FILENAMELENGTH];  #endif
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   int firstobs=1, lastobs=10;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   int sdeb, sfin; /* Status at beginning and end */          k=kmax;
   int c,  h , cpt,l;        }
   int ju,jl, mi;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize;          k=kmax; l=lmax*10.;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        }
          else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   int hstepm, nhstepm;          delts=delt;
   double bage, fage, age, agelim, agebase;        }
   double ftolpl=FTOL;      }
   double **prlim;    }
   double *severity;    delti[theta]=delts;
   double ***param; /* Matrix of parameters */    return res; 
   double  *p;    
   double **matcov; /* Matrix of covariance */  }
   double ***delti3; /* Scale */  
   double *delti; /* Scale */  double hessij( double x[], double delti[], int thetai,int thetaj)
   double ***eij, ***vareij;  {
   double **varpl; /* Variances of prevalence limits by age */    int i;
   double *epj, vepp;    int l=1, l1, lmax=20;
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";    double k1,k2,k3,k4,res,fx;
   char *alph[]={"a","a","b","c","d","e"}, str[4];    double p2[NPARMAX+1];
     int k;
   char z[1]="c", occ;  
 #include <sys/time.h>    fx=func(x);
 #include <time.h>    for (k=1; k<=2; k++) {
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];      for (i=1;i<=npar;i++) p2[i]=x[i];
   /* long total_usecs;      p2[thetai]=x[thetai]+delti[thetai]/k;
   struct timeval start_time, end_time;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
        k1=func(p2)-fx;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    
       p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   printf("\nIMACH, Version 0.64a");      k2=func(p2)-fx;
   printf("\nEnter the parameter file name: ");    
       p2[thetai]=x[thetai]-delti[thetai]/k;
 #ifdef windows      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   scanf("%s",pathtot);      k3=func(p2)-fx;
   getcwd(pathcd, size);    
   /*cygwin_split_path(pathtot,path,optionfile);      p2[thetai]=x[thetai]-delti[thetai]/k;
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   /* cutv(path,optionfile,pathtot,'\\');*/      k4=func(p2)-fx;
       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 split(pathtot, path,optionfile);  #ifdef DEBUG
   chdir(path);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   replace(pathc,path);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 #endif  #endif
 #ifdef unix    }
   scanf("%s",optionfile);    return res;
 #endif  }
   
 /*-------- arguments in the command line --------*/  /************** Inverse of matrix **************/
   void ludcmp(double **a, int n, int *indx, double *d) 
   strcpy(fileres,"r");  { 
   strcat(fileres, optionfile);    int i,imax,j,k; 
     double big,dum,sum,temp; 
   /*---------arguments file --------*/    double *vv; 
    
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    vv=vector(1,n); 
     printf("Problem with optionfile %s\n",optionfile);    *d=1.0; 
     goto end;    for (i=1;i<=n;i++) { 
   }      big=0.0; 
       for (j=1;j<=n;j++) 
   strcpy(filereso,"o");        if ((temp=fabs(a[i][j])) > big) big=temp; 
   strcat(filereso,fileres);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   if((ficparo=fopen(filereso,"w"))==NULL) {      vv[i]=1.0/big; 
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    } 
   }    for (j=1;j<=n;j++) { 
       for (i=1;i<j;i++) { 
   /* Reads comments: lines beginning with '#' */        sum=a[i][j]; 
   while((c=getc(ficpar))=='#' && c!= EOF){        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
     ungetc(c,ficpar);        a[i][j]=sum; 
     fgets(line, MAXLINE, ficpar);      } 
     puts(line);      big=0.0; 
     fputs(line,ficparo);      for (i=j;i<=n;i++) { 
   }        sum=a[i][j]; 
   ungetc(c,ficpar);        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);        a[i][j]=sum; 
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);          big=dum; 
           imax=i; 
   covar=matrix(0,NCOVMAX,1,n);            } 
   if (strlen(model)<=1) cptcovn=0;      } 
   else {      if (j != imax) { 
     j=0;        for (k=1;k<=n;k++) { 
     j=nbocc(model,'+');          dum=a[imax][k]; 
     cptcovn=j+1;          a[imax][k]=a[j][k]; 
   }          a[j][k]=dum; 
         } 
   ncovmodel=2+cptcovn;        *d = -(*d); 
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        vv[imax]=vv[j]; 
        } 
   /* Read guess parameters */      indx[j]=imax; 
   /* Reads comments: lines beginning with '#' */      if (a[j][j] == 0.0) a[j][j]=TINY; 
   while((c=getc(ficpar))=='#' && c!= EOF){      if (j != n) { 
     ungetc(c,ficpar);        dum=1.0/(a[j][j]); 
     fgets(line, MAXLINE, ficpar);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     puts(line);      } 
     fputs(line,ficparo);    } 
   }    free_vector(vv,1,n);  /* Doesn't work */
   ungetc(c,ficpar);  ;
    } 
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
     for(i=1; i <=nlstate; i++)  void lubksb(double **a, int n, int *indx, double b[]) 
     for(j=1; j <=nlstate+ndeath-1; j++){  { 
       fscanf(ficpar,"%1d%1d",&i1,&j1);    int i,ii=0,ip,j; 
       fprintf(ficparo,"%1d%1d",i1,j1);    double sum; 
       printf("%1d%1d",i,j);   
       for(k=1; k<=ncovmodel;k++){    for (i=1;i<=n;i++) { 
         fscanf(ficpar," %lf",&param[i][j][k]);      ip=indx[i]; 
         printf(" %lf",param[i][j][k]);      sum=b[ip]; 
         fprintf(ficparo," %lf",param[i][j][k]);      b[ip]=b[i]; 
       }      if (ii) 
       fscanf(ficpar,"\n");        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       printf("\n");      else if (sum) ii=i; 
       fprintf(ficparo,"\n");      b[i]=sum; 
     }    } 
      for (i=n;i>=1;i--) { 
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;      sum=b[i]; 
   p=param[1][1];      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
        b[i]=sum/a[i][i]; 
   /* Reads comments: lines beginning with '#' */    } 
   while((c=getc(ficpar))=='#' && c!= EOF){  } 
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);  /************ Frequencies ********************/
     puts(line);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
     fputs(line,ficparo);  {  /* Some frequencies */
   }    
   ungetc(c,ficpar);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     int first;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    double ***freq; /* Frequencies */
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    double *pp, **prop;
   for(i=1; i <=nlstate; i++){    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     for(j=1; j <=nlstate+ndeath-1; j++){    FILE *ficresp;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    char fileresp[FILENAMELENGTH];
       printf("%1d%1d",i,j);    
       fprintf(ficparo,"%1d%1d",i1,j1);    pp=vector(1,nlstate);
       for(k=1; k<=ncovmodel;k++){    prop=matrix(1,nlstate,iagemin,iagemax+3);
         fscanf(ficpar,"%le",&delti3[i][j][k]);    strcpy(fileresp,"p");
         printf(" %le",delti3[i][j][k]);    strcat(fileresp,fileres);
         fprintf(ficparo," %le",delti3[i][j][k]);    if((ficresp=fopen(fileresp,"w"))==NULL) {
       }      printf("Problem with prevalence resultfile: %s\n", fileresp);
       fscanf(ficpar,"\n");      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       printf("\n");      exit(0);
       fprintf(ficparo,"\n");    }
     }    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
   }    j1=0;
   delti=delti3[1][1];    
      j=cptcoveff;
   /* Reads comments: lines beginning with '#' */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    first=1;
     fgets(line, MAXLINE, ficpar);  
     puts(line);    for(k1=1; k1<=j;k1++){
     fputs(line,ficparo);      for(i1=1; i1<=ncodemax[k1];i1++){
   }        j1++;
   ungetc(c,ficpar);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
            scanf("%d", i);*/
   matcov=matrix(1,npar,1,npar);        for (i=-1; i<=nlstate+ndeath; i++)  
   for(i=1; i <=npar; i++){          for (jk=-1; jk<=nlstate+ndeath; jk++)  
     fscanf(ficpar,"%s",&str);            for(m=iagemin; m <= iagemax+3; m++)
     printf("%s",str);              freq[i][jk][m]=0;
     fprintf(ficparo,"%s",str);  
     for(j=1; j <=i; j++){      for (i=1; i<=nlstate; i++)  
       fscanf(ficpar," %le",&matcov[i][j]);        for(m=iagemin; m <= iagemax+3; m++)
       printf(" %.5le",matcov[i][j]);          prop[i][m]=0;
       fprintf(ficparo," %.5le",matcov[i][j]);        
     }        dateintsum=0;
     fscanf(ficpar,"\n");        k2cpt=0;
     printf("\n");        for (i=1; i<=imx; i++) {
     fprintf(ficparo,"\n");          bool=1;
   }          if  (cptcovn>0) {
   for(i=1; i <=npar; i++)            for (z1=1; z1<=cptcoveff; z1++) 
     for(j=i+1;j<=npar;j++)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       matcov[i][j]=matcov[j][i];                bool=0;
              }
   printf("\n");          if (bool==1){
             for(m=firstpass; m<=lastpass; m++){
               k2=anint[m][i]+(mint[m][i]/12.);
     /*-------- data file ----------*/              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     if((ficres =fopen(fileres,"w"))==NULL) {                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       printf("Problem with resultfile: %s\n", fileres);goto end;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     fprintf(ficres,"#%s\n",version);                if (m<lastpass) {
                      freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     if((fic=fopen(datafile,"r"))==NULL)    {                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       printf("Problem with datafile: %s\n", datafile);goto end;                }
     }                
                 if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     n= lastobs;                  dateintsum=dateintsum+k2;
     severity = vector(1,maxwav);                  k2cpt++;
     outcome=imatrix(1,maxwav+1,1,n);                }
     num=ivector(1,n);                /*}*/
     moisnais=vector(1,n);            }
     annais=vector(1,n);          }
     moisdc=vector(1,n);        }
     andc=vector(1,n);         
     agedc=vector(1,n);        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
     cod=ivector(1,n);  
     weight=vector(1,n);        if  (cptcovn>0) {
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          fprintf(ficresp, "\n#********** Variable "); 
     mint=matrix(1,maxwav,1,n);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     anint=matrix(1,maxwav,1,n);          fprintf(ficresp, "**********\n#");
     s=imatrix(1,maxwav+1,1,n);        }
     adl=imatrix(1,maxwav+1,1,n);            for(i=1; i<=nlstate;i++) 
     tab=ivector(1,NCOVMAX);          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     ncodemax=ivector(1,8);        fprintf(ficresp, "\n");
         
     i=1;        for(i=iagemin; i <= iagemax+3; i++){
     while (fgets(line, MAXLINE, fic) != NULL)    {          if(i==iagemax+3){
       if ((i >= firstobs) && (i <=lastobs)) {            fprintf(ficlog,"Total");
                  }else{
         for (j=maxwav;j>=1;j--){            if(first==1){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);              first=0;
           strcpy(line,stra);              printf("See log file for details...\n");
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            }
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            fprintf(ficlog,"Age %d", i);
         }          }
                  for(jk=1; jk <=nlstate ; jk++){
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);              pp[jk] += freq[jk][m][i]; 
           }
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);          for(jk=1; jk <=nlstate ; jk++){
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);            for(m=-1, pos=0; m <=0 ; m++)
               pos += freq[jk][m][i];
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);            if(pp[jk]>=1.e-10){
         for (j=ncov;j>=1;j--){              if(first==1){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         }              }
         num[i]=atol(stra);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }else{
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/              if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
         i=i+1;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       }            }
     }          }
   
     /*scanf("%d",i);*/          for(jk=1; jk <=nlstate ; jk++){
   imx=i-1; /* Number of individuals */            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               pp[jk] += freq[jk][m][i];
   /* Calculation of the number of parameter from char model*/          }       
   Tvar=ivector(1,15);              for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   Tage=ivector(1,15);                  pos += pp[jk];
                posprop += prop[jk][i];
   if (strlen(model) >1){          }
     j=0, j1=0;          for(jk=1; jk <=nlstate ; jk++){
     j=nbocc(model,'+');            if(pos>=1.e-5){
     j1=nbocc(model,'*');              if(first==1)
     cptcovn=j+1;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                  fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     strcpy(modelsav,model);            }else{
     if (j==0) {              if(first==1)
       if (j1==0){                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
        cutv(stra,strb,modelsav,'V');              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
        Tvar[1]=atoi(strb);            }
       }            if( i <= iagemax){
       else if (j1==1) {              if(pos>=1.e-5){
        cutv(stra,strb,modelsav,'*');                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
        /*      printf("stra=%s strb=%s modelsav=%s ",stra,strb,modelsav);*/                /*probs[i][jk][j1]= pp[jk]/pos;*/
        Tage[1]=1; cptcovage++;                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
        if (strcmp(stra,"age")==0) {              }
          cutv(strd,strc,strb,'V');              else
          Tvar[1]=atoi(strc);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
        }            }
        else if (strcmp(strb,"age")==0) {          }
          cutv(strd,strc,stra,'V');          
          Tvar[1]=atoi(strc);          for(jk=-1; jk <=nlstate+ndeath; jk++)
        }            for(m=-1; m <=nlstate+ndeath; m++)
        else {printf("Error"); exit(0);}              if(freq[jk][m][i] !=0 ) {
       }              if(first==1)
     }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     else {                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
       for(i=j; i>=1;i--){              }
         cutv(stra,strb,modelsav,'+');          if(i <= iagemax)
         /*printf("%s %s %s\n", stra,strb,modelsav);*/            fprintf(ficresp,"\n");
         if (strchr(strb,'*')) {          if(first==1)
           cutv(strd,strc,strb,'*');            printf("Others in log...\n");
           if (strcmp(strc,"age")==0) {          fprintf(ficlog,"\n");
             cutv(strb,stre,strd,'V');        }
             Tvar[i+1]=atoi(stre);      }
             cptcovage++;    }
             Tage[cptcovage]=i+1;    dateintmean=dateintsum/k2cpt; 
             printf("stre=%s ", stre);   
           }    fclose(ficresp);
           else if (strcmp(strd,"age")==0) {    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
             cutv(strb,stre,strc,'V');    free_vector(pp,1,nlstate);
             Tvar[i+1]=atoi(stre);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
             cptcovage++;    /* End of Freq */
             Tage[cptcovage]=i+1;  }
           }  
           else {  /************ Prevalence ********************/
             cutv(strb,stre,strc,'V');  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
             Tvar[i+1]=ncov+1;  {  
             cutv(strb,strc,strd,'V');    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
             for (k=1; k<=lastobs;k++)       in each health status at the date of interview (if between dateprev1 and dateprev2).
               covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];       We still use firstpass and lastpass as another selection.
           }    */
         }   
         else {    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
           cutv(strd,strc,strb,'V');    double ***freq; /* Frequencies */
           /* printf("%s %s %s", strd,strc,strb);*/    double *pp, **prop;
     double pos,posprop; 
         Tvar[i+1]=atoi(strc);    double  y2; /* in fractional years */
         }    int iagemin, iagemax;
         strcpy(modelsav,stra);    
       }    iagemin= (int) agemin;
       cutv(strd,strc,stra,'V');    iagemax= (int) agemax;
       Tvar[1]=atoi(strc);    /*pp=vector(1,nlstate);*/
     }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   }    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
     j1=0;
   /* printf("tvar=%d %d cptcovage=%d %d",Tvar[1],Tvar[2],cptcovage,Tage[1]);    
      scanf("%d ",i);*/    j=cptcoveff;
     fclose(fic);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
    if(mle==1){    for(k1=1; k1<=j;k1++){
     if (weightopt != 1) { /* Maximisation without weights*/      for(i1=1; i1<=ncodemax[k1];i1++){
       for(i=1;i<=n;i++) weight[i]=1.0;        j1++;
     }        
     /*-calculation of age at interview from date of interview and age at death -*/        for (i=1; i<=nlstate; i++)  
     agev=matrix(1,maxwav,1,imx);          for(m=iagemin; m <= iagemax+3; m++)
                prop[i][m]=0.0;
     for (i=1; i<=imx; i++)  {       
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        for (i=1; i<=imx; i++) { /* Each individual */
       for(m=1; (m<= maxwav); m++){          bool=1;
         if(s[m][i] >0){          if  (cptcovn>0) {
           if (s[m][i] == nlstate+1) {            for (z1=1; z1<=cptcoveff; z1++) 
             if(agedc[i]>0)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
               if(moisdc[i]!=99 && andc[i]!=9999)                bool=0;
               agev[m][i]=agedc[i];          } 
             else{          if (bool==1) { 
               printf("Warning negative age at death: %d line:%d\n",num[i],i);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               agev[m][i]=-1;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
             }              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
           }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           else if(s[m][i] !=9){ /* Should no more exist */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
             if(mint[m][i]==99 || anint[m][i]==9999)                if (s[m][i]>0 && s[m][i]<=nlstate) { 
               agev[m][i]=1;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
             else if(agev[m][i] <agemin){                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
               agemin=agev[m][i];                  prop[s[m][i]][iagemax+3] += weight[i]; 
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                } 
             }              }
             else if(agev[m][i] >agemax){            } /* end selection of waves */
               agemax=agev[m][i];          }
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/        }
             }        for(i=iagemin; i <= iagemax+3; i++){  
             /*agev[m][i]=anint[m][i]-annais[i];*/          
             /*   agev[m][i] = age[i]+2*m;*/          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           }            posprop += prop[jk][i]; 
           else { /* =9 */          } 
             agev[m][i]=1;  
             s[m][i]=-1;          for(jk=1; jk <=nlstate ; jk++){     
           }            if( i <=  iagemax){ 
         }              if(posprop>=1.e-5){ 
         else /*= 0 Unknown */                probs[i][jk][j1]= prop[jk][i]/posprop;
           agev[m][i]=1;              } 
       }            } 
              }/* end jk */ 
     }        }/* end i */ 
     for (i=1; i<=imx; i++)  {      } /* end i1 */
       for(m=1; (m<= maxwav); m++){    } /* end k1 */
         if (s[m][i] > (nlstate+ndeath)) {    
           printf("Error: Wrong value in nlstate or ndeath\n");      /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
           goto end;    /*free_vector(pp,1,nlstate);*/
         }    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       }  }  /* End of prevalence */
     }  
   /************* Waves Concatenation ***************/
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);  
   void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     free_vector(severity,1,maxwav);  {
     free_imatrix(outcome,1,maxwav+1,1,n);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     free_vector(moisnais,1,n);       Death is a valid wave (if date is known).
     free_vector(annais,1,n);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     free_matrix(mint,1,maxwav,1,n);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     free_matrix(anint,1,maxwav,1,n);       and mw[mi+1][i]. dh depends on stepm.
     free_vector(moisdc,1,n);       */
     free_vector(andc,1,n);  
     int i, mi, m;
        /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
     wav=ivector(1,imx);       double sum=0., jmean=0.;*/
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    int first;
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    int j, k=0,jk, ju, jl;
        double sum=0.;
     /* Concatenates waves */    first=0;
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    jmin=1e+5;
     jmax=-1;
     jmean=0.;
       Tcode=ivector(1,100);    for(i=1; i<=imx; i++){
    nbcode=imatrix(1,nvar,1,8);        mi=0;
    ncodemax[1]=1;      m=firstpass;
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);      while(s[m][i] <= nlstate){
          if(s[m][i]>=1)
    codtab=imatrix(1,100,1,10);          mw[++mi][i]=m;
    h=0;        if(m >=lastpass)
    m=pow(2,cptcovn);          break;
          else
    for(k=1;k<=cptcovn; k++){          m++;
      for(i=1; i <=(m/pow(2,k));i++){      }/* end while */
        for(j=1; j <= ncodemax[k]; j++){      if (s[m][i] > nlstate){
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){        mi++;     /* Death is another wave */
            h++;        /* if(mi==0)  never been interviewed correctly before death */
            if (h>m) h=1;codtab[h][k]=j;           /* Only death is a correct wave */
          }        mw[mi][i]=m;
        }      }
      }  
    }      wav[i]=mi;
       if(mi==0){
    /* for(i=1; i <=m ;i++){        if(first==0){
      for(k=1; k <=cptcovn; k++){          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);          first=1;
      }        }
      printf("\n");        if(first==1){
    }          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
    scanf("%d",i);*/        }
          } /* end mi==0 */
    /* Calculates basic frequencies. Computes observed prevalence at single age    } /* End individuals */
        and prints on file fileres'p'. */  
    freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);    for(i=1; i<=imx; i++){
       for(mi=1; mi<wav[i];mi++){
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        if (stepm <=0)
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          dh[mi][i]=1;
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        else{
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            if (agedc[i] < 2*AGESUP) {
                  j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     /* For Powell, parameters are in a vector p[] starting at p[1]              if(j==0) j=1;  /* Survives at least one month after exam */
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */              else if(j<0){
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                    j=1; /* Careful Patch */
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
                 printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                    fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
     /*--------- results files --------------*/              }
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);              k=k+1;
                  if (j >= jmax) jmax=j;
    jk=1;              if (j <= jmin) jmin=j;
    fprintf(ficres,"# Parameters\n");              sum=sum+j;
    printf("# Parameters\n");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
    for(i=1,jk=1; i <=nlstate; i++){              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
      for(k=1; k <=(nlstate+ndeath); k++){            }
        if (k != i)          }
          {          else{
            printf("%d%d ",i,k);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
            fprintf(ficres,"%1d%1d ",i,k);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
            for(j=1; j <=ncovmodel; j++){            k=k+1;
              printf("%f ",p[jk]);            if (j >= jmax) jmax=j;
              fprintf(ficres,"%f ",p[jk]);            else if (j <= jmin)jmin=j;
              jk++;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
            }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
            printf("\n");            if(j<0){
            fprintf(ficres,"\n");              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
          }              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
      }            }
    }            sum=sum+j;
           }
     /* Computing hessian and covariance matrix */          jk= j/stepm;
     ftolhess=ftol; /* Usually correct */          jl= j -jk*stepm;
     hesscov(matcov, p, npar, delti, ftolhess, func);          ju= j -(jk+1)*stepm;
     fprintf(ficres,"# Scales\n");          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     printf("# Scales\n");            if(jl==0){
      for(i=1,jk=1; i <=nlstate; i++){              dh[mi][i]=jk;
       for(j=1; j <=nlstate+ndeath; j++){              bh[mi][i]=0;
         if (j!=i) {            }else{ /* We want a negative bias in order to only have interpolation ie
           fprintf(ficres,"%1d%1d",i,j);                    * at the price of an extra matrix product in likelihood */
           printf("%1d%1d",i,j);              dh[mi][i]=jk+1;
           for(k=1; k<=ncovmodel;k++){              bh[mi][i]=ju;
             printf(" %.5e",delti[jk]);            }
             fprintf(ficres," %.5e",delti[jk]);          }else{
             jk++;            if(jl <= -ju){
           }              dh[mi][i]=jk;
           printf("\n");              bh[mi][i]=jl;       /* bias is positive if real duration
           fprintf(ficres,"\n");                                   * is higher than the multiple of stepm and negative otherwise.
         }                                   */
       }            }
       }            else{
                  dh[mi][i]=jk+1;
     k=1;              bh[mi][i]=ju;
     fprintf(ficres,"# Covariance\n");            }
     printf("# Covariance\n");            if(dh[mi][i]==0){
     for(i=1;i<=npar;i++){              dh[mi][i]=1; /* At least one step */
       /*  if (k>nlstate) k=1;              bh[mi][i]=ju; /* At least one step */
       i1=(i-1)/(ncovmodel*nlstate)+1;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);            }
       printf("%s%d%d",alph[k],i1,tab[i]);*/          } /* end if mle */
       fprintf(ficres,"%3d",i);        }
       printf("%3d",i);      } /* end wave */
       for(j=1; j<=i;j++){    }
         fprintf(ficres," %.5e",matcov[i][j]);    jmean=sum/k;
         printf(" %.5e",matcov[i][j]);    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       }    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       fprintf(ficres,"\n");   }
       printf("\n");  
       k++;  /*********** Tricode ****************************/
     }  void tricode(int *Tvar, int **nbcode, int imx)
      {
     while((c=getc(ficpar))=='#' && c!= EOF){    
       ungetc(c,ficpar);    int Ndum[20],ij=1, k, j, i, maxncov=19;
       fgets(line, MAXLINE, ficpar);    int cptcode=0;
       puts(line);    cptcoveff=0; 
       fputs(line,ficparo);   
     }    for (k=0; k<maxncov; k++) Ndum[k]=0;
     ungetc(c,ficpar);    for (k=1; k<=7; k++) ncodemax[k]=0;
    
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
          for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
     if (fage <= 2) {                                 modality*/ 
       bage = agemin;        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
       fage = agemax;        Ndum[ij]++; /*store the modality */
     }        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");                                         Tvar[j]. If V=sex and male is 0 and 
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);                                         female is 1, then  cptcode=1.*/
 /*------------ gnuplot -------------*/      }
 chdir(pathcd);  
   if((ficgp=fopen("graph.plt","w"))==NULL) {      for (i=0; i<=cptcode; i++) {
     printf("Problem with file graph.gp");goto end;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   }      }
 #ifdef windows  
   fprintf(ficgp,"cd \"%s\" \n",pathc);      ij=1; 
 #endif      for (i=1; i<=ncodemax[j]; i++) {
 m=pow(2,cptcovn);        for (k=0; k<= maxncov; k++) {
            if (Ndum[k] != 0) {
  /* 1eme*/            nbcode[Tvar[j]][ij]=k; 
   for (cpt=1; cpt<= nlstate ; cpt ++) {            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
    for (k1=1; k1<= m ; k1 ++) {            
             ij++;
 #ifdef windows          }
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);          if (ij > ncodemax[j]) break; 
 #endif        }  
 #ifdef unix      } 
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);    }  
 #endif  
    for (k=0; k< maxncov; k++) Ndum[k]=0;
 for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");   for (i=1; i<=ncovmodel-2; i++) { 
   else fprintf(ficgp," \%%*lf (\%%*lf)");     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 }     ij=Tvar[i];
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);     Ndum[ij]++;
     for (i=1; i<= nlstate ; i ++) {   }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");   ij=1;
 }   for (i=1; i<= maxncov; i++) {
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);     if((Ndum[i]!=0) && (i<=ncovcol)){
      for (i=1; i<= nlstate ; i ++) {       Tvaraff[ij]=i; /*For printing */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");       ij++;
   else fprintf(ficgp," \%%*lf (\%%*lf)");     }
 }     }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));   
 #ifdef unix   cptcoveff=ij-1; /*Number of simple covariates*/
 fprintf(ficgp,"\nset ter gif small size 400,300");  }
 #endif  
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  /*********** Health Expectancies ****************/
    }  
   }  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
   /*2 eme*/  
   {
   for (k1=1; k1<= m ; k1 ++) {    /* Health expectancies */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
        double age, agelim, hf;
     for (i=1; i<= nlstate+1 ; i ++) {    double ***p3mat,***varhe;
       k=2*i;    double **dnewm,**doldm;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    double *xp;
       for (j=1; j<= nlstate+1 ; j ++) {    double **gp, **gm;
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    double ***gradg, ***trgradg;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    int theta;
 }    
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    xp=vector(1,npar);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    dnewm=matrix(1,nlstate*nlstate,1,npar);
       for (j=1; j<= nlstate+1 ; j ++) {    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    
         else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficreseij,"# Health expectancies\n");
 }      fprintf(ficreseij,"# Age");
       fprintf(ficgp,"\" t\"\" w l 0,");    for(i=1; i<=nlstate;i++)
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      for(j=1; j<=nlstate;j++)
       for (j=1; j<= nlstate+1 ; j ++) {        fprintf(ficreseij," %1d-%1d (SE)",i,j);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficreseij,"\n");
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }      if(estepm < stepm){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      printf ("Problem %d lower than %d\n",estepm, stepm);
       else fprintf(ficgp,"\" t\"\" w l 0,");    }
     }    else  hstepm=estepm;   
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    /* We compute the life expectancy from trapezoids spaced every estepm months
   }     * This is mainly to measure the difference between two models: for example
       * if stepm=24 months pijx are given only every 2 years and by summing them
   /*3eme*/     * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
   for (k1=1; k1<= m ; k1 ++) {     * to the curvature of the survival function. If, for the same date, we 
     for (cpt=1; cpt<= nlstate ; cpt ++) {     * estimate the model with stepm=1 month, we can keep estepm to 24 months
       k=2+nlstate*(cpt-1);     * to compare the new estimate of Life expectancy with the same linear 
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);     * hypothesis. A more precise result, taking into account a more precise
       for (i=1; i< nlstate ; i ++) {     * curvature will be obtained if estepm is as small as stepm. */
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);  
       }    /* For example we decided to compute the life expectancy with the smallest unit */
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     }       nhstepm is the number of hstepm from age to agelim 
   }       nstepm is the number of stepm from age to agelin. 
         Look at hpijx to understand the reason of that which relies in memory size
   /* CV preval stat */       and note for a fixed period like estepm months */
   for (k1=1; k1<= m ; k1 ++) {    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     for (cpt=1; cpt<nlstate ; cpt ++) {       survival function given by stepm (the optimization length). Unfortunately it
       k=3;       means that if the survival funtion is printed only each two years of age and if
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       for (i=1; i< nlstate ; i ++)       results. So we changed our mind and took the option of the best precision.
         fprintf(ficgp,"+$%d",k+i+1);    */
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
        
       l=3+(nlstate+ndeath)*cpt;    agelim=AGESUP;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       for (i=1; i< nlstate ; i ++) {      /* nhstepm age range expressed in number of stepm */
         l=3+(nlstate+ndeath)*cpt;      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
         fprintf(ficgp,"+$%d",l+i+1);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       }      /* if (stepm >= YEARM) hstepm=1;*/
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);        nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   }      gp=matrix(0,nhstepm,1,nlstate*nlstate);
       gm=matrix(0,nhstepm,1,nlstate*nlstate);
   /* proba elementaires */  
    for(i=1,jk=1; i <=nlstate; i++){      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     for(k=1; k <=(nlstate+ndeath); k++){         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       if (k != i) {      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
         for(j=1; j <=ncovmodel; j++){   
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/  
           /*fprintf(ficgp,"%s",alph[1]);*/      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);  
           jk++;      /* Computing Variances of health expectancies */
           fprintf(ficgp,"\n");  
         }       for(theta=1; theta <=npar; theta++){
       }        for(i=1; i<=npar; i++){ 
     }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     }        }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   for(jk=1; jk <=m; jk++) {    
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);        cptj=0;
    i=1;        for(j=1; j<= nlstate; j++){
    for(k2=1; k2<=nlstate; k2++) {          for(i=1; i<=nlstate; i++){
      k3=i;            cptj=cptj+1;
      for(k=1; k<=(nlstate+ndeath); k++) {            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
        if (k != k2){              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);            }
           }
         for(j=3; j <=ncovmodel; j++)        }
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);       
         fprintf(ficgp,")/(1");       
                for(i=1; i<=npar; i++) 
         for(k1=1; k1 <=nlstate; k1++){            xp[i] = x[i] - (i==theta ?delti[theta]:0);
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           for(j=3; j <=ncovmodel; j++)        
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        cptj=0;
           fprintf(ficgp,")");        for(j=1; j<= nlstate; j++){
         }          for(i=1;i<=nlstate;i++){
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);            cptj=cptj+1;
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
         i=i+ncovmodel;  
        }              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
      }            }
    }          }
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);        }
   }        for(j=1; j<= nlstate*nlstate; j++)
              for(h=0; h<=nhstepm-1; h++){
   fclose(ficgp);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
              }
 chdir(path);       } 
     free_matrix(agev,1,maxwav,1,imx);     
     free_ivector(wav,1,imx);  /* End theta */
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);  
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
      
     free_imatrix(s,1,maxwav+1,1,n);       for(h=0; h<=nhstepm-1; h++)
            for(j=1; j<=nlstate*nlstate;j++)
              for(theta=1; theta <=npar; theta++)
     free_ivector(num,1,n);            trgradg[h][j][theta]=gradg[h][theta][j];
     free_vector(agedc,1,n);       
     free_vector(weight,1,n);  
     /*free_matrix(covar,1,NCOVMAX,1,n);*/       for(i=1;i<=nlstate*nlstate;i++)
     fclose(ficparo);        for(j=1;j<=nlstate*nlstate;j++)
     fclose(ficres);          varhe[i][j][(int)age] =0.;
    }  
           printf("%d|",(int)age);fflush(stdout);
    /*________fin mle=1_________*/       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
           for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
            matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     /* No more information from the sample is required now */          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   /* Reads comments: lines beginning with '#' */          for(i=1;i<=nlstate*nlstate;i++)
   while((c=getc(ficpar))=='#' && c!= EOF){            for(j=1;j<=nlstate*nlstate;j++)
     ungetc(c,ficpar);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
     fgets(line, MAXLINE, ficpar);        }
     puts(line);      }
     fputs(line,ficparo);      /* Computing expectancies */
   }      for(i=1; i<=nlstate;i++)
   ungetc(c,ficpar);        for(j=1; j<=nlstate;j++)
            for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);            
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
 /*--------- index.htm --------*/  
           }
   if((fichtm=fopen("index.htm","w"))==NULL)    {  
     printf("Problem with index.htm \n");goto end;      fprintf(ficreseij,"%3.0f",age );
   }      cptj=0;
       for(i=1; i<=nlstate;i++)
  fprintf(fichtm,"<body><ul> Imach, Version 0.64a<hr> <li>Outputs files<br><br>\n        for(j=1; j<=nlstate;j++){
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n          cptj++;
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>        }
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>      fprintf(ficreseij,"\n");
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>     
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  fprintf(fichtm," <li>Graphs</li>\n<p>");    }
     printf("\n");
  m=cptcovn;    fprintf(ficlog,"\n");
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
     free_vector(xp,1,npar);
  j1=0;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
  for(k1=1; k1<=m;k1++){    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
    for(i1=1; i1<=ncodemax[k1];i1++){    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
        j1++;  }
        if (cptcovn > 0) {  
          fprintf(fichtm,"<hr>************ Results for covariates");  /************ Variance ******************/
          for (cpt=1; cpt<=cptcovn;cpt++)  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);  {
          fprintf(fichtm," ************\n<hr>");    /* Variance of health expectancies */
        }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    /* double **newm;*/
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        double **dnewm,**doldm;
        for(cpt=1; cpt<nlstate;cpt++){    double **dnewmp,**doldmp;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    int i, j, nhstepm, hstepm, h, nstepm ;
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    int k, cptcode;
        }    double *xp;
     for(cpt=1; cpt<=nlstate;cpt++) {    double **gp, **gm;  /* for var eij */
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    double ***gradg, ***trgradg; /*for var eij */
 interval) in state (%d): v%s%d%d.gif <br>    double **gradgp, **trgradgp; /* for var p point j */
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);      double *gpp, *gmp; /* for var p point j */
      }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
      for(cpt=1; cpt<=nlstate;cpt++) {    double ***p3mat;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    double age,agelim, hf;
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    double ***mobaverage;
      }    int theta;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    char digit[4];
 health expectancies in states (1) and (2): e%s%d.gif<br>    char digitp[25];
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);  
 fprintf(fichtm,"\n</body>");    char fileresprobmorprev[FILENAMELENGTH];
    }  
  }    if(popbased==1){
 fclose(fichtm);      if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
   /*--------------- Prevalence limit --------------*/      else strcpy(digitp,"-populbased-nomobil-");
      }
   strcpy(filerespl,"pl");    else 
   strcat(filerespl,fileres);      strcpy(digitp,"-stablbased-");
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    if (mobilav!=0) {
   }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   fprintf(ficrespl,"#Prevalence limit\n");        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   fprintf(ficrespl,"#Age ");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);      }
   fprintf(ficrespl,"\n");    }
    
   prlim=matrix(1,nlstate,1,nlstate);    strcpy(fileresprobmorprev,"prmorprev"); 
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    sprintf(digit,"%-d",ij);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    strcat(fileresprobmorprev,fileres);
   k=0;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   agebase=agemin;      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   agelim=agemax;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   ftolpl=1.e-10;    }
   i1=cptcovn;    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   if (cptcovn < 1){i1=1;}    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   for(cptcov=1;cptcov<=i1;cptcov++){    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         k=k+1;      fprintf(ficresprobmorprev," p.%-d SE",j);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/      for(i=1; i<=nlstate;i++)
         fprintf(ficrespl,"\n#******");        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
         for(j=1;j<=cptcovn;j++)    }  
           fprintf(ficrespl," V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    fprintf(ficresprobmorprev,"\n");
         fprintf(ficrespl,"******\n");    fprintf(ficgp,"\n# Routine varevsij");
            fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
         for (age=agebase; age<=agelim; age++){    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  /*   } */
           fprintf(ficrespl,"%.0f",age );    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           for(i=1; i<=nlstate;i++)  
           fprintf(ficrespl," %.5f", prlim[i][i]);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
           fprintf(ficrespl,"\n");    fprintf(ficresvij,"# Age");
         }    for(i=1; i<=nlstate;i++)
       }      for(j=1; j<=nlstate;j++)
     }        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   fclose(ficrespl);    fprintf(ficresvij,"\n");
   /*------------- h Pij x at various ages ------------*/  
      xp=vector(1,npar);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    dnewm=matrix(1,nlstate,1,npar);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    doldm=matrix(1,nlstate,1,nlstate);
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   printf("Computing pij: result on file '%s' \n", filerespij);  
      gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    gpp=vector(nlstate+1,nlstate+ndeath);
   if (stepm<=24) stepsize=2;    gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   agelim=AGESUP;    
   hstepm=stepsize*YEARM; /* Every year of age */    if(estepm < stepm){
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      printf ("Problem %d lower than %d\n",estepm, stepm);
      }
   k=0;    else  hstepm=estepm;   
   for(cptcov=1;cptcov<=i1;cptcov++){    /* For example we decided to compute the life expectancy with the smallest unit */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
       k=k+1;       nhstepm is the number of hstepm from age to agelim 
         fprintf(ficrespij,"\n#****** ");       nstepm is the number of stepm from age to agelin. 
         for(j=1;j<=cptcovn;j++)       Look at hpijx to understand the reason of that which relies in memory size
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);       and note for a fixed period like k years */
         fprintf(ficrespij,"******\n");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
               survival function given by stepm (the optimization length). Unfortunately it
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */       means that if the survival funtion is printed every two years of age and if
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */       results. So we changed our mind and took the option of the best precision.
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    */
           oldm=oldms;savm=savms;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      agelim = AGESUP;
           fprintf(ficrespij,"# Age");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
           for(i=1; i<=nlstate;i++)      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             for(j=1; j<=nlstate+ndeath;j++)      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
               fprintf(ficrespij," %1d-%1d",i,j);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
           for (h=0; h<=nhstepm; h++){      gp=matrix(0,nhstepm,1,nlstate);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );      gm=matrix(0,nhstepm,1,nlstate);
             for(i=1; i<=nlstate;i++)  
               for(j=1; j<=nlstate+ndeath;j++)  
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      for(theta=1; theta <=npar; theta++){
             fprintf(ficrespij,"\n");        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
           fprintf(ficrespij,"\n");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     }  
   }        if (popbased==1) {
           if(mobilav ==0){
   fclose(ficrespij);            for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
   /*---------- Health expectancies and variances ------------*/          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
   strcpy(filerest,"t");              prlim[i][i]=mobaverage[(int)age][i][ij];
   strcat(filerest,fileres);          }
   if((ficrest=fopen(filerest,"w"))==NULL) {        }
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    
   }        for(j=1; j<= nlstate; j++){
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
   strcpy(filerese,"e");          }
   strcat(filerese,fileres);        }
   if((ficreseij=fopen(filerese,"w"))==NULL) {        /* This for computing probability of death (h=1 means
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);           computed over hstepm matrices product = hstepm*stepm months) 
   }           as a weighted average of prlim.
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);        */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
  strcpy(fileresv,"v");          for(i=1,gpp[j]=0.; i<= nlstate; i++)
   strcat(fileresv,fileres);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        }    
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        /* end probability of death */
   }  
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
   k=0;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   for(cptcov=1;cptcov<=i1;cptcov++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   
       k=k+1;        if (popbased==1) {
       fprintf(ficrest,"\n#****** ");          if(mobilav ==0){
       for(j=1;j<=cptcovn;j++)            for(i=1; i<=nlstate;i++)
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);              prlim[i][i]=probs[(int)age][i][ij];
       fprintf(ficrest,"******\n");          }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
       fprintf(ficreseij,"\n#****** ");              prlim[i][i]=mobaverage[(int)age][i][ij];
       for(j=1;j<=cptcovn;j++)          }
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);        }
       fprintf(ficreseij,"******\n");  
         for(j=1; j<= nlstate; j++){
       fprintf(ficresvij,"\n#****** ");          for(h=0; h<=nhstepm; h++){
       for(j=1;j<=cptcovn;j++)            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       fprintf(ficresvij,"******\n");          }
         }
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        /* This for computing probability of death (h=1 means
       oldm=oldms;savm=savms;           computed over hstepm matrices product = hstepm*stepm months) 
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);             as a weighted average of prlim.
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        */
       oldm=oldms;savm=savms;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
                 gmp[j] += prlim[i][i]*p3mat[i][j][1];
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        }    
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);        /* end probability of death */
       fprintf(ficrest,"\n");  
                for(j=1; j<= nlstate; j++) /* vareij */
       hf=1;          for(h=0; h<=nhstepm; h++){
       if (stepm >= YEARM) hf=stepm/YEARM;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       epj=vector(1,nlstate+1);          }
       for(age=bage; age <=fage ;age++){  
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
         fprintf(ficrest," %.0f",age);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        }
           for(i=1, epj[j]=0.;i <=nlstate;i++) {  
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];      } /* End theta */
           }  
           epj[nlstate+1] +=epj[j];      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         }  
         for(i=1, vepp=0.;i <=nlstate;i++)      for(h=0; h<=nhstepm; h++) /* veij */
           for(j=1;j <=nlstate;j++)        for(j=1; j<=nlstate;j++)
             vepp += vareij[i][j][(int)age];          for(theta=1; theta <=npar; theta++)
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));            trgradg[h][j][theta]=gradg[h][theta][j];
         for(j=1;j <=nlstate;j++){  
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         }        for(theta=1; theta <=npar; theta++)
         fprintf(ficrest,"\n");          trgradgp[j][theta]=gradgp[theta][j];
       }    
     }  
   }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
              for(i=1;i<=nlstate;i++)
  fclose(ficreseij);        for(j=1;j<=nlstate;j++)
  fclose(ficresvij);          vareij[i][j][(int)age] =0.;
   fclose(ficrest);  
   fclose(ficpar);      for(h=0;h<=nhstepm;h++){
   free_vector(epj,1,nlstate+1);        for(k=0;k<=nhstepm;k++){
   /*  scanf("%d ",i); */          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
   /*------- Variance limit prevalence------*/            for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
 strcpy(fileresvpl,"vpl");              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   strcat(fileresvpl,fileres);        }
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {      }
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    
     exit(0);      /* pptj */
   }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
  k=0;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
  for(cptcov=1;cptcov<=i1;cptcov++){          varppt[j][i]=doldmp[j][i];
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      /* end ppptj */
      k=k+1;      /*  x centered again */
      fprintf(ficresvpl,"\n#****** ");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
      for(j=1;j<=cptcovn;j++)      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);   
      fprintf(ficresvpl,"******\n");      if (popbased==1) {
              if(mobilav ==0){
      varpl=matrix(1,nlstate,(int) bage, (int) fage);          for(i=1; i<=nlstate;i++)
      oldm=oldms;savm=savms;            prlim[i][i]=probs[(int)age][i][ij];
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        }else{ /* mobilav */ 
    }          for(i=1; i<=nlstate;i++)
  }            prlim[i][i]=mobaverage[(int)age][i][ij];
         }
   fclose(ficresvpl);      }
                
   /*---------- End : free ----------------*/      /* This for computing probability of death (h=1 means
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
           as a weighted average of prlim.
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      */
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
          for(i=1,gmp[j]=0.;i<= nlstate; i++) 
            gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);      }    
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);      /* end probability of death */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
        for(j=nlstate+1; j<=(nlstate+ndeath);j++){
   free_matrix(matcov,1,npar,1,npar);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   free_vector(delti,1,npar);        for(i=1; i<=nlstate;i++){
            fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);        }
       } 
   printf("End of Imach\n");      fprintf(ficresprobmorprev,"\n");
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  
        fprintf(ficresvij,"%.0f ",age );
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      for(i=1; i<=nlstate;i++)
   /*printf("Total time was %d uSec.\n", total_usecs);*/        for(j=1; j<=nlstate;j++){
   /*------ End -----------*/          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
  end:      fprintf(ficresvij,"\n");
 #ifdef windows      free_matrix(gp,0,nhstepm,1,nlstate);
  chdir(pathcd);      free_matrix(gm,0,nhstepm,1,nlstate);
 #endif      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
  system("wgnuplot graph.plt");      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 #ifdef windows    } /* End age */
   while (z[0] != 'q') {    free_vector(gpp,nlstate+1,nlstate+ndeath);
     chdir(pathcd);    free_vector(gmp,nlstate+1,nlstate+ndeath);
     printf("\nType e to edit output files, c to start again, and q for exiting: ");    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     scanf("%s",z);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     if (z[0] == 'c') system("./imach");    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     else if (z[0] == 'e') {    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       chdir(path);    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
       system("index.htm");  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     }  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     else if (z[0] == 'q') exit(0);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   }    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
 #endif    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
 }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;",digitp,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
      
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtm,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtm," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     /*  fclose(ficgp);*/
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
     /*char optionfilehtm[FILENAMELENGTH];*/
   /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
   /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
   /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
   /*   } */
   
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>", \
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exo"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
    - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            rfileres,rfileres,\
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
            subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
   interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"pe"),cpt,jj1,subdirf2(optionfilefiname,"pe"),cpt,jj1);  
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char path[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",path);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     }
   
   } /* end of prwizard */
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
     struct timeval start_time, end_time, curr_time;
     struct timezone tzp;
     extern int gettimeofday();
     struct tm tmg, tm, *gmtime(), *localtime();
     long time_value;
     extern long time();
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start):%s",strstart);
     fprintf(ficlog,"Localtime (at start): %s",strstart);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt,\
             model,fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     /*fclose(fichtm);*/
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     strcpy(lfileres,fileres);
     strcat(lfileres,"/");
     strcat(lfileres,optionfilefiname);
     
     /*  replace(pathc,path);*/
   
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, path,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s",strstart, strtend); 
     /*  printf("Total time used %d Sec\n", asc_time(end_time.tv_sec -start_time.tv_sec);*/
   
     printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     fprintf(ficlog,"Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(ficgp);
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
     chdir(path);
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   
   

Removed from v.1.6  
changed lines
  Added in v.1.88


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>