Diff for /imach/src/imach.c between versions 1.75 and 1.125

version 1.75, 2003/05/03 01:18:24 version 1.125, 2006/04/04 15:20:31
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.125  2006/04/04 15:20:31  lievre
       Errors in calculation of health expectancies. Age was not initialized.
   This program computes Healthy Life Expectancies from    Forecasting file added.
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a  
   first survey ("cross") where individuals from different ages are    Revision 1.124  2006/03/22 17:13:53  lievre
   interviewed on their health status or degree of disability (in the    Parameters are printed with %lf instead of %f (more numbers after the comma).
   case of a health survey which is our main interest) -2- at least a    The log-likelihood is printed in the log file
   second wave of interviews ("longitudinal") which measure each change  
   (if any) in individual health status.  Health expectancies are    Revision 1.123  2006/03/20 10:52:43  brouard
   computed from the time spent in each health state according to a    * imach.c (Module): <title> changed, corresponds to .htm file
   model. More health states you consider, more time is necessary to reach the    name. <head> headers where missing.
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    * imach.c (Module): Weights can have a decimal point as for
   probability to be observed in state j at the second wave    English (a comma might work with a correct LC_NUMERIC environment,
   conditional to be observed in state i at the first wave. Therefore    otherwise the weight is truncated).
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Modification of warning when the covariates values are not 0 or
   'age' is age and 'sex' is a covariate. If you want to have a more    1.
   complex model than "constant and age", you should modify the program    Version 0.98g
   where the markup *Covariates have to be included here again* invites  
   you to do it.  More covariates you add, slower the    Revision 1.122  2006/03/20 09:45:41  brouard
   convergence.    (Module): Weights can have a decimal point as for
     English (a comma might work with a correct LC_NUMERIC environment,
   The advantage of this computer programme, compared to a simple    otherwise the weight is truncated).
   multinomial logistic model, is clear when the delay between waves is not    Modification of warning when the covariates values are not 0 or
   identical for each individual. Also, if a individual missed an    1.
   intermediate interview, the information is lost, but taken into    Version 0.98g
   account using an interpolation or extrapolation.    
     Revision 1.121  2006/03/16 17:45:01  lievre
   hPijx is the probability to be observed in state i at age x+h    * imach.c (Module): Comments concerning covariates added
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    * imach.c (Module): refinements in the computation of lli if
   states. This elementary transition (by month, quarter,    status=-2 in order to have more reliable computation if stepm is
   semester or year) is modelled as a multinomial logistic.  The hPx    not 1 month. Version 0.98f
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.120  2006/03/16 15:10:38  lievre
   hPijx.    (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
   Also this programme outputs the covariance matrix of the parameters but also    not 1 month. Version 0.98f
   of the life expectancies. It also computes the stable prevalence.   
       Revision 1.119  2006/03/15 17:42:26  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    (Module): Bug if status = -2, the loglikelihood was
            Institut national d'études démographiques, Paris.    computed as likelihood omitting the logarithm. Version O.98e
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    Revision 1.118  2006/03/14 18:20:07  brouard
   It is copyrighted identically to a GNU software product, ie programme and    (Module): varevsij Comments added explaining the second
   software can be distributed freely for non commercial use. Latest version    table of variances if popbased=1 .
   can be accessed at http://euroreves.ined.fr/imach .    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach    (Module): Version 0.98d
   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so  
       Revision 1.117  2006/03/14 17:16:22  brouard
   **********************************************************************/    (Module): varevsij Comments added explaining the second
 /*    table of variances if popbased=1 .
   main    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   read parameterfile    (Module): Function pstamp added
   read datafile    (Module): Version 0.98d
   concatwav  
   if (mle >= 1)    Revision 1.116  2006/03/06 10:29:27  brouard
     mlikeli    (Module): Variance-covariance wrong links and
   print results files    varian-covariance of ej. is needed (Saito).
   if mle==1   
      computes hessian    Revision 1.115  2006/02/27 12:17:45  brouard
   read end of parameter file: agemin, agemax, bage, fage, estepm    (Module): One freematrix added in mlikeli! 0.98c
       begin-prev-date,...  
   open gnuplot file    Revision 1.114  2006/02/26 12:57:58  brouard
   open html file    (Module): Some improvements in processing parameter
   stable prevalence    filename with strsep.
    for age prevalim()  
   h Pij x    Revision 1.113  2006/02/24 14:20:24  brouard
   variance of p varprob    (Module): Memory leaks checks with valgrind and:
   forecasting if prevfcast==1 prevforecast call prevalence()    datafile was not closed, some imatrix were not freed and on matrix
   health expectancies    allocation too.
   Variance-covariance of DFLE  
   prevalence()    Revision 1.112  2006/01/30 09:55:26  brouard
    movingaverage()    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   varevsij()   
   if popbased==1 varevsij(,popbased)    Revision 1.111  2006/01/25 20:38:18  brouard
   total life expectancies    (Module): Lots of cleaning and bugs added (Gompertz)
   Variance of stable prevalence    (Module): Comments can be added in data file. Missing date values
  end    can be a simple dot '.'.
 */  
     Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
   
      Revision 1.109  2006/01/24 19:37:15  brouard
 #include <math.h>    (Module): Comments (lines starting with a #) are allowed in data.
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.108  2006/01/19 18:05:42  lievre
 #include <unistd.h>    Gnuplot problem appeared...
     To be fixed
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "gnuplot"    Revision 1.107  2006/01/19 16:20:37  brouard
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    Test existence of gnuplot in imach path
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Revision 1.106  2006/01/19 13:24:36  brouard
 #define windows    Some cleaning and links added in html output
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */  
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Revision 1.105  2006/01/05 20:23:19  lievre
     *** empty log message ***
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Revision 1.104  2005/09/30 16:11:43  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
 #define NINTERVMAX 8    (Module): If the status is missing at the last wave but we know
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    that the person is alive, then we can code his/her status as -2
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    (instead of missing=-1 in earlier versions) and his/her
 #define NCOVMAX 8 /* Maximum number of covariates */    contributions to the likelihood is 1 - Prob of dying from last
 #define MAXN 20000    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 #define YEARM 12. /* Number of months per year */    the healthy state at last known wave). Version is 0.98
 #define AGESUP 130  
 #define AGEBASE 40    Revision 1.103  2005/09/30 15:54:49  lievre
 #ifdef windows    (Module): sump fixed, loop imx fixed, and simplifications.
 #define DIRSEPARATOR '\\'  
 #define ODIRSEPARATOR '/'    Revision 1.102  2004/09/15 17:31:30  brouard
 #else    Add the possibility to read data file including tab characters.
 #define DIRSEPARATOR '/'  
 #define ODIRSEPARATOR '\\'    Revision 1.101  2004/09/15 10:38:38  brouard
 #endif    Fix on curr_time
   
 char version[80]="Imach version 0.95, May 2003, INED-EUROREVES ";    Revision 1.100  2004/07/12 18:29:06  brouard
 int erreur; /* Error number */    Add version for Mac OS X. Just define UNIX in Makefile
 int nvar;  
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    Revision 1.99  2004/06/05 08:57:40  brouard
 int npar=NPARMAX;    *** empty log message ***
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.98  2004/05/16 15:05:56  brouard
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    New version 0.97 . First attempt to estimate force of mortality
 int popbased=0;    directly from the data i.e. without the need of knowing the health
     state at each age, but using a Gompertz model: log u =a + b*age .
 int *wav; /* Number of waves for this individuual 0 is possible */    This is the basic analysis of mortality and should be done before any
 int maxwav; /* Maxim number of waves */    other analysis, in order to test if the mortality estimated from the
 int jmin, jmax; /* min, max spacing between 2 waves */    cross-longitudinal survey is different from the mortality estimated
 int mle, weightopt;    from other sources like vital statistic data.
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    The same imach parameter file can be used but the option for mle should be -3.
 int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between  
            * wave mi and wave mi+1 is not an exact multiple of stepm. */    Agnès, who wrote this part of the code, tried to keep most of the
 double jmean; /* Mean space between 2 waves */    former routines in order to include the new code within the former code.
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    The output is very simple: only an estimate of the intercept and of
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    the slope with 95% confident intervals.
 FILE *ficlog;  
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Current limitations:
 FILE *ficresprobmorprev;    A) Even if you enter covariates, i.e. with the
 FILE *fichtm; /* Html File */    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 FILE *ficreseij;    B) There is no computation of Life Expectancy nor Life Table.
 char filerese[FILENAMELENGTH];  
 FILE  *ficresvij;    Revision 1.97  2004/02/20 13:25:42  lievre
 char fileresv[FILENAMELENGTH];    Version 0.96d. Population forecasting command line is (temporarily)
 FILE  *ficresvpl;    suppressed.
 char fileresvpl[FILENAMELENGTH];  
 char title[MAXLINE];    Revision 1.96  2003/07/15 15:38:55  brouard
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    rewritten within the same printf. Workaround: many printfs.
   
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Revision 1.95  2003/07/08 07:54:34  brouard
 char filelog[FILENAMELENGTH]; /* Log file */    * imach.c (Repository):
 char filerest[FILENAMELENGTH];    (Repository): Using imachwizard code to output a more meaningful covariance
 char fileregp[FILENAMELENGTH];    matrix (cov(a12,c31) instead of numbers.
 char popfile[FILENAMELENGTH];  
     Revision 1.94  2003/06/27 13:00:02  brouard
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];    Just cleaning
   
 #define NR_END 1    Revision 1.93  2003/06/25 16:33:55  brouard
 #define FREE_ARG char*    (Module): On windows (cygwin) function asctime_r doesn't
 #define FTOL 1.0e-10    exist so I changed back to asctime which exists.
     (Module): Version 0.96b
 #define NRANSI   
 #define ITMAX 200     Revision 1.92  2003/06/25 16:30:45  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
 #define TOL 2.0e-4     exist so I changed back to asctime which exists.
   
 #define CGOLD 0.3819660     Revision 1.91  2003/06/25 15:30:29  brouard
 #define ZEPS 1.0e-10     * imach.c (Repository): Duplicated warning errors corrected.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);     (Repository): Elapsed time after each iteration is now output. It
     helps to forecast when convergence will be reached. Elapsed time
 #define GOLD 1.618034     is stamped in powell.  We created a new html file for the graphs
 #define GLIMIT 100.0     concerning matrix of covariance. It has extension -cov.htm.
 #define TINY 1.0e-20   
     Revision 1.90  2003/06/24 12:34:15  brouard
 static double maxarg1,maxarg2;    (Module): Some bugs corrected for windows. Also, when
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    mle=-1 a template is output in file "or"mypar.txt with the design
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    of the covariance matrix to be input.
     
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Revision 1.89  2003/06/24 12:30:52  brouard
 #define rint(a) floor(a+0.5)    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 static double sqrarg;    of the covariance matrix to be input.
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}     Revision 1.88  2003/06/23 17:54:56  brouard
     * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 int imx;   
 int stepm;    Revision 1.87  2003/06/18 12:26:01  brouard
 /* Stepm, step in month: minimum step interpolation*/    Version 0.96
   
 int estepm;    Revision 1.86  2003/06/17 20:04:08  brouard
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.85  2003/06/17 13:12:43  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    * imach.c (Repository): Check when date of death was earlier that
 double **pmmij, ***probs;    current date of interview. It may happen when the death was just
 double dateintmean=0;    prior to the death. In this case, dh was negative and likelihood
     was wrong (infinity). We still send an "Error" but patch by
 double *weight;    assuming that the date of death was just one stepm after the
 int **s; /* Status */    interview.
 double *agedc, **covar, idx;    (Repository): Because some people have very long ID (first column)
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    truncation)
 double ftolhess; /* Tolerance for computing hessian */    (Repository): No more line truncation errors.
   
 /**************** split *************************/    Revision 1.84  2003/06/13 21:44:43  brouard
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    * imach.c (Repository): Replace "freqsummary" at a correct
 {    place. It differs from routine "prevalence" which may be called
   char  *ss;                            /* pointer */    many times. Probs is memory consuming and must be used with
   int   l1, l2;                         /* length counters */    parcimony.
     Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   l1 = strlen(path );                   /* length of path */  
   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );    Revision 1.83  2003/06/10 13:39:11  lievre
   ss= strrchr( path, DIRSEPARATOR );            /* find last / */    *** empty log message ***
   if ( ss == NULL ) {                   /* no directory, so use current */  
     /*if(strrchr(path, ODIRSEPARATOR )==NULL)    Revision 1.82  2003/06/05 15:57:20  brouard
       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    Add log in  imach.c and  fullversion number is now printed.
     /* get current working directory */  
     /*    extern  char* getcwd ( char *buf , int len);*/  */
     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  /*
       return( GLOCK_ERROR_GETCWD );     Interpolated Markov Chain
     }  
     strcpy( name, path );               /* we've got it */    Short summary of the programme:
   } else {                              /* strip direcotry from path */   
     ss++;                               /* after this, the filename */    This program computes Healthy Life Expectancies from
     l2 = strlen( ss );                  /* length of filename */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    first survey ("cross") where individuals from different ages are
     strcpy( name, ss );         /* save file name */    interviewed on their health status or degree of disability (in the
     strncpy( dirc, path, l1 - l2 );     /* now the directory */    case of a health survey which is our main interest) -2- at least a
     dirc[l1-l2] = 0;                    /* add zero */    second wave of interviews ("longitudinal") which measure each change
   }    (if any) in individual health status.  Health expectancies are
   l1 = strlen( dirc );                  /* length of directory */    computed from the time spent in each health state according to a
 #ifdef windows    model. More health states you consider, more time is necessary to reach the
   if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Maximum Likelihood of the parameters involved in the model.  The
 #else    simplest model is the multinomial logistic model where pij is the
   if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    probability to be observed in state j at the second wave
 #endif    conditional to be observed in state i at the first wave. Therefore
   ss = strrchr( name, '.' );            /* find last / */    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   ss++;    'age' is age and 'sex' is a covariate. If you want to have a more
   strcpy(ext,ss);                       /* save extension */    complex model than "constant and age", you should modify the program
   l1= strlen( name);    where the markup *Covariates have to be included here again* invites
   l2= strlen(ss)+1;    you to do it.  More covariates you add, slower the
   strncpy( finame, name, l1-l2);    convergence.
   finame[l1-l2]= 0;  
   return( 0 );                          /* we're done */    The advantage of this computer programme, compared to a simple
 }    multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
     intermediate interview, the information is lost, but taken into
 /******************************************/    account using an interpolation or extrapolation.  
   
 void replace(char *s, char*t)    hPijx is the probability to be observed in state i at age x+h
 {    conditional to the observed state i at age x. The delay 'h' can be
   int i;    split into an exact number (nh*stepm) of unobserved intermediate
   int lg=20;    states. This elementary transition (by month, quarter,
   i=0;    semester or year) is modelled as a multinomial logistic.  The hPx
   lg=strlen(t);    matrix is simply the matrix product of nh*stepm elementary matrices
   for(i=0; i<= lg; i++) {    and the contribution of each individual to the likelihood is simply
     (s[i] = t[i]);    hPijx.
     if (t[i]== '\\') s[i]='/';  
   }    Also this programme outputs the covariance matrix of the parameters but also
 }    of the life expectancies. It also computes the period (stable) prevalence.
    
 int nbocc(char *s, char occ)    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 {             Institut national d'études démographiques, Paris.
   int i,j=0;    This software have been partly granted by Euro-REVES, a concerted action
   int lg=20;    from the European Union.
   i=0;    It is copyrighted identically to a GNU software product, ie programme and
   lg=strlen(s);    software can be distributed freely for non commercial use. Latest version
   for(i=0; i<= lg; i++) {    can be accessed at http://euroreves.ined.fr/imach .
   if  (s[i] == occ ) j++;  
   }    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   return j;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 }   
     **********************************************************************/
 void cutv(char *u,char *v, char*t, char occ)  /*
 {    main
   /* cuts string t into u and v where u is ended by char occ excluding it    read parameterfile
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)    read datafile
      gives u="abcedf" and v="ghi2j" */    concatwav
   int i,lg,j,p=0;    freqsummary
   i=0;    if (mle >= 1)
   for(j=0; j<=strlen(t)-1; j++) {      mlikeli
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    print results files
   }    if mle==1
        computes hessian
   lg=strlen(t);    read end of parameter file: agemin, agemax, bage, fage, estepm
   for(j=0; j<p; j++) {        begin-prev-date,...
     (u[j] = t[j]);    open gnuplot file
   }    open html file
      u[p]='\0';    period (stable) prevalence
      for age prevalim()
    for(j=0; j<= lg; j++) {    h Pij x
     if (j>=(p+1))(v[j-p-1] = t[j]);    variance of p varprob
   }    forecasting if prevfcast==1 prevforecast call prevalence()
 }    health expectancies
     Variance-covariance of DFLE
 /********************** nrerror ********************/    prevalence()
      movingaverage()
 void nrerror(char error_text[])    varevsij()
 {    if popbased==1 varevsij(,popbased)
   fprintf(stderr,"ERREUR ...\n");    total life expectancies
   fprintf(stderr,"%s\n",error_text);    Variance of period (stable) prevalence
   exit(EXIT_FAILURE);   end
 }  */
 /*********************** vector *******************/  
 double *vector(int nl, int nh)  
 {  
   double *v;   
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  #include <math.h>
   if (!v) nrerror("allocation failure in vector");  #include <stdio.h>
   return v-nl+NR_END;  #include <stdlib.h>
 }  #include <string.h>
   #include <unistd.h>
 /************************ free vector ******************/  
 void free_vector(double*v, int nl, int nh)  #include <limits.h>
 {  #include <sys/types.h>
   free((FREE_ARG)(v+nl-NR_END));  #include <sys/stat.h>
 }  #include <errno.h>
   extern int errno;
 /************************ivector *******************************/  
 int *ivector(long nl,long nh)  /* #include <sys/time.h> */
 {  #include <time.h>
   int *v;  #include "timeval.h"
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");  /* #include <libintl.h> */
   return v-nl+NR_END;  /* #define _(String) gettext (String) */
 }  
   #define MAXLINE 256
 /******************free ivector **************************/  
 void free_ivector(int *v, long nl, long nh)  #define GNUPLOTPROGRAM "gnuplot"
 {  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   free((FREE_ARG)(v+nl-NR_END));  #define FILENAMELENGTH 132
 }  
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 /******************* imatrix *******************************/  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 int **imatrix(long nrl, long nrh, long ncl, long nch)   
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 {   #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;   
   int **m;   #define NINTERVMAX 8
     #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   /* allocate pointers to rows */   #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));   #define NCOVMAX 8 /* Maximum number of covariates */
   if (!m) nrerror("allocation failure 1 in matrix()");   #define MAXN 20000
   m += NR_END;   #define YEARM 12. /* Number of months per year */
   m -= nrl;   #define AGESUP 130
     #define AGEBASE 40
     #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   /* allocate rows and set pointers to them */   #ifdef UNIX
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));   #define DIRSEPARATOR '/'
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");   #define CHARSEPARATOR "/"
   m[nrl] += NR_END;   #define ODIRSEPARATOR '\\'
   m[nrl] -= ncl;   #else
     #define DIRSEPARATOR '\\'
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;   #define CHARSEPARATOR "\\"
     #define ODIRSEPARATOR '/'
   /* return pointer to array of pointers to rows */   #endif
   return m;   
 }   /* $Id$ */
   /* $State$ */
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)  char version[]="Imach version 0.98g, March 2006, INED-EUROREVES-Institut de longevite ";
       int **m;  char fullversion[]="$Revision$ $Date$";
       long nch,ncl,nrh,nrl;   char strstart[80];
      /* free an int matrix allocated by imatrix() */   char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 {   int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));   int nvar;
   free((FREE_ARG) (m+nrl-NR_END));   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 }   int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
 /******************* matrix *******************************/  int ndeath=1; /* Number of dead states */
 double **matrix(long nrl, long nrh, long ncl, long nch)  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 {  int popbased=0;
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  
   double **m;  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int jmin, jmax; /* min, max spacing between 2 waves */
   if (!m) nrerror("allocation failure 1 in matrix()");  int ijmin, ijmax; /* Individuals having jmin and jmax */
   m += NR_END;  int gipmx, gsw; /* Global variables on the number of contributions
   m -= nrl;                     to the likelihood and the sum of weights (done by funcone)*/
   int mle, weightopt;
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   m[nrl] += NR_END;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   m[nrl] -= ncl;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  double **oldm, **newm, **savm; /* Working pointers to matrices */
   return m;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   /* print *(*(m+1)+70) ou print m[1][70]; print m+1 or print &(m[1])   FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
    */  FILE *ficlog, *ficrespow;
 }  int globpr; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
 /*************************free matrix ************************/  long ipmx; /* Number of contributions */
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  double sw; /* Sum of weights */
 {  char filerespow[FILENAMELENGTH];
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   free((FREE_ARG)(m+nrl-NR_END));  FILE *ficresilk;
 }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
 /******************* ma3x *******************************/  FILE *fichtm, *fichtmcov; /* Html File */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  FILE *ficreseij;
 {  char filerese[FILENAMELENGTH];
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  FILE *ficresstdeij;
   double ***m;  char fileresstde[FILENAMELENGTH];
   FILE *ficrescveij;
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  char filerescve[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  FILE  *ficresvij;
   m += NR_END;  char fileresv[FILENAMELENGTH];
   m -= nrl;  FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  char title[MAXLINE];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   m[nrl] += NR_END;  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
   m[nrl] -= ncl;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH];
   char command[FILENAMELENGTH];
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  int  outcmd=0;
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  char filelog[FILENAMELENGTH]; /* Log file */
   m[nrl][ncl] -= nll;  char filerest[FILENAMELENGTH];
   for (j=ncl+1; j<=nch; j++)   char fileregp[FILENAMELENGTH];
     m[nrl][j]=m[nrl][j-1]+nlay;  char popfile[FILENAMELENGTH];
     
   for (i=nrl+1; i<=nrh; i++) {  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  
     for (j=ncl+1; j<=nch; j++)   struct timeval start_time, end_time, curr_time, last_time, forecast_time;
       m[i][j]=m[i][j-1]+nlay;  struct timezone tzp;
   }  extern int gettimeofday();
   return m;   struct tm tmg, tm, tmf, *gmtime(), *localtime();
   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])  long time_value;
            &(m[i][j][k]) <=> *((*(m+i) + j)+k)  extern long time();
   */  char strcurr[80], strfor[80];
 }  
   char *endptr;
 /*************************free ma3x ************************/  long lval;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  double dval;
 {  
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  #define NR_END 1
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define FREE_ARG char*
   free((FREE_ARG)(m+nrl-NR_END));  #define FTOL 1.0e-10
 }  
   #define NRANSI
 /***************** f1dim *************************/  #define ITMAX 200
 extern int ncom;   
 extern double *pcom,*xicom;  #define TOL 2.0e-4
 extern double (*nrfunc)(double []);   
    #define CGOLD 0.3819660
 double f1dim(double x)   #define ZEPS 1.0e-10
 {   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
   int j;   
   double f;  #define GOLD 1.618034
   double *xt;   #define GLIMIT 100.0
    #define TINY 1.0e-20
   xt=vector(1,ncom);   
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];   static double maxarg1,maxarg2;
   f=(*nrfunc)(xt);   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   free_vector(xt,1,ncom);   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
   return f;    
 }   #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   #define rint(a) floor(a+0.5)
 /*****************brent *************************/  
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)   static double sqrarg;
 {   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   int iter;   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
   double a,b,d,etemp;  int agegomp= AGEGOMP;
   double fu,fv,fw,fx;  
   double ftemp;  int imx;
   double p,q,r,tol1,tol2,u,v,w,x,xm;   int stepm=1;
   double e=0.0;   /* Stepm, step in month: minimum step interpolation*/
    
   a=(ax < cx ? ax : cx);   int estepm;
   b=(ax > cx ? ax : cx);   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   x=w=v=bx;   
   fw=fv=fx=(*f)(x);   int m,nb;
   for (iter=1;iter<=ITMAX;iter++) {   long *num;
     xm=0.5*(a+b);   int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);   double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  double **pmmij, ***probs;
     printf(".");fflush(stdout);  double *ageexmed,*agecens;
     fprintf(ficlog,".");fflush(ficlog);  double dateintmean=0;
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  double *weight;
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  int **s; /* Status */
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  double *agedc, **covar, idx;
 #endif  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){   double *lsurv, *lpop, *tpop;
       *xmin=x;   
       return fx;   double ftol=FTOL; /* Tolerance for computing Max Likelihood */
     }   double ftolhess; /* Tolerance for computing hessian */
     ftemp=fu;  
     if (fabs(e) > tol1) {   /**************** split *************************/
       r=(x-w)*(fx-fv);   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
       q=(x-v)*(fx-fw);   {
       p=(x-v)*q-(x-w)*r;     /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
       q=2.0*(q-r);        the name of the file (name), its extension only (ext) and its first part of the name (finame)
       if (q > 0.0) p = -p;     */
       q=fabs(q);     char  *ss;                            /* pointer */
       etemp=e;     int   l1, l2;                         /* length counters */
       e=d;   
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))     l1 = strlen(path );                   /* length of path */
         d=CGOLD*(e=(x >= xm ? a-x : b-x));     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
       else {     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
         d=p/q;     if ( ss == NULL ) {                   /* no directory, so determine current directory */
         u=x+d;       strcpy( name, path );               /* we got the fullname name because no directory */
         if (u-a < tol2 || b-u < tol2)       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
           d=SIGN(tol1,xm-x);         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       }       /* get current working directory */
     } else {       /*    extern  char* getcwd ( char *buf , int len);*/
       d=CGOLD*(e=(x >= xm ? a-x : b-x));       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     }         return( GLOCK_ERROR_GETCWD );
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));       }
     fu=(*f)(u);       /* got dirc from getcwd*/
     if (fu <= fx) {       printf(" DIRC = %s \n",dirc);
       if (u >= x) a=x; else b=x;     } else {                              /* strip direcotry from path */
       SHFT(v,w,x,u)       ss++;                               /* after this, the filename */
         SHFT(fv,fw,fx,fu)       l2 = strlen( ss );                  /* length of filename */
         } else {       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
           if (u < x) a=u; else b=u;       strcpy( name, ss );         /* save file name */
           if (fu <= fw || w == x) {       strncpy( dirc, path, l1 - l2 );     /* now the directory */
             v=w;       dirc[l1-l2] = 0;                    /* add zero */
             w=u;       printf(" DIRC2 = %s \n",dirc);
             fv=fw;     }
             fw=fu;     /* We add a separator at the end of dirc if not exists */
           } else if (fu <= fv || v == x || v == w) {     l1 = strlen( dirc );                  /* length of directory */
             v=u;     if( dirc[l1-1] != DIRSEPARATOR ){
             fv=fu;       dirc[l1] =  DIRSEPARATOR;
           }       dirc[l1+1] = 0;
         }       printf(" DIRC3 = %s \n",dirc);
   }     }
   nrerror("Too many iterations in brent");     ss = strrchr( name, '.' );            /* find last / */
   *xmin=x;     if (ss >0){
   return fx;       ss++;
 }       strcpy(ext,ss);                     /* save extension */
       l1= strlen( name);
 /****************** mnbrak ***********************/      l2= strlen(ss)+1;
       strncpy( finame, name, l1-l2);
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,       finame[l1-l2]= 0;
             double (*func)(double))     }
 {   
   double ulim,u,r,q, dum;    return( 0 );                          /* we're done */
   double fu;   }
    
   *fa=(*func)(*ax);   
   *fb=(*func)(*bx);   /******************************************/
   if (*fb > *fa) {   
     SHFT(dum,*ax,*bx,dum)   void replace_back_to_slash(char *s, char*t)
       SHFT(dum,*fb,*fa,dum)   {
       }     int i;
   *cx=(*bx)+GOLD*(*bx-*ax);     int lg=0;
   *fc=(*func)(*cx);     i=0;
   while (*fb > *fc) {     lg=strlen(t);
     r=(*bx-*ax)*(*fb-*fc);     for(i=0; i<= lg; i++) {
     q=(*bx-*cx)*(*fb-*fa);       (s[i] = t[i]);
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/       if (t[i]== '\\') s[i]='/';
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));     }
     ulim=(*bx)+GLIMIT*(*cx-*bx);   }
     if ((*bx-u)*(u-*cx) > 0.0) {   
       fu=(*func)(u);   int nbocc(char *s, char occ)
     } else if ((*cx-u)*(u-ulim) > 0.0) {   {
       fu=(*func)(u);     int i,j=0;
       if (fu < *fc) {     int lg=20;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))     i=0;
           SHFT(*fb,*fc,fu,(*func)(u))     lg=strlen(s);
           }     for(i=0; i<= lg; i++) {
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {     if  (s[i] == occ ) j++;
       u=ulim;     }
       fu=(*func)(u);     return j;
     } else {   }
       u=(*cx)+GOLD*(*cx-*bx);   
       fu=(*func)(u);   void cutv(char *u,char *v, char*t, char occ)
     }   {
     SHFT(*ax,*bx,*cx,u)     /* cuts string t into u and v where u ends before first occurence of char 'occ'
       SHFT(*fa,*fb,*fc,fu)        and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
       }        gives u="abcedf" and v="ghi2j" */
 }     int i,lg,j,p=0;
     i=0;
 /*************** linmin ************************/    for(j=0; j<=strlen(t)-1; j++) {
       if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 int ncom;     }
 double *pcom,*xicom;  
 double (*nrfunc)(double []);     lg=strlen(t);
      for(j=0; j<p; j++) {
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))       (u[j] = t[j]);
 {     }
   double brent(double ax, double bx, double cx,        u[p]='\0';
                double (*f)(double), double tol, double *xmin);   
   double f1dim(double x);      for(j=0; j<= lg; j++) {
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,       if (j>=(p+1))(v[j-p-1] = t[j]);
               double *fc, double (*func)(double));     }
   int j;   }
   double xx,xmin,bx,ax;   
   double fx,fb,fa;  /********************** nrerror ********************/
    
   ncom=n;   void nrerror(char error_text[])
   pcom=vector(1,n);   {
   xicom=vector(1,n);     fprintf(stderr,"ERREUR ...\n");
   nrfunc=func;     fprintf(stderr,"%s\n",error_text);
   for (j=1;j<=n;j++) {     exit(EXIT_FAILURE);
     pcom[j]=p[j];   }
     xicom[j]=xi[j];   /*********************** vector *******************/
   }   double *vector(int nl, int nh)
   ax=0.0;   {
   xx=1.0;     double *v;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);     v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);     if (!v) nrerror("allocation failure in vector");
 #ifdef DEBUG    return v-nl+NR_END;
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  }
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  
 #endif  /************************ free vector ******************/
   for (j=1;j<=n;j++) {   void free_vector(double*v, int nl, int nh)
     xi[j] *= xmin;   {
     p[j] += xi[j];     free((FREE_ARG)(v+nl-NR_END));
   }   }
   free_vector(xicom,1,n);   
   free_vector(pcom,1,n);   /************************ivector *******************************/
 }   int *ivector(long nl,long nh)
   {
 /*************** powell ************************/    int *v;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
             double (*func)(double []))     if (!v) nrerror("allocation failure in ivector");
 {     return v-nl+NR_END;
   void linmin(double p[], double xi[], int n, double *fret,   }
               double (*func)(double []));   
   int i,ibig,j;   /******************free ivector **************************/
   double del,t,*pt,*ptt,*xit;  void free_ivector(int *v, long nl, long nh)
   double fp,fptt;  {
   double *xits;    free((FREE_ARG)(v+nl-NR_END));
   pt=vector(1,n);   }
   ptt=vector(1,n);   
   xit=vector(1,n);   /************************lvector *******************************/
   xits=vector(1,n);   long *lvector(long nl,long nh)
   *fret=(*func)(p);   {
   for (j=1;j<=n;j++) pt[j]=p[j];     long *v;
   for (*iter=1;;++(*iter)) {     v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
     fp=(*fret);     if (!v) nrerror("allocation failure in ivector");
     ibig=0;     return v-nl+NR_END;
     del=0.0;   }
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  /******************free lvector **************************/
     for (i=1;i<=n;i++)   void free_lvector(long *v, long nl, long nh)
       printf(" %d %.12f",i, p[i]);  {
     fprintf(ficlog," %d %.12f",i, p[i]);    free((FREE_ARG)(v+nl-NR_END));
     printf("\n");  }
     fprintf(ficlog,"\n");  
     for (i=1;i<=n;i++) {   /******************* imatrix *******************************/
       for (j=1;j<=n;j++) xit[j]=xi[j][i];   int **imatrix(long nrl, long nrh, long ncl, long nch)
       fptt=(*fret);        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
 #ifdef DEBUG  {
       printf("fret=%lf \n",*fret);    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
       fprintf(ficlog,"fret=%lf \n",*fret);    int **m;
 #endif   
       printf("%d",i);fflush(stdout);    /* allocate pointers to rows */
       fprintf(ficlog,"%d",i);fflush(ficlog);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
       linmin(p,xit,n,fret,func);     if (!m) nrerror("allocation failure 1 in matrix()");
       if (fabs(fptt-(*fret)) > del) {     m += NR_END;
         del=fabs(fptt-(*fret));     m -= nrl;
         ibig=i;    
       }    
 #ifdef DEBUG    /* allocate rows and set pointers to them */
       printf("%d %.12e",i,(*fret));    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
       fprintf(ficlog,"%d %.12e",i,(*fret));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       for (j=1;j<=n;j++) {    m[nrl] += NR_END;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    m[nrl] -= ncl;
         printf(" x(%d)=%.12e",j,xit[j]);   
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
       }   
       for(j=1;j<=n;j++) {    /* return pointer to array of pointers to rows */
         printf(" p=%.12e",p[j]);    return m;
         fprintf(ficlog," p=%.12e",p[j]);  }
       }  
       printf("\n");  /****************** free_imatrix *************************/
       fprintf(ficlog,"\n");  void free_imatrix(m,nrl,nrh,ncl,nch)
 #endif        int **m;
     }         long nch,ncl,nrh,nrl;
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {       /* free an int matrix allocated by imatrix() */
 #ifdef DEBUG  {
       int k[2],l;    free((FREE_ARG) (m[nrl]+ncl-NR_END));
       k[0]=1;    free((FREE_ARG) (m+nrl-NR_END));
       k[1]=-1;  }
       printf("Max: %.12e",(*func)(p));  
       fprintf(ficlog,"Max: %.12e",(*func)(p));  /******************* matrix *******************************/
       for (j=1;j<=n;j++) {  double **matrix(long nrl, long nrh, long ncl, long nch)
         printf(" %.12e",p[j]);  {
         fprintf(ficlog," %.12e",p[j]);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
       }    double **m;
       printf("\n");  
       fprintf(ficlog,"\n");    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       for(l=0;l<=1;l++) {    if (!m) nrerror("allocation failure 1 in matrix()");
         for (j=1;j<=n;j++) {    m += NR_END;
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    m -= nrl;
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         }    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    m[nrl] += NR_END;
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    m[nrl] -= ncl;
       }  
 #endif    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     return m;
     /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1])
       free_vector(xit,1,n);      */
       free_vector(xits,1,n);   }
       free_vector(ptt,1,n);   
       free_vector(pt,1,n);   /*************************free matrix ************************/
       return;   void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     }   {
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");     free((FREE_ARG)(m[nrl]+ncl-NR_END));
     for (j=1;j<=n;j++) {     free((FREE_ARG)(m+nrl-NR_END));
       ptt[j]=2.0*p[j]-pt[j];   }
       xit[j]=p[j]-pt[j];   
       pt[j]=p[j];   /******************* ma3x *******************************/
     }   double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     fptt=(*func)(ptt);   {
     if (fptt < fp) {     long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);     double ***m;
       if (t < 0.0) {   
         linmin(p,xit,n,fret,func);     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
         for (j=1;j<=n;j++) {     if (!m) nrerror("allocation failure 1 in matrix()");
           xi[j][ibig]=xi[j][n];     m += NR_END;
           xi[j][n]=xit[j];     m -= nrl;
         }  
 #ifdef DEBUG    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    m[nrl] += NR_END;
         for(j=1;j<=n;j++){    m[nrl] -= ncl;
           printf(" %.12e",xit[j]);  
           fprintf(ficlog," %.12e",xit[j]);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
         }  
         printf("\n");    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         fprintf(ficlog,"\n");    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 #endif    m[nrl][ncl] += NR_END;
       }    m[nrl][ncl] -= nll;
     }     for (j=ncl+1; j<=nch; j++)
   }       m[nrl][j]=m[nrl][j-1]+nlay;
 }    
     for (i=nrl+1; i<=nrh; i++) {
 /**** Prevalence limit (stable prevalence)  ****************/      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       for (j=ncl+1; j<=nch; j++)
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)        m[i][j]=m[i][j-1]+nlay;
 {    }
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    return m;
      matrix by transitions matrix until convergence is reached */    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   int i, ii,j,k;    */
   double min, max, maxmin, maxmax,sumnew=0.;  }
   double **matprod2();  
   double **out, cov[NCOVMAX], **pmij();  /*************************free ma3x ************************/
   double **newm;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
   double agefin, delaymax=50 ; /* Max number of years to converge */  {
     free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   for (ii=1;ii<=nlstate+ndeath;ii++)    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     for (j=1;j<=nlstate+ndeath;j++){    free((FREE_ARG)(m+nrl-NR_END));
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  }
     }  
   /*************** function subdirf ***********/
    cov[1]=1.;  char *subdirf(char fileres[])
    {
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    /* Caution optionfilefiname is hidden */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    strcpy(tmpout,optionfilefiname);
     newm=savm;    strcat(tmpout,"/"); /* Add to the right */
     /* Covariates have to be included here again */    strcat(tmpout,fileres);
      cov[2]=agefin;    return tmpout;
     }
       for (k=1; k<=cptcovn;k++) {  
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  /*************** function subdirf2 ***********/
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  char *subdirf2(char fileres[], char *preop)
       }  {
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];   
       for (k=1; k<=cptcovprod;k++)    /* Caution optionfilefiname is hidden */
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/");
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    strcat(tmpout,preop);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    strcat(tmpout,fileres);
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/    return tmpout;
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  }
   
     savm=oldm;  /*************** function subdirf3 ***********/
     oldm=newm;  char *subdirf3(char fileres[], char *preop, char *preop2)
     maxmax=0.;  {
     for(j=1;j<=nlstate;j++){   
       min=1.;    /* Caution optionfilefiname is hidden */
       max=0.;    strcpy(tmpout,optionfilefiname);
       for(i=1; i<=nlstate; i++) {    strcat(tmpout,"/");
         sumnew=0;    strcat(tmpout,preop);
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    strcat(tmpout,preop2);
         prlim[i][j]= newm[i][j]/(1-sumnew);    strcat(tmpout,fileres);
         max=FMAX(max,prlim[i][j]);    return tmpout;
         min=FMIN(min,prlim[i][j]);  }
       }  
       maxmin=max-min;  /***************** f1dim *************************/
       maxmax=FMAX(maxmax,maxmin);  extern int ncom;
     }  extern double *pcom,*xicom;
     if(maxmax < ftolpl){  extern double (*nrfunc)(double []);
       return prlim;   
     }  double f1dim(double x)
   }  {
 }    int j;
     double f;
 /*************** transition probabilities ***************/     double *xt;
    
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    xt=vector(1,ncom);
 {    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
   double s1, s2;    f=(*nrfunc)(xt);
   /*double t34;*/    free_vector(xt,1,ncom);
   int i,j,j1, nc, ii, jj;    return f;
   }
     for(i=1; i<= nlstate; i++){  
     for(j=1; j<i;j++){  /*****************brent *************************/
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)
         /*s2 += param[i][j][nc]*cov[nc];*/  {
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    int iter;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    double a,b,d,etemp;
       }    double fu,fv,fw,fx;
       ps[i][j]=s2;    double ftemp;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    double p,q,r,tol1,tol2,u,v,w,x,xm;
     }    double e=0.0;
     for(j=i+1; j<=nlstate+ndeath;j++){   
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    a=(ax < cx ? ax : cx);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    b=(ax > cx ? ax : cx);
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    x=w=v=bx;
       }    fw=fv=fx=(*f)(x);
       ps[i][j]=s2;    for (iter=1;iter<=ITMAX;iter++) {
     }      xm=0.5*(a+b);
   }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
     /*ps[3][2]=1;*/      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(".");fflush(stdout);
   for(i=1; i<= nlstate; i++){      fprintf(ficlog,".");fflush(ficlog);
      s1=0;  #ifdef DEBUG
     for(j=1; j<i; j++)      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       s1+=exp(ps[i][j]);      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     for(j=i+1; j<=nlstate+ndeath; j++)      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       s1+=exp(ps[i][j]);  #endif
     ps[i][i]=1./(s1+1.);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){
     for(j=1; j<i; j++)        *xmin=x;
       ps[i][j]= exp(ps[i][j])*ps[i][i];        return fx;
     for(j=i+1; j<=nlstate+ndeath; j++)      }
       ps[i][j]= exp(ps[i][j])*ps[i][i];      ftemp=fu;
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */      if (fabs(e) > tol1) {
   } /* end i */        r=(x-w)*(fx-fv);
         q=(x-v)*(fx-fw);
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        p=(x-v)*q-(x-w)*r;
     for(jj=1; jj<= nlstate+ndeath; jj++){        q=2.0*(q-r);
       ps[ii][jj]=0;        if (q > 0.0) p = -p;
       ps[ii][ii]=1;        q=fabs(q);
     }        etemp=e;
   }        e=d;
         if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
           d=CGOLD*(e=(x >= xm ? a-x : b-x));
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        else {
     for(jj=1; jj<= nlstate+ndeath; jj++){          d=p/q;
      printf("%lf ",ps[ii][jj]);          u=x+d;
    }          if (u-a < tol2 || b-u < tol2)
     printf("\n ");            d=SIGN(tol1,xm-x);
     }        }
     printf("\n ");printf("%lf ",cov[2]);*/      } else {
 /*        d=CGOLD*(e=(x >= xm ? a-x : b-x));
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      }
   goto end;*/      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
     return ps;      fu=(*f)(u);
 }      if (fu <= fx) {
         if (u >= x) a=x; else b=x;
 /**************** Product of 2 matrices ******************/        SHFT(v,w,x,u)
           SHFT(fv,fw,fx,fu)
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)          } else {
 {            if (u < x) a=u; else b=u;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times            if (fu <= fw || w == x) {
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */              v=w;
   /* in, b, out are matrice of pointers which should have been initialized               w=u;
      before: only the contents of out is modified. The function returns              fv=fw;
      a pointer to pointers identical to out */              fw=fu;
   long i, j, k;            } else if (fu <= fv || v == x || v == w) {
   for(i=nrl; i<= nrh; i++)              v=u;
     for(k=ncolol; k<=ncoloh; k++)              fv=fu;
       for(j=ncl,out[i][k]=0.; j<=nch; j++)            }
         out[i][k] +=in[i][j]*b[j][k];          }
     }
   return out;    nrerror("Too many iterations in brent");
 }    *xmin=x;
     return fx;
   }
 /************* Higher Matrix Product ***************/  
   /****************** mnbrak ***********************/
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  
 {  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
   /* Computes the transition matrix starting at age 'age' over               double (*func)(double))
      'nhstepm*hstepm*stepm' months (i.e. until  {
      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying     double ulim,u,r,q, dum;
      nhstepm*hstepm matrices.     double fu;
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    
      (typically every 2 years instead of every month which is too big     *fa=(*func)(*ax);
      for the memory).    *fb=(*func)(*bx);
      Model is determined by parameters x and covariates have to be     if (*fb > *fa) {
      included manually here.       SHFT(dum,*ax,*bx,dum)
         SHFT(dum,*fb,*fa,dum)
      */        }
     *cx=(*bx)+GOLD*(*bx-*ax);
   int i, j, d, h, k;    *fc=(*func)(*cx);
   double **out, cov[NCOVMAX];    while (*fb > *fc) {
   double **newm;      r=(*bx-*ax)*(*fb-*fc);
       q=(*bx-*cx)*(*fb-*fa);
   /* Hstepm could be zero and should return the unit matrix */      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
   for (i=1;i<=nlstate+ndeath;i++)        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
     for (j=1;j<=nlstate+ndeath;j++){      ulim=(*bx)+GLIMIT*(*cx-*bx);
       oldm[i][j]=(i==j ? 1.0 : 0.0);      if ((*bx-u)*(u-*cx) > 0.0) {
       po[i][j][0]=(i==j ? 1.0 : 0.0);        fu=(*func)(u);
     }      } else if ((*cx-u)*(u-ulim) > 0.0) {
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        fu=(*func)(u);
   for(h=1; h <=nhstepm; h++){        if (fu < *fc) {
     for(d=1; d <=hstepm; d++){          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
       newm=savm;            SHFT(*fb,*fc,fu,(*func)(u))
       /* Covariates have to be included here again */            }
       cov[1]=1.;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        u=ulim;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        fu=(*func)(u);
       for (k=1; k<=cptcovage;k++)      } else {
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        u=(*cx)+GOLD*(*cx-*bx);
       for (k=1; k<=cptcovprod;k++)        fu=(*func)(u);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      }
       SHFT(*ax,*bx,*cx,u)
         SHFT(*fa,*fb,*fc,fu)
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/        }
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  }
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,   
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  /*************** linmin ************************/
       savm=oldm;  
       oldm=newm;  int ncom;
     }  double *pcom,*xicom;
     for(i=1; i<=nlstate+ndeath; i++)  double (*nrfunc)(double []);
       for(j=1;j<=nlstate+ndeath;j++) {   
         po[i][j][h]=newm[i][j];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  {
          */    double brent(double ax, double bx, double cx,
       }                 double (*f)(double), double tol, double *xmin);
   } /* end h */    double f1dim(double x);
   return po;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
 }                double *fc, double (*func)(double));
     int j;
     double xx,xmin,bx,ax;
 /*************** log-likelihood *************/    double fx,fb,fa;
 double func( double *x)   
 {    ncom=n;
   int i, ii, j, k, mi, d, kk;    pcom=vector(1,n);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    xicom=vector(1,n);
   double **out;    nrfunc=func;
   double sw; /* Sum of weights */    for (j=1;j<=n;j++) {
   double lli; /* Individual log likelihood */      pcom[j]=p[j];
   int s1, s2;      xicom[j]=xi[j];
   double bbh, survp;    }
   long ipmx;    ax=0.0;
   /*extern weight */    xx=1.0;
   /* We are differentiating ll according to initial status */    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
   /*for(i=1;i<imx;i++)   #ifdef DEBUG
     printf(" %d\n",s[4][i]);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   */    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
   cov[1]=1.;  #endif
     for (j=1;j<=n;j++) {
   for(k=1; k<=nlstate; k++) ll[k]=0.;      xi[j] *= xmin;
       p[j] += xi[j];
   if(mle==1){    }
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){    free_vector(xicom,1,n);
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    free_vector(pcom,1,n);
       for(mi=1; mi<= wav[i]-1; mi++){  }
         for (ii=1;ii<=nlstate+ndeath;ii++)  
           for (j=1;j<=nlstate+ndeath;j++){  char *asc_diff_time(long time_sec, char ascdiff[])
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);  {
             savm[ii][j]=(ii==j ? 1.0 : 0.0);    long sec_left, days, hours, minutes;
           }    days = (time_sec) / (60*60*24);
         for(d=0; d<dh[mi][i]; d++){    sec_left = (time_sec) % (60*60*24);
           newm=savm;    hours = (sec_left) / (60*60) ;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;    sec_left = (sec_left) %(60*60);
           for (kk=1; kk<=cptcovage;kk++) {    minutes = (sec_left) /60;
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    sec_left = (sec_left) % (60);
           }    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    return ascdiff;
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  }
           savm=oldm;  
           oldm=newm;  /*************** powell ************************/
         } /* end mult */  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
                     double (*func)(double []))
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */  {
         /* But now since version 0.9 we anticipate for bias and large stepm.    void linmin(double p[], double xi[], int n, double *fret,
          * If stepm is larger than one month (smallest stepm) and if the exact delay                 double (*func)(double []));
          * (in months) between two waves is not a multiple of stepm, we rounded to     int i,ibig,j;
          * the nearest (and in case of equal distance, to the lowest) interval but now    double del,t,*pt,*ptt,*xit;
          * we keep into memory the bias bh[mi][i] and also the previous matrix product    double fp,fptt;
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the    double *xits;
          * probability in order to take into account the bias as a fraction of the way    int niterf, itmp;
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies  
          * -stepm/2 to stepm/2 .    pt=vector(1,n);
          * For stepm=1 the results are the same as for previous versions of Imach.    ptt=vector(1,n);
          * For stepm > 1 the results are less biased than in previous versions.     xit=vector(1,n);
          */    xits=vector(1,n);
         s1=s[mw[mi][i]][i];    *fret=(*func)(p);
         s2=s[mw[mi+1][i]][i];    for (j=1;j<=n;j++) pt[j]=p[j];
         bbh=(double)bh[mi][i]/(double)stepm;     for (*iter=1;;++(*iter)) {
         /* bias is positive if real duration      fp=(*fret);
          * is higher than the multiple of stepm and negative otherwise.      ibig=0;
          */      del=0.0;
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/      last_time=curr_time;
         if( s2 > nlstate){       (void) gettimeofday(&curr_time,&tzp);
           /* i.e. if s2 is a death state and if the date of death is known then the contribution      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
              to the likelihood is the probability to die between last step unit time and current       fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
              step unit time, which is also the differences between probability to die before dh   /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
              and probability to die before dh-stepm .      for (i=1;i<=n;i++) {
              In version up to 0.92 likelihood was computed        printf(" %d %.12f",i, p[i]);
         as if date of death was unknown. Death was treated as any other        fprintf(ficlog," %d %.12lf",i, p[i]);
         health state: the date of the interview describes the actual state        fprintf(ficrespow," %.12lf", p[i]);
         and not the date of a change in health state. The former idea was      }
         to consider that at each interview the state was recorded      printf("\n");
         (healthy, disable or death) and IMaCh was corrected; but when we      fprintf(ficlog,"\n");
         introduced the exact date of death then we should have modified      fprintf(ficrespow,"\n");fflush(ficrespow);
         the contribution of an exact death to the likelihood. This new      if(*iter <=3){
         contribution is smaller and very dependent of the step unit        tm = *localtime(&curr_time.tv_sec);
         stepm. It is no more the probability to die between last interview        strcpy(strcurr,asctime(&tm));
         and month of death but the probability to survive from last  /*       asctime_r(&tm,strcurr); */
         interview up to one month before death multiplied by the        forecast_time=curr_time;
         probability to die within a month. Thanks to Chris        itmp = strlen(strcurr);
         Jackson for correcting this bug.  Former versions increased        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
         mortality artificially. The bad side is that we add another loop          strcurr[itmp-1]='\0';
         which slows down the processing. The difference can be up to 10%        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         lower mortality.        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
           */        for(niterf=10;niterf<=30;niterf+=10){
           lli=log(out[s1][s2] - savm[s1][s2]);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
         }else{          tmf = *localtime(&forecast_time.tv_sec);
           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */  /*      asctime_r(&tmf,strfor); */
           /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */          strcpy(strfor,asctime(&tmf));
         }           itmp = strlen(strfor);
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/          if(strfor[itmp-1]=='\n')
         /*if(lli ==000.0)*/          strfor[itmp-1]='\0';
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         ipmx +=1;          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         sw += weight[i];        }
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      }
       } /* end of wave */      for (i=1;i<=n;i++) {
     } /* end of individual */        for (j=1;j<=n;j++) xit[j]=xi[j][i];
   }  else if(mle==2){        fptt=(*fret);
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){  #ifdef DEBUG
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        printf("fret=%lf \n",*fret);
       for(mi=1; mi<= wav[i]-1; mi++){        fprintf(ficlog,"fret=%lf \n",*fret);
         for (ii=1;ii<=nlstate+ndeath;ii++)  #endif
           for (j=1;j<=nlstate+ndeath;j++){        printf("%d",i);fflush(stdout);
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        fprintf(ficlog,"%d",i);fflush(ficlog);
             savm[ii][j]=(ii==j ? 1.0 : 0.0);        linmin(p,xit,n,fret,func);
           }        if (fabs(fptt-(*fret)) > del) {
         for(d=0; d<=dh[mi][i]; d++){          del=fabs(fptt-(*fret));
           newm=savm;          ibig=i;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        }
           for (kk=1; kk<=cptcovage;kk++) {  #ifdef DEBUG
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];        printf("%d %.12e",i,(*fret));
           }        fprintf(ficlog,"%d %.12e",i,(*fret));
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        for (j=1;j<=n;j++) {
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           savm=oldm;          printf(" x(%d)=%.12e",j,xit[j]);
           oldm=newm;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         } /* end mult */        }
               for(j=1;j<=n;j++) {
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */          printf(" p=%.12e",p[j]);
         /* But now since version 0.9 we anticipate for bias and large stepm.          fprintf(ficlog," p=%.12e",p[j]);
          * If stepm is larger than one month (smallest stepm) and if the exact delay         }
          * (in months) between two waves is not a multiple of stepm, we rounded to         printf("\n");
          * the nearest (and in case of equal distance, to the lowest) interval but now        fprintf(ficlog,"\n");
          * we keep into memory the bias bh[mi][i] and also the previous matrix product  #endif
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the      }
          * probability in order to take into account the bias as a fraction of the way      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies  #ifdef DEBUG
          * -stepm/2 to stepm/2 .        int k[2],l;
          * For stepm=1 the results are the same as for previous versions of Imach.        k[0]=1;
          * For stepm > 1 the results are less biased than in previous versions.         k[1]=-1;
          */        printf("Max: %.12e",(*func)(p));
         s1=s[mw[mi][i]][i];        fprintf(ficlog,"Max: %.12e",(*func)(p));
         s2=s[mw[mi+1][i]][i];        for (j=1;j<=n;j++) {
         bbh=(double)bh[mi][i]/(double)stepm;           printf(" %.12e",p[j]);
         /* bias is positive if real duration          fprintf(ficlog," %.12e",p[j]);
          * is higher than the multiple of stepm and negative otherwise.        }
          */        printf("\n");
         lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */        fprintf(ficlog,"\n");
         /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/        for(l=0;l<=1;l++) {
         /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */          for (j=1;j<=n;j++) {
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
         /*if(lli ==000.0)*/            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         ipmx +=1;          }
         sw += weight[i];          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       } /* end of wave */        }
     } /* end of individual */  #endif
   }  else if(mle==3){  /* exponential inter-extrapolation */  
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];        free_vector(xit,1,n);
       for(mi=1; mi<= wav[i]-1; mi++){        free_vector(xits,1,n);
         for (ii=1;ii<=nlstate+ndeath;ii++)        free_vector(ptt,1,n);
           for (j=1;j<=nlstate+ndeath;j++){        free_vector(pt,1,n);
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);        return;
             savm[ii][j]=(ii==j ? 1.0 : 0.0);      }
           }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
         for(d=0; d<dh[mi][i]; d++){      for (j=1;j<=n;j++) {
           newm=savm;        ptt[j]=2.0*p[j]-pt[j];
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        xit[j]=p[j]-pt[j];
           for (kk=1; kk<=cptcovage;kk++) {        pt[j]=p[j];
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      }
           }      fptt=(*func)(ptt);
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      if (fptt < fp) {
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
           savm=oldm;        if (t < 0.0) {
           oldm=newm;          linmin(p,xit,n,fret,func);
         } /* end mult */          for (j=1;j<=n;j++) {
                   xi[j][ibig]=xi[j][n];
         /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */            xi[j][n]=xit[j];
         /* But now since version 0.9 we anticipate for bias and large stepm.          }
          * If stepm is larger than one month (smallest stepm) and if the exact delay   #ifdef DEBUG
          * (in months) between two waves is not a multiple of stepm, we rounded to           printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
          * the nearest (and in case of equal distance, to the lowest) interval but now          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
          * we keep into memory the bias bh[mi][i] and also the previous matrix product          for(j=1;j<=n;j++){
          * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the            printf(" %.12e",xit[j]);
          * probability in order to take into account the bias as a fraction of the way            fprintf(ficlog," %.12e",xit[j]);
          * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies          }
          * -stepm/2 to stepm/2 .          printf("\n");
          * For stepm=1 the results are the same as for previous versions of Imach.          fprintf(ficlog,"\n");
          * For stepm > 1 the results are less biased than in previous versions.   #endif
          */        }
         s1=s[mw[mi][i]][i];      }
         s2=s[mw[mi+1][i]][i];    }
         bbh=(double)bh[mi][i]/(double)stepm;   }
         /* bias is positive if real duration  
          * is higher than the multiple of stepm and negative otherwise.  /**** Prevalence limit (stable or period prevalence)  ****************/
          */  
         /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
         lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */  {
         /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         /*if(lli ==000.0)*/       matrix by transitions matrix until convergence is reached */
         /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */  
         ipmx +=1;    int i, ii,j,k;
         sw += weight[i];    double min, max, maxmin, maxmax,sumnew=0.;
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    double **matprod2();
       } /* end of wave */    double **out, cov[NCOVMAX], **pmij();
     } /* end of individual */    double **newm;
   }else{  /* ml=4 no inter-extrapolation */    double agefin, delaymax=50 ; /* Max number of years to converge */
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    for (ii=1;ii<=nlstate+ndeath;ii++)
       for(mi=1; mi<= wav[i]-1; mi++){      for (j=1;j<=nlstate+ndeath;j++){
         for (ii=1;ii<=nlstate+ndeath;ii++)        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           for (j=1;j<=nlstate+ndeath;j++){      }
             oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
             savm[ii][j]=(ii==j ? 1.0 : 0.0);     cov[1]=1.;
           }   
         for(d=0; d<dh[mi][i]; d++){   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
           newm=savm;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      newm=savm;
           for (kk=1; kk<=cptcovage;kk++) {      /* Covariates have to be included here again */
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];       cov[2]=agefin;
           }   
                 for (k=1; k<=cptcovn;k++) {
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
           savm=oldm;        }
           oldm=newm;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         } /* end mult */        for (k=1; k<=cptcovprod;k++)
                 cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
         lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */  
         ipmx +=1;        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         sw += weight[i];        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       } /* end of wave */      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
     } /* end of individual */  
   } /* End of if */      savm=oldm;
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      oldm=newm;
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */      maxmax=0.;
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */      for(j=1;j<=nlstate;j++){
   return -l;        min=1.;
 }        max=0.;
         for(i=1; i<=nlstate; i++) {
           sumnew=0;
 /*********** Maximum Likelihood Estimation ***************/          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           prlim[i][j]= newm[i][j]/(1-sumnew);
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          max=FMAX(max,prlim[i][j]);
 {          min=FMIN(min,prlim[i][j]);
   int i,j, iter;        }
   double **xi;        maxmin=max-min;
   double fret;        maxmax=FMAX(maxmax,maxmin);
   xi=matrix(1,npar,1,npar);      }
   for (i=1;i<=npar;i++)      if(maxmax < ftolpl){
     for (j=1;j<=npar;j++)        return prlim;
       xi[i][j]=(i==j ? 1.0 : 0.0);      }
   printf("Powell\n");  fprintf(ficlog,"Powell\n");    }
   powell(p,xi,npar,ftol,&iter,&fret,func);  }
   
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  /*************** transition probabilities ***************/
   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
 }    double s1, s2;
     /*double t34;*/
 /**** Computes Hessian and covariance matrix ***/    int i,j,j1, nc, ii, jj;
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  
 {      for(i=1; i<= nlstate; i++){
   double  **a,**y,*x,pd;        for(j=1; j<i;j++){
   double **hess;          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   int i, j,jk;            /*s2 += param[i][j][nc]*cov[nc];*/
   int *indx;            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
   double hessii(double p[], double delta, int theta, double delti[]);          }
   double hessij(double p[], double delti[], int i, int j);          ps[i][j]=s2;
   void lubksb(double **a, int npar, int *indx, double b[]) ;  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
   void ludcmp(double **a, int npar, int *indx, double *d) ;        }
         for(j=i+1; j<=nlstate+ndeath;j++){
   hess=matrix(1,npar,1,npar);          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
             s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   printf("\nCalculation of the hessian matrix. Wait...\n");  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");          }
   for (i=1;i<=npar;i++){          ps[i][j]=s2;
     printf("%d",i);fflush(stdout);        }
     fprintf(ficlog,"%d",i);fflush(ficlog);      }
     hess[i][i]=hessii(p,ftolhess,i,delti);      /*ps[3][2]=1;*/
     /*printf(" %f ",p[i]);*/     
     /*printf(" %lf ",hess[i][i]);*/      for(i=1; i<= nlstate; i++){
   }        s1=0;
           for(j=1; j<i; j++)
   for (i=1;i<=npar;i++) {          s1+=exp(ps[i][j]);
     for (j=1;j<=npar;j++)  {        for(j=i+1; j<=nlstate+ndeath; j++)
       if (j>i) {           s1+=exp(ps[i][j]);
         printf(".%d%d",i,j);fflush(stdout);        ps[i][i]=1./(s1+1.);
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);        for(j=1; j<i; j++)
         hess[i][j]=hessij(p,delti,i,j);          ps[i][j]= exp(ps[i][j])*ps[i][i];
         hess[j][i]=hess[i][j];            for(j=i+1; j<=nlstate+ndeath; j++)
         /*printf(" %lf ",hess[i][j]);*/          ps[i][j]= exp(ps[i][j])*ps[i][i];
       }        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     }      } /* end i */
   }     
   printf("\n");      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   fprintf(ficlog,"\n");        for(jj=1; jj<= nlstate+ndeath; jj++){
           ps[ii][jj]=0;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          ps[ii][ii]=1;
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");        }
         }
   a=matrix(1,npar,1,npar);     
   y=matrix(1,npar,1,npar);  
   x=vector(1,npar);  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   indx=ivector(1,npar);  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   for (i=1;i<=npar;i++)  /*         printf("ddd %lf ",ps[ii][jj]); */
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  /*       } */
   ludcmp(a,npar,indx,&pd);  /*       printf("\n "); */
   /*        } */
   for (j=1;j<=npar;j++) {  /*        printf("\n ");printf("%lf ",cov[2]); */
     for (i=1;i<=npar;i++) x[i]=0;         /*
     x[j]=1;        for(i=1; i<= npar; i++) printf("%f ",x[i]);
     lubksb(a,npar,indx,x);        goto end;*/
     for (i=1;i<=npar;i++){       return ps;
       matcov[i][j]=x[i];  }
     }  
   }  /**************** Product of 2 matrices ******************/
   
   printf("\n#Hessian matrix#\n");  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   fprintf(ficlog,"\n#Hessian matrix#\n");  {
   for (i=1;i<=npar;i++) {     /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     for (j=1;j<=npar;j++) {        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       printf("%.3e ",hess[i][j]);    /* in, b, out are matrice of pointers which should have been initialized
       fprintf(ficlog,"%.3e ",hess[i][j]);       before: only the contents of out is modified. The function returns
     }       a pointer to pointers identical to out */
     printf("\n");    long i, j, k;
     fprintf(ficlog,"\n");    for(i=nrl; i<= nrh; i++)
   }      for(k=ncolol; k<=ncoloh; k++)
         for(j=ncl,out[i][k]=0.; j<=nch; j++)
   /* Recompute Inverse */          out[i][k] +=in[i][j]*b[j][k];
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    return out;
   ludcmp(a,npar,indx,&pd);  }
   
   /*  printf("\n#Hessian matrix recomputed#\n");  
   /************* Higher Matrix Product ***************/
   for (j=1;j<=npar;j++) {  
     for (i=1;i<=npar;i++) x[i]=0;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     x[j]=1;  {
     lubksb(a,npar,indx,x);    /* Computes the transition matrix starting at age 'age' over
     for (i=1;i<=npar;i++){        'nhstepm*hstepm*stepm' months (i.e. until
       y[i][j]=x[i];       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
       printf("%.3e ",y[i][j]);       nhstepm*hstepm matrices.
       fprintf(ficlog,"%.3e ",y[i][j]);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step
     }       (typically every 2 years instead of every month which is too big
     printf("\n");       for the memory).
     fprintf(ficlog,"\n");       Model is determined by parameters x and covariates have to be
   }       included manually here.
   */  
        */
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);    int i, j, d, h, k;
   free_vector(x,1,npar);    double **out, cov[NCOVMAX];
   free_ivector(indx,1,npar);    double **newm;
   free_matrix(hess,1,npar,1,npar);  
     /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=nlstate+ndeath;i++)
 }      for (j=1;j<=nlstate+ndeath;j++){
         oldm[i][j]=(i==j ? 1.0 : 0.0);
 /*************** hessian matrix ****************/        po[i][j][0]=(i==j ? 1.0 : 0.0);
 double hessii( double x[], double delta, int theta, double delti[])      }
 {    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   int i;    for(h=1; h <=nhstepm; h++){
   int l=1, lmax=20;      for(d=1; d <=hstepm; d++){
   double k1,k2;        newm=savm;
   double p2[NPARMAX+1];        /* Covariates have to be included here again */
   double res;        cov[1]=1.;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   double fx;        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   int k=0,kmax=10;        for (k=1; k<=cptcovage;k++)
   double l1;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
   fx=func(x);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   for (i=1;i<=npar;i++) p2[i]=x[i];  
   for(l=0 ; l <=lmax; l++){  
     l1=pow(10,l);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     delts=delt;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     for(k=1 ; k <kmax; k=k+1){        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
       delt = delta*(l1*k);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       p2[theta]=x[theta] +delt;        savm=oldm;
       k1=func(p2)-fx;        oldm=newm;
       p2[theta]=x[theta]-delt;      }
       k2=func(p2)-fx;      for(i=1; i<=nlstate+ndeath; i++)
       /*res= (k1-2.0*fx+k2)/delt/delt; */        for(j=1;j<=nlstate+ndeath;j++) {
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          po[i][j][h]=newm[i][j];
                 /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
 #ifdef DEBUG           */
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        }
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    } /* end h */
 #endif    return po;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  }
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;  
       }  /*************** log-likelihood *************/
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */  double func( double *x)
         k=kmax; l=lmax*10.;  {
       }    int i, ii, j, k, mi, d, kk;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){     double l, ll[NLSTATEMAX], cov[NCOVMAX];
         delts=delt;    double **out;
       }    double sw; /* Sum of weights */
     }    double lli; /* Individual log likelihood */
   }    int s1, s2;
   delti[theta]=delts;    double bbh, survp;
   return res;     long ipmx;
       /*extern weight */
 }    /* We are differentiating ll according to initial status */
     /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
 double hessij( double x[], double delti[], int thetai,int thetaj)    /*for(i=1;i<imx;i++)
 {      printf(" %d\n",s[4][i]);
   int i;    */
   int l=1, l1, lmax=20;    cov[1]=1.;
   double k1,k2,k3,k4,res,fx;  
   double p2[NPARMAX+1];    for(k=1; k<=nlstate; k++) ll[k]=0.;
   int k;  
     if(mle==1){
   fx=func(x);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for (k=1; k<=2; k++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for (i=1;i<=npar;i++) p2[i]=x[i];        for(mi=1; mi<= wav[i]-1; mi++){
     p2[thetai]=x[thetai]+delti[thetai]/k;          for (ii=1;ii<=nlstate+ndeath;ii++)
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            for (j=1;j<=nlstate+ndeath;j++){
     k1=func(p2)-fx;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                 savm[ii][j]=(ii==j ? 1.0 : 0.0);
     p2[thetai]=x[thetai]+delti[thetai]/k;            }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          for(d=0; d<dh[mi][i]; d++){
     k2=func(p2)-fx;            newm=savm;
               cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     p2[thetai]=x[thetai]-delti[thetai]/k;            for (kk=1; kk<=cptcovage;kk++) {
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     k3=func(p2)-fx;            }
               out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     p2[thetai]=x[thetai]-delti[thetai]/k;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            savm=oldm;
     k4=func(p2)-fx;            oldm=newm;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          } /* end mult */
 #ifdef DEBUG       
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          /* But now since version 0.9 we anticipate for bias at large stepm.
 #endif           * If stepm is larger than one month (smallest stepm) and if the exact delay
   }           * (in months) between two waves is not a multiple of stepm, we rounded to
   return res;           * the nearest (and in case of equal distance, to the lowest) interval but now
 }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
 /************** Inverse of matrix **************/           * probability in order to take into account the bias as a fraction of the way
 void ludcmp(double **a, int n, int *indx, double *d)            * from savm to out if bh is negative or even beyond if bh is positive. bh varies
 {            * -stepm/2 to stepm/2 .
   int i,imax,j,k;            * For stepm=1 the results are the same as for previous versions of Imach.
   double big,dum,sum,temp;            * For stepm > 1 the results are less biased than in previous versions.
   double *vv;            */
            s1=s[mw[mi][i]][i];
   vv=vector(1,n);           s2=s[mw[mi+1][i]][i];
   *d=1.0;           bbh=(double)bh[mi][i]/(double)stepm;
   for (i=1;i<=n;i++) {           /* bias bh is positive if real duration
     big=0.0;            * is higher than the multiple of stepm and negative otherwise.
     for (j=1;j<=n;j++)            */
       if ((temp=fabs(a[i][j])) > big) big=temp;           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");           if( s2 > nlstate){
     vv[i]=1.0/big;             /* i.e. if s2 is a death state and if the date of death is known
   }                then the contribution to the likelihood is the probability to
   for (j=1;j<=n;j++) {                die between last step unit time and current  step unit time,
     for (i=1;i<j;i++) {                which is also equal to probability to die before dh
       sum=a[i][j];                minus probability to die before dh-stepm .
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];                In version up to 0.92 likelihood was computed
       a[i][j]=sum;           as if date of death was unknown. Death was treated as any other
     }           health state: the date of the interview describes the actual state
     big=0.0;           and not the date of a change in health state. The former idea was
     for (i=j;i<=n;i++) {           to consider that at each interview the state was recorded
       sum=a[i][j];           (healthy, disable or death) and IMaCh was corrected; but when we
       for (k=1;k<j;k++)           introduced the exact date of death then we should have modified
         sum -= a[i][k]*a[k][j];           the contribution of an exact death to the likelihood. This new
       a[i][j]=sum;           contribution is smaller and very dependent of the step unit
       if ( (dum=vv[i]*fabs(sum)) >= big) {           stepm. It is no more the probability to die between last interview
         big=dum;           and month of death but the probability to survive from last
         imax=i;           interview up to one month before death multiplied by the
       }           probability to die within a month. Thanks to Chris
     }           Jackson for correcting this bug.  Former versions increased
     if (j != imax) {           mortality artificially. The bad side is that we add another loop
       for (k=1;k<=n;k++) {           which slows down the processing. The difference can be up to 10%
         dum=a[imax][k];           lower mortality.
         a[imax][k]=a[j][k];             */
         a[j][k]=dum;             lli=log(out[s1][s2] - savm[s1][s2]);
       }   
       *d = -(*d);   
       vv[imax]=vv[j];           } else if  (s2==-2) {
     }             for (j=1,survp=0. ; j<=nlstate; j++)
     indx[j]=imax;               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     if (a[j][j] == 0.0) a[j][j]=TINY;             /*survp += out[s1][j]; */
     if (j != n) {             lli= log(survp);
       dum=1.0/(a[j][j]);           }
       for (i=j+1;i<=n;i++) a[i][j] *= dum;          
     }           else if  (s2==-4) {
   }             for (j=3,survp=0. ; j<=nlstate; j++)  
   free_vector(vv,1,n);  /* Doesn't work */              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 ;            lli= log(survp);
 }           }
   
 void lubksb(double **a, int n, int *indx, double b[])           else if  (s2==-5) {
 {             for (j=1,survp=0. ; j<=2; j++)  
   int i,ii=0,ip,j;               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   double sum;             lli= log(survp);
            }
   for (i=1;i<=n;i++) {          
     ip=indx[i];           else{
     sum=b[ip];             lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     b[ip]=b[i];             /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     if (ii)           }
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     else if (sum) ii=i;           /*if(lli ==000.0)*/
     b[i]=sum;           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   }           ipmx +=1;
   for (i=n;i>=1;i--) {           sw += weight[i];
     sum=b[i];           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];         } /* end of wave */
     b[i]=sum/a[i][i];       } /* end of individual */
   }     }  else if(mle==2){
 }       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 /************ Frequencies ********************/        for(mi=1; mi<= wav[i]-1; mi++){
 void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)          for (ii=1;ii<=nlstate+ndeath;ii++)
 {  /* Some frequencies */            for (j=1;j<=nlstate+ndeath;j++){
                 oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   int first;            }
   double ***freq; /* Frequencies */          for(d=0; d<=dh[mi][i]; d++){
   double *pp, **prop;            newm=savm;
   double pos,posprop, k2, dateintsum=0,k2cpt=0;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   FILE *ficresp;            for (kk=1; kk<=cptcovage;kk++) {
   char fileresp[FILENAMELENGTH];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
               }
   pp=vector(1,nlstate);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   prop=matrix(1,nlstate,iagemin,iagemax+3);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   strcpy(fileresp,"p");            savm=oldm;
   strcat(fileresp,fileres);            oldm=newm;
   if((ficresp=fopen(fileresp,"w"))==NULL) {          } /* end mult */
     printf("Problem with prevalence resultfile: %s\n", fileresp);       
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);          s1=s[mw[mi][i]][i];
     exit(0);          s2=s[mw[mi+1][i]][i];
   }          bbh=(double)bh[mi][i]/(double)stepm;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   j1=0;          ipmx +=1;
             sw += weight[i];
   j=cptcoveff;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        } /* end of wave */
       } /* end of individual */
   first=1;    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for(k1=1; k1<=j;k1++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(i1=1; i1<=ncodemax[k1];i1++){        for(mi=1; mi<= wav[i]-1; mi++){
       j1++;          for (ii=1;ii<=nlstate+ndeath;ii++)
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);            for (j=1;j<=nlstate+ndeath;j++){
         scanf("%d", i);*/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       for (i=-1; i<=nlstate+ndeath; i++)                savm[ii][j]=(ii==j ? 1.0 : 0.0);
         for (jk=-1; jk<=nlstate+ndeath; jk++)              }
           for(m=iagemin; m <= iagemax+3; m++)          for(d=0; d<dh[mi][i]; d++){
             freq[i][jk][m]=0;            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for (i=1; i<=nlstate; i++)              for (kk=1; kk<=cptcovage;kk++) {
       for(m=iagemin; m <= iagemax+3; m++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         prop[i][m]=0;            }
                   out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       dateintsum=0;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       k2cpt=0;            savm=oldm;
       for (i=1; i<=imx; i++) {            oldm=newm;
         bool=1;          } /* end mult */
         if  (cptcovn>0) {       
           for (z1=1; z1<=cptcoveff; z1++)           s1=s[mw[mi][i]][i];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])           s2=s[mw[mi+1][i]][i];
               bool=0;          bbh=(double)bh[mi][i]/(double)stepm;
         }          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         if (bool==1){          ipmx +=1;
           for(m=firstpass; m<=lastpass; m++){          sw += weight[i];
             k2=anint[m][i]+(mint[m][i]/12.);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        } /* end of wave */
               if(agev[m][i]==0) agev[m][i]=iagemax+1;      } /* end of individual */
               if(agev[m][i]==1) agev[m][i]=iagemax+2;    }else if (mle==4){  /* ml=4 no inter-extrapolation */
               if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
               if (m<lastpass) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        for(mi=1; mi<= wav[i]-1; mi++){
                 freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];          for (ii=1;ii<=nlstate+ndeath;ii++)
               }            for (j=1;j<=nlstate+ndeath;j++){
                             oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
                 dateintsum=dateintsum+k2;            }
                 k2cpt++;          for(d=0; d<dh[mi][i]; d++){
               }            newm=savm;
             }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           }            for (kk=1; kk<=cptcovage;kk++) {
         }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
                 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       if  (cptcovn>0) {            savm=oldm;
         fprintf(ficresp, "\n#********** Variable ");             oldm=newm;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          } /* end mult */
         fprintf(ficresp, "**********\n#");       
       }          s1=s[mw[mi][i]][i];
       for(i=1; i<=nlstate;i++)           s2=s[mw[mi+1][i]][i];
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          if( s2 > nlstate){
       fprintf(ficresp, "\n");            lli=log(out[s1][s2] - savm[s1][s2]);
                 }else{
       for(i=iagemin; i <= iagemax+3; i++){            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         if(i==iagemax+3){          }
           fprintf(ficlog,"Total");          ipmx +=1;
         }else{          sw += weight[i];
           if(first==1){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             first=0;  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
             printf("See log file for details...\n");        } /* end of wave */
           }      } /* end of individual */
           fprintf(ficlog,"Age %d", i);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for(jk=1; jk <=nlstate ; jk++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        for(mi=1; mi<= wav[i]-1; mi++){
             pp[jk] += freq[jk][m][i];           for (ii=1;ii<=nlstate+ndeath;ii++)
         }            for (j=1;j<=nlstate+ndeath;j++){
         for(jk=1; jk <=nlstate ; jk++){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           for(m=-1, pos=0; m <=0 ; m++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             pos += freq[jk][m][i];            }
           if(pp[jk]>=1.e-10){          for(d=0; d<dh[mi][i]; d++){
             if(first==1){            newm=savm;
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             }            for (kk=1; kk<=cptcovage;kk++) {
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
           }else{            }
             if(first==1)         
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           }            savm=oldm;
         }            oldm=newm;
           } /* end mult */
         for(jk=1; jk <=nlstate ; jk++){       
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          s1=s[mw[mi][i]][i];
             pp[jk] += freq[jk][m][i];          s2=s[mw[mi+1][i]][i];
         }                 lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
         for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){          ipmx +=1;
           pos += pp[jk];          sw += weight[i];
           posprop += prop[jk][i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         }          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
         for(jk=1; jk <=nlstate ; jk++){        } /* end of wave */
           if(pos>=1.e-5){      } /* end of individual */
             if(first==1)    } /* End of if */
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
           }else{    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
             if(first==1)    return -l;
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  }
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);  
           }  /*************** log-likelihood *************/
           if( i <= iagemax){  double funcone( double *x)
             if(pos>=1.e-5){  {
               fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);    /* Same as likeli but slower because of a lot of printf and if */
               probs[i][jk][j1]= pp[jk]/pos;    int i, ii, j, k, mi, d, kk;
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    double l, ll[NLSTATEMAX], cov[NCOVMAX];
             }    double **out;
             else    double lli; /* Individual log likelihood */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);    double llt;
           }    int s1, s2;
         }    double bbh, survp;
             /*extern weight */
         for(jk=-1; jk <=nlstate+ndeath; jk++)    /* We are differentiating ll according to initial status */
           for(m=-1; m <=nlstate+ndeath; m++)    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
             if(freq[jk][m][i] !=0 ) {    /*for(i=1;i<imx;i++)
             if(first==1)      printf(" %d\n",s[4][i]);
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    */
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);    cov[1]=1.;
             }  
         if(i <= iagemax)    for(k=1; k<=nlstate; k++) ll[k]=0.;
           fprintf(ficresp,"\n");  
         if(first==1)    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           printf("Others in log...\n");      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         fprintf(ficlog,"\n");      for(mi=1; mi<= wav[i]-1; mi++){
       }        for (ii=1;ii<=nlstate+ndeath;ii++)
     }          for (j=1;j<=nlstate+ndeath;j++){
   }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   dateintmean=dateintsum/k2cpt;             savm[ii][j]=(ii==j ? 1.0 : 0.0);
            }
   fclose(ficresp);        for(d=0; d<dh[mi][i]; d++){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);          newm=savm;
   free_vector(pp,1,nlstate);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   free_matrix(prop,1,nlstate,iagemin, iagemax+3);          for (kk=1; kk<=cptcovage;kk++) {
   /* End of Freq */            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
 }          }
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /************ Prevalence ********************/                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 void prevalence(double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)          savm=oldm;
 {            oldm=newm;
   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people        } /* end mult */
      in each health status at the date of interview (if between dateprev1 and dateprev2).       
      We still use firstpass and lastpass as another selection.        s1=s[mw[mi][i]][i];
   */        s2=s[mw[mi+1][i]][i];
          bbh=(double)bh[mi][i]/(double)stepm;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;        /* bias is positive if real duration
   double ***freq; /* Frequencies */         * is higher than the multiple of stepm and negative otherwise.
   double *pp, **prop;         */
   double pos,posprop;         if( s2 > nlstate && (mle <5) ){  /* Jackson */
   double  y2; /* in fractional years */          lli=log(out[s1][s2] - savm[s1][s2]);
   int iagemin, iagemax;        } else if  (s2==-2) {
           for (j=1,survp=0. ; j<=nlstate; j++)
   iagemin= (int) agemin;            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   iagemax= (int) agemax;          lli= log(survp);
   /*pp=vector(1,nlstate);*/        }else if (mle==1){
   prop=matrix(1,nlstate,iagemin,iagemax+3);           lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/        } else if(mle==2){
   j1=0;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           } else if(mle==3){  /* exponential inter-extrapolation */
   j=cptcoveff;          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        } else if (mle==4){  /* mle=4 no inter-extrapolation */
             lli=log(out[s1][s2]); /* Original formula */
   for(k1=1; k1<=j;k1++){        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
     for(i1=1; i1<=ncodemax[k1];i1++){          lli=log(out[s1][s2]); /* Original formula */
       j1++;        } /* End of if */
               ipmx +=1;
       for (i=1; i<=nlstate; i++)          sw += weight[i];
         for(m=iagemin; m <= iagemax+3; m++)        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           prop[i][m]=0.0;  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
              if(globpr){
       for (i=1; i<=imx; i++) { /* Each individual */          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
         bool=1;   %11.6f %11.6f %11.6f ", \
         if  (cptcovn>0) {                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
           for (z1=1; z1<=cptcoveff; z1++)                   2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])           for(k=1,llt=0.,l=0.; k<=nlstate; k++){
               bool=0;            llt +=ll[k]*gipmx/gsw;
         }             fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
         if (bool==1) {           }
           for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/          fprintf(ficresilk," %10.6f\n", -llt);
             y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */        }
             if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */      } /* end of wave */
               if(agev[m][i]==0) agev[m][i]=iagemax+1;    } /* end of individual */
               if(agev[m][i]==1) agev[m][i]=iagemax+2;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
               if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
               if (s[m][i]>0 && s[m][i]<=nlstate) {     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
                 /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/    if(globpr==0){ /* First time we count the contributions and weights */
                 prop[s[m][i]][(int)agev[m][i]] += weight[i];      gipmx=ipmx;
                 prop[s[m][i]][iagemax+3] += weight[i];       gsw=sw;
               }     }
             }    return -l;
           } /* end selection of waves */  }
         }  
       }  
       for(i=iagemin; i <= iagemax+3; i++){    /*************** function likelione ***********/
           void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
         for(jk=1,posprop=0; jk <=nlstate ; jk++) {   {
           posprop += prop[jk][i];     /* This routine should help understanding what is done with
         }        the selection of individuals/waves and
        to check the exact contribution to the likelihood.
         for(jk=1; jk <=nlstate ; jk++){            Plotting could be done.
           if( i <=  iagemax){      */
             if(posprop>=1.e-5){     int k;
               probs[i][jk][j1]= prop[jk][i]/posprop;  
             }     if(*globpri !=0){ /* Just counts and sums, no printings */
           }       strcpy(fileresilk,"ilk");
         }/* end jk */       strcat(fileresilk,fileres);
       }/* end i */       if((ficresilk=fopen(fileresilk,"w"))==NULL) {
     } /* end i1 */        printf("Problem with resultfile: %s\n", fileresilk);
   } /* end k1 */        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
         }
   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   /*free_vector(pp,1,nlstate);*/      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   free_matrix(prop,1,nlstate, iagemin,iagemax+3);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
 }  /* End of prevalence */      for(k=1; k<=nlstate; k++)
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
 /************* Waves Concatenation ***************/      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
     }
 void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  
 {    *fretone=(*funcone)(p);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    if(*globpri !=0){
      Death is a valid wave (if date is known).      fclose(ficresilk);
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]      fflush(fichtm);
      and mw[mi+1][i]. dh depends on stepm.    }
      */    return;
   }
   int i, mi, m;  
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  
      double sum=0., jmean=0.;*/  /*********** Maximum Likelihood Estimation ***************/
   int first;  
   int j, k=0,jk, ju, jl;  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   double sum=0.;  {
   first=0;    int i,j, iter;
   jmin=1e+5;    double **xi;
   jmax=-1;    double fret;
   jmean=0.;    double fretone; /* Only one call to likelihood */
   for(i=1; i<=imx; i++){    /*  char filerespow[FILENAMELENGTH];*/
     mi=0;    xi=matrix(1,npar,1,npar);
     m=firstpass;    for (i=1;i<=npar;i++)
     while(s[m][i] <= nlstate){      for (j=1;j<=npar;j++)
       if(s[m][i]>=1)        xi[i][j]=(i==j ? 1.0 : 0.0);
         mw[++mi][i]=m;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
       if(m >=lastpass)    strcpy(filerespow,"pow");
         break;    strcat(filerespow,fileres);
       else    if((ficrespow=fopen(filerespow,"w"))==NULL) {
         m++;      printf("Problem with resultfile: %s\n", filerespow);
     }/* end while */      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     if (s[m][i] > nlstate){    }
       mi++;     /* Death is another wave */    fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /* if(mi==0)  never been interviewed correctly before death */    for (i=1;i<=nlstate;i++)
          /* Only death is a correct wave */      for(j=1;j<=nlstate+ndeath;j++)
       mw[mi][i]=m;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
     }    fprintf(ficrespow,"\n");
   
     wav[i]=mi;    powell(p,xi,npar,ftol,&iter,&fret,func);
     if(mi==0){  
       if(first==0){    free_matrix(xi,1,npar,1,npar);
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);    fclose(ficrespow);
         first=1;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       if(first==1){    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);  
       }  }
     } /* end mi==0 */  
   }  /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   for(i=1; i<=imx; i++){  {
     for(mi=1; mi<wav[i];mi++){    double  **a,**y,*x,pd;
       if (stepm <=0)    double **hess;
         dh[mi][i]=1;    int i, j,jk;
       else{    int *indx;
         if (s[mw[mi+1][i]][i] > nlstate) {  
           if (agedc[i] < 2*AGESUP) {    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);     double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
           if(j==0) j=1;  /* Survives at least one month after exam */    void lubksb(double **a, int npar, int *indx, double b[]) ;
           k=k+1;    void ludcmp(double **a, int npar, int *indx, double *d) ;
           if (j >= jmax) jmax=j;    double gompertz(double p[]);
           if (j <= jmin) jmin=j;    hess=matrix(1,npar,1,npar);
           sum=sum+j;  
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    printf("\nCalculation of the hessian matrix. Wait...\n");
           /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/    for (i=1;i<=npar;i++){
           }      printf("%d",i);fflush(stdout);
         }      fprintf(ficlog,"%d",i);fflush(ficlog);
         else{     
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
           /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/     
           k=k+1;      /*  printf(" %f ",p[i]);
           if (j >= jmax) jmax=j;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
           else if (j <= jmin)jmin=j;    }
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */   
           /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/    for (i=1;i<=npar;i++) {
           sum=sum+j;      for (j=1;j<=npar;j++)  {
         }        if (j>i) {
         jk= j/stepm;          printf(".%d%d",i,j);fflush(stdout);
         jl= j -jk*stepm;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         ju= j -(jk+1)*stepm;          hess[i][j]=hessij(p,delti,i,j,func,npar);
         if(mle <=1){          
           if(jl==0){          hess[j][i]=hess[i][j];    
             dh[mi][i]=jk;          /*printf(" %lf ",hess[i][j]);*/
             bh[mi][i]=0;        }
           }else{ /* We want a negative bias in order to only have interpolation ie      }
                   * at the price of an extra matrix product in likelihood */    }
             dh[mi][i]=jk+1;    printf("\n");
             bh[mi][i]=ju;    fprintf(ficlog,"\n");
           }  
         }else{    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
           if(jl <= -ju){    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
             dh[mi][i]=jk;   
             bh[mi][i]=jl;       /* bias is positive if real duration    a=matrix(1,npar,1,npar);
                                  * is higher than the multiple of stepm and negative otherwise.    y=matrix(1,npar,1,npar);
                                  */    x=vector(1,npar);
           }    indx=ivector(1,npar);
           else{    for (i=1;i<=npar;i++)
             dh[mi][i]=jk+1;      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
             bh[mi][i]=ju;    ludcmp(a,npar,indx,&pd);
           }  
           if(dh[mi][i]==0){    for (j=1;j<=npar;j++) {
             dh[mi][i]=1; /* At least one step */      for (i=1;i<=npar;i++) x[i]=0;
             bh[mi][i]=ju; /* At least one step */      x[j]=1;
             /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/      lubksb(a,npar,indx,x);
           }      for (i=1;i<=npar;i++){
         }        matcov[i][j]=x[i];
       } /* end if mle */      }
     } /* end wave */    }
   }  
   jmean=sum/k;    printf("\n#Hessian matrix#\n");
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    fprintf(ficlog,"\n#Hessian matrix#\n");
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    for (i=1;i<=npar;i++) {
  }      for (j=1;j<=npar;j++) {
         printf("%.3e ",hess[i][j]);
 /*********** Tricode ****************************/        fprintf(ficlog,"%.3e ",hess[i][j]);
 void tricode(int *Tvar, int **nbcode, int imx)      }
 {      printf("\n");
         fprintf(ficlog,"\n");
   int Ndum[20],ij=1, k, j, i, maxncov=19;    }
   int cptcode=0;  
   cptcoveff=0;     /* Recompute Inverse */
      for (i=1;i<=npar;i++)
   for (k=0; k<maxncov; k++) Ndum[k]=0;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   for (k=1; k<=7; k++) ncodemax[k]=0;    ludcmp(a,npar,indx,&pd);
   
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    /*  printf("\n#Hessian matrix recomputed#\n");
     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum   
                                modality*/     for (j=1;j<=npar;j++) {
       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/      for (i=1;i<=npar;i++) x[i]=0;
       Ndum[ij]++; /*store the modality */      x[j]=1;
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      lubksb(a,npar,indx,x);
       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable       for (i=1;i<=npar;i++){
                                        Tvar[j]. If V=sex and male is 0 and         y[i][j]=x[i];
                                        female is 1, then  cptcode=1.*/        printf("%.3e ",y[i][j]);
     }        fprintf(ficlog,"%.3e ",y[i][j]);
       }
     for (i=0; i<=cptcode; i++) {      printf("\n");
       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */      fprintf(ficlog,"\n");
     }    }
     */
     ij=1;   
     for (i=1; i<=ncodemax[j]; i++) {    free_matrix(a,1,npar,1,npar);
       for (k=0; k<= maxncov; k++) {    free_matrix(y,1,npar,1,npar);
         if (Ndum[k] != 0) {    free_vector(x,1,npar);
           nbcode[Tvar[j]][ij]=k;     free_ivector(indx,1,npar);
           /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */    free_matrix(hess,1,npar,1,npar);
             
           ij++;  
         }  }
         if (ij > ncodemax[j]) break;   
       }    /*************** hessian matrix ****************/
     }   double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   }    {
     int i;
  for (k=0; k< maxncov; k++) Ndum[k]=0;    int l=1, lmax=20;
     double k1,k2;
  for (i=1; i<=ncovmodel-2; i++) {     double p2[NPARMAX+1];
    /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/    double res;
    ij=Tvar[i];    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
    Ndum[ij]++;    double fx;
  }    int k=0,kmax=10;
     double l1;
  ij=1;  
  for (i=1; i<= maxncov; i++) {    fx=func(x);
    if((Ndum[i]!=0) && (i<=ncovcol)){    for (i=1;i<=npar;i++) p2[i]=x[i];
      Tvaraff[ij]=i; /*For printing */    for(l=0 ; l <=lmax; l++){
      ij++;      l1=pow(10,l);
    }      delts=delt;
  }      for(k=1 ; k <kmax; k=k+1){
          delt = delta*(l1*k);
  cptcoveff=ij-1; /*Number of simple covariates*/        p2[theta]=x[theta] +delt;
 }        k1=func(p2)-fx;
         p2[theta]=x[theta]-delt;
 /*********** Health Expectancies ****************/        k2=func(p2)-fx;
         /*res= (k1-2.0*fx+k2)/delt/delt; */
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
        
 {  #ifdef DEBUG
   /* Health expectancies */        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   double age, agelim, hf;  #endif
   double ***p3mat,***varhe;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
   double **dnewm,**doldm;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
   double *xp;          k=kmax;
   double **gp, **gm;        }
   double ***gradg, ***trgradg;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   int theta;          k=kmax; l=lmax*10.;
         }
   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
   xp=vector(1,npar);          delts=delt;
   dnewm=matrix(1,nlstate*nlstate,1,npar);        }
   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);      }
       }
   fprintf(ficreseij,"# Health expectancies\n");    delti[theta]=delts;
   fprintf(ficreseij,"# Age");    return res;
   for(i=1; i<=nlstate;i++)   
     for(j=1; j<=nlstate;j++)  }
       fprintf(ficreseij," %1d-%1d (SE)",i,j);  
   fprintf(ficreseij,"\n");  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   {
   if(estepm < stepm){    int i;
     printf ("Problem %d lower than %d\n",estepm, stepm);    int l=1, l1, lmax=20;
   }    double k1,k2,k3,k4,res,fx;
   else  hstepm=estepm;       double p2[NPARMAX+1];
   /* We compute the life expectancy from trapezoids spaced every estepm months    int k;
    * This is mainly to measure the difference between two models: for example  
    * if stepm=24 months pijx are given only every 2 years and by summing them    fx=func(x);
    * we are calculating an estimate of the Life Expectancy assuming a linear     for (k=1; k<=2; k++) {
    * progression in between and thus overestimating or underestimating according      for (i=1;i<=npar;i++) p2[i]=x[i];
    * to the curvature of the survival function. If, for the same date, we       p2[thetai]=x[thetai]+delti[thetai]/k;
    * estimate the model with stepm=1 month, we can keep estepm to 24 months      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
    * to compare the new estimate of Life expectancy with the same linear       k1=func(p2)-fx;
    * hypothesis. A more precise result, taking into account a more precise   
    * curvature will be obtained if estepm is as small as stepm. */      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   /* For example we decided to compute the life expectancy with the smallest unit */      k2=func(p2)-fx;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    
      nhstepm is the number of hstepm from age to agelim       p2[thetai]=x[thetai]-delti[thetai]/k;
      nstepm is the number of stepm from age to agelin.       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
      Look at hpijx to understand the reason of that which relies in memory size      k3=func(p2)-fx;
      and note for a fixed period like estepm months */   
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      p2[thetai]=x[thetai]-delti[thetai]/k;
      survival function given by stepm (the optimization length). Unfortunately it      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
      means that if the survival funtion is printed only each two years of age and if      k4=func(p2)-fx;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
      results. So we changed our mind and took the option of the best precision.  #ifdef DEBUG
   */      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   #endif
   agelim=AGESUP;    }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    return res;
     /* nhstepm age range expressed in number of stepm */  }
     nstepm=(int) rint((agelim-age)*YEARM/stepm);   
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */   /************** Inverse of matrix **************/
     /* if (stepm >= YEARM) hstepm=1;*/  void ludcmp(double **a, int n, int *indx, double *d)
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */  {
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int i,imax,j,k;
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);    double big,dum,sum,temp;
     gp=matrix(0,nhstepm,1,nlstate*nlstate);    double *vv;
     gm=matrix(0,nhstepm,1,nlstate*nlstate);   
     vv=vector(1,n);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    *d=1.0;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */    for (i=1;i<=n;i++) {
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        big=0.0;
        for (j=1;j<=n;j++)
         if ((temp=fabs(a[i][j])) > big) big=temp;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
       vv[i]=1.0/big;
     /* Computing Variances of health expectancies */    }
     for (j=1;j<=n;j++) {
      for(theta=1; theta <=npar; theta++){      for (i=1;i<j;i++) {
       for(i=1; i<=npar; i++){         sum=a[i][j];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
       }        a[i][j]=sum;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        }
         big=0.0;
       cptj=0;      for (i=j;i<=n;i++) {
       for(j=1; j<= nlstate; j++){        sum=a[i][j];
         for(i=1; i<=nlstate; i++){        for (k=1;k<j;k++)
           cptj=cptj+1;          sum -= a[i][k]*a[k][j];
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){        a[i][j]=sum;
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;        if ( (dum=vv[i]*fabs(sum)) >= big) {
           }          big=dum;
         }          imax=i;
       }        }
            }
            if (j != imax) {
       for(i=1; i<=npar; i++)         for (k=1;k<=n;k++) {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          dum=a[imax][k];
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            a[imax][k]=a[j][k];
                 a[j][k]=dum;
       cptj=0;        }
       for(j=1; j<= nlstate; j++){        *d = -(*d);
         for(i=1;i<=nlstate;i++){        vv[imax]=vv[j];
           cptj=cptj+1;      }
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){      indx[j]=imax;
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      if (a[j][j] == 0.0) a[j][j]=TINY;
           }      if (j != n) {
         }        dum=1.0/(a[j][j]);
       }        for (i=j+1;i<=n;i++) a[i][j] *= dum;
       for(j=1; j<= nlstate*nlstate; j++)      }
         for(h=0; h<=nhstepm-1; h++){    }
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    free_vector(vv,1,n);  /* Doesn't work */
         }  ;
      }   }
      
 /* End theta */  void lubksb(double **a, int n, int *indx, double b[])
   {
      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);    int i,ii=0,ip,j;
     double sum;
      for(h=0; h<=nhstepm-1; h++)   
       for(j=1; j<=nlstate*nlstate;j++)    for (i=1;i<=n;i++) {
         for(theta=1; theta <=npar; theta++)      ip=indx[i];
           trgradg[h][j][theta]=gradg[h][theta][j];      sum=b[ip];
            b[ip]=b[i];
       if (ii)
      for(i=1;i<=nlstate*nlstate;i++)        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
       for(j=1;j<=nlstate*nlstate;j++)      else if (sum) ii=i;
         varhe[i][j][(int)age] =0.;      b[i]=sum;
     }
      printf("%d|",(int)age);fflush(stdout);    for (i=n;i>=1;i--) {
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);      sum=b[i];
      for(h=0;h<=nhstepm-1;h++){      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
       for(k=0;k<=nhstepm-1;k++){      b[i]=sum/a[i][i];
         matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);    }
         matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);  }
         for(i=1;i<=nlstate*nlstate;i++)  
           for(j=1;j<=nlstate*nlstate;j++)  void pstamp(FILE *fichier)
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;  {
       }    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
     }  }
     /* Computing expectancies */  
     for(i=1; i<=nlstate;i++)  /************ Frequencies ********************/
       for(j=1; j<=nlstate;j++)  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  {  /* Some frequencies */
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;   
               int i, m, jk, k1,i1, j1, bool, z1,z2,j;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    int first;
     double ***freq; /* Frequencies */
         }    double *pp, **prop;
     double pos,posprop, k2, dateintsum=0,k2cpt=0;
     fprintf(ficreseij,"%3.0f",age );    char fileresp[FILENAMELENGTH];
     cptj=0;   
     for(i=1; i<=nlstate;i++)    pp=vector(1,nlstate);
       for(j=1; j<=nlstate;j++){    prop=matrix(1,nlstate,iagemin,iagemax+3);
         cptj++;    strcpy(fileresp,"p");
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );    strcat(fileresp,fileres);
       }    if((ficresp=fopen(fileresp,"w"))==NULL) {
     fprintf(ficreseij,"\n");      printf("Problem with prevalence resultfile: %s\n", fileresp);
          fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);      exit(0);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);    }
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);    j1=0;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   
   }    j=cptcoveff;
   printf("\n");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   fprintf(ficlog,"\n");  
     first=1;
   free_vector(xp,1,npar);  
   free_matrix(dnewm,1,nlstate*nlstate,1,npar);    for(k1=1; k1<=j;k1++){
   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);      for(i1=1; i1<=ncodemax[k1];i1++){
   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);        j1++;
 }        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           scanf("%d", i);*/
 /************ Variance ******************/        for (i=-5; i<=nlstate+ndeath; i++)  
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)          for (jk=-5; jk<=nlstate+ndeath; jk++)  
 {            for(m=iagemin; m <= iagemax+3; m++)
   /* Variance of health expectancies */              freq[i][jk][m]=0;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  
   /* double **newm;*/      for (i=1; i<=nlstate; i++)  
   double **dnewm,**doldm;        for(m=iagemin; m <= iagemax+3; m++)
   double **dnewmp,**doldmp;          prop[i][m]=0;
   int i, j, nhstepm, hstepm, h, nstepm ;       
   int k, cptcode;        dateintsum=0;
   double *xp;        k2cpt=0;
   double **gp, **gm;  /* for var eij */        for (i=1; i<=imx; i++) {
   double ***gradg, ***trgradg; /*for var eij */          bool=1;
   double **gradgp, **trgradgp; /* for var p point j */          if  (cptcovn>0) {
   double *gpp, *gmp; /* for var p point j */            for (z1=1; z1<=cptcoveff; z1++)
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
   double ***p3mat;                bool=0;
   double age,agelim, hf;          }
   double ***mobaverage;          if (bool==1){
   int theta;            for(m=firstpass; m<=lastpass; m++){
   char digit[4];              k2=anint[m][i]+(mint[m][i]/12.);
   char digitp[25];              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
   char fileresprobmorprev[FILENAMELENGTH];                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                 if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   if(popbased==1){                if (m<lastpass) {
     if(mobilav!=0)                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       strcpy(digitp,"-populbased-mobilav-");                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     else strcpy(digitp,"-populbased-nomobil-");                }
   }               
   else                 if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     strcpy(digitp,"-stablbased-");                  dateintsum=dateintsum+k2;
                   k2cpt++;
   if (mobilav!=0) {                }
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                /*}*/
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){            }
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);          }
       printf(" Error in movingaverage mobilav=%d\n",mobilav);        }
     }         
   }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         pstamp(ficresp);
   strcpy(fileresprobmorprev,"prmorprev");         if  (cptcovn>0) {
   sprintf(digit,"%-d",ij);          fprintf(ficresp, "\n#********** Variable ");
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   strcat(fileresprobmorprev,digit); /* Tvar to be done */          fprintf(ficresp, "**********\n#");
   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */        }
   strcat(fileresprobmorprev,fileres);        for(i=1; i<=nlstate;i++)
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
     printf("Problem with resultfile: %s\n", fileresprobmorprev);        fprintf(ficresp, "\n");
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);       
   }        for(i=iagemin; i <= iagemax+3; i++){
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);          if(i==iagemax+3){
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);            fprintf(ficlog,"Total");
   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);          }else{
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);            if(first==1){
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){              first=0;
     fprintf(ficresprobmorprev," p.%-d SE",j);              printf("See log file for details...\n");
     for(i=1; i<=nlstate;i++)            }
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);            fprintf(ficlog,"Age %d", i);
   }            }
   fprintf(ficresprobmorprev,"\n");          for(jk=1; jk <=nlstate ; jk++){
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);              pp[jk] += freq[jk][m][i];
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);          }
     exit(0);          for(jk=1; jk <=nlstate ; jk++){
   }            for(m=-1, pos=0; m <=0 ; m++)
   else{              pos += freq[jk][m][i];
     fprintf(ficgp,"\n# Routine varevsij");            if(pp[jk]>=1.e-10){
   }              if(first==1){
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     printf("Problem with html file: %s\n", optionfilehtm);              }
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     exit(0);            }else{
   }              if(first==1)
   else{                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);            }
   }          }
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);  
           for(jk=1; jk <=nlstate ; jk++){
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   fprintf(ficresvij,"# Age");              pp[jk] += freq[jk][m][i];
   for(i=1; i<=nlstate;i++)          }      
     for(j=1; j<=nlstate;j++)          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);            pos += pp[jk];
   fprintf(ficresvij,"\n");            posprop += prop[jk][i];
           }
   xp=vector(1,npar);          for(jk=1; jk <=nlstate ; jk++){
   dnewm=matrix(1,nlstate,1,npar);            if(pos>=1.e-5){
   doldm=matrix(1,nlstate,1,nlstate);              if(first==1)
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             }else{
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);              if(first==1)
   gpp=vector(nlstate+1,nlstate+ndeath);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   gmp=vector(nlstate+1,nlstate+ndeath);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/            }
               if( i <= iagemax){
   if(estepm < stepm){              if(pos>=1.e-5){
     printf ("Problem %d lower than %d\n",estepm, stepm);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   }                /*probs[i][jk][j1]= pp[jk]/pos;*/
   else  hstepm=estepm;                   /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   /* For example we decided to compute the life expectancy with the smallest unit */              }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.               else
      nhstepm is the number of hstepm from age to agelim                 fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
      nstepm is the number of stepm from age to agelin.             }
      Look at hpijx to understand the reason of that which relies in memory size          }
      and note for a fixed period like k years */         
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          for(jk=-1; jk <=nlstate+ndeath; jk++)
      survival function given by stepm (the optimization length). Unfortunately it            for(m=-1; m <=nlstate+ndeath; m++)
      means that if the survival funtion is printed every two years of age and if              if(freq[jk][m][i] !=0 ) {
      you sum them up and add 1 year (area under the trapezoids) you won't get the same               if(first==1)
      results. So we changed our mind and took the option of the best precision.                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   */                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */               }
   agelim = AGESUP;          if(i <= iagemax)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            fprintf(ficresp,"\n");
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */           if(first==1)
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */            printf("Others in log...\n");
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficlog,"\n");
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        }
     gp=matrix(0,nhstepm,1,nlstate);      }
     gm=matrix(0,nhstepm,1,nlstate);    }
     dateintmean=dateintsum/k2cpt;
    
     for(theta=1; theta <=npar; theta++){    fclose(ficresp);
       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    free_vector(pp,1,nlstate);
       }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      /* End of Freq */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);  }
   
       if (popbased==1) {  /************ Prevalence ********************/
         if(mobilav ==0){  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
           for(i=1; i<=nlstate;i++)  {  
             prlim[i][i]=probs[(int)age][i][ij];    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
         }else{ /* mobilav */        in each health status at the date of interview (if between dateprev1 and dateprev2).
           for(i=1; i<=nlstate;i++)       We still use firstpass and lastpass as another selection.
             prlim[i][i]=mobaverage[(int)age][i][ij];    */
         }   
       }    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
       double ***freq; /* Frequencies */
       for(j=1; j<= nlstate; j++){    double *pp, **prop;
         for(h=0; h<=nhstepm; h++){    double pos,posprop;
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    double  y2; /* in fractional years */
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];    int iagemin, iagemax;
         }  
       }    iagemin= (int) agemin;
       /* This for computing probability of death (h=1 means    iagemax= (int) agemax;
          computed over hstepm matrices product = hstepm*stepm months)     /*pp=vector(1,nlstate);*/
          as a weighted average of prlim.    prop=matrix(1,nlstate,iagemin,iagemax+3);
       */    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       for(j=nlstate+1;j<=nlstate+ndeath;j++){    j1=0;
         for(i=1,gpp[j]=0.; i<= nlstate; i++)   
           gpp[j] += prlim[i][i]*p3mat[i][j][1];    j=cptcoveff;
       }        if (cptcovn<1) {j=1;ncodemax[1]=1;}
       /* end probability of death */   
     for(k1=1; k1<=j;k1++){
       for(i=1; i<=npar; i++) /* Computes gradient x - delta */      for(i1=1; i1<=ncodemax[k1];i1++){
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        j1++;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);         
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        for (i=1; i<=nlstate; i++)  
            for(m=iagemin; m <= iagemax+3; m++)
       if (popbased==1) {            prop[i][m]=0.0;
         if(mobilav ==0){       
           for(i=1; i<=nlstate;i++)        for (i=1; i<=imx; i++) { /* Each individual */
             prlim[i][i]=probs[(int)age][i][ij];          bool=1;
         }else{ /* mobilav */           if  (cptcovn>0) {
           for(i=1; i<=nlstate;i++)            for (z1=1; z1<=cptcoveff; z1++)
             prlim[i][i]=mobaverage[(int)age][i][ij];              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
         }                bool=0;
       }          }
           if (bool==1) {
       for(j=1; j<= nlstate; j++){            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
         for(h=0; h<=nhstepm; h++){              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m);
       /* This for computing probability of death (h=1 means                if (s[m][i]>0 && s[m][i]<=nlstate) {
          computed over hstepm matrices product = hstepm*stepm months)                   /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
          as a weighted average of prlim.                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
       */                  prop[s[m][i]][iagemax+3] += weight[i];
       for(j=nlstate+1;j<=nlstate+ndeath;j++){                }
         for(i=1,gmp[j]=0.; i<= nlstate; i++)              }
          gmp[j] += prlim[i][i]*p3mat[i][j][1];            } /* end selection of waves */
       }              }
       /* end probability of death */        }
         for(i=iagemin; i <= iagemax+3; i++){  
       for(j=1; j<= nlstate; j++) /* vareij */         
         for(h=0; h<=nhstepm; h++){          for(jk=1,posprop=0; jk <=nlstate ; jk++) {
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            posprop += prop[jk][i];
         }          }
   
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */          for(jk=1; jk <=nlstate ; jk++){    
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];            if( i <=  iagemax){
       }              if(posprop>=1.e-5){
                 probs[i][jk][j1]= prop[jk][i]/posprop;
     } /* End theta */              }
             }
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */          }/* end jk */
         }/* end i */
     for(h=0; h<=nhstepm; h++) /* veij */      } /* end i1 */
       for(j=1; j<=nlstate;j++)    } /* end k1 */
         for(theta=1; theta <=npar; theta++)   
           trgradg[h][j][theta]=gradg[h][theta][j];    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     /*free_vector(pp,1,nlstate);*/
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       for(theta=1; theta <=npar; theta++)  }  /* End of prevalence */
         trgradgp[j][theta]=gradgp[theta][j];  
     /************* Waves Concatenation ***************/
   
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     for(i=1;i<=nlstate;i++)  {
       for(j=1;j<=nlstate;j++)    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
         vareij[i][j][(int)age] =0.;       Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
     for(h=0;h<=nhstepm;h++){       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       for(k=0;k<=nhstepm;k++){       and mw[mi+1][i]. dh depends on stepm.
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);       */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  
         for(i=1;i<=nlstate;i++)    int i, mi, m;
           for(j=1;j<=nlstate;j++)    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;       double sum=0., jmean=0.;*/
       }    int first;
     }    int j, k=0,jk, ju, jl;
       double sum=0.;
     /* pptj */    first=0;
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);    jmin=1e+5;
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);    jmax=-1;
     for(j=nlstate+1;j<=nlstate+ndeath;j++)    jmean=0.;
       for(i=nlstate+1;i<=nlstate+ndeath;i++)    for(i=1; i<=imx; i++){
         varppt[j][i]=doldmp[j][i];      mi=0;
     /* end ppptj */      m=firstpass;
     /*  x centered again */      while(s[m][i] <= nlstate){
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);          if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);          mw[++mi][i]=m;
          if(m >=lastpass)
     if (popbased==1) {          break;
       if(mobilav ==0){        else
         for(i=1; i<=nlstate;i++)          m++;
           prlim[i][i]=probs[(int)age][i][ij];      }/* end while */
       }else{ /* mobilav */       if (s[m][i] > nlstate){
         for(i=1; i<=nlstate;i++)        mi++;     /* Death is another wave */
           prlim[i][i]=mobaverage[(int)age][i][ij];        /* if(mi==0)  never been interviewed correctly before death */
       }           /* Only death is a correct wave */
     }        mw[mi][i]=m;
                    }
     /* This for computing probability of death (h=1 means  
        computed over hstepm (estepm) matrices product = hstepm*stepm months)       wav[i]=mi;
        as a weighted average of prlim.      if(mi==0){
     */        nbwarn++;
     for(j=nlstate+1;j<=nlstate+ndeath;j++){        if(first==0){
       for(i=1,gmp[j]=0.;i<= nlstate; i++)           printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
         gmp[j] += prlim[i][i]*p3mat[i][j][1];           first=1;
     }            }
     /* end probability of death */        if(first==1){
           fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);        }
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){      } /* end mi==0 */
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));    } /* End individuals */
       for(i=1; i<=nlstate;i++){  
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);    for(i=1; i<=imx; i++){
       }      for(mi=1; mi<wav[i];mi++){
     }         if (stepm <=0)
     fprintf(ficresprobmorprev,"\n");          dh[mi][i]=1;
         else{
     fprintf(ficresvij,"%.0f ",age );          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     for(i=1; i<=nlstate;i++)            if (agedc[i] < 2*AGESUP) {
       for(j=1; j<=nlstate;j++){              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);              if(j==0) j=1;  /* Survives at least one month after exam */
       }              else if(j<0){
     fprintf(ficresvij,"\n");                nberr++;
     free_matrix(gp,0,nhstepm,1,nlstate);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     free_matrix(gm,0,nhstepm,1,nlstate);                j=1; /* Temporary Dangerous patch */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   } /* End age */              }
   free_vector(gpp,nlstate+1,nlstate+ndeath);              k=k+1;
   free_vector(gmp,nlstate+1,nlstate+ndeath);              if (j >= jmax){
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);                jmax=j;
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/                ijmax=i;
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");              }
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */              if (j <= jmin){
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");                jmin=j;
 /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */                ijmin=i;
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */              }
 /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */              sum=sum+j;
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);            }
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);          }
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);          else{
   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
 */  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);  
             k=k+1;
   free_vector(xp,1,npar);            if (j >= jmax) {
   free_matrix(doldm,1,nlstate,1,nlstate);              jmax=j;
   free_matrix(dnewm,1,nlstate,1,npar);              ijmax=i;
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            }
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);            else if (j <= jmin){
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);              jmin=j;
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              ijmin=i;
   fclose(ficresprobmorprev);            }
   fclose(ficgp);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
   fclose(fichtm);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 }              if(j<0){
               nberr++;
 /************ Variance of prevlim ******************/              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 {            }
   /* Variance of prevalence limit */            sum=sum+j;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/          }
   double **newm;          jk= j/stepm;
   double **dnewm,**doldm;          jl= j -jk*stepm;
   int i, j, nhstepm, hstepm;          ju= j -(jk+1)*stepm;
   int k, cptcode;          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   double *xp;            if(jl==0){
   double *gp, *gm;              dh[mi][i]=jk;
   double **gradg, **trgradg;              bh[mi][i]=0;
   double age,agelim;            }else{ /* We want a negative bias in order to only have interpolation ie
   int theta;                    * at the price of an extra matrix product in likelihood */
                  dh[mi][i]=jk+1;
   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");              bh[mi][i]=ju;
   fprintf(ficresvpl,"# Age");            }
   for(i=1; i<=nlstate;i++)          }else{
       fprintf(ficresvpl," %1d-%1d",i,i);            if(jl <= -ju){
   fprintf(ficresvpl,"\n");              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
   xp=vector(1,npar);                                   * is higher than the multiple of stepm and negative otherwise.
   dnewm=matrix(1,nlstate,1,npar);                                   */
   doldm=matrix(1,nlstate,1,nlstate);            }
               else{
   hstepm=1*YEARM; /* Every year of age */              dh[mi][i]=jk+1;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */               bh[mi][i]=ju;
   agelim = AGESUP;            }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            if(dh[mi][i]==0){
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */               dh[mi][i]=1; /* At least one step */
     if (stepm >= YEARM) hstepm=1;              bh[mi][i]=ju; /* At least one step */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     gradg=matrix(1,npar,1,nlstate);            }
     gp=vector(1,nlstate);          } /* end if mle */
     gm=vector(1,nlstate);        }
       } /* end wave */
     for(theta=1; theta <=npar; theta++){    }
       for(i=1; i<=npar; i++){ /* Computes gradient */    jmean=sum/k;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
       }    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);   }
       for(i=1;i<=nlstate;i++)  
         gp[i] = prlim[i][i];  /*********** Tricode ****************************/
       void tricode(int *Tvar, int **nbcode, int imx)
       for(i=1; i<=npar; i++) /* Computes gradient */  {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);   
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    int Ndum[20],ij=1, k, j, i, maxncov=19;
       for(i=1;i<=nlstate;i++)    int cptcode=0;
         gm[i] = prlim[i][i];    cptcoveff=0;
    
       for(i=1;i<=nlstate;i++)    for (k=0; k<maxncov; k++) Ndum[k]=0;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    for (k=1; k<=7; k++) ncodemax[k]=0;
     } /* End theta */  
     for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     trgradg =matrix(1,nlstate,1,npar);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum
                                  modality*/
     for(j=1; j<=nlstate;j++)        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
       for(theta=1; theta <=npar; theta++)        Ndum[ij]++; /*store the modality */
         trgradg[j][theta]=gradg[theta][j];        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable
     for(i=1;i<=nlstate;i++)                                         Tvar[j]. If V=sex and male is 0 and
       varpl[i][(int)age] =0.;                                         female is 1, then  cptcode=1.*/
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);      }
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  
     for(i=1;i<=nlstate;i++)      for (i=0; i<=cptcode; i++) {
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       }
     fprintf(ficresvpl,"%.0f ",age );  
     for(i=1; i<=nlstate;i++)      ij=1;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));      for (i=1; i<=ncodemax[j]; i++) {
     fprintf(ficresvpl,"\n");        for (k=0; k<= maxncov; k++) {
     free_vector(gp,1,nlstate);          if (Ndum[k] != 0) {
     free_vector(gm,1,nlstate);            nbcode[Tvar[j]][ij]=k;
     free_matrix(gradg,1,npar,1,nlstate);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
     free_matrix(trgradg,1,nlstate,1,npar);           
   } /* End age */            ij++;
           }
   free_vector(xp,1,npar);          if (ij > ncodemax[j]) break;
   free_matrix(doldm,1,nlstate,1,npar);        }  
   free_matrix(dnewm,1,nlstate,1,nlstate);      }
     }  
 }  
    for (k=0; k< maxncov; k++) Ndum[k]=0;
 /************ Variance of one-step probabilities  ******************/  
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)   for (i=1; i<=ncovmodel-2; i++) {
 {     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   int i, j=0,  i1, k1, l1, t, tj;     ij=Tvar[i];
   int k2, l2, j1,  z1;     Ndum[ij]++;
   int k=0,l, cptcode;   }
   int first=1, first1;  
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;   ij=1;
   double **dnewm,**doldm;   for (i=1; i<= maxncov; i++) {
   double *xp;     if((Ndum[i]!=0) && (i<=ncovcol)){
   double *gp, *gm;       Tvaraff[ij]=i; /*For printing */
   double **gradg, **trgradg;       ij++;
   double **mu;     }
   double age,agelim, cov[NCOVMAX];   }
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */   
   int theta;   cptcoveff=ij-1; /*Number of simple covariates*/
   char fileresprob[FILENAMELENGTH];  }
   char fileresprobcov[FILENAMELENGTH];  
   char fileresprobcor[FILENAMELENGTH];  /*********** Health Expectancies ****************/
   
   double ***varpij;  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
   strcpy(fileresprob,"prob");   {
   strcat(fileresprob,fileres);    /* Health expectancies, no variances */
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     printf("Problem with resultfile: %s\n", fileresprob);    double age, agelim, hf;
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);    double ***p3mat;
   }    double eip;
   strcpy(fileresprobcov,"probcov");   
   strcat(fileresprobcov,fileres);    pstamp(ficreseij);
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     printf("Problem with resultfile: %s\n", fileresprobcov);    fprintf(ficreseij,"# Age");
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);    for(i=1; i<=nlstate;i++){
   }      for(j=1; j<=nlstate;j++){
   strcpy(fileresprobcor,"probcor");         fprintf(ficreseij," e%1d%1d ",i,j);
   strcat(fileresprobcor,fileres);      }
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {      fprintf(ficreseij," e%1d. ",i);
     printf("Problem with resultfile: %s\n", fileresprobcor);    }
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);    fprintf(ficreseij,"\n");
   }  
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);   
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);    if(estepm < stepm){
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      printf ("Problem %d lower than %d\n",estepm, stepm);
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);    }
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    else  hstepm=estepm;  
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);    /* We compute the life expectancy from trapezoids spaced every estepm months
        * This is mainly to measure the difference between two models: for example
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");     * if stepm=24 months pijx are given only every 2 years and by summing them
   fprintf(ficresprob,"# Age");     * we are calculating an estimate of the Life Expectancy assuming a linear
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");     * progression in between and thus overestimating or underestimating according
   fprintf(ficresprobcov,"# Age");     * to the curvature of the survival function. If, for the same date, we
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   fprintf(ficresprobcov,"# Age");     * to compare the new estimate of Life expectancy with the same linear
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   for(i=1; i<=nlstate;i++)  
     for(j=1; j<=(nlstate+ndeath);j++){    /* For example we decided to compute the life expectancy with the smallest unit */
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
       fprintf(ficresprobcov," p%1d-%1d ",i,j);       nhstepm is the number of hstepm from age to agelim
       fprintf(ficresprobcor," p%1d-%1d ",i,j);       nstepm is the number of stepm from age to agelin.
     }         Look at hpijx to understand the reason of that which relies in memory size
  /* fprintf(ficresprob,"\n");       and note for a fixed period like estepm months */
   fprintf(ficresprobcov,"\n");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   fprintf(ficresprobcor,"\n");       survival function given by stepm (the optimization length). Unfortunately it
  */       means that if the survival funtion is printed only each two years of age and if
  xp=vector(1,npar);       you sum them up and add 1 year (area under the trapezoids) you won't get the same
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);       results. So we changed our mind and took the option of the best precision.
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    */
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);  
   first=1;    agelim=AGESUP;
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    /* If stepm=6 months */
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     exit(0);     
   }  /* nhstepm age range expressed in number of stepm */
   else{    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
     fprintf(ficgp,"\n# Routine varprob");    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
   }    /* if (stepm >= YEARM) hstepm=1;*/
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     printf("Problem with html file: %s\n", optionfilehtm);    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);  
     exit(0);    for (age=bage; age<=fage; age ++){
   }  
   else{  
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
     fprintf(fichtm,"\n");     
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");     
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");      printf("%d|",(int)age);fflush(stdout);
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
      
   }  
       /* Computing expectancies */
   cov[1]=1;      for(i=1; i<=nlstate;i++)
   tj=cptcoveff;        for(j=1; j<=nlstate;j++)
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   j1=0;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   for(t=1; t<=tj;t++){           
     for(i1=1; i1<=ncodemax[t];i1++){             /*if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
       j1++;  
       if  (cptcovn>0) {          }
         fprintf(ficresprob, "\n#********** Variable ");      
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      fprintf(ficreseij,"%3.0f",age );
         fprintf(ficresprob, "**********\n#\n");      for(i=1; i<=nlstate;i++){
         fprintf(ficresprobcov, "\n#********** Variable ");         eip=0;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        for(j=1; j<=nlstate;j++){
         fprintf(ficresprobcov, "**********\n#\n");          eip +=eij[i][j][(int)age];
                   fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         fprintf(ficgp, "\n#********** Variable ");         }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        fprintf(ficreseij,"%9.4f", eip );
         fprintf(ficgp, "**********\n#\n");      }
               fprintf(ficreseij,"\n");
              
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");     }
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");    printf("\n");
             fprintf(ficlog,"\n");
         fprintf(ficresprobcor, "\n#********** Variable ");       
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  }
         fprintf(ficresprobcor, "**********\n#");      
       }  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
         
       for (age=bage; age<=fage; age ++){   {
         cov[2]=age;    /* Covariances of health expectancies eij and of total life expectancies according
         for (k=1; k<=cptcovn;k++) {     to initial status i, ei. .
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    */
         }    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double age, agelim, hf;
         for (k=1; k<=cptcovprod;k++)    double ***p3matp, ***p3matm, ***varhe;
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    double **dnewm,**doldm;
             double *xp, *xm;
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));    double **gp, **gm;
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    double ***gradg, ***trgradg;
         gp=vector(1,(nlstate)*(nlstate+ndeath));    int theta;
         gm=vector(1,(nlstate)*(nlstate+ndeath));  
         double eip, vip;
         for(theta=1; theta <=npar; theta++){  
           for(i=1; i<=npar; i++)    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
             xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);    xp=vector(1,npar);
               xm=vector(1,npar);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    dnewm=matrix(1,nlstate*nlstate,1,npar);
               doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
           k=0;   
           for(i=1; i<= (nlstate); i++){    pstamp(ficresstdeij);
             for(j=1; j<=(nlstate+ndeath);j++){    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
               k=k+1;    fprintf(ficresstdeij,"# Age");
               gp[k]=pmmij[i][j];    for(i=1; i<=nlstate;i++){
             }      for(j=1; j<=nlstate;j++)
           }        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
                 fprintf(ficresstdeij," e%1d. ",i);
           for(i=1; i<=npar; i++)    }
             xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);    fprintf(ficresstdeij,"\n");
       
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    pstamp(ficrescveij);
           k=0;    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
           for(i=1; i<=(nlstate); i++){    fprintf(ficrescveij,"# Age");
             for(j=1; j<=(nlstate+ndeath);j++){    for(i=1; i<=nlstate;i++)
               k=k+1;      for(j=1; j<=nlstate;j++){
               gm[k]=pmmij[i][j];        cptj= (j-1)*nlstate+i;
             }        for(i2=1; i2<=nlstate;i2++)
           }          for(j2=1; j2<=nlstate;j2++){
                  cptj2= (j2-1)*nlstate+i2;
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)             if(cptj2 <= cptj)
             gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];                fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
         }          }
       }
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    fprintf(ficrescveij,"\n");
           for(theta=1; theta <=npar; theta++)   
             trgradg[j][theta]=gradg[theta][j];    if(estepm < stepm){
               printf ("Problem %d lower than %d\n",estepm, stepm);
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);     }
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    else  hstepm=estepm;  
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    /* We compute the life expectancy from trapezoids spaced every estepm months
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));     * This is mainly to measure the difference between two models: for example
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);     * if stepm=24 months pijx are given only every 2 years and by summing them
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);     * we are calculating an estimate of the Life Expectancy assuming a linear
      * progression in between and thus overestimating or underestimating according
         pmij(pmmij,cov,ncovmodel,x,nlstate);     * to the curvature of the survival function. If, for the same date, we
              * estimate the model with stepm=1 month, we can keep estepm to 24 months
         k=0;     * to compare the new estimate of Life expectancy with the same linear
         for(i=1; i<=(nlstate); i++){     * hypothesis. A more precise result, taking into account a more precise
           for(j=1; j<=(nlstate+ndeath);j++){     * curvature will be obtained if estepm is as small as stepm. */
             k=k+1;  
             mu[k][(int) age]=pmmij[i][j];    /* For example we decided to compute the life expectancy with the smallest unit */
           }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
         }       nhstepm is the number of hstepm from age to agelim
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)       nstepm is the number of stepm from age to agelin.
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)       Look at hpijx to understand the reason of that which relies in memory size
             varpij[i][j][(int)age] = doldm[i][j];       and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
         /*printf("\n%d ",(int)age);       survival function given by stepm (the optimization length). Unfortunately it
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){       means that if the survival funtion is printed only each two years of age and if
           printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));       you sum them up and add 1 year (area under the trapezoids) you won't get the same
           fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));       results. So we changed our mind and took the option of the best precision.
           }*/    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
         fprintf(ficresprob,"\n%d ",(int)age);  
         fprintf(ficresprobcov,"\n%d ",(int)age);    /* If stepm=6 months */
         fprintf(ficresprobcor,"\n%d ",(int)age);    /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)    nstepm=(int) rint((agelim-bage)*YEARM/stepm);
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));    /* Typically if 20 years nstepm = 20*12/6=40 stepm */
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    /* if (stepm >= YEARM) hstepm=1;*/
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);   
         }    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         i=0;    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for (k=1; k<=(nlstate);k++){    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
           for (l=1; l<=(nlstate+ndeath);l++){     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
             i=i++;    gp=matrix(0,nhstepm,1,nlstate*nlstate);
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);  
             for (j=1; j<=i;j++){    for (age=bage; age<=fage; age ++){
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);  
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));      /* Computed by stepm unit matrices, product of hstepm matrices, stored
             }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
           }   
         }/* end of loop for state */      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       } /* end of loop for age */  
       /* Computing  Variances of health expectancies */
       /* Confidence intervalle of pij  */      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
       /*         decrease memory allocation */
         fprintf(ficgp,"\nset noparametric;unset label");      for(theta=1; theta <=npar; theta++){
         fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");        for(i=1; i<=npar; i++){
         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);          xm[i] = x[i] - (i==theta ?delti[theta]:0);
         fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);        }
         fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
       */   
         for(j=1; j<= nlstate; j++){
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/          for(i=1; i<=nlstate; i++){
       first1=1;            for(h=0; h<=nhstepm-1; h++){
       for (k2=1; k2<=(nlstate);k2++){              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
         for (l2=1; l2<=(nlstate+ndeath);l2++){               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
           if(l2==k2) continue;            }
           j=(k2-1)*(nlstate+ndeath)+l2;          }
           for (k1=1; k1<=(nlstate);k1++){        }
             for (l1=1; l1<=(nlstate+ndeath);l1++){        
               if(l1==k1) continue;        for(ij=1; ij<= nlstate*nlstate; ij++)
               i=(k1-1)*(nlstate+ndeath)+l1;          for(h=0; h<=nhstepm-1; h++){
               if(i<=j) continue;            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
               for (age=bage; age<=fage; age ++){           }
                 if ((int)age %5==0){      }/* End theta */
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;     
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;     
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;      for(h=0; h<=nhstepm-1; h++)
                   mu1=mu[i][(int) age]/stepm*YEARM ;        for(j=1; j<=nlstate*nlstate;j++)
                   mu2=mu[j][(int) age]/stepm*YEARM;          for(theta=1; theta <=npar; theta++)
                   c12=cv12/sqrt(v1*v2);            trgradg[h][j][theta]=gradg[h][theta][j];
                   /* Computing eigen value of matrix of covariance */     
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;  
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;       for(ij=1;ij<=nlstate*nlstate;ij++)
                   /* Eigen vectors */        for(ji=1;ji<=nlstate*nlstate;ji++)
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));          varhe[ij][ji][(int)age] =0.;
                   /*v21=sqrt(1.-v11*v11); *//* error */  
                   v21=(lc1-v1)/cv12*v11;       printf("%d|",(int)age);fflush(stdout);
                   v12=-v21;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                   v22=v11;       for(h=0;h<=nhstepm-1;h++){
                   tnalp=v21/v11;        for(k=0;k<=nhstepm-1;k++){
                   if(first1==1){          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
                     first1=0;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);          for(ij=1;ij<=nlstate*nlstate;ij++)
                   }            for(ji=1;ji<=nlstate*nlstate;ji++)
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
                   /*printf(fignu*/        }
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */      }
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */  
                   if(first==1){      /* Computing expectancies */
                     first=0;      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
                     fprintf(ficgp,"\nset parametric;unset label");      for(i=1; i<=nlstate;i++)
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);        for(j=1; j<=nlstate;j++)
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);           
                     fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);  
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);          }
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);  
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\      fprintf(ficresstdeij,"%3.0f",age );
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\      for(i=1; i<=nlstate;i++){
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));        eip=0.;
                   }else{        vip=0.;
                     first=0;        for(j=1; j<=nlstate;j++){
                     fprintf(fichtm," %d (%.3f),",(int) age, c12);          eip += eij[i][j][(int)age];
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\        }
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
                   }/* if first */      }
                 } /* age mod 5 */      fprintf(ficresstdeij,"\n");
               } /* end loop age */  
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);      fprintf(ficrescveij,"%3.0f",age );
               first=1;      for(i=1; i<=nlstate;i++)
             } /*l12 */        for(j=1; j<=nlstate;j++){
           } /* k12 */          cptj= (j-1)*nlstate+i;
         } /*l1 */          for(i2=1; i2<=nlstate;i2++)
       }/* k1 */            for(j2=1; j2<=nlstate;j2++){
     } /* loop covariates */              cptj2= (j2-1)*nlstate+i2;
   }              if(cptj2 <= cptj)
   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);                fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);            }
   free_vector(xp,1,npar);        }
   fclose(ficresprob);      fprintf(ficrescveij,"\n");
   fclose(ficresprobcov);     
   fclose(ficresprobcor);    }
   fclose(ficgp);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   fclose(fichtm);    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
 }    free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 /******************* Printing html file ***********/    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    printf("\n");
                   int lastpass, int stepm, int weightopt, char model[],\    fprintf(ficlog,"\n");
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\  
                   int popforecast, int estepm ,\    free_vector(xm,1,npar);
                   double jprev1, double mprev1,double anprev1, \    free_vector(xp,1,npar);
                   double jprev2, double mprev2,double anprev2){    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   int jj1, k1, i1, cpt;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
   /*char optionfilehtm[FILENAMELENGTH];*/    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {  }
     printf("Problem with %s \n",optionfilehtm), exit(0);  
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);  /************ Variance ******************/
   }  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n    /* Variance of health expectancies */
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n    /* double **newm;*/
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n    double **dnewm,**doldm;
  - Life expectancies by age and initial health status (estepm=%2d months):     double **dnewmp,**doldmp;
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    int i, j, nhstepm, hstepm, h, nstepm ;
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);    int k, cptcode;
     double *xp;
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");    double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
  m=cptcoveff;    double **gradgp, **trgradgp; /* for var p point j */
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
  jj1=0;    double ***p3mat;
  for(k1=1; k1<=m;k1++){    double age,agelim, hf;
    for(i1=1; i1<=ncodemax[k1];i1++){    double ***mobaverage;
      jj1++;    int theta;
      if (cptcovn > 0) {    char digit[4];
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    char digitp[25];
        for (cpt=1; cpt<=cptcoveff;cpt++)   
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    char fileresprobmorprev[FILENAMELENGTH];
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
      }    if(popbased==1){
      /* Pij */      if(mobilav!=0)
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>        strcpy(digitp,"-populbased-mobilav-");
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);           else strcpy(digitp,"-populbased-nomobil-");
      /* Quasi-incidences */    }
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>    else
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);       strcpy(digitp,"-stablbased-");
        /* Stable prevalence in each health state */  
        for(cpt=1; cpt<nlstate;cpt++){    if (mobilav!=0) {
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
        }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
      for(cpt=1; cpt<=nlstate;cpt++) {        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>      }
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    }
      }  
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    strcpy(fileresprobmorprev,"prmorprev");
 health expectancies in states (1) and (2): e%s%d.png<br>    sprintf(digit,"%-d",ij);
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
    } /* end i1 */    strcat(fileresprobmorprev,digit); /* Tvar to be done */
  }/* End k1 */    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
  fprintf(fichtm,"</ul>");    strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n    }
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n   
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n     pstamp(ficresprobmorprev);
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
  if(popforecast==1) fprintf(fichtm,"\n      fprintf(ficresprobmorprev," p.%-d SE",j);
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n      for(i=1; i<=nlstate;i++)
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
         <br>",fileres,fileres,fileres,fileres);    }  
  else     fprintf(ficresprobmorprev,"\n");
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);    fprintf(ficgp,"\n# Routine varevsij");
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
  m=cptcoveff;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
  jj1=0;    pstamp(ficresvij);
  for(k1=1; k1<=m;k1++){    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
    for(i1=1; i1<=ncodemax[k1];i1++){    if(popbased==1)
      jj1++;      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
      if (cptcovn > 0) {    else
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
        for (cpt=1; cpt<=cptcoveff;cpt++)     fprintf(ficresvij,"# Age");
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    for(i=1; i<=nlstate;i++)
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");      for(j=1; j<=nlstate;j++)
      }        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
      for(cpt=1; cpt<=nlstate;cpt++) {    fprintf(ficresvij,"\n");
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident  
 interval) in state (%d): v%s%d%d.png <br>    xp=vector(1,npar);
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      dnewm=matrix(1,nlstate,1,npar);
      }    doldm=matrix(1,nlstate,1,nlstate);
    } /* end i1 */    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
  }/* End k1 */    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
  fprintf(fichtm,"</ul>");  
 fclose(fichtm);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
 }    gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
 /******************* Gnuplot file **************/    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){   
     if(estepm < stepm){
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;      printf ("Problem %d lower than %d\n",estepm, stepm);
   int ng;    }
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {    else  hstepm=estepm;  
     printf("Problem with file %s",optionfilegnuplot);    /* For example we decided to compute the life expectancy with the smallest unit */
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
   }       nhstepm is the number of hstepm from age to agelim
        nstepm is the number of stepm from age to agelin.
   /*#ifdef windows */       Look at hpijx to understand the reason of that which relies in memory size
     fprintf(ficgp,"cd \"%s\" \n",pathc);       and note for a fixed period like k years */
     /*#endif */    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
 m=pow(2,cptcoveff);       survival function given by stepm (the optimization length). Unfortunately it
          means that if the survival funtion is printed every two years of age and if
  /* 1eme*/       you sum them up and add 1 year (area under the trapezoids) you won't get the same
   for (cpt=1; cpt<= nlstate ; cpt ++) {       results. So we changed our mind and took the option of the best precision.
    for (k1=1; k1<= m ; k1 ++) {    */
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
      for (i=1; i<= nlstate ; i ++) {      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
        else fprintf(ficgp," \%%*lf (\%%*lf)");      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);      gp=matrix(0,nhstepm,1,nlstate);
      for (i=1; i<= nlstate ; i ++) {      gm=matrix(0,nhstepm,1,nlstate);
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  
        else fprintf(ficgp," \%%*lf (\%%*lf)");  
      }       for(theta=1; theta <=npar; theta++){
      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1);         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
      for (i=1; i<= nlstate ; i ++) {          xp[i] = x[i] + (i==theta ?delti[theta]:0);
        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        }
        else fprintf(ficgp," \%%*lf (\%%*lf)");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
      }          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  
    }        if (popbased==1) {
   }          if(mobilav ==0){
   /*2 eme*/            for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][ij];
   for (k1=1; k1<= m ; k1 ++) {           }else{ /* mobilav */
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);            for(i=1; i<=nlstate;i++)
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);              prlim[i][i]=mobaverage[(int)age][i][ij];
               }
     for (i=1; i<= nlstate+1 ; i ++) {        }
       k=2*i;   
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        for(j=1; j<= nlstate; j++){
       for (j=1; j<= nlstate+1 ; j ++) {          for(h=0; h<=nhstepm; h++){
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
         else fprintf(ficgp," \%%*lf (\%%*lf)");              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
       }             }
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        }
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        /* This for computing probability of death (h=1 means
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);           computed over hstepm matrices product = hstepm*stepm months)
       for (j=1; j<= nlstate+1 ; j ++) {           as a weighted average of prlim.
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");        */
         else fprintf(ficgp," \%%*lf (\%%*lf)");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       }             for(i=1,gpp[j]=0.; i<= nlstate; i++)
       fprintf(ficgp,"\" t\"\" w l 0,");            gpp[j] += prlim[i][i]*p3mat[i][j][1];
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        }    
       for (j=1; j<= nlstate+1 ; j ++) {        /* end probability of death */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
       }             xp[i] = x[i] - (i==theta ?delti[theta]:0);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       else fprintf(ficgp,"\" t\"\" w l 0,");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     }   
   }        if (popbased==1) {
             if(mobilav ==0){
   /*3eme*/            for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][ij];
   for (k1=1; k1<= m ; k1 ++) {           }else{ /* mobilav */
     for (cpt=1; cpt<= nlstate ; cpt ++) {            for(i=1; i<=nlstate;i++)
       k=2+nlstate*(2*cpt-2);              prlim[i][i]=mobaverage[(int)age][i][ij];
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          }
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);        }
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");        for(j=1; j<= nlstate; j++){
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          for(h=0; h<=nhstepm; h++){
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
         for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
         fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          }
                 }
       */        /* This for computing probability of death (h=1 means
       for (i=1; i< nlstate ; i ++) {           computed over hstepm matrices product = hstepm*stepm months)
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);           as a weighted average of prlim.
                 */
       }         for(j=nlstate+1;j<=nlstate+ndeath;j++){
     }          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   }           gmp[j] += prlim[i][i]*p3mat[i][j][1];
           }    
   /* CV preval stat */        /* end probability of death */
   for (k1=1; k1<= m ; k1 ++) {   
     for (cpt=1; cpt<nlstate ; cpt ++) {        for(j=1; j<= nlstate; j++) /* vareij */
       k=3;          for(h=0; h<=nhstepm; h++){
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);          }
         
       for (i=1; i< nlstate ; i ++)        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
         fprintf(ficgp,"+$%d",k+i+1);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);        }
         
       l=3+(nlstate+ndeath)*cpt;      } /* End theta */
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  
       for (i=1; i< nlstate ; i ++) {      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
         l=3+(nlstate+ndeath)*cpt;  
         fprintf(ficgp,"+$%d",l+i+1);      for(h=0; h<=nhstepm; h++) /* veij */
       }        for(j=1; j<=nlstate;j++)
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);             for(theta=1; theta <=npar; theta++)
     }             trgradg[h][j][theta]=gradg[h][theta][j];
   }    
         for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
   /* proba elementaires */        for(theta=1; theta <=npar; theta++)
   for(i=1,jk=1; i <=nlstate; i++){          trgradgp[j][theta]=gradgp[theta][j];
     for(k=1; k <=(nlstate+ndeath); k++){   
       if (k != i) {  
         for(j=1; j <=ncovmodel; j++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);      for(i=1;i<=nlstate;i++)
           jk++;         for(j=1;j<=nlstate;j++)
           fprintf(ficgp,"\n");          vareij[i][j][(int)age] =0.;
         }  
       }      for(h=0;h<=nhstepm;h++){
     }        for(k=0;k<=nhstepm;k++){
    }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/          for(i=1;i<=nlstate;i++)
      for(jk=1; jk <=m; jk++) {            for(j=1;j<=nlstate;j++)
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
        if (ng==2)        }
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");      }
        else   
          fprintf(ficgp,"\nset title \"Probability\"\n");      /* pptj */
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
        i=1;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
        for(k2=1; k2<=nlstate; k2++) {      for(j=nlstate+1;j<=nlstate+ndeath;j++)
          k3=i;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
          for(k=1; k<=(nlstate+ndeath); k++) {          varppt[j][i]=doldmp[j][i];
            if (k != k2){      /* end ppptj */
              if(ng==2)      /*  x centered again */
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
              else      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);   
              ij=1;      if (popbased==1) {
              for(j=3; j <=ncovmodel; j++) {        if(mobilav ==0){
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          for(i=1; i<=nlstate;i++)
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            prlim[i][i]=probs[(int)age][i][ij];
                  ij++;        }else{ /* mobilav */
                }          for(i=1; i<=nlstate;i++)
                else            prlim[i][i]=mobaverage[(int)age][i][ij];
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);        }
              }      }
              fprintf(ficgp,")/(1");               
                    /* This for computing probability of death (h=1 means
              for(k1=1; k1 <=nlstate; k1++){            computed over hstepm (estepm) matrices product = hstepm*stepm months)
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);         as a weighted average of prlim.
                ij=1;      */
                for(j=3; j <=ncovmodel; j++){      for(j=nlstate+1;j<=nlstate+ndeath;j++){
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        for(i=1,gmp[j]=0.;i<= nlstate; i++)
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          gmp[j] += prlim[i][i]*p3mat[i][j][1];
                    ij++;      }    
                  }      /* end probability of death */
                  else  
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
                }      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                fprintf(ficgp,")");        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
              }        for(i=1; i<=nlstate;i++){
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");        }
              i=i+ncovmodel;      }
            }      fprintf(ficresprobmorprev,"\n");
          } /* end k */  
        } /* end k2 */      fprintf(ficresvij,"%.0f ",age );
      } /* end jk */      for(i=1; i<=nlstate;i++)
    } /* end ng */        for(j=1; j<=nlstate;j++){
    fclose(ficgp);           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
 }  /* end gnuplot */        }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
 /*************** Moving average **************/      free_matrix(gm,0,nhstepm,1,nlstate);
 int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
   int i, cpt, cptcod;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   int modcovmax =1;    } /* End age */
   int mobilavrange, mob;    free_vector(gpp,nlstate+1,nlstate+ndeath);
   double age;    free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                            a covariate has 2 modalities */    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   if (cptcovn<1) modcovmax=1; /* At least 1 pass */    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
     if(mobilav==1) mobilavrange=5; /* default */  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     else mobilavrange=mobilav;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     for (age=bage; age<=fage; age++)    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
       for (i=1; i<=nlstate;i++)    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
         for (cptcod=1;cptcod<=modcovmax;cptcod++)    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     /* We keep the original values on the extreme ages bage, fage and for     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
        we use a 5 terms etc. until the borders are no more concerned.   */
     */   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     for (mob=3;mob <=mobilavrange;mob=mob+2){    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){  
         for (i=1; i<=nlstate;i++){    free_vector(xp,1,npar);
           for (cptcod=1;cptcod<=modcovmax;cptcod++){    free_matrix(doldm,1,nlstate,1,nlstate);
             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];    free_matrix(dnewm,1,nlstate,1,npar);
               for (cpt=1;cpt<=(mob-1)/2;cpt++){    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
                 mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
               }    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;    fclose(ficresprobmorprev);
           }    fflush(ficgp);
         }    fflush(fichtm);
       }/* end age */  }  /* end varevsij */
     }/* end mob */  
   }else return -1;  /************ Variance of prevlim ******************/
   return 0;  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
 }/* End movingaverage */  {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
 /************** Forecasting ******************/    double **newm;
 prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){    double **dnewm,**doldm;
   /* proj1, year, month, day of starting projection     int i, j, nhstepm, hstepm;
      agemin, agemax range of age    int k, cptcode;
      dateprev1 dateprev2 range of dates during which prevalence is computed    double *xp;
      anproj2 year of en of projection (same day and month as proj1).    double *gp, *gm;
   */    double **gradg, **trgradg;
   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;    double age,agelim;
   int *popage;    int theta;
   double agec; /* generic age */   
   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;    pstamp(ficresvpl);
   double *popeffectif,*popcount;    fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
   double ***p3mat;    fprintf(ficresvpl,"# Age");
   double ***mobaverage;    for(i=1; i<=nlstate;i++)
   char fileresf[FILENAMELENGTH];        fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   agelim=AGESUP;  
   prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);    xp=vector(1,npar);
      dnewm=matrix(1,nlstate,1,npar);
   strcpy(fileresf,"f");     doldm=matrix(1,nlstate,1,nlstate);
   strcat(fileresf,fileres);   
   if((ficresf=fopen(fileresf,"w"))==NULL) {    hstepm=1*YEARM; /* Every year of age */
     printf("Problem with forecast resultfile: %s\n", fileresf);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);    agelim = AGESUP;
   }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   printf("Computing forecasting: result on file '%s' \n", fileresf);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);      if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
   if (mobilav!=0) {      gm=vector(1,nlstate);
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){      for(theta=1; theta <=npar; theta++){
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);        for(i=1; i<=npar; i++){ /* Computes gradient */
       printf(" Error in movingaverage mobilav=%d\n",mobilav);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     }        }
   }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
   stepsize=(int) (stepm+YEARM-1)/YEARM;          gp[i] = prlim[i][i];
   if (stepm<=12) stepsize=1;     
   if(estepm < stepm){        for(i=1; i<=npar; i++) /* Computes gradient */
     printf ("Problem %d lower than %d\n",estepm, stepm);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   else  hstepm=estepm;           for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   hstepm=hstepm/stepm;   
   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and        for(i=1;i<=nlstate;i++)
                                fractional in yp1 */          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
   anprojmean=yp;      } /* End theta */
   yp2=modf((yp1*12),&yp);  
   mprojmean=yp;      trgradg =matrix(1,nlstate,1,npar);
   yp1=modf((yp2*30.5),&yp);  
   jprojmean=yp;      for(j=1; j<=nlstate;j++)
   if(jprojmean==0) jprojmean=1;        for(theta=1; theta <=npar; theta++)
   if(mprojmean==0) jprojmean=1;          trgradg[j][theta]=gradg[theta][j];
   
   i1=cptcoveff;      for(i=1;i<=nlstate;i++)
   if (cptcovn < 1){i1=1;}        varpl[i][(int)age] =0.;
         matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
         for(i=1;i<=nlstate;i++)
   fprintf(ficresf,"#****** Routine prevforecast **\n");        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
 /*            if (h==(int)(YEARM*yearp)){ */      fprintf(ficresvpl,"%.0f ",age );
   for(cptcov=1, k=0;cptcov<=i1;cptcov++){      for(i=1; i<=nlstate;i++)
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       k=k+1;      fprintf(ficresvpl,"\n");
       fprintf(ficresf,"\n#******");      free_vector(gp,1,nlstate);
       for(j=1;j<=cptcoveff;j++) {      free_vector(gm,1,nlstate);
         fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      free_matrix(gradg,1,npar,1,nlstate);
       }      free_matrix(trgradg,1,nlstate,1,npar);
       fprintf(ficresf,"******\n");    } /* End age */
       fprintf(ficresf,"# Covariate valuofcovar yearproj age");  
       for(j=1; j<=nlstate+ndeath;j++){     free_vector(xp,1,npar);
         for(i=1; i<=nlstate;i++)                  free_matrix(doldm,1,nlstate,1,npar);
           fprintf(ficresf," p%d%d",i,j);    free_matrix(dnewm,1,nlstate,1,nlstate);
         fprintf(ficresf," p.%d",j);  
       }  }
       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {   
         fprintf(ficresf,"\n");  /************ Variance of one-step probabilities  ******************/
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);     void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
         for (agec=fage; agec>=(ageminpar-1); agec--){     int i, j=0,  i1, k1, l1, t, tj;
           nhstepm=(int) rint((agelim-agec)*YEARM/stepm);     int k2, l2, j1,  z1;
           nhstepm = nhstepm/hstepm;     int k=0,l, cptcode;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int first=1, first1;
           oldm=oldms;savm=savms;    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
           hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);      double **dnewm,**doldm;
             double *xp;
           for (h=0; h<=nhstepm; h++){    double *gp, *gm;
             if (h*hstepm/YEARM*stepm ==yearp) {    double **gradg, **trgradg;
               fprintf(ficresf,"\n");    double **mu;
               for(j=1;j<=cptcoveff;j++)     double age,agelim, cov[NCOVMAX];
                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
               fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);    int theta;
             }     char fileresprob[FILENAMELENGTH];
             for(j=1; j<=nlstate+ndeath;j++) {    char fileresprobcov[FILENAMELENGTH];
               ppij=0.;    char fileresprobcor[FILENAMELENGTH];
               for(i=1; i<=nlstate;i++) {  
                 if (mobilav==1)     double ***varpij;
                   ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];  
                 else {    strcpy(fileresprob,"prob");
                   ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];    strcat(fileresprob,fileres);
                 }    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
                 if (h*hstepm/YEARM*stepm== yearp) {      printf("Problem with resultfile: %s\n", fileresprob);
                   fprintf(ficresf," %.3f", p3mat[i][j][h]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
                 }    }
               } /* end i */    strcpy(fileresprobcov,"probcov");
               if (h*hstepm/YEARM*stepm==yearp) {    strcat(fileresprobcov,fileres);
                 fprintf(ficresf," %.3f", ppij);    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
               }      printf("Problem with resultfile: %s\n", fileresprobcov);
             }/* end j */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
           } /* end h */    }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    strcpy(fileresprobcor,"probcor");
         } /* end agec */    strcat(fileresprobcor,fileres);
       } /* end yearp */    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     } /* end cptcod */      printf("Problem with resultfile: %s\n", fileresprobcor);
   } /* end  cptcov */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
            }
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   fclose(ficresf);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 }    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 /************** Forecasting *****not tested NB*************/    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){    pstamp(ficresprob);
       fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    fprintf(ficresprob,"# Age");
   int *popage;    pstamp(ficresprobcov);
   double calagedatem, agelim, kk1, kk2;    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   double *popeffectif,*popcount;    fprintf(ficresprobcov,"# Age");
   double ***p3mat,***tabpop,***tabpopprev;    pstamp(ficresprobcor);
   double ***mobaverage;    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   char filerespop[FILENAMELENGTH];    fprintf(ficresprobcor,"# Age");
   
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    for(i=1; i<=nlstate;i++)
   agelim=AGESUP;      for(j=1; j<=(nlstate+ndeath);j++){
   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
           fprintf(ficresprobcov," p%1d-%1d ",i,j);
   prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
         }  
      /* fprintf(ficresprob,"\n");
   strcpy(filerespop,"pop");     fprintf(ficresprobcov,"\n");
   strcat(filerespop,fileres);    fprintf(ficresprobcor,"\n");
   if((ficrespop=fopen(filerespop,"w"))==NULL) {   */
     printf("Problem with forecast resultfile: %s\n", filerespop);   xp=vector(1,npar);
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   }    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   printf("Computing forecasting: result on file '%s' \n", filerespop);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
   if (mobilav!=0) {    fprintf(fichtm,"\n");
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
       printf(" Error in movingaverage mobilav=%d\n",mobilav);    file %s<br>\n",optionfilehtmcov);
     }    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   }  and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   stepsize=(int) (stepm+YEARM-1)/YEARM;    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   if (stepm<=12) stepsize=1;  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   agelim=AGESUP;  standard deviations wide on each axis. <br>\
      Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
   hstepm=1;   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   hstepm=hstepm/stepm;   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     
   if (popforecast==1) {    cov[1]=1;
     if((ficpop=fopen(popfile,"r"))==NULL) {    tj=cptcoveff;
       printf("Problem with population file : %s\n",popfile);exit(0);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);    j1=0;
     }     for(t=1; t<=tj;t++){
     popage=ivector(0,AGESUP);      for(i1=1; i1<=ncodemax[t];i1++){
     popeffectif=vector(0,AGESUP);        j1++;
     popcount=vector(0,AGESUP);        if  (cptcovn>0) {
               fprintf(ficresprob, "\n#********** Variable ");
     i=1;             for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;          fprintf(ficresprob, "**********\n#\n");
              fprintf(ficresprobcov, "\n#********** Variable ");
     imx=i;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          fprintf(ficresprobcov, "**********\n#\n");
   }         
           fprintf(ficgp, "\n#********** Variable ");
   for(cptcov=1,k=0;cptcov<=i2;cptcov++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){          fprintf(ficgp, "**********\n#\n");
       k=k+1;         
       fprintf(ficrespop,"\n#******");         
       for(j=1;j<=cptcoveff;j++) {          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       }          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
       fprintf(ficrespop,"******\n");         
       fprintf(ficrespop,"# Age");          fprintf(ficresprobcor, "\n#********** Variable ");    
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       if (popforecast==1)  fprintf(ficrespop," [Population]");          fprintf(ficresprobcor, "**********\n#");    
               }
       for (cpt=0; cpt<=0;cpt++) {        
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);           for (age=bage; age<=fage; age ++){
                   cov[2]=age;
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){           for (k=1; k<=cptcovn;k++) {
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           nhstepm = nhstepm/hstepm;           }
                     for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (k=1; k<=cptcovprod;k++)
           oldm=oldms;savm=savms;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);           
                   gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           for (h=0; h<=nhstepm; h++){          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
             if (h==(int) (calagedatem+YEARM*cpt)) {          gp=vector(1,(nlstate)*(nlstate+ndeath));
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          gm=vector(1,(nlstate)*(nlstate+ndeath));
             }      
             for(j=1; j<=nlstate+ndeath;j++) {          for(theta=1; theta <=npar; theta++){
               kk1=0.;kk2=0;            for(i=1; i<=npar; i++)
               for(i=1; i<=nlstate;i++) {                            xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
                 if (mobilav==1)            
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];            pmij(pmmij,cov,ncovmodel,xp,nlstate);
                 else {           
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            k=0;
                 }            for(i=1; i<= (nlstate); i++){
               }              for(j=1; j<=(nlstate+ndeath);j++){
               if (h==(int)(calagedatem+12*cpt)){                k=k+1;
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;                gp[k]=pmmij[i][j];
                   /*fprintf(ficrespop," %.3f", kk1);              }
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/            }
               }           
             }            for(i=1; i<=npar; i++)
             for(i=1; i<=nlstate;i++){              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
               kk1=0.;     
                 for(j=1; j<=nlstate;j++){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];             k=0;
                 }            for(i=1; i<=(nlstate); i++){
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];              for(j=1; j<=(nlstate+ndeath);j++){
             }                k=k+1;
                 gm[k]=pmmij[i][j];
             if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)               }
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);            }
           }       
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
         }              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
       }          }
    
   /******/          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {               trgradg[j][theta]=gradg[theta][j];
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            
         for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           nhstepm = nhstepm/hstepm;           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
                     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           oldm=oldms;savm=savms;          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
           for (h=0; h<=nhstepm; h++){          pmij(pmmij,cov,ncovmodel,x,nlstate);
             if (h==(int) (calagedatem+YEARM*cpt)) {         
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          k=0;
             }           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=nlstate+ndeath;j++) {            for(j=1; j<=(nlstate+ndeath);j++){
               kk1=0.;kk2=0;              k=k+1;
               for(i=1; i<=nlstate;i++) {                            mu[k][(int) age]=pmmij[i][j];
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                }
               }          }
               if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);                  for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             }            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
           }              varpij[i][j][(int)age] = doldm[i][j];
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }          /*printf("\n%d ",(int)age);
       }            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
    }             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   }            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
              }*/
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
           fprintf(ficresprob,"\n%d ",(int)age);
   if (popforecast==1) {          fprintf(ficresprobcov,"\n%d ",(int)age);
     free_ivector(popage,0,AGESUP);          fprintf(ficresprobcor,"\n%d ",(int)age);
     free_vector(popeffectif,0,AGESUP);  
     free_vector(popcount,0,AGESUP);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
   }            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
   fclose(ficrespop);            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
 }          }
           i=0;
 /***********************************************/          for (k=1; k<=(nlstate);k++){
 /**************** Main Program *****************/            for (l=1; l<=(nlstate+ndeath);l++){
 /***********************************************/              i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
 int main(int argc, char *argv[])              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
 {              for (j=1; j<=i;j++){
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
   double agedeb, agefin,hf;              }
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;            }
           }/* end of loop for state */
   double fret;        } /* end of loop for age */
   double **xi,tmp,delta;  
         /* Confidence intervalle of pij  */
   double dum; /* Dummy variable */        /*
   double ***p3mat;          fprintf(ficgp,"\nset noparametric;unset label");
   double ***mobaverage;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   int *indx;          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   char line[MAXLINE], linepar[MAXLINE];          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   int firstobs=1, lastobs=10;          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   int sdeb, sfin; /* Status at beginning and end */          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
   int c,  h , cpt,l;        */
   int ju,jl, mi;  
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;         first1=1;
   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */        for (k2=1; k2<=(nlstate);k2++){
   int mobilav=0,popforecast=0;          for (l2=1; l2<=(nlstate+ndeath);l2++){
   int hstepm, nhstepm;            if(l2==k2) continue;
   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;            j=(k2-1)*(nlstate+ndeath)+l2;
   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;            for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){
   double bage, fage, age, agelim, agebase;                if(l1==k1) continue;
   double ftolpl=FTOL;                i=(k1-1)*(nlstate+ndeath)+l1;
   double **prlim;                if(i<=j) continue;
   double *severity;                for (age=bage; age<=fage; age ++){
   double ***param; /* Matrix of parameters */                  if ((int)age %5==0){
   double  *p;                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
   double **matcov; /* Matrix of covariance */                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
   double ***delti3; /* Scale */                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   double *delti; /* Scale */                    mu1=mu[i][(int) age]/stepm*YEARM ;
   double ***eij, ***vareij;                    mu2=mu[j][(int) age]/stepm*YEARM;
   double **varpl; /* Variances of prevalence limits by age */                    c12=cv12/sqrt(v1*v2);
   double *epj, vepp;                    /* Computing eigen value of matrix of covariance */
   double kk1, kk2;                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
   char *alph[]={"a","a","b","c","d","e"}, str[4];                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
   char z[1]="c", occ;                    v12=-v21;
 #include <sys/time.h>                    v22=v11;
 #include <time.h>                    tnalp=v21/v11;
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];                    if(first1==1){
                        first1=0;
   /* long total_usecs;                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
      struct timeval start_time, end_time;                    }
                       fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
      gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */                    /*printf(fignu*/
   getcwd(pathcd, size);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   printf("\n%s",version);                    if(first==1){
   if(argc <=1){                      first=0;
     printf("\nEnter the parameter file name: ");                      fprintf(ficgp,"\nset parametric;unset label");
     scanf("%s",pathtot);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   }                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   else{                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     strcpy(pathtot,argv[1]);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   }  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   /*cygwin_split_path(pathtot,path,optionfile);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   /* cutv(path,optionfile,pathtot,'\\');*/                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   chdir(path);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   replace(pathc,path);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   /*-------- arguments in the command line --------*/                    }else{
                       first=0;
   /* Log file */                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   strcat(filelog, optionfilefiname);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   strcat(filelog,".log");    /* */                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   if((ficlog=fopen(filelog,"w"))==NULL)    {                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     printf("Problem with logfile %s\n",filelog);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     goto end;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   }                    }/* if first */
   fprintf(ficlog,"Log filename:%s\n",filelog);                  } /* age mod 5 */
   fprintf(ficlog,"\n%s",version);                } /* end loop age */
   fprintf(ficlog,"\nEnter the parameter file name: ");                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);                first=1;
   fflush(ficlog);              } /*l12 */
             } /* k12 */
   /* */          } /*l1 */
   strcpy(fileres,"r");        }/* k1 */
   strcat(fileres, optionfilefiname);      } /* loop covariates */
   strcat(fileres,".txt");    /* Other files have txt extension */    }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   /*---------arguments file --------*/    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     printf("Problem with optionfile %s\n",optionfile);    free_vector(xp,1,npar);
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);    fclose(ficresprob);
     goto end;    fclose(ficresprobcov);
   }    fclose(ficresprobcor);
     fflush(ficgp);
   strcpy(filereso,"o");    fflush(fichtmcov);
   strcat(filereso,fileres);  }
   if((ficparo=fopen(filereso,"w"))==NULL) {  
     printf("Problem with Output resultfile: %s\n", filereso);  
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);  /******************* Printing html file ***********/
     goto end;  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   }                    int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   /* Reads comments: lines beginning with '#' */                    int popforecast, int estepm ,\
   while((c=getc(ficpar))=='#' && c!= EOF){                    double jprev1, double mprev1,double anprev1, \
     ungetc(c,ficpar);                    double jprev2, double mprev2,double anprev2){
     fgets(line, MAXLINE, ficpar);    int jj1, k1, i1, cpt;
     puts(line);  
     fputs(line,ficparo);     fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
   }     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   ungetc(c,ficpar);  </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);     fprintf(fichtm,"\
   while((c=getc(ficpar))=='#' && c!= EOF){   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
     ungetc(c,ficpar);             stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
     fgets(line, MAXLINE, ficpar);     fprintf(fichtm,"\
     puts(line);   - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
     fputs(line,ficparo);             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
   }     fprintf(fichtm,"\
   ungetc(c,ficpar);   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
        <a href=\"%s\">%s</a> <br>\n",
                 estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   covar=matrix(0,NCOVMAX,1,n);      fprintf(fichtm,"\
   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/   - Population projections by age and states: \
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;     <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  
      m=cptcoveff;
   /* Read guess parameters */   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){   jj1=0;
     ungetc(c,ficpar);   for(k1=1; k1<=m;k1++){
     fgets(line, MAXLINE, ficpar);     for(i1=1; i1<=ncodemax[k1];i1++){
     puts(line);       jj1++;
     fputs(line,ficparo);       if (cptcovn > 0) {
   }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   ungetc(c,ficpar);         for (cpt=1; cpt<=cptcoveff;cpt++)
              fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   for(i=1; i <=nlstate; i++)       }
     for(j=1; j <=nlstate+ndeath-1; j++){       /* Pij */
       fscanf(ficpar,"%1d%1d",&i1,&j1);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
       fprintf(ficparo,"%1d%1d",i1,j1);  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);    
       if(mle==1)       /* Quasi-incidences */
         printf("%1d%1d",i,j);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
       fprintf(ficlog,"%1d%1d",i,j);   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
       for(k=1; k<=ncovmodel;k++){  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);
         fscanf(ficpar," %lf",&param[i][j][k]);         /* Period (stable) prevalence in each health state */
         if(mle==1){         for(cpt=1; cpt<nlstate;cpt++){
           printf(" %lf",param[i][j][k]);           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
           fprintf(ficlog," %lf",param[i][j][k]);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
         }         }
         else       for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(ficlog," %lf",param[i][j][k]);          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
         fprintf(ficparo," %lf",param[i][j][k]);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
       }       }
       fscanf(ficpar,"\n");     } /* end i1 */
       if(mle==1)   }/* End k1 */
         printf("\n");   fprintf(fichtm,"</ul>");
       fprintf(ficlog,"\n");  
       fprintf(ficparo,"\n");  
     }   fprintf(fichtm,"\
     \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
   p=param[1][1];   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   /* Reads comments: lines beginning with '#' */   fprintf(fichtm,"\
   while((c=getc(ficpar))=='#' && c!= EOF){   - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
     ungetc(c,ficpar);           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
     fgets(line, MAXLINE, ficpar);  
     puts(line);   fprintf(fichtm,"\
     fputs(line,ficparo);   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   }           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
   ungetc(c,ficpar);   fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);     <a href=\"%s\">%s</a> <br>\n</li>",
   /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */             estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
   for(i=1; i <=nlstate; i++){   fprintf(fichtm,"\
     for(j=1; j <=nlstate+ndeath-1; j++){   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
       fscanf(ficpar,"%1d%1d",&i1,&j1);     <a href=\"%s\">%s</a> <br>\n</li>",
       printf("%1d%1d",i,j);             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
       fprintf(ficparo,"%1d%1d",i1,j1);   fprintf(fichtm,"\
       for(k=1; k<=ncovmodel;k++){   - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
         fscanf(ficpar,"%le",&delti3[i][j][k]);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
         printf(" %le",delti3[i][j][k]);   fprintf(fichtm,"\
         fprintf(ficparo," %le",delti3[i][j][k]);   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
       }           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
       fscanf(ficpar,"\n");   fprintf(fichtm,"\
       printf("\n");   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
       fprintf(ficparo,"\n");           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
     }  
   }  /*  if(popforecast==1) fprintf(fichtm,"\n */
   delti=delti3[1][1];  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */  /*  else  */
     /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   /* Reads comments: lines beginning with '#' */   fflush(fichtm);
   while((c=getc(ficpar))=='#' && c!= EOF){   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);   m=cptcoveff;
     puts(line);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     fputs(line,ficparo);  
   }   jj1=0;
   ungetc(c,ficpar);   for(k1=1; k1<=m;k1++){
        for(i1=1; i1<=ncodemax[k1];i1++){
   matcov=matrix(1,npar,1,npar);       jj1++;
   for(i=1; i <=npar; i++){       if (cptcovn > 0) {
     fscanf(ficpar,"%s",&str);         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
     if(mle==1)         for (cpt=1; cpt<=cptcoveff;cpt++)
       printf("%s",str);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
     fprintf(ficlog,"%s",str);         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
     fprintf(ficparo,"%s",str);       }
     for(j=1; j <=i; j++){       for(cpt=1; cpt<=nlstate;cpt++) {
       fscanf(ficpar," %le",&matcov[i][j]);         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
       if(mle==1){  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
         printf(" %.5le",matcov[i][j]);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
         fprintf(ficlog," %.5le",matcov[i][j]);       }
       }       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
       else  health expectancies in states (1) and (2): %s%d.png<br>\
         fprintf(ficlog," %.5le",matcov[i][j]);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
       fprintf(ficparo," %.5le",matcov[i][j]);     } /* end i1 */
     }   }/* End k1 */
     fscanf(ficpar,"\n");   fprintf(fichtm,"</ul>");
     if(mle==1)   fflush(fichtm);
       printf("\n");  }
     fprintf(ficlog,"\n");  
     fprintf(ficparo,"\n");  /******************* Gnuplot file **************/
   }  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   for(i=1; i <=npar; i++)  
     for(j=i+1;j<=npar;j++)    char dirfileres[132],optfileres[132];
       matcov[i][j]=matcov[j][i];    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
        int ng;
   if(mle==1)  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
     printf("\n");  /*     printf("Problem with file %s",optionfilegnuplot); */
   fprintf(ficlog,"\n");  /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
   /*-------- Rewriting paramater file ----------*/    /*#ifdef windows */
   strcpy(rfileres,"r");    /* "Rparameterfile */    fprintf(ficgp,"cd \"%s\" \n",pathc);
   strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      /*#endif */
   strcat(rfileres,".");    /* */    m=pow(2,cptcoveff);
   strcat(rfileres,optionfilext);    /* Other files have txt extension */  
   if((ficres =fopen(rfileres,"w"))==NULL) {    strcpy(dirfileres,optionfilefiname);
     printf("Problem writing new parameter file: %s\n", fileres);goto end;    strcpy(optfileres,"vpl");
     fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;   /* 1eme*/
   }    for (cpt=1; cpt<= nlstate ; cpt ++) {
   fprintf(ficres,"#%s\n",version);     for (k1=1; k1<= m ; k1 ++) {
            fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
   /*-------- data file ----------*/       fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
   if((fic=fopen(datafile,"r"))==NULL)    {       fprintf(ficgp,"set xlabel \"Age\" \n\
     printf("Problem with datafile: %s\n", datafile);goto end;  set ylabel \"Probability\" \n\
     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;  set ter png small\n\
   }  set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   n= lastobs;  
   severity = vector(1,maxwav);       for (i=1; i<= nlstate ; i ++) {
   outcome=imatrix(1,maxwav+1,1,n);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   num=ivector(1,n);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   moisnais=vector(1,n);       }
   annais=vector(1,n);       fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   moisdc=vector(1,n);       for (i=1; i<= nlstate ; i ++) {
   andc=vector(1,n);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   agedc=vector(1,n);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   cod=ivector(1,n);       }
   weight=vector(1,n);       fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */       for (i=1; i<= nlstate ; i ++) {
   mint=matrix(1,maxwav,1,n);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   anint=matrix(1,maxwav,1,n);         else fprintf(ficgp," \%%*lf (\%%*lf)");
   s=imatrix(1,maxwav+1,1,n);       }  
   tab=ivector(1,NCOVMAX);       fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
   ncodemax=ivector(1,8);     }
     }
   i=1;    /*2 eme*/
   while (fgets(line, MAXLINE, fic) != NULL)    {   
     if ((i >= firstobs) && (i <=lastobs)) {    for (k1=1; k1<= m ; k1 ++) {
               fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       for (j=maxwav;j>=1;j--){      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
         cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      
         strcpy(line,stra);      for (i=1; i<= nlstate+1 ; i ++) {
         cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        k=2*i;
         cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
       }        for (j=1; j<= nlstate+1 ; j ++) {
                   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          else fprintf(ficgp," \%%*lf (\%%*lf)");
       cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);        }  
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
       cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
       cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
       cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       for (j=ncovcol;j>=1;j--){          else fprintf(ficgp," \%%*lf (\%%*lf)");
         cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        }  
       }         fprintf(ficgp,"\" t\"\" w l 0,");
       num[i]=atol(stra);        fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
                 for (j=1; j<= nlstate+1 ; j ++) {
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
         printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          else fprintf(ficgp," \%%*lf (\%%*lf)");
         }  
       i=i+1;        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
     }        else fprintf(ficgp,"\" t\"\" w l 0,");
   }      }
   /* printf("ii=%d", ij);    }
      scanf("%d",i);*/   
   imx=i-1; /* Number of individuals */    /*3eme*/
    
   /* for (i=1; i<=imx; i++){    for (k1=1; k1<= m ; k1 ++) {
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      for (cpt=1; cpt<= nlstate ; cpt ++) {
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        /*       k=2+nlstate*(2*cpt-2); */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;        k=2+(nlstate+1)*(cpt-1);
     }*/        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
    /*  for (i=1; i<=imx; i++){        fprintf(ficgp,"set ter png small\n\
      if (s[4][i]==9)  s[4][i]=-1;   set size 0.65,0.65\n\
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/  plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
           /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
  for (i=1; i<=imx; i++)          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
            fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
      else weight[i]=1;*/          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   /* Calculation of the number of parameter from char model*/         
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */        */
   Tprod=ivector(1,15);         for (i=1; i< nlstate ; i ++) {
   Tvaraff=ivector(1,15);           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
   Tvard=imatrix(1,15,1,2);          /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
   Tage=ivector(1,15);               
            }
   if (strlen(model) >1){ /* If there is at least 1 covariate */        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
     j=0, j1=0, k1=1, k2=1;      }
     j=nbocc(model,'+'); /* j=Number of '+' */    }
     j1=nbocc(model,'*'); /* j1=Number of '*' */   
     cptcovn=j+1;     /* CV preval stable (period) */
     cptcovprod=j1; /*Number of products */    for (k1=1; k1<= m ; k1 ++) {
           for (cpt=1; cpt<=nlstate ; cpt ++) {
     strcpy(modelsav,model);         k=3;
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
       printf("Error. Non available option model=%s ",model);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
       fprintf(ficlog,"Error. Non available option model=%s ",model);  set ter png small\nset size 0.65,0.65\n\
       goto end;  unset log y\n\
     }  plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
            
     /* This loop fills the array Tvar from the string 'model'.*/        for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
     for(i=(j+1); i>=1;i--){        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */        
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */        l=3+(nlstate+ndeath)*cpt;
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
       /*scanf("%d",i);*/        for (i=1; i< nlstate ; i ++) {
       if (strchr(strb,'*')) {  /* Model includes a product */          l=3+(nlstate+ndeath)*cpt;
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/          fprintf(ficgp,"+$%d",l+i+1);
         if (strcmp(strc,"age")==0) { /* Vn*age */        }
           cptcovprod--;        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
           cutv(strb,stre,strd,'V');      }
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/    }  
           cptcovage++;   
             Tage[cptcovage]=i;    /* proba elementaires */
             /*printf("stre=%s ", stre);*/    for(i=1,jk=1; i <=nlstate; i++){
         }      for(k=1; k <=(nlstate+ndeath); k++){
         else if (strcmp(strd,"age")==0) { /* or age*Vn */        if (k != i) {
           cptcovprod--;          for(j=1; j <=ncovmodel; j++){
           cutv(strb,stre,strc,'V');            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
           Tvar[i]=atoi(stre);            jk++;
           cptcovage++;            fprintf(ficgp,"\n");
           Tage[cptcovage]=i;          }
         }        }
         else {  /* Age is not in the model */      }
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/     }
           Tvar[i]=ncovcol+k1;  
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
           Tprod[k1]=i;       for(jk=1; jk <=m; jk++) {
           Tvard[k1][1]=atoi(strc); /* m*/         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng);
           Tvard[k1][2]=atoi(stre); /* n */         if (ng==2)
           Tvar[cptcovn+k2]=Tvard[k1][1];           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
           Tvar[cptcovn+k2+1]=Tvard[k1][2];          else
           for (k=1; k<=lastobs;k++)            fprintf(ficgp,"\nset title \"Probability\"\n");
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
           k1++;         i=1;
           k2=k2+2;         for(k2=1; k2<=nlstate; k2++) {
         }           k3=i;
       }           for(k=1; k<=(nlstate+ndeath); k++) {
       else { /* no more sum */             if (k != k2){
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/               if(ng==2)
        /*  scanf("%d",i);*/                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
       cutv(strd,strc,strb,'V');               else
       Tvar[i]=atoi(strc);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
       }               ij=1;
       strcpy(modelsav,stra);                 for(j=3; j <=ncovmodel; j++) {
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
         scanf("%d",i);*/                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     } /* end of loop + */                   ij++;
   } /* end model */                 }
                    else
   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/               }
                fprintf(ficgp,")/(1");
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);               
   printf("cptcovprod=%d ", cptcovprod);               for(k1=1; k1 <=nlstate; k1++){  
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
   scanf("%d ",i);                 for(j=3; j <=ncovmodel; j++){
   fclose(fic);*/                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     /*  if(mle==1){*/                     ij++;
   if (weightopt != 1) { /* Maximisation without weights*/                   }
     for(i=1;i<=n;i++) weight[i]=1.0;                   else
   }                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     /*-calculation of age at interview from date of interview and age at death -*/                 }
   agev=matrix(1,maxwav,1,imx);                 fprintf(ficgp,")");
                }
   for (i=1; i<=imx; i++) {               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
     for(m=2; (m<= maxwav); m++) {               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
       if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){               i=i+ncovmodel;
         anint[m][i]=9999;             }
         s[m][i]=-1;           } /* end k */
       }         } /* end k2 */
       if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;       } /* end jk */
     }     } /* end ng */
   }     fflush(ficgp);
   }  /* end gnuplot */
   for (i=1; i<=imx; i++)  {  
     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  
     for(m=firstpass; (m<= lastpass); m++){  /*************** Moving average **************/
       if(s[m][i] >0){  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
         if (s[m][i] >= nlstate+1) {  
           if(agedc[i]>0)    int i, cpt, cptcod;
             if(moisdc[i]!=99 && andc[i]!=9999)    int modcovmax =1;
               agev[m][i]=agedc[i];    int mobilavrange, mob;
           /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    double age;
             else {  
               if (andc[i]!=9999){    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
                 printf("Warning negative age at death: %d line:%d\n",num[i],i);                             a covariate has 2 modalities */
                 fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
                 agev[m][i]=-1;  
               }    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
             }      if(mobilav==1) mobilavrange=5; /* default */
         }      else mobilavrange=mobilav;
         else if(s[m][i] !=9){ /* Standard case, age in fractional      for (age=bage; age<=fage; age++)
                                  years but with the precision of a        for (i=1; i<=nlstate;i++)
                                  month */          for (cptcod=1;cptcod<=modcovmax;cptcod++)
           agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
           if(mint[m][i]==99 || anint[m][i]==9999)      /* We keep the original values on the extreme ages bage, fage and for
             agev[m][i]=1;         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
           else if(agev[m][i] <agemin){          we use a 5 terms etc. until the borders are no more concerned.
             agemin=agev[m][i];      */
             /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      for (mob=3;mob <=mobilavrange;mob=mob+2){
           }        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           else if(agev[m][i] >agemax){          for (i=1; i<=nlstate;i++){
             agemax=agev[m][i];            for (cptcod=1;cptcod<=modcovmax;cptcod++){
             /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
           }                for (cpt=1;cpt<=(mob-1)/2;cpt++){
           /*agev[m][i]=anint[m][i]-annais[i];*/                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
           /*     agev[m][i] = age[i]+2*m;*/                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
         }                }
         else { /* =9 */              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
           agev[m][i]=1;            }
           s[m][i]=-1;          }
         }        }/* end age */
       }      }/* end mob */
       else /*= 0 Unknown */    }else return -1;
         agev[m][i]=1;    return 0;
     }  }/* End movingaverage */
       
   }  
   for (i=1; i<=imx; i++)  {  /************** Forecasting ******************/
     for(m=firstpass; (m<=lastpass); m++){  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
       if (s[m][i] > (nlstate+ndeath)) {    /* proj1, year, month, day of starting projection
         printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);            agemin, agemax range of age
         fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);            dateprev1 dateprev2 range of dates during which prevalence is computed
         goto end;       anproj2 year of en of projection (same day and month as proj1).
       }    */
     }    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   }    int *popage;
     double agec; /* generic age */
   /*for (i=1; i<=imx; i++){    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
   for (m=firstpass; (m<lastpass); m++){    double *popeffectif,*popcount;
      printf("%d %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);    double ***p3mat;
 }    double ***mobaverage;
     char fileresf[FILENAMELENGTH];
 }*/  
     agelim=AGESUP;
   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    
     strcpy(fileresf,"f");
   free_vector(severity,1,maxwav);    strcat(fileresf,fileres);
   free_imatrix(outcome,1,maxwav+1,1,n);    if((ficresf=fopen(fileresf,"w"))==NULL) {
   free_vector(moisnais,1,n);      printf("Problem with forecast resultfile: %s\n", fileresf);
   free_vector(annais,1,n);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
   /* free_matrix(mint,1,maxwav,1,n);    }
      free_matrix(anint,1,maxwav,1,n);*/    printf("Computing forecasting: result on file '%s' \n", fileresf);
   free_vector(moisdc,1,n);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   free_vector(andc,1,n);  
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
      
   wav=ivector(1,imx);    if (mobilav!=0) {
   dh=imatrix(1,lastpass-firstpass+1,1,imx);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   bh=imatrix(1,lastpass-firstpass+1,1,imx);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   mw=imatrix(1,lastpass-firstpass+1,1,imx);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
            printf(" Error in movingaverage mobilav=%d\n",mobilav);
   /* Concatenates waves */      }
   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    }
   
   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */    stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
   Tcode=ivector(1,100);    if(estepm < stepm){
   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);       printf ("Problem %d lower than %d\n",estepm, stepm);
   ncodemax[1]=1;    }
   if (cptcovn > 0) tricode(Tvar,nbcode,imx);    else  hstepm=estepm;  
         
   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of     hstepm=hstepm/stepm;
                                  the estimations*/    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
   h=0;                                 fractional in yp1 */
   m=pow(2,cptcoveff);    anprojmean=yp;
      yp2=modf((yp1*12),&yp);
   for(k=1;k<=cptcoveff; k++){    mprojmean=yp;
     for(i=1; i <=(m/pow(2,k));i++){    yp1=modf((yp2*30.5),&yp);
       for(j=1; j <= ncodemax[k]; j++){    jprojmean=yp;
         for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    if(jprojmean==0) jprojmean=1;
           h++;    if(mprojmean==0) jprojmean=1;
           if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;  
           /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/    i1=cptcoveff;
         }     if (cptcovn < 1){i1=1;}
       }   
     }    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
   }    
   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);     fprintf(ficresf,"#****** Routine prevforecast **\n");
      codtab[1][2]=1;codtab[2][2]=2; */  
   /* for(i=1; i <=m ;i++){   /*            if (h==(int)(YEARM*yearp)){ */
      for(k=1; k <=cptcovn; k++){    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
      }        k=k+1;
      printf("\n");        fprintf(ficresf,"\n#******");
      }        for(j=1;j<=cptcoveff;j++) {
      scanf("%d",i);*/          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             }
   /* Calculates basic frequencies. Computes observed prevalence at single age        fprintf(ficresf,"******\n");
      and prints on file fileres'p'. */        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(i=1; i<=nlstate;i++)              
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            fprintf(ficresf," p%d%d",i,j);
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          fprintf(ficresf," p.%d",j);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
               fprintf(ficresf,"\n");
              fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);  
   /* For Powell, parameters are in a vector p[] starting at p[1]  
      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          for (agec=fage; agec>=(ageminpar-1); agec--){
   p=param[1][1]; /* *(*(*(param +1)+1)+0) */            nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
             nhstepm = nhstepm/hstepm;
   if(mle>=1){ /* Could be 1 or 2 */            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);            oldm=oldms;savm=savms;
   }            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
              
   /*--------- results files --------------*/            for (h=0; h<=nhstepm; h++){
   fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);              if (h*hstepm/YEARM*stepm ==yearp) {
                   fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++)
   jk=1;                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
   fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");              }
   fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");              for(j=1; j<=nlstate+ndeath;j++) {
   for(i=1,jk=1; i <=nlstate; i++){                ppij=0.;
     for(k=1; k <=(nlstate+ndeath); k++){                for(i=1; i<=nlstate;i++) {
       if (k != i)                   if (mobilav==1)
         {                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
           printf("%d%d ",i,k);                  else {
           fprintf(ficlog,"%d%d ",i,k);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
           fprintf(ficres,"%1d%1d ",i,k);                  }
           for(j=1; j <=ncovmodel; j++){                  if (h*hstepm/YEARM*stepm== yearp) {
             printf("%f ",p[jk]);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
             fprintf(ficlog,"%f ",p[jk]);                  }
             fprintf(ficres,"%f ",p[jk]);                } /* end i */
             jk++;                 if (h*hstepm/YEARM*stepm==yearp) {
           }                  fprintf(ficresf," %.3f", ppij);
           printf("\n");                }
           fprintf(ficlog,"\n");              }/* end j */
           fprintf(ficres,"\n");            } /* end h */
         }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }          } /* end agec */
   }        } /* end yearp */
   if(mle==1){      } /* end cptcod */
     /* Computing hessian and covariance matrix */    } /* end  cptcov */
     ftolhess=ftol; /* Usually correct */         
     hesscov(matcov, p, npar, delti, ftolhess, func);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }  
   fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    fclose(ficresf);
   printf("# Scales (for hessian or gradient estimation)\n");  }
   fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");  
   for(i=1,jk=1; i <=nlstate; i++){  /************** Forecasting *****not tested NB*************/
     for(j=1; j <=nlstate+ndeath; j++){  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
       if (j!=i) {   
         fprintf(ficres,"%1d%1d",i,j);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
         printf("%1d%1d",i,j);    int *popage;
         fprintf(ficlog,"%1d%1d",i,j);    double calagedatem, agelim, kk1, kk2;
         for(k=1; k<=ncovmodel;k++){    double *popeffectif,*popcount;
           printf(" %.5e",delti[jk]);    double ***p3mat,***tabpop,***tabpopprev;
           fprintf(ficlog," %.5e",delti[jk]);    double ***mobaverage;
           fprintf(ficres," %.5e",delti[jk]);    char filerespop[FILENAMELENGTH];
           jk++;  
         }    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         printf("\n");    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         fprintf(ficlog,"\n");    agelim=AGESUP;
         fprintf(ficres,"\n");    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
       }   
     }    prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   }   
       
   fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    strcpy(filerespop,"pop");
   if(mle==1)    strcat(filerespop,fileres);
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");    if((ficrespop=fopen(filerespop,"w"))==NULL) {
   fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      printf("Problem with forecast resultfile: %s\n", filerespop);
   for(i=1,k=1;i<=npar;i++){      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     /*  if (k>nlstate) k=1;    }
         i1=(i-1)/(ncovmodel*nlstate)+1;     printf("Computing forecasting: result on file '%s' \n", filerespop);
         fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
         printf("%s%d%d",alph[k],i1,tab[i]);  
     */    if (cptcoveff==0) ncodemax[cptcoveff]=1;
     fprintf(ficres,"%3d",i);  
     if(mle==1)    if (mobilav!=0) {
       printf("%3d",i);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fprintf(ficlog,"%3d",i);      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
     for(j=1; j<=i;j++){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
       fprintf(ficres," %.5e",matcov[i][j]);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       if(mle==1)      }
         printf(" %.5e",matcov[i][j]);    }
       fprintf(ficlog," %.5e",matcov[i][j]);  
     }    stepsize=(int) (stepm+YEARM-1)/YEARM;
     fprintf(ficres,"\n");    if (stepm<=12) stepsize=1;
     if(mle==1)   
       printf("\n");    agelim=AGESUP;
     fprintf(ficlog,"\n");   
     k++;    hstepm=1;
   }    hstepm=hstepm/stepm;
       
   while((c=getc(ficpar))=='#' && c!= EOF){    if (popforecast==1) {
     ungetc(c,ficpar);      if((ficpop=fopen(popfile,"r"))==NULL) {
     fgets(line, MAXLINE, ficpar);        printf("Problem with population file : %s\n",popfile);exit(0);
     puts(line);        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
     fputs(line,ficparo);      }
   }      popage=ivector(0,AGESUP);
   ungetc(c,ficpar);      popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
   estepm=0;     
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);      i=1;  
   if (estepm==0 || estepm < stepm) estepm=stepm;      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
   if (fage <= 2) {     
     bage = ageminpar;      imx=i;
     fage = agemaxpar;      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
   }    }
      
   fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
   fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);        k=k+1;
            fprintf(ficrespop,"\n#******");
   while((c=getc(ficpar))=='#' && c!= EOF){        for(j=1;j<=cptcoveff;j++) {
     ungetc(c,ficpar);          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     fgets(line, MAXLINE, ficpar);        }
     puts(line);        fprintf(ficrespop,"******\n");
     fputs(line,ficparo);        fprintf(ficrespop,"# Age");
   }        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
   ungetc(c,ficpar);        if (popforecast==1)  fprintf(ficrespop," [Population]");
          
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);        for (cpt=0; cpt<=0;cpt++) {
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
   fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);         
   printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
   fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
                nhstepm = nhstepm/hstepm;
   while((c=getc(ficpar))=='#' && c!= EOF){           
     ungetc(c,ficpar);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     fgets(line, MAXLINE, ficpar);            oldm=oldms;savm=savms;
     puts(line);            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
     fputs(line,ficparo);         
   }            for (h=0; h<=nhstepm; h++){
   ungetc(c,ficpar);              if (h==(int) (calagedatem+YEARM*cpt)) {
                  fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               }
   dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;              for(j=1; j<=nlstate+ndeath;j++) {
   dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;                kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
   fscanf(ficpar,"pop_based=%d\n",&popbased);                  if (mobilav==1)
   fprintf(ficparo,"pop_based=%d\n",popbased);                       kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   fprintf(ficres,"pop_based=%d\n",popbased);                     else {
                       kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
   while((c=getc(ficpar))=='#' && c!= EOF){                  }
     ungetc(c,ficpar);                }
     fgets(line, MAXLINE, ficpar);                if (h==(int)(calagedatem+12*cpt)){
     puts(line);                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
     fputs(line,ficparo);                    /*fprintf(ficrespop," %.3f", kk1);
   }                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   ungetc(c,ficpar);                }
               }
   fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);              for(i=1; i<=nlstate;i++){
   fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);                kk1=0.;
   printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);                  for(j=1; j<=nlstate;j++){
   fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
   fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);                  }
   /* day and month of proj2 are not used but only year anproj2.*/                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++)
     fgets(line, MAXLINE, ficpar);                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
     puts(line);            }
     fputs(line,ficparo);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }          }
   ungetc(c,ficpar);        }
    
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    /******/
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);  
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
             nhstepm = nhstepm/hstepm;
   /*------------ gnuplot -------------*/           
   strcpy(optionfilegnuplot,optionfilefiname);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcat(optionfilegnuplot,".gp");            oldm=oldms;savm=savms;
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
     printf("Problem with file %s",optionfilegnuplot);            for (h=0; h<=nhstepm; h++){
   }              if (h==(int) (calagedatem+YEARM*cpt)) {
   else{                fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     fprintf(ficgp,"\n# %s\n", version);               }
     fprintf(ficgp,"# %s\n", optionfilegnuplot);               for(j=1; j<=nlstate+ndeath;j++) {
     fprintf(ficgp,"set missing 'NaNq'\n");                kk1=0.;kk2=0;
   }                for(i=1; i<=nlstate;i++) {              
   fclose(ficgp);                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
   printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);                }
   /*--------- index.htm --------*/                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
   strcpy(optionfilehtm,optionfile);            }
   strcat(optionfilehtm,".htm");            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          }
     printf("Problem with %s \n",optionfilehtm), exit(0);        }
   }     }
     }
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n   
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 \n  
 Total number of observations=%d <br>\n    if (popforecast==1) {
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n      free_ivector(popage,0,AGESUP);
 <hr  size=\"2\" color=\"#EC5E5E\">      free_vector(popeffectif,0,AGESUP);
  <ul><li><h4>Parameter files</h4>\n      free_vector(popcount,0,AGESUP);
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    }
  - Log file of the run: <a href=\"%s\">%s</a><br>\n    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    fclose(fichtm);    fclose(ficrespop);
   } /* End of popforecast */
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);  
    int fileappend(FILE *fichier, char *optionfich)
   /*------------ free_vector  -------------*/  {
   chdir(path);    if((fichier=fopen(optionfich,"a"))==NULL) {
        printf("Problem with file: %s\n", optionfich);
   free_ivector(wav,1,imx);      fprintf(ficlog,"Problem with file: %s\n", optionfich);
   free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      return (0);
   free_imatrix(bh,1,lastpass-firstpass+1,1,imx);    }
   free_imatrix(mw,1,lastpass-firstpass+1,1,imx);       fflush(fichier);
   free_ivector(num,1,n);    return (1);
   free_vector(agedc,1,n);  }
   /*free_matrix(covar,0,NCOVMAX,1,n);*/  
   /*free_matrix(covar,1,NCOVMAX,1,n);*/  
   fclose(ficparo);  /**************** function prwizard **********************/
   fclose(ficres);  void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
   /*--------------- Prevalence limit  (stable prevalence) --------------*/    /* Wizard to print covariance matrix template */
     
   strcpy(filerespl,"pl");    char ca[32], cb[32], cc[32];
   strcat(filerespl,fileres);    int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    int numlinepar;
     printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;  
     fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   }    fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
   printf("Computing stable prevalence: result on file '%s' \n", filerespl);    for(i=1; i <=nlstate; i++){
   fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);      jj=0;
   fprintf(ficrespl,"#Stable prevalence \n");      for(j=1; j <=nlstate+ndeath; j++){
   fprintf(ficrespl,"#Age ");        if(j==i) continue;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        jj++;
   fprintf(ficrespl,"\n");        /*ca[0]= k+'a'-1;ca[1]='\0';*/
           printf("%1d%1d",i,j);
   prlim=matrix(1,nlstate,1,nlstate);        fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
   agebase=ageminpar;          /*        printf(" %lf",param[i][j][k]); */
   agelim=agemaxpar;          /*        fprintf(ficparo," %lf",param[i][j][k]); */
   ftolpl=1.e-10;          printf(" 0.");
   i1=cptcoveff;          fprintf(ficparo," 0.");
   if (cptcovn < 1){i1=1;}        }
         printf("\n");
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){        fprintf(ficparo,"\n");
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      }
       k=k+1;    }
       /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficrespl,"\n#******");    fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
       printf("\n#******");    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
       fprintf(ficlog,"\n#******");    for(i=1; i <=nlstate; i++){
       for(j=1;j<=cptcoveff;j++) {      jj=0;
         fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      for(j=1; j <=nlstate+ndeath; j++){
         printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        if(j==i) continue;
         fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        jj++;
       }        fprintf(ficparo,"%1d%1d",i,j);
       fprintf(ficrespl,"******\n");        printf("%1d%1d",i,j);
       printf("******\n");        fflush(stdout);
       fprintf(ficlog,"******\n");        for(k=1; k<=ncovmodel;k++){
                   /*      printf(" %le",delti3[i][j][k]); */
       for (age=agebase; age<=agelim; age++){          /*      fprintf(ficparo," %le",delti3[i][j][k]); */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          printf(" 0.");
         fprintf(ficrespl,"%.0f ",age );          fprintf(ficparo," 0.");
         for(j=1;j<=cptcoveff;j++)        }
           fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        numlinepar++;
         for(i=1; i<=nlstate;i++)        printf("\n");
           fprintf(ficrespl," %.5f", prlim[i][i]);        fprintf(ficparo,"\n");
         fprintf(ficrespl,"\n");      }
       }    }
     }    printf("# Covariance matrix\n");
   }  /* # 121 Var(a12)\n\ */
   fclose(ficrespl);  /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /*------------- h Pij x at various ages ------------*/  /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);  /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;  /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;    fflush(stdout);
   }    fprintf(ficparo,"# Covariance matrix\n");
   printf("Computing pij: result on file '%s' \n", filerespij);    /* # 121 Var(a12)\n\ */
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);    /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* #   ...\n\ */
   stepsize=(int) (stepm+YEARM-1)/YEARM;    /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
   /*if (stepm<=24) stepsize=2;*/   
     for(itimes=1;itimes<=2;itimes++){
   agelim=AGESUP;      jj=0;
   hstepm=stepsize*YEARM; /* Every year of age */      for(i=1; i <=nlstate; i++){
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
   /* hstepm=1;   aff par mois*/          for(k=1; k<=ncovmodel;k++){
             jj++;
   fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");            ca[0]= k+'a'-1;ca[1]='\0';
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){            if(itimes==1){
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              printf("#%1d%1d%d",i,j,k);
       k=k+1;              fprintf(ficparo,"#%1d%1d%d",i,j,k);
       fprintf(ficrespij,"\n#****** ");            }else{
       for(j=1;j<=cptcoveff;j++)               printf("%1d%1d%d",i,j,k);
         fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              fprintf(ficparo,"%1d%1d%d",i,j,k);
       fprintf(ficrespij,"******\n");              /*  printf(" %.5le",matcov[i][j]); */
                     }
       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */            ll=0;
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */             for(li=1;li <=nlstate; li++){
         nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */              for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
         /*        nhstepm=nhstepm*YEARM; aff par mois*/                for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                  if(ll<=jj){
         oldm=oldms;savm=savms;                    cb[0]= lk +'a'-1;cb[1]='\0';
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                      if(ll<jj){
         fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");                      if(itimes==1){
         for(i=1; i<=nlstate;i++)                        printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
           for(j=1; j<=nlstate+ndeath;j++)                        fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
             fprintf(ficrespij," %1d-%1d",i,j);                      }else{
         fprintf(ficrespij,"\n");                        printf(" 0.");
         for (h=0; h<=nhstepm; h++){                        fprintf(ficparo," 0.");
           fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                      }
           for(i=1; i<=nlstate;i++)                    }else{
             for(j=1; j<=nlstate+ndeath;j++)                      if(itimes==1){
               fprintf(ficrespij," %.5f", p3mat[i][j][h]);                        printf(" Var(%s%1d%1d)",ca,i,j);
           fprintf(ficrespij,"\n");                        fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
         }                      }else{
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                        printf(" 0.");
         fprintf(ficrespij,"\n");                        fprintf(ficparo," 0.");
       }                      }
     }                    }
   }                  }
                 } /* end lk */
   varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);              } /* end lj */
             } /* end li */
   fclose(ficrespij);            printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
   /*---------- Forecasting ------------------*/          } /* end k*/
   /*if((stepm == 1) && (strcmp(model,".")==0)){*/        } /*end j */
   if(prevfcast==1){      } /* end i */
     /*    if(stepm ==1){*/    } /* end itimes */
       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);  
       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/  } /* end of prwizard */
 /*      }  */  /******************* Gompertz Likelihood ******************************/
 /*      else{ */  double gompertz(double x[])
 /*        erreur=108; */  {
 /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */    double A,B,L=0.0,sump=0.,num=0.;
 /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */    int i,n=0; /* n is the size of the sample */
 /*      } */  
   }    for (i=0;i<=imx-1 ; i++) {
         sump=sump+weight[i];
       /*    sump=sump+1;*/
   /*---------- Health expectancies and variances ------------*/      num=num+1;
     }
   strcpy(filerest,"t");   
   strcat(filerest,fileres);   
   if((ficrest=fopen(filerest,"w"))==NULL) {    /* for (i=0; i<=imx; i++)
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;       if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;  
   }    for (i=1;i<=imx ; i++)
   printf("Computing Total LEs with variances: file '%s' \n", filerest);       {
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
        
   strcpy(filerese,"e");        if (cens[i] == 0 && wav[i]>1)
   strcat(filerese,fileres);          A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
   if((ficreseij=fopen(filerese,"w"))==NULL) {               +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);       
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);        /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
   }        if (wav[i] > 1 ) { /* ??? */
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          L=L+A*weight[i];
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);          /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
   strcpy(fileresv,"v");      }
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);   
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);    return -2*L*num/sump;
   }  }
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
   /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */                    int lastpass, int stepm, int weightopt, char model[],\
   prevalence(agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);                    int imx,  double p[],double **matcov,double agemortsup){
   /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\    int i,k;
 ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);  
   */    fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
   if (mobilav!=0) {    for (i=1;i<=2;i++)
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){    fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);    fprintf(fichtm,"</ul>");
       printf(" Error in movingaverage mobilav=%d\n",mobilav);  
     }  fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   }  
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   for (k=agegomp;k<(agemortsup-2);k++)
       k=k+1;      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       fprintf(ficrest,"\n#****** ");  
       for(j=1;j<=cptcoveff;j++)    
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fflush(fichtm);
       fprintf(ficrest,"******\n");  }
   
       fprintf(ficreseij,"\n#****** ");  /******************* Gnuplot file **************/
       for(j=1;j<=cptcoveff;j++)   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficreseij,"******\n");    char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
       fprintf(ficresvij,"\n#****** ");    int ng;
       for(j=1;j<=cptcoveff;j++)   
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficresvij,"******\n");    /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      /*#endif */
       oldm=oldms;savm=savms;  
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);    
      strcpy(dirfileres,optionfilefiname);
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    strcpy(optfileres,"vpl");
       oldm=oldms;savm=savms;    fprintf(ficgp,"set out \"graphmort.png\"\n ");
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);    fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
       if(popbased==1){    fprintf(ficgp, "set ter png small\n set log y\n");
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);    fprintf(ficgp, "set size 0.65,0.65\n");
       }    fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
    }
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  
       fprintf(ficrest,"\n");  
   
       epj=vector(1,nlstate+1);  
       for(age=bage; age <=fage ;age++){  /***********************************************/
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  /**************** Main Program *****************/
         if (popbased==1) {  /***********************************************/
           if(mobilav ==0){  
             for(i=1; i<=nlstate;i++)  int main(int argc, char *argv[])
               prlim[i][i]=probs[(int)age][i][k];  {
           }else{ /* mobilav */     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
             for(i=1; i<=nlstate;i++)    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
               prlim[i][i]=mobaverage[(int)age][i][k];    int linei, month, year,iout;
           }    int jj, ll, li, lj, lk, imk;
         }    int numlinepar=0; /* Current linenumber of parameter file */
             int itimes;
         fprintf(ficrest," %4.0f",age);    int NDIM=2;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    char ca[32], cb[32], cc[32];
             epj[j] += prlim[i][i]*eij[i][j][(int)age];    char dummy[]="                         ";
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/    /*  FILE *fichtm; *//* Html File */
           }    /* FILE *ficgp;*/ /*Gnuplot File */
           epj[nlstate+1] +=epj[j];    struct stat info;
         }    double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
         for(i=1, vepp=0.;i <=nlstate;i++)  
           for(j=1;j <=nlstate;j++)    double fret;
             vepp += vareij[i][j][(int)age];    double **xi,tmp,delta;
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));  
         for(j=1;j <=nlstate;j++){    double dum; /* Dummy variable */
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));    double ***p3mat;
         }    double ***mobaverage;
         fprintf(ficrest,"\n");    int *indx;
       }    char line[MAXLINE], linepar[MAXLINE];
       free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
       free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    char pathr[MAXLINE], pathimach[MAXLINE];
       free_vector(epj,1,nlstate+1);    char **bp, *tok, *val; /* pathtot */
     }    int firstobs=1, lastobs=10;
   }    int sdeb, sfin; /* Status at beginning and end */
   free_vector(weight,1,n);    int c,  h , cpt,l;
   free_imatrix(Tvard,1,15,1,2);    int ju,jl, mi;
   free_imatrix(s,1,maxwav+1,1,n);    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
   free_matrix(anint,1,maxwav,1,n);     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
   free_matrix(mint,1,maxwav,1,n);    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
   free_ivector(cod,1,n);    int mobilav=0,popforecast=0;
   free_ivector(tab,1,NCOVMAX);    int hstepm, nhstepm;
   fclose(ficreseij);    int agemortsup;
   fclose(ficresvij);    float  sumlpop=0.;
   fclose(ficrest);    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
   fclose(ficpar);    double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
     
   /*------- Variance of stable prevalence------*/       double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
   strcpy(fileresvpl,"vpl");    double **prlim;
   strcat(fileresvpl,fileres);    double *severity;
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    double ***param; /* Matrix of parameters */
     printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);    double  *p;
     exit(0);    double **matcov; /* Matrix of covariance */
   }    double ***delti3; /* Scale */
   printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);    double *delti; /* Scale */
     double ***eij, ***vareij;
   for(cptcov=1,k=0;cptcov<=i1;cptcov++){    double **varpl; /* Variances of prevalence limits by age */
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double *epj, vepp;
       k=k+1;    double kk1, kk2;
       fprintf(ficresvpl,"\n#****** ");    double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
       for(j=1;j<=cptcoveff;j++)     double **ximort;
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    char *alph[]={"a","a","b","c","d","e"}, str[4];
       fprintf(ficresvpl,"******\n");    int *dcwave;
         
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    char z[1]="c", occ;
       oldm=oldms;savm=savms;  
       varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
       free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    char  *strt, strtend[80];
     }    char *stratrunc;
   }    int lstra;
   
   fclose(ficresvpl);    long total_usecs;
    
   /*---------- End : free ----------------*/  /*   setlocale (LC_ALL, ""); */
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  /*   textdomain (PACKAGE); */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  /*   setlocale (LC_CTYPE, ""); */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  /*   setlocale (LC_MESSAGES, ""); */
     
   free_matrix(covar,0,NCOVMAX,1,n);    /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
   free_matrix(matcov,1,npar,1,npar);    (void) gettimeofday(&start_time,&tzp);
   /*free_vector(delti,1,npar);*/    curr_time=start_time;
   free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);     tm = *localtime(&start_time.tv_sec);
   free_matrix(agev,1,maxwav,1,imx);    tmg = *gmtime(&start_time.tv_sec);
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    strcpy(strstart,asctime(&tm));
   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   free_ivector(ncodemax,1,8);  /*  tm = *localtime(&start_time.tv_sec); */
   free_ivector(Tvar,1,15);  /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   free_ivector(Tprod,1,15);  /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   free_ivector(Tvaraff,1,15);  /*   tmg.tm_hour=tmg.tm_hour + 1; */
   free_ivector(Tage,1,15);  /*   tp.tv_sec = mktime(&tmg); */
   free_ivector(Tcode,1,100);  /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  fclose(fichtm);*/  /*  (void) time (&time_value);
   /*  fclose(ficgp);*/ /* ALready done */  *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
     *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   if(erreur >0){  *  printf("tim_value=%d,asctime=%s\n",time_value,strstart);
     printf("End of Imach with error or warning %d\n",erreur);  */
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);  
   }else{    nberr=0; /* Number of errors and warnings */
    printf("End of Imach\n");    nbwarn=0;
    fprintf(ficlog,"End of Imach\n");    getcwd(pathcd, size);
   }  
   printf("See log file on %s\n",filelog);    printf("\n%s\n%s",version,fullversion);
   fclose(ficlog);    if(argc <=1){
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */      printf("\nEnter the parameter file name: ");
         fgets(pathr,FILENAMELENGTH,stdin);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/      i=strlen(pathr);
   /*printf("Total time was %d uSec.\n", total_usecs);*/      if(pathr[i-1]=='\n')
   /*------ End -----------*/        pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
   end:        printf("Pathr |%s|\n",pathr);
 #ifdef windows        while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
   /* chdir(pathcd);*/        printf("val= |%s| pathr=%s\n",val,pathr);
 #endif         strcpy (pathtot, val);
  /*system("wgnuplot graph.plt");*/        if(pathr[0] == '\0') break; /* Dirty */
  /*system("../gp37mgw/wgnuplot graph.plt");*/      }
  /*system("cd ../gp37mgw");*/    }
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/    else{
   strcpy(plotcmd,GNUPLOTPROGRAM);      strcpy(pathtot,argv[1]);
   strcat(plotcmd," ");    }
   strcat(plotcmd,optionfilegnuplot);    /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
   printf("Starting graphs with: %s",plotcmd);fflush(stdout);    /*cygwin_split_path(pathtot,path,optionfile);
   system(plotcmd);      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
   printf(" Wait...");    /* cutv(path,optionfile,pathtot,'\\');*/
   
  /*#ifdef windows*/    /* Split argv[0], imach program to get pathimach */
   while (z[0] != 'q') {    printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     /* chdir(path); */    split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");    printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     scanf("%s",z);   /*   strcpy(pathimach,argv[0]); */
     if (z[0] == 'c') system("./imach");    /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     else if (z[0] == 'e') system(optionfilehtm);    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     else if (z[0] == 'g') system(plotcmd);    printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     else if (z[0] == 'q') exit(0);    chdir(path); /* Can be a relative path */
   }    if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
   /*#endif */      printf("Current directory %s!\n",pathcd);
 }    strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
      
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
      
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
    
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
    
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
      
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
      
       fflush(ficlog);
      
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' ');
         errno=0;
         lval=strtol(strb,&endptr,10);
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
        
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year;
         mint[j][i]= (double)month;
         strcpy(line,stra);
       } /* ENd Waves */
      
       cutv(stra, strb,line,' ');
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year;
       moisdc[i]=(double) month;
       strcpy(line,stra);
      
       cutv(stra, strb,line,' ');
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month);
       strcpy(line,stra);
      
       cutv(stra, strb,line,' ');
       errno=0;
       dval=strtod(strb,&endptr);
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %ld, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         exit(1);
       }
       weight[i]=dval;
       strcpy(line,stra);
      
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' ');
         errno=0;
         lval=strtol(strb,&endptr,10);
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }
       lstra=strlen(stra);
      
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
      
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1;
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
    
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15);
     Tvaraff=ivector(1,15);
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1;
       cptcovprod=j1; /*Number of products */
      
       strcpy(modelsav,model);
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
      
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2];
             for (k=1; k<=lastobs;k++)
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
    
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
      
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
        
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           }
         }
       }
     }
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
      
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version);
       fprintf(ficgp,"# %s\n", optionfilegnuplot);
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
    
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
      
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.;
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1)
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
      
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
      
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
      
      
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort");
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
      
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
      
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz);
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
      
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
      
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++)
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
      
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
      
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
      
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
      
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
      
      
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++)
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
      
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
      
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
    
     else{ /* For mle >=1 */
    
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
      
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
      
      
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
      
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
      
      
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]);
                           fprintf(ficlog," %.5e",matcov[jj][ll]);
                           fprintf(ficres," %.5e",matcov[jj][ll]);
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
      
       fflush(ficlog);
       fflush(ficres);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
      
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
      
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
      
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);  
       fprintf(ficres,"pop_based=%d\n",popbased);  
      
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
      
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
      
      
      
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
      
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
        
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);  
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
    
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
    
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
          
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
    
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
    
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
          
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
    
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest);
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
          
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n);
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
    
       /*------- Variance of period (stable) prevalence------*/  
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
        
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
    
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend);
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend);
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
    
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.75  
changed lines
  Added in v.1.125


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>