Diff for /imach/src/imach.c between versions 1.41.2.2 and 1.71

version 1.41.2.2, 2003/06/13 07:45:28 version 1.71, 2003/03/28 13:32:54
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain     Interpolated Markov Chain
   
   Short summary of the programme:    Short summary of the programme:
      
   This program computes Healthy Life Expectancies from    This program computes Healthy Life Expectancies from
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   first survey ("cross") where individuals from different ages are    first survey ("cross") where individuals from different ages are
   interviewed on their health status or degree of disability (in the    interviewed on their health status or degree of disability (in the
   case of a health survey which is our main interest) -2- at least a    case of a health survey which is our main interest) -2- at least a
   second wave of interviews ("longitudinal") which measure each change    second wave of interviews ("longitudinal") which measure each change
   (if any) in individual health status.  Health expectancies are    (if any) in individual health status.  Health expectancies are
   computed from the time spent in each health state according to a    computed from the time spent in each health state according to a
   model. More health states you consider, more time is necessary to reach the    model. More health states you consider, more time is necessary to reach the
   Maximum Likelihood of the parameters involved in the model.  The    Maximum Likelihood of the parameters involved in the model.  The
   simplest model is the multinomial logistic model where pij is the    simplest model is the multinomial logistic model where pij is the
   probability to be observed in state j at the second wave    probability to be observed in state j at the second wave
   conditional to be observed in state i at the first wave. Therefore    conditional to be observed in state i at the first wave. Therefore
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   'age' is age and 'sex' is a covariate. If you want to have a more    'age' is age and 'sex' is a covariate. If you want to have a more
   complex model than "constant and age", you should modify the program    complex model than "constant and age", you should modify the program
   where the markup *Covariates have to be included here again* invites    where the markup *Covariates have to be included here again* invites
   you to do it.  More covariates you add, slower the    you to do it.  More covariates you add, slower the
   convergence.    convergence.
   
   The advantage of this computer programme, compared to a simple    The advantage of this computer programme, compared to a simple
   multinomial logistic model, is clear when the delay between waves is not    multinomial logistic model, is clear when the delay between waves is not
   identical for each individual. Also, if a individual missed an    identical for each individual. Also, if a individual missed an
   intermediate interview, the information is lost, but taken into    intermediate interview, the information is lost, but taken into
   account using an interpolation or extrapolation.      account using an interpolation or extrapolation.  
   
   hPijx is the probability to be observed in state i at age x+h    hPijx is the probability to be observed in state i at age x+h
   conditional to the observed state i at age x. The delay 'h' can be    conditional to the observed state i at age x. The delay 'h' can be
   split into an exact number (nh*stepm) of unobserved intermediate    split into an exact number (nh*stepm) of unobserved intermediate
   states. This elementary transition (by month or quarter trimester,    states. This elementary transition (by month, quarter,
   semester or year) is model as a multinomial logistic.  The hPx    semester or year) is modelled as a multinomial logistic.  The hPx
   matrix is simply the matrix product of nh*stepm elementary matrices    matrix is simply the matrix product of nh*stepm elementary matrices
   and the contribution of each individual to the likelihood is simply    and the contribution of each individual to the likelihood is simply
   hPijx.    hPijx.
   
   Also this programme outputs the covariance matrix of the parameters but also    Also this programme outputs the covariance matrix of the parameters but also
   of the life expectancies. It also computes the prevalence limits.    of the life expectancies. It also computes the stable prevalence. 
      
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
            Institut national d'études démographiques, Paris.             Institut national d'études démographiques, Paris.
   This software have been partly granted by Euro-REVES, a concerted action    This software have been partly granted by Euro-REVES, a concerted action
   from the European Union.    from the European Union.
   It is copyrighted identically to a GNU software product, ie programme and    It is copyrighted identically to a GNU software product, ie programme and
   software can be distributed freely for non commercial use. Latest version    software can be distributed freely for non commercial use. Latest version
   can be accessed at http://euroreves.ined.fr/imach .    can be accessed at http://euroreves.ined.fr/imach .
   **********************************************************************/    **********************************************************************/
     
 #include <math.h>  #include <math.h>
 #include <stdio.h>  #include <stdio.h>
 #include <stdlib.h>  #include <stdlib.h>
 #include <unistd.h>  #include <unistd.h>
   
 #define MAXLINE 256  #define MAXLINE 256
 #define GNUPLOTPROGRAM "wgnuplot"  #define GNUPLOTPROGRAM "gnuplot"
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #define FILENAMELENGTH 80  #define FILENAMELENGTH 80
 /*#define DEBUG*/  /*#define DEBUG*/
   #define windows
 /*#define windows*/  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */  
   #define NINTERVMAX 8
 #define NINTERVMAX 8  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  #define NCOVMAX 8 /* Maximum number of covariates */
 #define NCOVMAX 8 /* Maximum number of covariates */  #define MAXN 20000
 #define MAXN 20000  #define YEARM 12. /* Number of months per year */
 #define YEARM 12. /* Number of months per year */  #define AGESUP 130
 #define AGESUP 130  #define AGEBASE 40
 #define AGEBASE 40  #ifdef windows
   #define DIRSEPARATOR '\\'
   #define ODIRSEPARATOR '/'
 int erreur; /* Error number */  #else
 int nvar;  #define DIRSEPARATOR '/'
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  #define ODIRSEPARATOR '\\'
 int npar=NPARMAX;  #endif
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */  char version[80]="Imach version 0.92, February 2003, INED-EUROREVES ";
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  int erreur; /* Error number */
 int popbased=0;  int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 int *wav; /* Number of waves for this individuual 0 is possible */  int npar=NPARMAX;
 int maxwav; /* Maxim number of waves */  int nlstate=2; /* Number of live states */
 int jmin, jmax; /* min, max spacing between 2 waves */  int ndeath=1; /* Number of dead states */
 int mle, weightopt;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  int popbased=0;
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */  int *wav; /* Number of waves for this individuual 0 is possible */
 double **oldm, **newm, **savm; /* Working pointers to matrices */  int maxwav; /* Maxim number of waves */
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  int jmin, jmax; /* min, max spacing between 2 waves */
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  int mle, weightopt;
 FILE *ficgp,*ficresprob,*ficpop;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 FILE *ficreseij;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   char filerese[FILENAMELENGTH];  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
  FILE  *ficresvij;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   char fileresv[FILENAMELENGTH];  double jmean; /* Mean space between 2 waves */
  FILE  *ficresvpl;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   char fileresvpl[FILENAMELENGTH];  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 #define NR_END 1  FILE *ficlog;
 #define FREE_ARG char*  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 #define FTOL 1.0e-10  FILE *ficresprobmorprev;
   FILE *fichtm; /* Html File */
 #define NRANSI  FILE *ficreseij;
 #define ITMAX 200  char filerese[FILENAMELENGTH];
   FILE  *ficresvij;
 #define TOL 2.0e-4  char fileresv[FILENAMELENGTH];
   FILE  *ficresvpl;
 #define CGOLD 0.3819660  char fileresvpl[FILENAMELENGTH];
 #define ZEPS 1.0e-10  char title[MAXLINE];
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 #define GOLD 1.618034  
 #define GLIMIT 100.0  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 #define TINY 1.0e-20  char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
 static double maxarg1,maxarg2;  char fileregp[FILENAMELENGTH];
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  char popfile[FILENAMELENGTH];
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  
    char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  
 #define rint(a) floor(a+0.5)  #define NR_END 1
   #define FREE_ARG char*
 static double sqrarg;  #define FTOL 1.0e-10
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  #define NRANSI 
   #define ITMAX 200 
 int imx;  
 int stepm;  #define TOL 2.0e-4 
 /* Stepm, step in month: minimum step interpolation*/  
   #define CGOLD 0.3819660 
 int estepm;  #define ZEPS 1.0e-10 
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
 int m,nb;  #define GOLD 1.618034 
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  #define GLIMIT 100.0 
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  #define TINY 1.0e-20 
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 double *weight;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 int **s; /* Status */    
 double *agedc, **covar, idx;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  #define rint(a) floor(a+0.5)
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  static double sqrarg;
 double ftolhess; /* Tolerance for computing hessian */  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  int imx; 
 {  int stepm;
    char *s;                             /* pointer */  /* Stepm, step in month: minimum step interpolation*/
    int  l1, l2;                         /* length counters */  
   int estepm;
    l1 = strlen( path );                 /* length of path */  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
 #ifdef windows  int m,nb;
    s = strrchr( path, '\\' );           /* find last / */  int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
 #else  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
    s = strrchr( path, '/' );            /* find last / */  double **pmmij, ***probs;
 #endif  double dateintmean=0;
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */  double *weight;
       extern char       *getwd( );  int **s; /* Status */
   double *agedc, **covar, idx;
       if ( getwd( dirc ) == NULL ) {  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
 #else  
       extern char       *getcwd( );  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double ftolhess; /* Tolerance for computing hessian */
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif  /**************** split *************************/
          return( GLOCK_ERROR_GETCWD );  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       }  {
       strcpy( name, path );             /* we've got it */    char  *ss;                            /* pointer */
    } else {                             /* strip direcotry from path */    int   l1, l2;                         /* length counters */
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */    l1 = strlen(path );                   /* length of path */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, s );                /* save file name */    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    if ( ss == NULL ) {                   /* no directory, so use current */
       dirc[l1-l2] = 0;                  /* add zero */      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
    }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
    l1 = strlen( dirc );                 /* length of directory */  #if     defined(__bsd__)                /* get current working directory */
 #ifdef windows      extern char *getwd( );
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else      if ( getwd( dirc ) == NULL ) {
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  #else
 #endif      extern char *getcwd( );
    s = strrchr( name, '.' );            /* find last / */  
    s++;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
    strcpy(ext,s);                       /* save extension */  #endif
    l1= strlen( name);        return( GLOCK_ERROR_GETCWD );
    l2= strlen( s)+1;      }
    strncpy( finame, name, l1-l2);      strcpy( name, path );               /* we've got it */
    finame[l1-l2]= 0;    } else {                              /* strip direcotry from path */
    return( 0 );                         /* we're done */      ss++;                               /* after this, the filename */
 }      l2 = strlen( ss );                  /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
 /******************************************/      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       dirc[l1-l2] = 0;                    /* add zero */
 void replace(char *s, char*t)    }
 {    l1 = strlen( dirc );                  /* length of directory */
   int i;  #ifdef windows
   int lg=20;    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   i=0;  #else
   lg=strlen(t);    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   for(i=0; i<= lg; i++) {  #endif
     (s[i] = t[i]);    ss = strrchr( name, '.' );            /* find last / */
     if (t[i]== '\\') s[i]='/';    ss++;
   }    strcpy(ext,ss);                       /* save extension */
 }    l1= strlen( name);
     l2= strlen(ss)+1;
 int nbocc(char *s, char occ)    strncpy( finame, name, l1-l2);
 {    finame[l1-l2]= 0;
   int i,j=0;    return( 0 );                          /* we're done */
   int lg=20;  }
   i=0;  
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {  /******************************************/
   if  (s[i] == occ ) j++;  
   }  void replace(char *s, char*t)
   return j;  {
 }    int i;
     int lg=20;
 void cutv(char *u,char *v, char*t, char occ)    i=0;
 {    lg=strlen(t);
   int i,lg,j,p=0;    for(i=0; i<= lg; i++) {
   i=0;      (s[i] = t[i]);
   for(j=0; j<=strlen(t)-1; j++) {      if (t[i]== '\\') s[i]='/';
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    }
   }  }
   
   lg=strlen(t);  int nbocc(char *s, char occ)
   for(j=0; j<p; j++) {  {
     (u[j] = t[j]);    int i,j=0;
   }    int lg=20;
      u[p]='\0';    i=0;
     lg=strlen(s);
    for(j=0; j<= lg; j++) {    for(i=0; i<= lg; i++) {
     if (j>=(p+1))(v[j-p-1] = t[j]);    if  (s[i] == occ ) j++;
   }    }
 }    return j;
   }
 /********************** nrerror ********************/  
   void cutv(char *u,char *v, char*t, char occ)
 void nrerror(char error_text[])  {
 {    /* cuts string t into u and v where u is ended by char occ excluding it
   fprintf(stderr,"ERREUR ...\n");       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
   fprintf(stderr,"%s\n",error_text);       gives u="abcedf" and v="ghi2j" */
   exit(1);    int i,lg,j,p=0;
 }    i=0;
 /*********************** vector *******************/    for(j=0; j<=strlen(t)-1; j++) {
 double *vector(int nl, int nh)      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 {    }
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    lg=strlen(t);
   if (!v) nrerror("allocation failure in vector");    for(j=0; j<p; j++) {
   return v-nl+NR_END;      (u[j] = t[j]);
 }    }
        u[p]='\0';
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)     for(j=0; j<= lg; j++) {
 {      if (j>=(p+1))(v[j-p-1] = t[j]);
   free((FREE_ARG)(v+nl-NR_END));    }
 }  }
   
 /************************ivector *******************************/  /********************** nrerror ********************/
 int *ivector(long nl,long nh)  
 {  void nrerror(char error_text[])
   int *v;  {
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    fprintf(stderr,"ERREUR ...\n");
   if (!v) nrerror("allocation failure in ivector");    fprintf(stderr,"%s\n",error_text);
   return v-nl+NR_END;    exit(EXIT_FAILURE);
 }  }
   /*********************** vector *******************/
 /******************free ivector **************************/  double *vector(int nl, int nh)
 void free_ivector(int *v, long nl, long nh)  {
 {    double *v;
   free((FREE_ARG)(v+nl-NR_END));    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 }    if (!v) nrerror("allocation failure in vector");
     return v-nl+NR_END;
 /******************* imatrix *******************************/  }
 int **imatrix(long nrl, long nrh, long ncl, long nch)  
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  /************************ free vector ******************/
 {  void free_vector(double*v, int nl, int nh)
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  {
   int **m;    free((FREE_ARG)(v+nl-NR_END));
    }
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  /************************ivector *******************************/
   if (!m) nrerror("allocation failure 1 in matrix()");  int *ivector(long nl,long nh)
   m += NR_END;  {
   m -= nrl;    int *v;
      v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
      if (!v) nrerror("allocation failure in ivector");
   /* allocate rows and set pointers to them */    return v-nl+NR_END;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  /******************free ivector **************************/
   m[nrl] -= ncl;  void free_ivector(int *v, long nl, long nh)
    {
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    free((FREE_ARG)(v+nl-NR_END));
    }
   /* return pointer to array of pointers to rows */  
   return m;  /******************* imatrix *******************************/
 }  int **imatrix(long nrl, long nrh, long ncl, long nch) 
        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 /****************** free_imatrix *************************/  { 
 void free_imatrix(m,nrl,nrh,ncl,nch)    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
       int **m;    int **m; 
       long nch,ncl,nrh,nrl;    
      /* free an int matrix allocated by imatrix() */    /* allocate pointers to rows */ 
 {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    if (!m) nrerror("allocation failure 1 in matrix()"); 
   free((FREE_ARG) (m+nrl-NR_END));    m += NR_END; 
 }    m -= nrl; 
     
 /******************* matrix *******************************/    
 double **matrix(long nrl, long nrh, long ncl, long nch)    /* allocate rows and set pointers to them */ 
 {    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   double **m;    m[nrl] += NR_END; 
     m[nrl] -= ncl; 
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    
   if (!m) nrerror("allocation failure 1 in matrix()");    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   m += NR_END;    
   m -= nrl;    /* return pointer to array of pointers to rows */ 
     return m; 
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  } 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  /****************** free_imatrix *************************/
   m[nrl] -= ncl;  void free_imatrix(m,nrl,nrh,ncl,nch)
         int **m;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;        long nch,ncl,nrh,nrl; 
   return m;       /* free an int matrix allocated by imatrix() */ 
 }  { 
     free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 /*************************free matrix ************************/    free((FREE_ARG) (m+nrl-NR_END)); 
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  } 
 {  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  /******************* matrix *******************************/
   free((FREE_ARG)(m+nrl-NR_END));  double **matrix(long nrl, long nrh, long ncl, long nch)
 }  {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 /******************* ma3x *******************************/    double **m;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    if (!m) nrerror("allocation failure 1 in matrix()");
   double ***m;    m += NR_END;
     m -= nrl;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   m += NR_END;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   m -= nrl;    m[nrl] += NR_END;
     m[nrl] -= ncl;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   m[nrl] += NR_END;    return m;
   m[nrl] -= ncl;  }
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  /*************************free matrix ************************/
   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  {
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   m[nrl][ncl] += NR_END;    free((FREE_ARG)(m+nrl-NR_END));
   m[nrl][ncl] -= nll;  }
   for (j=ncl+1; j<=nch; j++)  
     m[nrl][j]=m[nrl][j-1]+nlay;  /******************* ma3x *******************************/
    double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   for (i=nrl+1; i<=nrh; i++) {  {
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     for (j=ncl+1; j<=nch; j++)    double ***m;
       m[i][j]=m[i][j-1]+nlay;  
   }    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   return m;    if (!m) nrerror("allocation failure 1 in matrix()");
 }    m += NR_END;
     m -= nrl;
 /*************************free ma3x ************************/  
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    m[nrl] += NR_END;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    m[nrl] -= ncl;
   free((FREE_ARG)(m+nrl-NR_END));  
 }    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   
 /***************** f1dim *************************/    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
 extern int ncom;    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 extern double *pcom,*xicom;    m[nrl][ncl] += NR_END;
 extern double (*nrfunc)(double []);    m[nrl][ncl] -= nll;
      for (j=ncl+1; j<=nch; j++) 
 double f1dim(double x)      m[nrl][j]=m[nrl][j-1]+nlay;
 {    
   int j;    for (i=nrl+1; i<=nrh; i++) {
   double f;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   double *xt;      for (j=ncl+1; j<=nch; j++) 
          m[i][j]=m[i][j-1]+nlay;
   xt=vector(1,ncom);    }
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    return m;
   f=(*nrfunc)(xt);  }
   free_vector(xt,1,ncom);  
   return f;  /*************************free ma3x ************************/
 }  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   {
 /*****************brent *************************/    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
 {    free((FREE_ARG)(m+nrl-NR_END));
   int iter;  }
   double a,b,d,etemp;  
   double fu,fv,fw,fx;  /***************** f1dim *************************/
   double ftemp;  extern int ncom; 
   double p,q,r,tol1,tol2,u,v,w,x,xm;  extern double *pcom,*xicom;
   double e=0.0;  extern double (*nrfunc)(double []); 
     
   a=(ax < cx ? ax : cx);  double f1dim(double x) 
   b=(ax > cx ? ax : cx);  { 
   x=w=v=bx;    int j; 
   fw=fv=fx=(*f)(x);    double f;
   for (iter=1;iter<=ITMAX;iter++) {    double *xt; 
     xm=0.5*(a+b);   
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    xt=vector(1,ncom); 
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     printf(".");fflush(stdout);    f=(*nrfunc)(xt); 
 #ifdef DEBUG    free_vector(xt,1,ncom); 
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    return f; 
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  } 
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  /*****************brent *************************/
       *xmin=x;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
       return fx;  { 
     }    int iter; 
     ftemp=fu;    double a,b,d,etemp;
     if (fabs(e) > tol1) {    double fu,fv,fw,fx;
       r=(x-w)*(fx-fv);    double ftemp;
       q=(x-v)*(fx-fw);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
       p=(x-v)*q-(x-w)*r;    double e=0.0; 
       q=2.0*(q-r);   
       if (q > 0.0) p = -p;    a=(ax < cx ? ax : cx); 
       q=fabs(q);    b=(ax > cx ? ax : cx); 
       etemp=e;    x=w=v=bx; 
       e=d;    fw=fv=fx=(*f)(x); 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    for (iter=1;iter<=ITMAX;iter++) { 
         d=CGOLD*(e=(x >= xm ? a-x : b-x));      xm=0.5*(a+b); 
       else {      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
         d=p/q;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
         u=x+d;      printf(".");fflush(stdout);
         if (u-a < tol2 || b-u < tol2)      fprintf(ficlog,".");fflush(ficlog);
           d=SIGN(tol1,xm-x);  #ifdef DEBUG
       }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     } else {      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       d=CGOLD*(e=(x >= xm ? a-x : b-x));      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
     }  #endif
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     fu=(*f)(u);        *xmin=x; 
     if (fu <= fx) {        return fx; 
       if (u >= x) a=x; else b=x;      } 
       SHFT(v,w,x,u)      ftemp=fu;
         SHFT(fv,fw,fx,fu)      if (fabs(e) > tol1) { 
         } else {        r=(x-w)*(fx-fv); 
           if (u < x) a=u; else b=u;        q=(x-v)*(fx-fw); 
           if (fu <= fw || w == x) {        p=(x-v)*q-(x-w)*r; 
             v=w;        q=2.0*(q-r); 
             w=u;        if (q > 0.0) p = -p; 
             fv=fw;        q=fabs(q); 
             fw=fu;        etemp=e; 
           } else if (fu <= fv || v == x || v == w) {        e=d; 
             v=u;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
             fv=fu;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
           }        else { 
         }          d=p/q; 
   }          u=x+d; 
   nrerror("Too many iterations in brent");          if (u-a < tol2 || b-u < tol2) 
   *xmin=x;            d=SIGN(tol1,xm-x); 
   return fx;        } 
 }      } else { 
         d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
 /****************** mnbrak ***********************/      } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,      fu=(*f)(u); 
             double (*func)(double))      if (fu <= fx) { 
 {        if (u >= x) a=x; else b=x; 
   double ulim,u,r,q, dum;        SHFT(v,w,x,u) 
   double fu;          SHFT(fv,fw,fx,fu) 
            } else { 
   *fa=(*func)(*ax);            if (u < x) a=u; else b=u; 
   *fb=(*func)(*bx);            if (fu <= fw || w == x) { 
   if (*fb > *fa) {              v=w; 
     SHFT(dum,*ax,*bx,dum)              w=u; 
       SHFT(dum,*fb,*fa,dum)              fv=fw; 
       }              fw=fu; 
   *cx=(*bx)+GOLD*(*bx-*ax);            } else if (fu <= fv || v == x || v == w) { 
   *fc=(*func)(*cx);              v=u; 
   while (*fb > *fc) {              fv=fu; 
     r=(*bx-*ax)*(*fb-*fc);            } 
     q=(*bx-*cx)*(*fb-*fa);          } 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    } 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    nrerror("Too many iterations in brent"); 
     ulim=(*bx)+GLIMIT*(*cx-*bx);    *xmin=x; 
     if ((*bx-u)*(u-*cx) > 0.0) {    return fx; 
       fu=(*func)(u);  } 
     } else if ((*cx-u)*(u-ulim) > 0.0) {  
       fu=(*func)(u);  /****************** mnbrak ***********************/
       if (fu < *fc) {  
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
           SHFT(*fb,*fc,fu,(*func)(u))              double (*func)(double)) 
           }  { 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    double ulim,u,r,q, dum;
       u=ulim;    double fu; 
       fu=(*func)(u);   
     } else {    *fa=(*func)(*ax); 
       u=(*cx)+GOLD*(*cx-*bx);    *fb=(*func)(*bx); 
       fu=(*func)(u);    if (*fb > *fa) { 
     }      SHFT(dum,*ax,*bx,dum) 
     SHFT(*ax,*bx,*cx,u)        SHFT(dum,*fb,*fa,dum) 
       SHFT(*fa,*fb,*fc,fu)        } 
       }    *cx=(*bx)+GOLD*(*bx-*ax); 
 }    *fc=(*func)(*cx); 
     while (*fb > *fc) { 
 /*************** linmin ************************/      r=(*bx-*ax)*(*fb-*fc); 
       q=(*bx-*cx)*(*fb-*fa); 
 int ncom;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 double *pcom,*xicom;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 double (*nrfunc)(double []);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
        if ((*bx-u)*(u-*cx) > 0.0) { 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))        fu=(*func)(u); 
 {      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   double brent(double ax, double bx, double cx,        fu=(*func)(u); 
                double (*f)(double), double tol, double *xmin);        if (fu < *fc) { 
   double f1dim(double x);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,            SHFT(*fb,*fc,fu,(*func)(u)) 
               double *fc, double (*func)(double));            } 
   int j;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   double xx,xmin,bx,ax;        u=ulim; 
   double fx,fb,fa;        fu=(*func)(u); 
        } else { 
   ncom=n;        u=(*cx)+GOLD*(*cx-*bx); 
   pcom=vector(1,n);        fu=(*func)(u); 
   xicom=vector(1,n);      } 
   nrfunc=func;      SHFT(*ax,*bx,*cx,u) 
   for (j=1;j<=n;j++) {        SHFT(*fa,*fb,*fc,fu) 
     pcom[j]=p[j];        } 
     xicom[j]=xi[j];  } 
   }  
   ax=0.0;  /*************** linmin ************************/
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  int ncom; 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  double *pcom,*xicom;
 #ifdef DEBUG  double (*nrfunc)(double []); 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);   
 #endif  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   for (j=1;j<=n;j++) {  { 
     xi[j] *= xmin;    double brent(double ax, double bx, double cx, 
     p[j] += xi[j];                 double (*f)(double), double tol, double *xmin); 
   }    double f1dim(double x); 
   free_vector(xicom,1,n);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   free_vector(pcom,1,n);                double *fc, double (*func)(double)); 
 }    int j; 
     double xx,xmin,bx,ax; 
 /*************** powell ************************/    double fx,fb,fa;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,   
             double (*func)(double []))    ncom=n; 
 {    pcom=vector(1,n); 
   void linmin(double p[], double xi[], int n, double *fret,    xicom=vector(1,n); 
               double (*func)(double []));    nrfunc=func; 
   int i,ibig,j;    for (j=1;j<=n;j++) { 
   double del,t,*pt,*ptt,*xit;      pcom[j]=p[j]; 
   double fp,fptt;      xicom[j]=xi[j]; 
   double *xits;    } 
   pt=vector(1,n);    ax=0.0; 
   ptt=vector(1,n);    xx=1.0; 
   xit=vector(1,n);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
   xits=vector(1,n);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
   *fret=(*func)(p);  #ifdef DEBUG
   for (j=1;j<=n;j++) pt[j]=p[j];    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   for (*iter=1;;++(*iter)) {    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fp=(*fret);  #endif
     ibig=0;    for (j=1;j<=n;j++) { 
     del=0.0;      xi[j] *= xmin; 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      p[j] += xi[j]; 
     for (i=1;i<=n;i++)    } 
       printf(" %d %.12f",i, p[i]);    free_vector(xicom,1,n); 
     printf("\n");    free_vector(pcom,1,n); 
     for (i=1;i<=n;i++) {  } 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  
       fptt=(*fret);  /*************** powell ************************/
 #ifdef DEBUG  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       printf("fret=%lf \n",*fret);              double (*func)(double [])) 
 #endif  { 
       printf("%d",i);fflush(stdout);    void linmin(double p[], double xi[], int n, double *fret, 
       linmin(p,xit,n,fret,func);                double (*func)(double [])); 
       if (fabs(fptt-(*fret)) > del) {    int i,ibig,j; 
         del=fabs(fptt-(*fret));    double del,t,*pt,*ptt,*xit;
         ibig=i;    double fp,fptt;
       }    double *xits;
 #ifdef DEBUG    pt=vector(1,n); 
       printf("%d %.12e",i,(*fret));    ptt=vector(1,n); 
       for (j=1;j<=n;j++) {    xit=vector(1,n); 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    xits=vector(1,n); 
         printf(" x(%d)=%.12e",j,xit[j]);    *fret=(*func)(p); 
       }    for (j=1;j<=n;j++) pt[j]=p[j]; 
       for(j=1;j<=n;j++)    for (*iter=1;;++(*iter)) { 
         printf(" p=%.12e",p[j]);      fp=(*fret); 
       printf("\n");      ibig=0; 
 #endif      del=0.0; 
     }      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
 #ifdef DEBUG      for (i=1;i<=n;i++) 
       int k[2],l;        printf(" %d %.12f",i, p[i]);
       k[0]=1;      fprintf(ficlog," %d %.12f",i, p[i]);
       k[1]=-1;      printf("\n");
       printf("Max: %.12e",(*func)(p));      fprintf(ficlog,"\n");
       for (j=1;j<=n;j++)      for (i=1;i<=n;i++) { 
         printf(" %.12e",p[j]);        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       printf("\n");        fptt=(*fret); 
       for(l=0;l<=1;l++) {  #ifdef DEBUG
         for (j=1;j<=n;j++) {        printf("fret=%lf \n",*fret);
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];        fprintf(ficlog,"fret=%lf \n",*fret);
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  #endif
         }        printf("%d",i);fflush(stdout);
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        fprintf(ficlog,"%d",i);fflush(ficlog);
       }        linmin(p,xit,n,fret,func); 
 #endif        if (fabs(fptt-(*fret)) > del) { 
           del=fabs(fptt-(*fret)); 
           ibig=i; 
       free_vector(xit,1,n);        } 
       free_vector(xits,1,n);  #ifdef DEBUG
       free_vector(ptt,1,n);        printf("%d %.12e",i,(*fret));
       free_vector(pt,1,n);        fprintf(ficlog,"%d %.12e",i,(*fret));
       return;        for (j=1;j<=n;j++) {
     }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");          printf(" x(%d)=%.12e",j,xit[j]);
     for (j=1;j<=n;j++) {          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       ptt[j]=2.0*p[j]-pt[j];        }
       xit[j]=p[j]-pt[j];        for(j=1;j<=n;j++) {
       pt[j]=p[j];          printf(" p=%.12e",p[j]);
     }          fprintf(ficlog," p=%.12e",p[j]);
     fptt=(*func)(ptt);        }
     if (fptt < fp) {        printf("\n");
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);        fprintf(ficlog,"\n");
       if (t < 0.0) {  #endif
         linmin(p,xit,n,fret,func);      } 
         for (j=1;j<=n;j++) {      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
           xi[j][ibig]=xi[j][n];  #ifdef DEBUG
           xi[j][n]=xit[j];        int k[2],l;
         }        k[0]=1;
 #ifdef DEBUG        k[1]=-1;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        printf("Max: %.12e",(*func)(p));
         for(j=1;j<=n;j++)        fprintf(ficlog,"Max: %.12e",(*func)(p));
           printf(" %.12e",xit[j]);        for (j=1;j<=n;j++) {
         printf("\n");          printf(" %.12e",p[j]);
 #endif          fprintf(ficlog," %.12e",p[j]);
       }        }
     }        printf("\n");
   }        fprintf(ficlog,"\n");
 }        for(l=0;l<=1;l++) {
           for (j=1;j<=n;j++) {
 /**** Prevalence limit ****************/            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
             printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
 {          }
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
      matrix by transitions matrix until convergence is reached */          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }
   int i, ii,j,k;  #endif
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();  
   double **out, cov[NCOVMAX], **pmij();        free_vector(xit,1,n); 
   double **newm;        free_vector(xits,1,n); 
   double agefin, delaymax=50 ; /* Max number of years to converge */        free_vector(ptt,1,n); 
         free_vector(pt,1,n); 
   for (ii=1;ii<=nlstate+ndeath;ii++)        return; 
     for (j=1;j<=nlstate+ndeath;j++){      } 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     }      for (j=1;j<=n;j++) { 
         ptt[j]=2.0*p[j]-pt[j]; 
    cov[1]=1.;        xit[j]=p[j]-pt[j]; 
          pt[j]=p[j]; 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      } 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      fptt=(*func)(ptt); 
     newm=savm;      if (fptt < fp) { 
     /* Covariates have to be included here again */        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
      cov[2]=agefin;        if (t < 0.0) { 
            linmin(p,xit,n,fret,func); 
       for (k=1; k<=cptcovn;k++) {          for (j=1;j<=n;j++) { 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];            xi[j][ibig]=xi[j][n]; 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/            xi[j][n]=xit[j]; 
       }          }
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  #ifdef DEBUG
       for (k=1; k<=cptcovprod;k++)          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/            printf(" %.12e",xit[j]);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/            fprintf(ficlog," %.12e",xit[j]);
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/          }
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);          printf("\n");
           fprintf(ficlog,"\n");
     savm=oldm;  #endif
     oldm=newm;        }
     maxmax=0.;      } 
     for(j=1;j<=nlstate;j++){    } 
       min=1.;  } 
       max=0.;  
       for(i=1; i<=nlstate; i++) {  /**** Prevalence limit (stable prevalence)  ****************/
         sumnew=0;  
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
         prlim[i][j]= newm[i][j]/(1-sumnew);  {
         max=FMAX(max,prlim[i][j]);    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         min=FMIN(min,prlim[i][j]);       matrix by transitions matrix until convergence is reached */
       }  
       maxmin=max-min;    int i, ii,j,k;
       maxmax=FMAX(maxmax,maxmin);    double min, max, maxmin, maxmax,sumnew=0.;
     }    double **matprod2();
     if(maxmax < ftolpl){    double **out, cov[NCOVMAX], **pmij();
       return prlim;    double **newm;
     }    double agefin, delaymax=50 ; /* Max number of years to converge */
   }  
 }    for (ii=1;ii<=nlstate+ndeath;ii++)
       for (j=1;j<=nlstate+ndeath;j++){
 /*************** transition probabilities ***************/        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  
 {     cov[1]=1.;
   double s1, s2;   
   /*double t34;*/   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   int i,j,j1, nc, ii, jj;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       newm=savm;
     for(i=1; i<= nlstate; i++){      /* Covariates have to be included here again */
     for(j=1; j<i;j++){       cov[2]=agefin;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    
         /*s2 += param[i][j][nc]*cov[nc];*/        for (k=1; k<=cptcovn;k++) {
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
       }        }
       ps[i][j]=s2;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        for (k=1; k<=cptcovprod;k++)
     }          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     for(j=i+1; j<=nlstate+ndeath;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       }      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       ps[i][j]=s2;  
     }      savm=oldm;
   }      oldm=newm;
     /*ps[3][2]=1;*/      maxmax=0.;
       for(j=1;j<=nlstate;j++){
   for(i=1; i<= nlstate; i++){        min=1.;
      s1=0;        max=0.;
     for(j=1; j<i; j++)        for(i=1; i<=nlstate; i++) {
       s1+=exp(ps[i][j]);          sumnew=0;
     for(j=i+1; j<=nlstate+ndeath; j++)          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       s1+=exp(ps[i][j]);          prlim[i][j]= newm[i][j]/(1-sumnew);
     ps[i][i]=1./(s1+1.);          max=FMAX(max,prlim[i][j]);
     for(j=1; j<i; j++)          min=FMIN(min,prlim[i][j]);
       ps[i][j]= exp(ps[i][j])*ps[i][i];        }
     for(j=i+1; j<=nlstate+ndeath; j++)        maxmin=max-min;
       ps[i][j]= exp(ps[i][j])*ps[i][i];        maxmax=FMAX(maxmax,maxmin);
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      }
   } /* end i */      if(maxmax < ftolpl){
         return prlim;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      }
     for(jj=1; jj<= nlstate+ndeath; jj++){    }
       ps[ii][jj]=0;  }
       ps[ii][ii]=1;  
     }  /*************** transition probabilities ***************/ 
   }  
   double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    double s1, s2;
     for(jj=1; jj<= nlstate+ndeath; jj++){    /*double t34;*/
      printf("%lf ",ps[ii][jj]);    int i,j,j1, nc, ii, jj;
    }  
     printf("\n ");      for(i=1; i<= nlstate; i++){
     }      for(j=1; j<i;j++){
     printf("\n ");printf("%lf ",cov[2]);*/        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 /*          /*s2 += param[i][j][nc]*cov[nc];*/
   for(i=1; i<= npar; i++) printf("%f ",x[i]);          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   goto end;*/          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
     return ps;        }
 }        ps[i][j]=s2;
         /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
 /**************** Product of 2 matrices ******************/      }
       for(j=i+1; j<=nlstate+ndeath;j++){
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 {          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */        }
   /* in, b, out are matrice of pointers which should have been initialized        ps[i][j]=s2;
      before: only the contents of out is modified. The function returns      }
      a pointer to pointers identical to out */    }
   long i, j, k;      /*ps[3][2]=1;*/
   for(i=nrl; i<= nrh; i++)  
     for(k=ncolol; k<=ncoloh; k++)    for(i=1; i<= nlstate; i++){
       for(j=ncl,out[i][k]=0.; j<=nch; j++)       s1=0;
         out[i][k] +=in[i][j]*b[j][k];      for(j=1; j<i; j++)
         s1+=exp(ps[i][j]);
   return out;      for(j=i+1; j<=nlstate+ndeath; j++)
 }        s1+=exp(ps[i][j]);
       ps[i][i]=1./(s1+1.);
       for(j=1; j<i; j++)
 /************* Higher Matrix Product ***************/        ps[i][j]= exp(ps[i][j])*ps[i][i];
       for(j=i+1; j<=nlstate+ndeath; j++)
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        ps[i][j]= exp(ps[i][j])*ps[i][i];
 {      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    } /* end i */
      duration (i.e. until  
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step      for(jj=1; jj<= nlstate+ndeath; jj++){
      (typically every 2 years instead of every month which is too big).        ps[ii][jj]=0;
      Model is determined by parameters x and covariates have to be        ps[ii][ii]=1;
      included manually here.      }
     }
      */  
   
   int i, j, d, h, k;    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   double **out, cov[NCOVMAX];      for(jj=1; jj<= nlstate+ndeath; jj++){
   double **newm;       printf("%lf ",ps[ii][jj]);
      }
   /* Hstepm could be zero and should return the unit matrix */      printf("\n ");
   for (i=1;i<=nlstate+ndeath;i++)      }
     for (j=1;j<=nlstate+ndeath;j++){      printf("\n ");printf("%lf ",cov[2]);*/
       oldm[i][j]=(i==j ? 1.0 : 0.0);  /*
       po[i][j][0]=(i==j ? 1.0 : 0.0);    for(i=1; i<= npar; i++) printf("%f ",x[i]);
     }    goto end;*/
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      return ps;
   for(h=1; h <=nhstepm; h++){  }
     for(d=1; d <=hstepm; d++){  
       newm=savm;  /**************** Product of 2 matrices ******************/
       /* Covariates have to be included here again */  
       cov[1]=1.;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  {
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       for (k=1; k<=cptcovage;k++)       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    /* in, b, out are matrice of pointers which should have been initialized 
       for (k=1; k<=cptcovprod;k++)       before: only the contents of out is modified. The function returns
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];       a pointer to pointers identical to out */
     long i, j, k;
     for(i=nrl; i<= nrh; i++)
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      for(k=ncolol; k<=ncoloh; k++)
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        for(j=ncl,out[i][k]=0.; j<=nch; j++)
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,          out[i][k] +=in[i][j]*b[j][k];
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  
       savm=oldm;    return out;
       oldm=newm;  }
     }  
     for(i=1; i<=nlstate+ndeath; i++)  
       for(j=1;j<=nlstate+ndeath;j++) {  /************* Higher Matrix Product ***************/
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
          */  {
       }    /* Computes the transition matrix starting at age 'age' over 
   } /* end h */       'nhstepm*hstepm*stepm' months (i.e. until
   return po;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
 }       nhstepm*hstepm matrices. 
        Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
        (typically every 2 years instead of every month which is too big 
 /*************** log-likelihood *************/       for the memory).
 double func( double *x)       Model is determined by parameters x and covariates have to be 
 {       included manually here. 
   int i, ii, j, k, mi, d, kk;  
   double l, ll[NLSTATEMAX], cov[NCOVMAX];       */
   double **out;  
   double sw; /* Sum of weights */    int i, j, d, h, k;
   double lli; /* Individual log likelihood */    double **out, cov[NCOVMAX];
   int s1, s2;    double **newm;
   long ipmx;  
   /*extern weight */    /* Hstepm could be zero and should return the unit matrix */
   /* We are differentiating ll according to initial status */    for (i=1;i<=nlstate+ndeath;i++)
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      for (j=1;j<=nlstate+ndeath;j++){
   /*for(i=1;i<imx;i++)        oldm[i][j]=(i==j ? 1.0 : 0.0);
     printf(" %d\n",s[4][i]);        po[i][j][0]=(i==j ? 1.0 : 0.0);
   */      }
   cov[1]=1.;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(h=1; h <=nhstepm; h++){
   for(k=1; k<=nlstate; k++) ll[k]=0.;      for(d=1; d <=hstepm; d++){
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        newm=savm;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        /* Covariates have to be included here again */
     for(mi=1; mi<= wav[i]-1; mi++){        cov[1]=1.;
       for (ii=1;ii<=nlstate+ndeath;ii++)        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for (j=1;j<=nlstate+ndeath;j++){        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);        for (k=1; k<=cptcovage;k++)
           savm[ii][j]=(ii==j ? 1.0 : 0.0);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         }        for (k=1; k<=cptcovprod;k++)
       for(d=0; d<dh[mi][i]; d++){          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         newm=savm;  
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
         for (kk=1; kk<=cptcovage;kk++) {        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         }        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                             pmij(pmmij,cov,ncovmodel,x,nlstate));
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        savm=oldm;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        oldm=newm;
         savm=oldm;      }
         oldm=newm;      for(i=1; i<=nlstate+ndeath; i++)
                for(j=1;j<=nlstate+ndeath;j++) {
                  po[i][j][h]=newm[i][j];
       } /* end mult */          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
                 */
       s1=s[mw[mi][i]][i];        }
       s2=s[mw[mi+1][i]][i];    } /* end h */
       if( s2 > nlstate){    return po;
         /* i.e. if s2 is a death state and if the date of death is known then the contribution  }
            to the likelihood is the probability to die between last step unit time and current  
            step unit time, which is also the differences between probability to die before dh  
            and probability to die before dh-stepm .  /*************** log-likelihood *************/
            In version up to 0.92 likelihood was computed  double func( double *x)
            as if date of death was unknown. Death was treated as any other  {
            health state: the date of the interview describes the actual state    int i, ii, j, k, mi, d, kk;
            and not the date of a change in health state. The former idea was    double l, ll[NLSTATEMAX], cov[NCOVMAX];
            to consider that at each interview the state was recorded    double **out;
            (healthy, disable or death) and IMaCh was corrected; but when we    double sw; /* Sum of weights */
            introduced the exact date of death then we should have modified    double lli; /* Individual log likelihood */
            the contribution of an exact death to the likelihood. This new    int s1, s2;
            contribution is smaller and very dependent of the step unit    double bbh, survp;
            stepm. It is no more the probability to die between last interview    long ipmx;
            and month of death but the probability to survive from last    /*extern weight */
            interview up to one month before death multiplied by the    /* We are differentiating ll according to initial status */
            probability to die within a month. Thanks to Chris    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
            Jackson for correcting this bug.  Former versions increased    /*for(i=1;i<imx;i++) 
            mortality artificially. The bad side is that we add another loop      printf(" %d\n",s[4][i]);
            which slows down the processing. The difference can be up to 10%    */
            lower mortality.    cov[1]=1.;
         */  
         lli=log(out[s1][s2] - savm[s1][s2]);    for(k=1; k<=nlstate; k++) ll[k]=0.;
       }else{  
         lli=log(out[s1][s2]); /* or     lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); */    if(mle==1){
         /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       ipmx +=1;        for(mi=1; mi<= wav[i]-1; mi++){
       sw += weight[i];          for (ii=1;ii<=nlstate+ndeath;ii++)
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;            for (j=1;j<=nlstate+ndeath;j++){
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d lli=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],lli,weight[i],out[s1][s2],savm[s1][s2]);*/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     } /* end of wave */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   } /* end of individual */            }
           for(d=0; d<dh[mi][i]; d++){
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];            newm=savm;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */            for (kk=1; kk<=cptcovage;kk++) {
   /*exit(0);*/              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   return -l;            }
 }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
 /*********** Maximum Likelihood Estimation ***************/            oldm=newm;
           } /* end mult */
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        
 {          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   int i,j, iter;          /* But now since version 0.9 we anticipate for bias and large stepm.
   double **xi,*delti;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   double fret;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   xi=matrix(1,npar,1,npar);           * the nearest (and in case of equal distance, to the lowest) interval but now
   for (i=1;i<=npar;i++)           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     for (j=1;j<=npar;j++)           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       xi[i][j]=(i==j ? 1.0 : 0.0);           * probability in order to take into account the bias as a fraction of the way
   printf("Powell\n");           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   powell(p,xi,npar,ftol,&iter,&fret,func);           * -stepm/2 to stepm/2 .
            * For stepm=1 the results are the same as for previous versions of Imach.
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));           * For stepm > 1 the results are less biased than in previous versions. 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));           */
           s1=s[mw[mi][i]][i];
 }          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
 /**** Computes Hessian and covariance matrix ***/          /* bias is positive if real duration
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))           * is higher than the multiple of stepm and negative otherwise.
 {           */
   double  **a,**y,*x,pd;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   double **hess;          if( s2 > nlstate){ 
   int i, j,jk;            /* i.e. if s2 is a death state and if the date of death is known then the contribution
   int *indx;               to the likelihood is the probability to die between last step unit time and current 
                step unit time, which is also the differences between probability to die before dh 
   double hessii(double p[], double delta, int theta, double delti[]);               and probability to die before dh-stepm . 
   double hessij(double p[], double delti[], int i, int j);               In version up to 0.92 likelihood was computed
   void lubksb(double **a, int npar, int *indx, double b[]) ;          as if date of death was unknown. Death was treated as any other
   void ludcmp(double **a, int npar, int *indx, double *d) ;          health state: the date of the interview describes the actual state
           and not the date of a change in health state. The former idea was
   hess=matrix(1,npar,1,npar);          to consider that at each interview the state was recorded
           (healthy, disable or death) and IMaCh was corrected; but when we
   printf("\nCalculation of the hessian matrix. Wait...\n");          introduced the exact date of death then we should have modified
   for (i=1;i<=npar;i++){          the contribution of an exact death to the likelihood. This new
     printf("%d",i);fflush(stdout);          contribution is smaller and very dependent of the step unit
     hess[i][i]=hessii(p,ftolhess,i,delti);          stepm. It is no more the probability to die between last interview
     /*printf(" %f ",p[i]);*/          and month of death but the probability to survive from last
     /*printf(" %lf ",hess[i][i]);*/          interview up to one month before death multiplied by the
   }          probability to die within a month. Thanks to Chris
            Jackson for correcting this bug.  Former versions increased
   for (i=1;i<=npar;i++) {          mortality artificially. The bad side is that we add another loop
     for (j=1;j<=npar;j++)  {          which slows down the processing. The difference can be up to 10%
       if (j>i) {          lower mortality.
         printf(".%d%d",i,j);fflush(stdout);            */
         hess[i][j]=hessij(p,delti,i,j);            lli=log(out[s1][s2] - savm[s1][s2]);
         hess[j][i]=hess[i][j];              }else{
         /*printf(" %lf ",hess[i][j]);*/            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     }          } 
   }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   printf("\n");          /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          ipmx +=1;
            sw += weight[i];
   a=matrix(1,npar,1,npar);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   y=matrix(1,npar,1,npar);        } /* end of wave */
   x=vector(1,npar);      } /* end of individual */
   indx=ivector(1,npar);    }  else if(mle==2){
   for (i=1;i<=npar;i++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   ludcmp(a,npar,indx,&pd);        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   for (j=1;j<=npar;j++) {            for (j=1;j<=nlstate+ndeath;j++){
     for (i=1;i<=npar;i++) x[i]=0;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     x[j]=1;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     lubksb(a,npar,indx,x);            }
     for (i=1;i<=npar;i++){          for(d=0; d<=dh[mi][i]; d++){
       matcov[i][j]=x[i];            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   printf("\n#Hessian matrix#\n");            }
   for (i=1;i<=npar;i++) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for (j=1;j<=npar;j++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       printf("%.3e ",hess[i][j]);            savm=oldm;
     }            oldm=newm;
     printf("\n");          } /* end mult */
   }        
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   /* Recompute Inverse */          /* But now since version 0.9 we anticipate for bias and large stepm.
   for (i=1;i<=npar;i++)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];           * (in months) between two waves is not a multiple of stepm, we rounded to 
   ludcmp(a,npar,indx,&pd);           * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
   /*  printf("\n#Hessian matrix recomputed#\n");           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
   for (j=1;j<=npar;j++) {           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
     for (i=1;i<=npar;i++) x[i]=0;           * -stepm/2 to stepm/2 .
     x[j]=1;           * For stepm=1 the results are the same as for previous versions of Imach.
     lubksb(a,npar,indx,x);           * For stepm > 1 the results are less biased than in previous versions. 
     for (i=1;i<=npar;i++){           */
       y[i][j]=x[i];          s1=s[mw[mi][i]][i];
       printf("%.3e ",y[i][j]);          s2=s[mw[mi+1][i]][i];
     }          bbh=(double)bh[mi][i]/(double)stepm; 
     printf("\n");          /* bias is positive if real duration
   }           * is higher than the multiple of stepm and negative otherwise.
   */           */
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   free_matrix(a,1,npar,1,npar);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   free_matrix(y,1,npar,1,npar);          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
   free_vector(x,1,npar);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   free_ivector(indx,1,npar);          /*if(lli ==000.0)*/
   free_matrix(hess,1,npar,1,npar);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ipmx +=1;
           sw += weight[i];
 }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
 /*************** hessian matrix ****************/      } /* end of individual */
 double hessii( double x[], double delta, int theta, double delti[])    }  else if(mle==3){  /* exponential inter-extrapolation */
 {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int i;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   int l=1, lmax=20;        for(mi=1; mi<= wav[i]-1; mi++){
   double k1,k2;          for (ii=1;ii<=nlstate+ndeath;ii++)
   double p2[NPARMAX+1];            for (j=1;j<=nlstate+ndeath;j++){
   double res;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double fx;            }
   int k=0,kmax=10;          for(d=0; d<dh[mi][i]; d++){
   double l1;            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   fx=func(x);            for (kk=1; kk<=cptcovage;kk++) {
   for (i=1;i<=npar;i++) p2[i]=x[i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   for(l=0 ; l <=lmax; l++){            }
     l1=pow(10,l);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     delts=delt;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(k=1 ; k <kmax; k=k+1){            savm=oldm;
       delt = delta*(l1*k);            oldm=newm;
       p2[theta]=x[theta] +delt;          } /* end mult */
       k1=func(p2)-fx;        
       p2[theta]=x[theta]-delt;          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       k2=func(p2)-fx;          /* But now since version 0.9 we anticipate for bias and large stepm.
       /*res= (k1-2.0*fx+k2)/delt/delt; */           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */           * (in months) between two waves is not a multiple of stepm, we rounded to 
                 * the nearest (and in case of equal distance, to the lowest) interval but now
 #ifdef DEBUG           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
 #endif           * probability in order to take into account the bias as a fraction of the way
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){           * -stepm/2 to stepm/2 .
         k=kmax;           * For stepm=1 the results are the same as for previous versions of Imach.
       }           * For stepm > 1 the results are less biased than in previous versions. 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */           */
         k=kmax; l=lmax*10.;          s1=s[mw[mi][i]][i];
       }          s2=s[mw[mi+1][i]][i];
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          bbh=(double)bh[mi][i]/(double)stepm; 
         delts=delt;          /* bias is positive if real duration
       }           * is higher than the multiple of stepm and negative otherwise.
     }           */
   }          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
   delti[theta]=delts;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   return res;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
            /*if(lli ==000.0)*/
 }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ipmx +=1;
 double hessij( double x[], double delti[], int thetai,int thetaj)          sw += weight[i];
 {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   int i;        } /* end of wave */
   int l=1, l1, lmax=20;      } /* end of individual */
   double k1,k2,k3,k4,res,fx;    }else{  /* ml=4 no inter-extrapolation */
   double p2[NPARMAX+1];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   int k;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
   fx=func(x);          for (ii=1;ii<=nlstate+ndeath;ii++)
   for (k=1; k<=2; k++) {            for (j=1;j<=nlstate+ndeath;j++){
     for (i=1;i<=npar;i++) p2[i]=x[i];              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     p2[thetai]=x[thetai]+delti[thetai]/k;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            }
     k1=func(p2)-fx;          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
     p2[thetai]=x[thetai]+delti[thetai]/k;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            for (kk=1; kk<=cptcovage;kk++) {
     k2=func(p2)-fx;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              }
     p2[thetai]=x[thetai]-delti[thetai]/k;          
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     k3=func(p2)-fx;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
              savm=oldm;
     p2[thetai]=x[thetai]-delti[thetai]/k;            oldm=newm;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          } /* end mult */
     k4=func(p2)-fx;        
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 #ifdef DEBUG          ipmx +=1;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          sw += weight[i];
 #endif          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }        } /* end of wave */
   return res;      } /* end of individual */
 }    } /* End of if */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 /************** Inverse of matrix **************/    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
 void ludcmp(double **a, int n, int *indx, double *d)    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
 {    return -l;
   int i,imax,j,k;  }
   double big,dum,sum,temp;  
   double *vv;  
    /*********** Maximum Likelihood Estimation ***************/
   vv=vector(1,n);  
   *d=1.0;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   for (i=1;i<=n;i++) {  {
     big=0.0;    int i,j, iter;
     for (j=1;j<=n;j++)    double **xi,*delti;
       if ((temp=fabs(a[i][j])) > big) big=temp;    double fret;
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    xi=matrix(1,npar,1,npar);
     vv[i]=1.0/big;    for (i=1;i<=npar;i++)
   }      for (j=1;j<=npar;j++)
   for (j=1;j<=n;j++) {        xi[i][j]=(i==j ? 1.0 : 0.0);
     for (i=1;i<j;i++) {    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       sum=a[i][j];    powell(p,xi,npar,ftol,&iter,&fret,func);
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     big=0.0;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     for (i=j;i<=n;i++) {  
       sum=a[i][j];  }
       for (k=1;k<j;k++)  
         sum -= a[i][k]*a[k][j];  /**** Computes Hessian and covariance matrix ***/
       a[i][j]=sum;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       if ( (dum=vv[i]*fabs(sum)) >= big) {  {
         big=dum;    double  **a,**y,*x,pd;
         imax=i;    double **hess;
       }    int i, j,jk;
     }    int *indx;
     if (j != imax) {  
       for (k=1;k<=n;k++) {    double hessii(double p[], double delta, int theta, double delti[]);
         dum=a[imax][k];    double hessij(double p[], double delti[], int i, int j);
         a[imax][k]=a[j][k];    void lubksb(double **a, int npar, int *indx, double b[]) ;
         a[j][k]=dum;    void ludcmp(double **a, int npar, int *indx, double *d) ;
       }  
       *d = -(*d);    hess=matrix(1,npar,1,npar);
       vv[imax]=vv[j];  
     }    printf("\nCalculation of the hessian matrix. Wait...\n");
     indx[j]=imax;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     if (a[j][j] == 0.0) a[j][j]=TINY;    for (i=1;i<=npar;i++){
     if (j != n) {      printf("%d",i);fflush(stdout);
       dum=1.0/(a[j][j]);      fprintf(ficlog,"%d",i);fflush(ficlog);
       for (i=j+1;i<=n;i++) a[i][j] *= dum;      hess[i][i]=hessii(p,ftolhess,i,delti);
     }      /*printf(" %f ",p[i]);*/
   }      /*printf(" %lf ",hess[i][i]);*/
   free_vector(vv,1,n);  /* Doesn't work */    }
 ;    
 }    for (i=1;i<=npar;i++) {
       for (j=1;j<=npar;j++)  {
 void lubksb(double **a, int n, int *indx, double b[])        if (j>i) { 
 {          printf(".%d%d",i,j);fflush(stdout);
   int i,ii=0,ip,j;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   double sum;          hess[i][j]=hessij(p,delti,i,j);
            hess[j][i]=hess[i][j];    
   for (i=1;i<=n;i++) {          /*printf(" %lf ",hess[i][j]);*/
     ip=indx[i];        }
     sum=b[ip];      }
     b[ip]=b[i];    }
     if (ii)    printf("\n");
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    fprintf(ficlog,"\n");
     else if (sum) ii=i;  
     b[i]=sum;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
   }    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   for (i=n;i>=1;i--) {    
     sum=b[i];    a=matrix(1,npar,1,npar);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];    y=matrix(1,npar,1,npar);
     b[i]=sum/a[i][i];    x=vector(1,npar);
   }    indx=ivector(1,npar);
 }    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
 /************ Frequencies ********************/    ludcmp(a,npar,indx,&pd);
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)  
 {  /* Some frequencies */    for (j=1;j<=npar;j++) {
        for (i=1;i<=npar;i++) x[i]=0;
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      x[j]=1;
   double ***freq; /* Frequencies */      lubksb(a,npar,indx,x);
   double *pp;      for (i=1;i<=npar;i++){ 
   double pos, k2, dateintsum=0,k2cpt=0;        matcov[i][j]=x[i];
   FILE *ficresp;      }
   char fileresp[FILENAMELENGTH];    }
    
   pp=vector(1,nlstate);    printf("\n#Hessian matrix#\n");
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    fprintf(ficlog,"\n#Hessian matrix#\n");
   strcpy(fileresp,"p");    for (i=1;i<=npar;i++) { 
   strcat(fileresp,fileres);      for (j=1;j<=npar;j++) { 
   if((ficresp=fopen(fileresp,"w"))==NULL) {        printf("%.3e ",hess[i][j]);
     printf("Problem with prevalence resultfile: %s\n", fileresp);        fprintf(ficlog,"%.3e ",hess[i][j]);
     exit(0);      }
   }      printf("\n");
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      fprintf(ficlog,"\n");
   j1=0;    }
    
   j=cptcoveff;    /* Recompute Inverse */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    for (i=1;i<=npar;i++)
        for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   for(k1=1; k1<=j;k1++){    ludcmp(a,npar,indx,&pd);
     for(i1=1; i1<=ncodemax[k1];i1++){  
       j1++;    /*  printf("\n#Hessian matrix recomputed#\n");
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);  
         scanf("%d", i);*/    for (j=1;j<=npar;j++) {
       for (i=-1; i<=nlstate+ndeath; i++)        for (i=1;i<=npar;i++) x[i]=0;
         for (jk=-1; jk<=nlstate+ndeath; jk++)        x[j]=1;
           for(m=agemin; m <= agemax+3; m++)      lubksb(a,npar,indx,x);
             freq[i][jk][m]=0;      for (i=1;i<=npar;i++){ 
              y[i][j]=x[i];
       dateintsum=0;        printf("%.3e ",y[i][j]);
       k2cpt=0;        fprintf(ficlog,"%.3e ",y[i][j]);
       for (i=1; i<=imx; i++) {      }
         bool=1;      printf("\n");
         if  (cptcovn>0) {      fprintf(ficlog,"\n");
           for (z1=1; z1<=cptcoveff; z1++)    }
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    */
               bool=0;  
         }    free_matrix(a,1,npar,1,npar);
         if (bool==1) {    free_matrix(y,1,npar,1,npar);
           for(m=firstpass; m<=lastpass; m++){    free_vector(x,1,npar);
             k2=anint[m][i]+(mint[m][i]/12.);    free_ivector(indx,1,npar);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    free_matrix(hess,1,npar,1,npar);
               if(agev[m][i]==0) agev[m][i]=agemax+1;  
               if(agev[m][i]==1) agev[m][i]=agemax+2;  
               if (m<lastpass) {  }
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  /*************** hessian matrix ****************/
               }  double hessii( double x[], double delta, int theta, double delti[])
                {
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    int i;
                 dateintsum=dateintsum+k2;    int l=1, lmax=20;
                 k2cpt++;    double k1,k2;
               }    double p2[NPARMAX+1];
             }    double res;
           }    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
         }    double fx;
       }    int k=0,kmax=10;
            double l1;
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
     fx=func(x);
       if  (cptcovn>0) {    for (i=1;i<=npar;i++) p2[i]=x[i];
         fprintf(ficresp, "\n#********** Variable ");    for(l=0 ; l <=lmax; l++){
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      l1=pow(10,l);
         fprintf(ficresp, "**********\n#");      delts=delt;
       }      for(k=1 ; k <kmax; k=k+1){
       for(i=1; i<=nlstate;i++)        delt = delta*(l1*k);
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        p2[theta]=x[theta] +delt;
       fprintf(ficresp, "\n");        k1=func(p2)-fx;
              p2[theta]=x[theta]-delt;
       for(i=(int)agemin; i <= (int)agemax+3; i++){        k2=func(p2)-fx;
         if(i==(int)agemax+3)        /*res= (k1-2.0*fx+k2)/delt/delt; */
           printf("Total");        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         else        
           printf("Age %d", i);  #ifdef DEBUG
         for(jk=1; jk <=nlstate ; jk++){        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
             pp[jk] += freq[jk][m][i];  #endif
         }        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
         for(jk=1; jk <=nlstate ; jk++){        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
           for(m=-1, pos=0; m <=0 ; m++)          k=kmax;
             pos += freq[jk][m][i];        }
           if(pp[jk]>=1.e-10)        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          k=kmax; l=lmax*10.;
           else        }
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
         }          delts=delt;
         }
         for(jk=1; jk <=nlstate ; jk++){      }
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    }
             pp[jk] += freq[jk][m][i];    delti[theta]=delts;
         }    return res; 
     
         for(jk=1,pos=0; jk <=nlstate ; jk++)  }
           pos += pp[jk];  
         for(jk=1; jk <=nlstate ; jk++){  double hessij( double x[], double delti[], int thetai,int thetaj)
           if(pos>=1.e-5)  {
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    int i;
           else    int l=1, l1, lmax=20;
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    double k1,k2,k3,k4,res,fx;
           if( i <= (int) agemax){    double p2[NPARMAX+1];
             if(pos>=1.e-5){    int k;
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);  
               probs[i][jk][j1]= pp[jk]/pos;    fx=func(x);
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    for (k=1; k<=2; k++) {
             }      for (i=1;i<=npar;i++) p2[i]=x[i];
             else      p2[thetai]=x[thetai]+delti[thetai]/k;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
           }      k1=func(p2)-fx;
         }    
              p2[thetai]=x[thetai]+delti[thetai]/k;
         for(jk=-1; jk <=nlstate+ndeath; jk++)      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           for(m=-1; m <=nlstate+ndeath; m++)      k2=func(p2)-fx;
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    
         if(i <= (int) agemax)      p2[thetai]=x[thetai]-delti[thetai]/k;
           fprintf(ficresp,"\n");      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         printf("\n");      k3=func(p2)-fx;
       }    
     }      p2[thetai]=x[thetai]-delti[thetai]/k;
   }      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   dateintmean=dateintsum/k2cpt;      k4=func(p2)-fx;
        res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   fclose(ficresp);  #ifdef DEBUG
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   free_vector(pp,1,nlstate);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
    #endif
   /* End of Freq */    }
 }    return res;
   }
 /************ Prevalence ********************/  
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)  /************** Inverse of matrix **************/
 {  /* Some frequencies */  void ludcmp(double **a, int n, int *indx, double *d) 
    { 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    int i,imax,j,k; 
   double ***freq; /* Frequencies */    double big,dum,sum,temp; 
   double *pp;    double *vv; 
   double pos, k2;   
     vv=vector(1,n); 
   pp=vector(1,nlstate);    *d=1.0; 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    for (i=1;i<=n;i++) { 
        big=0.0; 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      for (j=1;j<=n;j++) 
   j1=0;        if ((temp=fabs(a[i][j])) > big) big=temp; 
        if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   j=cptcoveff;      vv[i]=1.0/big; 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    } 
      for (j=1;j<=n;j++) { 
  for(k1=1; k1<=j;k1++){      for (i=1;i<j;i++) { 
     for(i1=1; i1<=ncodemax[k1];i1++){        sum=a[i][j]; 
       j1++;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
          a[i][j]=sum; 
       for (i=-1; i<=nlstate+ndeath; i++)        } 
         for (jk=-1; jk<=nlstate+ndeath; jk++)        big=0.0; 
           for(m=agemin; m <= agemax+3; m++)      for (i=j;i<=n;i++) { 
             freq[i][jk][m]=0;        sum=a[i][j]; 
              for (k=1;k<j;k++) 
       for (i=1; i<=imx; i++) {          sum -= a[i][k]*a[k][j]; 
         bool=1;        a[i][j]=sum; 
         if  (cptcovn>0) {        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           for (z1=1; z1<=cptcoveff; z1++)          big=dum; 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          imax=i; 
               bool=0;        } 
         }      } 
         if (bool==1) {      if (j != imax) { 
           for(m=firstpass; m<=lastpass; m++){        for (k=1;k<=n;k++) { 
             k2=anint[m][i]+(mint[m][i]/12.);          dum=a[imax][k]; 
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          a[imax][k]=a[j][k]; 
               if(agev[m][i]==0) agev[m][i]=agemax+1;          a[j][k]=dum; 
               if(agev[m][i]==1) agev[m][i]=agemax+2;        } 
               if (m<lastpass)        *d = -(*d); 
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        vv[imax]=vv[j]; 
               else      } 
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      indx[j]=imax; 
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];      if (a[j][j] == 0.0) a[j][j]=TINY; 
             }      if (j != n) { 
           }        dum=1.0/(a[j][j]); 
         }        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       }      } 
         for(i=(int)agemin; i <= (int)agemax+3; i++){    } 
           for(jk=1; jk <=nlstate ; jk++){    free_vector(vv,1,n);  /* Doesn't work */
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  ;
               pp[jk] += freq[jk][m][i];  } 
           }  
           for(jk=1; jk <=nlstate ; jk++){  void lubksb(double **a, int n, int *indx, double b[]) 
             for(m=-1, pos=0; m <=0 ; m++)  { 
             pos += freq[jk][m][i];    int i,ii=0,ip,j; 
         }    double sum; 
           
          for(jk=1; jk <=nlstate ; jk++){    for (i=1;i<=n;i++) { 
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      ip=indx[i]; 
              pp[jk] += freq[jk][m][i];      sum=b[ip]; 
          }      b[ip]=b[i]; 
                if (ii) 
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
          for(jk=1; jk <=nlstate ; jk++){                b[i]=sum; 
            if( i <= (int) agemax){    } 
              if(pos>=1.e-5){    for (i=n;i>=1;i--) { 
                probs[i][jk][j1]= pp[jk]/pos;      sum=b[i]; 
              }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
            }      b[i]=sum/a[i][i]; 
          }    } 
            } 
         }  
     }  /************ Frequencies ********************/
   }  void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)
   {  /* Some frequencies */
      
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   free_vector(pp,1,nlstate);    int first;
      double ***freq; /* Frequencies */
 }  /* End of Freq */    double *pp;
     double pos, k2, dateintsum=0,k2cpt=0;
 /************* Waves Concatenation ***************/    FILE *ficresp;
     char fileresp[FILENAMELENGTH];
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)    
 {    pp=vector(1,nlstate);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
      Death is a valid wave (if date is known).    strcpy(fileresp,"p");
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    strcat(fileresp,fileres);
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    if((ficresp=fopen(fileresp,"w"))==NULL) {
      and mw[mi+1][i]. dh depends on stepm.      printf("Problem with prevalence resultfile: %s\n", fileresp);
      */      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       exit(0);
   int i, mi, m;    }
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);
      double sum=0., jmean=0.;*/    j1=0;
     
   int j, k=0,jk, ju, jl;    j=cptcoveff;
   double sum=0.;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   jmin=1e+5;  
   jmax=-1;    first=1;
   jmean=0.;  
   for(i=1; i<=imx; i++){    for(k1=1; k1<=j;k1++){
     mi=0;      for(i1=1; i1<=ncodemax[k1];i1++){
     m=firstpass;        j1++;
     while(s[m][i] <= nlstate){        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
       if(s[m][i]>=1)          scanf("%d", i);*/
         mw[++mi][i]=m;        for (i=-1; i<=nlstate+ndeath; i++)  
       if(m >=lastpass)          for (jk=-1; jk<=nlstate+ndeath; jk++)  
         break;            for(m=agemin; m <= agemax+3; m++)
       else              freq[i][jk][m]=0;
         m++;        
     }/* end while */        dateintsum=0;
     if (s[m][i] > nlstate){        k2cpt=0;
       mi++;     /* Death is another wave */        for (i=1; i<=imx; i++) {
       /* if(mi==0)  never been interviewed correctly before death */          bool=1;
          /* Only death is a correct wave */          if  (cptcovn>0) {
       mw[mi][i]=m;            for (z1=1; z1<=cptcoveff; z1++) 
     }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
     wav[i]=mi;          }
     if(mi==0)          if (bool==1){
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            for(m=firstpass; m<=lastpass; m++){
   }              k2=anint[m][i]+(mint[m][i]/12.);
               if ((k2>=dateprev1) && (k2<=dateprev2)) {
   for(i=1; i<=imx; i++){                if(agev[m][i]==0) agev[m][i]=agemax+1;
     for(mi=1; mi<wav[i];mi++){                if(agev[m][i]==1) agev[m][i]=agemax+2;
       if (stepm <=0)                if (m<lastpass) {
         dh[mi][i]=1;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       else{                  freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];
         if (s[mw[mi+1][i]][i] > nlstate) {                }
           if (agedc[i] < 2*AGESUP) {                
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {
           if(j==0) j=1;  /* Survives at least one month after exam */                  dateintsum=dateintsum+k2;
           k=k+1;                  k2cpt++;
           if (j >= jmax) jmax=j;                }
           if (j <= jmin) jmin=j;              }
           sum=sum+j;            }
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          }
           }        }
         }         
         else{        fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  
           k=k+1;        if  (cptcovn>0) {
           if (j >= jmax) jmax=j;          fprintf(ficresp, "\n#********** Variable "); 
           else if (j <= jmin)jmin=j;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */          fprintf(ficresp, "**********\n#");
           sum=sum+j;        }
         }        for(i=1; i<=nlstate;i++) 
         jk= j/stepm;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         jl= j -jk*stepm;        fprintf(ficresp, "\n");
         ju= j -(jk+1)*stepm;        
         if(jl <= -ju)        for(i=(int)agemin; i <= (int)agemax+3; i++){
           dh[mi][i]=jk;          if(i==(int)agemax+3){
         else            fprintf(ficlog,"Total");
           dh[mi][i]=jk+1;          }else{
         if(dh[mi][i]==0)            if(first==1){
           dh[mi][i]=1; /* At least one step */              first=0;
       }              printf("See log file for details...\n");
     }            }
   }            fprintf(ficlog,"Age %d", i);
   jmean=sum/k;          }
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          for(jk=1; jk <=nlstate ; jk++){
  }            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 /*********** Tricode ****************************/              pp[jk] += freq[jk][m][i]; 
 void tricode(int *Tvar, int **nbcode, int imx)          }
 {          for(jk=1; jk <=nlstate ; jk++){
   int Ndum[20],ij=1, k, j, i;            for(m=-1, pos=0; m <=0 ; m++)
   int cptcode=0;              pos += freq[jk][m][i];
   cptcoveff=0;            if(pp[jk]>=1.e-10){
                if(first==1){
   for (k=0; k<19; k++) Ndum[k]=0;              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   for (k=1; k<=7; k++) ncodemax[k]=0;              }
               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {            }else{
     for (i=1; i<=imx; i++) {              if(first==1)
       ij=(int)(covar[Tvar[j]][i]);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       Ndum[ij]++;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            }
       if (ij > cptcode) cptcode=ij;          }
     }  
           for(jk=1; jk <=nlstate ; jk++){
     for (i=0; i<=cptcode; i++) {            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       if(Ndum[i]!=0) ncodemax[j]++;              pp[jk] += freq[jk][m][i];
     }          }
     ij=1;  
           for(jk=1,pos=0; jk <=nlstate ; jk++)
             pos += pp[jk];
     for (i=1; i<=ncodemax[j]; i++) {          for(jk=1; jk <=nlstate ; jk++){
       for (k=0; k<=19; k++) {            if(pos>=1.e-5){
         if (Ndum[k] != 0) {              if(first==1)
           nbcode[Tvar[j]][ij]=k;                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                        fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
           ij++;            }else{
         }              if(first==1)
         if (ij > ncodemax[j]) break;                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
       }                fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     }            }
   }              if( i <= (int) agemax){
               if(pos>=1.e-5){
  for (k=0; k<19; k++) Ndum[k]=0;                fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);
                 probs[i][jk][j1]= pp[jk]/pos;
  for (i=1; i<=ncovmodel-2; i++) {                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       ij=Tvar[i];              }
       Ndum[ij]++;              else
     }                fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);
             }
  ij=1;          }
  for (i=1; i<=10; i++) {          
    if((Ndum[i]!=0) && (i<=ncovcol)){          for(jk=-1; jk <=nlstate+ndeath; jk++)
      Tvaraff[ij]=i;            for(m=-1; m <=nlstate+ndeath; m++)
      ij++;              if(freq[jk][m][i] !=0 ) {
    }              if(first==1)
  }                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                  fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     cptcoveff=ij-1;              }
 }          if(i <= (int) agemax)
             fprintf(ficresp,"\n");
 /*********** Health Expectancies ****************/          if(first==1)
             printf("Others in log...\n");
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )          fprintf(ficlog,"\n");
         }
 {      }
   /* Health expectancies */    }
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    dateintmean=dateintsum/k2cpt; 
   double age, agelim, hf;   
   double ***p3mat,***varhe;    fclose(ficresp);
   double **dnewm,**doldm;    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);
   double *xp;    free_vector(pp,1,nlstate);
   double **gp, **gm;    
   double ***gradg, ***trgradg;    /* End of Freq */
   int theta;  }
   
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);  /************ Prevalence ********************/
   xp=vector(1,npar);  void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   dnewm=matrix(1,nlstate*2,1,npar);  {  
   doldm=matrix(1,nlstate*2,1,nlstate*2);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         in each health status at the date of interview (if between dateprev1 and dateprev2).
   fprintf(ficreseij,"# Health expectancies\n");       We still use firstpass and lastpass as another selection.
   fprintf(ficreseij,"# Age");    */
   for(i=1; i<=nlstate;i++)   
     for(j=1; j<=nlstate;j++)    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);    double ***freq; /* Frequencies */
   fprintf(ficreseij,"\n");    double *pp;
     double pos; 
   if(estepm < stepm){    double  y2; /* in fractional years */
     printf ("Problem %d lower than %d\n",estepm, stepm);  
   }    pp=vector(1,nlstate);
   else  hstepm=estepm;      
   /* We compute the life expectancy from trapezoids spaced every estepm months    freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);
    * This is mainly to measure the difference between two models: for example    j1=0;
    * if stepm=24 months pijx are given only every 2 years and by summing them    
    * we are calculating an estimate of the Life Expectancy assuming a linear    j=cptcoveff;
    * progression inbetween and thus overestimating or underestimating according    if (cptcovn<1) {j=1;ncodemax[1]=1;}
    * to the curvature of the survival function. If, for the same date, we    
    * estimate the model with stepm=1 month, we can keep estepm to 24 months    for(k1=1; k1<=j;k1++){
    * to compare the new estimate of Life expectancy with the same linear      for(i1=1; i1<=ncodemax[k1];i1++){
    * hypothesis. A more precise result, taking into account a more precise        j1++;
    * curvature will be obtained if estepm is as small as stepm. */        
         for (i=-1; i<=nlstate+ndeath; i++)  
   /* For example we decided to compute the life expectancy with the smallest unit */          for (jk=-1; jk<=nlstate+ndeath; jk++)  
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.            for(m=agemin; m <= agemax+3; m++)
      nhstepm is the number of hstepm from age to agelim              freq[i][jk][m]=0;
      nstepm is the number of stepm from age to agelin.       
      Look at hpijx to understand the reason of that which relies in memory size        for (i=1; i<=imx; i++) { /* Each individual */
      and note for a fixed period like estepm months */          bool=1;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          if  (cptcovn>0) {
      survival function given by stepm (the optimization length). Unfortunately it            for (z1=1; z1<=cptcoveff; z1++) 
      means that if the survival funtion is printed only each two years of age and if              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
      you sum them up and add 1 year (area under the trapezoids) you won't get the same                bool=0;
      results. So we changed our mind and took the option of the best precision.          } 
   */          if (bool==1) { 
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   agelim=AGESUP;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                if(agev[m][i]==0) agev[m][i]=agemax+1;
     /* nhstepm age range expressed in number of stepm */                if(agev[m][i]==1) agev[m][i]=agemax+2;
     nstepm=(int) rint((agelim-age)*YEARM/stepm);                if (m<lastpass) {
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
     /* if (stepm >= YEARM) hstepm=1;*/                  freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i]; 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */                }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              }
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);            } /* end selection of waves */
     gp=matrix(0,nhstepm,1,nlstate*2);          }
     gm=matrix(0,nhstepm,1,nlstate*2);        }
         for(i=(int)agemin; i <= (int)agemax+3; i++){ 
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          for(jk=1; jk <=nlstate ; jk++){
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);                pp[jk] += freq[jk][m][i]; 
            }
           for(jk=1; jk <=nlstate ; jk++){
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            for(m=-1, pos=0; m <=0 ; m++)
               pos += freq[jk][m][i];
     /* Computing Variances of health expectancies */          }
           
      for(theta=1; theta <=npar; theta++){          for(jk=1; jk <=nlstate ; jk++){
       for(i=1; i<=npar; i++){            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              pp[jk] += freq[jk][m][i];
       }          }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            
            for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];
       cptj=0;          
       for(j=1; j<= nlstate; j++){          for(jk=1; jk <=nlstate ; jk++){    
         for(i=1; i<=nlstate; i++){            if( i <= (int) agemax){
           cptj=cptj+1;              if(pos>=1.e-5){
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){                probs[i][jk][j1]= pp[jk]/pos;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;              }
           }            }
         }          }/* end jk */
       }        }/* end i */
            } /* end i1 */
          } /* end k1 */
       for(i=1; i<=npar; i++)  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);
          free_vector(pp,1,nlstate);
       cptj=0;    
       for(j=1; j<= nlstate; j++){  }  /* End of Freq */
         for(i=1;i<=nlstate;i++){  
           cptj=cptj+1;  /************* Waves Concatenation ***************/
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
           }  {
         }    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
       }       Death is a valid wave (if date is known).
             mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
           dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
       for(j=1; j<= nlstate*2; j++)       */
         for(h=0; h<=nhstepm-1; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    int i, mi, m;
         }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        double sum=0., jmean=0.;*/
      }    int first;
        int j, k=0,jk, ju, jl;
 /* End theta */    double sum=0.;
     first=0;
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);    jmin=1e+5;
     jmax=-1;
      for(h=0; h<=nhstepm-1; h++)    jmean=0.;
       for(j=1; j<=nlstate*2;j++)    for(i=1; i<=imx; i++){
         for(theta=1; theta <=npar; theta++)      mi=0;
         trgradg[h][j][theta]=gradg[h][theta][j];      m=firstpass;
       while(s[m][i] <= nlstate){
         if(s[m][i]>=1)
      for(i=1;i<=nlstate*2;i++)          mw[++mi][i]=m;
       for(j=1;j<=nlstate*2;j++)        if(m >=lastpass)
         varhe[i][j][(int)age] =0.;          break;
         else
     for(h=0;h<=nhstepm-1;h++){          m++;
       for(k=0;k<=nhstepm-1;k++){      }/* end while */
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);      if (s[m][i] > nlstate){
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);        mi++;     /* Death is another wave */
         for(i=1;i<=nlstate*2;i++)        /* if(mi==0)  never been interviewed correctly before death */
           for(j=1;j<=nlstate*2;j++)           /* Only death is a correct wave */
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        mw[mi][i]=m;
       }      }
     }  
       wav[i]=mi;
            if(mi==0){
     /* Computing expectancies */        if(first==0){
     for(i=1; i<=nlstate;i++)          printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);
       for(j=1; j<=nlstate;j++)          first=1;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){        }
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;        if(first==1){
                    fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/        }
       } /* end mi==0 */
         }    }
   
     fprintf(ficreseij,"%3.0f",age );    for(i=1; i<=imx; i++){
     cptj=0;      for(mi=1; mi<wav[i];mi++){
     for(i=1; i<=nlstate;i++)        if (stepm <=0)
       for(j=1; j<=nlstate;j++){          dh[mi][i]=1;
         cptj++;        else{
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );          if (s[mw[mi+1][i]][i] > nlstate) {
       }            if (agedc[i] < 2*AGESUP) {
     fprintf(ficreseij,"\n");            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                if(j==0) j=1;  /* Survives at least one month after exam */
     free_matrix(gm,0,nhstepm,1,nlstate*2);            k=k+1;
     free_matrix(gp,0,nhstepm,1,nlstate*2);            if (j >= jmax) jmax=j;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);            if (j <= jmin) jmin=j;
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);            sum=sum+j;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            /*if (j<0) printf("j=%d num=%d \n",j,i); */
   }            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   free_vector(xp,1,npar);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
   free_matrix(dnewm,1,nlstate*2,1,npar);            }
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);          }
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);          else{
 }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
             /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
 /************ Variance ******************/            k=k+1;
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)            if (j >= jmax) jmax=j;
 {            else if (j <= jmin)jmin=j;
   /* Variance of health expectancies */            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            sum=sum+j;
   double **newm;          }
   double **dnewm,**doldm;          jk= j/stepm;
   int i, j, nhstepm, hstepm, h, nstepm ;          jl= j -jk*stepm;
   int k, cptcode;          ju= j -(jk+1)*stepm;
   double *xp;          if(mle <=1){ 
   double **gp, **gm;            if(jl==0){
   double ***gradg, ***trgradg;              dh[mi][i]=jk;
   double ***p3mat;              bh[mi][i]=0;
   double age,agelim, hf;            }else{ /* We want a negative bias in order to only have interpolation ie
   int theta;                    * at the price of an extra matrix product in likelihood */
               dh[mi][i]=jk+1;
    fprintf(ficresvij,"# Covariances of life expectancies\n");              bh[mi][i]=ju;
   fprintf(ficresvij,"# Age");            }
   for(i=1; i<=nlstate;i++)          }else{
     for(j=1; j<=nlstate;j++)            if(jl <= -ju){
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);              dh[mi][i]=jk;
   fprintf(ficresvij,"\n");              bh[mi][i]=jl;       /* bias is positive if real duration
                                    * is higher than the multiple of stepm and negative otherwise.
   xp=vector(1,npar);                                   */
   dnewm=matrix(1,nlstate,1,npar);            }
   doldm=matrix(1,nlstate,1,nlstate);            else{
                dh[mi][i]=jk+1;
   if(estepm < stepm){              bh[mi][i]=ju;
     printf ("Problem %d lower than %d\n",estepm, stepm);            }
   }            if(dh[mi][i]==0){
   else  hstepm=estepm;                dh[mi][i]=1; /* At least one step */
   /* For example we decided to compute the life expectancy with the smallest unit */              bh[mi][i]=ju; /* At least one step */
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
      nhstepm is the number of hstepm from age to agelim            }
      nstepm is the number of stepm from age to agelin.          }
      Look at hpijx to understand the reason of that which relies in memory size        } /* end if mle */
      and note for a fixed period like k years */      } /* end wave */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    }
      survival function given by stepm (the optimization length). Unfortunately it    jmean=sum/k;
      means that if the survival funtion is printed only each two years of age and if    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
      results. So we changed our mind and took the option of the best precision.   }
   */  
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  /*********** Tricode ****************************/
   agelim = AGESUP;  void tricode(int *Tvar, int **nbcode, int imx)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  {
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    int Ndum[20],ij=1, k, j, i, maxncov=19;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int cptcode=0;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    cptcoveff=0; 
     gp=matrix(0,nhstepm,1,nlstate);   
     gm=matrix(0,nhstepm,1,nlstate);    for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (k=1; k<=7; k++) ncodemax[k]=0;
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
       }                                 modality*/ 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        Ndum[ij]++; /*store the modality */
         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       if (popbased==1) {        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
         for(i=1; i<=nlstate;i++)                                         Tvar[j]. If V=sex and male is 0 and 
           prlim[i][i]=probs[(int)age][i][ij];                                         female is 1, then  cptcode=1.*/
       }      }
    
       for(j=1; j<= nlstate; j++){      for (i=0; i<=cptcode; i++) {
         for(h=0; h<=nhstepm; h++){        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      }
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }      ij=1; 
       }      for (i=1; i<=ncodemax[j]; i++) {
            for (k=0; k<= maxncov; k++) {
       for(i=1; i<=npar; i++) /* Computes gradient */          if (Ndum[k] != 0) {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            nbcode[Tvar[j]][ij]=k; 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            
              ij++;
       if (popbased==1) {          }
         for(i=1; i<=nlstate;i++)          if (ij > ncodemax[j]) break; 
           prlim[i][i]=probs[(int)age][i][ij];        }  
       }      } 
     }  
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){   for (k=0; k< maxncov; k++) Ndum[k]=0;
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];   for (i=1; i<=ncovmodel-2; i++) { 
         }     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       }     ij=Tvar[i];
      Ndum[ij]++;
       for(j=1; j<= nlstate; j++)   }
         for(h=0; h<=nhstepm; h++){  
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];   ij=1;
         }   for (i=1; i<= maxncov; i++) {
     } /* End theta */     if((Ndum[i]!=0) && (i<=ncovcol)){
        Tvaraff[ij]=i; /*For printing */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);       ij++;
      }
     for(h=0; h<=nhstepm; h++)   }
       for(j=1; j<=nlstate;j++)   
         for(theta=1; theta <=npar; theta++)   cptcoveff=ij-1; /*Number of simple covariates*/
           trgradg[h][j][theta]=gradg[h][theta][j];  }
   
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  /*********** Health Expectancies ****************/
     for(i=1;i<=nlstate;i++)  
       for(j=1;j<=nlstate;j++)  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
         vareij[i][j][(int)age] =0.;  
   {
     for(h=0;h<=nhstepm;h++){    /* Health expectancies */
       for(k=0;k<=nhstepm;k++){    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);    double age, agelim, hf;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);    double ***p3mat,***varhe;
         for(i=1;i<=nlstate;i++)    double **dnewm,**doldm;
           for(j=1;j<=nlstate;j++)    double *xp;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;    double **gp, **gm;
       }    double ***gradg, ***trgradg;
     }    int theta;
   
     fprintf(ficresvij,"%.0f ",age );    varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);
     for(i=1; i<=nlstate;i++)    xp=vector(1,npar);
       for(j=1; j<=nlstate;j++){    dnewm=matrix(1,nlstate*2,1,npar);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);    doldm=matrix(1,nlstate*2,1,nlstate*2);
       }    
     fprintf(ficresvij,"\n");    fprintf(ficreseij,"# Health expectancies\n");
     free_matrix(gp,0,nhstepm,1,nlstate);    fprintf(ficreseij,"# Age");
     free_matrix(gm,0,nhstepm,1,nlstate);    for(i=1; i<=nlstate;i++)
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      for(j=1; j<=nlstate;j++)
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    fprintf(ficreseij,"\n");
   } /* End age */  
      if(estepm < stepm){
   free_vector(xp,1,npar);      printf ("Problem %d lower than %d\n",estepm, stepm);
   free_matrix(doldm,1,nlstate,1,npar);    }
   free_matrix(dnewm,1,nlstate,1,nlstate);    else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
 }     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
 /************ Variance of prevlim ******************/     * we are calculating an estimate of the Life Expectancy assuming a linear 
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)     * progression in between and thus overestimating or underestimating according
 {     * to the curvature of the survival function. If, for the same date, we 
   /* Variance of prevalence limit */     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/     * to compare the new estimate of Life expectancy with the same linear 
   double **newm;     * hypothesis. A more precise result, taking into account a more precise
   double **dnewm,**doldm;     * curvature will be obtained if estepm is as small as stepm. */
   int i, j, nhstepm, hstepm;  
   int k, cptcode;    /* For example we decided to compute the life expectancy with the smallest unit */
   double *xp;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   double *gp, *gm;       nhstepm is the number of hstepm from age to agelim 
   double **gradg, **trgradg;       nstepm is the number of stepm from age to agelin. 
   double age,agelim;       Look at hpijx to understand the reason of that which relies in memory size
   int theta;       and note for a fixed period like estepm months */
        /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");       survival function given by stepm (the optimization length). Unfortunately it
   fprintf(ficresvpl,"# Age");       means that if the survival funtion is printed only each two years of age and if
   for(i=1; i<=nlstate;i++)       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       fprintf(ficresvpl," %1d-%1d",i,i);       results. So we changed our mind and took the option of the best precision.
   fprintf(ficresvpl,"\n");    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);    agelim=AGESUP;
   doldm=matrix(1,nlstate,1,nlstate);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
        /* nhstepm age range expressed in number of stepm */
   hstepm=1*YEARM; /* Every year of age */      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   agelim = AGESUP;      /* if (stepm >= YEARM) hstepm=1;*/
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     if (stepm >= YEARM) hstepm=1;      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */      gp=matrix(0,nhstepm,1,nlstate*2);
     gradg=matrix(1,npar,1,nlstate);      gm=matrix(0,nhstepm,1,nlstate*2);
     gp=vector(1,nlstate);  
     gm=vector(1,nlstate);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     for(theta=1; theta <=npar; theta++){      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
       for(i=1; i<=npar; i++){ /* Computes gradient */   
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  
       for(i=1;i<=nlstate;i++)      /* Computing Variances of health expectancies */
         gp[i] = prlim[i][i];  
           for(theta=1; theta <=npar; theta++){
       for(i=1; i<=npar; i++) /* Computes gradient */        for(i=1; i<=npar; i++){ 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        }
       for(i=1;i<=nlstate;i++)        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         gm[i] = prlim[i][i];    
         cptj=0;
       for(i=1;i<=nlstate;i++)        for(j=1; j<= nlstate; j++){
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          for(i=1; i<=nlstate; i++){
     } /* End theta */            cptj=cptj+1;
             for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
     trgradg =matrix(1,nlstate,1,npar);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             }
     for(j=1; j<=nlstate;j++)          }
       for(theta=1; theta <=npar; theta++)        }
         trgradg[j][theta]=gradg[theta][j];       
        
     for(i=1;i<=nlstate;i++)        for(i=1; i<=npar; i++) 
       varpl[i][(int)age] =0.;          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        
     for(i=1;i<=nlstate;i++)        cptj=0;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        for(j=1; j<= nlstate; j++){
           for(i=1;i<=nlstate;i++){
     fprintf(ficresvpl,"%.0f ",age );            cptj=cptj+1;
     for(i=1; i<=nlstate;i++)            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     fprintf(ficresvpl,"\n");            }
     free_vector(gp,1,nlstate);          }
     free_vector(gm,1,nlstate);        }
     free_matrix(gradg,1,npar,1,nlstate);        for(j=1; j<= nlstate*2; j++)
     free_matrix(trgradg,1,nlstate,1,npar);          for(h=0; h<=nhstepm-1; h++){
   } /* End age */            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   free_vector(xp,1,npar);       } 
   free_matrix(doldm,1,nlstate,1,npar);     
   free_matrix(dnewm,1,nlstate,1,nlstate);  /* End theta */
   
 }       trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);
   
 /************ Variance of one-step probabilities  ******************/       for(h=0; h<=nhstepm-1; h++)
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        for(j=1; j<=nlstate*2;j++)
 {          for(theta=1; theta <=npar; theta++)
   int i, j, i1, k1, j1, z1;            trgradg[h][j][theta]=gradg[h][theta][j];
   int k=0, cptcode;       
   double **dnewm,**doldm;  
   double *xp;       for(i=1;i<=nlstate*2;i++)
   double *gp, *gm;        for(j=1;j<=nlstate*2;j++)
   double **gradg, **trgradg;          varhe[i][j][(int)age] =0.;
   double age,agelim, cov[NCOVMAX];  
   int theta;       printf("%d|",(int)age);fflush(stdout);
   char fileresprob[FILENAMELENGTH];       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
   strcpy(fileresprob,"prob");        for(k=0;k<=nhstepm-1;k++){
   strcat(fileresprob,fileres);          matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);
     printf("Problem with resultfile: %s\n", fileresprob);          for(i=1;i<=nlstate*2;i++)
   }            for(j=1;j<=nlstate*2;j++)
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
          }
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");      }
   fprintf(ficresprob,"# Age");      /* Computing expectancies */
   for(i=1; i<=nlstate;i++)      for(i=1; i<=nlstate;i++)
     for(j=1; j<=(nlstate+ndeath);j++)        for(j=1; j<=nlstate;j++)
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
   fprintf(ficresprob,"\n");  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   xp=vector(1,npar);  
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      fprintf(ficreseij,"%3.0f",age );
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));      cptj=0;
        for(i=1; i<=nlstate;i++)
   cov[1]=1;        for(j=1; j<=nlstate;j++){
   j=cptcoveff;          cptj++;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
   j1=0;        }
   for(k1=1; k1<=1;k1++){      fprintf(ficreseij,"\n");
     for(i1=1; i1<=ncodemax[k1];i1++){     
     j1++;      free_matrix(gm,0,nhstepm,1,nlstate*2);
       free_matrix(gp,0,nhstepm,1,nlstate*2);
     if  (cptcovn>0) {      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);
       fprintf(ficresprob, "\n#********** Variable ");      free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficresprob, "**********\n#");    }
     }    printf("\n");
        fprintf(ficlog,"\n");
       for (age=bage; age<=fage; age ++){  
         cov[2]=age;    free_vector(xp,1,npar);
         for (k=1; k<=cptcovn;k++) {    free_matrix(dnewm,1,nlstate*2,1,npar);
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    free_matrix(doldm,1,nlstate*2,1,nlstate*2);
              free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);
         }  }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
         for (k=1; k<=cptcovprod;k++)  /************ Variance ******************/
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
          {
         gradg=matrix(1,npar,1,9);    /* Variance of health expectancies */
         trgradg=matrix(1,9,1,npar);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    /* double **newm;*/
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    double **dnewm,**doldm;
        double **dnewmp,**doldmp;
         for(theta=1; theta <=npar; theta++){    int i, j, nhstepm, hstepm, h, nstepm ;
           for(i=1; i<=npar; i++)    int k, cptcode;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    double *xp;
              double **gp, **gm;  /* for var eij */
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    double ***gradg, ***trgradg; /*for var eij */
              double **gradgp, **trgradgp; /* for var p point j */
           k=0;    double *gpp, *gmp; /* for var p point j */
           for(i=1; i<= (nlstate+ndeath); i++){    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
             for(j=1; j<=(nlstate+ndeath);j++){    double ***p3mat;
               k=k+1;    double age,agelim, hf;
               gp[k]=pmmij[i][j];    double ***mobaverage;
             }    int theta;
           }    char digit[4];
              char digitp[25];
           for(i=1; i<=npar; i++)  
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    char fileresprobmorprev[FILENAMELENGTH];
      
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    if(popbased==1){
           k=0;      if(mobilav!=0)
           for(i=1; i<=(nlstate+ndeath); i++){        strcpy(digitp,"-populbased-mobilav-");
             for(j=1; j<=(nlstate+ndeath);j++){      else strcpy(digitp,"-populbased-nomobil-");
               k=k+1;    }
               gm[k]=pmmij[i][j];    else 
             }      strcpy(digitp,"-stablbased-");
           }  
          if (mobilav!=0) {
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];        if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)      }
           for(theta=1; theta <=npar; theta++)    }
             trgradg[j][theta]=gradg[theta][j];  
            strcpy(fileresprobmorprev,"prmorprev"); 
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);    sprintf(digit,"%-d",ij);
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
            strcat(fileresprobmorprev,digit); /* Tvar to be done */
         pmij(pmmij,cov,ncovmodel,x,nlstate);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
            strcat(fileresprobmorprev,fileres);
         k=0;    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
         for(i=1; i<=(nlstate+ndeath); i++){      printf("Problem with resultfile: %s\n", fileresprobmorprev);
           for(j=1; j<=(nlstate+ndeath);j++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
             k=k+1;    }
             gm[k]=pmmij[i][j];    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         }    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
          fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
      /*printf("\n%d ",(int)age);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){      fprintf(ficresprobmorprev," p.%-d SE",j);
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      for(i=1; i<=nlstate;i++)
      }*/        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
         fprintf(ficresprob,"\n%d ",(int)age);    fprintf(ficresprobmorprev,"\n");
     if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
        exit(0);
       }    }
     }    else{
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      fprintf(ficgp,"\n# Routine varevsij");
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    }
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      printf("Problem with html file: %s\n", optionfilehtm);
   }      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
   free_vector(xp,1,npar);      exit(0);
   fclose(ficresprob);    }
      else{
 }      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
 /******************* Printing html file ***********/    }
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
  int lastpass, int stepm, int weightopt, char model[],\  
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\    fprintf(ficresvij,"# Age");
  char version[], int popforecast, int estepm ){    for(i=1; i<=nlstate;i++)
   int jj1, k1, i1, cpt;      for(j=1; j<=nlstate;j++)
   FILE *fichtm;        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   /*char optionfilehtm[FILENAMELENGTH];*/    fprintf(ficresvij,"\n");
   
   strcpy(optionfilehtm,optionfile);    xp=vector(1,npar);
   strcat(optionfilehtm,".htm");    dnewm=matrix(1,nlstate,1,npar);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    doldm=matrix(1,nlstate,1,nlstate);
     printf("Problem with %s \n",optionfilehtm), exit(0);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    gpp=vector(nlstate+1,nlstate+ndeath);
 \n    gmp=vector(nlstate+1,nlstate+ndeath);
 Total number of observations=%d <br>\n    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    
 <hr  size=\"2\" color=\"#EC5E5E\">    if(estepm < stepm){
  <ul><li>Outputs files<br>\n      printf ("Problem %d lower than %d\n",estepm, stepm);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    }
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n    else  hstepm=estepm;   
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n    /* For example we decided to compute the life expectancy with the smallest unit */
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n       nhstepm is the number of hstepm from age to agelim 
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);       nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
  fprintf(fichtm,"\n       and note for a fixed period like k years */
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n       survival function given by stepm (the optimization length). Unfortunately it
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n       means that if the survival funtion is printed every two years of age and if
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);       results. So we changed our mind and took the option of the best precision.
     */
  if(popforecast==1) fprintf(fichtm,"\n    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n    agelim = AGESUP;
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         <br>",fileres,fileres,fileres,fileres);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
  else      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 fprintf(fichtm," <li>Graphs</li><p>");      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
  m=cptcoveff;      gm=matrix(0,nhstepm,1,nlstate);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
   
  jj1=0;      for(theta=1; theta <=npar; theta++){
  for(k1=1; k1<=m;k1++){        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
    for(i1=1; i1<=ncodemax[k1];i1++){          xp[i] = x[i] + (i==theta ?delti[theta]:0);
        jj1++;        }
        if (cptcovn > 0) {        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
          for (cpt=1; cpt<=cptcoveff;cpt++)  
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        if (popbased==1) {
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          if(mobilav ==0){
        }            for(i=1; i<=nlstate;i++)
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>              prlim[i][i]=probs[(int)age][i][ij];
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              }else{ /* mobilav */ 
        for(cpt=1; cpt<nlstate;cpt++){            for(i=1; i<=nlstate;i++)
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>              prlim[i][i]=mobaverage[(int)age][i][ij];
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          }
        }        }
     for(cpt=1; cpt<=nlstate;cpt++) {    
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        for(j=1; j<= nlstate; j++){
 interval) in state (%d): v%s%d%d.gif <br>          for(h=0; h<=nhstepm; h++){
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);              for(i=1, gp[h][j]=0.;i<=nlstate;i++)
      }              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
      for(cpt=1; cpt<=nlstate;cpt++) {          }
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>        }
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        /* This for computing probability of death (h=1 means
      }           computed over hstepm matrices product = hstepm*stepm months) 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and           as a weighted average of prlim.
 health expectancies in states (1) and (2): e%s%d.gif<br>        */
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
 fprintf(fichtm,"\n</body>");          for(i=1,gpp[j]=0.; i<= nlstate; i++)
    }            gpp[j] += prlim[i][i]*p3mat[i][j][1];
    }        }    
 fclose(fichtm);        /* end probability of death */
 }  
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
 /******************* Gnuplot file **************/          xp[i] = x[i] - (i==theta ?delti[theta]:0);
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;   
         if (popbased==1) {
   strcpy(optionfilegnuplot,optionfilefiname);          if(mobilav ==0){
   strcat(optionfilegnuplot,".gp.txt");            for(i=1; i<=nlstate;i++)
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {              prlim[i][i]=probs[(int)age][i][ij];
     printf("Problem with file %s",optionfilegnuplot);          }else{ /* mobilav */ 
   }            for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
 #ifdef windows          }
     fprintf(ficgp,"cd \"%s\" \n",pathc);        }
 #endif  
 m=pow(2,cptcoveff);        for(j=1; j<= nlstate; j++){
            for(h=0; h<=nhstepm; h++){
  /* 1eme*/            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
   for (cpt=1; cpt<= nlstate ; cpt ++) {              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
    for (k1=1; k1<= m ; k1 ++) {          }
         }
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
 for (i=1; i<= nlstate ; i ++) {           as a weighted average of prlim.
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        */
   else fprintf(ficgp," \%%*lf (\%%*lf)");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
 }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     for (i=1; i<= nlstate ; i ++) {        }    
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        /* end probability of death */
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }        for(j=1; j<= nlstate; j++) /* vareij */
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);          for(h=0; h<=nhstepm; h++){
      for (i=1; i<= nlstate ; i ++) {            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          }
   else fprintf(ficgp," \%%*lf (\%%*lf)");  
 }          for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  
    }      } /* End theta */
   }  
   /*2 eme*/      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
   for (k1=1; k1<= m ; k1 ++) {      for(h=0; h<=nhstepm; h++) /* veij */
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);        for(j=1; j<=nlstate;j++)
              for(theta=1; theta <=npar; theta++)
     for (i=1; i<= nlstate+1 ; i ++) {            trgradg[h][j][theta]=gradg[h][theta][j];
       k=2*i;  
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
       for (j=1; j<= nlstate+1 ; j ++) {        for(theta=1; theta <=npar; theta++)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          trgradgp[j][theta]=gradgp[theta][j];
   else fprintf(ficgp," \%%*lf (\%%*lf)");    
 }    
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      for(i=1;i<=nlstate;i++)
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        for(j=1;j<=nlstate;j++)
       for (j=1; j<= nlstate+1 ; j ++) {          vareij[i][j][(int)age] =0.;
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");      for(h=0;h<=nhstepm;h++){
 }          for(k=0;k<=nhstepm;k++){
       fprintf(ficgp,"\" t\"\" w l 0,");          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       for (j=1; j<= nlstate+1 ; j ++) {          for(i=1;i<=nlstate;i++)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            for(j=1;j<=nlstate;j++)
   else fprintf(ficgp," \%%*lf (\%%*lf)");              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
 }          }
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");      }
       else fprintf(ficgp,"\" t\"\" w l 0,");    
     }      /* pptj */
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
   }      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
        for(j=nlstate+1;j<=nlstate+ndeath;j++)
   /*3eme*/        for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
   for (k1=1; k1<= m ; k1 ++) {      /* end ppptj */
     for (cpt=1; cpt<= nlstate ; cpt ++) {      /*  x centered again */
       k=2+nlstate*(2*cpt-2);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);   
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      if (popbased==1) {
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        if(mobilav ==0){
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);          for(i=1; i<=nlstate;i++)
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            prlim[i][i]=probs[(int)age][i][ij];
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
 */            prlim[i][i]=mobaverage[(int)age][i][ij];
       for (i=1; i< nlstate ; i ++) {        }
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);      }
                
       }      /* This for computing probability of death (h=1 means
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     }         as a weighted average of prlim.
     }      */
        for(j=nlstate+1;j<=nlstate+ndeath;j++){
   /* CV preval stat */        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     for (k1=1; k1<= m ; k1 ++) {          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     for (cpt=1; cpt<nlstate ; cpt ++) {      }    
       k=3;      /* end probability of death */
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);  
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for (i=1; i< nlstate ; i ++)      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficgp,"+$%d",k+i+1);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        for(i=1; i<=nlstate;i++){
                fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
       l=3+(nlstate+ndeath)*cpt;        }
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      } 
       for (i=1; i< nlstate ; i ++) {      fprintf(ficresprobmorprev,"\n");
         l=3+(nlstate+ndeath)*cpt;  
         fprintf(ficgp,"+$%d",l+i+1);      fprintf(ficresvij,"%.0f ",age );
       }      for(i=1; i<=nlstate;i++)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);          for(j=1; j<=nlstate;j++){
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     }        }
   }        fprintf(ficresvij,"\n");
        free_matrix(gp,0,nhstepm,1,nlstate);
   /* proba elementaires */      free_matrix(gm,0,nhstepm,1,nlstate);
    for(i=1,jk=1; i <=nlstate; i++){      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
     for(k=1; k <=(nlstate+ndeath); k++){      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       if (k != i) {      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for(j=1; j <=ncovmodel; j++){    } /* End age */
            free_vector(gpp,nlstate+1,nlstate+ndeath);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    free_vector(gmp,nlstate+1,nlstate+ndeath);
           jk++;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
           fprintf(ficgp,"\n");    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
         }    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
       }    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     }    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     }  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     for(jk=1; jk <=m; jk++) {  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
    i=1;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
    for(k2=1; k2<=nlstate; k2++) {    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
      k3=i;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
      for(k=1; k<=(nlstate+ndeath); k++) {    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
        if (k != k2){    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);  */
 ij=1;    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
         for(j=3; j <=ncovmodel; j++) {  
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    free_vector(xp,1,npar);
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    free_matrix(doldm,1,nlstate,1,nlstate);
             ij++;    free_matrix(dnewm,1,nlstate,1,npar);
           }    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           else    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           fprintf(ficgp,")/(1");    fclose(ficresprobmorprev);
            fclose(ficgp);
         for(k1=1; k1 <=nlstate; k1++){      fclose(fichtm);
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  }  
 ij=1;  
           for(j=3; j <=ncovmodel; j++){  /************ Variance of prevlim ******************/
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);  {
             ij++;    /* Variance of prevalence limit */
           }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
           else    double **newm;
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    double **dnewm,**doldm;
           }    int i, j, nhstepm, hstepm;
           fprintf(ficgp,")");    int k, cptcode;
         }    double *xp;
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    double *gp, *gm;
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    double **gradg, **trgradg;
         i=i+ncovmodel;    double age,agelim;
        }    int theta;
      }     
    }    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    fprintf(ficresvpl,"# Age");
    }    for(i=1; i<=nlstate;i++)
            fprintf(ficresvpl," %1d-%1d",i,i);
   fclose(ficgp);    fprintf(ficresvpl,"\n");
 }  /* end gnuplot */  
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
 /*************** Moving average **************/    doldm=matrix(1,nlstate,1,nlstate);
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    
     hstepm=1*YEARM; /* Every year of age */
   int i, cpt, cptcod;    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    agelim = AGESUP;
       for (i=1; i<=nlstate;i++)    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           mobaverage[(int)agedeb][i][cptcod]=0.;      if (stepm >= YEARM) hstepm=1;
          nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){      gradg=matrix(1,npar,1,nlstate);
       for (i=1; i<=nlstate;i++){      gp=vector(1,nlstate);
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      gm=vector(1,nlstate);
           for (cpt=0;cpt<=4;cpt++){  
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      for(theta=1; theta <=npar; theta++){
           }        for(i=1; i<=npar; i++){ /* Computes gradient */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }        }
       }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     }        for(i=1;i<=nlstate;i++)
              gp[i] = prlim[i][i];
 }      
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
 /************** Forecasting ******************/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        for(i=1;i<=nlstate;i++)
            gm[i] = prlim[i][i];
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  
   int *popage;        for(i=1;i<=nlstate;i++)
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   double *popeffectif,*popcount;      } /* End theta */
   double ***p3mat;  
   char fileresf[FILENAMELENGTH];      trgradg =matrix(1,nlstate,1,npar);
   
  agelim=AGESUP;      for(j=1; j<=nlstate;j++)
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;        for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
        for(i=1;i<=nlstate;i++)
          varpl[i][(int)age] =0.;
   strcpy(fileresf,"f");      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   strcat(fileresf,fileres);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
   if((ficresf=fopen(fileresf,"w"))==NULL) {      for(i=1;i<=nlstate;i++)
     printf("Problem with forecast resultfile: %s\n", fileresf);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   }  
   printf("Computing forecasting: result on file '%s' \n", fileresf);      fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
   if (cptcoveff==0) ncodemax[cptcoveff]=1;        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
   if (mobilav==1) {      free_vector(gp,1,nlstate);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      free_vector(gm,1,nlstate);
     movingaverage(agedeb, fage, ageminpar, mobaverage);      free_matrix(gradg,1,npar,1,nlstate);
   }      free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;    free_vector(xp,1,npar);
      free_matrix(doldm,1,nlstate,1,npar);
   agelim=AGESUP;    free_matrix(dnewm,1,nlstate,1,nlstate);
    
   hstepm=1;  }
   hstepm=hstepm/stepm;  
   yp1=modf(dateintmean,&yp);  /************ Variance of one-step probabilities  ******************/
   anprojmean=yp;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   yp2=modf((yp1*12),&yp);  {
   mprojmean=yp;    int i, j=0,  i1, k1, l1, t, tj;
   yp1=modf((yp2*30.5),&yp);    int k2, l2, j1,  z1;
   jprojmean=yp;    int k=0,l, cptcode;
   if(jprojmean==0) jprojmean=1;    int first=1, first1;
   if(mprojmean==0) jprojmean=1;    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
      double **dnewm,**doldm;
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    double *xp;
      double *gp, *gm;
   for(cptcov=1;cptcov<=i2;cptcov++){    double **gradg, **trgradg;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    double **mu;
       k=k+1;    double age,agelim, cov[NCOVMAX];
       fprintf(ficresf,"\n#******");    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
       for(j=1;j<=cptcoveff;j++) {    int theta;
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    char fileresprob[FILENAMELENGTH];
       }    char fileresprobcov[FILENAMELENGTH];
       fprintf(ficresf,"******\n");    char fileresprobcor[FILENAMELENGTH];
       fprintf(ficresf,"# StartingAge FinalAge");  
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    double ***varpij;
        
          strcpy(fileresprob,"prob"); 
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {    strcat(fileresprob,fileres);
         fprintf(ficresf,"\n");    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    strcpy(fileresprobcov,"probcov"); 
           nhstepm = nhstepm/hstepm;    strcat(fileresprobcov,fileres);
              if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      printf("Problem with resultfile: %s\n", fileresprobcov);
           oldm=oldms;savm=savms;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      }
            strcpy(fileresprobcor,"probcor"); 
           for (h=0; h<=nhstepm; h++){    strcat(fileresprobcor,fileres);
             if (h==(int) (calagedate+YEARM*cpt)) {    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);      printf("Problem with resultfile: %s\n", fileresprobcor);
             }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
             for(j=1; j<=nlstate+ndeath;j++) {    }
               kk1=0.;kk2=0;    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
               for(i=1; i<=nlstate;i++) {                  fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                 if (mobilav==1)    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                 else {    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                 }    
                    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
               }    fprintf(ficresprob,"# Age");
               if (h==(int)(calagedate+12*cpt)){    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
                 fprintf(ficresf," %.3f", kk1);    fprintf(ficresprobcov,"# Age");
                            fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
               }    fprintf(ficresprobcov,"# Age");
             }  
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(i=1; i<=nlstate;i++)
         }      for(j=1; j<=(nlstate+ndeath);j++){
       }        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     }        fprintf(ficresprobcov," p%1d-%1d ",i,j);
   }        fprintf(ficresprobcor," p%1d-%1d ",i,j);
              }  
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
   fclose(ficresf);    fprintf(ficresprobcor,"\n");
 }   */
 /************** Forecasting ******************/   xp=vector(1,npar);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
      doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   int *popage;    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    first=1;
   double *popeffectif,*popcount;    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
   double ***p3mat,***tabpop,***tabpopprev;      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
   char filerespop[FILENAMELENGTH];      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
       exit(0);
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    }
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    else{
   agelim=AGESUP;      fprintf(ficgp,"\n# Routine varprob");
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    }
      if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      printf("Problem with html file: %s\n", optionfilehtm);
        fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
        exit(0);
   strcpy(filerespop,"pop");    }
   strcat(filerespop,fileres);    else{
   if((ficrespop=fopen(filerespop,"w"))==NULL) {      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     printf("Problem with forecast resultfile: %s\n", filerespop);      fprintf(fichtm,"\n");
   }  
   printf("Computing forecasting: result on file '%s' \n", filerespop);      fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
       fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
   
   if (mobilav==1) {    }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);    cov[1]=1;
   }    tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
   stepsize=(int) (stepm+YEARM-1)/YEARM;    j1=0;
   if (stepm<=12) stepsize=1;    for(t=1; t<=tj;t++){
        for(i1=1; i1<=ncodemax[t];i1++){ 
   agelim=AGESUP;        j1++;
          if  (cptcovn>0) {
   hstepm=1;          fprintf(ficresprob, "\n#********** Variable "); 
   hstepm=hstepm/stepm;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficresprob, "**********\n#\n");
   if (popforecast==1) {          fprintf(ficresprobcov, "\n#********** Variable "); 
     if((ficpop=fopen(popfile,"r"))==NULL) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       printf("Problem with population file : %s\n",popfile);exit(0);          fprintf(ficresprobcov, "**********\n#\n");
     }          
     popage=ivector(0,AGESUP);          fprintf(ficgp, "\n#********** Variable "); 
     popeffectif=vector(0,AGESUP);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     popcount=vector(0,AGESUP);          fprintf(ficgp, "**********\n#\n");
              
     i=1;            
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
              for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     imx=i;          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          
   }          fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   for(cptcov=1;cptcov<=i2;cptcov++){          fprintf(ficresprobcor, "**********\n#");    
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        }
       k=k+1;        
       fprintf(ficrespop,"\n#******");        for (age=bage; age<=fage; age ++){ 
       for(j=1;j<=cptcoveff;j++) {          cov[2]=age;
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for (k=1; k<=cptcovn;k++) {
       }            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
       fprintf(ficrespop,"******\n");          }
       fprintf(ficrespop,"# Age");          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);          for (k=1; k<=cptcovprod;k++)
       if (popforecast==1)  fprintf(ficrespop," [Population]");            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
                
       for (cpt=0; cpt<=0;cpt++) {          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
                  gp=vector(1,(nlstate)*(nlstate+ndeath));
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          gm=vector(1,(nlstate)*(nlstate+ndeath));
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      
           nhstepm = nhstepm/hstepm;          for(theta=1; theta <=npar; theta++){
                      for(i=1; i<=npar; i++)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              xp[i] = x[i] + (i==theta ?delti[theta]:0);
           oldm=oldms;savm=savms;            
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              pmij(pmmij,cov,ncovmodel,xp,nlstate);
                    
           for (h=0; h<=nhstepm; h++){            k=0;
             if (h==(int) (calagedate+YEARM*cpt)) {            for(i=1; i<= (nlstate); i++){
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);              for(j=1; j<=(nlstate+ndeath);j++){
             }                k=k+1;
             for(j=1; j<=nlstate+ndeath;j++) {                gp[k]=pmmij[i][j];
               kk1=0.;kk2=0;              }
               for(i=1; i<=nlstate;i++) {                          }
                 if (mobilav==1)            
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            for(i=1; i<=npar; i++)
                 else {              xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      
                 }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
               }            k=0;
               if (h==(int)(calagedate+12*cpt)){            for(i=1; i<=(nlstate); i++){
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;              for(j=1; j<=(nlstate+ndeath);j++){
                   /*fprintf(ficrespop," %.3f", kk1);                k=k+1;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/                gm[k]=pmmij[i][j];
               }              }
             }            }
             for(i=1; i<=nlstate;i++){       
               kk1=0.;            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
                 for(j=1; j<=nlstate;j++){              gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];  
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];          }
                 }  
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             }            for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)          
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           }          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         }          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
       }          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
            free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   /******/  
           pmij(pmmij,cov,ncovmodel,x,nlstate);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {          
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            k=0;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          for(i=1; i<=(nlstate); i++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);            for(j=1; j<=(nlstate+ndeath);j++){
           nhstepm = nhstepm/hstepm;              k=k+1;
                        mu[k][(int) age]=pmmij[i][j];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            }
           oldm=oldms;savm=savms;          }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);            for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
           for (h=0; h<=nhstepm; h++){            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
             if (h==(int) (calagedate+YEARM*cpt)) {              varpij[i][j][(int)age] = doldm[i][j];
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }          /*printf("\n%d ",(int)age);
             for(j=1; j<=nlstate+ndeath;j++) {            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
               kk1=0.;kk2=0;            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
               for(i=1; i<=nlstate;i++) {                          fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                }*/
               }  
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);          fprintf(ficresprob,"\n%d ",(int)age);
             }          fprintf(ficresprobcov,"\n%d ",(int)age);
           }          fprintf(ficresprobcor,"\n%d ",(int)age);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
       }            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
    }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   }            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
              fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          }
           i=0;
   if (popforecast==1) {          for (k=1; k<=(nlstate);k++){
     free_ivector(popage,0,AGESUP);            for (l=1; l<=(nlstate+ndeath);l++){ 
     free_vector(popeffectif,0,AGESUP);              i=i++;
     free_vector(popcount,0,AGESUP);              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
   }              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              for (j=1; j<=i;j++){
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   fclose(ficrespop);                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
 }              }
             }
 /***********************************************/          }/* end of loop for state */
 /**************** Main Program *****************/        } /* end of loop for age */
 /***********************************************/  
         /* Confidence intervalle of pij  */
 int main(int argc, char *argv[])        /*
 {          fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   double agedeb, agefin,hf;          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   double fret;          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   double **xi,tmp,delta;        */
   
   double dum; /* Dummy variable */        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   double ***p3mat;        first1=1;
   int *indx;        for (k2=1; k2<=(nlstate);k2++){
   char line[MAXLINE], linepar[MAXLINE];          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   char title[MAXLINE];            if(l2==k2) continue;
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];            j=(k2-1)*(nlstate+ndeath)+l2;
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];            for (k1=1; k1<=(nlstate);k1++){
                for (l1=1; l1<=(nlstate+ndeath);l1++){ 
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];                if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
   char filerest[FILENAMELENGTH];                if(i<=j) continue;
   char fileregp[FILENAMELENGTH];                for (age=bage; age<=fage; age ++){ 
   char popfile[FILENAMELENGTH];                  if ((int)age %5==0){
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   int firstobs=1, lastobs=10;                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   int sdeb, sfin; /* Status at beginning and end */                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   int c,  h , cpt,l;                    mu1=mu[i][(int) age]/stepm*YEARM ;
   int ju,jl, mi;                    mu2=mu[j][(int) age]/stepm*YEARM;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;                    c12=cv12/sqrt(v1*v2);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;                    /* Computing eigen value of matrix of covariance */
   int mobilav=0,popforecast=0;                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   int hstepm, nhstepm;                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;                    /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   double bage, fage, age, agelim, agebase;                    /*v21=sqrt(1.-v11*v11); *//* error */
   double ftolpl=FTOL;                    v21=(lc1-v1)/cv12*v11;
   double **prlim;                    v12=-v21;
   double *severity;                    v22=v11;
   double ***param; /* Matrix of parameters */                    tnalp=v21/v11;
   double  *p;                    if(first1==1){
   double **matcov; /* Matrix of covariance */                      first1=0;
   double ***delti3; /* Scale */                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   double *delti; /* Scale */                    }
   double ***eij, ***vareij;                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   double **varpl; /* Variances of prevalence limits by age */                    /*printf(fignu*/
   double *epj, vepp;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   double kk1, kk2;                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;                    if(first==1){
                        first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
   char version[80]="Imach version 0.8a1, June 2003, INED-EUROREVES ";                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   char *alph[]={"a","a","b","c","d","e"}, str[4];                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
                       fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
   char z[1]="c", occ;                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
 #include <sys/time.h>                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
 #include <time.h>                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                        fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   /* long total_usecs;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   struct timeval start_time, end_time;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                      }else{
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */                      first=0;
   getcwd(pathcd, size);                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   printf("\n%s",version);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   if(argc <=1){                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     printf("\nEnter the parameter file name: ");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     scanf("%s",pathtot);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   }                    }/* if first */
   else{                  } /* age mod 5 */
     strcpy(pathtot,argv[1]);                } /* end loop age */
   }                fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/                first=1;
   /*cygwin_split_path(pathtot,path,optionfile);              } /*l12 */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/            } /* k12 */
   /* cutv(path,optionfile,pathtot,'\\');*/          } /*l1 */
         }/* k1 */
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);      } /* loop covariates */
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    }
   chdir(path);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   replace(pathc,path);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
 /*-------- arguments in the command line --------*/    fclose(ficresprob);
     fclose(ficresprobcov);
   strcpy(fileres,"r");    fclose(ficresprobcor);
   strcat(fileres, optionfilefiname);    fclose(ficgp);
   strcat(fileres,".txt");    /* Other files have txt extension */    fclose(fichtm);
   }
   /*---------arguments file --------*/  
   
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  /******************* Printing html file ***********/
     printf("Problem with optionfile %s\n",optionfile);  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
     goto end;                    int lastpass, int stepm, int weightopt, char model[],\
   }                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
   strcpy(filereso,"o");                    double jprev1, double mprev1,double anprev1, \
   strcat(filereso,fileres);                    double jprev2, double mprev2,double anprev2){
   if((ficparo=fopen(filereso,"w"))==NULL) {    int jj1, k1, i1, cpt;
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    /*char optionfilehtm[FILENAMELENGTH];*/
   }    if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
   /* Reads comments: lines beginning with '#' */      fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
   while((c=getc(ficpar))=='#' && c!= EOF){    }
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n
     puts(line);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n
     fputs(line,ficparo);   - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n
   }   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n
   ungetc(c,ficpar);   - Life expectancies by age and initial health status (estepm=%2d months): 
      <a href=\"e%s\">e%s</a> <br>\n</li>", \
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);  
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
 while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);   m=cptcoveff;
     fgets(line, MAXLINE, ficpar);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     puts(line);  
     fputs(line,ficparo);   jj1=0;
   }   for(k1=1; k1<=m;k1++){
   ungetc(c,ficpar);     for(i1=1; i1<=ncodemax[k1];i1++){
         jj1++;
           if (cptcovn > 0) {
   covar=matrix(0,NCOVMAX,1,n);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   cptcovn=0;         for (cpt=1; cpt<=cptcoveff;cpt++) 
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   ncovmodel=2+cptcovn;       }
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */       /* Pij */
         fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>
   /* Read guess parameters */  <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
   /* Reads comments: lines beginning with '#' */       /* Quasi-incidences */
   while((c=getc(ficpar))=='#' && c!= EOF){       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>
     ungetc(c,ficpar);  <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
     fgets(line, MAXLINE, ficpar);         /* Stable prevalence in each health state */
     puts(line);         for(cpt=1; cpt<nlstate;cpt++){
     fputs(line,ficparo);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>
   }  <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
   ungetc(c,ficpar);         }
         for(cpt=1; cpt<=nlstate;cpt++) {
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>
     for(i=1; i <=nlstate; i++)  <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
     for(j=1; j <=nlstate+ndeath-1; j++){       }
       fscanf(ficpar,"%1d%1d",&i1,&j1);       fprintf(fichtm,"\n<br>- Total life expectancy by age and
       fprintf(ficparo,"%1d%1d",i1,j1);  health expectancies in states (1) and (2): e%s%d.png<br>
       printf("%1d%1d",i,j);  <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
       for(k=1; k<=ncovmodel;k++){     } /* end i1 */
         fscanf(ficpar," %lf",&param[i][j][k]);   }/* End k1 */
         printf(" %lf",param[i][j][k]);   fprintf(fichtm,"</ul>");
         fprintf(ficparo," %lf",param[i][j][k]);  
       }  
       fscanf(ficpar,"\n");   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n
       printf("\n");   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n
       fprintf(ficparo,"\n");   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
     }   - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n
     - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n 
    - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n
   p=param[1][1];   - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
    
   /* Reads comments: lines beginning with '#' */   if(popforecast==1) fprintf(fichtm,"\n
   while((c=getc(ficpar))=='#' && c!= EOF){   - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n
     ungetc(c,ficpar);   - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n
     fgets(line, MAXLINE, ficpar);          <br>",fileres,fileres,fileres,fileres);
     puts(line);   else 
     fputs(line,ficparo);     fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);
   }  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   ungetc(c,ficpar);  
    m=cptcoveff;
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  
   for(i=1; i <=nlstate; i++){   jj1=0;
     for(j=1; j <=nlstate+ndeath-1; j++){   for(k1=1; k1<=m;k1++){
       fscanf(ficpar,"%1d%1d",&i1,&j1);     for(i1=1; i1<=ncodemax[k1];i1++){
       printf("%1d%1d",i,j);       jj1++;
       fprintf(ficparo,"%1d%1d",i1,j1);       if (cptcovn > 0) {
       for(k=1; k<=ncovmodel;k++){         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
         fscanf(ficpar,"%le",&delti3[i][j][k]);         for (cpt=1; cpt<=cptcoveff;cpt++) 
         printf(" %le",delti3[i][j][k]);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
         fprintf(ficparo," %le",delti3[i][j][k]);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       }       }
       fscanf(ficpar,"\n");       for(cpt=1; cpt<=nlstate;cpt++) {
       printf("\n");         fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident
       fprintf(ficparo,"\n");  interval) in state (%d): v%s%d%d.png <br>
     }  <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
   }       }
   delti=delti3[1][1];     } /* end i1 */
     }/* End k1 */
   /* Reads comments: lines beginning with '#' */   fprintf(fichtm,"</ul>");
   while((c=getc(ficpar))=='#' && c!= EOF){  fclose(fichtm);
     ungetc(c,ficpar);  }
     fgets(line, MAXLINE, ficpar);  
     puts(line);  /******************* Gnuplot file **************/
     fputs(line,ficparo);  void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   }  
   ungetc(c,ficpar);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
      int ng;
   matcov=matrix(1,npar,1,npar);    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
   for(i=1; i <=npar; i++){      printf("Problem with file %s",optionfilegnuplot);
     fscanf(ficpar,"%s",&str);      fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
     printf("%s",str);    }
     fprintf(ficparo,"%s",str);  
     for(j=1; j <=i; j++){    /*#ifdef windows */
       fscanf(ficpar," %le",&matcov[i][j]);      fprintf(ficgp,"cd \"%s\" \n",pathc);
       printf(" %.5le",matcov[i][j]);      /*#endif */
       fprintf(ficparo," %.5le",matcov[i][j]);  m=pow(2,cptcoveff);
     }    
     fscanf(ficpar,"\n");   /* 1eme*/
     printf("\n");    for (cpt=1; cpt<= nlstate ; cpt ++) {
     fprintf(ficparo,"\n");     for (k1=1; k1<= m ; k1 ++) {
   }       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
   for(i=1; i <=npar; i++)       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
     for(j=i+1;j<=npar;j++)  
       matcov[i][j]=matcov[j][i];       for (i=1; i<= nlstate ; i ++) {
             if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   printf("\n");         else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
     /*-------- Rewriting paramater file ----------*/       for (i=1; i<= nlstate ; i ++) {
      strcpy(rfileres,"r");    /* "Rparameterfile */         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/         else fprintf(ficgp," \%%*lf (\%%*lf)");
      strcat(rfileres,".");    /* */       } 
      strcat(rfileres,optionfilext);    /* Other files have txt extension */       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
     if((ficres =fopen(rfileres,"w"))==NULL) {       for (i=1; i<= nlstate ; i ++) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     }         else fprintf(ficgp," \%%*lf (\%%*lf)");
     fprintf(ficres,"#%s\n",version);       }  
           fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
     /*-------- data file ----------*/     }
     if((fic=fopen(datafile,"r"))==NULL)    {    }
       printf("Problem with datafile: %s\n", datafile);goto end;    /*2 eme*/
     }    
     for (k1=1; k1<= m ; k1 ++) { 
     n= lastobs;      fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
     severity = vector(1,maxwav);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
     outcome=imatrix(1,maxwav+1,1,n);      
     num=ivector(1,n);      for (i=1; i<= nlstate+1 ; i ++) {
     moisnais=vector(1,n);        k=2*i;
     annais=vector(1,n);        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
     moisdc=vector(1,n);        for (j=1; j<= nlstate+1 ; j ++) {
     andc=vector(1,n);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     agedc=vector(1,n);          else fprintf(ficgp," \%%*lf (\%%*lf)");
     cod=ivector(1,n);        }   
     weight=vector(1,n);        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
     mint=matrix(1,maxwav,1,n);        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
     anint=matrix(1,maxwav,1,n);        for (j=1; j<= nlstate+1 ; j ++) {
     s=imatrix(1,maxwav+1,1,n);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     adl=imatrix(1,maxwav+1,1,n);              else fprintf(ficgp," \%%*lf (\%%*lf)");
     tab=ivector(1,NCOVMAX);        }   
     ncodemax=ivector(1,8);        fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
     i=1;        for (j=1; j<= nlstate+1 ; j ++) {
     while (fgets(line, MAXLINE, fic) != NULL)    {          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       if ((i >= firstobs) && (i <=lastobs)) {          else fprintf(ficgp," \%%*lf (\%%*lf)");
                }   
         for (j=maxwav;j>=1;j--){        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        else fprintf(ficgp,"\" t\"\" w l 0,");
           strcpy(line,stra);      }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    }
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    
         }    /*3eme*/
            
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    for (k1=1; k1<= m ; k1 ++) { 
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);      for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         for (j=ncovcol;j>=1;j--){          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
         }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
         num[i]=atol(stra);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
                  
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        */
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
         i=i+1;          
       }        } 
     }      }
     /* printf("ii=%d", ij);    }
        scanf("%d",i);*/    
   imx=i-1; /* Number of individuals */    /* CV preval stat */
     for (k1=1; k1<= m ; k1 ++) { 
   /* for (i=1; i<=imx; i++){      for (cpt=1; cpt<nlstate ; cpt ++) {
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;        k=3;
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
     }*/        
    /*  for (i=1; i<=imx; i++){        for (i=1; i< nlstate ; i ++)
      if (s[4][i]==9)  s[4][i]=-1;          fprintf(ficgp,"+$%d",k+i+1);
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
          
          l=3+(nlstate+ndeath)*cpt;
   /* Calculation of the number of parameter from char model*/        fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
   Tvar=ivector(1,15);        for (i=1; i< nlstate ; i ++) {
   Tprod=ivector(1,15);          l=3+(nlstate+ndeath)*cpt;
   Tvaraff=ivector(1,15);          fprintf(ficgp,"+$%d",l+i+1);
   Tvard=imatrix(1,15,1,2);        }
   Tage=ivector(1,15);              fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
          } 
   if (strlen(model) >1){    }  
     j=0, j1=0, k1=1, k2=1;    
     j=nbocc(model,'+');    /* proba elementaires */
     j1=nbocc(model,'*');    for(i=1,jk=1; i <=nlstate; i++){
     cptcovn=j+1;      for(k=1; k <=(nlstate+ndeath); k++){
     cptcovprod=j1;        if (k != i) {
              for(j=1; j <=ncovmodel; j++){
     strcpy(modelsav,model);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){            jk++; 
       printf("Error. Non available option model=%s ",model);            fprintf(ficgp,"\n");
       goto end;          }
     }        }
          }
     for(i=(j+1); i>=1;i--){     }
       cutv(stra,strb,modelsav,'+');  
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/       for(jk=1; jk <=m; jk++) {
       /*scanf("%d",i);*/         fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
       if (strchr(strb,'*')) {         if (ng==2)
         cutv(strd,strc,strb,'*');           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
         if (strcmp(strc,"age")==0) {         else
           cptcovprod--;           fprintf(ficgp,"\nset title \"Probability\"\n");
           cutv(strb,stre,strd,'V');         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
           Tvar[i]=atoi(stre);         i=1;
           cptcovage++;         for(k2=1; k2<=nlstate; k2++) {
             Tage[cptcovage]=i;           k3=i;
             /*printf("stre=%s ", stre);*/           for(k=1; k<=(nlstate+ndeath); k++) {
         }             if (k != k2){
         else if (strcmp(strd,"age")==0) {               if(ng==2)
           cptcovprod--;                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
           cutv(strb,stre,strc,'V');               else
           Tvar[i]=atoi(stre);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
           cptcovage++;               ij=1;
           Tage[cptcovage]=i;               for(j=3; j <=ncovmodel; j++) {
         }                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
         else {                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
           cutv(strb,stre,strc,'V');                   ij++;
           Tvar[i]=ncovcol+k1;                 }
           cutv(strb,strc,strd,'V');                 else
           Tprod[k1]=i;                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
           Tvard[k1][1]=atoi(strc);               }
           Tvard[k1][2]=atoi(stre);               fprintf(ficgp,")/(1");
           Tvar[cptcovn+k2]=Tvard[k1][1];               
           Tvar[cptcovn+k2+1]=Tvard[k1][2];               for(k1=1; k1 <=nlstate; k1++){   
           for (k=1; k<=lastobs;k++)                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                 ij=1;
           k1++;                 for(j=3; j <=ncovmodel; j++){
           k2=k2+2;                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
         }                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       }                     ij++;
       else {                   }
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/                   else
        /*  scanf("%d",i);*/                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       cutv(strd,strc,strb,'V');                 }
       Tvar[i]=atoi(strc);                 fprintf(ficgp,")");
       }               }
       strcpy(modelsav,stra);                 fprintf(ficgp,") t \"p%d%d\" ", k2,k);
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
         scanf("%d",i);*/               i=i+ncovmodel;
     }             }
 }           } /* end k */
           } /* end k2 */
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);       } /* end jk */
   printf("cptcovprod=%d ", cptcovprod);     } /* end ng */
   scanf("%d ",i);*/     fclose(ficgp); 
     fclose(fic);  }  /* end gnuplot */
   
     /*  if(mle==1){*/  
     if (weightopt != 1) { /* Maximisation without weights*/  /*************** Moving average **************/
       for(i=1;i<=n;i++) weight[i]=1.0;  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
     }  
     /*-calculation of age at interview from date of interview and age at death -*/    int i, cpt, cptcod;
     agev=matrix(1,maxwav,1,imx);    int modcovmax =1;
     int mobilavrange, mob;
     for (i=1; i<=imx; i++) {    double age;
       for(m=2; (m<= maxwav); m++) {  
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
          anint[m][i]=9999;                             a covariate has 2 modalities */
          s[m][i]=-1;    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
        }  
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       }      if(mobilav==1) mobilavrange=5; /* default */
     }      else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
     for (i=1; i<=imx; i++)  {        for (i=1; i<=nlstate;i++)
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);          for (cptcod=1;cptcod<=modcovmax;cptcod++)
       for(m=1; (m<= maxwav); m++){            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
         if(s[m][i] >0){      /* We keep the original values on the extreme ages bage, fage and for 
           if (s[m][i] >= nlstate+1) {         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
             if(agedc[i]>0)         we use a 5 terms etc. until the borders are no more concerned. 
               if(moisdc[i]!=99 && andc[i]!=9999)      */ 
                 agev[m][i]=agedc[i];      for (mob=3;mob <=mobilavrange;mob=mob+2){
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
            else {          for (i=1; i<=nlstate;i++){
               if (andc[i]!=9999){            for (cptcod=1;cptcod<=modcovmax;cptcod++){
               printf("Warning negative age at death: %d line:%d\n",num[i],i);              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
               agev[m][i]=-1;                for (cpt=1;cpt<=(mob-1)/2;cpt++){
               }                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
             }                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
           }                }
           else if(s[m][i] !=9){ /* Should no more exist */              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);            }
             if(mint[m][i]==99 || anint[m][i]==9999)          }
               agev[m][i]=1;        }/* end age */
             else if(agev[m][i] <agemin){      }/* end mob */
               agemin=agev[m][i];    }else return -1;
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    return 0;
             }  }/* End movingaverage */
             else if(agev[m][i] >agemax){  
               agemax=agev[m][i];  
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  /************** Forecasting ******************/
             }  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
             /*agev[m][i]=anint[m][i]-annais[i];*/    /* proj1, year, month, day of starting projection 
             /*   agev[m][i] = age[i]+2*m;*/       agemin, agemax range of age
           }       dateprev1 dateprev2 range of dates during which prevalence is computed
           else { /* =9 */       anproj2 year of en of projection (same day and month as proj1).
             agev[m][i]=1;    */
             s[m][i]=-1;    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h;
           }    int *popage;
         }    double agec; /* generic age */
         else /*= 0 Unknown */    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
           agev[m][i]=1;    double *popeffectif,*popcount;
       }    double ***p3mat;
        double ***mobaverage;
     }    char fileresf[FILENAMELENGTH];
     for (i=1; i<=imx; i++)  {  
       for(m=1; (m<= maxwav); m++){    agelim=AGESUP;
         if (s[m][i] > (nlstate+ndeath)) {    prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
           printf("Error: Wrong value in nlstate or ndeath\n");     
           goto end;    strcpy(fileresf,"f"); 
         }    strcat(fileresf,fileres);
       }    if((ficresf=fopen(fileresf,"w"))==NULL) {
     }      printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     free_vector(severity,1,maxwav);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
     free_imatrix(outcome,1,maxwav+1,1,n);  
     free_vector(moisnais,1,n);    if (cptcoveff==0) ncodemax[cptcoveff]=1;
     free_vector(annais,1,n);  
     /* free_matrix(mint,1,maxwav,1,n);    if (mobilav!=0) {
        free_matrix(anint,1,maxwav,1,n);*/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_vector(moisdc,1,n);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
     free_vector(andc,1,n);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
          }
     wav=ivector(1,imx);    }
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    stepsize=(int) (stepm+YEARM-1)/YEARM;
        if (stepm<=12) stepsize=1;
     /* Concatenates waves */    
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    hstepm=1;
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
       Tcode=ivector(1,100);                                 fractional in yp1 */
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);    anprojmean=yp;
       ncodemax[1]=1;    yp2=modf((yp1*12),&yp);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    mprojmean=yp;
          yp1=modf((yp2*30.5),&yp);
    codtab=imatrix(1,100,1,10);    jprojmean=yp;
    h=0;    if(jprojmean==0) jprojmean=1;
    m=pow(2,cptcoveff);    if(mprojmean==0) jprojmean=1;
      
    for(k=1;k<=cptcoveff; k++){    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
      for(i=1; i <=(m/pow(2,k));i++){    
        for(j=1; j <= ncodemax[k]; j++){    fprintf(ficresf,"#****** Routine prevforecast **\n");
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    for(cptcov=1, k=0;cptcov<=cptcoveff;cptcov++){
            h++;      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;        k=k+1;
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/        fprintf(ficresf,"\n#******");
          }        for(j=1;j<=cptcoveff;j++) {
        }          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
      }        }
    }        fprintf(ficresf,"******\n");
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
       codtab[1][2]=1;codtab[2][2]=2; */        for(j=1; j<=nlstate+ndeath;j++){ 
    /* for(i=1; i <=m ;i++){          for(i=1; i<=nlstate;i++)              
       for(k=1; k <=cptcovn; k++){            fprintf(ficresf," p%d%d",i,j);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);          fprintf(ficresf," p.%d",j);
       }        }
       printf("\n");        for (yearp=0; yearp<=(anproj2-anproj1);yearp++) { 
       }          fprintf(ficresf,"\n");
       scanf("%d",i);*/          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
      
    /* Calculates basic frequencies. Computes observed prevalence at single age          for (agec=fage; agec>=(ageminpar-1); agec--){ 
        and prints on file fileres'p'. */            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
                p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                oldm=oldms;savm=savms;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for (h=0; h<=nhstepm; h++){
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              if (h==(int) (YEARM*yearp)) {
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                fprintf(ficresf,"\n");
                      for(j=1;j<=cptcoveff;j++) 
     /* For Powell, parameters are in a vector p[] starting at p[1]                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */              } 
               for(j=1; j<=nlstate+ndeath;j++) {
     if(mle==1){                ppij=0.;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);                for(i=1; i<=nlstate;i++) {
     }                  if (mobilav==1) 
                        ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
     /*--------- results files --------------*/                  else {
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                    }
                   if (h==(int)(YEARM*yearp))
    jk=1;                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                }
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                if (h==(int)(YEARM*yearp)){
    for(i=1,jk=1; i <=nlstate; i++){                  fprintf(ficresf," %.3f", ppij);
      for(k=1; k <=(nlstate+ndeath); k++){                }
        if (k != i)              }
          {            }
            printf("%d%d ",i,k);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
            fprintf(ficres,"%1d%1d ",i,k);          }
            for(j=1; j <=ncovmodel; j++){        }
              printf("%f ",p[jk]);      }
              fprintf(ficres,"%f ",p[jk]);    }
              jk++;         
            }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
            printf("\n");  
            fprintf(ficres,"\n");    fclose(ficresf);
          }  }
      }  
    }  /************** Forecasting *****not tested NB*************/
  if(mle==1){  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     /* Computing hessian and covariance matrix */    
     ftolhess=ftol; /* Usually correct */    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     hesscov(matcov, p, npar, delti, ftolhess, func);    int *popage;
  }    double calagedatem, agelim, kk1, kk2;
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    double *popeffectif,*popcount;
     printf("# Scales (for hessian or gradient estimation)\n");    double ***p3mat,***tabpop,***tabpopprev;
      for(i=1,jk=1; i <=nlstate; i++){    double ***mobaverage;
       for(j=1; j <=nlstate+ndeath; j++){    char filerespop[FILENAMELENGTH];
         if (j!=i) {  
           fprintf(ficres,"%1d%1d",i,j);    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           printf("%1d%1d",i,j);    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           for(k=1; k<=ncovmodel;k++){    agelim=AGESUP;
             printf(" %.5e",delti[jk]);    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
             fprintf(ficres," %.5e",delti[jk]);    
             jk++;    prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
           }    
           printf("\n");    
           fprintf(ficres,"\n");    strcpy(filerespop,"pop"); 
         }    strcat(filerespop,fileres);
       }    if((ficrespop=fopen(filerespop,"w"))==NULL) {
      }      printf("Problem with forecast resultfile: %s\n", filerespop);
          fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     k=1;    }
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    printf("Computing forecasting: result on file '%s' \n", filerespop);
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
     for(i=1;i<=npar;i++){  
       /*  if (k>nlstate) k=1;    if (cptcoveff==0) ncodemax[cptcoveff]=1;
       i1=(i-1)/(ncovmodel*nlstate)+1;  
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    if (mobilav!=0) {
       printf("%s%d%d",alph[k],i1,tab[i]);*/      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       fprintf(ficres,"%3d",i);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
       printf("%3d",i);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       for(j=1; j<=i;j++){        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         fprintf(ficres," %.5e",matcov[i][j]);      }
         printf(" %.5e",matcov[i][j]);    }
       }  
       fprintf(ficres,"\n");    stepsize=(int) (stepm+YEARM-1)/YEARM;
       printf("\n");    if (stepm<=12) stepsize=1;
       k++;    
     }    agelim=AGESUP;
        
     while((c=getc(ficpar))=='#' && c!= EOF){    hstepm=1;
       ungetc(c,ficpar);    hstepm=hstepm/stepm; 
       fgets(line, MAXLINE, ficpar);    
       puts(line);    if (popforecast==1) {
       fputs(line,ficparo);      if((ficpop=fopen(popfile,"r"))==NULL) {
     }        printf("Problem with population file : %s\n",popfile);exit(0);
     ungetc(c,ficpar);        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
     estepm=0;      } 
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);      popage=ivector(0,AGESUP);
     if (estepm==0 || estepm < stepm) estepm=stepm;      popeffectif=vector(0,AGESUP);
     if (fage <= 2) {      popcount=vector(0,AGESUP);
       bage = ageminpar;      
       fage = agemaxpar;      i=1;   
     }      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
         
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      imx=i;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    }
    
     while((c=getc(ficpar))=='#' && c!= EOF){    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
     ungetc(c,ficpar);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     fgets(line, MAXLINE, ficpar);        k=k+1;
     puts(line);        fprintf(ficrespop,"\n#******");
     fputs(line,ficparo);        for(j=1;j<=cptcoveff;j++) {
   }          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   ungetc(c,ficpar);        }
          fprintf(ficrespop,"******\n");
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);        fprintf(ficrespop,"# Age");
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        if (popforecast==1)  fprintf(ficrespop," [Population]");
              
   while((c=getc(ficpar))=='#' && c!= EOF){        for (cpt=0; cpt<=0;cpt++) { 
     ungetc(c,ficpar);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
     fgets(line, MAXLINE, ficpar);          
     puts(line);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
     fputs(line,ficparo);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   }            nhstepm = nhstepm/hstepm; 
   ungetc(c,ficpar);            
              p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
    dateprev1=anprev1+mprev1/12.+jprev1/365.;            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
    dateprev2=anprev2+mprev2/12.+jprev2/365.;          
             for (h=0; h<=nhstepm; h++){
   fscanf(ficpar,"pop_based=%d\n",&popbased);              if (h==(int) (calagedatem+YEARM*cpt)) {
   fprintf(ficparo,"pop_based=%d\n",popbased);                  fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   fprintf(ficres,"pop_based=%d\n",popbased);                } 
                for(j=1; j<=nlstate+ndeath;j++) {
   while((c=getc(ficpar))=='#' && c!= EOF){                kk1=0.;kk2=0;
     ungetc(c,ficpar);                for(i=1; i<=nlstate;i++) {              
     fgets(line, MAXLINE, ficpar);                  if (mobilav==1) 
     puts(line);                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
     fputs(line,ficparo);                  else {
   }                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
   ungetc(c,ficpar);                  }
                 }
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);                if (h==(int)(calagedatem+12*cpt)){
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                    /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
 while((c=getc(ficpar))=='#' && c!= EOF){              }
     ungetc(c,ficpar);              for(i=1; i<=nlstate;i++){
     fgets(line, MAXLINE, ficpar);                kk1=0.;
     puts(line);                  for(j=1; j<=nlstate;j++){
     fputs(line,ficparo);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
   }                  }
   ungetc(c,ficpar);                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
 /*------------ gnuplot -------------*/        }
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);   
      /******/
 /*------------ free_vector  -------------*/  
  chdir(path);        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
            fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
  free_ivector(wav,1,imx);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);              nhstepm = nhstepm/hstepm; 
  free_ivector(num,1,n);            
  free_vector(agedc,1,n);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  /*free_matrix(covar,1,NCOVMAX,1,n);*/            oldm=oldms;savm=savms;
  fclose(ficparo);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
  fclose(ficres);            for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
 /*--------- index.htm --------*/                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);              for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                  for(i=1; i<=nlstate;i++) {              
   /*--------------- Prevalence limit --------------*/                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                  }
   strcpy(filerespl,"pl");                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
   strcat(filerespl,fileres);              }
   if((ficrespl=fopen(filerespl,"w"))==NULL) {            }
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }          }
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        }
   fprintf(ficrespl,"#Prevalence limit\n");     } 
   fprintf(ficrespl,"#Age ");    }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);   
   fprintf(ficrespl,"\n");    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    
   prlim=matrix(1,nlstate,1,nlstate);    if (popforecast==1) {
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      free_ivector(popage,0,AGESUP);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      free_vector(popeffectif,0,AGESUP);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      free_vector(popcount,0,AGESUP);
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   k=0;    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   agebase=ageminpar;    fclose(ficrespop);
   agelim=agemaxpar;  }
   ftolpl=1.e-10;  
   i1=cptcoveff;  /***********************************************/
   if (cptcovn < 1){i1=1;}  /**************** Main Program *****************/
   /***********************************************/
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  int main(int argc, char *argv[])
         k=k+1;  {
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
         fprintf(ficrespl,"\n#******");    int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;
         for(j=1;j<=cptcoveff;j++)    double agedeb, agefin,hf;
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
         fprintf(ficrespl,"******\n");  
            double fret;
         for (age=agebase; age<=agelim; age++){    double **xi,tmp,delta;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
           fprintf(ficrespl,"%.0f",age );    double dum; /* Dummy variable */
           for(i=1; i<=nlstate;i++)    double ***p3mat;
           fprintf(ficrespl," %.5f", prlim[i][i]);    double ***mobaverage;
           fprintf(ficrespl,"\n");    int *indx;
         }    char line[MAXLINE], linepar[MAXLINE];
       }    char path[80],pathc[80],pathcd[80],pathtot[80],model[80];
     }    int firstobs=1, lastobs=10;
   fclose(ficrespl);    int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
   /*------------- h Pij x at various ages ------------*/    int ju,jl, mi;
      int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    int mobilav=0,popforecast=0;
   }    int hstepm, nhstepm;
   printf("Computing pij: result on file '%s' \n", filerespij);    double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;
    
   stepsize=(int) (stepm+YEARM-1)/YEARM;    double bage, fage, age, agelim, agebase;
   /*if (stepm<=24) stepsize=2;*/    double ftolpl=FTOL;
     double **prlim;
   agelim=AGESUP;    double *severity;
   hstepm=stepsize*YEARM; /* Every year of age */    double ***param; /* Matrix of parameters */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    double  *p;
      double **matcov; /* Matrix of covariance */
   k=0;    double ***delti3; /* Scale */
   for(cptcov=1;cptcov<=i1;cptcov++){    double *delti; /* Scale */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double ***eij, ***vareij;
       k=k+1;    double **varpl; /* Variances of prevalence limits by age */
         fprintf(ficrespij,"\n#****** ");    double *epj, vepp;
         for(j=1;j<=cptcoveff;j++)    double kk1, kk2;
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;
         fprintf(ficrespij,"******\n");  
            char *alph[]={"a","a","b","c","d","e"}, str[4];
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    char z[1]="c", occ;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  #include <sys/time.h>
           oldm=oldms;savm=savms;  #include <time.h>
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
           fprintf(ficrespij,"# Age");   
           for(i=1; i<=nlstate;i++)    /* long total_usecs;
             for(j=1; j<=nlstate+ndeath;j++)       struct timeval start_time, end_time;
               fprintf(ficrespij," %1d-%1d",i,j);    
           fprintf(ficrespij,"\n");       gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
            for (h=0; h<=nhstepm; h++){    getcwd(pathcd, size);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );  
             for(i=1; i<=nlstate;i++)    printf("\n%s",version);
               for(j=1; j<=nlstate+ndeath;j++)    if(argc <=1){
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      printf("\nEnter the parameter file name: ");
             fprintf(ficrespij,"\n");      scanf("%s",pathtot);
              }    }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    else{
           fprintf(ficrespij,"\n");      strcpy(pathtot,argv[1]);
         }    }
     }    /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
   }    /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    /* cutv(path,optionfile,pathtot,'\\');*/
   
   fclose(ficrespij);    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
   /*---------- Forecasting ------------------*/    replace(pathc,path);
   if((stepm == 1) && (strcmp(model,".")==0)){  
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    /*-------- arguments in the command line --------*/
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);  
   }    /* Log file */
   else{    strcat(filelog, optionfilefiname);
     erreur=108;    strcat(filelog,".log");    /* */
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    if((ficlog=fopen(filelog,"w"))==NULL)    {
   }      printf("Problem with logfile %s\n",filelog);
        goto end;
     }
   /*---------- Health expectancies and variances ------------*/    fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s",version);
   strcpy(filerest,"t");    fprintf(ficlog,"\nEnter the parameter file name: ");
   strcat(filerest,fileres);    fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   if((ficrest=fopen(filerest,"w"))==NULL) {    fflush(ficlog);
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;  
   }    /* */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   strcpy(filerese,"e");  
   strcat(filerese,fileres);    /*---------arguments file --------*/
   if((ficreseij=fopen(filerese,"w"))==NULL) {  
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    if((ficpar=fopen(optionfile,"r"))==NULL)    {
   }      printf("Problem with optionfile %s\n",optionfile);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       goto end;
  strcpy(fileresv,"v");    }
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    strcpy(filereso,"o");
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    strcat(filereso,fileres);
   }    if((ficparo=fopen(filereso,"w"))==NULL) {
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      printf("Problem with Output resultfile: %s\n", filereso);
   calagedate=-1;      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);      goto end;
     }
   k=0;  
   for(cptcov=1;cptcov<=i1;cptcov++){    /* Reads comments: lines beginning with '#' */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    while((c=getc(ficpar))=='#' && c!= EOF){
       k=k+1;      ungetc(c,ficpar);
       fprintf(ficrest,"\n#****** ");      fgets(line, MAXLINE, ficpar);
       for(j=1;j<=cptcoveff;j++)      puts(line);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fputs(line,ficparo);
       fprintf(ficrest,"******\n");    }
     ungetc(c,ficpar);
       fprintf(ficreseij,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
       fprintf(ficreseij,"******\n");    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     while((c=getc(ficpar))=='#' && c!= EOF){
       fprintf(ficresvij,"\n#****** ");      ungetc(c,ficpar);
       for(j=1;j<=cptcoveff;j++)      fgets(line, MAXLINE, ficpar);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      puts(line);
       fprintf(ficresvij,"******\n");      fputs(line,ficparo);
     }
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    ungetc(c,ficpar);
       oldm=oldms;savm=savms;    
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);       
      covar=matrix(0,NCOVMAX,1,n); 
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
       oldm=oldms;savm=savms;    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);  
        ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
      
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    /* Read guess parameters */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    /* Reads comments: lines beginning with '#' */
       fprintf(ficrest,"\n");    while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       epj=vector(1,nlstate+1);      fgets(line, MAXLINE, ficpar);
       for(age=bage; age <=fage ;age++){      puts(line);
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      fputs(line,ficparo);
         if (popbased==1) {    }
           for(i=1; i<=nlstate;i++)    ungetc(c,ficpar);
             prlim[i][i]=probs[(int)age][i][k];    
         }    param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
            for(i=1; i <=nlstate; i++)
         fprintf(ficrest," %4.0f",age);      for(j=1; j <=nlstate+ndeath-1; j++){
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){        fscanf(ficpar,"%1d%1d",&i1,&j1);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {        fprintf(ficparo,"%1d%1d",i1,j1);
             epj[j] += prlim[i][i]*eij[i][j][(int)age];        if(mle==1)
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/          printf("%1d%1d",i,j);
           }        fprintf(ficlog,"%1d%1d",i,j);
           epj[nlstate+1] +=epj[j];        for(k=1; k<=ncovmodel;k++){
         }          fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
         for(i=1, vepp=0.;i <=nlstate;i++)            printf(" %lf",param[i][j][k]);
           for(j=1;j <=nlstate;j++)            fprintf(ficlog," %lf",param[i][j][k]);
             vepp += vareij[i][j][(int)age];          }
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));          else
         for(j=1;j <=nlstate;j++){            fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));          fprintf(ficparo," %lf",param[i][j][k]);
         }        }
         fprintf(ficrest,"\n");        fscanf(ficpar,"\n");
       }        if(mle==1)
     }          printf("\n");
   }        fprintf(ficlog,"\n");
 free_matrix(mint,1,maxwav,1,n);        fprintf(ficparo,"\n");
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);      }
     free_vector(weight,1,n);    
   fclose(ficreseij);    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   fclose(ficresvij);  
   fclose(ficrest);    p=param[1][1];
   fclose(ficpar);    
   free_vector(epj,1,nlstate+1);    /* Reads comments: lines beginning with '#' */
      while((c=getc(ficpar))=='#' && c!= EOF){
   /*------- Variance limit prevalence------*/        ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
   strcpy(fileresvpl,"vpl");      puts(line);
   strcat(fileresvpl,fileres);      fputs(line,ficparo);
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    }
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    ungetc(c,ficpar);
     exit(0);  
   }    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
   k=0;      for(j=1; j <=nlstate+ndeath-1; j++){
   for(cptcov=1;cptcov<=i1;cptcov++){        fscanf(ficpar,"%1d%1d",&i1,&j1);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){        printf("%1d%1d",i,j);
       k=k+1;        fprintf(ficparo,"%1d%1d",i1,j1);
       fprintf(ficresvpl,"\n#****** ");        for(k=1; k<=ncovmodel;k++){
       for(j=1;j<=cptcoveff;j++)          fscanf(ficpar,"%le",&delti3[i][j][k]);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          printf(" %le",delti3[i][j][k]);
       fprintf(ficresvpl,"******\n");          fprintf(ficparo," %le",delti3[i][j][k]);
              }
       varpl=matrix(1,nlstate,(int) bage, (int) fage);        fscanf(ficpar,"\n");
       oldm=oldms;savm=savms;        printf("\n");
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        fprintf(ficparo,"\n");
     }      }
  }    }
     delti=delti3[1][1];
   fclose(ficresvpl);    
     /* Reads comments: lines beginning with '#' */
   /*---------- End : free ----------------*/    while((c=getc(ficpar))=='#' && c!= EOF){
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      ungetc(c,ficpar);
        fgets(line, MAXLINE, ficpar);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);      puts(line);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);      fputs(line,ficparo);
      }
      ungetc(c,ficpar);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    matcov=matrix(1,npar,1,npar);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    for(i=1; i <=npar; i++){
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);      fscanf(ficpar,"%s",&str);
        if(mle==1)
   free_matrix(matcov,1,npar,1,npar);        printf("%s",str);
   free_vector(delti,1,npar);      fprintf(ficlog,"%s",str);
   free_matrix(agev,1,maxwav,1,imx);      fprintf(ficparo,"%s",str);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
   if(erreur >0)        if(mle==1){
     printf("End of Imach with error or warning %d\n",erreur);          printf(" %.5le",matcov[i][j]);
   else   printf("End of Imach\n");          fprintf(ficlog," %.5le",matcov[i][j]);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */        }
          else
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/          fprintf(ficlog," %.5le",matcov[i][j]);
   /*printf("Total time was %d uSec.\n", total_usecs);*/        fprintf(ficparo," %.5le",matcov[i][j]);
   /*------ End -----------*/      }
       fscanf(ficpar,"\n");
       if(mle==1)
  end:        printf("\n");
   /* chdir(pathcd);*/      fprintf(ficlog,"\n");
  /*system("wgnuplot graph.plt");*/      fprintf(ficparo,"\n");
  /*system("../gp37mgw/wgnuplot graph.plt");*/    }
  /*system("cd ../gp37mgw");*/    for(i=1; i <=npar; i++)
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      for(j=i+1;j<=npar;j++)
  strcpy(plotcmd,GNUPLOTPROGRAM);        matcov[i][j]=matcov[j][i];
  strcat(plotcmd," ");     
  strcat(plotcmd,optionfilegnuplot);    if(mle==1)
  system(plotcmd);      printf("\n");
     fprintf(ficlog,"\n");
  /*#ifdef windows*/  
   while (z[0] != 'q') {  
     /* chdir(path); */    /*-------- Rewriting paramater file ----------*/
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    strcpy(rfileres,"r");    /* "Rparameterfile */
     scanf("%s",z);    strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     if (z[0] == 'c') system("./imach");    strcat(rfileres,".");    /* */
     else if (z[0] == 'e') system(optionfilehtm);    strcat(rfileres,optionfilext);    /* Other files have txt extension */
     else if (z[0] == 'g') system(plotcmd);    if((ficres =fopen(rfileres,"w"))==NULL) {
     else if (z[0] == 'q') exit(0);      printf("Problem writing new parameter file: %s\n", fileres);goto end;
   }      fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
   /*#endif */    }
 }    fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=ivector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if(moisdc[i]!=99 && andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if (andc[i]!=9999){
                   printf("Warning negative age at death: %d line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if(mint[m][i]==99 || anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%d %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle==1){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
   \n
   Total number of observations=%d <br>\n
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
   <hr  size=\"2\" color=\"#EC5E5E\">
    <ul><li><h4>Parameter files</h4>\n
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
    - Log file of the run: <a href=\"%s\">%s</a><br>\n
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
     fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_ivector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       if(stepm ==1){
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);
       } 
       else{
         erreur=108;
         printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);
         fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);
       }
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     free_vector(delti,1,npar);
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fprintf(fichtm,"\n</body>");
     fclose(fichtm);
     fclose(ficgp);
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     
     /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
     /*printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting: %s\n",plotcmd);fflush(stdout);
     system(plotcmd);
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.41.2.2  
changed lines
  Added in v.1.71


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>