Diff for /imach/src/imach.c between versions 1.48 and 1.76

version 1.48, 2002/06/10 13:12:49 version 1.76, 2003/05/16 10:44:42
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain     Interpolated Markov Chain
   
   Short summary of the programme:    Short summary of the programme:
      
   This program computes Healthy Life Expectancies from    This program computes Healthy Life Expectancies from
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   first survey ("cross") where individuals from different ages are    first survey ("cross") where individuals from different ages are
   interviewed on their health status or degree of disability (in the    interviewed on their health status or degree of disability (in the
   case of a health survey which is our main interest) -2- at least a    case of a health survey which is our main interest) -2- at least a
   second wave of interviews ("longitudinal") which measure each change    second wave of interviews ("longitudinal") which measure each change
   (if any) in individual health status.  Health expectancies are    (if any) in individual health status.  Health expectancies are
   computed from the time spent in each health state according to a    computed from the time spent in each health state according to a
   model. More health states you consider, more time is necessary to reach the    model. More health states you consider, more time is necessary to reach the
   Maximum Likelihood of the parameters involved in the model.  The    Maximum Likelihood of the parameters involved in the model.  The
   simplest model is the multinomial logistic model where pij is the    simplest model is the multinomial logistic model where pij is the
   probability to be observed in state j at the second wave    probability to be observed in state j at the second wave
   conditional to be observed in state i at the first wave. Therefore    conditional to be observed in state i at the first wave. Therefore
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   'age' is age and 'sex' is a covariate. If you want to have a more    'age' is age and 'sex' is a covariate. If you want to have a more
   complex model than "constant and age", you should modify the program    complex model than "constant and age", you should modify the program
   where the markup *Covariates have to be included here again* invites    where the markup *Covariates have to be included here again* invites
   you to do it.  More covariates you add, slower the    you to do it.  More covariates you add, slower the
   convergence.    convergence.
   
   The advantage of this computer programme, compared to a simple    The advantage of this computer programme, compared to a simple
   multinomial logistic model, is clear when the delay between waves is not    multinomial logistic model, is clear when the delay between waves is not
   identical for each individual. Also, if a individual missed an    identical for each individual. Also, if a individual missed an
   intermediate interview, the information is lost, but taken into    intermediate interview, the information is lost, but taken into
   account using an interpolation or extrapolation.      account using an interpolation or extrapolation.  
   
   hPijx is the probability to be observed in state i at age x+h    hPijx is the probability to be observed in state i at age x+h
   conditional to the observed state i at age x. The delay 'h' can be    conditional to the observed state i at age x. The delay 'h' can be
   split into an exact number (nh*stepm) of unobserved intermediate    split into an exact number (nh*stepm) of unobserved intermediate
   states. This elementary transition (by month or quarter trimester,    states. This elementary transition (by month, quarter,
   semester or year) is model as a multinomial logistic.  The hPx    semester or year) is modelled as a multinomial logistic.  The hPx
   matrix is simply the matrix product of nh*stepm elementary matrices    matrix is simply the matrix product of nh*stepm elementary matrices
   and the contribution of each individual to the likelihood is simply    and the contribution of each individual to the likelihood is simply
   hPijx.    hPijx.
   
   Also this programme outputs the covariance matrix of the parameters but also    Also this programme outputs the covariance matrix of the parameters but also
   of the life expectancies. It also computes the prevalence limits.    of the life expectancies. It also computes the stable prevalence. 
      
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
            Institut national d'études démographiques, Paris.             Institut national d'études démographiques, Paris.
   This software have been partly granted by Euro-REVES, a concerted action    This software have been partly granted by Euro-REVES, a concerted action
   from the European Union.    from the European Union.
   It is copyrighted identically to a GNU software product, ie programme and    It is copyrighted identically to a GNU software product, ie programme and
   software can be distributed freely for non commercial use. Latest version    software can be distributed freely for non commercial use. Latest version
   can be accessed at http://euroreves.ined.fr/imach .    can be accessed at http://euroreves.ined.fr/imach .
   **********************************************************************/  
      Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #include <math.h>    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #include <stdio.h>    
 #include <stdlib.h>    **********************************************************************/
 #include <unistd.h>  /*
     main
 #define MAXLINE 256    read parameterfile
 #define GNUPLOTPROGRAM "gnuplot"    read datafile
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    concatwav
 #define FILENAMELENGTH 80    if (mle >= 1)
 /*#define DEBUG*/      mlikeli
 #define windows    print results files
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    if mle==1 
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */       computes hessian
     read end of parameter file: agemin, agemax, bage, fage, estepm
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */        begin-prev-date,...
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    open gnuplot file
     open html file
 #define NINTERVMAX 8    stable prevalence
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */     for age prevalim()
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    h Pij x
 #define NCOVMAX 8 /* Maximum number of covariates */    variance of p varprob
 #define MAXN 20000    forecasting if prevfcast==1 prevforecast call prevalence()
 #define YEARM 12. /* Number of months per year */    health expectancies
 #define AGESUP 130    Variance-covariance of DFLE
 #define AGEBASE 40    prevalence()
 #ifdef windows     movingaverage()
 #define DIRSEPARATOR '\\'    varevsij() 
 #else    if popbased==1 varevsij(,popbased)
 #define DIRSEPARATOR '/'    total life expectancies
 #endif    Variance of stable prevalence
    end
 char version[80]="Imach version 0.8h, May 2002, INED-EUROREVES ";  */
 int erreur; /* Error number */  
 int nvar;  
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;  
 int npar=NPARMAX;   
 int nlstate=2; /* Number of live states */  #include <math.h>
 int ndeath=1; /* Number of dead states */  #include <stdio.h>
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  #include <stdlib.h>
 int popbased=0;  #include <unistd.h>
   
 int *wav; /* Number of waves for this individuual 0 is possible */  #define MAXLINE 256
 int maxwav; /* Maxim number of waves */  #define GNUPLOTPROGRAM "gnuplot"
 int jmin, jmax; /* min, max spacing between 2 waves */  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 int mle, weightopt;  #define FILENAMELENGTH 80
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  /*#define DEBUG*/
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  #define windows
 double jmean; /* Mean space between 2 waves */  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 double **oldm, **newm, **savm; /* Working pointers to matrices */  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
 FILE *fichtm; /* Html File */  
 FILE *ficreseij;  #define NINTERVMAX 8
 char filerese[FILENAMELENGTH];  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 FILE  *ficresvij;  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 char fileresv[FILENAMELENGTH];  #define NCOVMAX 8 /* Maximum number of covariates */
 FILE  *ficresvpl;  #define MAXN 20000
 char fileresvpl[FILENAMELENGTH];  #define YEARM 12. /* Number of months per year */
 char title[MAXLINE];  #define AGESUP 130
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  #define AGEBASE 40
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  #ifdef windows
   #define DIRSEPARATOR '\\'
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];  #define ODIRSEPARATOR '/'
   #else
 char filerest[FILENAMELENGTH];  #define DIRSEPARATOR '/'
 char fileregp[FILENAMELENGTH];  #define ODIRSEPARATOR '\\'
 char popfile[FILENAMELENGTH];  #endif
   
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  char version[80]="Imach version 0.95a, May 2003, INED-EUROREVES ";
   int erreur; /* Error number */
 #define NR_END 1  int nvar;
 #define FREE_ARG char*  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 #define FTOL 1.0e-10  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
 #define NRANSI  int ndeath=1; /* Number of dead states */
 #define ITMAX 200  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
 #define TOL 2.0e-4  
   int *wav; /* Number of waves for this individuual 0 is possible */
 #define CGOLD 0.3819660  int maxwav; /* Maxim number of waves */
 #define ZEPS 1.0e-10  int jmin, jmax; /* min, max spacing between 2 waves */
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  int mle, weightopt;
   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 #define GOLD 1.618034  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 #define GLIMIT 100.0  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 #define TINY 1.0e-20             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
 static double maxarg1,maxarg2;  double **oldm, **newm, **savm; /* Working pointers to matrices */
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
    FILE *ficlog, *ficrespow;
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
 #define rint(a) floor(a+0.5)  FILE *ficresprobmorprev;
   FILE *fichtm; /* Html File */
 static double sqrarg;  FILE *ficreseij;
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  char filerese[FILENAMELENGTH];
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
 int imx;  FILE  *ficresvpl;
 int stepm;  char fileresvpl[FILENAMELENGTH];
 /* Stepm, step in month: minimum step interpolation*/  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 int estepm;  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 int m,nb;  char filelog[FILENAMELENGTH]; /* Log file */
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  char filerest[FILENAMELENGTH];
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  char fileregp[FILENAMELENGTH];
 double **pmmij, ***probs, ***mobaverage;  char popfile[FILENAMELENGTH];
 double dateintmean=0;  
   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
 double *weight;  
 int **s; /* Status */  #define NR_END 1
 double *agedc, **covar, idx;  #define FREE_ARG char*
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  #define FTOL 1.0e-10
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  #define NRANSI 
 double ftolhess; /* Tolerance for computing hessian */  #define ITMAX 200 
   
 /**************** split *************************/  #define TOL 2.0e-4 
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {  #define CGOLD 0.3819660 
    char *s;                             /* pointer */  #define ZEPS 1.0e-10 
    int  l1, l2;                         /* length counters */  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
    l1 = strlen( path );                 /* length of path */  #define GOLD 1.618034 
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  #define GLIMIT 100.0 
    s = strrchr( path,  DIRSEPARATOR );          /* find last / */  #define TINY 1.0e-20 
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */  static double maxarg1,maxarg2;
       extern char       *getwd( );  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
       if ( getwd( dirc ) == NULL ) {    
 #else  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       extern char       *getcwd( );  #define rint(a) floor(a+0.5)
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  static double sqrarg;
 #endif  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
          return( GLOCK_ERROR_GETCWD );  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       }  
       strcpy( name, path );             /* we've got it */  int imx; 
    } else {                             /* strip direcotry from path */  int stepm;
       s++;                              /* after this, the filename */  /* Stepm, step in month: minimum step interpolation*/
       l2 = strlen( s );                 /* length of filename */  
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  int estepm;
       strcpy( name, s );                /* save file name */  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */  int m,nb;
    }  int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
    l1 = strlen( dirc );                 /* length of directory */  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 #ifdef windows  double **pmmij, ***probs;
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  double dateintmean=0;
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  double *weight;
 #endif  int **s; /* Status */
    s = strrchr( name, '.' );            /* find last / */  double *agedc, **covar, idx;
    s++;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
    strcpy(ext,s);                       /* save extension */  
    l1= strlen( name);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
    l2= strlen( s)+1;  double ftolhess; /* Tolerance for computing hessian */
    strncpy( finame, name, l1-l2);  
    finame[l1-l2]= 0;  /**************** split *************************/
    return( 0 );                         /* we're done */  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 }  {
     char  *ss;                            /* pointer */
     int   l1, l2;                         /* length counters */
 /******************************************/  
     l1 = strlen(path );                   /* length of path */
 void replace(char *s, char*t)    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
 {    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   int i;    if ( ss == NULL ) {                   /* no directory, so use current */
   int lg=20;      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
   i=0;        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   lg=strlen(t);      /* get current working directory */
   for(i=0; i<= lg; i++) {      /*    extern  char* getcwd ( char *buf , int len);*/
     (s[i] = t[i]);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     if (t[i]== '\\') s[i]='/';        return( GLOCK_ERROR_GETCWD );
   }      }
 }      strcpy( name, path );               /* we've got it */
     } else {                              /* strip direcotry from path */
 int nbocc(char *s, char occ)      ss++;                               /* after this, the filename */
 {      l2 = strlen( ss );                  /* length of filename */
   int i,j=0;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   int lg=20;      strcpy( name, ss );         /* save file name */
   i=0;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   lg=strlen(s);      dirc[l1-l2] = 0;                    /* add zero */
   for(i=0; i<= lg; i++) {    }
   if  (s[i] == occ ) j++;    l1 = strlen( dirc );                  /* length of directory */
   }  #ifdef windows
   return j;    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
 }  #else
     if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 void cutv(char *u,char *v, char*t, char occ)  #endif
 {    ss = strrchr( name, '.' );            /* find last / */
   int i,lg,j,p=0;    ss++;
   i=0;    strcpy(ext,ss);                       /* save extension */
   for(j=0; j<=strlen(t)-1; j++) {    l1= strlen( name);
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    l2= strlen(ss)+1;
   }    strncpy( finame, name, l1-l2);
     finame[l1-l2]= 0;
   lg=strlen(t);    return( 0 );                          /* we're done */
   for(j=0; j<p; j++) {  }
     (u[j] = t[j]);  
   }  
      u[p]='\0';  /******************************************/
   
    for(j=0; j<= lg; j++) {  void replace(char *s, char*t)
     if (j>=(p+1))(v[j-p-1] = t[j]);  {
   }    int i;
 }    int lg=20;
     i=0;
 /********************** nrerror ********************/    lg=strlen(t);
     for(i=0; i<= lg; i++) {
 void nrerror(char error_text[])      (s[i] = t[i]);
 {      if (t[i]== '\\') s[i]='/';
   fprintf(stderr,"ERREUR ...\n");    }
   fprintf(stderr,"%s\n",error_text);  }
   exit(1);  
 }  int nbocc(char *s, char occ)
 /*********************** vector *******************/  {
 double *vector(int nl, int nh)    int i,j=0;
 {    int lg=20;
   double *v;    i=0;
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    lg=strlen(s);
   if (!v) nrerror("allocation failure in vector");    for(i=0; i<= lg; i++) {
   return v-nl+NR_END;    if  (s[i] == occ ) j++;
 }    }
     return j;
 /************************ free vector ******************/  }
 void free_vector(double*v, int nl, int nh)  
 {  void cutv(char *u,char *v, char*t, char occ)
   free((FREE_ARG)(v+nl-NR_END));  {
 }    /* cuts string t into u and v where u is ended by char occ excluding it
        and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
 /************************ivector *******************************/       gives u="abcedf" and v="ghi2j" */
 int *ivector(long nl,long nh)    int i,lg,j,p=0;
 {    i=0;
   int *v;    for(j=0; j<=strlen(t)-1; j++) {
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   if (!v) nrerror("allocation failure in ivector");    }
   return v-nl+NR_END;  
 }    lg=strlen(t);
     for(j=0; j<p; j++) {
 /******************free ivector **************************/      (u[j] = t[j]);
 void free_ivector(int *v, long nl, long nh)    }
 {       u[p]='\0';
   free((FREE_ARG)(v+nl-NR_END));  
 }     for(j=0; j<= lg; j++) {
       if (j>=(p+1))(v[j-p-1] = t[j]);
 /******************* imatrix *******************************/    }
 int **imatrix(long nrl, long nrh, long ncl, long nch)  }
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {  /********************** nrerror ********************/
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;  void nrerror(char error_text[])
    {
   /* allocate pointers to rows */    fprintf(stderr,"ERREUR ...\n");
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    fprintf(stderr,"%s\n",error_text);
   if (!m) nrerror("allocation failure 1 in matrix()");    exit(EXIT_FAILURE);
   m += NR_END;  }
   m -= nrl;  /*********************** vector *******************/
    double *vector(int nl, int nh)
    {
   /* allocate rows and set pointers to them */    double *v;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    if (!v) nrerror("allocation failure in vector");
   m[nrl] += NR_END;    return v-nl+NR_END;
   m[nrl] -= ncl;  }
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  /************************ free vector ******************/
    void free_vector(double*v, int nl, int nh)
   /* return pointer to array of pointers to rows */  {
   return m;    free((FREE_ARG)(v+nl-NR_END));
 }  }
   
 /****************** free_imatrix *************************/  /************************ivector *******************************/
 void free_imatrix(m,nrl,nrh,ncl,nch)  char *cvector(long nl,long nh)
       int **m;  {
       long nch,ncl,nrh,nrl;    char *v;
      /* free an int matrix allocated by imatrix() */    v=(char *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(char)));
 {    if (!v) nrerror("allocation failure in cvector");
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    return v-nl+NR_END;
   free((FREE_ARG) (m+nrl-NR_END));  }
 }  
   /******************free ivector **************************/
 /******************* matrix *******************************/  void free_cvector(char *v, long nl, long nh)
 double **matrix(long nrl, long nrh, long ncl, long nch)  {
 {    free((FREE_ARG)(v+nl-NR_END));
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  }
   double **m;  
   /************************ivector *******************************/
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int *ivector(long nl,long nh)
   if (!m) nrerror("allocation failure 1 in matrix()");  {
   m += NR_END;    int *v;
   m -= nrl;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (!v) nrerror("allocation failure in ivector");
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    return v-nl+NR_END;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  }
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  /******************free ivector **************************/
   void free_ivector(int *v, long nl, long nh)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  {
   return m;    free((FREE_ARG)(v+nl-NR_END));
 }  }
   
 /*************************free matrix ************************/  /******************* imatrix *******************************/
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  int **imatrix(long nrl, long nrh, long ncl, long nch) 
 {       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  { 
   free((FREE_ARG)(m+nrl-NR_END));    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 }    int **m; 
     
 /******************* ma3x *******************************/    /* allocate pointers to rows */ 
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
 {    if (!m) nrerror("allocation failure 1 in matrix()"); 
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    m += NR_END; 
   double ***m;    m -= nrl; 
     
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    
   if (!m) nrerror("allocation failure 1 in matrix()");    /* allocate rows and set pointers to them */ 
   m += NR_END;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   m -= nrl;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     m[nrl] += NR_END; 
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    m[nrl] -= ncl; 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    
   m[nrl] += NR_END;    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   m[nrl] -= ncl;    
     /* return pointer to array of pointers to rows */ 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    return m; 
   } 
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  /****************** free_imatrix *************************/
   m[nrl][ncl] += NR_END;  void free_imatrix(m,nrl,nrh,ncl,nch)
   m[nrl][ncl] -= nll;        int **m;
   for (j=ncl+1; j<=nch; j++)        long nch,ncl,nrh,nrl; 
     m[nrl][j]=m[nrl][j-1]+nlay;       /* free an int matrix allocated by imatrix() */ 
    { 
   for (i=nrl+1; i<=nrh; i++) {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    free((FREE_ARG) (m+nrl-NR_END)); 
     for (j=ncl+1; j<=nch; j++)  } 
       m[i][j]=m[i][j-1]+nlay;  
   }  /******************* matrix *******************************/
   return m;  double **matrix(long nrl, long nrh, long ncl, long nch)
 }  {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 /*************************free ma3x ************************/    double **m;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  
 {    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    if (!m) nrerror("allocation failure 1 in matrix()");
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    m += NR_END;
   free((FREE_ARG)(m+nrl-NR_END));    m -= nrl;
 }  
     m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
 /***************** f1dim *************************/    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
 extern int ncom;    m[nrl] += NR_END;
 extern double *pcom,*xicom;    m[nrl] -= ncl;
 extern double (*nrfunc)(double []);  
      for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
 double f1dim(double x)    return m;
 {    /* print *(*(m+1)+70) ou print m[1][70]; print m+1 or print &(m[1]) 
   int j;     */
   double f;  }
   double *xt;  
    /*************************free matrix ************************/
   xt=vector(1,ncom);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  {
   f=(*nrfunc)(xt);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   free_vector(xt,1,ncom);    free((FREE_ARG)(m+nrl-NR_END));
   return f;  }
 }  
   /******************* ma3x *******************************/
 /*****************brent *************************/  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  {
 {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
   int iter;    double ***m;
   double a,b,d,etemp;  
   double fu,fv,fw,fx;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double ftemp;    if (!m) nrerror("allocation failure 1 in matrix()");
   double p,q,r,tol1,tol2,u,v,w,x,xm;    m += NR_END;
   double e=0.0;    m -= nrl;
    
   a=(ax < cx ? ax : cx);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   b=(ax > cx ? ax : cx);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   x=w=v=bx;    m[nrl] += NR_END;
   fw=fv=fx=(*f)(x);    m[nrl] -= ncl;
   for (iter=1;iter<=ITMAX;iter++) {  
     xm=0.5*(a+b);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     printf(".");fflush(stdout);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
 #ifdef DEBUG    m[nrl][ncl] += NR_END;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    m[nrl][ncl] -= nll;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    for (j=ncl+1; j<=nch; j++) 
 #endif      m[nrl][j]=m[nrl][j-1]+nlay;
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    
       *xmin=x;    for (i=nrl+1; i<=nrh; i++) {
       return fx;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
     }      for (j=ncl+1; j<=nch; j++) 
     ftemp=fu;        m[i][j]=m[i][j-1]+nlay;
     if (fabs(e) > tol1) {    }
       r=(x-w)*(fx-fv);    return m; 
       q=(x-v)*(fx-fw);    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       p=(x-v)*q-(x-w)*r;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
       q=2.0*(q-r);    */
       if (q > 0.0) p = -p;  }
       q=fabs(q);  
       etemp=e;  /*************************free ma3x ************************/
       e=d;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  {
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       else {    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         d=p/q;    free((FREE_ARG)(m+nrl-NR_END));
         u=x+d;  }
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);  /***************** f1dim *************************/
       }  extern int ncom; 
     } else {  extern double *pcom,*xicom;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  extern double (*nrfunc)(double []); 
     }   
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  double f1dim(double x) 
     fu=(*f)(u);  { 
     if (fu <= fx) {    int j; 
       if (u >= x) a=x; else b=x;    double f;
       SHFT(v,w,x,u)    double *xt; 
         SHFT(fv,fw,fx,fu)   
         } else {    xt=vector(1,ncom); 
           if (u < x) a=u; else b=u;    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
           if (fu <= fw || w == x) {    f=(*nrfunc)(xt); 
             v=w;    free_vector(xt,1,ncom); 
             w=u;    return f; 
             fv=fw;  } 
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {  /*****************brent *************************/
             v=u;  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
             fv=fu;  { 
           }    int iter; 
         }    double a,b,d,etemp;
   }    double fu,fv,fw,fx;
   nrerror("Too many iterations in brent");    double ftemp;
   *xmin=x;    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   return fx;    double e=0.0; 
 }   
     a=(ax < cx ? ax : cx); 
 /****************** mnbrak ***********************/    b=(ax > cx ? ax : cx); 
     x=w=v=bx; 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    fw=fv=fx=(*f)(x); 
             double (*func)(double))    for (iter=1;iter<=ITMAX;iter++) { 
 {      xm=0.5*(a+b); 
   double ulim,u,r,q, dum;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   double fu;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
        printf(".");fflush(stdout);
   *fa=(*func)(*ax);      fprintf(ficlog,".");fflush(ficlog);
   *fb=(*func)(*bx);  #ifdef DEBUG
   if (*fb > *fa) {      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     SHFT(dum,*ax,*bx,dum)      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       SHFT(dum,*fb,*fa,dum)      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
       }  #endif
   *cx=(*bx)+GOLD*(*bx-*ax);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   *fc=(*func)(*cx);        *xmin=x; 
   while (*fb > *fc) {        return fx; 
     r=(*bx-*ax)*(*fb-*fc);      } 
     q=(*bx-*cx)*(*fb-*fa);      ftemp=fu;
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/      if (fabs(e) > tol1) { 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));        r=(x-w)*(fx-fv); 
     ulim=(*bx)+GLIMIT*(*cx-*bx);        q=(x-v)*(fx-fw); 
     if ((*bx-u)*(u-*cx) > 0.0) {        p=(x-v)*q-(x-w)*r; 
       fu=(*func)(u);        q=2.0*(q-r); 
     } else if ((*cx-u)*(u-ulim) > 0.0) {        if (q > 0.0) p = -p; 
       fu=(*func)(u);        q=fabs(q); 
       if (fu < *fc) {        etemp=e; 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))        e=d; 
           SHFT(*fb,*fc,fu,(*func)(u))        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
           }          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {        else { 
       u=ulim;          d=p/q; 
       fu=(*func)(u);          u=x+d; 
     } else {          if (u-a < tol2 || b-u < tol2) 
       u=(*cx)+GOLD*(*cx-*bx);            d=SIGN(tol1,xm-x); 
       fu=(*func)(u);        } 
     }      } else { 
     SHFT(*ax,*bx,*cx,u)        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       SHFT(*fa,*fb,*fc,fu)      } 
       }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
 }      fu=(*f)(u); 
       if (fu <= fx) { 
 /*************** linmin ************************/        if (u >= x) a=x; else b=x; 
         SHFT(v,w,x,u) 
 int ncom;          SHFT(fv,fw,fx,fu) 
 double *pcom,*xicom;          } else { 
 double (*nrfunc)(double []);            if (u < x) a=u; else b=u; 
              if (fu <= fw || w == x) { 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))              v=w; 
 {              w=u; 
   double brent(double ax, double bx, double cx,              fv=fw; 
                double (*f)(double), double tol, double *xmin);              fw=fu; 
   double f1dim(double x);            } else if (fu <= fv || v == x || v == w) { 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,              v=u; 
               double *fc, double (*func)(double));              fv=fu; 
   int j;            } 
   double xx,xmin,bx,ax;          } 
   double fx,fb,fa;    } 
      nrerror("Too many iterations in brent"); 
   ncom=n;    *xmin=x; 
   pcom=vector(1,n);    return fx; 
   xicom=vector(1,n);  } 
   nrfunc=func;  
   for (j=1;j<=n;j++) {  /****************** mnbrak ***********************/
     pcom[j]=p[j];  
     xicom[j]=xi[j];  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   }              double (*func)(double)) 
   ax=0.0;  { 
   xx=1.0;    double ulim,u,r,q, dum;
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    double fu; 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);   
 #ifdef DEBUG    *fa=(*func)(*ax); 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    *fb=(*func)(*bx); 
 #endif    if (*fb > *fa) { 
   for (j=1;j<=n;j++) {      SHFT(dum,*ax,*bx,dum) 
     xi[j] *= xmin;        SHFT(dum,*fb,*fa,dum) 
     p[j] += xi[j];        } 
   }    *cx=(*bx)+GOLD*(*bx-*ax); 
   free_vector(xicom,1,n);    *fc=(*func)(*cx); 
   free_vector(pcom,1,n);    while (*fb > *fc) { 
 }      r=(*bx-*ax)*(*fb-*fc); 
       q=(*bx-*cx)*(*fb-*fa); 
 /*************** powell ************************/      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
             double (*func)(double []))      ulim=(*bx)+GLIMIT*(*cx-*bx); 
 {      if ((*bx-u)*(u-*cx) > 0.0) { 
   void linmin(double p[], double xi[], int n, double *fret,        fu=(*func)(u); 
               double (*func)(double []));      } else if ((*cx-u)*(u-ulim) > 0.0) { 
   int i,ibig,j;        fu=(*func)(u); 
   double del,t,*pt,*ptt,*xit;        if (fu < *fc) { 
   double fp,fptt;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   double *xits;            SHFT(*fb,*fc,fu,(*func)(u)) 
   pt=vector(1,n);            } 
   ptt=vector(1,n);      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
   xit=vector(1,n);        u=ulim; 
   xits=vector(1,n);        fu=(*func)(u); 
   *fret=(*func)(p);      } else { 
   for (j=1;j<=n;j++) pt[j]=p[j];        u=(*cx)+GOLD*(*cx-*bx); 
   for (*iter=1;;++(*iter)) {        fu=(*func)(u); 
     fp=(*fret);      } 
     ibig=0;      SHFT(*ax,*bx,*cx,u) 
     del=0.0;        SHFT(*fa,*fb,*fc,fu) 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);        } 
     for (i=1;i<=n;i++)  } 
       printf(" %d %.12f",i, p[i]);  
     printf("\n");  /*************** linmin ************************/
     for (i=1;i<=n;i++) {  
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  int ncom; 
       fptt=(*fret);  double *pcom,*xicom;
 #ifdef DEBUG  double (*nrfunc)(double []); 
       printf("fret=%lf \n",*fret);   
 #endif  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       printf("%d",i);fflush(stdout);  { 
       linmin(p,xit,n,fret,func);    double brent(double ax, double bx, double cx, 
       if (fabs(fptt-(*fret)) > del) {                 double (*f)(double), double tol, double *xmin); 
         del=fabs(fptt-(*fret));    double f1dim(double x); 
         ibig=i;    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       }                double *fc, double (*func)(double)); 
 #ifdef DEBUG    int j; 
       printf("%d %.12e",i,(*fret));    double xx,xmin,bx,ax; 
       for (j=1;j<=n;j++) {    double fx,fb,fa;
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);   
         printf(" x(%d)=%.12e",j,xit[j]);    ncom=n; 
       }    pcom=vector(1,n); 
       for(j=1;j<=n;j++)    xicom=vector(1,n); 
         printf(" p=%.12e",p[j]);    nrfunc=func; 
       printf("\n");    for (j=1;j<=n;j++) { 
 #endif      pcom[j]=p[j]; 
     }      xicom[j]=xi[j]; 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {    } 
 #ifdef DEBUG    ax=0.0; 
       int k[2],l;    xx=1.0; 
       k[0]=1;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       k[1]=-1;    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
       printf("Max: %.12e",(*func)(p));  #ifdef DEBUG
       for (j=1;j<=n;j++)    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         printf(" %.12e",p[j]);    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       printf("\n");  #endif
       for(l=0;l<=1;l++) {    for (j=1;j<=n;j++) { 
         for (j=1;j<=n;j++) {      xi[j] *= xmin; 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];      p[j] += xi[j]; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);    } 
         }    free_vector(xicom,1,n); 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    free_vector(pcom,1,n); 
       }  } 
 #endif  
   /*************** powell ************************/
   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       free_vector(xit,1,n);              double (*func)(double [])) 
       free_vector(xits,1,n);  { 
       free_vector(ptt,1,n);    void linmin(double p[], double xi[], int n, double *fret, 
       free_vector(pt,1,n);                double (*func)(double [])); 
       return;    int i,ibig,j; 
     }    double del,t,*pt,*ptt,*xit;
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    double fp,fptt;
     for (j=1;j<=n;j++) {    double *xits;
       ptt[j]=2.0*p[j]-pt[j];    pt=vector(1,n); 
       xit[j]=p[j]-pt[j];    ptt=vector(1,n); 
       pt[j]=p[j];    xit=vector(1,n); 
     }    xits=vector(1,n); 
     fptt=(*func)(ptt);    *fret=(*func)(p); 
     if (fptt < fp) {    for (j=1;j<=n;j++) pt[j]=p[j]; 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    for (*iter=1;;++(*iter)) { 
       if (t < 0.0) {      fp=(*fret); 
         linmin(p,xit,n,fret,func);      ibig=0; 
         for (j=1;j<=n;j++) {      del=0.0; 
           xi[j][ibig]=xi[j][n];      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
           xi[j][n]=xit[j];      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
         }      fprintf(ficrespow,"%d %.12f",*iter,*fret);
 #ifdef DEBUG      for (i=1;i<=n;i++) {
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        printf(" %d %.12f",i, p[i]);
         for(j=1;j<=n;j++)        fprintf(ficlog," %d %.12lf",i, p[i]);
           printf(" %.12e",xit[j]);        fprintf(ficrespow," %.12lf", p[i]);
         printf("\n");      }
 #endif      printf("\n");
       }      fprintf(ficlog,"\n");
     }      fprintf(ficrespow,"\n");
   }      for (i=1;i<=n;i++) { 
 }        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         fptt=(*fret); 
 /**** Prevalence limit ****************/  #ifdef DEBUG
         printf("fret=%lf \n",*fret);
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)        fprintf(ficlog,"fret=%lf \n",*fret);
 {  #endif
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit        printf("%d",i);fflush(stdout);
      matrix by transitions matrix until convergence is reached */        fprintf(ficlog,"%d",i);fflush(ficlog);
         linmin(p,xit,n,fret,func); 
   int i, ii,j,k;        if (fabs(fptt-(*fret)) > del) { 
   double min, max, maxmin, maxmax,sumnew=0.;          del=fabs(fptt-(*fret)); 
   double **matprod2();          ibig=i; 
   double **out, cov[NCOVMAX], **pmij();        } 
   double **newm;  #ifdef DEBUG
   double agefin, delaymax=50 ; /* Max number of years to converge */        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
   for (ii=1;ii<=nlstate+ndeath;ii++)        for (j=1;j<=n;j++) {
     for (j=1;j<=nlstate+ndeath;j++){          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);          printf(" x(%d)=%.12e",j,xit[j]);
     }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
    cov[1]=1.;        for(j=1;j<=n;j++) {
            printf(" p=%.12e",p[j]);
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */          fprintf(ficlog," p=%.12e",p[j]);
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        }
     newm=savm;        printf("\n");
     /* Covariates have to be included here again */        fprintf(ficlog,"\n");
      cov[2]=agefin;  #endif
        } 
       for (k=1; k<=cptcovn;k++) {      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  #ifdef DEBUG
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/        int k[2],l;
       }        k[0]=1;
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        k[1]=-1;
       for (k=1; k<=cptcovprod;k++)        printf("Max: %.12e",(*func)(p));
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/          printf(" %.12e",p[j]);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/          fprintf(ficlog," %.12e",p[j]);
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        }
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        printf("\n");
         fprintf(ficlog,"\n");
     savm=oldm;        for(l=0;l<=1;l++) {
     oldm=newm;          for (j=1;j<=n;j++) {
     maxmax=0.;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     for(j=1;j<=nlstate;j++){            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       min=1.;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       max=0.;          }
       for(i=1; i<=nlstate; i++) {          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         sumnew=0;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];        }
         prlim[i][j]= newm[i][j]/(1-sumnew);  #endif
         max=FMAX(max,prlim[i][j]);  
         min=FMIN(min,prlim[i][j]);  
       }        free_vector(xit,1,n); 
       maxmin=max-min;        free_vector(xits,1,n); 
       maxmax=FMAX(maxmax,maxmin);        free_vector(ptt,1,n); 
     }        free_vector(pt,1,n); 
     if(maxmax < ftolpl){        return; 
       return prlim;      } 
     }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   }      for (j=1;j<=n;j++) { 
 }        ptt[j]=2.0*p[j]-pt[j]; 
         xit[j]=p[j]-pt[j]; 
 /*************** transition probabilities ***************/        pt[j]=p[j]; 
       } 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )      fptt=(*func)(ptt); 
 {      if (fptt < fp) { 
   double s1, s2;        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   /*double t34;*/        if (t < 0.0) { 
   int i,j,j1, nc, ii, jj;          linmin(p,xit,n,fret,func); 
           for (j=1;j<=n;j++) { 
     for(i=1; i<= nlstate; i++){            xi[j][ibig]=xi[j][n]; 
     for(j=1; j<i;j++){            xi[j][n]=xit[j]; 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){          }
         /*s2 += param[i][j][nc]*cov[nc];*/  #ifdef DEBUG
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       }          for(j=1;j<=n;j++){
       ps[i][j]=s2;            printf(" %.12e",xit[j]);
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/            fprintf(ficlog," %.12e",xit[j]);
     }          }
     for(j=i+1; j<=nlstate+ndeath;j++){          printf("\n");
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){          fprintf(ficlog,"\n");
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  #endif
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        }
       }      } 
       ps[i][j]=s2;    } 
     }  } 
   }  
     /*ps[3][2]=1;*/  /**** Prevalence limit (stable prevalence)  ****************/
   
   for(i=1; i<= nlstate; i++){  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
      s1=0;  {
     for(j=1; j<i; j++)    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       s1+=exp(ps[i][j]);       matrix by transitions matrix until convergence is reached */
     for(j=i+1; j<=nlstate+ndeath; j++)  
       s1+=exp(ps[i][j]);    int i, ii,j,k;
     ps[i][i]=1./(s1+1.);    double min, max, maxmin, maxmax,sumnew=0.;
     for(j=1; j<i; j++)    double **matprod2();
       ps[i][j]= exp(ps[i][j])*ps[i][i];    double **out, cov[NCOVMAX], **pmij();
     for(j=i+1; j<=nlstate+ndeath; j++)    double **newm;
       ps[i][j]= exp(ps[i][j])*ps[i][i];    double agefin, delaymax=50 ; /* Max number of years to converge */
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */  
   } /* end i */    for (ii=1;ii<=nlstate+ndeath;ii++)
       for (j=1;j<=nlstate+ndeath;j++){
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(jj=1; jj<= nlstate+ndeath; jj++){      }
       ps[ii][jj]=0;  
       ps[ii][ii]=1;     cov[1]=1.;
     }   
   }   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       newm=savm;
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      /* Covariates have to be included here again */
     for(jj=1; jj<= nlstate+ndeath; jj++){       cov[2]=agefin;
      printf("%lf ",ps[ii][jj]);    
    }        for (k=1; k<=cptcovn;k++) {
     printf("\n ");          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     }          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
     printf("\n ");printf("%lf ",cov[2]);*/        }
 /*        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   for(i=1; i<= npar; i++) printf("%f ",x[i]);        for (k=1; k<=cptcovprod;k++)
   goto end;*/          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     return ps;  
 }        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
 /**************** Product of 2 matrices ******************/        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  
 {      savm=oldm;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      oldm=newm;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      maxmax=0.;
   /* in, b, out are matrice of pointers which should have been initialized      for(j=1;j<=nlstate;j++){
      before: only the contents of out is modified. The function returns        min=1.;
      a pointer to pointers identical to out */        max=0.;
   long i, j, k;        for(i=1; i<=nlstate; i++) {
   for(i=nrl; i<= nrh; i++)          sumnew=0;
     for(k=ncolol; k<=ncoloh; k++)          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       for(j=ncl,out[i][k]=0.; j<=nch; j++)          prlim[i][j]= newm[i][j]/(1-sumnew);
         out[i][k] +=in[i][j]*b[j][k];          max=FMAX(max,prlim[i][j]);
           min=FMIN(min,prlim[i][j]);
   return out;        }
 }        maxmin=max-min;
         maxmax=FMAX(maxmax,maxmin);
       }
 /************* Higher Matrix Product ***************/      if(maxmax < ftolpl){
         return prlim;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      }
 {    }
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  }
      duration (i.e. until  
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  /*************** transition probabilities ***************/ 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  
      (typically every 2 years instead of every month which is too big).  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
      Model is determined by parameters x and covariates have to be  {
      included manually here.    double s1, s2;
     /*double t34;*/
      */    int i,j,j1, nc, ii, jj;
   
   int i, j, d, h, k;      for(i=1; i<= nlstate; i++){
   double **out, cov[NCOVMAX];      for(j=1; j<i;j++){
   double **newm;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
           /*s2 += param[i][j][nc]*cov[nc];*/
   /* Hstepm could be zero and should return the unit matrix */          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   for (i=1;i<=nlstate+ndeath;i++)          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
     for (j=1;j<=nlstate+ndeath;j++){        }
       oldm[i][j]=(i==j ? 1.0 : 0.0);        ps[i][j]=s2;
       po[i][j][0]=(i==j ? 1.0 : 0.0);        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
     }      }
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */      for(j=i+1; j<=nlstate+ndeath;j++){
   for(h=1; h <=nhstepm; h++){        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     for(d=1; d <=hstepm; d++){          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       newm=savm;          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
       /* Covariates have to be included here again */        }
       cov[1]=1.;        ps[i][j]=s2;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      }
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    }
       for (k=1; k<=cptcovage;k++)      /*ps[3][2]=1;*/
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
       for (k=1; k<=cptcovprod;k++)    for(i=1; i<= nlstate; i++){
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];       s1=0;
       for(j=1; j<i; j++)
         s1+=exp(ps[i][j]);
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/      for(j=i+1; j<=nlstate+ndeath; j++)
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        s1+=exp(ps[i][j]);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,      ps[i][i]=1./(s1+1.);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      for(j=1; j<i; j++)
       savm=oldm;        ps[i][j]= exp(ps[i][j])*ps[i][i];
       oldm=newm;      for(j=i+1; j<=nlstate+ndeath; j++)
     }        ps[i][j]= exp(ps[i][j])*ps[i][i];
     for(i=1; i<=nlstate+ndeath; i++)      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       for(j=1;j<=nlstate+ndeath;j++) {    } /* end i */
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
          */      for(jj=1; jj<= nlstate+ndeath; jj++){
       }        ps[ii][jj]=0;
   } /* end h */        ps[ii][ii]=1;
   return po;      }
 }    }
   
   
 /*************** log-likelihood *************/    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
 double func( double *x)      for(jj=1; jj<= nlstate+ndeath; jj++){
 {       printf("%lf ",ps[ii][jj]);
   int i, ii, j, k, mi, d, kk;     }
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      printf("\n ");
   double **out;      }
   double sw; /* Sum of weights */      printf("\n ");printf("%lf ",cov[2]);*/
   double lli; /* Individual log likelihood */  /*
   long ipmx;    for(i=1; i<= npar; i++) printf("%f ",x[i]);
   /*extern weight */    goto end;*/
   /* We are differentiating ll according to initial status */      return ps;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  }
   /*for(i=1;i<imx;i++)  
     printf(" %d\n",s[4][i]);  /**************** Product of 2 matrices ******************/
   */  
   cov[1]=1.;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   {
   for(k=1; k<=nlstate; k++) ll[k]=0.;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    /* in, b, out are matrice of pointers which should have been initialized 
     for(mi=1; mi<= wav[i]-1; mi++){       before: only the contents of out is modified. The function returns
       for (ii=1;ii<=nlstate+ndeath;ii++)       a pointer to pointers identical to out */
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);    long i, j, k;
       for(d=0; d<dh[mi][i]; d++){    for(i=nrl; i<= nrh; i++)
         newm=savm;      for(k=ncolol; k<=ncoloh; k++)
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        for(j=ncl,out[i][k]=0.; j<=nch; j++)
         for (kk=1; kk<=cptcovage;kk++) {          out[i][k] +=in[i][j]*b[j][k];
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  
         }    return out;
          }
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,  
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));  
         savm=oldm;  /************* Higher Matrix Product ***************/
         oldm=newm;  
          double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
          {
       } /* end mult */    /* Computes the transition matrix starting at age 'age' over 
             'nhstepm*hstepm*stepm' months (i.e. until
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/       nhstepm*hstepm matrices. 
       ipmx +=1;       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       sw += weight[i];       (typically every 2 years instead of every month which is too big 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;       for the memory).
     } /* end of wave */       Model is determined by parameters x and covariates have to be 
   } /* end of individual */       included manually here. 
   
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];       */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    int i, j, d, h, k;
   return -l;    double **out, cov[NCOVMAX];
 }    double **newm;
   
     /* Hstepm could be zero and should return the unit matrix */
 /*********** Maximum Likelihood Estimation ***************/    for (i=1;i<=nlstate+ndeath;i++)
       for (j=1;j<=nlstate+ndeath;j++){
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))        oldm[i][j]=(i==j ? 1.0 : 0.0);
 {        po[i][j][0]=(i==j ? 1.0 : 0.0);
   int i,j, iter;      }
   double **xi,*delti;    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   double fret;    for(h=1; h <=nhstepm; h++){
   xi=matrix(1,npar,1,npar);      for(d=1; d <=hstepm; d++){
   for (i=1;i<=npar;i++)        newm=savm;
     for (j=1;j<=npar;j++)        /* Covariates have to be included here again */
       xi[i][j]=(i==j ? 1.0 : 0.0);        cov[1]=1.;
   printf("Powell\n");        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   powell(p,xi,npar,ftol,&iter,&fret,func);        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         for (k=1; k<=cptcovage;k++)
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 }  
   
 /**** Computes Hessian and covariance matrix ***/        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
 {        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   double  **a,**y,*x,pd;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
   double **hess;        savm=oldm;
   int i, j,jk;        oldm=newm;
   int *indx;      }
       for(i=1; i<=nlstate+ndeath; i++)
   double hessii(double p[], double delta, int theta, double delti[]);        for(j=1;j<=nlstate+ndeath;j++) {
   double hessij(double p[], double delti[], int i, int j);          po[i][j][h]=newm[i][j];
   void lubksb(double **a, int npar, int *indx, double b[]) ;          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   void ludcmp(double **a, int npar, int *indx, double *d) ;           */
         }
   hess=matrix(1,npar,1,npar);    } /* end h */
     return po;
   printf("\nCalculation of the hessian matrix. Wait...\n");  }
   for (i=1;i<=npar;i++){  
     printf("%d",i);fflush(stdout);  
     hess[i][i]=hessii(p,ftolhess,i,delti);  /*************** log-likelihood *************/
     /*printf(" %f ",p[i]);*/  double func( double *x)
     /*printf(" %lf ",hess[i][i]);*/  {
   }    int i, ii, j, k, mi, d, kk;
      double l, ll[NLSTATEMAX], cov[NCOVMAX];
   for (i=1;i<=npar;i++) {    double **out;
     for (j=1;j<=npar;j++)  {    double sw; /* Sum of weights */
       if (j>i) {    double lli; /* Individual log likelihood */
         printf(".%d%d",i,j);fflush(stdout);    int s1, s2;
         hess[i][j]=hessij(p,delti,i,j);    double bbh, survp;
         hess[j][i]=hess[i][j];        long ipmx;
         /*printf(" %lf ",hess[i][j]);*/    /*extern weight */
       }    /* We are differentiating ll according to initial status */
     }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   }    /*for(i=1;i<imx;i++) 
   printf("\n");      printf(" %d\n",s[4][i]);
     */
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    cov[1]=1.;
    
   a=matrix(1,npar,1,npar);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   y=matrix(1,npar,1,npar);  
   x=vector(1,npar);    if(mle==1){
   indx=ivector(1,npar);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   for (i=1;i<=npar;i++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];        for(mi=1; mi<= wav[i]-1; mi++){
   ludcmp(a,npar,indx,&pd);          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
   for (j=1;j<=npar;j++) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=1;i<=npar;i++) x[i]=0;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     x[j]=1;            }
     lubksb(a,npar,indx,x);          for(d=0; d<dh[mi][i]; d++){
     for (i=1;i<=npar;i++){            newm=savm;
       matcov[i][j]=x[i];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     }            for (kk=1; kk<=cptcovage;kk++) {
   }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   printf("\n#Hessian matrix#\n");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   for (i=1;i<=npar;i++) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (j=1;j<=npar;j++) {            savm=oldm;
       printf("%.3e ",hess[i][j]);            oldm=newm;
     }          } /* end mult */
     printf("\n");        
   }          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias and large stepm.
   /* Recompute Inverse */           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   for (i=1;i<=npar;i++)           * (in months) between two waves is not a multiple of stepm, we rounded to 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];           * the nearest (and in case of equal distance, to the lowest) interval but now
   ludcmp(a,npar,indx,&pd);           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   /*  printf("\n#Hessian matrix recomputed#\n");           * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   for (j=1;j<=npar;j++) {           * -stepm/2 to stepm/2 .
     for (i=1;i<=npar;i++) x[i]=0;           * For stepm=1 the results are the same as for previous versions of Imach.
     x[j]=1;           * For stepm > 1 the results are less biased than in previous versions. 
     lubksb(a,npar,indx,x);           */
     for (i=1;i<=npar;i++){          s1=s[mw[mi][i]][i];
       y[i][j]=x[i];          s2=s[mw[mi+1][i]][i];
       printf("%.3e ",y[i][j]);          bbh=(double)bh[mi][i]/(double)stepm; 
     }          /* bias is positive if real duration
     printf("\n");           * is higher than the multiple of stepm and negative otherwise.
   }           */
   */          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           if( s2 > nlstate){ 
   free_matrix(a,1,npar,1,npar);            /* i.e. if s2 is a death state and if the date of death is known then the contribution
   free_matrix(y,1,npar,1,npar);               to the likelihood is the probability to die between last step unit time and current 
   free_vector(x,1,npar);               step unit time, which is also the differences between probability to die before dh 
   free_ivector(indx,1,npar);               and probability to die before dh-stepm . 
   free_matrix(hess,1,npar,1,npar);               In version up to 0.92 likelihood was computed
           as if date of death was unknown. Death was treated as any other
           health state: the date of the interview describes the actual state
 }          and not the date of a change in health state. The former idea was
           to consider that at each interview the state was recorded
 /*************** hessian matrix ****************/          (healthy, disable or death) and IMaCh was corrected; but when we
 double hessii( double x[], double delta, int theta, double delti[])          introduced the exact date of death then we should have modified
 {          the contribution of an exact death to the likelihood. This new
   int i;          contribution is smaller and very dependent of the step unit
   int l=1, lmax=20;          stepm. It is no more the probability to die between last interview
   double k1,k2;          and month of death but the probability to survive from last
   double p2[NPARMAX+1];          interview up to one month before death multiplied by the
   double res;          probability to die within a month. Thanks to Chris
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;          Jackson for correcting this bug.  Former versions increased
   double fx;          mortality artificially. The bad side is that we add another loop
   int k=0,kmax=10;          which slows down the processing. The difference can be up to 10%
   double l1;          lower mortality.
             */
   fx=func(x);            lli=log(out[s1][s2] - savm[s1][s2]);
   for (i=1;i<=npar;i++) p2[i]=x[i];          }else{
   for(l=0 ; l <=lmax; l++){            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     l1=pow(10,l);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     delts=delt;          } 
     for(k=1 ; k <kmax; k=k+1){          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       delt = delta*(l1*k);          /*if(lli ==000.0)*/
       p2[theta]=x[theta] +delt;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       k1=func(p2)-fx;          ipmx +=1;
       p2[theta]=x[theta]-delt;          sw += weight[i];
       k2=func(p2)-fx;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       /*res= (k1-2.0*fx+k2)/delt/delt; */        } /* end of wave */
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */      } /* end of individual */
          }  else if(mle==2){
 #ifdef DEBUG      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 #endif        for(mi=1; mi<= wav[i]-1; mi++){
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          for (ii=1;ii<=nlstate+ndeath;ii++)
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){            for (j=1;j<=nlstate+ndeath;j++){
         k=kmax;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */            }
         k=kmax; l=lmax*10.;          for(d=0; d<=dh[mi][i]; d++){
       }            newm=savm;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         delts=delt;            for (kk=1; kk<=cptcovage;kk++) {
       }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     }            }
   }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   delti[theta]=delts;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   return res;            savm=oldm;
              oldm=newm;
 }          } /* end mult */
         
 double hessij( double x[], double delti[], int thetai,int thetaj)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 {          /* But now since version 0.9 we anticipate for bias and large stepm.
   int i;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   int l=1, l1, lmax=20;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   double k1,k2,k3,k4,res,fx;           * the nearest (and in case of equal distance, to the lowest) interval but now
   double p2[NPARMAX+1];           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   int k;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
   fx=func(x);           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   for (k=1; k<=2; k++) {           * -stepm/2 to stepm/2 .
     for (i=1;i<=npar;i++) p2[i]=x[i];           * For stepm=1 the results are the same as for previous versions of Imach.
     p2[thetai]=x[thetai]+delti[thetai]/k;           * For stepm > 1 the results are less biased than in previous versions. 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;           */
     k1=func(p2)-fx;          s1=s[mw[mi][i]][i];
            s2=s[mw[mi+1][i]][i];
     p2[thetai]=x[thetai]+delti[thetai]/k;          bbh=(double)bh[mi][i]/(double)stepm; 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          /* bias is positive if real duration
     k2=func(p2)-fx;           * is higher than the multiple of stepm and negative otherwise.
             */
     p2[thetai]=x[thetai]-delti[thetai]/k;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     k3=func(p2)-fx;          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
            /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     p2[thetai]=x[thetai]-delti[thetai]/k;          /*if(lli ==000.0)*/
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     k4=func(p2)-fx;          ipmx +=1;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */          sw += weight[i];
 #ifdef DEBUG          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);        } /* end of wave */
 #endif      } /* end of individual */
   }    }  else if(mle==3){  /* exponential inter-extrapolation */
   return res;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 /************** Inverse of matrix **************/          for (ii=1;ii<=nlstate+ndeath;ii++)
 void ludcmp(double **a, int n, int *indx, double *d)            for (j=1;j<=nlstate+ndeath;j++){
 {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i,imax,j,k;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double big,dum,sum,temp;            }
   double *vv;          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   vv=vector(1,n);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   *d=1.0;            for (kk=1; kk<=cptcovage;kk++) {
   for (i=1;i<=n;i++) {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     big=0.0;            }
     for (j=1;j<=n;j++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       if ((temp=fabs(a[i][j])) > big) big=temp;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");            savm=oldm;
     vv[i]=1.0/big;            oldm=newm;
   }          } /* end mult */
   for (j=1;j<=n;j++) {        
     for (i=1;i<j;i++) {          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       sum=a[i][j];          /* But now since version 0.9 we anticipate for bias and large stepm.
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       a[i][j]=sum;           * (in months) between two waves is not a multiple of stepm, we rounded to 
     }           * the nearest (and in case of equal distance, to the lowest) interval but now
     big=0.0;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     for (i=j;i<=n;i++) {           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       sum=a[i][j];           * probability in order to take into account the bias as a fraction of the way
       for (k=1;k<j;k++)           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
         sum -= a[i][k]*a[k][j];           * -stepm/2 to stepm/2 .
       a[i][j]=sum;           * For stepm=1 the results are the same as for previous versions of Imach.
       if ( (dum=vv[i]*fabs(sum)) >= big) {           * For stepm > 1 the results are less biased than in previous versions. 
         big=dum;           */
         imax=i;          s1=s[mw[mi][i]][i];
       }          s2=s[mw[mi+1][i]][i];
     }          bbh=(double)bh[mi][i]/(double)stepm; 
     if (j != imax) {          /* bias is positive if real duration
       for (k=1;k<=n;k++) {           * is higher than the multiple of stepm and negative otherwise.
         dum=a[imax][k];           */
         a[imax][k]=a[j][k];          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
         a[j][k]=dum;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       *d = -(*d);          /*if(lli ==000.0)*/
       vv[imax]=vv[j];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     }          ipmx +=1;
     indx[j]=imax;          sw += weight[i];
     if (a[j][j] == 0.0) a[j][j]=TINY;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     if (j != n) {        } /* end of wave */
       dum=1.0/(a[j][j]);      } /* end of individual */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    }else{  /* ml=4 no inter-extrapolation */
     }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   free_vector(vv,1,n);  /* Doesn't work */        for(mi=1; mi<= wav[i]-1; mi++){
 ;          for (ii=1;ii<=nlstate+ndeath;ii++)
 }            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 void lubksb(double **a, int n, int *indx, double b[])              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 {            }
   int i,ii=0,ip,j;          for(d=0; d<dh[mi][i]; d++){
   double sum;            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   for (i=1;i<=n;i++) {            for (kk=1; kk<=cptcovage;kk++) {
     ip=indx[i];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     sum=b[ip];            }
     b[ip]=b[i];          
     if (ii)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     else if (sum) ii=i;            savm=oldm;
     b[i]=sum;            oldm=newm;
   }          } /* end mult */
   for (i=n;i>=1;i--) {        
     sum=b[i];          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          ipmx +=1;
     b[i]=sum/a[i][i];          sw += weight[i];
   }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 }        } /* end of wave */
       } /* end of individual */
 /************ Frequencies ********************/    } /* End of if */
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
 {  /* Some frequencies */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;    return -l;
   double ***freq; /* Frequencies */  }
   double *pp;  
   double pos, k2, dateintsum=0,k2cpt=0;  
   FILE *ficresp;  /*********** Maximum Likelihood Estimation ***************/
   char fileresp[FILENAMELENGTH];  
    void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   pp=vector(1,nlstate);  {
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    int i,j, iter;
   strcpy(fileresp,"p");    double **xi;
   strcat(fileresp,fileres);    double fret;
   if((ficresp=fopen(fileresp,"w"))==NULL) {    char filerespow[FILENAMELENGTH];
     printf("Problem with prevalence resultfile: %s\n", fileresp);    xi=matrix(1,npar,1,npar);
     exit(0);    for (i=1;i<=npar;i++)
   }      for (j=1;j<=npar;j++)
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        xi[i][j]=(i==j ? 1.0 : 0.0);
   j1=0;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
      strcpy(filerespow,"pow"); 
   j=cptcoveff;    strcat(filerespow,fileres);
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    if((ficrespow=fopen(filerespow,"w"))==NULL) {
        printf("Problem with resultfile: %s\n", filerespow);
   for(k1=1; k1<=j;k1++){      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     for(i1=1; i1<=ncodemax[k1];i1++){    }
       j1++;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    for (i=1;i<=nlstate;i++)
         scanf("%d", i);*/      for(j=1;j<=nlstate+ndeath;j++)
       for (i=-1; i<=nlstate+ndeath; i++)          if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
         for (jk=-1; jk<=nlstate+ndeath; jk++)      fprintf(ficrespow,"\n");
           for(m=agemin; m <= agemax+3; m++)    powell(p,xi,npar,ftol,&iter,&fret,func);
             freq[i][jk][m]=0;  
          fclose(ficrespow);
       dateintsum=0;    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
       k2cpt=0;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       for (i=1; i<=imx; i++) {    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         bool=1;  
         if  (cptcovn>0) {  }
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  /**** Computes Hessian and covariance matrix ***/
               bool=0;  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
         }  {
         if (bool==1) {    double  **a,**y,*x,pd;
           for(m=firstpass; m<=lastpass; m++){    double **hess;
             k2=anint[m][i]+(mint[m][i]/12.);    int i, j,jk;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    int *indx;
               if(agev[m][i]==0) agev[m][i]=agemax+1;  
               if(agev[m][i]==1) agev[m][i]=agemax+2;    double hessii(double p[], double delta, int theta, double delti[]);
               if (m<lastpass) {    double hessij(double p[], double delti[], int i, int j);
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    void lubksb(double **a, int npar, int *indx, double b[]) ;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    void ludcmp(double **a, int npar, int *indx, double *d) ;
               }  
                  hess=matrix(1,npar,1,npar);
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  
                 dateintsum=dateintsum+k2;    printf("\nCalculation of the hessian matrix. Wait...\n");
                 k2cpt++;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
               }    for (i=1;i<=npar;i++){
             }      printf("%d",i);fflush(stdout);
           }      fprintf(ficlog,"%d",i);fflush(ficlog);
         }      hess[i][i]=hessii(p,ftolhess,i,delti);
       }      /*printf(" %f ",p[i]);*/
              /*printf(" %lf ",hess[i][i]);*/
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    }
     
       if  (cptcovn>0) {    for (i=1;i<=npar;i++) {
         fprintf(ficresp, "\n#********** Variable ");      for (j=1;j<=npar;j++)  {
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        if (j>i) { 
         fprintf(ficresp, "**********\n#");          printf(".%d%d",i,j);fflush(stdout);
       }          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       for(i=1; i<=nlstate;i++)          hess[i][j]=hessij(p,delti,i,j);
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);          hess[j][i]=hess[i][j];    
       fprintf(ficresp, "\n");          /*printf(" %lf ",hess[i][j]);*/
              }
       for(i=(int)agemin; i <= (int)agemax+3; i++){      }
         if(i==(int)agemax+3)    }
           printf("Total");    printf("\n");
         else    fprintf(ficlog,"\n");
           printf("Age %d", i);  
         for(jk=1; jk <=nlstate ; jk++){    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
             pp[jk] += freq[jk][m][i];    
         }    a=matrix(1,npar,1,npar);
         for(jk=1; jk <=nlstate ; jk++){    y=matrix(1,npar,1,npar);
           for(m=-1, pos=0; m <=0 ; m++)    x=vector(1,npar);
             pos += freq[jk][m][i];    indx=ivector(1,npar);
           if(pp[jk]>=1.e-10)    for (i=1;i<=npar;i++)
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
           else    ludcmp(a,npar,indx,&pd);
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  
         }    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
         for(jk=1; jk <=nlstate ; jk++){      x[j]=1;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      lubksb(a,npar,indx,x);
             pp[jk] += freq[jk][m][i];      for (i=1;i<=npar;i++){ 
         }        matcov[i][j]=x[i];
       }
         for(jk=1,pos=0; jk <=nlstate ; jk++)    }
           pos += pp[jk];  
         for(jk=1; jk <=nlstate ; jk++){    printf("\n#Hessian matrix#\n");
           if(pos>=1.e-5)    fprintf(ficlog,"\n#Hessian matrix#\n");
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    for (i=1;i<=npar;i++) { 
           else      for (j=1;j<=npar;j++) { 
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);        printf("%.3e ",hess[i][j]);
           if( i <= (int) agemax){        fprintf(ficlog,"%.3e ",hess[i][j]);
             if(pos>=1.e-5){      }
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      printf("\n");
               probs[i][jk][j1]= pp[jk]/pos;      fprintf(ficlog,"\n");
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    }
             }  
             else    /* Recompute Inverse */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    for (i=1;i<=npar;i++)
           }      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
         }    ludcmp(a,npar,indx,&pd);
          
         for(jk=-1; jk <=nlstate+ndeath; jk++)    /*  printf("\n#Hessian matrix recomputed#\n");
           for(m=-1; m <=nlstate+ndeath; m++)  
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    for (j=1;j<=npar;j++) {
         if(i <= (int) agemax)      for (i=1;i<=npar;i++) x[i]=0;
           fprintf(ficresp,"\n");      x[j]=1;
         printf("\n");      lubksb(a,npar,indx,x);
       }      for (i=1;i<=npar;i++){ 
     }        y[i][j]=x[i];
   }        printf("%.3e ",y[i][j]);
   dateintmean=dateintsum/k2cpt;        fprintf(ficlog,"%.3e ",y[i][j]);
        }
   fclose(ficresp);      printf("\n");
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      fprintf(ficlog,"\n");
   free_vector(pp,1,nlstate);    }
      */
   /* End of Freq */  
 }    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
 /************ Prevalence ********************/    free_vector(x,1,npar);
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    free_ivector(indx,1,npar);
 {  /* Some frequencies */    free_matrix(hess,1,npar,1,npar);
    
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  
   double ***freq; /* Frequencies */  }
   double *pp;  
   double pos, k2;  /*************** hessian matrix ****************/
   double hessii( double x[], double delta, int theta, double delti[])
   pp=vector(1,nlstate);  {
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    int i;
      int l=1, lmax=20;
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    double k1,k2;
   j1=0;    double p2[NPARMAX+1];
      double res;
   j=cptcoveff;    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    double fx;
      int k=0,kmax=10;
   for(k1=1; k1<=j;k1++){    double l1;
     for(i1=1; i1<=ncodemax[k1];i1++){  
       j1++;    fx=func(x);
          for (i=1;i<=npar;i++) p2[i]=x[i];
       for (i=-1; i<=nlstate+ndeath; i++)      for(l=0 ; l <=lmax; l++){
         for (jk=-1; jk<=nlstate+ndeath; jk++)        l1=pow(10,l);
           for(m=agemin; m <= agemax+3; m++)      delts=delt;
             freq[i][jk][m]=0;      for(k=1 ; k <kmax; k=k+1){
              delt = delta*(l1*k);
       for (i=1; i<=imx; i++) {        p2[theta]=x[theta] +delt;
         bool=1;        k1=func(p2)-fx;
         if  (cptcovn>0) {        p2[theta]=x[theta]-delt;
           for (z1=1; z1<=cptcoveff; z1++)        k2=func(p2)-fx;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])        /*res= (k1-2.0*fx+k2)/delt/delt; */
               bool=0;        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         }        
         if (bool==1) {  #ifdef DEBUG
           for(m=firstpass; m<=lastpass; m++){        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
             k2=anint[m][i]+(mint[m][i]/12.);        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  #endif
               if(agev[m][i]==0) agev[m][i]=agemax+1;        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
               if(agev[m][i]==1) agev[m][i]=agemax+2;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
               if (m<lastpass) {          k=kmax;
                 if (calagedate>0)        }
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
                 else          k=kmax; l=lmax*10.;
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];        }
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
               }          delts=delt;
             }        }
           }      }
         }    }
       }    delti[theta]=delts;
       for(i=(int)agemin; i <= (int)agemax+3; i++){    return res; 
         for(jk=1; jk <=nlstate ; jk++){    
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)  }
             pp[jk] += freq[jk][m][i];  
         }  double hessij( double x[], double delti[], int thetai,int thetaj)
         for(jk=1; jk <=nlstate ; jk++){  {
           for(m=-1, pos=0; m <=0 ; m++)    int i;
             pos += freq[jk][m][i];    int l=1, l1, lmax=20;
         }    double k1,k2,k3,k4,res,fx;
            double p2[NPARMAX+1];
         for(jk=1; jk <=nlstate ; jk++){    int k;
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  
             pp[jk] += freq[jk][m][i];    fx=func(x);
         }    for (k=1; k<=2; k++) {
              for (i=1;i<=npar;i++) p2[i]=x[i];
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];      p2[thetai]=x[thetai]+delti[thetai]/k;
              p2[thetaj]=x[thetaj]+delti[thetaj]/k;
         for(jk=1; jk <=nlstate ; jk++){          k1=func(p2)-fx;
           if( i <= (int) agemax){    
             if(pos>=1.e-5){      p2[thetai]=x[thetai]+delti[thetai]/k;
               probs[i][jk][j1]= pp[jk]/pos;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
             }      k2=func(p2)-fx;
           }    
         }      p2[thetai]=x[thetai]-delti[thetai]/k;
              p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       }      k3=func(p2)-fx;
     }    
   }      p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
        k4=func(p2)-fx;
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   free_vector(pp,1,nlstate);  #ifdef DEBUG
        printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 }  /* End of Freq */      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   #endif
 /************* Waves Concatenation ***************/    }
     return res;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  }
 {  
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.  /************** Inverse of matrix **************/
      Death is a valid wave (if date is known).  void ludcmp(double **a, int n, int *indx, double *d) 
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  { 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    int i,imax,j,k; 
      and mw[mi+1][i]. dh depends on stepm.    double big,dum,sum,temp; 
      */    double *vv; 
    
   int i, mi, m;    vv=vector(1,n); 
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    *d=1.0; 
      double sum=0., jmean=0.;*/    for (i=1;i<=n;i++) { 
       big=0.0; 
   int j, k=0,jk, ju, jl;      for (j=1;j<=n;j++) 
   double sum=0.;        if ((temp=fabs(a[i][j])) > big) big=temp; 
   jmin=1e+5;      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
   jmax=-1;      vv[i]=1.0/big; 
   jmean=0.;    } 
   for(i=1; i<=imx; i++){    for (j=1;j<=n;j++) { 
     mi=0;      for (i=1;i<j;i++) { 
     m=firstpass;        sum=a[i][j]; 
     while(s[m][i] <= nlstate){        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       if(s[m][i]>=1)        a[i][j]=sum; 
         mw[++mi][i]=m;      } 
       if(m >=lastpass)      big=0.0; 
         break;      for (i=j;i<=n;i++) { 
       else        sum=a[i][j]; 
         m++;        for (k=1;k<j;k++) 
     }/* end while */          sum -= a[i][k]*a[k][j]; 
     if (s[m][i] > nlstate){        a[i][j]=sum; 
       mi++;     /* Death is another wave */        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       /* if(mi==0)  never been interviewed correctly before death */          big=dum; 
          /* Only death is a correct wave */          imax=i; 
       mw[mi][i]=m;        } 
     }      } 
       if (j != imax) { 
     wav[i]=mi;        for (k=1;k<=n;k++) { 
     if(mi==0)          dum=a[imax][k]; 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          a[imax][k]=a[j][k]; 
   }          a[j][k]=dum; 
         } 
   for(i=1; i<=imx; i++){        *d = -(*d); 
     for(mi=1; mi<wav[i];mi++){        vv[imax]=vv[j]; 
       if (stepm <=0)      } 
         dh[mi][i]=1;      indx[j]=imax; 
       else{      if (a[j][j] == 0.0) a[j][j]=TINY; 
         if (s[mw[mi+1][i]][i] > nlstate) {      if (j != n) { 
           if (agedc[i] < 2*AGESUP) {        dum=1.0/(a[j][j]); 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
           if(j==0) j=1;  /* Survives at least one month after exam */      } 
           k=k+1;    } 
           if (j >= jmax) jmax=j;    free_vector(vv,1,n);  /* Doesn't work */
           if (j <= jmin) jmin=j;  ;
           sum=sum+j;  } 
           /*if (j<0) printf("j=%d num=%d \n",j,i); */  
           }  void lubksb(double **a, int n, int *indx, double b[]) 
         }  { 
         else{    int i,ii=0,ip,j; 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));    double sum; 
           k=k+1;   
           if (j >= jmax) jmax=j;    for (i=1;i<=n;i++) { 
           else if (j <= jmin)jmin=j;      ip=indx[i]; 
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */      sum=b[ip]; 
           sum=sum+j;      b[ip]=b[i]; 
         }      if (ii) 
         jk= j/stepm;        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
         jl= j -jk*stepm;      else if (sum) ii=i; 
         ju= j -(jk+1)*stepm;      b[i]=sum; 
         if(jl <= -ju)    } 
           dh[mi][i]=jk;    for (i=n;i>=1;i--) { 
         else      sum=b[i]; 
           dh[mi][i]=jk+1;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
         if(dh[mi][i]==0)      b[i]=sum/a[i][i]; 
           dh[mi][i]=1; /* At least one step */    } 
       }  } 
     }  
   }  /************ Frequencies ********************/
   jmean=sum/k;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);  {  /* Some frequencies */
  }    
 /*********** Tricode ****************************/    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
 void tricode(int *Tvar, int **nbcode, int imx)    int first;
 {    double ***freq; /* Frequencies */
   int Ndum[20],ij=1, k, j, i;    double *pp, **prop;
   int cptcode=0;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   cptcoveff=0;    FILE *ficresp;
      char fileresp[FILENAMELENGTH];
   for (k=0; k<19; k++) Ndum[k]=0;    
   for (k=1; k<=7; k++) ncodemax[k]=0;    pp=vector(1,nlstate);
     prop=matrix(1,nlstate,iagemin,iagemax+3);
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    strcpy(fileresp,"p");
     for (i=1; i<=imx; i++) {    strcat(fileresp,fileres);
       ij=(int)(covar[Tvar[j]][i]);    if((ficresp=fopen(fileresp,"w"))==NULL) {
       Ndum[ij]++;      printf("Problem with prevalence resultfile: %s\n", fileresp);
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
       if (ij > cptcode) cptcode=ij;      exit(0);
     }    }
     freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
     for (i=0; i<=cptcode; i++) {    j1=0;
       if(Ndum[i]!=0) ncodemax[j]++;    
     }    j=cptcoveff;
     ij=1;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
     first=1;
     for (i=1; i<=ncodemax[j]; i++) {  
       for (k=0; k<=19; k++) {    for(k1=1; k1<=j;k1++){
         if (Ndum[k] != 0) {      for(i1=1; i1<=ncodemax[k1];i1++){
           nbcode[Tvar[j]][ij]=k;        j1++;
                  /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           ij++;          scanf("%d", i);*/
         }        for (i=-1; i<=nlstate+ndeath; i++)  
         if (ij > ncodemax[j]) break;          for (jk=-1; jk<=nlstate+ndeath; jk++)  
       }              for(m=iagemin; m <= iagemax+3; m++)
     }              freq[i][jk][m]=0;
   }    
       for (i=1; i<=nlstate; i++)  
  for (k=0; k<19; k++) Ndum[k]=0;        for(m=iagemin; m <= iagemax+3; m++)
           prop[i][m]=0;
  for (i=1; i<=ncovmodel-2; i++) {        
       ij=Tvar[i];        dateintsum=0;
       Ndum[ij]++;        k2cpt=0;
     }        for (i=1; i<=imx; i++) {
           bool=1;
  ij=1;          if  (cptcovn>0) {
  for (i=1; i<=10; i++) {            for (z1=1; z1<=cptcoveff; z1++) 
    if((Ndum[i]!=0) && (i<=ncovcol)){              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
      Tvaraff[ij]=i;                bool=0;
      ij++;          }
    }          if (bool==1){
  }            for(m=firstpass; m<=lastpass; m++){
                k2=anint[m][i]+(mint[m][i]/12.);
     cptcoveff=ij-1;              if ((k2>=dateprev1) && (k2<=dateprev2)) {
 }                if(agev[m][i]==0) agev[m][i]=iagemax+1;
                 if(agev[m][i]==1) agev[m][i]=iagemax+2;
 /*********** Health Expectancies ****************/                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                 if (m<lastpass) {
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
 {                }
   /* Health expectancies */                
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   double age, agelim, hf;                  dateintsum=dateintsum+k2;
   double ***p3mat,***varhe;                  k2cpt++;
   double **dnewm,**doldm;                }
   double *xp;              }
   double **gp, **gm;            }
   double ***gradg, ***trgradg;          }
   int theta;        }
          
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);        fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate*2,1,npar);        if  (cptcovn>0) {
   doldm=matrix(1,nlstate*2,1,nlstate*2);          fprintf(ficresp, "\n#********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   fprintf(ficreseij,"# Health expectancies\n");          fprintf(ficresp, "**********\n#");
   fprintf(ficreseij,"# Age");        }
   for(i=1; i<=nlstate;i++)        for(i=1; i<=nlstate;i++) 
     for(j=1; j<=nlstate;j++)          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
       fprintf(ficreseij," %1d-%1d (SE)",i,j);        fprintf(ficresp, "\n");
   fprintf(ficreseij,"\n");        
         for(i=iagemin; i <= iagemax+3; i++){
   if(estepm < stepm){          if(i==iagemax+3){
     printf ("Problem %d lower than %d\n",estepm, stepm);            fprintf(ficlog,"Total");
   }          }else{
   else  hstepm=estepm;              if(first==1){
   /* We compute the life expectancy from trapezoids spaced every estepm months              first=0;
    * This is mainly to measure the difference between two models: for example              printf("See log file for details...\n");
    * if stepm=24 months pijx are given only every 2 years and by summing them            }
    * we are calculating an estimate of the Life Expectancy assuming a linear            fprintf(ficlog,"Age %d", i);
    * progression inbetween and thus overestimating or underestimating according          }
    * to the curvature of the survival function. If, for the same date, we          for(jk=1; jk <=nlstate ; jk++){
    * estimate the model with stepm=1 month, we can keep estepm to 24 months            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
    * to compare the new estimate of Life expectancy with the same linear              pp[jk] += freq[jk][m][i]; 
    * hypothesis. A more precise result, taking into account a more precise          }
    * curvature will be obtained if estepm is as small as stepm. */          for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pos=0; m <=0 ; m++)
   /* For example we decided to compute the life expectancy with the smallest unit */              pos += freq[jk][m][i];
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.            if(pp[jk]>=1.e-10){
      nhstepm is the number of hstepm from age to agelim              if(first==1){
      nstepm is the number of stepm from age to agelin.              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
      Look at hpijx to understand the reason of that which relies in memory size              }
      and note for a fixed period like estepm months */              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            }else{
      survival function given by stepm (the optimization length). Unfortunately it              if(first==1)
      means that if the survival funtion is printed only each two years of age and if                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
      results. So we changed our mind and took the option of the best precision.            }
   */          }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */  
           for(jk=1; jk <=nlstate ; jk++){
   agelim=AGESUP;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */              pp[jk] += freq[jk][m][i];
     /* nhstepm age range expressed in number of stepm */          }       
     nstepm=(int) rint((agelim-age)*YEARM/stepm);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */            pos += pp[jk];
     /* if (stepm >= YEARM) hstepm=1;*/            posprop += prop[jk][i];
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(jk=1; jk <=nlstate ; jk++){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);            if(pos>=1.e-5){
     gp=matrix(0,nhstepm,1,nlstate*2);              if(first==1)
     gm=matrix(0,nhstepm,1,nlstate*2);                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     /* Computed by stepm unit matrices, product of hstepm matrices, stored            }else{
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */              if(first==1)
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);                  printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             }
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            if( i <= iagemax){
               if(pos>=1.e-5){
     /* Computing Variances of health expectancies */                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 probs[i][jk][j1]= pp[jk]/pos;
      for(theta=1; theta <=npar; theta++){                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       for(i=1; i<=npar; i++){              }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);              else
       }                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              }
            }
       cptj=0;          
       for(j=1; j<= nlstate; j++){          for(jk=-1; jk <=nlstate+ndeath; jk++)
         for(i=1; i<=nlstate; i++){            for(m=-1; m <=nlstate+ndeath; m++)
           cptj=cptj+1;              if(freq[jk][m][i] !=0 ) {
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){              if(first==1)
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
           }                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
         }              }
       }          if(i <= iagemax)
                  fprintf(ficresp,"\n");
                if(first==1)
       for(i=1; i<=npar; i++)            printf("Others in log...\n");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          fprintf(ficlog,"\n");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          }
            }
       cptj=0;    }
       for(j=1; j<= nlstate; j++){    dateintmean=dateintsum/k2cpt; 
         for(i=1;i<=nlstate;i++){   
           cptj=cptj+1;    fclose(ficresp);
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    free_vector(pp,1,nlstate);
           }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         }    /* End of Freq */
       }  }
       for(j=1; j<= nlstate*2; j++)  
         for(h=0; h<=nhstepm-1; h++){  /************ Prevalence ********************/
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  void prevalence(double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         }  {  
      }    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
           in each health status at the date of interview (if between dateprev1 and dateprev2).
 /* End theta */       We still use firstpass and lastpass as another selection.
     */
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);   
     int i, m, jk, k1, i1, j1, bool, z1,z2,j;
      for(h=0; h<=nhstepm-1; h++)    double ***freq; /* Frequencies */
       for(j=1; j<=nlstate*2;j++)    double *pp, **prop;
         for(theta=1; theta <=npar; theta++)    double pos,posprop; 
           trgradg[h][j][theta]=gradg[h][theta][j];    double  y2; /* in fractional years */
          int iagemin, iagemax;
   
      for(i=1;i<=nlstate*2;i++)    iagemin= (int) agemin;
       for(j=1;j<=nlstate*2;j++)    iagemax= (int) agemax;
         varhe[i][j][(int)age] =0.;    /*pp=vector(1,nlstate);*/
     prop=matrix(1,nlstate,iagemin,iagemax+3); 
      printf("%d|",(int)age);fflush(stdout);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
      for(h=0;h<=nhstepm-1;h++){    j1=0;
       for(k=0;k<=nhstepm-1;k++){    
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    j=cptcoveff;
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         for(i=1;i<=nlstate*2;i++)    
           for(j=1;j<=nlstate*2;j++)    for(k1=1; k1<=j;k1++){
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      for(i1=1; i1<=ncodemax[k1];i1++){
       }        j1++;
     }        
     /* Computing expectancies */        for (i=1; i<=nlstate; i++)  
     for(i=1; i<=nlstate;i++)          for(m=iagemin; m <= iagemax+3; m++)
       for(j=1; j<=nlstate;j++)            prop[i][m]=0.0;
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){       
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;        for (i=1; i<=imx; i++) { /* Each individual */
                    bool=1;
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/          if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
         }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
     fprintf(ficreseij,"%3.0f",age );          } 
     cptj=0;          if (bool==1) { 
     for(i=1; i<=nlstate;i++)            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       for(j=1; j<=nlstate;j++){              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         cptj++;              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     fprintf(ficreseij,"\n");                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                    if (s[m][i]>0 && s[m][i]<=nlstate) { 
     free_matrix(gm,0,nhstepm,1,nlstate*2);                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
     free_matrix(gp,0,nhstepm,1,nlstate*2);                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);                  prop[s[m][i]][iagemax+3] += weight[i]; 
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);                } 
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              }
   }            } /* end selection of waves */
   printf("\n");          }
         }
   free_vector(xp,1,npar);        for(i=iagemin; i <= iagemax+3; i++){  
   free_matrix(dnewm,1,nlstate*2,1,npar);          
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);            posprop += prop[jk][i]; 
 }          } 
   
 /************ Variance ******************/          for(jk=1; jk <=nlstate ; jk++){     
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)            if( i <=  iagemax){ 
 {              if(posprop>=1.e-5){ 
   /* Variance of health expectancies */                probs[i][jk][j1]= prop[jk][i]/posprop;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/              } 
   double **newm;            } 
   double **dnewm,**doldm;          }/* end jk */ 
   int i, j, nhstepm, hstepm, h, nstepm ;        }/* end i */ 
   int k, cptcode;      } /* end i1 */
   double *xp;    } /* end k1 */
   double **gp, **gm;    
   double ***gradg, ***trgradg;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   double ***p3mat;    /*free_vector(pp,1,nlstate);*/
   double age,agelim, hf;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   int theta;  }  /* End of prevalence */
   
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");  /************* Waves Concatenation ***************/
   fprintf(ficresvij,"# Age");  
   for(i=1; i<=nlstate;i++)  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     for(j=1; j<=nlstate;j++)  {
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   fprintf(ficresvij,"\n");       Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   xp=vector(1,npar);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   dnewm=matrix(1,nlstate,1,npar);       and mw[mi+1][i]. dh depends on stepm.
   doldm=matrix(1,nlstate,1,nlstate);       */
    
   if(estepm < stepm){    int i, mi, m;
     printf ("Problem %d lower than %d\n",estepm, stepm);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   }       double sum=0., jmean=0.;*/
   else  hstepm=estepm;      int first;
   /* For example we decided to compute the life expectancy with the smallest unit */    int j, k=0,jk, ju, jl;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    double sum=0.;
      nhstepm is the number of hstepm from age to agelim    first=0;
      nstepm is the number of stepm from age to agelin.    jmin=1e+5;
      Look at hpijx to understand the reason of that which relies in memory size    jmax=-1;
      and note for a fixed period like k years */    jmean=0.;
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the    for(i=1; i<=imx; i++){
      survival function given by stepm (the optimization length). Unfortunately it      mi=0;
      means that if the survival funtion is printed only each two years of age and if      m=firstpass;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      while(s[m][i] <= nlstate){
      results. So we changed our mind and took the option of the best precision.        if(s[m][i]>=1)
   */          mw[++mi][i]=m;
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        if(m >=lastpass)
   agelim = AGESUP;          break;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        else
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          m++;
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      }/* end while */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      if (s[m][i] > nlstate){
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        mi++;     /* Death is another wave */
     gp=matrix(0,nhstepm,1,nlstate);        /* if(mi==0)  never been interviewed correctly before death */
     gm=matrix(0,nhstepm,1,nlstate);           /* Only death is a correct wave */
         mw[mi][i]=m;
     for(theta=1; theta <=npar; theta++){      }
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      wav[i]=mi;
       }      if(mi==0){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          if(first==0){
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);
           first=1;
       if (popbased==1) {        }
         for(i=1; i<=nlstate;i++)        if(first==1){
           prlim[i][i]=probs[(int)age][i][ij];          fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);
       }        }
        } /* end mi==0 */
       for(j=1; j<= nlstate; j++){    }
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    for(i=1; i<=imx; i++){
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      for(mi=1; mi<wav[i];mi++){
         }        if (stepm <=0)
       }          dh[mi][i]=1;
            else{
       for(i=1; i<=npar; i++) /* Computes gradient */          if (s[mw[mi+1][i]][i] > nlstate) {
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            if (agedc[i] < 2*AGESUP) {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            if(j==0) j=1;  /* Survives at least one month after exam */
              k=k+1;
       if (popbased==1) {            if (j >= jmax) jmax=j;
         for(i=1; i<=nlstate;i++)            if (j <= jmin) jmin=j;
           prlim[i][i]=probs[(int)age][i][ij];            sum=sum+j;
       }            /*if (j<0) printf("j=%d num=%d \n",j,i); */
             /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       for(j=1; j<= nlstate; j++){            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         for(h=0; h<=nhstepm; h++){            }
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          else{
         }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
       }            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
             k=k+1;
       for(j=1; j<= nlstate; j++)            if (j >= jmax) jmax=j;
         for(h=0; h<=nhstepm; h++){            else if (j <= jmin)jmin=j;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
         }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     } /* End theta */            sum=sum+j;
           }
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);          jk= j/stepm;
           jl= j -jk*stepm;
     for(h=0; h<=nhstepm; h++)          ju= j -(jk+1)*stepm;
       for(j=1; j<=nlstate;j++)          if(mle <=1){ 
         for(theta=1; theta <=npar; theta++)            if(jl==0){
           trgradg[h][j][theta]=gradg[h][theta][j];              dh[mi][i]=jk;
               bh[mi][i]=0;
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */            }else{ /* We want a negative bias in order to only have interpolation ie
     for(i=1;i<=nlstate;i++)                    * at the price of an extra matrix product in likelihood */
       for(j=1;j<=nlstate;j++)              dh[mi][i]=jk+1;
         vareij[i][j][(int)age] =0.;              bh[mi][i]=ju;
             }
     for(h=0;h<=nhstepm;h++){          }else{
       for(k=0;k<=nhstepm;k++){            if(jl <= -ju){
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);              dh[mi][i]=jk;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);              bh[mi][i]=jl;       /* bias is positive if real duration
         for(i=1;i<=nlstate;i++)                                   * is higher than the multiple of stepm and negative otherwise.
           for(j=1;j<=nlstate;j++)                                   */
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;            }
       }            else{
     }              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
     fprintf(ficresvij,"%.0f ",age );            }
     for(i=1; i<=nlstate;i++)            if(dh[mi][i]==0){
       for(j=1; j<=nlstate;j++){              dh[mi][i]=1; /* At least one step */
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);              bh[mi][i]=ju; /* At least one step */
       }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     fprintf(ficresvij,"\n");            }
     free_matrix(gp,0,nhstepm,1,nlstate);          }
     free_matrix(gm,0,nhstepm,1,nlstate);        } /* end if mle */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);      } /* end wave */
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    jmean=sum/k;
   } /* End age */    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
      fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
   free_vector(xp,1,npar);   }
   free_matrix(doldm,1,nlstate,1,npar);  
   free_matrix(dnewm,1,nlstate,1,nlstate);  /*********** Tricode ****************************/
   void tricode(int *Tvar, int **nbcode, int imx)
 }  {
     
 /************ Variance of prevlim ******************/    int Ndum[20],ij=1, k, j, i, maxncov=19;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    int cptcode=0;
 {    cptcoveff=0; 
   /* Variance of prevalence limit */   
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    for (k=0; k<maxncov; k++) Ndum[k]=0;
   double **newm;    for (k=1; k<=7; k++) ncodemax[k]=0;
   double **dnewm,**doldm;  
   int i, j, nhstepm, hstepm;    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   int k, cptcode;      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   double *xp;                                 modality*/ 
   double *gp, *gm;        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   double **gradg, **trgradg;        Ndum[ij]++; /*store the modality */
   double age,agelim;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   int theta;        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                                             Tvar[j]. If V=sex and male is 0 and 
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");                                         female is 1, then  cptcode=1.*/
   fprintf(ficresvpl,"# Age");      }
   for(i=1; i<=nlstate;i++)  
       fprintf(ficresvpl," %1d-%1d",i,i);      for (i=0; i<=cptcode; i++) {
   fprintf(ficresvpl,"\n");        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       }
   xp=vector(1,npar);  
   dnewm=matrix(1,nlstate,1,npar);      ij=1; 
   doldm=matrix(1,nlstate,1,nlstate);      for (i=1; i<=ncodemax[j]; i++) {
          for (k=0; k<= maxncov; k++) {
   hstepm=1*YEARM; /* Every year of age */          if (Ndum[k] != 0) {
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            nbcode[Tvar[j]][ij]=k; 
   agelim = AGESUP;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */            
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            ij++;
     if (stepm >= YEARM) hstepm=1;          }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          if (ij > ncodemax[j]) break; 
     gradg=matrix(1,npar,1,nlstate);        }  
     gp=vector(1,nlstate);      } 
     gm=vector(1,nlstate);    }  
   
     for(theta=1; theta <=npar; theta++){   for (k=0; k< maxncov; k++) Ndum[k]=0;
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);   for (i=1; i<=ncovmodel-2; i++) { 
       }     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);     ij=Tvar[i];
       for(i=1;i<=nlstate;i++)     Ndum[ij]++;
         gp[i] = prlim[i][i];   }
      
       for(i=1; i<=npar; i++) /* Computes gradient */   ij=1;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);   for (i=1; i<= maxncov; i++) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);     if((Ndum[i]!=0) && (i<=ncovcol)){
       for(i=1;i<=nlstate;i++)       Tvaraff[ij]=i; /*For printing */
         gm[i] = prlim[i][i];       ij++;
      }
       for(i=1;i<=nlstate;i++)   }
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];   
     } /* End theta */   cptcoveff=ij-1; /*Number of simple covariates*/
   }
     trgradg =matrix(1,nlstate,1,npar);  
   /*********** Health Expectancies ****************/
     for(j=1; j<=nlstate;j++)  
       for(theta=1; theta <=npar; theta++)  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
         trgradg[j][theta]=gradg[theta][j];  
   {
     for(i=1;i<=nlstate;i++)    /* Health expectancies */
       varpl[i][(int)age] =0.;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);    double age, agelim, hf;
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);    double ***p3mat,***varhe;
     for(i=1;i<=nlstate;i++)    double **dnewm,**doldm;
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    double *xp;
     double **gp, **gm;
     fprintf(ficresvpl,"%.0f ",age );    double ***gradg, ***trgradg;
     for(i=1; i<=nlstate;i++)    int theta;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  
     fprintf(ficresvpl,"\n");    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     free_vector(gp,1,nlstate);    xp=vector(1,npar);
     free_vector(gm,1,nlstate);    dnewm=matrix(1,nlstate*nlstate,1,npar);
     free_matrix(gradg,1,npar,1,nlstate);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     free_matrix(trgradg,1,nlstate,1,npar);    
   } /* End age */    fprintf(ficreseij,"# Health expectancies\n");
     fprintf(ficreseij,"# Age");
   free_vector(xp,1,npar);    for(i=1; i<=nlstate;i++)
   free_matrix(doldm,1,nlstate,1,npar);      for(j=1; j<=nlstate;j++)
   free_matrix(dnewm,1,nlstate,1,nlstate);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
     fprintf(ficreseij,"\n");
 }  
     if(estepm < stepm){
 /************ Variance of one-step probabilities  ******************/      printf ("Problem %d lower than %d\n",estepm, stepm);
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)    }
 {    else  hstepm=estepm;   
   int i, j,  i1, k1, l1;    /* We compute the life expectancy from trapezoids spaced every estepm months
   int k2, l2, j1,  z1;     * This is mainly to measure the difference between two models: for example
   int k=0,l, cptcode;     * if stepm=24 months pijx are given only every 2 years and by summing them
   int first=1;     * we are calculating an estimate of the Life Expectancy assuming a linear 
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2;     * progression in between and thus overestimating or underestimating according
   double **dnewm,**doldm;     * to the curvature of the survival function. If, for the same date, we 
   double *xp;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   double *gp, *gm;     * to compare the new estimate of Life expectancy with the same linear 
   double **gradg, **trgradg;     * hypothesis. A more precise result, taking into account a more precise
   double **mu;     * curvature will be obtained if estepm is as small as stepm. */
   double age,agelim, cov[NCOVMAX];  
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    /* For example we decided to compute the life expectancy with the smallest unit */
   int theta;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   char fileresprob[FILENAMELENGTH];       nhstepm is the number of hstepm from age to agelim 
   char fileresprobcov[FILENAMELENGTH];       nstepm is the number of stepm from age to agelin. 
   char fileresprobcor[FILENAMELENGTH];       Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
   double ***varpij;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
   strcpy(fileresprob,"prob");       means that if the survival funtion is printed only each two years of age and if
   strcat(fileresprob,fileres);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {       results. So we changed our mind and took the option of the best precision.
     printf("Problem with resultfile: %s\n", fileresprob);    */
   }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   strcpy(fileresprobcov,"probcov");  
   strcat(fileresprobcov,fileres);    agelim=AGESUP;
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     printf("Problem with resultfile: %s\n", fileresprobcov);      /* nhstepm age range expressed in number of stepm */
   }      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   strcpy(fileresprobcor,"probcor");      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   strcat(fileresprobcor,fileres);      /* if (stepm >= YEARM) hstepm=1;*/
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     printf("Problem with resultfile: %s\n", fileresprobcor);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);  
        /* Computed by stepm unit matrices, product of hstepm matrices, stored
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   fprintf(ficresprob,"# Age");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");   
   fprintf(ficresprobcov,"# Age");  
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   fprintf(ficresprobcov,"# Age");  
       /* Computing Variances of health expectancies */
   
   for(i=1; i<=nlstate;i++)       for(theta=1; theta <=npar; theta++){
     for(j=1; j<=(nlstate+ndeath);j++){        for(i=1; i<=npar; i++){ 
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       fprintf(ficresprobcov," p%1d-%1d ",i,j);        }
       fprintf(ficresprobcor," p%1d-%1d ",i,j);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     }      
   fprintf(ficresprob,"\n");        cptj=0;
   fprintf(ficresprobcov,"\n");        for(j=1; j<= nlstate; j++){
   fprintf(ficresprobcor,"\n");          for(i=1; i<=nlstate; i++){
   xp=vector(1,npar);            cptj=cptj+1;
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);            }
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);          }
   first=1;        }
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {       
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);       
     exit(0);        for(i=1; i<=npar; i++) 
   }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   else{        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     fprintf(ficgp,"\n# Routine varprob");        
   }        cptj=0;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {        for(j=1; j<= nlstate; j++){
     printf("Problem with html file: %s\n", optionfilehtm);          for(i=1;i<=nlstate;i++){
     exit(0);            cptj=cptj+1;
   }            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
   else{              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     fprintf(fichtm,"\n<H2> Computing matrix of variance-covariance of step probabilities</h2>\n");            }
     fprintf(fichtm,"\n<br> We have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");          }
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");        }
         for(j=1; j<= nlstate*nlstate; j++)
   }          for(h=0; h<=nhstepm-1; h++){
   cov[1]=1;            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   j=cptcoveff;          }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}       } 
   j1=0;     
   for(k1=1; k1<=1;k1++){  /* End theta */
     for(i1=1; i1<=ncodemax[k1];i1++){  
     j1++;       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   
     if  (cptcovn>0) {       for(h=0; h<=nhstepm-1; h++)
       fprintf(ficresprob, "\n#********** Variable ");        for(j=1; j<=nlstate*nlstate;j++)
       fprintf(ficresprobcov, "\n#********** Variable ");          for(theta=1; theta <=npar; theta++)
       fprintf(ficgp, "\n#********** Variable ");            trgradg[h][j][theta]=gradg[h][theta][j];
       fprintf(fichtm, "\n<h4>********** Variable</h4>\n ");       
       fprintf(ficresprobcor, "\n#********** Variable ");  
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       for(i=1;i<=nlstate*nlstate;i++)
       fprintf(ficresprob, "**********\n#");        for(j=1;j<=nlstate*nlstate;j++)
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          varhe[i][j][(int)age] =0.;
       fprintf(ficresprobcov, "**********\n#");  
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       printf("%d|",(int)age);fflush(stdout);
       fprintf(ficgp, "**********\n#");       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);       for(h=0;h<=nhstepm-1;h++){
       fprintf(ficgp, "**********\n#");        for(k=0;k<=nhstepm-1;k++){
       for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
       fprintf(fichtm, "**********\n#");          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     }          for(i=1;i<=nlstate*nlstate;i++)
                for(j=1;j<=nlstate*nlstate;j++)
       for (age=bage; age<=fage; age ++){              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
         cov[2]=age;        }
         for (k=1; k<=cptcovn;k++) {      }
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];      /* Computing expectancies */
         }      for(i=1; i<=nlstate;i++)
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        for(j=1; j<=nlstate;j++)
         for (k=1; k<=cptcovprod;k++)          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                    
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  
         gp=vector(1,(nlstate)*(nlstate+ndeath));          }
         gm=vector(1,(nlstate)*(nlstate+ndeath));  
          fprintf(ficreseij,"%3.0f",age );
         for(theta=1; theta <=npar; theta++){      cptj=0;
           for(i=1; i<=npar; i++)      for(i=1; i<=nlstate;i++)
             xp[i] = x[i] + (i==theta ?delti[theta]:0);        for(j=1; j<=nlstate;j++){
                    cptj++;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
                  }
           k=0;      fprintf(ficreseij,"\n");
           for(i=1; i<= (nlstate); i++){     
             for(j=1; j<=(nlstate+ndeath);j++){      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
               k=k+1;      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
               gp[k]=pmmij[i][j];      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
             }      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
           }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
              }
           for(i=1; i<=npar; i++)    printf("\n");
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    fprintf(ficlog,"\n");
      
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    free_vector(xp,1,npar);
           k=0;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
           for(i=1; i<=(nlstate); i++){    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
             for(j=1; j<=(nlstate+ndeath);j++){    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
               k=k+1;  }
               gm[k]=pmmij[i][j];  
             }  /************ Variance ******************/
           }  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
        {
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)    /* Variance of health expectancies */
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];      /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
         }    /* double **newm;*/
     double **dnewm,**doldm;
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)    double **dnewmp,**doldmp;
           for(theta=1; theta <=npar; theta++)    int i, j, nhstepm, hstepm, h, nstepm ;
             trgradg[j][theta]=gradg[theta][j];    int k, cptcode;
            double *xp;
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);    double **gp, **gm;  /* for var eij */
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);    double ***gradg, ***trgradg; /*for var eij */
            double **gradgp, **trgradgp; /* for var p point j */
         pmij(pmmij,cov,ncovmodel,x,nlstate);    double *gpp, *gmp; /* for var p point j */
            double **varppt; /* for var p point j nlstate to nlstate+ndeath */
         k=0;    double ***p3mat;
         for(i=1; i<=(nlstate); i++){    double age,agelim, hf;
           for(j=1; j<=(nlstate+ndeath);j++){    double ***mobaverage;
             k=k+1;    int theta;
             mu[k][(int) age]=pmmij[i][j];    char digit[4];
           }    char digitp[25];
         }  
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    char fileresprobmorprev[FILENAMELENGTH];
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)  
             varpij[i][j][(int)age] = doldm[i][j];    if(popbased==1){
       if(mobilav!=0)
         /*printf("\n%d ",(int)age);        strcpy(digitp,"-populbased-mobilav-");
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      else strcpy(digitp,"-populbased-nomobil-");
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));    }
      }*/    else 
       strcpy(digitp,"-stablbased-");
         fprintf(ficresprob,"\n%d ",(int)age);  
         fprintf(ficresprobcov,"\n%d ",(int)age);    if (mobilav!=0) {
         fprintf(ficresprobcor,"\n%d ",(int)age);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){      }
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);    }
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);  
         }    strcpy(fileresprobmorprev,"prmorprev"); 
         i=0;    sprintf(digit,"%-d",ij);
         for (k=1; k<=(nlstate);k++){    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
           for (l=1; l<=(nlstate+ndeath);l++){    strcat(fileresprobmorprev,digit); /* Tvar to be done */
             i=i++;    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);    strcat(fileresprobmorprev,fileres);
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
             for (j=1; j<=i;j++){      printf("Problem with resultfile: %s\n", fileresprobmorprev);
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));    }
             }    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           }    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
         }/* end of loop for state */    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
       } /* end of loop for age */    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       for (k1=1; k1<=(nlstate);k1++){      fprintf(ficresprobmorprev," p.%-d SE",j);
         for (l1=1; l1<=(nlstate+ndeath);l1++){      for(i=1; i<=nlstate;i++)
           if(l1==k1) continue;        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
           i=(k1-1)*(nlstate+ndeath)+l1;    }  
           for (k2=1; k2<=(nlstate);k2++){    fprintf(ficresprobmorprev,"\n");
             for (l2=1; l2<=(nlstate+ndeath);l2++){    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
               if(l2==k2) continue;      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
               j=(k2-1)*(nlstate+ndeath)+l2;      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
               if(j<=i) continue;      exit(0);
               for (age=bage; age<=fage; age ++){    }
                 if ((int)age %5==0){    else{
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;      fprintf(ficgp,"\n# Routine varevsij");
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    }
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
                   mu1=mu[i][(int) age]/stepm*YEARM ;      printf("Problem with html file: %s\n", optionfilehtm);
                   mu2=mu[j][(int) age]/stepm*YEARM;      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
                   /* Computing eigen value of matrix of covariance */      exit(0);
                   lc1=(v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    }
                   lc2=(v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12));    else{
                   printf("Var %.4e %.4e cov %.4e Eigen %.3e %.3e\n",v1,v2,cv12,lc1,lc2);      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
                   /* Eigen vectors */      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    }
                   v21=sqrt(1.-v11*v11);    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   v12=-v21;  
                   v22=v11;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
                   /*printf(fignu*/    fprintf(ficresvij,"# Age");
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */    for(i=1; i<=nlstate;i++)
                   /* mu2+ v21*lc1*cost + v21*lc2*sin(t) */      for(j=1; j<=nlstate;j++)
                   if(first==1){        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
                     first=0;    fprintf(ficresvij,"\n");
                     fprintf(ficgp,"\nset parametric;set nolabel");  
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k2,l2,k1,l1);    xp=vector(1,npar);
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");    dnewm=matrix(1,nlstate,1,npar);
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%1d%1d-%1d%1d.png\">varpijgr%s%1d%1d-%1d%1d.png</A>, ",k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1,optionfilefiname,k2,l2,k1,l1);    doldm=matrix(1,nlstate,1,nlstate);
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%1d%1d-%1d%1d.png\">, ",optionfilefiname,k2,l2,k1,l1);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
                     fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\"",optionfilefiname,k2,l2,k1,l1);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);  
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    gpp=vector(nlstate+1,nlstate+ndeath);
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    gmp=vector(nlstate+1,nlstate+ndeath);
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                   }else{    
                     first=0;    if(estepm < stepm){
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k2,l2,k1,l1);      printf ("Problem %d lower than %d\n",estepm, stepm);
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu2,mu1);    }
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(-%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) t \"%d\"",\    else  hstepm=estepm;   
                             mu2,std,v21,sqrt(lc1),v21,sqrt(lc2), \    /* For example we decided to compute the life expectancy with the smallest unit */
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),(int) age);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   }/* if first */       nhstepm is the number of hstepm from age to agelim 
                 } /* age mod 5 */       nstepm is the number of stepm from age to agelin. 
               } /* end loop age */       Look at hpijx to understand the reason of that which relies in memory size
               fprintf(ficgp,"\nset out \"varpijgr%s%1d%1d-%1d%1d.png\";replot;",optionfilefiname,k2,l2,k1,l1);       and note for a fixed period like k years */
               first=1;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
             } /*l12 */       survival function given by stepm (the optimization length). Unfortunately it
           } /* k12 */       means that if the survival funtion is printed every two years of age and if
         } /*l1 */       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
       }/* k1 */       results. So we changed our mind and took the option of the best precision.
     } /* loop covariates */    */
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));    agelim = AGESUP;
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
   free_vector(xp,1,npar);      gp=matrix(0,nhstepm,1,nlstate);
   fclose(ficresprob);      gm=matrix(0,nhstepm,1,nlstate);
   fclose(ficresprobcov);  
   fclose(ficresprobcor);  
   fclose(ficgp);      for(theta=1; theta <=npar; theta++){
   fclose(fichtm);        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
 }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 /******************* Printing html file ***********/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \  
                   int lastpass, int stepm, int weightopt, char model[],\        if (popbased==1) {
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\          if(mobilav ==0){
                   int popforecast, int estepm ,\            for(i=1; i<=nlstate;i++)
                   double jprev1, double mprev1,double anprev1, \              prlim[i][i]=probs[(int)age][i][ij];
                   double jprev2, double mprev2,double anprev2){          }else{ /* mobilav */ 
   int jj1, k1, i1, cpt;            for(i=1; i<=nlstate;i++)
   /*char optionfilehtm[FILENAMELENGTH];*/              prlim[i][i]=mobaverage[(int)age][i][ij];
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {          }
     printf("Problem with %s \n",optionfilehtm), exit(0);        }
   }    
         for(j=1; j<= nlstate; j++){
    fprintf(fichtm,"<ul><li>Result files (first order: no variance)<br>\n          for(h=0; h<=nhstepm; h++){
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n          }
  - Life expectancies by age and initial health status (estepm=%2d months):        }
    <a href=\"e%s\">e%s</a> <br>\n</li>", \        /* This for computing probability of death (h=1 means
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
  fprintf(fichtm,"\n<li> Result files (second order: variances)<br>\n        */
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n        for(j=nlstate+1;j<=nlstate+ndeath;j++){
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n          for(i=1,gpp[j]=0.; i<= nlstate; i++)
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n            gpp[j] += prlim[i][i]*p3mat[i][j][1];
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n        }    
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n        /* end probability of death */
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n  
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
  if(popforecast==1) fprintf(fichtm,"\n        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n   
         <br>",fileres,fileres,fileres,fileres);        if (popbased==1) {
  else          if(mobilav ==0){
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);            for(i=1; i<=nlstate;i++)
 fprintf(fichtm," <li>Graphs</li><p>");              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
  m=cptcoveff;            for(i=1; i<=nlstate;i++)
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
  jj1=0;        }
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){        for(j=1; j<= nlstate; j++){
      jj1++;          for(h=0; h<=nhstepm; h++){
      if (cptcovn > 0) {            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
        for (cpt=1; cpt<=cptcoveff;cpt++)          }
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        }
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        /* This for computing probability of death (h=1 means
      }           computed over hstepm matrices product = hstepm*stepm months) 
      /* Pij */           as a weighted average of prlim.
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>        */
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);            for(j=nlstate+1;j<=nlstate+ndeath;j++){
      /* Quasi-incidences */          for(i=1,gmp[j]=0.; i<= nlstate; i++)
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>           gmp[j] += prlim[i][i]*p3mat[i][j][1];
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        }    
        /* Stable prevalence in each health state */        /* end probability of death */
        for(cpt=1; cpt<nlstate;cpt++){  
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>        for(j=1; j<= nlstate; j++) /* vareij */
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          for(h=0; h<=nhstepm; h++){
        }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
     for(cpt=1; cpt<=nlstate;cpt++) {          }
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident  
 interval) in state (%d): v%s%d%d.png <br>        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
      }        }
      for(cpt=1; cpt<=nlstate;cpt++) {  
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>      } /* End theta */
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
      }      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
      fprintf(fichtm,"\n<br>- Total life expectancy by age and  
 health expectancies in states (1) and (2): e%s%d.png<br>      for(h=0; h<=nhstepm; h++) /* veij */
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        for(j=1; j<=nlstate;j++)
    }          for(theta=1; theta <=npar; theta++)
  }            trgradg[h][j][theta]=gradg[h][theta][j];
 fclose(fichtm);  
 }      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
 /******************* Gnuplot file **************/          trgradgp[j][theta]=gradgp[theta][j];
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    
   
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   int ng;      for(i=1;i<=nlstate;i++)
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        for(j=1;j<=nlstate;j++)
     printf("Problem with file %s",optionfilegnuplot);          vareij[i][j][(int)age] =0.;
   }  
       for(h=0;h<=nhstepm;h++){
 #ifdef windows        for(k=0;k<=nhstepm;k++){
     fprintf(ficgp,"cd \"%s\" \n",pathc);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
 #endif          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
 m=pow(2,cptcoveff);          for(i=1;i<=nlstate;i++)
              for(j=1;j<=nlstate;j++)
  /* 1eme*/              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
   for (cpt=1; cpt<= nlstate ; cpt ++) {        }
    for (k1=1; k1<= m ; k1 ++) {      }
     
 #ifdef windows      /* pptj */
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
 #endif      for(j=nlstate+1;j<=nlstate+ndeath;j++)
 #ifdef unix        for(i=nlstate+1;i<=nlstate+ndeath;i++)
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);          varppt[j][i]=doldmp[j][i];
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);      /* end ppptj */
 #endif      /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
 for (i=1; i<= nlstate ; i ++) {      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");   
   else fprintf(ficgp," \%%*lf (\%%*lf)");      if (popbased==1) {
 }        if(mobilav ==0){
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);          for(i=1; i<=nlstate;i++)
     for (i=1; i<= nlstate ; i ++) {            prlim[i][i]=probs[(int)age][i][ij];
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        }else{ /* mobilav */ 
   else fprintf(ficgp," \%%*lf (\%%*lf)");          for(i=1; i<=nlstate;i++)
 }            prlim[i][i]=mobaverage[(int)age][i][ij];
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        }
      for (i=1; i<= nlstate ; i ++) {      }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");               
   else fprintf(ficgp," \%%*lf (\%%*lf)");      /* This for computing probability of death (h=1 means
 }           computed over hstepm (estepm) matrices product = hstepm*stepm months) 
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));         as a weighted average of prlim.
 #ifdef unix      */
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");      for(j=nlstate+1;j<=nlstate+ndeath;j++){
 #endif        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
    }          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
   }      }    
   /*2 eme*/      /* end probability of death */
   
   for (k1=1; k1<= m ; k1 ++) {      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
            for(i=1; i<=nlstate;i++){
     for (i=1; i<= nlstate+1 ; i ++) {          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
       k=2*i;        }
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      } 
       for (j=1; j<= nlstate+1 ; j ++) {      fprintf(ficresprobmorprev,"\n");
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");      fprintf(ficresvij,"%.0f ",age );
 }        for(i=1; i<=nlstate;i++)
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");        for(j=1; j<=nlstate;j++){
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);        }
       for (j=1; j<= nlstate+1 ; j ++) {      fprintf(ficresvij,"\n");
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      free_matrix(gp,0,nhstepm,1,nlstate);
         else fprintf(ficgp," \%%*lf (\%%*lf)");      free_matrix(gm,0,nhstepm,1,nlstate);
 }        free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       fprintf(ficgp,"\" t\"\" w l 0,");      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for (j=1; j<= nlstate+1 ; j ++) {    } /* End age */
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    free_vector(gpp,nlstate+1,nlstate+ndeath);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    free_vector(gmp,nlstate+1,nlstate+ndeath);
 }      free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
       else fprintf(ficgp,"\" t\"\" w l 0,");    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     }    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
   }    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
    /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*3eme*/  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
   for (k1=1; k1<= m ; k1 ++) {    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
     for (cpt=1; cpt<= nlstate ; cpt ++) {    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
       k=2+nlstate*(2*cpt-2);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");  */
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);  
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    free_vector(xp,1,npar);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);    free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
 */    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       for (i=1; i< nlstate ; i ++) {    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       }    fclose(ficresprobmorprev);
     }    fclose(ficgp);
   }    fclose(fichtm);
    }  
   /* CV preval stat */  
     for (k1=1; k1<= m ; k1 ++) {  /************ Variance of prevlim ******************/
     for (cpt=1; cpt<nlstate ; cpt ++) {  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
       k=3;  {
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);    /* Variance of prevalence limit */
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
       for (i=1; i< nlstate ; i ++)    double **dnewm,**doldm;
         fprintf(ficgp,"+$%d",k+i+1);    int i, j, nhstepm, hstepm;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    int k, cptcode;
          double *xp;
       l=3+(nlstate+ndeath)*cpt;    double *gp, *gm;
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);    double **gradg, **trgradg;
       for (i=1; i< nlstate ; i ++) {    double age,agelim;
         l=3+(nlstate+ndeath)*cpt;    int theta;
         fprintf(ficgp,"+$%d",l+i+1);     
       }    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      fprintf(ficresvpl,"# Age");
     }    for(i=1; i<=nlstate;i++)
   }          fprintf(ficresvpl," %1d-%1d",i,i);
      fprintf(ficresvpl,"\n");
   /* proba elementaires */  
    for(i=1,jk=1; i <=nlstate; i++){    xp=vector(1,npar);
     for(k=1; k <=(nlstate+ndeath); k++){    dnewm=matrix(1,nlstate,1,npar);
       if (k != i) {    doldm=matrix(1,nlstate,1,nlstate);
         for(j=1; j <=ncovmodel; j++){    
            hstepm=1*YEARM; /* Every year of age */
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
           jk++;    agelim = AGESUP;
           fprintf(ficgp,"\n");    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
         }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       }      if (stepm >= YEARM) hstepm=1;
     }      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
    }      gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/      gm=vector(1,nlstate);
      for(jk=1; jk <=m; jk++) {  
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);      for(theta=1; theta <=npar; theta++){
        if (ng==2)        for(i=1; i<=npar; i++){ /* Computes gradient */
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
        else        }
          fprintf(ficgp,"\nset title \"Probability\"\n");        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);        for(i=1;i<=nlstate;i++)
        i=1;          gp[i] = prlim[i][i];
        for(k2=1; k2<=nlstate; k2++) {      
          k3=i;        for(i=1; i<=npar; i++) /* Computes gradient */
          for(k=1; k<=(nlstate+ndeath); k++) {          xp[i] = x[i] - (i==theta ?delti[theta]:0);
            if (k != k2){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
              if(ng==2)        for(i=1;i<=nlstate;i++)
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);          gm[i] = prlim[i][i];
              else  
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);        for(i=1;i<=nlstate;i++)
              ij=1;          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
              for(j=3; j <=ncovmodel; j++) {      } /* End theta */
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      trgradg =matrix(1,nlstate,1,npar);
                  ij++;  
                }      for(j=1; j<=nlstate;j++)
                else        for(theta=1; theta <=npar; theta++)
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          trgradg[j][theta]=gradg[theta][j];
              }  
              fprintf(ficgp,")/(1");      for(i=1;i<=nlstate;i++)
                      varpl[i][(int)age] =0.;
              for(k1=1; k1 <=nlstate; k1++){        matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
                ij=1;      for(i=1;i<=nlstate;i++)
                for(j=3; j <=ncovmodel; j++){        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      fprintf(ficresvpl,"%.0f ",age );
                    ij++;      for(i=1; i<=nlstate;i++)
                  }        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
                  else      fprintf(ficresvpl,"\n");
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);      free_vector(gp,1,nlstate);
                }      free_vector(gm,1,nlstate);
                fprintf(ficgp,")");      free_matrix(gradg,1,npar,1,nlstate);
              }      free_matrix(trgradg,1,nlstate,1,npar);
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    } /* End age */
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
              i=i+ncovmodel;    free_vector(xp,1,npar);
            }    free_matrix(doldm,1,nlstate,1,npar);
          }    free_matrix(dnewm,1,nlstate,1,nlstate);
        }  
      }  }
    }  
    fclose(ficgp);  /************ Variance of one-step probabilities  ******************/
 }  /* end gnuplot */  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
     int i, j=0,  i1, k1, l1, t, tj;
 /*************** Moving average **************/    int k2, l2, j1,  z1;
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    int k=0,l, cptcode;
     int first=1, first1;
   int i, cpt, cptcod;    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    double **dnewm,**doldm;
       for (i=1; i<=nlstate;i++)    double *xp;
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)    double *gp, *gm;
           mobaverage[(int)agedeb][i][cptcod]=0.;    double **gradg, **trgradg;
        double **mu;
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    double age,agelim, cov[NCOVMAX];
       for (i=1; i<=nlstate;i++){    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    int theta;
           for (cpt=0;cpt<=4;cpt++){    char fileresprob[FILENAMELENGTH];
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];    char fileresprobcov[FILENAMELENGTH];
           }    char fileresprobcor[FILENAMELENGTH];
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  
         }    double ***varpij;
       }  
     }    strcpy(fileresprob,"prob"); 
        strcat(fileresprob,fileres);
 }    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
 /************** Forecasting ******************/    }
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){    strcpy(fileresprobcov,"probcov"); 
      strcat(fileresprobcov,fileres);
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   int *popage;      printf("Problem with resultfile: %s\n", fileresprobcov);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   double *popeffectif,*popcount;    }
   double ***p3mat;    strcpy(fileresprobcor,"probcor"); 
   char fileresf[FILENAMELENGTH];    strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
  agelim=AGESUP;      printf("Problem with resultfile: %s\n", fileresprobcor);
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   strcpy(fileresf,"f");    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   strcat(fileresf,fileres);    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
   if((ficresf=fopen(fileresf,"w"))==NULL) {    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     printf("Problem with forecast resultfile: %s\n", fileresf);    
   }    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
   printf("Computing forecasting: result on file '%s' \n", fileresf);    fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   if (cptcoveff==0) ncodemax[cptcoveff]=1;    fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   if (mobilav==1) {    fprintf(ficresprobcov,"# Age");
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);  
   }    for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
   stepsize=(int) (stepm+YEARM-1)/YEARM;        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   if (stepm<=12) stepsize=1;        fprintf(ficresprobcov," p%1d-%1d ",i,j);
          fprintf(ficresprobcor," p%1d-%1d ",i,j);
   agelim=AGESUP;      }  
     /* fprintf(ficresprob,"\n");
   hstepm=1;    fprintf(ficresprobcov,"\n");
   hstepm=hstepm/stepm;    fprintf(ficresprobcor,"\n");
   yp1=modf(dateintmean,&yp);   */
   anprojmean=yp;   xp=vector(1,npar);
   yp2=modf((yp1*12),&yp);    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   mprojmean=yp;    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   yp1=modf((yp2*30.5),&yp);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   jprojmean=yp;    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   if(jprojmean==0) jprojmean=1;    first=1;
   if(mprojmean==0) jprojmean=1;    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
        printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
        exit(0);
   for(cptcov=1;cptcov<=i2;cptcov++){    }
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    else{
       k=k+1;      fprintf(ficgp,"\n# Routine varprob");
       fprintf(ficresf,"\n#******");    }
       for(j=1;j<=cptcoveff;j++) {    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      printf("Problem with html file: %s\n", optionfilehtm);
       }      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
       fprintf(ficresf,"******\n");      exit(0);
       fprintf(ficresf,"# StartingAge FinalAge");    }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);    else{
            fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
            fprintf(fichtm,"\n");
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {  
         fprintf(ficresf,"\n");      fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);        fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    }
           nhstepm = nhstepm/hstepm;  
              cov[1]=1;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    tj=cptcoveff;
           oldm=oldms;savm=savms;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      j1=0;
            for(t=1; t<=tj;t++){
           for (h=0; h<=nhstepm; h++){      for(i1=1; i1<=ncodemax[t];i1++){ 
             if (h==(int) (calagedate+YEARM*cpt)) {        j1++;
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);        if  (cptcovn>0) {
             }          fprintf(ficresprob, "\n#********** Variable "); 
             for(j=1; j<=nlstate+ndeath;j++) {          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               kk1=0.;kk2=0;          fprintf(ficresprob, "**********\n#\n");
               for(i=1; i<=nlstate;i++) {                        fprintf(ficresprobcov, "\n#********** Variable "); 
                 if (mobilav==1)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];          fprintf(ficresprobcov, "**********\n#\n");
                 else {          
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          fprintf(ficgp, "\n#********** Variable "); 
                 }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                          fprintf(ficgp, "**********\n#\n");
               }          
               if (h==(int)(calagedate+12*cpt)){          
                 fprintf(ficresf," %.3f", kk1);          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
                                  for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
               }          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
             }          
           }          fprintf(ficresprobcor, "\n#********** Variable ");    
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         }          fprintf(ficresprobcor, "**********\n#");    
       }        }
     }        
   }        for (age=bage; age<=fage; age ++){ 
                  cov[2]=age;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   fclose(ficresf);          }
 }          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 /************** Forecasting ******************/          for (k=1; k<=cptcovprod;k++)
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
            
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   int *popage;          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;          gp=vector(1,(nlstate)*(nlstate+ndeath));
   double *popeffectif,*popcount;          gm=vector(1,(nlstate)*(nlstate+ndeath));
   double ***p3mat,***tabpop,***tabpopprev;      
   char filerespop[FILENAMELENGTH];          for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            
   agelim=AGESUP;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;            
              k=0;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            for(i=1; i<= (nlstate); i++){
                for(j=1; j<=(nlstate+ndeath);j++){
                  k=k+1;
   strcpy(filerespop,"pop");                gp[k]=pmmij[i][j];
   strcat(filerespop,fileres);              }
   if((ficrespop=fopen(filerespop,"w"))==NULL) {            }
     printf("Problem with forecast resultfile: %s\n", filerespop);            
   }            for(i=1; i<=npar; i++)
   printf("Computing forecasting: result on file '%s' \n", filerespop);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
   if (cptcoveff==0) ncodemax[cptcoveff]=1;            pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
   if (mobilav==1) {            for(i=1; i<=(nlstate); i++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              for(j=1; j<=(nlstate+ndeath);j++){
     movingaverage(agedeb, fage, ageminpar, mobaverage);                k=k+1;
   }                gm[k]=pmmij[i][j];
               }
   stepsize=(int) (stepm+YEARM-1)/YEARM;            }
   if (stepm<=12) stepsize=1;       
              for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   agelim=AGESUP;              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
            }
   hstepm=1;  
   hstepm=hstepm/stepm;          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
              for(theta=1; theta <=npar; theta++)
   if (popforecast==1) {              trgradg[j][theta]=gradg[theta][j];
     if((ficpop=fopen(popfile,"r"))==NULL) {          
       printf("Problem with population file : %s\n",popfile);exit(0);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
     }          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
     popage=ivector(0,AGESUP);          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     popeffectif=vector(0,AGESUP);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     popcount=vector(0,AGESUP);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
              free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     i=1;    
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;          pmij(pmmij,cov,ncovmodel,x,nlstate);
              
     imx=i;          k=0;
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];          for(i=1; i<=(nlstate); i++){
   }            for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
   for(cptcov=1;cptcov<=i2;cptcov++){              mu[k][(int) age]=pmmij[i][j];
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            }
       k=k+1;          }
       fprintf(ficrespop,"\n#******");          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
       for(j=1;j<=cptcoveff;j++) {            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              varpij[i][j][(int)age] = doldm[i][j];
       }  
       fprintf(ficrespop,"******\n");          /*printf("\n%d ",(int)age);
       fprintf(ficrespop,"# Age");            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       if (popforecast==1)  fprintf(ficrespop," [Population]");            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                  }*/
       for (cpt=0; cpt<=0;cpt++) {  
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);            fprintf(ficresprob,"\n%d ",(int)age);
                  fprintf(ficresprobcov,"\n%d ",(int)age);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){          fprintf(ficresprobcor,"\n%d ",(int)age);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
                      fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
           oldm=oldms;savm=savms;            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
                  }
           for (h=0; h<=nhstepm; h++){          i=0;
             if (h==(int) (calagedate+YEARM*cpt)) {          for (k=1; k<=(nlstate);k++){
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);            for (l=1; l<=(nlstate+ndeath);l++){ 
             }              i=i++;
             for(j=1; j<=nlstate+ndeath;j++) {              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               kk1=0.;kk2=0;              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for(i=1; i<=nlstate;i++) {                            for (j=1; j<=i;j++){
                 if (mobilav==1)                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                 else {              }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];            }
                 }          }/* end of loop for state */
               }        } /* end of loop for age */
               if (h==(int)(calagedate+12*cpt)){  
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;        /* Confidence intervalle of pij  */
                   /*fprintf(ficrespop," %.3f", kk1);        /*
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/          fprintf(ficgp,"\nset noparametric;unset label");
               }          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
             }          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
             for(i=1; i<=nlstate;i++){          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
               kk1=0.;          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
                 for(j=1; j<=nlstate;j++){          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
                 }        */
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];  
             }        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)        for (k2=1; k2<=(nlstate);k2++){
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
           }            if(l2==k2) continue;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            j=(k2-1)*(nlstate+ndeath)+l2;
         }            for (k1=1; k1<=(nlstate);k1++){
       }              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                  if(l1==k1) continue;
   /******/                i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {                for (age=bage; age<=fage; age ++){ 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);                    if ((int)age %5==0){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
           nhstepm = nhstepm/hstepm;                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                              mu1=mu[i][(int) age]/stepm*YEARM ;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    mu2=mu[j][(int) age]/stepm*YEARM;
           oldm=oldms;savm=savms;                    c12=cv12/sqrt(v1*v2);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                      /* Computing eigen value of matrix of covariance */
           for (h=0; h<=nhstepm; h++){                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
             if (h==(int) (calagedate+YEARM*cpt)) {                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);                    /* Eigen vectors */
             }                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
             for(j=1; j<=nlstate+ndeath;j++) {                    /*v21=sqrt(1.-v11*v11); *//* error */
               kk1=0.;kk2=0;                    v21=(lc1-v1)/cv12*v11;
               for(i=1; i<=nlstate;i++) {                                  v12=-v21;
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];                        v22=v11;
               }                    tnalp=v21/v11;
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);                    if(first1==1){
             }                      first1=0;
           }                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    }
         }                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
       }                    /*printf(fignu*/
    }                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   }                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                      if(first==1){
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                      first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
   if (popforecast==1) {                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
     free_ivector(popage,0,AGESUP);                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     free_vector(popeffectif,0,AGESUP);                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
     free_vector(popcount,0,AGESUP);                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
   }                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   fclose(ficrespop);                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 }                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
 /***********************************************/                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 /**************** Main Program *****************/                    }else{
 /***********************************************/                      first=0;
                       fprintf(fichtm," %d (%.3f),",(int) age, c12);
 int main(int argc, char *argv[])                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
 {                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   double agedeb, agefin,hf;                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;                    }/* if first */
                   } /* age mod 5 */
   double fret;                } /* end loop age */
   double **xi,tmp,delta;                fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
                 first=1;
   double dum; /* Dummy variable */              } /*l12 */
   double ***p3mat;            } /* k12 */
   int *indx;          } /*l1 */
   char line[MAXLINE], linepar[MAXLINE];        }/* k1 */
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];      } /* loop covariates */
   int firstobs=1, lastobs=10;    }
   int sdeb, sfin; /* Status at beginning and end */    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   int c,  h , cpt,l;    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   int ju,jl, mi;    free_vector(xp,1,npar);
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;    fclose(ficresprob);
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    fclose(ficresprobcov);
   int mobilav=0,popforecast=0;    fclose(ficresprobcor);
   int hstepm, nhstepm;    fclose(ficgp);
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;    fclose(fichtm);
   }
   double bage, fage, age, agelim, agebase;  
   double ftolpl=FTOL;  
   double **prlim;  /******************* Printing html file ***********/
   double *severity;  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
   double ***param; /* Matrix of parameters */                    int lastpass, int stepm, int weightopt, char model[],\
   double  *p;                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
   double **matcov; /* Matrix of covariance */                    int popforecast, int estepm ,\
   double ***delti3; /* Scale */                    double jprev1, double mprev1,double anprev1, \
   double *delti; /* Scale */                    double jprev2, double mprev2,double anprev2){
   double ***eij, ***vareij;    int jj1, k1, i1, cpt;
   double **varpl; /* Variances of prevalence limits by age */    /*char optionfilehtm[FILENAMELENGTH];*/
   double *epj, vepp;    if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
   double kk1, kk2;      printf("Problem with %s \n",optionfilehtm), exit(0);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;      fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
      }
   
   char *alph[]={"a","a","b","c","d","e"}, str[4];     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n
    - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n
   char z[1]="c", occ;   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n
 #include <sys/time.h>   - Life expectancies by age and initial health status (estepm=%2d months): 
 #include <time.h>     <a href=\"e%s\">e%s</a> <br>\n</li>", \
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
    
   /* long total_usecs;  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   struct timeval start_time, end_time;  
     m=cptcoveff;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   getcwd(pathcd, size);  
    jj1=0;
   printf("\n%s",version);   for(k1=1; k1<=m;k1++){
   if(argc <=1){     for(i1=1; i1<=ncodemax[k1];i1++){
     printf("\nEnter the parameter file name: ");       jj1++;
     scanf("%s",pathtot);       if (cptcovn > 0) {
   }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   else{         for (cpt=1; cpt<=cptcoveff;cpt++) 
     strcpy(pathtot,argv[1]);           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   }         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/       }
   /*cygwin_split_path(pathtot,path,optionfile);       /* Pij */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br>
   /* cutv(path,optionfile,pathtot,'\\');*/  <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
        /* Quasi-incidences */
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);  <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
   chdir(path);         /* Stable prevalence in each health state */
   replace(pathc,path);         for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>
 /*-------- arguments in the command line --------*/  <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
          }
   strcpy(fileres,"r");       for(cpt=1; cpt<=nlstate;cpt++) {
   strcat(fileres, optionfilefiname);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>
   strcat(fileres,".txt");    /* Other files have txt extension */  <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
        }
   /*---------arguments file --------*/       fprintf(fichtm,"\n<br>- Total life expectancy by age and
   health expectancies in states (1) and (2): e%s%d.png<br>
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
     printf("Problem with optionfile %s\n",optionfile);     } /* end i1 */
     goto end;   }/* End k1 */
   }   fprintf(fichtm,"</ul>");
   
   strcpy(filereso,"o");  
   strcat(filereso,fileres);   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n
   if((ficparo=fopen(filereso,"w"))==NULL) {   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n
     printf("Problem with Output resultfile: %s\n", filereso);goto end;   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
   }   - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n
    - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n
   /* Reads comments: lines beginning with '#' */   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n 
   while((c=getc(ficpar))=='#' && c!= EOF){   - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n
     ungetc(c,ficpar);   - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
     fgets(line, MAXLINE, ficpar);  
     puts(line);  /*  if(popforecast==1) fprintf(fichtm,"\n */
     fputs(line,ficparo);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   }  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   ungetc(c,ficpar);  /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);  
 while((c=getc(ficpar))=='#' && c!= EOF){   m=cptcoveff;
     ungetc(c,ficpar);   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     fgets(line, MAXLINE, ficpar);  
     puts(line);   jj1=0;
     fputs(line,ficparo);   for(k1=1; k1<=m;k1++){
   }     for(i1=1; i1<=ncodemax[k1];i1++){
   ungetc(c,ficpar);       jj1++;
         if (cptcovn > 0) {
             fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   covar=matrix(0,NCOVMAX,1,n);         for (cpt=1; cpt<=cptcoveff;cpt++) 
   cptcovn=0;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
   ncovmodel=2+cptcovn;       for(cpt=1; cpt<=nlstate;cpt++) {
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */         fprintf(fichtm,"<br>- Observed and period prevalence (with confident
    interval) in state (%d): v%s%d%d.png <br>
   /* Read guess parameters */  <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
   /* Reads comments: lines beginning with '#' */       }
   while((c=getc(ficpar))=='#' && c!= EOF){     } /* end i1 */
     ungetc(c,ficpar);   }/* End k1 */
     fgets(line, MAXLINE, ficpar);   fprintf(fichtm,"</ul>");
     puts(line);  fclose(fichtm);
     fputs(line,ficparo);  }
   }  
   ungetc(c,ficpar);  /******************* Gnuplot file **************/
    void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  
     for(i=1; i <=nlstate; i++)    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     for(j=1; j <=nlstate+ndeath-1; j++){    int ng;
       fscanf(ficpar,"%1d%1d",&i1,&j1);    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       fprintf(ficparo,"%1d%1d",i1,j1);      printf("Problem with file %s",optionfilegnuplot);
       printf("%1d%1d",i,j);      fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
       for(k=1; k<=ncovmodel;k++){    }
         fscanf(ficpar," %lf",&param[i][j][k]);  
         printf(" %lf",param[i][j][k]);    /*#ifdef windows */
         fprintf(ficparo," %lf",param[i][j][k]);      fprintf(ficgp,"cd \"%s\" \n",pathc);
       }      /*#endif */
       fscanf(ficpar,"\n");  m=pow(2,cptcoveff);
       printf("\n");    
       fprintf(ficparo,"\n");   /* 1eme*/
     }    for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) {
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
   p=param[1][1];  
         for (i=1; i<= nlstate ; i ++) {
   /* Reads comments: lines beginning with '#' */         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   while((c=getc(ficpar))=='#' && c!= EOF){         else fprintf(ficgp," \%%*lf (\%%*lf)");
     ungetc(c,ficpar);       }
     fgets(line, MAXLINE, ficpar);       fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
     puts(line);       for (i=1; i<= nlstate ; i ++) {
     fputs(line,ficparo);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   }         else fprintf(ficgp," \%%*lf (\%%*lf)");
   ungetc(c,ficpar);       } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);       for (i=1; i<= nlstate ; i ++) {
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
   for(i=1; i <=nlstate; i++){         else fprintf(ficgp," \%%*lf (\%%*lf)");
     for(j=1; j <=nlstate+ndeath-1; j++){       }  
       fscanf(ficpar,"%1d%1d",&i1,&j1);       fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
       printf("%1d%1d",i,j);     }
       fprintf(ficparo,"%1d%1d",i1,j1);    }
       for(k=1; k<=ncovmodel;k++){    /*2 eme*/
         fscanf(ficpar,"%le",&delti3[i][j][k]);    
         printf(" %le",delti3[i][j][k]);    for (k1=1; k1<= m ; k1 ++) { 
         fprintf(ficparo," %le",delti3[i][j][k]);      fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
       }      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       fscanf(ficpar,"\n");      
       printf("\n");      for (i=1; i<= nlstate+1 ; i ++) {
       fprintf(ficparo,"\n");        k=2*i;
     }        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
   }        for (j=1; j<= nlstate+1 ; j ++) {
   delti=delti3[1][1];          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
            else fprintf(ficgp," \%%*lf (\%%*lf)");
   /* Reads comments: lines beginning with '#' */        }   
   while((c=getc(ficpar))=='#' && c!= EOF){        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
     ungetc(c,ficpar);        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
     fgets(line, MAXLINE, ficpar);        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
     puts(line);        for (j=1; j<= nlstate+1 ; j ++) {
     fputs(line,ficparo);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
   }          else fprintf(ficgp," \%%*lf (\%%*lf)");
   ungetc(c,ficpar);        }   
          fprintf(ficgp,"\" t\"\" w l 0,");
   matcov=matrix(1,npar,1,npar);        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
   for(i=1; i <=npar; i++){        for (j=1; j<= nlstate+1 ; j ++) {
     fscanf(ficpar,"%s",&str);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     printf("%s",str);          else fprintf(ficgp," \%%*lf (\%%*lf)");
     fprintf(ficparo,"%s",str);        }   
     for(j=1; j <=i; j++){        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
       fscanf(ficpar," %le",&matcov[i][j]);        else fprintf(ficgp,"\" t\"\" w l 0,");
       printf(" %.5le",matcov[i][j]);      }
       fprintf(ficparo," %.5le",matcov[i][j]);    }
     }    
     fscanf(ficpar,"\n");    /*3eme*/
     printf("\n");    
     fprintf(ficparo,"\n");    for (k1=1; k1<= m ; k1 ++) { 
   }      for (cpt=1; cpt<= nlstate ; cpt ++) {
   for(i=1; i <=npar; i++)        k=2+nlstate*(2*cpt-2);
     for(j=i+1;j<=npar;j++)        fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
       matcov[i][j]=matcov[j][i];        fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
            /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   printf("\n");          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     /*-------- Rewriting paramater file ----------*/          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
      strcpy(rfileres,"r");    /* "Rparameterfile */          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/          
      strcat(rfileres,".");    /* */        */
      strcat(rfileres,optionfilext);    /* Other files have txt extension */        for (i=1; i< nlstate ; i ++) {
     if((ficres =fopen(rfileres,"w"))==NULL) {          fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
       printf("Problem writing new parameter file: %s\n", fileres);goto end;          
     }        } 
     fprintf(ficres,"#%s\n",version);      }
        }
     /*-------- data file ----------*/    
     if((fic=fopen(datafile,"r"))==NULL)    {    /* CV preval stable (period) */
       printf("Problem with datafile: %s\n", datafile);goto end;    for (k1=1; k1<= m ; k1 ++) { 
     }      for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
     n= lastobs;        fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
     severity = vector(1,maxwav);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
     outcome=imatrix(1,maxwav+1,1,n);        
     num=ivector(1,n);        for (i=1; i<= nlstate ; i ++)
     moisnais=vector(1,n);          fprintf(ficgp,"+$%d",k+i+1);
     annais=vector(1,n);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
     moisdc=vector(1,n);        
     andc=vector(1,n);        l=3+(nlstate+ndeath)*cpt;
     agedc=vector(1,n);        fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
     cod=ivector(1,n);        for (i=1; i< nlstate ; i ++) {
     weight=vector(1,n);          l=3+(nlstate+ndeath)*cpt;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          fprintf(ficgp,"+$%d",l+i+1);
     mint=matrix(1,maxwav,1,n);        }
     anint=matrix(1,maxwav,1,n);        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
     s=imatrix(1,maxwav+1,1,n);      } 
     adl=imatrix(1,maxwav+1,1,n);        }  
     tab=ivector(1,NCOVMAX);    
     ncodemax=ivector(1,8);    /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
     i=1;      for(k=1; k <=(nlstate+ndeath); k++){
     while (fgets(line, MAXLINE, fic) != NULL)    {        if (k != i) {
       if ((i >= firstobs) && (i <=lastobs)) {          for(j=1; j <=ncovmodel; j++){
                    fprintf(ficgp,"p%d=%f ",jk,p[jk]);
         for (j=maxwav;j>=1;j--){            jk++; 
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);            fprintf(ficgp,"\n");
           strcpy(line,stra);          }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        }
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      }
         }     }
          
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);       for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);         if (ng==2)
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);           fprintf(ficgp,"\nset title \"Probability\"\n");
         for (j=ncovcol;j>=1;j--){         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);         i=1;
         }         for(k2=1; k2<=nlstate; k2++) {
         num[i]=atol(stra);           k3=i;
                   for(k=1; k<=(nlstate+ndeath); k++) {
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){             if (k != k2){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/               if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
         i=i+1;               else
       }                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
     }               ij=1;
     /* printf("ii=%d", ij);               for(j=3; j <=ncovmodel; j++) {
        scanf("%d",i);*/                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   imx=i-1; /* Number of individuals */                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
   /* for (i=1; i<=imx; i++){                 }
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;                 else
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;               }
     }*/               fprintf(ficgp,")/(1");
    /*  for (i=1; i<=imx; i++){               
      if (s[4][i]==9)  s[4][i]=-1;               for(k1=1; k1 <=nlstate; k1++){   
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                   ij=1;
                   for(j=3; j <=ncovmodel; j++){
   /* Calculation of the number of parameter from char model*/                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
   Tvar=ivector(1,15);                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
   Tprod=ivector(1,15);                     ij++;
   Tvaraff=ivector(1,15);                   }
   Tvard=imatrix(1,15,1,2);                   else
   Tage=ivector(1,15);                           fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                     }
   if (strlen(model) >1){                 fprintf(ficgp,")");
     j=0, j1=0, k1=1, k2=1;               }
     j=nbocc(model,'+');               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
     j1=nbocc(model,'*');               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
     cptcovn=j+1;               i=i+ncovmodel;
     cptcovprod=j1;             }
               } /* end k */
     strcpy(modelsav,model);         } /* end k2 */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){       } /* end jk */
       printf("Error. Non available option model=%s ",model);     } /* end ng */
       goto end;     fclose(ficgp); 
     }  }  /* end gnuplot */
      
     for(i=(j+1); i>=1;i--){  
       cutv(stra,strb,modelsav,'+');  /*************** Moving average **************/
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  
       /*scanf("%d",i);*/    int i, cpt, cptcod;
       if (strchr(strb,'*')) {    int modcovmax =1;
         cutv(strd,strc,strb,'*');    int mobilavrange, mob;
         if (strcmp(strc,"age")==0) {    double age;
           cptcovprod--;  
           cutv(strb,stre,strd,'V');    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
           Tvar[i]=atoi(stre);                             a covariate has 2 modalities */
           cptcovage++;    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
             Tage[cptcovage]=i;  
             /*printf("stre=%s ", stre);*/    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
         }      if(mobilav==1) mobilavrange=5; /* default */
         else if (strcmp(strd,"age")==0) {      else mobilavrange=mobilav;
           cptcovprod--;      for (age=bage; age<=fage; age++)
           cutv(strb,stre,strc,'V');        for (i=1; i<=nlstate;i++)
           Tvar[i]=atoi(stre);          for (cptcod=1;cptcod<=modcovmax;cptcod++)
           cptcovage++;            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
           Tage[cptcovage]=i;      /* We keep the original values on the extreme ages bage, fage and for 
         }         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
         else {         we use a 5 terms etc. until the borders are no more concerned. 
           cutv(strb,stre,strc,'V');      */ 
           Tvar[i]=ncovcol+k1;      for (mob=3;mob <=mobilavrange;mob=mob+2){
           cutv(strb,strc,strd,'V');        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           Tprod[k1]=i;          for (i=1; i<=nlstate;i++){
           Tvard[k1][1]=atoi(strc);            for (cptcod=1;cptcod<=modcovmax;cptcod++){
           Tvard[k1][2]=atoi(stre);              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
           Tvar[cptcovn+k2]=Tvard[k1][1];                for (cpt=1;cpt<=(mob-1)/2;cpt++){
           Tvar[cptcovn+k2+1]=Tvard[k1][2];                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
           for (k=1; k<=lastobs;k++)                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];                }
           k1++;              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
           k2=k2+2;            }
         }          }
       }        }/* end age */
       else {      }/* end mob */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/    }else return -1;
        /*  scanf("%d",i);*/    return 0;
       cutv(strd,strc,strb,'V');  }/* End movingaverage */
       Tvar[i]=atoi(strc);  
       }  
       strcpy(modelsav,stra);    /************** Forecasting ******************/
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
         scanf("%d",i);*/    /* proj1, year, month, day of starting projection 
     }       agemin, agemax range of age
 }       dateprev1 dateprev2 range of dates during which prevalence is computed
         anproj2 year of en of projection (same day and month as proj1).
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    */
   printf("cptcovprod=%d ", cptcovprod);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
   scanf("%d ",i);*/    int *popage;
     fclose(fic);    double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     /*  if(mle==1){*/    double *popeffectif,*popcount;
     if (weightopt != 1) { /* Maximisation without weights*/    double ***p3mat;
       for(i=1;i<=n;i++) weight[i]=1.0;    double ***mobaverage;
     }    char fileresf[FILENAMELENGTH];
     /*-calculation of age at interview from date of interview and age at death -*/  
     agev=matrix(1,maxwav,1,imx);    agelim=AGESUP;
     prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     for (i=1; i<=imx; i++) {   
       for(m=2; (m<= maxwav); m++) {    strcpy(fileresf,"f"); 
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    strcat(fileresf,fileres);
          anint[m][i]=9999;    if((ficresf=fopen(fileresf,"w"))==NULL) {
          s[m][i]=-1;      printf("Problem with forecast resultfile: %s\n", fileresf);
        }      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    }
       }    printf("Computing forecasting: result on file '%s' \n", fileresf);
     }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     for (i=1; i<=imx; i++)  {    if (cptcoveff==0) ncodemax[cptcoveff]=1;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  
       for(m=1; (m<= maxwav); m++){    if (mobilav!=0) {
         if(s[m][i] >0){      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           if (s[m][i] >= nlstate+1) {      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
             if(agedc[i]>0)        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
               if(moisdc[i]!=99 && andc[i]!=9999)        printf(" Error in movingaverage mobilav=%d\n",mobilav);
                 agev[m][i]=agedc[i];      }
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/    }
            else {  
               if (andc[i]!=9999){    stepsize=(int) (stepm+YEARM-1)/YEARM;
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    if (stepm<=12) stepsize=1;
               agev[m][i]=-1;    if(estepm < stepm){
               }      printf ("Problem %d lower than %d\n",estepm, stepm);
             }    }
           }    else  hstepm=estepm;   
           else if(s[m][i] !=9){ /* Should no more exist */  
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    hstepm=hstepm/stepm; 
             if(mint[m][i]==99 || anint[m][i]==9999)    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
               agev[m][i]=1;                                 fractional in yp1 */
             else if(agev[m][i] <agemin){    anprojmean=yp;
               agemin=agev[m][i];    yp2=modf((yp1*12),&yp);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/    mprojmean=yp;
             }    yp1=modf((yp2*30.5),&yp);
             else if(agev[m][i] >agemax){    jprojmean=yp;
               agemax=agev[m][i];    if(jprojmean==0) jprojmean=1;
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    if(mprojmean==0) jprojmean=1;
             }  
             /*agev[m][i]=anint[m][i]-annais[i];*/    i1=cptcoveff;
             /*   agev[m][i] = age[i]+2*m;*/    if (cptcovn < 1){i1=1;}
           }    
           else { /* =9 */    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
             agev[m][i]=1;    
             s[m][i]=-1;    fprintf(ficresf,"#****** Routine prevforecast **\n");
           }  
         }  /*            if (h==(int)(YEARM*yearp)){ */
         else /*= 0 Unknown */    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
           agev[m][i]=1;      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
       }        k=k+1;
            fprintf(ficresf,"\n#******");
     }        for(j=1;j<=cptcoveff;j++) {
     for (i=1; i<=imx; i++)  {          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       for(m=1; (m<= maxwav); m++){        }
         if (s[m][i] > (nlstate+ndeath)) {        fprintf(ficresf,"******\n");
           printf("Error: Wrong value in nlstate or ndeath\n");          fprintf(ficresf,"# Covariate valuofcovar yearproj age");
           goto end;        for(j=1; j<=nlstate+ndeath;j++){ 
         }          for(i=1; i<=nlstate;i++)              
       }            fprintf(ficresf," p%d%d",i,j);
     }          fprintf(ficresf," p.%d",j);
         }
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
     free_vector(severity,1,maxwav);          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
     free_imatrix(outcome,1,maxwav+1,1,n);  
     free_vector(moisnais,1,n);          for (agec=fage; agec>=(ageminpar-1); agec--){ 
     free_vector(annais,1,n);            nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
     /* free_matrix(mint,1,maxwav,1,n);            nhstepm = nhstepm/hstepm; 
        free_matrix(anint,1,maxwav,1,n);*/            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_vector(moisdc,1,n);            oldm=oldms;savm=savms;
     free_vector(andc,1,n);            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
                for (h=0; h<=nhstepm; h++){
     wav=ivector(1,imx);              if (h*hstepm/YEARM*stepm ==yearp) {
     dh=imatrix(1,lastpass-firstpass+1,1,imx);                fprintf(ficresf,"\n");
     mw=imatrix(1,lastpass-firstpass+1,1,imx);                for(j=1;j<=cptcoveff;j++) 
                      fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
     /* Concatenates waves */                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);              } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
       Tcode=ivector(1,100);                for(i=1; i<=nlstate;i++) {
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);                  if (mobilav==1) 
       ncodemax[1]=1;                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);                  else {
                          ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
    codtab=imatrix(1,100,1,10);                  }
    h=0;                  if (h*hstepm/YEARM*stepm== yearp) {
    m=pow(2,cptcoveff);                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
                    }
    for(k=1;k<=cptcoveff; k++){                } /* end i */
      for(i=1; i <=(m/pow(2,k));i++){                if (h*hstepm/YEARM*stepm==yearp) {
        for(j=1; j <= ncodemax[k]; j++){                  fprintf(ficresf," %.3f", ppij);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){                }
            h++;              }/* end j */
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;            } /* end h */
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
          }          } /* end agec */
        }        } /* end yearp */
      }      } /* end cptcod */
    }    } /* end  cptcov */
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);         
       codtab[1][2]=1;codtab[2][2]=2; */    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
    /* for(i=1; i <=m ;i++){  
       for(k=1; k <=cptcovn; k++){    fclose(ficresf);
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);  }
       }  
       printf("\n");  /************** Forecasting *****not tested NB*************/
       }  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
       scanf("%d",i);*/    
        int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
    /* Calculates basic frequencies. Computes observed prevalence at single age    int *popage;
        and prints on file fileres'p'. */    double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
        double ***p3mat,***tabpop,***tabpopprev;
        double ***mobaverage;
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    char filerespop[FILENAMELENGTH];
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    agelim=AGESUP;
          calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     /* For Powell, parameters are in a vector p[] starting at p[1]    
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    
     
     if(mle==1){    strcpy(filerespop,"pop"); 
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    strcat(filerespop,fileres);
     }    if((ficrespop=fopen(filerespop,"w"))==NULL) {
          printf("Problem with forecast resultfile: %s\n", filerespop);
     /*--------- results files --------------*/      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    }
      printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
    jk=1;  
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    if (cptcoveff==0) ncodemax[cptcoveff]=1;
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    for(i=1,jk=1; i <=nlstate; i++){    if (mobilav!=0) {
      for(k=1; k <=(nlstate+ndeath); k++){      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if (k != i)      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
          {        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
            printf("%d%d ",i,k);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
            fprintf(ficres,"%1d%1d ",i,k);      }
            for(j=1; j <=ncovmodel; j++){    }
              printf("%f ",p[jk]);  
              fprintf(ficres,"%f ",p[jk]);    stepsize=(int) (stepm+YEARM-1)/YEARM;
              jk++;    if (stepm<=12) stepsize=1;
            }    
            printf("\n");    agelim=AGESUP;
            fprintf(ficres,"\n");    
          }    hstepm=1;
      }    hstepm=hstepm/stepm; 
    }    
  if(mle==1){    if (popforecast==1) {
     /* Computing hessian and covariance matrix */      if((ficpop=fopen(popfile,"r"))==NULL) {
     ftolhess=ftol; /* Usually correct */        printf("Problem with population file : %s\n",popfile);exit(0);
     hesscov(matcov, p, npar, delti, ftolhess, func);        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
  }      } 
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");      popage=ivector(0,AGESUP);
     printf("# Scales (for hessian or gradient estimation)\n");      popeffectif=vector(0,AGESUP);
      for(i=1,jk=1; i <=nlstate; i++){      popcount=vector(0,AGESUP);
       for(j=1; j <=nlstate+ndeath; j++){      
         if (j!=i) {      i=1;   
           fprintf(ficres,"%1d%1d",i,j);      while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
           printf("%1d%1d",i,j);     
           for(k=1; k<=ncovmodel;k++){      imx=i;
             printf(" %.5e",delti[jk]);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
             fprintf(ficres," %.5e",delti[jk]);    }
             jk++;  
           }    for(cptcov=1,k=0;cptcov<=i2;cptcov++){
           printf("\n");     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
           fprintf(ficres,"\n");        k=k+1;
         }        fprintf(ficrespop,"\n#******");
       }        for(j=1;j<=cptcoveff;j++) {
      }          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
            }
     k=1;        fprintf(ficrespop,"******\n");
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        fprintf(ficrespop,"# Age");
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
     for(i=1;i<=npar;i++){        if (popforecast==1)  fprintf(ficrespop," [Population]");
       /*  if (k>nlstate) k=1;        
       i1=(i-1)/(ncovmodel*nlstate)+1;        for (cpt=0; cpt<=0;cpt++) { 
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
       printf("%s%d%d",alph[k],i1,tab[i]);*/          
       fprintf(ficres,"%3d",i);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
       printf("%3d",i);            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
       for(j=1; j<=i;j++){            nhstepm = nhstepm/hstepm; 
         fprintf(ficres," %.5e",matcov[i][j]);            
         printf(" %.5e",matcov[i][j]);            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       }            oldm=oldms;savm=savms;
       fprintf(ficres,"\n");            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
       printf("\n");          
       k++;            for (h=0; h<=nhstepm; h++){
     }              if (h==(int) (calagedatem+YEARM*cpt)) {
                    fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
     while((c=getc(ficpar))=='#' && c!= EOF){              } 
       ungetc(c,ficpar);              for(j=1; j<=nlstate+ndeath;j++) {
       fgets(line, MAXLINE, ficpar);                kk1=0.;kk2=0;
       puts(line);                for(i=1; i<=nlstate;i++) {              
       fputs(line,ficparo);                  if (mobilav==1) 
     }                    kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
     ungetc(c,ficpar);                  else {
     estepm=0;                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);                  }
     if (estepm==0 || estepm < stepm) estepm=stepm;                }
     if (fage <= 2) {                if (h==(int)(calagedatem+12*cpt)){
       bage = ageminpar;                  tabpop[(int)(agedeb)][j][cptcod]=kk1;
       fage = agemaxpar;                    /*fprintf(ficrespop," %.3f", kk1);
     }                      if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                    }
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");              }
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);              for(i=1; i<=nlstate;i++){
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);                kk1=0.;
                    for(j=1; j<=nlstate;j++){
     while((c=getc(ficpar))=='#' && c!= EOF){                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
     ungetc(c,ficpar);                  }
     fgets(line, MAXLINE, ficpar);                    tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
     puts(line);              }
     fputs(line,ficparo);  
   }              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
   ungetc(c,ficpar);                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
              }
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          }
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        }
         
   while((c=getc(ficpar))=='#' && c!= EOF){    /******/
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
     puts(line);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
     fputs(line,ficparo);          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
   }            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   ungetc(c,ficpar);            nhstepm = nhstepm/hstepm; 
              
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;            oldm=oldms;savm=savms;
    dateprev2=anprev2+mprev2/12.+jprev2/365.;            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
   fscanf(ficpar,"pop_based=%d\n",&popbased);              if (h==(int) (calagedatem+YEARM*cpt)) {
   fprintf(ficparo,"pop_based=%d\n",popbased);                  fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
   fprintf(ficres,"pop_based=%d\n",popbased);                } 
                for(j=1; j<=nlstate+ndeath;j++) {
   while((c=getc(ficpar))=='#' && c!= EOF){                kk1=0.;kk2=0;
     ungetc(c,ficpar);                for(i=1; i<=nlstate;i++) {              
     fgets(line, MAXLINE, ficpar);                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
     puts(line);                }
     fputs(line,ficparo);                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
   }              }
   ungetc(c,ficpar);            }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);          }
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);        }
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);     } 
     }
    
 while((c=getc(ficpar))=='#' && c!= EOF){    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    if (popforecast==1) {
     puts(line);      free_ivector(popage,0,AGESUP);
     fputs(line,ficparo);      free_vector(popeffectif,0,AGESUP);
   }      free_vector(popcount,0,AGESUP);
   ungetc(c,ficpar);    }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);    fclose(ficrespop);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  }
   
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  /***********************************************/
   /**************** Main Program *****************/
 /*------------ gnuplot -------------*/  /***********************************************/
   strcpy(optionfilegnuplot,optionfilefiname);  
   strcat(optionfilegnuplot,".gp");  int main(int argc, char *argv[])
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {  {
     printf("Problem with file %s",optionfilegnuplot);    int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
   }    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
   fclose(ficgp);    double agedeb, agefin,hf;
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
 /*--------- index.htm --------*/  
     double fret;
   strcpy(optionfilehtm,optionfile);    double **xi,tmp,delta;
   strcat(optionfilehtm,".htm");  
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {    double dum; /* Dummy variable */
     printf("Problem with %s \n",optionfilehtm), exit(0);    double ***p3mat;
   }    double ***mobaverage;
     int *indx;
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n    char line[MAXLINE], linepar[MAXLINE];
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n    char path[80],pathc[80],pathcd[80],pathtot[80],model[80];
 \n    int firstobs=1, lastobs=10;
 Total number of observations=%d <br>\n    int sdeb, sfin; /* Status at beginning and end */
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n    int c,  h , cpt,l;
 <hr  size=\"2\" color=\"#EC5E5E\">    int ju,jl, mi;
  <ul><li>Parameter files<br>\n    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
  - Gnuplot file name: <a href=\"%s\">%s</a><br></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot);    int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
   fclose(fichtm);    int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);    double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
      double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
 /*------------ free_vector  -------------*/  
  chdir(path);    double bage, fage, age, agelim, agebase;
      double ftolpl=FTOL;
  free_ivector(wav,1,imx);    double **prlim;
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    double *severity;
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      double ***param; /* Matrix of parameters */
  free_ivector(num,1,n);    double  *p;
  free_vector(agedc,1,n);    double **matcov; /* Matrix of covariance */
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    double ***delti3; /* Scale */
  fclose(ficparo);    double *delti; /* Scale */
  fclose(ficres);    double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   /*--------------- Prevalence limit --------------*/    double kk1, kk2;
      double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   strcpy(filerespl,"pl");  
   strcat(filerespl,fileres);    char *alph[]={"a","a","b","c","d","e"}, str[4];
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;  
   }    char z[1]="c", occ;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);  #include <sys/time.h>
   fprintf(ficrespl,"#Prevalence limit\n");  #include <time.h>
   fprintf(ficrespl,"#Age ");    char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);   
   fprintf(ficrespl,"\n");    /* long total_usecs;
         struct timeval start_time, end_time;
   prlim=matrix(1,nlstate,1,nlstate);    
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */       gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    getcwd(pathcd, size);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    printf("\n%s",version);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    if(argc <=1){
   k=0;      printf("\nEnter the parameter file name: ");
   agebase=ageminpar;      scanf("%s",pathtot);
   agelim=agemaxpar;    }
   ftolpl=1.e-10;    else{
   i1=cptcoveff;      strcpy(pathtot,argv[1]);
   if (cptcovn < 1){i1=1;}    }
     /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
   for(cptcov=1;cptcov<=i1;cptcov++){    /*cygwin_split_path(pathtot,path,optionfile);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
         k=k+1;    /* cutv(path,optionfile,pathtot,'\\');*/
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/  
         fprintf(ficrespl,"\n#******");    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
         for(j=1;j<=cptcoveff;j++)    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    chdir(path);
         fprintf(ficrespl,"******\n");    replace(pathc,path);
          
         for (age=agebase; age<=agelim; age++){    /*-------- arguments in the command line --------*/
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
           fprintf(ficrespl,"%.0f",age );    /* Log file */
           for(i=1; i<=nlstate;i++)    strcat(filelog, optionfilefiname);
           fprintf(ficrespl," %.5f", prlim[i][i]);    strcat(filelog,".log");    /* */
           fprintf(ficrespl,"\n");    if((ficlog=fopen(filelog,"w"))==NULL)    {
         }      printf("Problem with logfile %s\n",filelog);
       }      goto end;
     }    }
   fclose(ficrespl);    fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s",version);
   /*------------- h Pij x at various ages ------------*/    fprintf(ficlog,"\nEnter the parameter file name: ");
      fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    fflush(ficlog);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;    /* */
   }    strcpy(fileres,"r");
   printf("Computing pij: result on file '%s' \n", filerespij);    strcat(fileres, optionfilefiname);
      strcat(fileres,".txt");    /* Other files have txt extension */
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   /*if (stepm<=24) stepsize=2;*/    /*---------arguments file --------*/
   
   agelim=AGESUP;    if((ficpar=fopen(optionfile,"r"))==NULL)    {
   hstepm=stepsize*YEARM; /* Every year of age */      printf("Problem with optionfile %s\n",optionfile);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */      fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
        goto end;
   k=0;    }
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    strcpy(filereso,"o");
       k=k+1;    strcat(filereso,fileres);
         fprintf(ficrespij,"\n#****** ");    if((ficparo=fopen(filereso,"w"))==NULL) {
         for(j=1;j<=cptcoveff;j++)      printf("Problem with Output resultfile: %s\n", filereso);
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
         fprintf(ficrespij,"******\n");      goto end;
            }
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    /* Reads comments: lines beginning with '#' */
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    while((c=getc(ficpar))=='#' && c!= EOF){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      ungetc(c,ficpar);
           oldm=oldms;savm=savms;      fgets(line, MAXLINE, ficpar);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        puts(line);
           fprintf(ficrespij,"# Age");      fputs(line,ficparo);
           for(i=1; i<=nlstate;i++)    }
             for(j=1; j<=nlstate+ndeath;j++)    ungetc(c,ficpar);
               fprintf(ficrespij," %1d-%1d",i,j);  
           fprintf(ficrespij,"\n");    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
            for (h=0; h<=nhstepm; h++){    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
             for(i=1; i<=nlstate;i++)    while((c=getc(ficpar))=='#' && c!= EOF){
               for(j=1; j<=nlstate+ndeath;j++)      ungetc(c,ficpar);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);      fgets(line, MAXLINE, ficpar);
             fprintf(ficrespij,"\n");      puts(line);
              }      fputs(line,ficparo);
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
           fprintf(ficrespij,"\n");    ungetc(c,ficpar);
         }    
     }     
   }    covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
   fclose(ficrespij);    ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
   /*---------- Forecasting ------------------*/    /* Read guess parameters */
   if((stepm == 1) && (strcmp(model,".")==0)){    /* Reads comments: lines beginning with '#' */
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);    while((c=getc(ficpar))=='#' && c!= EOF){
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);      ungetc(c,ficpar);
   }      fgets(line, MAXLINE, ficpar);
   else{      puts(line);
     erreur=108;      fputs(line,ficparo);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    }
   }    ungetc(c,ficpar);
      
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
   /*---------- Health expectancies and variances ------------*/    for(i=1; i <=nlstate; i++)
       for(j=1; j <=nlstate+ndeath-1; j++){
   strcpy(filerest,"t");        fscanf(ficpar,"%1d%1d",&i1,&j1);
   strcat(filerest,fileres);        fprintf(ficparo,"%1d%1d",i1,j1);
   if((ficrest=fopen(filerest,"w"))==NULL) {        if(mle==1)
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;          printf("%1d%1d",i,j);
   }        fprintf(ficlog,"%1d%1d",i,j);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);        for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
   strcpy(filerese,"e");            printf(" %lf",param[i][j][k]);
   strcat(filerese,fileres);            fprintf(ficlog," %lf",param[i][j][k]);
   if((ficreseij=fopen(filerese,"w"))==NULL) {          }
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);          else
   }            fprintf(ficlog," %lf",param[i][j][k]);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);          fprintf(ficparo," %lf",param[i][j][k]);
         }
  strcpy(fileresv,"v");        fscanf(ficpar,"\n");
   strcat(fileresv,fileres);        if(mle==1)
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          printf("\n");
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        fprintf(ficlog,"\n");
   }        fprintf(ficparo,"\n");
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);      }
   calagedate=-1;    
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
   k=0;    p=param[1][1];
   for(cptcov=1;cptcov<=i1;cptcov++){    
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    /* Reads comments: lines beginning with '#' */
       k=k+1;    while((c=getc(ficpar))=='#' && c!= EOF){
       fprintf(ficrest,"\n#****** ");      ungetc(c,ficpar);
       for(j=1;j<=cptcoveff;j++)      fgets(line, MAXLINE, ficpar);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      puts(line);
       fprintf(ficrest,"******\n");      fputs(line,ficparo);
     }
       fprintf(ficreseij,"\n#****** ");    ungetc(c,ficpar);
       for(j=1;j<=cptcoveff;j++)  
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       fprintf(ficreseij,"******\n");    /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       fprintf(ficresvij,"\n#****** ");      for(j=1; j <=nlstate+ndeath-1; j++){
       for(j=1;j<=cptcoveff;j++)        fscanf(ficpar,"%1d%1d",&i1,&j1);
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);        printf("%1d%1d",i,j);
       fprintf(ficresvij,"******\n");        fprintf(ficparo,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          fscanf(ficpar,"%le",&delti3[i][j][k]);
       oldm=oldms;savm=savms;          printf(" %le",delti3[i][j][k]);
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);            fprintf(ficparo," %le",delti3[i][j][k]);
          }
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);        fscanf(ficpar,"\n");
       oldm=oldms;savm=savms;        printf("\n");
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);        fprintf(ficparo,"\n");
          }
     }
      delti=delti3[1][1];
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");  
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  
       fprintf(ficrest,"\n");    /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       epj=vector(1,nlstate+1);    /* Reads comments: lines beginning with '#' */
       for(age=bage; age <=fage ;age++){    while((c=getc(ficpar))=='#' && c!= EOF){
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);      ungetc(c,ficpar);
         if (popbased==1) {      fgets(line, MAXLINE, ficpar);
           for(i=1; i<=nlstate;i++)      puts(line);
             prlim[i][i]=probs[(int)age][i][k];      fputs(line,ficparo);
         }    }
            ungetc(c,ficpar);
         fprintf(ficrest," %4.0f",age);    
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    matcov=matrix(1,npar,1,npar);
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    for(i=1; i <=npar; i++){
             epj[j] += prlim[i][i]*eij[i][j][(int)age];      fscanf(ficpar,"%s",&str);
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/      if(mle==1)
           }        printf("%s",str);
           epj[nlstate+1] +=epj[j];      fprintf(ficlog,"%s",str);
         }      fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         for(i=1, vepp=0.;i <=nlstate;i++)        fscanf(ficpar," %le",&matcov[i][j]);
           for(j=1;j <=nlstate;j++)        if(mle==1){
             vepp += vareij[i][j][(int)age];          printf(" %.5le",matcov[i][j]);
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));          fprintf(ficlog," %.5le",matcov[i][j]);
         for(j=1;j <=nlstate;j++){        }
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));        else
         }          fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficrest,"\n");        fprintf(ficparo," %.5le",matcov[i][j]);
       }      }
     }      fscanf(ficpar,"\n");
   }      if(mle==1)
 free_matrix(mint,1,maxwav,1,n);        printf("\n");
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);      fprintf(ficlog,"\n");
     free_vector(weight,1,n);      fprintf(ficparo,"\n");
   fclose(ficreseij);    }
   fclose(ficresvij);    for(i=1; i <=npar; i++)
   fclose(ficrest);      for(j=i+1;j<=npar;j++)
   fclose(ficpar);        matcov[i][j]=matcov[j][i];
   free_vector(epj,1,nlstate+1);     
      if(mle==1)
   /*------- Variance limit prevalence------*/        printf("\n");
     fprintf(ficlog,"\n");
   strcpy(fileresvpl,"vpl");  
   strcat(fileresvpl,fileres);  
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    /*-------- Rewriting paramater file ----------*/
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    strcpy(rfileres,"r");    /* "Rparameterfile */
     exit(0);    strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
   }    strcat(rfileres,".");    /* */
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
   k=0;      printf("Problem writing new parameter file: %s\n", fileres);goto end;
   for(cptcov=1;cptcov<=i1;cptcov++){      fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    }
       k=k+1;    fprintf(ficres,"#%s\n",version);
       fprintf(ficresvpl,"\n#****** ");      
       for(j=1;j<=cptcoveff;j++)    /*-------- data file ----------*/
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if((fic=fopen(datafile,"r"))==NULL)    {
       fprintf(ficresvpl,"******\n");      printf("Problem with datafile: %s\n", datafile);goto end;
            fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    }
       oldm=oldms;savm=savms;  
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    n= lastobs;
     }    severity = vector(1,maxwav);
  }    outcome=imatrix(1,maxwav+1,1,n);
     num=ivector(1,n);
   fclose(ficresvpl);    moisnais=vector(1,n);
     annais=vector(1,n);
   /*---------- End : free ----------------*/    moisdc=vector(1,n);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    andc=vector(1,n);
      agedc=vector(1,n);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    cod=ivector(1,n);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    weight=vector(1,n);
      for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
      mint=matrix(1,maxwav,1,n);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    anint=matrix(1,maxwav,1,n);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    s=imatrix(1,maxwav+1,1,n);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    tab=ivector(1,NCOVMAX);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    ncodemax=ivector(1,8);
    
   free_matrix(matcov,1,npar,1,npar);    i=1;
   free_vector(delti,1,npar);    while (fgets(line, MAXLINE, fic) != NULL)    {
   free_matrix(agev,1,maxwav,1,imx);      if ((i >= firstobs) && (i <=lastobs)) {
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);          
         for (j=maxwav;j>=1;j--){
   fprintf(fichtm,"\n</body>");          cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
   fclose(fichtm);          strcpy(line,stra);
   fclose(ficgp);          cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
            cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
   if(erreur >0)          
     printf("End of Imach with error or warning %d\n",erreur);        cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
   else   printf("End of Imach\n");        cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  
          cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/        cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   /*printf("Total time was %d uSec.\n", total_usecs);*/  
   /*------ End -----------*/        cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
  end:        } 
 #ifdef windows        num[i]=atol(stra);
   /* chdir(pathcd);*/          
 #endif        /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
  /*system("wgnuplot graph.plt");*/          printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
  /*system("../gp37mgw/wgnuplot graph.plt");*/  
  /*system("cd ../gp37mgw");*/        i=i+1;
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/      }
  strcpy(plotcmd,GNUPLOTPROGRAM);    }
  strcat(plotcmd," ");    /* printf("ii=%d", ij);
  strcat(plotcmd,optionfilegnuplot);       scanf("%d",i);*/
  system(plotcmd);    imx=i-1; /* Number of individuals */
   
 #ifdef windows    /* for (i=1; i<=imx; i++){
   while (z[0] != 'q') {      if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
     /* chdir(path); */      if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");      if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
     scanf("%s",z);      }*/
     if (z[0] == 'c') system("./imach");     /*  for (i=1; i<=imx; i++){
     else if (z[0] == 'e') system(optionfilehtm);       if (s[4][i]==9)  s[4][i]=-1; 
     else if (z[0] == 'g') system(plotcmd);       printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     else if (z[0] == 'q') exit(0);    
   }   for (i=1; i<=imx; i++)
 #endif   
 }     /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown %d, set an arbitrary year of death\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown %d, set an arbitrary year of death\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Warning! Month of death of individual %d on line %d was unknown %2d, we set it to June\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Warning! Month of death of individual %d on line %d was unknown %f, we set it to June\n",num[i],i,moisdc[i]); 
           moisdc[i]=6;
           s[m][i]=-1;
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %d line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%d %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle==1){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
   \n
   Total number of observations=%d <br>\n
   Youngest age at first pass %.2f, oldest age %.2f<br>\n
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
   <hr  size=\"2\" color=\"#EC5E5E\">
    <ul><li><h4>Parameter files</h4>\n
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
    - Log file of the run: <a href=\"%s\">%s</a><br>\n
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,agemin,agemax,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
      fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_ivector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     
     /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
     /*printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.48  
changed lines
  Added in v.1.76


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>