Diff for /imach/src/imach.c between versions 1.21 and 1.79

version 1.21, 2002/02/21 18:42:24 version 1.79, 2003/06/05 15:17:23
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************             Interpolated Markov Chain
   This program computes Healthy Life Expectancies from cross-longitudinal  
   data. Cross-longitudinal consist in a first survey ("cross") where    Short summary of the programme:
   individuals from different ages are interviewed on their health status    
   or degree of  disability. At least a second wave of interviews    This program computes Healthy Life Expectancies from
   ("longitudinal") should  measure each new individual health status.    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   Health expectancies are computed from the transistions observed between    first survey ("cross") where individuals from different ages are
   waves and are computed for each degree of severity of disability (number    interviewed on their health status or degree of disability (in the
   of life states). More degrees you consider, more time is necessary to    case of a health survey which is our main interest) -2- at least a
   reach the Maximum Likelihood of the parameters involved in the model.    second wave of interviews ("longitudinal") which measure each change
   The simplest model is the multinomial logistic model where pij is    (if any) in individual health status.  Health expectancies are
   the probabibility to be observed in state j at the second wave conditional    computed from the time spent in each health state according to a
   to be observed in state i at the first wave. Therefore the model is:    model. More health states you consider, more time is necessary to reach the
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    Maximum Likelihood of the parameters involved in the model.  The
   is a covariate. If you want to have a more complex model than "constant and    simplest model is the multinomial logistic model where pij is the
   age", you should modify the program where the markup    probability to be observed in state j at the second wave
     *Covariates have to be included here again* invites you to do it.    conditional to be observed in state i at the first wave. Therefore
   More covariates you add, less is the speed of the convergence.    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
   The advantage that this computer programme claims, comes from that if the    complex model than "constant and age", you should modify the program
   delay between waves is not identical for each individual, or if some    where the markup *Covariates have to be included here again* invites
   individual missed an interview, the information is not rounded or lost, but    you to do it.  More covariates you add, slower the
   taken into account using an interpolation or extrapolation.    convergence.
   hPijx is the probability to be  
   observed in state i at age x+h conditional to the observed state i at age    The advantage of this computer programme, compared to a simple
   x. The delay 'h' can be split into an exact number (nh*stepm) of    multinomial logistic model, is clear when the delay between waves is not
   unobserved intermediate  states. This elementary transition (by month or    identical for each individual. Also, if a individual missed an
   quarter trimester, semester or year) is model as a multinomial logistic.    intermediate interview, the information is lost, but taken into
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    account using an interpolation or extrapolation.  
   and the contribution of each individual to the likelihood is simply hPijx.  
     hPijx is the probability to be observed in state i at age x+h
   Also this programme outputs the covariance matrix of the parameters but also    conditional to the observed state i at age x. The delay 'h' can be
   of the life expectancies. It also computes the prevalence limits.    split into an exact number (nh*stepm) of unobserved intermediate
      states. This elementary transition (by month, quarter,
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    semester or year) is modelled as a multinomial logistic.  The hPx
            Institut national d'études démographiques, Paris.    matrix is simply the matrix product of nh*stepm elementary matrices
   This software have been partly granted by Euro-REVES, a concerted action    and the contribution of each individual to the likelihood is simply
   from the European Union.    hPijx.
   It is copyrighted identically to a GNU software product, ie programme and  
   software can be distributed freely for non commercial use. Latest version    Also this programme outputs the covariance matrix of the parameters but also
   can be accessed at http://euroreves.ined.fr/imach .    of the life expectancies. It also computes the stable prevalence. 
   **********************************************************************/    
      Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #include <math.h>             Institut national d'études démographiques, Paris.
 #include <stdio.h>    This software have been partly granted by Euro-REVES, a concerted action
 #include <stdlib.h>    from the European Union.
 #include <unistd.h>    It is copyrighted identically to a GNU software product, ie programme and
     software can be distributed freely for non commercial use. Latest version
 #define MAXLINE 256    can be accessed at http://euroreves.ined.fr/imach .
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #define windows    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    **********************************************************************/
   /*
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    main
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    read parameterfile
     read datafile
 #define NINTERVMAX 8    concatwav
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    if (mle >= 1)
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */      mlikeli
 #define NCOVMAX 8 /* Maximum number of covariates */    print results files
 #define MAXN 20000    if mle==1 
 #define YEARM 12. /* Number of months per year */       computes hessian
 #define AGESUP 130    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define AGEBASE 40        begin-prev-date,...
     open gnuplot file
     open html file
 int erreur; /* Error number */    stable prevalence
 int nvar;     for age prevalim()
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    h Pij x
 int npar=NPARMAX;    variance of p varprob
 int nlstate=2; /* Number of live states */    forecasting if prevfcast==1 prevforecast call prevalence()
 int ndeath=1; /* Number of dead states */    health expectancies
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Variance-covariance of DFLE
 int popbased=0;    prevalence()
      movingaverage()
 int *wav; /* Number of waves for this individuual 0 is possible */    varevsij() 
 int maxwav; /* Maxim number of waves */    if popbased==1 varevsij(,popbased)
 int jmin, jmax; /* min, max spacing between 2 waves */    total life expectancies
 int mle, weightopt;    Variance of stable prevalence
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */   end
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  */
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf;   
 FILE *ficgp, *fichtm,*ficresprob,*ficpop;  #include <math.h>
 FILE *ficreseij;  #include <stdio.h>
   char filerese[FILENAMELENGTH];  #include <stdlib.h>
  FILE  *ficresvij;  #include <unistd.h>
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;  #define MAXLINE 256
   char fileresvpl[FILENAMELENGTH];  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #define NR_END 1  #define FILENAMELENGTH 80
 #define FREE_ARG char*  /*#define DEBUG*/
 #define FTOL 1.0e-10  #define windows
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 #define NRANSI  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #define ITMAX 200  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 #define TOL 2.0e-4  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 #define CGOLD 0.3819660  #define NINTERVMAX 8
 #define ZEPS 1.0e-10  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
 #define GOLD 1.618034  #define MAXN 20000
 #define GLIMIT 100.0  #define YEARM 12. /* Number of months per year */
 #define TINY 1.0e-20  #define AGESUP 130
   #define AGEBASE 40
 static double maxarg1,maxarg2;  #ifdef windows
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #define DIRSEPARATOR '\\'
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #define ODIRSEPARATOR '/'
    #else
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #define DIRSEPARATOR '/'
 #define rint(a) floor(a+0.5)  #define ODIRSEPARATOR '\\'
   #endif
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  /* $Id$ */
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  /* $Log$
    * Revision 1.79  2003/06/05 15:17:23  brouard
 int imx;   * *** empty log message ***
 int stepm;   * */
 /* Stepm, step in month: minimum step interpolation*/  char version[80]="Imach version 0.95a1, June 2003, INED-EUROREVES ";
   int erreur; /* Error number */
 int m,nb;  int nvar;
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  int npar=NPARMAX;
 double **pmmij, ***probs, ***mobaverage;  int nlstate=2; /* Number of live states */
 double dateintmean=0;  int ndeath=1; /* Number of dead states */
   int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 double *weight;  int popbased=0;
 int **s; /* Status */  
 double *agedc, **covar, idx;  int *wav; /* Number of waves for this individuual 0 is possible */
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  int mle, weightopt;
 double ftolhess; /* Tolerance for computing hessian */  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
 /**************** split *************************/  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 static  int split( char *path, char *dirc, char *name )             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 {  double jmean; /* Mean space between 2 waves */
    char *s;                             /* pointer */  double **oldm, **newm, **savm; /* Working pointers to matrices */
    int  l1, l2;                         /* length counters */  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
    l1 = strlen( path );                 /* length of path */  FILE *ficlog, *ficrespow;
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
    s = strrchr( path, '\\' );           /* find last / */  FILE *ficresprobmorprev;
    if ( s == NULL ) {                   /* no directory, so use current */  FILE *fichtm; /* Html File */
 #if     defined(__bsd__)                /* get current working directory */  FILE *ficreseij;
       extern char       *getwd( );  char filerese[FILENAMELENGTH];
   FILE  *ficresvij;
       if ( getwd( dirc ) == NULL ) {  char fileresv[FILENAMELENGTH];
 #else  FILE  *ficresvpl;
       extern char       *getcwd( );  char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 #endif  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
          return( GLOCK_ERROR_GETCWD );  
       }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       strcpy( name, path );             /* we've got it */  char filelog[FILENAMELENGTH]; /* Log file */
    } else {                             /* strip direcotry from path */  char filerest[FILENAMELENGTH];
       s++;                              /* after this, the filename */  char fileregp[FILENAMELENGTH];
       l2 = strlen( s );                 /* length of filename */  char popfile[FILENAMELENGTH];
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  
       dirc[l1-l2] = 0;                  /* add zero */  #define NR_END 1
    }  #define FREE_ARG char*
    l1 = strlen( dirc );                 /* length of directory */  #define FTOL 1.0e-10
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
    return( 0 );                         /* we're done */  #define NRANSI 
 }  #define ITMAX 200 
   
   #define TOL 2.0e-4 
 /******************************************/  
   #define CGOLD 0.3819660 
 void replace(char *s, char*t)  #define ZEPS 1.0e-10 
 {  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   int i;  
   int lg=20;  #define GOLD 1.618034 
   i=0;  #define GLIMIT 100.0 
   lg=strlen(t);  #define TINY 1.0e-20 
   for(i=0; i<= lg; i++) {  
     (s[i] = t[i]);  static double maxarg1,maxarg2;
     if (t[i]== '\\') s[i]='/';  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
   }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 }    
   #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 int nbocc(char *s, char occ)  #define rint(a) floor(a+0.5)
 {  
   int i,j=0;  static double sqrarg;
   int lg=20;  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   i=0;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {  int imx; 
   if  (s[i] == occ ) j++;  int stepm;
   }  /* Stepm, step in month: minimum step interpolation*/
   return j;  
 }  int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
 void cutv(char *u,char *v, char*t, char occ)  
 {  int m,nb;
   int i,lg,j,p=0;  int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   i=0;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   for(j=0; j<=strlen(t)-1; j++) {  double **pmmij, ***probs;
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  double dateintmean=0;
   }  
   double *weight;
   lg=strlen(t);  int **s; /* Status */
   for(j=0; j<p; j++) {  double *agedc, **covar, idx;
     (u[j] = t[j]);  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   }  
      u[p]='\0';  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   double ftolhess; /* Tolerance for computing hessian */
    for(j=0; j<= lg; j++) {  
     if (j>=(p+1))(v[j-p-1] = t[j]);  /**************** split *************************/
   }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 }  {
     char  *ss;                            /* pointer */
 /********************** nrerror ********************/    int   l1, l2;                         /* length counters */
   
 void nrerror(char error_text[])    l1 = strlen(path );                   /* length of path */
 {    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   fprintf(stderr,"ERREUR ...\n");    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
   fprintf(stderr,"%s\n",error_text);    if ( ss == NULL ) {                   /* no directory, so use current */
   exit(1);      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 /*********************** vector *******************/      /* get current working directory */
 double *vector(int nl, int nh)      /*    extern  char* getcwd ( char *buf , int len);*/
 {      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   double *v;        return( GLOCK_ERROR_GETCWD );
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));      }
   if (!v) nrerror("allocation failure in vector");      strcpy( name, path );               /* we've got it */
   return v-nl+NR_END;    } else {                              /* strip direcotry from path */
 }      ss++;                               /* after this, the filename */
       l2 = strlen( ss );                  /* length of filename */
 /************************ free vector ******************/      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 void free_vector(double*v, int nl, int nh)      strcpy( name, ss );         /* save file name */
 {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   free((FREE_ARG)(v+nl-NR_END));      dirc[l1-l2] = 0;                    /* add zero */
 }    }
     l1 = strlen( dirc );                  /* length of directory */
 /************************ivector *******************************/  #ifdef windows
 int *ivector(long nl,long nh)    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
 {  #else
   int *v;    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  #endif
   if (!v) nrerror("allocation failure in ivector");    ss = strrchr( name, '.' );            /* find last / */
   return v-nl+NR_END;    ss++;
 }    strcpy(ext,ss);                       /* save extension */
     l1= strlen( name);
 /******************free ivector **************************/    l2= strlen(ss)+1;
 void free_ivector(int *v, long nl, long nh)    strncpy( finame, name, l1-l2);
 {    finame[l1-l2]= 0;
   free((FREE_ARG)(v+nl-NR_END));    return( 0 );                          /* we're done */
 }  }
   
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)  /******************************************/
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  
 {  void replace(char *s, char*t)
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  {
   int **m;    int i;
      int lg=20;
   /* allocate pointers to rows */    i=0;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    lg=strlen(t);
   if (!m) nrerror("allocation failure 1 in matrix()");    for(i=0; i<= lg; i++) {
   m += NR_END;      (s[i] = t[i]);
   m -= nrl;      if (t[i]== '\\') s[i]='/';
      }
    }
   /* allocate rows and set pointers to them */  
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  int nbocc(char *s, char occ)
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  {
   m[nrl] += NR_END;    int i,j=0;
   m[nrl] -= ncl;    int lg=20;
      i=0;
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    lg=strlen(s);
      for(i=0; i<= lg; i++) {
   /* return pointer to array of pointers to rows */    if  (s[i] == occ ) j++;
   return m;    }
 }    return j;
   }
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)  void cutv(char *u,char *v, char*t, char occ)
       int **m;  {
       long nch,ncl,nrh,nrl;    /* cuts string t into u and v where u is ended by char occ excluding it
      /* free an int matrix allocated by imatrix() */       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
 {       gives u="abcedf" and v="ghi2j" */
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    int i,lg,j,p=0;
   free((FREE_ARG) (m+nrl-NR_END));    i=0;
 }    for(j=0; j<=strlen(t)-1; j++) {
       if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
 /******************* matrix *******************************/    }
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {    lg=strlen(t);
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    for(j=0; j<p; j++) {
   double **m;      (u[j] = t[j]);
     }
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));       u[p]='\0';
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;     for(j=0; j<= lg; j++) {
   m -= nrl;      if (j>=(p+1))(v[j-p-1] = t[j]);
     }
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  }
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;  /********************** nrerror ********************/
   m[nrl] -= ncl;  
   void nrerror(char error_text[])
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  {
   return m;    fprintf(stderr,"ERREUR ...\n");
 }    fprintf(stderr,"%s\n",error_text);
     exit(EXIT_FAILURE);
 /*************************free matrix ************************/  }
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  /*********************** vector *******************/
 {  double *vector(int nl, int nh)
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  {
   free((FREE_ARG)(m+nrl-NR_END));    double *v;
 }    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     if (!v) nrerror("allocation failure in vector");
 /******************* ma3x *******************************/    return v-nl+NR_END;
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  }
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  /************************ free vector ******************/
   double ***m;  void free_vector(double*v, int nl, int nh)
   {
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    free((FREE_ARG)(v+nl-NR_END));
   if (!m) nrerror("allocation failure 1 in matrix()");  }
   m += NR_END;  
   m -= nrl;  /************************ivector *******************************/
   char *cvector(long nl,long nh)
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    char *v;
   m[nrl] += NR_END;    v=(char *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(char)));
   m[nrl] -= ncl;    if (!v) nrerror("allocation failure in cvector");
     return v-nl+NR_END;
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  }
   
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  /******************free ivector **************************/
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  void free_cvector(char *v, long nl, long nh)
   m[nrl][ncl] += NR_END;  {
   m[nrl][ncl] -= nll;    free((FREE_ARG)(v+nl-NR_END));
   for (j=ncl+1; j<=nch; j++)  }
     m[nrl][j]=m[nrl][j-1]+nlay;  
    /************************ivector *******************************/
   for (i=nrl+1; i<=nrh; i++) {  int *ivector(long nl,long nh)
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  {
     for (j=ncl+1; j<=nch; j++)    int *v;
       m[i][j]=m[i][j-1]+nlay;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   }    if (!v) nrerror("allocation failure in ivector");
   return m;    return v-nl+NR_END;
 }  }
   
 /*************************free ma3x ************************/  /******************free ivector **************************/
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  void free_ivector(int *v, long nl, long nh)
 {  {
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    free((FREE_ARG)(v+nl-NR_END));
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  }
   free((FREE_ARG)(m+nrl-NR_END));  
 }  /******************* imatrix *******************************/
   int **imatrix(long nrl, long nrh, long ncl, long nch) 
 /***************** f1dim *************************/       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 extern int ncom;  { 
 extern double *pcom,*xicom;    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 extern double (*nrfunc)(double []);    int **m; 
      
 double f1dim(double x)    /* allocate pointers to rows */ 
 {    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   int j;    if (!m) nrerror("allocation failure 1 in matrix()"); 
   double f;    m += NR_END; 
   double *xt;    m -= nrl; 
      
   xt=vector(1,ncom);    
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    /* allocate rows and set pointers to them */ 
   f=(*nrfunc)(xt);    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   free_vector(xt,1,ncom);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   return f;    m[nrl] += NR_END; 
 }    m[nrl] -= ncl; 
     
 /*****************brent *************************/    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    
 {    /* return pointer to array of pointers to rows */ 
   int iter;    return m; 
   double a,b,d,etemp;  } 
   double fu,fv,fw,fx;  
   double ftemp;  /****************** free_imatrix *************************/
   double p,q,r,tol1,tol2,u,v,w,x,xm;  void free_imatrix(m,nrl,nrh,ncl,nch)
   double e=0.0;        int **m;
          long nch,ncl,nrh,nrl; 
   a=(ax < cx ? ax : cx);       /* free an int matrix allocated by imatrix() */ 
   b=(ax > cx ? ax : cx);  { 
   x=w=v=bx;    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   fw=fv=fx=(*f)(x);    free((FREE_ARG) (m+nrl-NR_END)); 
   for (iter=1;iter<=ITMAX;iter++) {  } 
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  /******************* matrix *******************************/
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  double **matrix(long nrl, long nrh, long ncl, long nch)
     printf(".");fflush(stdout);  {
 #ifdef DEBUG    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    double **m;
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  
 #endif    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    if (!m) nrerror("allocation failure 1 in matrix()");
       *xmin=x;    m += NR_END;
       return fx;    m -= nrl;
     }  
     ftemp=fu;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (fabs(e) > tol1) {    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       r=(x-w)*(fx-fv);    m[nrl] += NR_END;
       q=(x-v)*(fx-fw);    m[nrl] -= ncl;
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       if (q > 0.0) p = -p;    return m;
       q=fabs(q);    /* print *(*(m+1)+70) ou print m[1][70]; print m+1 or print &(m[1]) 
       etemp=e;     */
       e=d;  }
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  /*************************free matrix ************************/
       else {  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
         d=p/q;  {
         u=x+d;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
         if (u-a < tol2 || b-u < tol2)    free((FREE_ARG)(m+nrl-NR_END));
           d=SIGN(tol1,xm-x);  }
       }  
     } else {  /******************* ma3x *******************************/
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     }  {
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     fu=(*f)(u);    double ***m;
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       SHFT(v,w,x,u)    if (!m) nrerror("allocation failure 1 in matrix()");
         SHFT(fv,fw,fx,fu)    m += NR_END;
         } else {    m -= nrl;
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
             v=w;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
             w=u;    m[nrl] += NR_END;
             fv=fw;    m[nrl] -= ncl;
             fw=fu;  
           } else if (fu <= fv || v == x || v == w) {    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
             v=u;  
             fv=fu;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
           }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         }    m[nrl][ncl] += NR_END;
   }    m[nrl][ncl] -= nll;
   nrerror("Too many iterations in brent");    for (j=ncl+1; j<=nch; j++) 
   *xmin=x;      m[nrl][j]=m[nrl][j-1]+nlay;
   return fx;    
 }    for (i=nrl+1; i<=nrh; i++) {
       m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 /****************** mnbrak ***********************/      for (j=ncl+1; j<=nch; j++) 
         m[i][j]=m[i][j-1]+nlay;
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    }
             double (*func)(double))    return m; 
 {    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   double ulim,u,r,q, dum;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   double fu;    */
    }
   *fa=(*func)(*ax);  
   *fb=(*func)(*bx);  /*************************free ma3x ************************/
   if (*fb > *fa) {  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     SHFT(dum,*ax,*bx,dum)  {
       SHFT(dum,*fb,*fa,dum)    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
       }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   *cx=(*bx)+GOLD*(*bx-*ax);    free((FREE_ARG)(m+nrl-NR_END));
   *fc=(*func)(*cx);  }
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  /***************** f1dim *************************/
     q=(*bx-*cx)*(*fb-*fa);  extern int ncom; 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  extern double *pcom,*xicom;
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  extern double (*nrfunc)(double []); 
     ulim=(*bx)+GLIMIT*(*cx-*bx);   
     if ((*bx-u)*(u-*cx) > 0.0) {  double f1dim(double x) 
       fu=(*func)(u);  { 
     } else if ((*cx-u)*(u-ulim) > 0.0) {    int j; 
       fu=(*func)(u);    double f;
       if (fu < *fc) {    double *xt; 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))   
           SHFT(*fb,*fc,fu,(*func)(u))    xt=vector(1,ncom); 
           }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    f=(*nrfunc)(xt); 
       u=ulim;    free_vector(xt,1,ncom); 
       fu=(*func)(u);    return f; 
     } else {  } 
       u=(*cx)+GOLD*(*cx-*bx);  
       fu=(*func)(u);  /*****************brent *************************/
     }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     SHFT(*ax,*bx,*cx,u)  { 
       SHFT(*fa,*fb,*fc,fu)    int iter; 
       }    double a,b,d,etemp;
 }    double fu,fv,fw,fx;
     double ftemp;
 /*************** linmin ************************/    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     double e=0.0; 
 int ncom;   
 double *pcom,*xicom;    a=(ax < cx ? ax : cx); 
 double (*nrfunc)(double []);    b=(ax > cx ? ax : cx); 
      x=w=v=bx; 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    fw=fv=fx=(*f)(x); 
 {    for (iter=1;iter<=ITMAX;iter++) { 
   double brent(double ax, double bx, double cx,      xm=0.5*(a+b); 
                double (*f)(double), double tol, double *xmin);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   double f1dim(double x);      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,      printf(".");fflush(stdout);
               double *fc, double (*func)(double));      fprintf(ficlog,".");fflush(ficlog);
   int j;  #ifdef DEBUG
   double xx,xmin,bx,ax;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double fx,fb,fa;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
        /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   ncom=n;  #endif
   pcom=vector(1,n);      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   xicom=vector(1,n);        *xmin=x; 
   nrfunc=func;        return fx; 
   for (j=1;j<=n;j++) {      } 
     pcom[j]=p[j];      ftemp=fu;
     xicom[j]=xi[j];      if (fabs(e) > tol1) { 
   }        r=(x-w)*(fx-fv); 
   ax=0.0;        q=(x-v)*(fx-fw); 
   xx=1.0;        p=(x-v)*q-(x-w)*r; 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);        q=2.0*(q-r); 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);        if (q > 0.0) p = -p; 
 #ifdef DEBUG        q=fabs(q); 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);        etemp=e; 
 #endif        e=d; 
   for (j=1;j<=n;j++) {        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     xi[j] *= xmin;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     p[j] += xi[j];        else { 
   }          d=p/q; 
   free_vector(xicom,1,n);          u=x+d; 
   free_vector(pcom,1,n);          if (u-a < tol2 || b-u < tol2) 
 }            d=SIGN(tol1,xm-x); 
         } 
 /*************** powell ************************/      } else { 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
             double (*func)(double []))      } 
 {      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   void linmin(double p[], double xi[], int n, double *fret,      fu=(*f)(u); 
               double (*func)(double []));      if (fu <= fx) { 
   int i,ibig,j;        if (u >= x) a=x; else b=x; 
   double del,t,*pt,*ptt,*xit;        SHFT(v,w,x,u) 
   double fp,fptt;          SHFT(fv,fw,fx,fu) 
   double *xits;          } else { 
   pt=vector(1,n);            if (u < x) a=u; else b=u; 
   ptt=vector(1,n);            if (fu <= fw || w == x) { 
   xit=vector(1,n);              v=w; 
   xits=vector(1,n);              w=u; 
   *fret=(*func)(p);              fv=fw; 
   for (j=1;j<=n;j++) pt[j]=p[j];              fw=fu; 
   for (*iter=1;;++(*iter)) {            } else if (fu <= fv || v == x || v == w) { 
     fp=(*fret);              v=u; 
     ibig=0;              fv=fu; 
     del=0.0;            } 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);          } 
     for (i=1;i<=n;i++)    } 
       printf(" %d %.12f",i, p[i]);    nrerror("Too many iterations in brent"); 
     printf("\n");    *xmin=x; 
     for (i=1;i<=n;i++) {    return fx; 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  } 
       fptt=(*fret);  
 #ifdef DEBUG  /****************** mnbrak ***********************/
       printf("fret=%lf \n",*fret);  
 #endif  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
       printf("%d",i);fflush(stdout);              double (*func)(double)) 
       linmin(p,xit,n,fret,func);  { 
       if (fabs(fptt-(*fret)) > del) {    double ulim,u,r,q, dum;
         del=fabs(fptt-(*fret));    double fu; 
         ibig=i;   
       }    *fa=(*func)(*ax); 
 #ifdef DEBUG    *fb=(*func)(*bx); 
       printf("%d %.12e",i,(*fret));    if (*fb > *fa) { 
       for (j=1;j<=n;j++) {      SHFT(dum,*ax,*bx,dum) 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);        SHFT(dum,*fb,*fa,dum) 
         printf(" x(%d)=%.12e",j,xit[j]);        } 
       }    *cx=(*bx)+GOLD*(*bx-*ax); 
       for(j=1;j<=n;j++)    *fc=(*func)(*cx); 
         printf(" p=%.12e",p[j]);    while (*fb > *fc) { 
       printf("\n");      r=(*bx-*ax)*(*fb-*fc); 
 #endif      q=(*bx-*cx)*(*fb-*fa); 
     }      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 #ifdef DEBUG      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       int k[2],l;      if ((*bx-u)*(u-*cx) > 0.0) { 
       k[0]=1;        fu=(*func)(u); 
       k[1]=-1;      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       printf("Max: %.12e",(*func)(p));        fu=(*func)(u); 
       for (j=1;j<=n;j++)        if (fu < *fc) { 
         printf(" %.12e",p[j]);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       printf("\n");            SHFT(*fb,*fc,fu,(*func)(u)) 
       for(l=0;l<=1;l++) {            } 
         for (j=1;j<=n;j++) {      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];        u=ulim; 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);        fu=(*func)(u); 
         }      } else { 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));        u=(*cx)+GOLD*(*cx-*bx); 
       }        fu=(*func)(u); 
 #endif      } 
       SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
       free_vector(xit,1,n);        } 
       free_vector(xits,1,n);  } 
       free_vector(ptt,1,n);  
       free_vector(pt,1,n);  /*************** linmin ************************/
       return;  
     }  int ncom; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  double *pcom,*xicom;
     for (j=1;j<=n;j++) {  double (*nrfunc)(double []); 
       ptt[j]=2.0*p[j]-pt[j];   
       xit[j]=p[j]-pt[j];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
       pt[j]=p[j];  { 
     }    double brent(double ax, double bx, double cx, 
     fptt=(*func)(ptt);                 double (*f)(double), double tol, double *xmin); 
     if (fptt < fp) {    double f1dim(double x); 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       if (t < 0.0) {                double *fc, double (*func)(double)); 
         linmin(p,xit,n,fret,func);    int j; 
         for (j=1;j<=n;j++) {    double xx,xmin,bx,ax; 
           xi[j][ibig]=xi[j][n];    double fx,fb,fa;
           xi[j][n]=xit[j];   
         }    ncom=n; 
 #ifdef DEBUG    pcom=vector(1,n); 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    xicom=vector(1,n); 
         for(j=1;j<=n;j++)    nrfunc=func; 
           printf(" %.12e",xit[j]);    for (j=1;j<=n;j++) { 
         printf("\n");      pcom[j]=p[j]; 
 #endif      xicom[j]=xi[j]; 
       }    } 
     }    ax=0.0; 
   }    xx=1.0; 
 }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 /**** Prevalence limit ****************/  #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 {  #endif
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    for (j=1;j<=n;j++) { 
      matrix by transitions matrix until convergence is reached */      xi[j] *= xmin; 
       p[j] += xi[j]; 
   int i, ii,j,k;    } 
   double min, max, maxmin, maxmax,sumnew=0.;    free_vector(xicom,1,n); 
   double **matprod2();    free_vector(pcom,1,n); 
   double **out, cov[NCOVMAX], **pmij();  } 
   double **newm;  
   double agefin, delaymax=50 ; /* Max number of years to converge */  /*************** powell ************************/
   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
   for (ii=1;ii<=nlstate+ndeath;ii++)              double (*func)(double [])) 
     for (j=1;j<=nlstate+ndeath;j++){  { 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    void linmin(double p[], double xi[], int n, double *fret, 
     }                double (*func)(double [])); 
     int i,ibig,j; 
    cov[1]=1.;    double del,t,*pt,*ptt,*xit;
      double fp,fptt;
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    double *xits;
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    pt=vector(1,n); 
     newm=savm;    ptt=vector(1,n); 
     /* Covariates have to be included here again */    xit=vector(1,n); 
      cov[2]=agefin;    xits=vector(1,n); 
      *fret=(*func)(p); 
       for (k=1; k<=cptcovn;k++) {    for (j=1;j<=n;j++) pt[j]=p[j]; 
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    for (*iter=1;;++(*iter)) { 
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/      fp=(*fret); 
       }      ibig=0; 
       for (k=1; k<=cptcovage;k++)      del=0.0; 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       for (k=1; k<=cptcovprod;k++)      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];      fprintf(ficrespow,"%d %.12f",*iter,*fret);
       for (i=1;i<=n;i++) {
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/        printf(" %d %.12f",i, p[i]);
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/        fprintf(ficlog," %d %.12lf",i, p[i]);
         fprintf(ficrespow," %.12lf", p[i]);
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      }
       printf("\n");
     savm=oldm;      fprintf(ficlog,"\n");
     oldm=newm;      fprintf(ficrespow,"\n");
     maxmax=0.;      for (i=1;i<=n;i++) { 
     for(j=1;j<=nlstate;j++){        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       min=1.;        fptt=(*fret); 
       max=0.;  #ifdef DEBUG
       for(i=1; i<=nlstate; i++) {        printf("fret=%lf \n",*fret);
         sumnew=0;        fprintf(ficlog,"fret=%lf \n",*fret);
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  #endif
         prlim[i][j]= newm[i][j]/(1-sumnew);        printf("%d",i);fflush(stdout);
         max=FMAX(max,prlim[i][j]);        fprintf(ficlog,"%d",i);fflush(ficlog);
         min=FMIN(min,prlim[i][j]);        linmin(p,xit,n,fret,func); 
       }        if (fabs(fptt-(*fret)) > del) { 
       maxmin=max-min;          del=fabs(fptt-(*fret)); 
       maxmax=FMAX(maxmax,maxmin);          ibig=i; 
     }        } 
     if(maxmax < ftolpl){  #ifdef DEBUG
       return prlim;        printf("%d %.12e",i,(*fret));
     }        fprintf(ficlog,"%d %.12e",i,(*fret));
   }        for (j=1;j<=n;j++) {
 }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
 /*************** transition probabilities ***************/          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         }
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        for(j=1;j<=n;j++) {
 {          printf(" p=%.12e",p[j]);
   double s1, s2;          fprintf(ficlog," p=%.12e",p[j]);
   /*double t34;*/        }
   int i,j,j1, nc, ii, jj;        printf("\n");
         fprintf(ficlog,"\n");
     for(i=1; i<= nlstate; i++){  #endif
     for(j=1; j<i;j++){      } 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
         /*s2 += param[i][j][nc]*cov[nc];*/  #ifdef DEBUG
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        int k[2],l;
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        k[0]=1;
       }        k[1]=-1;
       ps[i][j]=s2;        printf("Max: %.12e",(*func)(p));
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        fprintf(ficlog,"Max: %.12e",(*func)(p));
     }        for (j=1;j<=n;j++) {
     for(j=i+1; j<=nlstate+ndeath;j++){          printf(" %.12e",p[j]);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){          fprintf(ficlog," %.12e",p[j]);
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        }
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        printf("\n");
       }        fprintf(ficlog,"\n");
       ps[i][j]=(s2);        for(l=0;l<=1;l++) {
     }          for (j=1;j<=n;j++) {
   }            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     /*ps[3][2]=1;*/            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   for(i=1; i<= nlstate; i++){          }
      s1=0;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
     for(j=1; j<i; j++)          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       s1+=exp(ps[i][j]);        }
     for(j=i+1; j<=nlstate+ndeath; j++)  #endif
       s1+=exp(ps[i][j]);  
     ps[i][i]=1./(s1+1.);  
     for(j=1; j<i; j++)        free_vector(xit,1,n); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        free_vector(xits,1,n); 
     for(j=i+1; j<=nlstate+ndeath; j++)        free_vector(ptt,1,n); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        free_vector(pt,1,n); 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        return; 
   } /* end i */      } 
       if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      for (j=1;j<=n;j++) { 
     for(jj=1; jj<= nlstate+ndeath; jj++){        ptt[j]=2.0*p[j]-pt[j]; 
       ps[ii][jj]=0;        xit[j]=p[j]-pt[j]; 
       ps[ii][ii]=1;        pt[j]=p[j]; 
     }      } 
   }      fptt=(*func)(ptt); 
       if (fptt < fp) { 
         t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        if (t < 0.0) { 
     for(jj=1; jj<= nlstate+ndeath; jj++){          linmin(p,xit,n,fret,func); 
      printf("%lf ",ps[ii][jj]);          for (j=1;j<=n;j++) { 
    }            xi[j][ibig]=xi[j][n]; 
     printf("\n ");            xi[j][n]=xit[j]; 
     }          }
     printf("\n ");printf("%lf ",cov[2]);*/  #ifdef DEBUG
 /*          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   for(i=1; i<= npar; i++) printf("%f ",x[i]);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   goto end;*/          for(j=1;j<=n;j++){
     return ps;            printf(" %.12e",xit[j]);
 }            fprintf(ficlog," %.12e",xit[j]);
           }
 /**************** Product of 2 matrices ******************/          printf("\n");
           fprintf(ficlog,"\n");
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  #endif
 {        }
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      } 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    } 
   /* in, b, out are matrice of pointers which should have been initialized  } 
      before: only the contents of out is modified. The function returns  
      a pointer to pointers identical to out */  /**** Prevalence limit (stable prevalence)  ****************/
   long i, j, k;  
   for(i=nrl; i<= nrh; i++)  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     for(k=ncolol; k<=ncoloh; k++)  {
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
         out[i][k] +=in[i][j]*b[j][k];       matrix by transitions matrix until convergence is reached */
   
   return out;    int i, ii,j,k;
 }    double min, max, maxmin, maxmax,sumnew=0.;
     double **matprod2();
     double **out, cov[NCOVMAX], **pmij();
 /************* Higher Matrix Product ***************/    double **newm;
     double agefin, delaymax=50 ; /* Max number of years to converge */
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )  
 {    for (ii=1;ii<=nlstate+ndeath;ii++)
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      for (j=1;j<=nlstate+ndeath;j++){
      duration (i.e. until        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      }
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  
      (typically every 2 years instead of every month which is too big).     cov[1]=1.;
      Model is determined by parameters x and covariates have to be   
      included manually here.   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
      */      newm=savm;
       /* Covariates have to be included here again */
   int i, j, d, h, k;       cov[2]=agefin;
   double **out, cov[NCOVMAX];    
   double **newm;        for (k=1; k<=cptcovn;k++) {
           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   /* Hstepm could be zero and should return the unit matrix */          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   for (i=1;i<=nlstate+ndeath;i++)        }
     for (j=1;j<=nlstate+ndeath;j++){        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
       oldm[i][j]=(i==j ? 1.0 : 0.0);        for (k=1; k<=cptcovprod;k++)
       po[i][j][0]=(i==j ? 1.0 : 0.0);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     }  
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
   for(h=1; h <=nhstepm; h++){        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
     for(d=1; d <=hstepm; d++){        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       newm=savm;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
       /* Covariates have to be included here again */  
       cov[1]=1.;      savm=oldm;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      oldm=newm;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      maxmax=0.;
       for (k=1; k<=cptcovage;k++)      for(j=1;j<=nlstate;j++){
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        min=1.;
       for (k=1; k<=cptcovprod;k++)        max=0.;
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        for(i=1; i<=nlstate; i++) {
           sumnew=0;
           for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/          prlim[i][j]= newm[i][j]/(1-sumnew);
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/          max=FMAX(max,prlim[i][j]);
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,          min=FMIN(min,prlim[i][j]);
                    pmij(pmmij,cov,ncovmodel,x,nlstate));        }
       savm=oldm;        maxmin=max-min;
       oldm=newm;        maxmax=FMAX(maxmax,maxmin);
     }      }
     for(i=1; i<=nlstate+ndeath; i++)      if(maxmax < ftolpl){
       for(j=1;j<=nlstate+ndeath;j++) {        return prlim;
         po[i][j][h]=newm[i][j];      }
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    }
          */  }
       }  
   } /* end h */  /*************** transition probabilities ***************/ 
   return po;  
 }  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
     double s1, s2;
 /*************** log-likelihood *************/    /*double t34;*/
 double func( double *x)    int i,j,j1, nc, ii, jj;
 {  
   int i, ii, j, k, mi, d, kk;      for(i=1; i<= nlstate; i++){
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      for(j=1; j<i;j++){
   double **out;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   double sw; /* Sum of weights */          /*s2 += param[i][j][nc]*cov[nc];*/
   double lli; /* Individual log likelihood */          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   long ipmx;          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
   /*extern weight */        }
   /* We are differentiating ll according to initial status */        ps[i][j]=s2;
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   /*for(i=1;i<imx;i++)      }
     printf(" %d\n",s[4][i]);      for(j=i+1; j<=nlstate+ndeath;j++){
   */        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   cov[1]=1.;          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
   for(k=1; k<=nlstate; k++) ll[k]=0.;        }
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        ps[i][j]=s2;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      }
     for(mi=1; mi<= wav[i]-1; mi++){    }
       for (ii=1;ii<=nlstate+ndeath;ii++)      /*ps[3][2]=1;*/
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
       for(d=0; d<dh[mi][i]; d++){    for(i=1; i<= nlstate; i++){
         newm=savm;       s1=0;
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;      for(j=1; j<i; j++)
         for (kk=1; kk<=cptcovage;kk++) {        s1+=exp(ps[i][j]);
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      for(j=i+1; j<=nlstate+ndeath; j++)
         }        s1+=exp(ps[i][j]);
              ps[i][i]=1./(s1+1.);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      for(j=1; j<i; j++)
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));        ps[i][j]= exp(ps[i][j])*ps[i][i];
         savm=oldm;      for(j=i+1; j<=nlstate+ndeath; j++)
         oldm=newm;        ps[i][j]= exp(ps[i][j])*ps[i][i];
              /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
            } /* end i */
       } /* end mult */  
          for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);      for(jj=1; jj<= nlstate+ndeath; jj++){
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        ps[ii][jj]=0;
       ipmx +=1;        ps[ii][ii]=1;
       sw += weight[i];      }
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;    }
     } /* end of wave */  
   } /* end of individual */  
     /*   for(ii=1; ii<= nlstate+ndeath; ii++){
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];      for(jj=1; jj<= nlstate+ndeath; jj++){
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */       printf("%lf ",ps[ii][jj]);
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */     }
   return -l;      printf("\n ");
 }      }
       printf("\n ");printf("%lf ",cov[2]);*/
   /*
 /*********** Maximum Likelihood Estimation ***************/    for(i=1; i<= npar; i++) printf("%f ",x[i]);
     goto end;*/
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))      return ps;
 {  }
   int i,j, iter;  
   double **xi,*delti;  /**************** Product of 2 matrices ******************/
   double fret;  
   xi=matrix(1,npar,1,npar);  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   for (i=1;i<=npar;i++)  {
     for (j=1;j<=npar;j++)    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
       xi[i][j]=(i==j ? 1.0 : 0.0);       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   printf("Powell\n");    /* in, b, out are matrice of pointers which should have been initialized 
   powell(p,xi,npar,ftol,&iter,&fret,func);       before: only the contents of out is modified. The function returns
        a pointer to pointers identical to out */
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    long i, j, k;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    for(i=nrl; i<= nrh; i++)
       for(k=ncolol; k<=ncoloh; k++)
 }        for(j=ncl,out[i][k]=0.; j<=nch; j++)
           out[i][k] +=in[i][j]*b[j][k];
 /**** Computes Hessian and covariance matrix ***/  
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    return out;
 {  }
   double  **a,**y,*x,pd;  
   double **hess;  
   int i, j,jk;  /************* Higher Matrix Product ***************/
   int *indx;  
   double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
   double hessii(double p[], double delta, int theta, double delti[]);  {
   double hessij(double p[], double delti[], int i, int j);    /* Computes the transition matrix starting at age 'age' over 
   void lubksb(double **a, int npar, int *indx, double b[]) ;       'nhstepm*hstepm*stepm' months (i.e. until
   void ludcmp(double **a, int npar, int *indx, double *d) ;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
        nhstepm*hstepm matrices. 
   hess=matrix(1,npar,1,npar);       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
        (typically every 2 years instead of every month which is too big 
   printf("\nCalculation of the hessian matrix. Wait...\n");       for the memory).
   for (i=1;i<=npar;i++){       Model is determined by parameters x and covariates have to be 
     printf("%d",i);fflush(stdout);       included manually here. 
     hess[i][i]=hessii(p,ftolhess,i,delti);  
     /*printf(" %f ",p[i]);*/       */
     /*printf(" %lf ",hess[i][i]);*/  
   }    int i, j, d, h, k;
      double **out, cov[NCOVMAX];
   for (i=1;i<=npar;i++) {    double **newm;
     for (j=1;j<=npar;j++)  {  
       if (j>i) {    /* Hstepm could be zero and should return the unit matrix */
         printf(".%d%d",i,j);fflush(stdout);    for (i=1;i<=nlstate+ndeath;i++)
         hess[i][j]=hessij(p,delti,i,j);      for (j=1;j<=nlstate+ndeath;j++){
         hess[j][i]=hess[i][j];            oldm[i][j]=(i==j ? 1.0 : 0.0);
         /*printf(" %lf ",hess[i][j]);*/        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }      }
     }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   }    for(h=1; h <=nhstepm; h++){
   printf("\n");      for(d=1; d <=hstepm; d++){
         newm=savm;
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        /* Covariates have to be included here again */
          cov[1]=1.;
   a=matrix(1,npar,1,npar);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   y=matrix(1,npar,1,npar);        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   x=vector(1,npar);        for (k=1; k<=cptcovage;k++)
   indx=ivector(1,npar);          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   for (i=1;i<=npar;i++)        for (k=1; k<=cptcovprod;k++)
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   ludcmp(a,npar,indx,&pd);  
   
   for (j=1;j<=npar;j++) {        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
     for (i=1;i<=npar;i++) x[i]=0;        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     x[j]=1;        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     lubksb(a,npar,indx,x);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (i=1;i<=npar;i++){        savm=oldm;
       matcov[i][j]=x[i];        oldm=newm;
     }      }
   }      for(i=1; i<=nlstate+ndeath; i++)
         for(j=1;j<=nlstate+ndeath;j++) {
   printf("\n#Hessian matrix#\n");          po[i][j][h]=newm[i][j];
   for (i=1;i<=npar;i++) {          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
     for (j=1;j<=npar;j++) {           */
       printf("%.3e ",hess[i][j]);        }
     }    } /* end h */
     printf("\n");    return po;
   }  }
   
   /* Recompute Inverse */  
   for (i=1;i<=npar;i++)  /*************** log-likelihood *************/
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];  double func( double *x)
   ludcmp(a,npar,indx,&pd);  {
     int i, ii, j, k, mi, d, kk;
   /*  printf("\n#Hessian matrix recomputed#\n");    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
   for (j=1;j<=npar;j++) {    double sw; /* Sum of weights */
     for (i=1;i<=npar;i++) x[i]=0;    double lli; /* Individual log likelihood */
     x[j]=1;    int s1, s2;
     lubksb(a,npar,indx,x);    double bbh, survp;
     for (i=1;i<=npar;i++){    long ipmx;
       y[i][j]=x[i];    /*extern weight */
       printf("%.3e ",y[i][j]);    /* We are differentiating ll according to initial status */
     }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     printf("\n");    /*for(i=1;i<imx;i++) 
   }      printf(" %d\n",s[4][i]);
   */    */
     cov[1]=1.;
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   free_vector(x,1,npar);  
   free_ivector(indx,1,npar);    if(mle==1){
   free_matrix(hess,1,npar,1,npar);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 }          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 /*************** hessian matrix ****************/              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 double hessii( double x[], double delta, int theta, double delti[])              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 {            }
   int i;          for(d=0; d<dh[mi][i]; d++){
   int l=1, lmax=20;            newm=savm;
   double k1,k2;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   double p2[NPARMAX+1];            for (kk=1; kk<=cptcovage;kk++) {
   double res;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;            }
   double fx;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   int k=0,kmax=10;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   double l1;            savm=oldm;
             oldm=newm;
   fx=func(x);          } /* end mult */
   for (i=1;i<=npar;i++) p2[i]=x[i];        
   for(l=0 ; l <=lmax; l++){          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     l1=pow(10,l);          /* But now since version 0.9 we anticipate for bias and large stepm.
     delts=delt;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     for(k=1 ; k <kmax; k=k+1){           * (in months) between two waves is not a multiple of stepm, we rounded to 
       delt = delta*(l1*k);           * the nearest (and in case of equal distance, to the lowest) interval but now
       p2[theta]=x[theta] +delt;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       k1=func(p2)-fx;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       p2[theta]=x[theta]-delt;           * probability in order to take into account the bias as a fraction of the way
       k2=func(p2)-fx;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       /*res= (k1-2.0*fx+k2)/delt/delt; */           * -stepm/2 to stepm/2 .
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */           * For stepm=1 the results are the same as for previous versions of Imach.
                 * For stepm > 1 the results are less biased than in previous versions. 
 #ifdef DEBUG           */
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          s1=s[mw[mi][i]][i];
 #endif          s2=s[mw[mi+1][i]][i];
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          bbh=(double)bh[mi][i]/(double)stepm; 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          /* bias is positive if real duration
         k=kmax;           * is higher than the multiple of stepm and negative otherwise.
       }           */
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         k=kmax; l=lmax*10.;          if( s2 > nlstate){ 
       }            /* i.e. if s2 is a death state and if the date of death is known then the contribution
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){               to the likelihood is the probability to die between last step unit time and current 
         delts=delt;               step unit time, which is also the differences between probability to die before dh 
       }               and probability to die before dh-stepm . 
     }               In version up to 0.92 likelihood was computed
   }          as if date of death was unknown. Death was treated as any other
   delti[theta]=delts;          health state: the date of the interview describes the actual state
   return res;          and not the date of a change in health state. The former idea was
            to consider that at each interview the state was recorded
 }          (healthy, disable or death) and IMaCh was corrected; but when we
           introduced the exact date of death then we should have modified
 double hessij( double x[], double delti[], int thetai,int thetaj)          the contribution of an exact death to the likelihood. This new
 {          contribution is smaller and very dependent of the step unit
   int i;          stepm. It is no more the probability to die between last interview
   int l=1, l1, lmax=20;          and month of death but the probability to survive from last
   double k1,k2,k3,k4,res,fx;          interview up to one month before death multiplied by the
   double p2[NPARMAX+1];          probability to die within a month. Thanks to Chris
   int k;          Jackson for correcting this bug.  Former versions increased
           mortality artificially. The bad side is that we add another loop
   fx=func(x);          which slows down the processing. The difference can be up to 10%
   for (k=1; k<=2; k++) {          lower mortality.
     for (i=1;i<=npar;i++) p2[i]=x[i];            */
     p2[thetai]=x[thetai]+delti[thetai]/k;            lli=log(out[s1][s2] - savm[s1][s2]);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          }else{
     k1=func(p2)-fx;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
              /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     p2[thetai]=x[thetai]+delti[thetai]/k;          } 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     k2=func(p2)-fx;          /*if(lli ==000.0)*/
            /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     p2[thetai]=x[thetai]-delti[thetai]/k;          ipmx +=1;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;          sw += weight[i];
     k3=func(p2)-fx;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          } /* end of wave */
     p2[thetai]=x[thetai]-delti[thetai]/k;      } /* end of individual */
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    }  else if(mle==2){
     k4=func(p2)-fx;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 #ifdef DEBUG        for(mi=1; mi<= wav[i]-1; mi++){
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          for (ii=1;ii<=nlstate+ndeath;ii++)
 #endif            for (j=1;j<=nlstate+ndeath;j++){
   }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   return res;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
 }            }
           for(d=0; d<=dh[mi][i]; d++){
 /************** Inverse of matrix **************/            newm=savm;
 void ludcmp(double **a, int n, int *indx, double *d)            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 {            for (kk=1; kk<=cptcovage;kk++) {
   int i,imax,j,k;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   double big,dum,sum,temp;            }
   double *vv;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   vv=vector(1,n);            savm=oldm;
   *d=1.0;            oldm=newm;
   for (i=1;i<=n;i++) {          } /* end mult */
     big=0.0;        
     for (j=1;j<=n;j++)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       if ((temp=fabs(a[i][j])) > big) big=temp;          /* But now since version 0.9 we anticipate for bias and large stepm.
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     vv[i]=1.0/big;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   }           * the nearest (and in case of equal distance, to the lowest) interval but now
   for (j=1;j<=n;j++) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     for (i=1;i<j;i++) {           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
       sum=a[i][j];           * probability in order to take into account the bias as a fraction of the way
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       a[i][j]=sum;           * -stepm/2 to stepm/2 .
     }           * For stepm=1 the results are the same as for previous versions of Imach.
     big=0.0;           * For stepm > 1 the results are less biased than in previous versions. 
     for (i=j;i<=n;i++) {           */
       sum=a[i][j];          s1=s[mw[mi][i]][i];
       for (k=1;k<j;k++)          s2=s[mw[mi+1][i]][i];
         sum -= a[i][k]*a[k][j];          bbh=(double)bh[mi][i]/(double)stepm; 
       a[i][j]=sum;          /* bias is positive if real duration
       if ( (dum=vv[i]*fabs(sum)) >= big) {           * is higher than the multiple of stepm and negative otherwise.
         big=dum;           */
         imax=i;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
       }          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     }          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
     if (j != imax) {          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       for (k=1;k<=n;k++) {          /*if(lli ==000.0)*/
         dum=a[imax][k];          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         a[imax][k]=a[j][k];          ipmx +=1;
         a[j][k]=dum;          sw += weight[i];
       }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       *d = -(*d);        } /* end of wave */
       vv[imax]=vv[j];      } /* end of individual */
     }    }  else if(mle==3){  /* exponential inter-extrapolation */
     indx[j]=imax;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     if (a[j][j] == 0.0) a[j][j]=TINY;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     if (j != n) {        for(mi=1; mi<= wav[i]-1; mi++){
       dum=1.0/(a[j][j]);          for (ii=1;ii<=nlstate+ndeath;ii++)
       for (i=j+1;i<=n;i++) a[i][j] *= dum;            for (j=1;j<=nlstate+ndeath;j++){
     }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   free_vector(vv,1,n);  /* Doesn't work */            }
 ;          for(d=0; d<dh[mi][i]; d++){
 }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
 void lubksb(double **a, int n, int *indx, double b[])            for (kk=1; kk<=cptcovage;kk++) {
 {              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int i,ii=0,ip,j;            }
   double sum;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for (i=1;i<=n;i++) {            savm=oldm;
     ip=indx[i];            oldm=newm;
     sum=b[ip];          } /* end mult */
     b[ip]=b[i];        
     if (ii)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          /* But now since version 0.9 we anticipate for bias and large stepm.
     else if (sum) ii=i;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     b[i]=sum;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   }           * the nearest (and in case of equal distance, to the lowest) interval but now
   for (i=n;i>=1;i--) {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     sum=b[i];           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];           * probability in order to take into account the bias as a fraction of the way
     b[i]=sum/a[i][i];           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   }           * -stepm/2 to stepm/2 .
 }           * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions. 
 /************ Frequencies ********************/           */
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2)          s1=s[mw[mi][i]][i];
 {  /* Some frequencies */          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;          /* bias is positive if real duration
   double ***freq; /* Frequencies */           * is higher than the multiple of stepm and negative otherwise.
   double *pp;           */
   double pos, k2, dateintsum=0,k2cpt=0;          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
   FILE *ficresp;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   char fileresp[FILENAMELENGTH];          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
   pp=vector(1,nlstate);          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);          ipmx +=1;
   strcpy(fileresp,"p");          sw += weight[i];
   strcat(fileresp,fileres);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   if((ficresp=fopen(fileresp,"w"))==NULL) {        } /* end of wave */
     printf("Problem with prevalence resultfile: %s\n", fileresp);      } /* end of individual */
     exit(0);    }else{  /* ml=4 no inter-extrapolation */
   }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   j1=0;        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   j=cptcoveff;            for (j=1;j<=nlstate+ndeath;j++){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(k1=1; k1<=j;k1++){            }
    for(i1=1; i1<=ncodemax[k1];i1++){          for(d=0; d<dh[mi][i]; d++){
        j1++;            newm=savm;
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
          scanf("%d", i);*/            for (kk=1; kk<=cptcovage;kk++) {
         for (i=-1; i<=nlstate+ndeath; i++)                cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
          for (jk=-1; jk<=nlstate+ndeath; jk++)              }
            for(m=agemin; m <= agemax+3; m++)          
              freq[i][jk][m]=0;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         dateintsum=0;            savm=oldm;
         k2cpt=0;            oldm=newm;
        for (i=1; i<=imx; i++) {          } /* end mult */
          bool=1;        
          if  (cptcovn>0) {          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
            for (z1=1; z1<=cptcoveff; z1++)          ipmx +=1;
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          sw += weight[i];
                bool=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          }        } /* end of wave */
          if (bool==1) {      } /* end of individual */
            for(m=firstpass; m<=lastpass; m++){    } /* End of if */
              k2=anint[m][i]+(mint[m][i]/12.);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
              if ((k2>=dateprev1) && (k2<=dateprev2)) {    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
                if(agev[m][i]==0) agev[m][i]=agemax+1;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
                if(agev[m][i]==1) agev[m][i]=agemax+2;    return -l;
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  }
                freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  
                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  
                  dateintsum=dateintsum+k2;  /*********** Maximum Likelihood Estimation ***************/
                  k2cpt++;  
                }  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
              }    int i,j, iter;
            }    double **xi;
          }    double fret;
        }    char filerespow[FILENAMELENGTH];
         if  (cptcovn>0) {    xi=matrix(1,npar,1,npar);
          fprintf(ficresp, "\n#********** Variable ");    for (i=1;i<=npar;i++)
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      for (j=1;j<=npar;j++)
        fprintf(ficresp, "**********\n#");        xi[i][j]=(i==j ? 1.0 : 0.0);
         }    printf("Powell\n");  fprintf(ficlog,"Powell\n");
        for(i=1; i<=nlstate;i++)    strcpy(filerespow,"pow"); 
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    strcat(filerespow,fileres);
        fprintf(ficresp, "\n");    if((ficrespow=fopen(filerespow,"w"))==NULL) {
              printf("Problem with resultfile: %s\n", filerespow);
   for(i=(int)agemin; i <= (int)agemax+3; i++){      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     if(i==(int)agemax+3)    }
       printf("Total");    fprintf(ficrespow,"# Powell\n# iter -2*LL");
     else    for (i=1;i<=nlstate;i++)
       printf("Age %d", i);      for(j=1;j<=nlstate+ndeath;j++)
     for(jk=1; jk <=nlstate ; jk++){        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    fprintf(ficrespow,"\n");
         pp[jk] += freq[jk][m][i];    powell(p,xi,npar,ftol,&iter,&fret,func);
     }  
     for(jk=1; jk <=nlstate ; jk++){    fclose(ficrespow);
       for(m=-1, pos=0; m <=0 ; m++)    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
         pos += freq[jk][m][i];    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       if(pp[jk]>=1.e-10)    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  
       else  }
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  
     }  /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
      for(jk=1; jk <=nlstate ; jk++){  {
       for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)    double  **a,**y,*x,pd;
         pp[jk] += freq[jk][m][i];    double **hess;
      }    int i, j,jk;
     int *indx;
     for(jk=1,pos=0; jk <=nlstate ; jk++)  
       pos += pp[jk];    double hessii(double p[], double delta, int theta, double delti[]);
     for(jk=1; jk <=nlstate ; jk++){    double hessij(double p[], double delti[], int i, int j);
       if(pos>=1.e-5)    void lubksb(double **a, int npar, int *indx, double b[]) ;
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    void ludcmp(double **a, int npar, int *indx, double *d) ;
       else  
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    hess=matrix(1,npar,1,npar);
       if( i <= (int) agemax){  
         if(pos>=1.e-5){    printf("\nCalculation of the hessian matrix. Wait...\n");
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
           probs[i][jk][j1]= pp[jk]/pos;    for (i=1;i<=npar;i++){
           /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      printf("%d",i);fflush(stdout);
         }      fprintf(ficlog,"%d",i);fflush(ficlog);
       else      hess[i][i]=hessii(p,ftolhess,i,delti);
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      /*printf(" %f ",p[i]);*/
       }      /*printf(" %lf ",hess[i][i]);*/
     }    }
     for(jk=-1; jk <=nlstate+ndeath; jk++)    
       for(m=-1; m <=nlstate+ndeath; m++)    for (i=1;i<=npar;i++) {
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);      for (j=1;j<=npar;j++)  {
     if(i <= (int) agemax)        if (j>i) { 
       fprintf(ficresp,"\n");          printf(".%d%d",i,j);fflush(stdout);
     printf("\n");          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
     }          hess[i][j]=hessij(p,delti,i,j);
     }          hess[j][i]=hess[i][j];    
  }          /*printf(" %lf ",hess[i][j]);*/
   dateintmean=dateintsum/k2cpt;        }
        }
   fclose(ficresp);    }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    printf("\n");
   free_vector(pp,1,nlstate);    fprintf(ficlog,"\n");
   
   /* End of Freq */    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
 }    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
     
 /************ Prevalence ********************/    a=matrix(1,npar,1,npar);
 void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    y=matrix(1,npar,1,npar);
 {  /* Some frequencies */    x=vector(1,npar);
      indx=ivector(1,npar);
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    for (i=1;i<=npar;i++)
   double ***freq; /* Frequencies */      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   double *pp;    ludcmp(a,npar,indx,&pd);
   double pos, k2;  
     for (j=1;j<=npar;j++) {
   pp=vector(1,nlstate);      for (i=1;i<=npar;i++) x[i]=0;
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);      x[j]=1;
        lubksb(a,npar,indx,x);
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      for (i=1;i<=npar;i++){ 
   j1=0;        matcov[i][j]=x[i];
        }
   j=cptcoveff;    }
   if (cptcovn<1) {j=1;ncodemax[1]=1;}  
      printf("\n#Hessian matrix#\n");
  for(k1=1; k1<=j;k1++){    fprintf(ficlog,"\n#Hessian matrix#\n");
     for(i1=1; i1<=ncodemax[k1];i1++){    for (i=1;i<=npar;i++) { 
       j1++;      for (j=1;j<=npar;j++) { 
          printf("%.3e ",hess[i][j]);
       for (i=-1; i<=nlstate+ndeath; i++)          fprintf(ficlog,"%.3e ",hess[i][j]);
         for (jk=-1; jk<=nlstate+ndeath; jk++)        }
           for(m=agemin; m <= agemax+3; m++)      printf("\n");
             freq[i][jk][m]=0;      fprintf(ficlog,"\n");
          }
       for (i=1; i<=imx; i++) {  
         bool=1;    /* Recompute Inverse */
         if  (cptcovn>0) {    for (i=1;i<=npar;i++)
           for (z1=1; z1<=cptcoveff; z1++)      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    ludcmp(a,npar,indx,&pd);
               bool=0;  
         }    /*  printf("\n#Hessian matrix recomputed#\n");
         if (bool==1) {  
           for(m=firstpass; m<=lastpass; m++){    for (j=1;j<=npar;j++) {
             k2=anint[m][i]+(mint[m][i]/12.);      for (i=1;i<=npar;i++) x[i]=0;
             if ((k2>=dateprev1) && (k2<=dateprev2)) {      x[j]=1;
               if(agev[m][i]==0) agev[m][i]=agemax+1;      lubksb(a,npar,indx,x);
               if(agev[m][i]==1) agev[m][i]=agemax+2;      for (i=1;i<=npar;i++){ 
               freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];        y[i][j]=x[i];
               freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];          printf("%.3e ",y[i][j]);
             }        fprintf(ficlog,"%.3e ",y[i][j]);
           }      }
         }      printf("\n");
       }      fprintf(ficlog,"\n");
          }
         for(i=(int)agemin; i <= (int)agemax+3; i++){    */
           for(jk=1; jk <=nlstate ; jk++){  
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    free_matrix(a,1,npar,1,npar);
               pp[jk] += freq[jk][m][i];    free_matrix(y,1,npar,1,npar);
           }    free_vector(x,1,npar);
           for(jk=1; jk <=nlstate ; jk++){    free_ivector(indx,1,npar);
             for(m=-1, pos=0; m <=0 ; m++)    free_matrix(hess,1,npar,1,npar);
             pos += freq[jk][m][i];  
         }  
          }
          for(jk=1; jk <=nlstate ; jk++){  
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  /*************** hessian matrix ****************/
              pp[jk] += freq[jk][m][i];  double hessii( double x[], double delta, int theta, double delti[])
          }  {
              int i;
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];    int l=1, lmax=20;
     double k1,k2;
          for(jk=1; jk <=nlstate ; jk++){              double p2[NPARMAX+1];
            if( i <= (int) agemax){    double res;
              if(pos>=1.e-5){    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
                probs[i][jk][j1]= pp[jk]/pos;    double fx;
              }    int k=0,kmax=10;
            }    double l1;
          }  
              fx=func(x);
         }    for (i=1;i<=npar;i++) p2[i]=x[i];
     }    for(l=0 ; l <=lmax; l++){
   }      l1=pow(10,l);
        delts=delt;
        for(k=1 ; k <kmax; k=k+1){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);        delt = delta*(l1*k);
   free_vector(pp,1,nlstate);        p2[theta]=x[theta] +delt;
          k1=func(p2)-fx;
 }  /* End of Freq */        p2[theta]=x[theta]-delt;
         k2=func(p2)-fx;
 /************* Waves Concatenation ***************/        /*res= (k1-2.0*fx+k2)/delt/delt; */
         res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        
 {  #ifdef DEBUG
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
      Death is a valid wave (if date is known).        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i  #endif
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
      and mw[mi+1][i]. dh depends on stepm.        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
      */          k=kmax;
         }
   int i, mi, m;        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;          k=kmax; l=lmax*10.;
      double sum=0., jmean=0.;*/        }
         else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   int j, k=0,jk, ju, jl;          delts=delt;
   double sum=0.;        }
   jmin=1e+5;      }
   jmax=-1;    }
   jmean=0.;    delti[theta]=delts;
   for(i=1; i<=imx; i++){    return res; 
     mi=0;    
     m=firstpass;  }
     while(s[m][i] <= nlstate){  
       if(s[m][i]>=1)  double hessij( double x[], double delti[], int thetai,int thetaj)
         mw[++mi][i]=m;  {
       if(m >=lastpass)    int i;
         break;    int l=1, l1, lmax=20;
       else    double k1,k2,k3,k4,res,fx;
         m++;    double p2[NPARMAX+1];
     }/* end while */    int k;
     if (s[m][i] > nlstate){  
       mi++;     /* Death is another wave */    fx=func(x);
       /* if(mi==0)  never been interviewed correctly before death */    for (k=1; k<=2; k++) {
          /* Only death is a correct wave */      for (i=1;i<=npar;i++) p2[i]=x[i];
       mw[mi][i]=m;      p2[thetai]=x[thetai]+delti[thetai]/k;
     }      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k1=func(p2)-fx;
     wav[i]=mi;    
     if(mi==0)      p2[thetai]=x[thetai]+delti[thetai]/k;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   }      k2=func(p2)-fx;
     
   for(i=1; i<=imx; i++){      p2[thetai]=x[thetai]-delti[thetai]/k;
     for(mi=1; mi<wav[i];mi++){      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       if (stepm <=0)      k3=func(p2)-fx;
         dh[mi][i]=1;    
       else{      p2[thetai]=x[thetai]-delti[thetai]/k;
         if (s[mw[mi+1][i]][i] > nlstate) {      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
           if (agedc[i] < 2*AGESUP) {      k4=func(p2)-fx;
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
           if(j==0) j=1;  /* Survives at least one month after exam */  #ifdef DEBUG
           k=k+1;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           if (j >= jmax) jmax=j;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
           if (j <= jmin) jmin=j;  #endif
           sum=sum+j;    }
           /* if (j<10) printf("j=%d num=%d ",j,i); */    return res;
           }  }
         }  
         else{  /************** Inverse of matrix **************/
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  void ludcmp(double **a, int n, int *indx, double *d) 
           k=k+1;  { 
           if (j >= jmax) jmax=j;    int i,imax,j,k; 
           else if (j <= jmin)jmin=j;    double big,dum,sum,temp; 
           /*   if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */    double *vv; 
           sum=sum+j;   
         }    vv=vector(1,n); 
         jk= j/stepm;    *d=1.0; 
         jl= j -jk*stepm;    for (i=1;i<=n;i++) { 
         ju= j -(jk+1)*stepm;      big=0.0; 
         if(jl <= -ju)      for (j=1;j<=n;j++) 
           dh[mi][i]=jk;        if ((temp=fabs(a[i][j])) > big) big=temp; 
         else      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
           dh[mi][i]=jk+1;      vv[i]=1.0/big; 
         if(dh[mi][i]==0)    } 
           dh[mi][i]=1; /* At least one step */    for (j=1;j<=n;j++) { 
       }      for (i=1;i<j;i++) { 
     }        sum=a[i][j]; 
   }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   jmean=sum/k;        a[i][j]=sum; 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      } 
  }      big=0.0; 
 /*********** Tricode ****************************/      for (i=j;i<=n;i++) { 
 void tricode(int *Tvar, int **nbcode, int imx)        sum=a[i][j]; 
 {        for (k=1;k<j;k++) 
   int Ndum[20],ij=1, k, j, i;          sum -= a[i][k]*a[k][j]; 
   int cptcode=0;        a[i][j]=sum; 
   cptcoveff=0;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
            big=dum; 
   for (k=0; k<19; k++) Ndum[k]=0;          imax=i; 
   for (k=1; k<=7; k++) ncodemax[k]=0;        } 
       } 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      if (j != imax) { 
     for (i=1; i<=imx; i++) {        for (k=1;k<=n;k++) { 
       ij=(int)(covar[Tvar[j]][i]);          dum=a[imax][k]; 
       Ndum[ij]++;          a[imax][k]=a[j][k]; 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/          a[j][k]=dum; 
       if (ij > cptcode) cptcode=ij;        } 
     }        *d = -(*d); 
         vv[imax]=vv[j]; 
     for (i=0; i<=cptcode; i++) {      } 
       if(Ndum[i]!=0) ncodemax[j]++;      indx[j]=imax; 
     }      if (a[j][j] == 0.0) a[j][j]=TINY; 
     ij=1;      if (j != n) { 
         dum=1.0/(a[j][j]); 
         for (i=j+1;i<=n;i++) a[i][j] *= dum; 
     for (i=1; i<=ncodemax[j]; i++) {      } 
       for (k=0; k<=19; k++) {    } 
         if (Ndum[k] != 0) {    free_vector(vv,1,n);  /* Doesn't work */
           nbcode[Tvar[j]][ij]=k;  ;
           ij++;  } 
         }  
         if (ij > ncodemax[j]) break;  void lubksb(double **a, int n, int *indx, double b[]) 
       }    { 
     }    int i,ii=0,ip,j; 
   }      double sum; 
    
  for (k=0; k<19; k++) Ndum[k]=0;    for (i=1;i<=n;i++) { 
       ip=indx[i]; 
  for (i=1; i<=ncovmodel-2; i++) {      sum=b[ip]; 
       ij=Tvar[i];      b[ip]=b[i]; 
       Ndum[ij]++;      if (ii) 
     }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
  ij=1;      b[i]=sum; 
  for (i=1; i<=10; i++) {    } 
    if((Ndum[i]!=0) && (i<=ncov)){    for (i=n;i>=1;i--) { 
      Tvaraff[ij]=i;      sum=b[i]; 
      ij++;      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
    }      b[i]=sum/a[i][i]; 
  }    } 
    } 
     cptcoveff=ij-1;  
 }  /************ Frequencies ********************/
   void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)
 /*********** Health Expectancies ****************/  {  /* Some frequencies */
     
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
 {    int first;
   /* Health expectancies */    double ***freq; /* Frequencies */
   int i, j, nhstepm, hstepm, h;    double *pp, **prop;
   double age, agelim,hf;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   double ***p3mat;    FILE *ficresp;
      char fileresp[FILENAMELENGTH];
   fprintf(ficreseij,"# Health expectancies\n");    
   fprintf(ficreseij,"# Age");    pp=vector(1,nlstate);
   for(i=1; i<=nlstate;i++)    prop=matrix(1,nlstate,iagemin,iagemax+3);
     for(j=1; j<=nlstate;j++)    strcpy(fileresp,"p");
       fprintf(ficreseij," %1d-%1d",i,j);    strcat(fileresp,fileres);
   fprintf(ficreseij,"\n");    if((ficresp=fopen(fileresp,"w"))==NULL) {
       printf("Problem with prevalence resultfile: %s\n", fileresp);
   hstepm=1*YEARM; /*  Every j years of age (in month) */      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      exit(0);
     }
   agelim=AGESUP;    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    j1=0;
     /* nhstepm age range expressed in number of stepm */    
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);    j=cptcoveff;
     /* Typically if 20 years = 20*12/6=40 stepm */    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     if (stepm >= YEARM) hstepm=1;  
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */    first=1;
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     /* Computed by stepm unit matrices, product of hstepm matrices, stored    for(k1=1; k1<=j;k1++){
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      for(i1=1; i1<=ncodemax[k1];i1++){
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);          j1++;
         /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           scanf("%d", i);*/
     for(i=1; i<=nlstate;i++)        for (i=-1; i<=nlstate+ndeath; i++)  
       for(j=1; j<=nlstate;j++)          for (jk=-1; jk<=nlstate+ndeath; jk++)  
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){            for(m=iagemin; m <= iagemax+3; m++)
           eij[i][j][(int)age] +=p3mat[i][j][h];              freq[i][jk][m]=0;
         }  
          for (i=1; i<=nlstate; i++)  
     hf=1;        for(m=iagemin; m <= iagemax+3; m++)
     if (stepm >= YEARM) hf=stepm/YEARM;          prop[i][m]=0;
     fprintf(ficreseij,"%.0f",age );        
     for(i=1; i<=nlstate;i++)        dateintsum=0;
       for(j=1; j<=nlstate;j++){        k2cpt=0;
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);        for (i=1; i<=imx; i++) {
       }          bool=1;
     fprintf(ficreseij,"\n");          if  (cptcovn>0) {
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            for (z1=1; z1<=cptcoveff; z1++) 
   }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
 }                bool=0;
           }
 /************ Variance ******************/          if (bool==1){
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            for(m=firstpass; m<=lastpass; m++){
 {              k2=anint[m][i]+(mint[m][i]/12.);
   /* Variance of health expectancies */              if ((k2>=dateprev1) && (k2<=dateprev2)) {
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/                if(agev[m][i]==0) agev[m][i]=iagemax+1;
   double **newm;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   double **dnewm,**doldm;                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
   int i, j, nhstepm, hstepm, h;                if (m<lastpass) {
   int k, cptcode;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
   double *xp;                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
   double **gp, **gm;                }
   double ***gradg, ***trgradg;                
   double ***p3mat;                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
   double age,agelim;                  dateintsum=dateintsum+k2;
   int theta;                  k2cpt++;
                 }
    fprintf(ficresvij,"# Covariances of life expectancies\n");              }
   fprintf(ficresvij,"# Age");            }
   for(i=1; i<=nlstate;i++)          }
     for(j=1; j<=nlstate;j++)        }
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);         
   fprintf(ficresvij,"\n");        fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   
   xp=vector(1,npar);        if  (cptcovn>0) {
   dnewm=matrix(1,nlstate,1,npar);          fprintf(ficresp, "\n#********** Variable "); 
   doldm=matrix(1,nlstate,1,nlstate);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
            fprintf(ficresp, "**********\n#");
   hstepm=1*YEARM; /* Every year of age */        }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        for(i=1; i<=nlstate;i++) 
   agelim = AGESUP;          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        fprintf(ficresp, "\n");
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        
     if (stepm >= YEARM) hstepm=1;        for(i=iagemin; i <= iagemax+3; i++){
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          if(i==iagemax+3){
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            fprintf(ficlog,"Total");
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          }else{
     gp=matrix(0,nhstepm,1,nlstate);            if(first==1){
     gm=matrix(0,nhstepm,1,nlstate);              first=0;
               printf("See log file for details...\n");
     for(theta=1; theta <=npar; theta++){            }
       for(i=1; i<=npar; i++){ /* Computes gradient */            fprintf(ficlog,"Age %d", i);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          }
       }          for(jk=1; jk <=nlstate ; jk++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);              pp[jk] += freq[jk][m][i]; 
           }
       if (popbased==1) {          for(jk=1; jk <=nlstate ; jk++){
         for(i=1; i<=nlstate;i++)            for(m=-1, pos=0; m <=0 ; m++)
           prlim[i][i]=probs[(int)age][i][ij];              pos += freq[jk][m][i];
       }            if(pp[jk]>=1.e-10){
                    if(first==1){
       for(j=1; j<= nlstate; j++){              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         for(h=0; h<=nhstepm; h++){              }
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];            }else{
         }              if(first==1)
       }                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                  fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       for(i=1; i<=npar; i++) /* Computes gradient */            }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);    
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          for(jk=1; jk <=nlstate ; jk++){
             for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       if (popbased==1) {              pp[jk] += freq[jk][m][i];
         for(i=1; i<=nlstate;i++)          }       
           prlim[i][i]=probs[(int)age][i][ij];          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
       }            pos += pp[jk];
             posprop += prop[jk][i];
       for(j=1; j<= nlstate; j++){          }
         for(h=0; h<=nhstepm; h++){          for(jk=1; jk <=nlstate ; jk++){
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)            if(pos>=1.e-5){
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];              if(first==1)
         }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
       }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             }else{
       for(j=1; j<= nlstate; j++)              if(first==1)
         for(h=0; h<=nhstepm; h++){                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
         }            }
     } /* End theta */            if( i <= iagemax){
               if(pos>=1.e-5){
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                 probs[i][jk][j1]= pp[jk]/pos;
     for(h=0; h<=nhstepm; h++)                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
       for(j=1; j<=nlstate;j++)              }
         for(theta=1; theta <=npar; theta++)              else
           trgradg[h][j][theta]=gradg[h][theta][j];                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             }
     for(i=1;i<=nlstate;i++)          }
       for(j=1;j<=nlstate;j++)          
         vareij[i][j][(int)age] =0.;          for(jk=-1; jk <=nlstate+ndeath; jk++)
     for(h=0;h<=nhstepm;h++){            for(m=-1; m <=nlstate+ndeath; m++)
       for(k=0;k<=nhstepm;k++){              if(freq[jk][m][i] !=0 ) {
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);              if(first==1)
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
         for(i=1;i<=nlstate;i++)                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
           for(j=1;j<=nlstate;j++)              }
             vareij[i][j][(int)age] += doldm[i][j];          if(i <= iagemax)
       }            fprintf(ficresp,"\n");
     }          if(first==1)
     h=1;            printf("Others in log...\n");
     if (stepm >= YEARM) h=stepm/YEARM;          fprintf(ficlog,"\n");
     fprintf(ficresvij,"%.0f ",age );        }
     for(i=1; i<=nlstate;i++)      }
       for(j=1; j<=nlstate;j++){    }
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);    dateintmean=dateintsum/k2cpt; 
       }   
     fprintf(ficresvij,"\n");    fclose(ficresp);
     free_matrix(gp,0,nhstepm,1,nlstate);    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
     free_matrix(gm,0,nhstepm,1,nlstate);    free_vector(pp,1,nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    /* End of Freq */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  }
   } /* End age */  
    /************ Prevalence ********************/
   free_vector(xp,1,npar);  void prevalence(double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   free_matrix(doldm,1,nlstate,1,npar);  {  
   free_matrix(dnewm,1,nlstate,1,nlstate);    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
        in each health status at the date of interview (if between dateprev1 and dateprev2).
 }       We still use firstpass and lastpass as another selection.
     */
 /************ Variance of prevlim ******************/   
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
 {    double ***freq; /* Frequencies */
   /* Variance of prevalence limit */    double *pp, **prop;
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    double pos,posprop; 
   double **newm;    double  y2; /* in fractional years */
   double **dnewm,**doldm;    int iagemin, iagemax;
   int i, j, nhstepm, hstepm;  
   int k, cptcode;    iagemin= (int) agemin;
   double *xp;    iagemax= (int) agemax;
   double *gp, *gm;    /*pp=vector(1,nlstate);*/
   double **gradg, **trgradg;    prop=matrix(1,nlstate,iagemin,iagemax+3); 
   double age,agelim;    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
   int theta;    j1=0;
        
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    j=cptcoveff;
   fprintf(ficresvpl,"# Age");    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   for(i=1; i<=nlstate;i++)    
       fprintf(ficresvpl," %1d-%1d",i,i);    for(k1=1; k1<=j;k1++){
   fprintf(ficresvpl,"\n");      for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
   xp=vector(1,npar);        
   dnewm=matrix(1,nlstate,1,npar);        for (i=1; i<=nlstate; i++)  
   doldm=matrix(1,nlstate,1,nlstate);          for(m=iagemin; m <= iagemax+3; m++)
              prop[i][m]=0.0;
   hstepm=1*YEARM; /* Every year of age */       
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */        for (i=1; i<=imx; i++) { /* Each individual */
   agelim = AGESUP;          bool=1;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          if  (cptcovn>0) {
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            for (z1=1; z1<=cptcoveff; z1++) 
     if (stepm >= YEARM) hstepm=1;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                bool=0;
     gradg=matrix(1,npar,1,nlstate);          } 
     gp=vector(1,nlstate);          if (bool==1) { 
     gm=vector(1,nlstate);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     for(theta=1; theta <=npar; theta++){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       for(i=1; i<=npar; i++){ /* Computes gradient */                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
       }                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
       for(i=1;i<=nlstate;i++)                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
         gp[i] = prlim[i][i];                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
                      prop[s[m][i]][iagemax+3] += weight[i]; 
       for(i=1; i<=npar; i++) /* Computes gradient */                } 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);              }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            } /* end selection of waves */
       for(i=1;i<=nlstate;i++)          }
         gm[i] = prlim[i][i];        }
         for(i=iagemin; i <= iagemax+3; i++){  
       for(i=1;i<=nlstate;i++)          
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     } /* End theta */            posprop += prop[jk][i]; 
           } 
     trgradg =matrix(1,nlstate,1,npar);  
           for(jk=1; jk <=nlstate ; jk++){     
     for(j=1; j<=nlstate;j++)            if( i <=  iagemax){ 
       for(theta=1; theta <=npar; theta++)              if(posprop>=1.e-5){ 
         trgradg[j][theta]=gradg[theta][j];                probs[i][jk][j1]= prop[jk][i]/posprop;
               } 
     for(i=1;i<=nlstate;i++)            } 
       varpl[i][(int)age] =0.;          }/* end jk */ 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);        }/* end i */ 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);      } /* end i1 */
     for(i=1;i<=nlstate;i++)    } /* end k1 */
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */    
     /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     fprintf(ficresvpl,"%.0f ",age );    /*free_vector(pp,1,nlstate);*/
     for(i=1; i<=nlstate;i++)    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));  }  /* End of prevalence */
     fprintf(ficresvpl,"\n");  
     free_vector(gp,1,nlstate);  /************* Waves Concatenation ***************/
     free_vector(gm,1,nlstate);  
     free_matrix(gradg,1,npar,1,nlstate);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
     free_matrix(trgradg,1,nlstate,1,npar);  {
   } /* End age */    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
        Death is a valid wave (if date is known).
   free_vector(xp,1,npar);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   free_matrix(doldm,1,nlstate,1,npar);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   free_matrix(dnewm,1,nlstate,1,nlstate);       and mw[mi+1][i]. dh depends on stepm.
        */
 }  
     int i, mi, m;
 /************ Variance of one-step probabilities  ******************/    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)       double sum=0., jmean=0.;*/
 {    int first;
   int i, j;    int j, k=0,jk, ju, jl;
   int k=0, cptcode;    double sum=0.;
   double **dnewm,**doldm;    first=0;
   double *xp;    jmin=1e+5;
   double *gp, *gm;    jmax=-1;
   double **gradg, **trgradg;    jmean=0.;
   double age,agelim, cov[NCOVMAX];    for(i=1; i<=imx; i++){
   int theta;      mi=0;
   char fileresprob[FILENAMELENGTH];      m=firstpass;
       while(s[m][i] <= nlstate){
   strcpy(fileresprob,"prob");        if(s[m][i]>=1)
   strcat(fileresprob,fileres);          mw[++mi][i]=m;
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {        if(m >=lastpass)
     printf("Problem with resultfile: %s\n", fileresprob);          break;
   }        else
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);          m++;
        }/* end while */
       if (s[m][i] > nlstate){
   xp=vector(1,npar);        mi++;     /* Death is another wave */
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        /* if(mi==0)  never been interviewed correctly before death */
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));           /* Only death is a correct wave */
          mw[mi][i]=m;
   cov[1]=1;      }
   for (age=bage; age<=fage; age ++){  
     cov[2]=age;      wav[i]=mi;
     gradg=matrix(1,npar,1,9);      if(mi==0){
     trgradg=matrix(1,9,1,npar);        if(first==0){
     gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          printf("Warning! None valid information for:%d line=%d (skipped) and may be others, see log file\n",num[i],i);
     gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          first=1;
            }
     for(theta=1; theta <=npar; theta++){        if(first==1){
       for(i=1; i<=npar; i++)          fprintf(ficlog,"Warning! None valid information for:%d line=%d (skipped)\n",num[i],i);
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        }
            } /* end mi==0 */
       pmij(pmmij,cov,ncovmodel,xp,nlstate);    } /* End individuals */
      
       k=0;    for(i=1; i<=imx; i++){
       for(i=1; i<= (nlstate+ndeath); i++){      for(mi=1; mi<wav[i];mi++){
         for(j=1; j<=(nlstate+ndeath);j++){        if (stepm <=0)
            k=k+1;          dh[mi][i]=1;
           gp[k]=pmmij[i][j];        else{
         }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
       }            if (agedc[i] < 2*AGESUP) {
             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       for(i=1; i<=npar; i++)            if(j==0) j=1;  /* Survives at least one month after exam */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);            k=k+1;
                if (j >= jmax) jmax=j;
             if (j <= jmin) jmin=j;
       pmij(pmmij,cov,ncovmodel,xp,nlstate);            sum=sum+j;
       k=0;            /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       for(i=1; i<=(nlstate+ndeath); i++){            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
         for(j=1; j<=(nlstate+ndeath);j++){            if(j<0)printf("Error! Negative delay (%d to death) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           k=k+1;            }
           gm[k]=pmmij[i][j];          }
         }          else{
       }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
                  /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
        for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)            k=k+1;
            gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];              if (j >= jmax) jmax=j;
     }            else if (j <= jmin)jmin=j;
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
      for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
       for(theta=1; theta <=npar; theta++)            if(j<0)printf("Error! Negative delay (%d) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       trgradg[j][theta]=gradg[theta][j];            sum=sum+j;
            }
      matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);          jk= j/stepm;
      matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);          jl= j -jk*stepm;
           ju= j -(jk+1)*stepm;
      pmij(pmmij,cov,ncovmodel,x,nlstate);          if(mle <=1){ 
             if(jl==0){
      k=0;              dh[mi][i]=jk;
      for(i=1; i<=(nlstate+ndeath); i++){              bh[mi][i]=0;
        for(j=1; j<=(nlstate+ndeath);j++){            }else{ /* We want a negative bias in order to only have interpolation ie
          k=k+1;                    * at the price of an extra matrix product in likelihood */
          gm[k]=pmmij[i][j];              dh[mi][i]=jk+1;
         }              bh[mi][i]=ju;
      }            }
                }else{
      /*printf("\n%d ",(int)age);            if(jl <= -ju){
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){              dh[mi][i]=jk;
                      bh[mi][i]=jl;       /* bias is positive if real duration
                                    * is higher than the multiple of stepm and negative otherwise.
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));                                   */
      }*/            }
             else{
   fprintf(ficresprob,"\n%d ",(int)age);              dh[mi][i]=jk+1;
               bh[mi][i]=ju;
   for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){            }
     if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);            if(dh[mi][i]==0){
 if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);              dh[mi][i]=1; /* At least one step */
   }              bh[mi][i]=ju; /* At least one step */
               /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));            }
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));          }
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);        } /* end if mle */
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      } /* end wave */
 }    }
  free_vector(xp,1,npar);    jmean=sum/k;
 fclose(ficresprob);    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
  exit(0);    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
 }   }
   
 /***********************************************/  /*********** Tricode ****************************/
 /**************** Main Program *****************/  void tricode(int *Tvar, int **nbcode, int imx)
 /***********************************************/  {
     
 /*int main(int argc, char *argv[])*/    int Ndum[20],ij=1, k, j, i, maxncov=19;
 int main()    int cptcode=0;
 {    cptcoveff=0; 
    
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    for (k=0; k<maxncov; k++) Ndum[k]=0;
   double agedeb, agefin,hf;    for (k=1; k<=7; k++) ncodemax[k]=0;
   double agemin=1.e20, agemax=-1.e20;  
     for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
   double fret;      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   double **xi,tmp,delta;                                 modality*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   double dum; /* Dummy variable */        Ndum[ij]++; /*store the modality */
   double ***p3mat;        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   int *indx;        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   char line[MAXLINE], linepar[MAXLINE];                                         Tvar[j]. If V=sex and male is 0 and 
   char title[MAXLINE];                                         female is 1, then  cptcode=1.*/
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];      }
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];  
   char filerest[FILENAMELENGTH];      for (i=0; i<=cptcode; i++) {
   char fileregp[FILENAMELENGTH];        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
   char popfile[FILENAMELENGTH];      }
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];  
   int firstobs=1, lastobs=10;      ij=1; 
   int sdeb, sfin; /* Status at beginning and end */      for (i=1; i<=ncodemax[j]; i++) {
   int c,  h , cpt,l;        for (k=0; k<= maxncov; k++) {
   int ju,jl, mi;          if (Ndum[k] != 0) {
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;            nbcode[Tvar[j]][ij]=k; 
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   int mobilav=0,popforecast=0;            
   int hstepm, nhstepm;            ij++;
   int *popage;/*boolprev=0 if date and zero if wave*/          }
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2;          if (ij > ncodemax[j]) break; 
         }  
   double bage, fage, age, agelim, agebase;      } 
   double ftolpl=FTOL;    }  
   double **prlim;  
   double *severity;   for (k=0; k< maxncov; k++) Ndum[k]=0;
   double ***param; /* Matrix of parameters */  
   double  *p;   for (i=1; i<=ncovmodel-2; i++) { 
   double **matcov; /* Matrix of covariance */     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
   double ***delti3; /* Scale */     ij=Tvar[i];
   double *delti; /* Scale */     Ndum[ij]++;
   double ***eij, ***vareij;   }
   double **varpl; /* Variances of prevalence limits by age */  
   double *epj, vepp;   ij=1;
   double kk1, kk2;   for (i=1; i<= maxncov; i++) {
   double *popeffectif,*popcount;     if((Ndum[i]!=0) && (i<=ncovcol)){
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,jprojmean,mprojmean,anprojmean, calagedate;       Tvaraff[ij]=i; /*For printing */
   double yp,yp1,yp2;       ij++;
      }
   char version[80]="Imach version 64b, May 2001, INED-EUROREVES ";   }
   char *alph[]={"a","a","b","c","d","e"}, str[4];   
    cptcoveff=ij-1; /*Number of simple covariates*/
   }
   char z[1]="c", occ;  
 #include <sys/time.h>  /*********** Health Expectancies ****************/
 #include <time.h>  
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
    
   /* long total_usecs;  {
   struct timeval start_time, end_time;    /* Health expectancies */
      int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    double age, agelim, hf;
     double ***p3mat,***varhe;
     double **dnewm,**doldm;
   printf("\nIMACH, Version 0.7");    double *xp;
   printf("\nEnter the parameter file name: ");    double **gp, **gm;
     double ***gradg, ***trgradg;
 #ifdef windows    int theta;
   scanf("%s",pathtot);  
   getcwd(pathcd, size);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
   /*cygwin_split_path(pathtot,path,optionfile);    xp=vector(1,npar);
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    dnewm=matrix(1,nlstate*nlstate,1,npar);
   /* cutv(path,optionfile,pathtot,'\\');*/    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
 split(pathtot, path,optionfile);    fprintf(ficreseij,"# Health expectancies\n");
   chdir(path);    fprintf(ficreseij,"# Age");
   replace(pathc,path);    for(i=1; i<=nlstate;i++)
 #endif      for(j=1; j<=nlstate;j++)
 #ifdef unix        fprintf(ficreseij," %1d-%1d (SE)",i,j);
   scanf("%s",optionfile);    fprintf(ficreseij,"\n");
 #endif  
     if(estepm < stepm){
 /*-------- arguments in the command line --------*/      printf ("Problem %d lower than %d\n",estepm, stepm);
     }
   strcpy(fileres,"r");    else  hstepm=estepm;   
   strcat(fileres, optionfile);    /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
   /*---------arguments file --------*/     * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
   if((ficpar=fopen(optionfile,"r"))==NULL)    {     * progression in between and thus overestimating or underestimating according
     printf("Problem with optionfile %s\n",optionfile);     * to the curvature of the survival function. If, for the same date, we 
     goto end;     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   }     * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
   strcpy(filereso,"o");     * curvature will be obtained if estepm is as small as stepm. */
   strcat(filereso,fileres);  
   if((ficparo=fopen(filereso,"w"))==NULL) {    /* For example we decided to compute the life expectancy with the smallest unit */
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   }       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
   /* Reads comments: lines beginning with '#' */       Look at hpijx to understand the reason of that which relies in memory size
   while((c=getc(ficpar))=='#' && c!= EOF){       and note for a fixed period like estepm months */
     ungetc(c,ficpar);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     fgets(line, MAXLINE, ficpar);       survival function given by stepm (the optimization length). Unfortunately it
     puts(line);       means that if the survival funtion is printed only each two years of age and if
     fputs(line,ficparo);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   }       results. So we changed our mind and took the option of the best precision.
   ungetc(c,ficpar);    */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);  
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);    agelim=AGESUP;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 while((c=getc(ficpar))=='#' && c!= EOF){      /* nhstepm age range expressed in number of stepm */
     ungetc(c,ficpar);      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
     fgets(line, MAXLINE, ficpar);      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     puts(line);      /* if (stepm >= YEARM) hstepm=1;*/
     fputs(line,ficparo);      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   }      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   ungetc(c,ficpar);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
        gp=matrix(0,nhstepm,1,nlstate*nlstate);
          gm=matrix(0,nhstepm,1,nlstate*nlstate);
   covar=matrix(0,NCOVMAX,1,n);  
   cptcovn=0;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
   ncovmodel=2+cptcovn;   
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  
        hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   /* Read guess parameters */  
   /* Reads comments: lines beginning with '#' */      /* Computing Variances of health expectancies */
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);       for(theta=1; theta <=npar; theta++){
     fgets(line, MAXLINE, ficpar);        for(i=1; i<=npar; i++){ 
     puts(line);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     fputs(line,ficparo);        }
   }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   ungetc(c,ficpar);    
          cptj=0;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        for(j=1; j<= nlstate; j++){
     for(i=1; i <=nlstate; i++)          for(i=1; i<=nlstate; i++){
     for(j=1; j <=nlstate+ndeath-1; j++){            cptj=cptj+1;
       fscanf(ficpar,"%1d%1d",&i1,&j1);            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
       fprintf(ficparo,"%1d%1d",i1,j1);              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
       printf("%1d%1d",i,j);            }
       for(k=1; k<=ncovmodel;k++){          }
         fscanf(ficpar," %lf",&param[i][j][k]);        }
         printf(" %lf",param[i][j][k]);       
         fprintf(ficparo," %lf",param[i][j][k]);       
       }        for(i=1; i<=npar; i++) 
       fscanf(ficpar,"\n");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       printf("\n");        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       fprintf(ficparo,"\n");        
     }        cptj=0;
          for(j=1; j<= nlstate; j++){
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;          for(i=1;i<=nlstate;i++){
             cptj=cptj+1;
   p=param[1][1];            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
    
   /* Reads comments: lines beginning with '#' */              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
   while((c=getc(ficpar))=='#' && c!= EOF){            }
     ungetc(c,ficpar);          }
     fgets(line, MAXLINE, ficpar);        }
     puts(line);        for(j=1; j<= nlstate*nlstate; j++)
     fputs(line,ficparo);          for(h=0; h<=nhstepm-1; h++){
   }            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   ungetc(c,ficpar);          }
        } 
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);     
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  /* End theta */
   for(i=1; i <=nlstate; i++){  
     for(j=1; j <=nlstate+ndeath-1; j++){       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       printf("%1d%1d",i,j);       for(h=0; h<=nhstepm-1; h++)
       fprintf(ficparo,"%1d%1d",i1,j1);        for(j=1; j<=nlstate*nlstate;j++)
       for(k=1; k<=ncovmodel;k++){          for(theta=1; theta <=npar; theta++)
         fscanf(ficpar,"%le",&delti3[i][j][k]);            trgradg[h][j][theta]=gradg[h][theta][j];
         printf(" %le",delti3[i][j][k]);       
         fprintf(ficparo," %le",delti3[i][j][k]);  
       }       for(i=1;i<=nlstate*nlstate;i++)
       fscanf(ficpar,"\n");        for(j=1;j<=nlstate*nlstate;j++)
       printf("\n");          varhe[i][j][(int)age] =0.;
       fprintf(ficparo,"\n");  
     }       printf("%d|",(int)age);fflush(stdout);
   }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   delti=delti3[1][1];       for(h=0;h<=nhstepm-1;h++){
          for(k=0;k<=nhstepm-1;k++){
   /* Reads comments: lines beginning with '#' */          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   while((c=getc(ficpar))=='#' && c!= EOF){          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
     ungetc(c,ficpar);          for(i=1;i<=nlstate*nlstate;i++)
     fgets(line, MAXLINE, ficpar);            for(j=1;j<=nlstate*nlstate;j++)
     puts(line);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
     fputs(line,ficparo);        }
   }      }
   ungetc(c,ficpar);      /* Computing expectancies */
        for(i=1; i<=nlstate;i++)
   matcov=matrix(1,npar,1,npar);        for(j=1; j<=nlstate;j++)
   for(i=1; i <=npar; i++){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     fscanf(ficpar,"%s",&str);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     printf("%s",str);            
     fprintf(ficparo,"%s",str);  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     for(j=1; j <=i; j++){  
       fscanf(ficpar," %le",&matcov[i][j]);          }
       printf(" %.5le",matcov[i][j]);  
       fprintf(ficparo," %.5le",matcov[i][j]);      fprintf(ficreseij,"%3.0f",age );
     }      cptj=0;
     fscanf(ficpar,"\n");      for(i=1; i<=nlstate;i++)
     printf("\n");        for(j=1; j<=nlstate;j++){
     fprintf(ficparo,"\n");          cptj++;
   }          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
   for(i=1; i <=npar; i++)        }
     for(j=i+1;j<=npar;j++)      fprintf(ficreseij,"\n");
       matcov[i][j]=matcov[j][i];     
          free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   printf("\n");      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     /*-------- data file ----------*/      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     if((ficres =fopen(fileres,"w"))==NULL) {    }
       printf("Problem with resultfile: %s\n", fileres);goto end;    printf("\n");
     }    fprintf(ficlog,"\n");
     fprintf(ficres,"#%s\n",version);  
        free_vector(xp,1,npar);
     if((fic=fopen(datafile,"r"))==NULL)    {    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
       printf("Problem with datafile: %s\n", datafile);goto end;    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     }    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
     n= lastobs;  
     severity = vector(1,maxwav);  /************ Variance ******************/
     outcome=imatrix(1,maxwav+1,1,n);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
     num=ivector(1,n);  {
     moisnais=vector(1,n);    /* Variance of health expectancies */
     annais=vector(1,n);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     moisdc=vector(1,n);    /* double **newm;*/
     andc=vector(1,n);    double **dnewm,**doldm;
     agedc=vector(1,n);    double **dnewmp,**doldmp;
     cod=ivector(1,n);    int i, j, nhstepm, hstepm, h, nstepm ;
     weight=vector(1,n);    int k, cptcode;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    double *xp;
     mint=matrix(1,maxwav,1,n);    double **gp, **gm;  /* for var eij */
     anint=matrix(1,maxwav,1,n);    double ***gradg, ***trgradg; /*for var eij */
     s=imatrix(1,maxwav+1,1,n);    double **gradgp, **trgradgp; /* for var p point j */
     adl=imatrix(1,maxwav+1,1,n);        double *gpp, *gmp; /* for var p point j */
     tab=ivector(1,NCOVMAX);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     ncodemax=ivector(1,8);    double ***p3mat;
     double age,agelim, hf;
     i=1;    double ***mobaverage;
     while (fgets(line, MAXLINE, fic) != NULL)    {    int theta;
       if ((i >= firstobs) && (i <=lastobs)) {    char digit[4];
            char digitp[25];
         for (j=maxwav;j>=1;j--){  
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);    char fileresprobmorprev[FILENAMELENGTH];
           strcpy(line,stra);  
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    if(popbased==1){
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      if(mobilav!=0)
         }        strcpy(digitp,"-populbased-mobilav-");
              else strcpy(digitp,"-populbased-nomobil-");
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);    }
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);    else 
       strcpy(digitp,"-stablbased-");
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);  
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);    if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         for (j=ncov;j>=1;j--){        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }      }
         num[i]=atol(stra);    }
          
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){    strcpy(fileresprobmorprev,"prmorprev"); 
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/    sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
         i=i+1;    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       }    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     }    strcat(fileresprobmorprev,fileres);
     /* printf("ii=%d", ij);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
        scanf("%d",i);*/      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   imx=i-1; /* Number of individuals */      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
   /* for (i=1; i<=imx; i++){    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
     for (i=1; i<=imx; i++)      for(i=1; i<=nlstate;i++)
     if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
   /* Calculation of the number of parameter from char model*/    fprintf(ficresprobmorprev,"\n");
   Tvar=ivector(1,15);    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
   Tprod=ivector(1,15);      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
   Tvaraff=ivector(1,15);      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
   Tvard=imatrix(1,15,1,2);      exit(0);
   Tage=ivector(1,15);          }
        else{
   if (strlen(model) >1){      fprintf(ficgp,"\n# Routine varevsij");
     j=0, j1=0, k1=1, k2=1;    }
     j=nbocc(model,'+');    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
     j1=nbocc(model,'*');      printf("Problem with html file: %s\n", optionfilehtm);
     cptcovn=j+1;      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
     cptcovprod=j1;      exit(0);
        }
        else{
     strcpy(modelsav,model);      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       printf("Error. Non available option model=%s ",model);    }
       goto end;    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     }  
        fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
     for(i=(j+1); i>=1;i--){    fprintf(ficresvij,"# Age");
       cutv(stra,strb,modelsav,'+');    for(i=1; i<=nlstate;i++)
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);      for(j=1; j<=nlstate;j++)
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
       /*scanf("%d",i);*/    fprintf(ficresvij,"\n");
       if (strchr(strb,'*')) {  
         cutv(strd,strc,strb,'*');    xp=vector(1,npar);
         if (strcmp(strc,"age")==0) {    dnewm=matrix(1,nlstate,1,npar);
           cptcovprod--;    doldm=matrix(1,nlstate,1,nlstate);
           cutv(strb,stre,strd,'V');    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
           Tvar[i]=atoi(stre);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           cptcovage++;  
             Tage[cptcovage]=i;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
             /*printf("stre=%s ", stre);*/    gpp=vector(nlstate+1,nlstate+ndeath);
         }    gmp=vector(nlstate+1,nlstate+ndeath);
         else if (strcmp(strd,"age")==0) {    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
           cptcovprod--;    
           cutv(strb,stre,strc,'V');    if(estepm < stepm){
           Tvar[i]=atoi(stre);      printf ("Problem %d lower than %d\n",estepm, stepm);
           cptcovage++;    }
           Tage[cptcovage]=i;    else  hstepm=estepm;   
         }    /* For example we decided to compute the life expectancy with the smallest unit */
         else {    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
           cutv(strb,stre,strc,'V');       nhstepm is the number of hstepm from age to agelim 
           Tvar[i]=ncov+k1;       nstepm is the number of stepm from age to agelin. 
           cutv(strb,strc,strd,'V');       Look at hpijx to understand the reason of that which relies in memory size
           Tprod[k1]=i;       and note for a fixed period like k years */
           Tvard[k1][1]=atoi(strc);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           Tvard[k1][2]=atoi(stre);       survival function given by stepm (the optimization length). Unfortunately it
           Tvar[cptcovn+k2]=Tvard[k1][1];       means that if the survival funtion is printed every two years of age and if
           Tvar[cptcovn+k2+1]=Tvard[k1][2];       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           for (k=1; k<=lastobs;k++)       results. So we changed our mind and took the option of the best precision.
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    */
           k1++;    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           k2=k2+2;    agelim = AGESUP;
         }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       }      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       else {      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
        /*  scanf("%d",i);*/      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       cutv(strd,strc,strb,'V');      gp=matrix(0,nhstepm,1,nlstate);
       Tvar[i]=atoi(strc);      gm=matrix(0,nhstepm,1,nlstate);
       }  
       strcpy(modelsav,stra);    
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      for(theta=1; theta <=npar; theta++){
         scanf("%d",i);*/        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
 }        }
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   printf("cptcovprod=%d ", cptcovprod);  
   scanf("%d ",i);*/        if (popbased==1) {
     fclose(fic);          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
     /*  if(mle==1){*/              prlim[i][i]=probs[(int)age][i][ij];
     if (weightopt != 1) { /* Maximisation without weights*/          }else{ /* mobilav */ 
       for(i=1;i<=n;i++) weight[i]=1.0;            for(i=1; i<=nlstate;i++)
     }              prlim[i][i]=mobaverage[(int)age][i][ij];
     /*-calculation of age at interview from date of interview and age at death -*/          }
     agev=matrix(1,maxwav,1,imx);        }
     
    for (i=1; i<=imx; i++)        for(j=1; j<= nlstate; j++){
      for(m=2; (m<= maxwav); m++)          for(h=0; h<=nhstepm; h++){
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
          anint[m][i]=9999;              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
          s[m][i]=-1;          }
        }        }
            /* This for computing probability of death (h=1 means
     for (i=1; i<=imx; i++)  {           computed over hstepm matrices product = hstepm*stepm months) 
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);           as a weighted average of prlim.
       for(m=1; (m<= maxwav); m++){        */
         if(s[m][i] >0){        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           if (s[m][i] == nlstate+1) {          for(i=1,gpp[j]=0.; i<= nlstate; i++)
             if(agedc[i]>0)            gpp[j] += prlim[i][i]*p3mat[i][j][1];
               if(moisdc[i]!=99 && andc[i]!=9999)        }    
               agev[m][i]=agedc[i];        /* end probability of death */
             else {  
               if (andc[i]!=9999){        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
               printf("Warning negative age at death: %d line:%d\n",num[i],i);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
               agev[m][i]=-1;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
               }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
             }   
           }        if (popbased==1) {
           else if(s[m][i] !=9){ /* Should no more exist */          if(mobilav ==0){
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);            for(i=1; i<=nlstate;i++)
             if(mint[m][i]==99 || anint[m][i]==9999)              prlim[i][i]=probs[(int)age][i][ij];
               agev[m][i]=1;          }else{ /* mobilav */ 
             else if(agev[m][i] <agemin){            for(i=1; i<=nlstate;i++)
               agemin=agev[m][i];              prlim[i][i]=mobaverage[(int)age][i][ij];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/          }
             }        }
             else if(agev[m][i] >agemax){  
               agemax=agev[m][i];        for(j=1; j<= nlstate; j++){
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/          for(h=0; h<=nhstepm; h++){
             }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
             /*agev[m][i]=anint[m][i]-annais[i];*/              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
             /*   agev[m][i] = age[i]+2*m;*/          }
           }        }
           else { /* =9 */        /* This for computing probability of death (h=1 means
             agev[m][i]=1;           computed over hstepm matrices product = hstepm*stepm months) 
             s[m][i]=-1;           as a weighted average of prlim.
           }        */
         }        for(j=nlstate+1;j<=nlstate+ndeath;j++){
         else /*= 0 Unknown */          for(i=1,gmp[j]=0.; i<= nlstate; i++)
           agev[m][i]=1;           gmp[j] += prlim[i][i]*p3mat[i][j][1];
       }        }    
            /* end probability of death */
     }  
     for (i=1; i<=imx; i++)  {        for(j=1; j<= nlstate; j++) /* vareij */
       for(m=1; (m<= maxwav); m++){          for(h=0; h<=nhstepm; h++){
         if (s[m][i] > (nlstate+ndeath)) {            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           printf("Error: Wrong value in nlstate or ndeath\n");            }
           goto end;  
         }        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
       }          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     }        }
   
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);      } /* End theta */
   
     free_vector(severity,1,maxwav);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
     free_imatrix(outcome,1,maxwav+1,1,n);  
     free_vector(moisnais,1,n);      for(h=0; h<=nhstepm; h++) /* veij */
     free_vector(annais,1,n);        for(j=1; j<=nlstate;j++)
     /* free_matrix(mint,1,maxwav,1,n);          for(theta=1; theta <=npar; theta++)
        free_matrix(anint,1,maxwav,1,n);*/            trgradg[h][j][theta]=gradg[h][theta][j];
     free_vector(moisdc,1,n);  
     free_vector(andc,1,n);      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
              trgradgp[j][theta]=gradgp[theta][j];
     wav=ivector(1,imx);    
     dh=imatrix(1,lastpass-firstpass+1,1,imx);  
     mw=imatrix(1,lastpass-firstpass+1,1,imx);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
          for(i=1;i<=nlstate;i++)
     /* Concatenates waves */        for(j=1;j<=nlstate;j++)
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
       Tcode=ivector(1,100);        for(k=0;k<=nhstepm;k++){
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       ncodemax[1]=1;          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);          for(i=1;i<=nlstate;i++)
                  for(j=1;j<=nlstate;j++)
    codtab=imatrix(1,100,1,10);              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
    h=0;        }
    m=pow(2,cptcoveff);      }
      
    for(k=1;k<=cptcoveff; k++){      /* pptj */
      for(i=1; i <=(m/pow(2,k));i++){      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
        for(j=1; j <= ncodemax[k]; j++){      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){      for(j=nlstate+1;j<=nlstate+ndeath;j++)
            h++;        for(i=nlstate+1;i<=nlstate+ndeath;i++)
            if (h>m) h=1;codtab[h][k]=j;          varppt[j][i]=doldmp[j][i];
          }      /* end ppptj */
        }      /*  x centered again */
      }      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
    }      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
       
    /* Calculates basic frequencies. Computes observed prevalence at single age      if (popbased==1) {
        and prints on file fileres'p'. */        if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
                prlim[i][i]=probs[(int)age][i][ij];
            }else{ /* mobilav */ 
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          for(i=1; i<=nlstate;i++)
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            prlim[i][i]=mobaverage[(int)age][i][ij];
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      }
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */               
            /* This for computing probability of death (h=1 means
     /* For Powell, parameters are in a vector p[] starting at p[1]         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */         as a weighted average of prlim.
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */      */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
     if(mle==1){        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
     }      }    
          /* end probability of death */
     /*--------- results files --------------*/  
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
        for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
    jk=1;        for(i=1; i<=nlstate;i++){
    fprintf(ficres,"# Parameters\n");          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
    printf("# Parameters\n");        }
    for(i=1,jk=1; i <=nlstate; i++){      } 
      for(k=1; k <=(nlstate+ndeath); k++){      fprintf(ficresprobmorprev,"\n");
        if (k != i)  
          {      fprintf(ficresvij,"%.0f ",age );
            printf("%d%d ",i,k);      for(i=1; i<=nlstate;i++)
            fprintf(ficres,"%1d%1d ",i,k);        for(j=1; j<=nlstate;j++){
            for(j=1; j <=ncovmodel; j++){          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
              printf("%f ",p[jk]);        }
              fprintf(ficres,"%f ",p[jk]);      fprintf(ficresvij,"\n");
              jk++;      free_matrix(gp,0,nhstepm,1,nlstate);
            }      free_matrix(gm,0,nhstepm,1,nlstate);
            printf("\n");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
            fprintf(ficres,"\n");      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
          }      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
      }    } /* End age */
    }    free_vector(gpp,nlstate+1,nlstate+ndeath);
  if(mle==1){    free_vector(gmp,nlstate+1,nlstate+ndeath);
     /* Computing hessian and covariance matrix */    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     ftolhess=ftol; /* Usually correct */    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     hesscov(matcov, p, npar, delti, ftolhess, func);    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
  }    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficres,"# Scales\n");    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     printf("# Scales\n");  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
      for(i=1,jk=1; i <=nlstate; i++){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       for(j=1; j <=nlstate+ndeath; j++){  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
         if (j!=i) {    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
           fprintf(ficres,"%1d%1d",i,j);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
           printf("%1d%1d",i,j);    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
           for(k=1; k<=ncovmodel;k++){    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
             printf(" %.5e",delti[jk]);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
             fprintf(ficres," %.5e",delti[jk]);    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
             jk++;  */
           }    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
           printf("\n");  
           fprintf(ficres,"\n");    free_vector(xp,1,npar);
         }    free_matrix(doldm,1,nlstate,1,nlstate);
       }    free_matrix(dnewm,1,nlstate,1,npar);
      }    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
        free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     k=1;    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     fprintf(ficres,"# Covariance\n");    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     printf("# Covariance\n");    fclose(ficresprobmorprev);
     for(i=1;i<=npar;i++){    fclose(ficgp);
       /*  if (k>nlstate) k=1;    fclose(fichtm);
       i1=(i-1)/(ncovmodel*nlstate)+1;  }  
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  
       printf("%s%d%d",alph[k],i1,tab[i]);*/  /************ Variance of prevlim ******************/
       fprintf(ficres,"%3d",i);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
       printf("%3d",i);  {
       for(j=1; j<=i;j++){    /* Variance of prevalence limit */
         fprintf(ficres," %.5e",matcov[i][j]);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
         printf(" %.5e",matcov[i][j]);    double **newm;
       }    double **dnewm,**doldm;
       fprintf(ficres,"\n");    int i, j, nhstepm, hstepm;
       printf("\n");    int k, cptcode;
       k++;    double *xp;
     }    double *gp, *gm;
        double **gradg, **trgradg;
     while((c=getc(ficpar))=='#' && c!= EOF){    double age,agelim;
       ungetc(c,ficpar);    int theta;
       fgets(line, MAXLINE, ficpar);     
       puts(line);    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
       fputs(line,ficparo);    fprintf(ficresvpl,"# Age");
     }    for(i=1; i<=nlstate;i++)
     ungetc(c,ficpar);        fprintf(ficresvpl," %1d-%1d",i,i);
      fprintf(ficresvpl,"\n");
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  
        xp=vector(1,npar);
     if (fage <= 2) {    dnewm=matrix(1,nlstate,1,npar);
       bage = agemin;    doldm=matrix(1,nlstate,1,nlstate);
       fage = agemax;    
     }    hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     fprintf(ficres,"# agemin agemax for life expectancy.\n");    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);      if (stepm >= YEARM) hstepm=1;
        nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     while((c=getc(ficpar))=='#' && c!= EOF){      gradg=matrix(1,npar,1,nlstate);
     ungetc(c,ficpar);      gp=vector(1,nlstate);
     fgets(line, MAXLINE, ficpar);      gm=vector(1,nlstate);
     puts(line);  
     fputs(line,ficparo);      for(theta=1; theta <=npar; theta++){
   }        for(i=1; i<=npar; i++){ /* Computes gradient */
   ungetc(c,ficpar);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
          }
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mob_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);        for(i=1;i<=nlstate;i++)
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);          gp[i] = prlim[i][i];
            
   while((c=getc(ficpar))=='#' && c!= EOF){        for(i=1; i<=npar; i++) /* Computes gradient */
     ungetc(c,ficpar);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
     fgets(line, MAXLINE, ficpar);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     puts(line);        for(i=1;i<=nlstate;i++)
     fputs(line,ficparo);          gm[i] = prlim[i][i];
   }  
   ungetc(c,ficpar);        for(i=1;i<=nlstate;i++)
            gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
    dateprev1=anprev1+mprev1/12.+jprev1/365.;  
    dateprev2=anprev2+mprev2/12.+jprev2/365.;      trgradg =matrix(1,nlstate,1,npar);
   
   fscanf(ficpar,"pop_based=%d\n",&popbased);      for(j=1; j<=nlstate;j++)
    fprintf(ficparo,"pop_based=%d\n",popbased);          for(theta=1; theta <=npar; theta++)
    fprintf(ficres,"pop_based=%d\n",popbased);            trgradg[j][theta]=gradg[theta][j];
   
   while((c=getc(ficpar))=='#' && c!= EOF){      for(i=1;i<=nlstate;i++)
     ungetc(c,ficpar);        varpl[i][(int)age] =0.;
     fgets(line, MAXLINE, ficpar);      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     puts(line);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     fputs(line,ficparo);      for(i=1;i<=nlstate;i++)
   }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   ungetc(c,ficpar);  
   fscanf(ficpar,"popforecast=%d popfile=%s starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&popforecast,popfile,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);      fprintf(ficresvpl,"%.0f ",age );
 fprintf(ficparo,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);      for(i=1; i<=nlstate;i++)
 fprintf(ficres,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2);      free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
  /*------------ gnuplot -------------*/      free_matrix(gradg,1,npar,1,nlstate);
 chdir(pathcd);      free_matrix(trgradg,1,nlstate,1,npar);
   if((ficgp=fopen("graph.plt","w"))==NULL) {    } /* End age */
     printf("Problem with file graph.gp");goto end;  
   }    free_vector(xp,1,npar);
 #ifdef windows    free_matrix(doldm,1,nlstate,1,npar);
   fprintf(ficgp,"cd \"%s\" \n",pathc);    free_matrix(dnewm,1,nlstate,1,nlstate);
 #endif  
 m=pow(2,cptcoveff);  }
    
  /* 1eme*/  /************ Variance of one-step probabilities  ******************/
   for (cpt=1; cpt<= nlstate ; cpt ++) {  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
    for (k1=1; k1<= m ; k1 ++) {  {
     int i, j=0,  i1, k1, l1, t, tj;
 #ifdef windows    int k2, l2, j1,  z1;
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);    int k=0,l, cptcode;
 #endif    int first=1, first1;
 #ifdef unix    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);    double **dnewm,**doldm;
 #endif    double *xp;
     double *gp, *gm;
 for (i=1; i<= nlstate ; i ++) {    double **gradg, **trgradg;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    double **mu;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double age,agelim, cov[NCOVMAX];
 }    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    int theta;
     for (i=1; i<= nlstate ; i ++) {    char fileresprob[FILENAMELENGTH];
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    char fileresprobcov[FILENAMELENGTH];
   else fprintf(ficgp," \%%*lf (\%%*lf)");    char fileresprobcor[FILENAMELENGTH];
 }  
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    double ***varpij;
      for (i=1; i<= nlstate ; i ++) {  
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    strcpy(fileresprob,"prob"); 
   else fprintf(ficgp," \%%*lf (\%%*lf)");    strcat(fileresprob,fileres);
 }      if((ficresprob=fopen(fileresprob,"w"))==NULL) {
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      printf("Problem with resultfile: %s\n", fileresprob);
 #ifdef unix      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
 fprintf(ficgp,"\nset ter gif small size 400,300");    }
 #endif    strcpy(fileresprobcov,"probcov"); 
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    strcat(fileresprobcov,fileres);
    }    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   }      printf("Problem with resultfile: %s\n", fileresprobcov);
   /*2 eme*/      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
   for (k1=1; k1<= m ; k1 ++) {    strcpy(fileresprobcor,"probcor"); 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);    strcat(fileresprobcor,fileres);
        if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     for (i=1; i<= nlstate+1 ; i ++) {      printf("Problem with resultfile: %s\n", fileresprobcor);
       k=2*i;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);    }
       for (j=1; j<= nlstate+1 ; j ++) {    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
 }      fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    
       for (j=1; j<= nlstate+1 ; j ++) {    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    fprintf(ficresprob,"# Age");
         else fprintf(ficgp," \%%*lf (\%%*lf)");    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
 }      fprintf(ficresprobcov,"# Age");
       fprintf(ficgp,"\" t\"\" w l 0,");    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);    fprintf(ficresprobcov,"# Age");
       for (j=1; j<= nlstate+1 ; j ++) {  
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
   else fprintf(ficgp," \%%*lf (\%%*lf)");    for(i=1; i<=nlstate;i++)
 }        for(j=1; j<=(nlstate+ndeath);j++){
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
       else fprintf(ficgp,"\" t\"\" w l 0,");        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     }        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);      }  
   }   /* fprintf(ficresprob,"\n");
      fprintf(ficresprobcov,"\n");
   /*3eme*/    fprintf(ficresprobcor,"\n");
    */
   for (k1=1; k1<= m ; k1 ++) {   xp=vector(1,npar);
     for (cpt=1; cpt<= nlstate ; cpt ++) {    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
       k=2+nlstate*(cpt-1);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       for (i=1; i< nlstate ; i ++) {    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    first=1;
       }    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
     }      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
   }      exit(0);
      }
   /* CV preval stat */    else{
   for (k1=1; k1<= m ; k1 ++) {      fprintf(ficgp,"\n# Routine varprob");
     for (cpt=1; cpt<nlstate ; cpt ++) {    }
       k=3;    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);      printf("Problem with html file: %s\n", optionfilehtm);
       for (i=1; i< nlstate ; i ++)      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
         fprintf(ficgp,"+$%d",k+i+1);      exit(0);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);    }
          else{
       l=3+(nlstate+ndeath)*cpt;      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      fprintf(fichtm,"\n");
       for (i=1; i< nlstate ; i ++) {  
         l=3+(nlstate+ndeath)*cpt;      fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
         fprintf(ficgp,"+$%d",l+i+1);      fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       }      fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    }
     }  
   }      cov[1]=1;
     tj=cptcoveff;
   /* proba elementaires */    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
    for(i=1,jk=1; i <=nlstate; i++){    j1=0;
     for(k=1; k <=(nlstate+ndeath); k++){    for(t=1; t<=tj;t++){
       if (k != i) {      for(i1=1; i1<=ncodemax[t];i1++){ 
         for(j=1; j <=ncovmodel; j++){        j1++;
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/        if  (cptcovn>0) {
           /*fprintf(ficgp,"%s",alph[1]);*/          fprintf(ficresprob, "\n#********** Variable "); 
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           jk++;          fprintf(ficresprob, "**********\n#\n");
           fprintf(ficgp,"\n");          fprintf(ficresprobcov, "\n#********** Variable "); 
         }          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
       }          fprintf(ficresprobcov, "**********\n#\n");
     }          
     }          fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   for(jk=1; jk <=m; jk++) {          fprintf(ficgp, "**********\n#\n");
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);          
    i=1;          
    for(k2=1; k2<=nlstate; k2++) {          fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
      k3=i;          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
      for(k=1; k<=(nlstate+ndeath); k++) {          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
        if (k != k2){          
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          fprintf(ficresprobcor, "\n#********** Variable ");    
 ij=1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
         for(j=3; j <=ncovmodel; j++) {          fprintf(ficresprobcor, "**********\n#");    
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        }
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        
             ij++;        for (age=bage; age<=fage; age ++){ 
           }          cov[2]=age;
           else          for (k=1; k<=cptcovn;k++) {
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
         }          }
           fprintf(ficgp,")/(1");          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                  for (k=1; k<=cptcovprod;k++)
         for(k1=1; k1 <=nlstate; k1++){              cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          
 ij=1;          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           for(j=3; j <=ncovmodel; j++){          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {          gp=vector(1,(nlstate)*(nlstate+ndeath));
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          gm=vector(1,(nlstate)*(nlstate+ndeath));
             ij++;      
           }          for(theta=1; theta <=npar; theta++){
           else            for(i=1; i<=npar; i++)
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
           }            
           fprintf(ficgp,")");            pmij(pmmij,cov,ncovmodel,xp,nlstate);
         }            
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);            k=0;
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");            for(i=1; i<= (nlstate); i++){
         i=i+ncovmodel;              for(j=1; j<=(nlstate+ndeath);j++){
        }                k=k+1;
      }                gp[k]=pmmij[i][j];
    }              }
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);            }
   }            
                for(i=1; i<=npar; i++)
   fclose(ficgp);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   /* end gnuplot */      
                pmij(pmmij,cov,ncovmodel,xp,nlstate);
 chdir(path);            k=0;
                for(i=1; i<=(nlstate); i++){
     free_ivector(wav,1,imx);              for(j=1; j<=(nlstate+ndeath);j++){
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                k=k+1;
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                  gm[k]=pmmij[i][j];
     free_ivector(num,1,n);              }
     free_vector(agedc,1,n);            }
     /*free_matrix(covar,1,NCOVMAX,1,n);*/       
     fclose(ficparo);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
     fclose(ficres);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     /*  }*/          }
      
    /*________fin mle=1_________*/          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
                for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
            
     /* No more information from the sample is required now */          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
   /* Reads comments: lines beginning with '#' */          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   while((c=getc(ficpar))=='#' && c!= EOF){          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
     ungetc(c,ficpar);          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
     fgets(line, MAXLINE, ficpar);          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     puts(line);          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     fputs(line,ficparo);  
   }          pmij(pmmij,cov,ncovmodel,x,nlstate);
   ungetc(c,ficpar);          
            k=0;
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);          for(i=1; i<=(nlstate); i++){
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);            for(j=1; j<=(nlstate+ndeath);j++){
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);              k=k+1;
 /*--------- index.htm --------*/              mu[k][(int) age]=pmmij[i][j];
             }
   strcpy(optionfilehtm,optionfile);          }
   strcat(optionfilehtm,".htm");          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
     printf("Problem with %s \n",optionfilehtm);goto end;              varpij[i][j][(int)age] = doldm[i][j];
   }  
           /*printf("\n%d ",(int)age);
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 Total number of observations=%d <br>            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>            }*/
 <hr  size=\"2\" color=\"#EC5E5E\">  
 <li>Outputs files<br><br>\n          fprintf(ficresprob,"\n%d ",(int)age);
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n          fprintf(ficresprobcov,"\n%d ",(int)age);
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>          fprintf(ficresprobcor,"\n%d ",(int)age);
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>  
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>          }
         - Prevalences and population forecasting: <a href=\"f%s\">f%s</a> <br>          i=0;
 <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);          for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
  fprintf(fichtm," <li>Graphs</li><p>");              i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
  m=cptcoveff;              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}              for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
  j1=0;                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
  for(k1=1; k1<=m;k1++){              }
    for(i1=1; i1<=ncodemax[k1];i1++){            }
        j1++;          }/* end of loop for state */
        if (cptcovn > 0) {        } /* end of loop for age */
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
          for (cpt=1; cpt<=cptcoveff;cpt++)        /* Confidence intervalle of pij  */
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);        /*
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          fprintf(ficgp,"\nset noparametric;unset label");
        }          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);              fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
        for(cpt=1; cpt<nlstate;cpt++){          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
        }        */
     for(cpt=1; cpt<=nlstate;cpt++) {  
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
 interval) in state (%d): v%s%d%d.gif <br>        first1=1;
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);          for (k2=1; k2<=(nlstate);k2++){
      }          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
      for(cpt=1; cpt<=nlstate;cpt++) {            if(l2==k2) continue;
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>            j=(k2-1)*(nlstate+ndeath)+l2;
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);            for (k1=1; k1<=(nlstate);k1++){
      }              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and                if(l1==k1) continue;
 health expectancies in states (1) and (2): e%s%d.gif<br>                i=(k1-1)*(nlstate+ndeath)+l1;
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);                if(i<=j) continue;
 fprintf(fichtm,"\n</body>");                for (age=bage; age<=fage; age ++){ 
    }                  if ((int)age %5==0){
  }                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
 fclose(fichtm);                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
   /*--------------- Prevalence limit --------------*/                    mu1=mu[i][(int) age]/stepm*YEARM ;
                      mu2=mu[j][(int) age]/stepm*YEARM;
   strcpy(filerespl,"pl");                    c12=cv12/sqrt(v1*v2);
   strcat(filerespl,fileres);                    /* Computing eigen value of matrix of covariance */
   if((ficrespl=fopen(filerespl,"w"))==NULL) {                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
   }                    /* Eigen vectors */
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   fprintf(ficrespl,"#Prevalence limit\n");                    /*v21=sqrt(1.-v11*v11); *//* error */
   fprintf(ficrespl,"#Age ");                    v21=(lc1-v1)/cv12*v11;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);                    v12=-v21;
   fprintf(ficrespl,"\n");                    v22=v11;
                      tnalp=v21/v11;
   prlim=matrix(1,nlstate,1,nlstate);                    if(first1==1){
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                      first1=0;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    }
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */                    /*printf(fignu*/
   k=0;                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   agebase=agemin;                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
   agelim=agemax;                    if(first==1){
   ftolpl=1.e-10;                      first=0;
   i1=cptcoveff;                      fprintf(ficgp,"\nset parametric;unset label");
   if (cptcovn < 1){i1=1;}                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   for(cptcov=1;cptcov<=i1;cptcov++){                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
         k=k+1;                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/                      fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
         fprintf(ficrespl,"\n#******");                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
         for(j=1;j<=cptcoveff;j++)                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
         fprintf(ficrespl,"******\n");                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                                      mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
         for (age=agebase; age<=agelim; age++){                    }else{
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);                      first=0;
           fprintf(ficrespl,"%.0f",age );                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
           for(i=1; i<=nlstate;i++)                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
           fprintf(ficrespl," %.5f", prlim[i][i]);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
           fprintf(ficrespl,"\n");                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
         }                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
       }                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
     }                    }/* if first */
   fclose(ficrespl);                  } /* age mod 5 */
                 } /* end loop age */
   /*------------- h Pij x at various ages ------------*/                fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
                  first=1;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);              } /*l12 */
   if((ficrespij=fopen(filerespij,"w"))==NULL) {            } /* k12 */
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          } /*l1 */
   }        }/* k1 */
   printf("Computing pij: result on file '%s' \n", filerespij);      } /* loop covariates */
      }
   stepsize=(int) (stepm+YEARM-1)/YEARM;    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   /*if (stepm<=24) stepsize=2;*/    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
   agelim=AGESUP;    fclose(ficresprob);
   hstepm=stepsize*YEARM; /* Every year of age */    fclose(ficresprobcov);
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    fclose(ficresprobcor);
      fclose(ficgp);
   k=0;    fclose(fichtm);
   for(cptcov=1;cptcov<=i1;cptcov++){  }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;  
         fprintf(ficrespij,"\n#****** ");  /******************* Printing html file ***********/
         for(j=1;j<=cptcoveff;j++)  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    int lastpass, int stepm, int weightopt, char model[],\
         fprintf(ficrespij,"******\n");                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                            int popforecast, int estepm ,\
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                    double jprev1, double mprev1,double anprev1, \
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                    double jprev2, double mprev2,double anprev2){
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    int jj1, k1, i1, cpt;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*char optionfilehtm[FILENAMELENGTH];*/
           oldm=oldms;savm=savms;    if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        printf("Problem with %s \n",optionfilehtm), exit(0);
           fprintf(ficrespij,"# Age");      fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
           for(i=1; i<=nlstate;i++)    }
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %1d-%1d",i,j);     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n
           fprintf(ficrespij,"\n");   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n
           for (h=0; h<=nhstepm; h++){   - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n
             for(i=1; i<=nlstate;i++)   - Life expectancies by age and initial health status (estepm=%2d months): 
               for(j=1; j<=nlstate+ndeath;j++)     <a href=\"e%s\">e%s</a> <br>\n</li>", \
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
             fprintf(ficrespij,"\n");  
           }  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           fprintf(ficrespij,"\n");   m=cptcoveff;
         }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
     }  
   }   jj1=0;
    for(k1=1; k1<=m;k1++){
   /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/     for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
   fclose(ficrespij);       if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   if(stepm == 1) {         for (cpt=1; cpt<=cptcoveff;cpt++) 
   /*---------- Forecasting ------------------*/           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
   /*printf("calage= %f", calagedate);*/       /* Pij */
         fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br>
   prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>
   strcpy(fileresf,"f");  <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
   strcat(fileresf,fileres);         /* Stable prevalence in each health state */
   if((ficresf=fopen(fileresf,"w"))==NULL) {         for(cpt=1; cpt<nlstate;cpt++){
     printf("Problem with forecast resultfile: %s\n", fileresf);goto end;           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>
   }  <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
   printf("Computing forecasting: result on file '%s' \n", fileresf);         }
        for(cpt=1; cpt<=nlstate;cpt++) {
   free_matrix(mint,1,maxwav,1,n);          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>
   free_matrix(anint,1,maxwav,1,n);  <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
   free_matrix(agev,1,maxwav,1,imx);       }
   /* Mobile average */       fprintf(fichtm,"\n<br>- Total life expectancy by age and
   health expectancies in states (1) and (2): e%s%d.png<br>
   if (cptcoveff==0) ncodemax[cptcoveff]=1;  <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
      } /* end i1 */
   if (mobilav==1) {   }/* End k1 */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);   fprintf(fichtm,"</ul>");
     for (agedeb=bage+3; agedeb<=fage-2; agedeb++)  
       for (i=1; i<=nlstate;i++)  
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n
           mobaverage[(int)agedeb][i][cptcod]=0.;   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n
       - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
     for (agedeb=bage+4; agedeb<=fage; agedeb++){   - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n
       for (i=1; i<=nlstate;i++){   - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){   - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n 
           for (cpt=0;cpt<=4;cpt++){   - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];   - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
           }  
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;  /*  if(popforecast==1) fprintf(fichtm,"\n */
         }  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
       }  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
     }    /*      <br>",fileres,fileres,fileres,fileres); */
   }  /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   stepsize=(int) (stepm+YEARM-1)/YEARM;  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   if (stepm<=12) stepsize=1;  
    m=cptcoveff;
   agelim=AGESUP;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   /*hstepm=stepsize*YEARM; *//* Every year of age */  
   hstepm=1;   jj1=0;
   hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */   for(k1=1; k1<=m;k1++){
   yp1=modf(dateintmean,&yp);     for(i1=1; i1<=ncodemax[k1];i1++){
   anprojmean=yp;       jj1++;
   yp2=modf((yp1*12),&yp);       if (cptcovn > 0) {
   mprojmean=yp;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   yp1=modf((yp2*30.5),&yp);         for (cpt=1; cpt<=cptcoveff;cpt++) 
   jprojmean=yp;           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
   if(jprojmean==0) jprojmean=1;         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
   if(mprojmean==0) jprojmean=1;       }
        for(cpt=1; cpt<=nlstate;cpt++) {
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);         fprintf(fichtm,"<br>- Observed and period prevalence (with confident
   interval) in state (%d): v%s%d%d.png <br>
   if (popforecast==1) {  <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
     if((ficpop=fopen(popfile,"r"))==NULL)    {       }
       printf("Problem with population file : %s\n",popfile);goto end;     } /* end i1 */
     }   }/* End k1 */
     popage=ivector(0,AGESUP);   fprintf(fichtm,"</ul>");
     popeffectif=vector(0,AGESUP);  fclose(fichtm);
     popcount=vector(0,AGESUP);  }
   
     i=1;    /******************* Gnuplot file **************/
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)  void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
       {  
         i=i+1;    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
       }    int ng;
     imx=i;    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
          printf("Problem with file %s",optionfilegnuplot);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];      fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
   }    }
   
   for(cptcov=1;cptcov<=i1;cptcov++){    /*#ifdef windows */
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){      fprintf(ficgp,"cd \"%s\" \n",pathc);
       k=k+1;      /*#endif */
       fprintf(ficresf,"\n#******");  m=pow(2,cptcoveff);
       for(j=1;j<=cptcoveff;j++) {    
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   /* 1eme*/
       }    for (cpt=1; cpt<= nlstate ; cpt ++) {
       fprintf(ficresf,"******\n");     for (k1=1; k1<= m ; k1 ++) {
       fprintf(ficresf,"# StartingAge FinalAge");       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
       if (popforecast==1)  fprintf(ficresf," [Population]");  
           for (i=1; i<= nlstate ; i ++) {
       for (cpt=0; cpt<4;cpt++) {         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         fprintf(ficresf,"\n");         else fprintf(ficgp," \%%*lf (\%%*lf)");
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);         }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(bage-((int)calagedate %12)/12.); agedeb--){ /* If stepm=6 months */       for (i=1; i<= nlstate ; i ++) {
         nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         nhstepm = nhstepm/hstepm;         else fprintf(ficgp," \%%*lf (\%%*lf)");
         /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/       } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
         p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       for (i=1; i<= nlstate ; i ++) {
         oldm=oldms;savm=savms;         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
         hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);           else fprintf(ficgp," \%%*lf (\%%*lf)");
               }  
         for (h=0; h<=nhstepm; h++){       fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
           if (h==(int) (calagedate+YEARM*cpt)) {     }
             fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);    }
           }    /*2 eme*/
           for(j=1; j<=nlstate+ndeath;j++) {    
             kk1=0.;kk2=0;    for (k1=1; k1<= m ; k1 ++) { 
             for(i=1; i<=nlstate;i++) {              fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
               if (mobilav==1)      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
                 kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      
               else {      for (i=1; i<= nlstate+1 ; i ++) {
                 kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];        k=2*i;
                 /* fprintf(ficresf," p3=%.3f p=%.3f ", p3mat[i][j][h], probs[(int)(agedeb)+1][i][cptcod]);*/        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
               }        for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
               if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];          else fprintf(ficgp," \%%*lf (\%%*lf)");
             }        }   
                  if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
             if (h==(int)(calagedate+12*cpt)){        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
               fprintf(ficresf," %.3f", kk1);        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
                      for (j=1; j<= nlstate+1 ; j ++) {
               if (popforecast==1) fprintf(ficresf," [%.f]", kk2);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
             }          else fprintf(ficgp," \%%*lf (\%%*lf)");
           }        }   
         }        fprintf(ficgp,"\" t\"\" w l 0,");
         free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
       }        for (j=1; j<= nlstate+1 ; j ++) {
       }          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
     }          else fprintf(ficgp," \%%*lf (\%%*lf)");
   }        }   
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
   if (popforecast==1) {        else fprintf(ficgp,"\" t\"\" w l 0,");
     free_ivector(popage,0,AGESUP);      }
     free_vector(popeffectif,0,AGESUP);    }
     free_vector(popcount,0,AGESUP);    
   }    /*3eme*/
   free_imatrix(s,1,maxwav+1,1,n);    
   free_vector(weight,1,n);    for (k1=1; k1<= m ; k1 ++) { 
   fclose(ficresf);      for (cpt=1; cpt<= nlstate ; cpt ++) {
   }/* End forecasting */        k=2+nlstate*(2*cpt-2);
   else{        fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
     erreur=108;        fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
     printf("Error %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d\n", erreur, stepm);        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
   }          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   /*---------- Health expectancies and variances ------------*/          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
   strcpy(filerest,"t");          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
   strcat(filerest,fileres);          
   if((ficrest=fopen(filerest,"w"))==NULL) {        */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;        for (i=1; i< nlstate ; i ++) {
   }          fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          
         } 
       }
   strcpy(filerese,"e");    }
   strcat(filerese,fileres);    
   if((ficreseij=fopen(filerese,"w"))==NULL) {    /* CV preval stable (period) */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    for (k1=1; k1<= m ; k1 ++) { 
   }      for (cpt=1; cpt<=nlstate ; cpt ++) {
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);        k=3;
         fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
  strcpy(fileresv,"v");        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
   strcat(fileresv,fileres);        
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        for (i=1; i<= nlstate ; i ++)
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);          fprintf(ficgp,"+$%d",k+i+1);
   }        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        
         l=3+(nlstate+ndeath)*cpt;
   k=0;        fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
   for(cptcov=1;cptcov<=i1;cptcov++){        for (i=1; i< nlstate ; i ++) {
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          l=3+(nlstate+ndeath)*cpt;
       k=k+1;          fprintf(ficgp,"+$%d",l+i+1);
       fprintf(ficrest,"\n#****** ");        }
       for(j=1;j<=cptcoveff;j++)        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      } 
       fprintf(ficrest,"******\n");    }  
     
       fprintf(ficreseij,"\n#****** ");    /* proba elementaires */
       for(j=1;j<=cptcoveff;j++)    for(i=1,jk=1; i <=nlstate; i++){
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);      for(k=1; k <=(nlstate+ndeath); k++){
       fprintf(ficreseij,"******\n");        if (k != i) {
           for(j=1; j <=ncovmodel; j++){
       fprintf(ficresvij,"\n#****** ");            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
       for(j=1;j<=cptcoveff;j++)            jk++; 
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);            fprintf(ficgp,"\n");
       fprintf(ficresvij,"******\n");          }
         }
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      }
       oldm=oldms;savm=savms;     }
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);    
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
       oldm=oldms;savm=savms;       for(jk=1; jk <=m; jk++) {
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);         fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
               if (ng==2)
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");           fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);         else
       fprintf(ficrest,"\n");           fprintf(ficgp,"\nset title \"Probability\"\n");
                 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
       hf=1;         i=1;
       if (stepm >= YEARM) hf=stepm/YEARM;         for(k2=1; k2<=nlstate; k2++) {
       epj=vector(1,nlstate+1);           k3=i;
       for(age=bage; age <=fage ;age++){           for(k=1; k<=(nlstate+ndeath); k++) {
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);             if (k != k2){
         if (popbased==1) {               if(ng==2)
           for(i=1; i<=nlstate;i++)                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
             prlim[i][i]=probs[(int)age][i][k];               else
         }                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                       ij=1;
         fprintf(ficrest," %.0f",age);               for(j=3; j <=ncovmodel; j++) {
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
           for(i=1, epj[j]=0.;i <=nlstate;i++) {                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];                   ij++;
           }                 }
           epj[nlstate+1] +=epj[j];                 else
         }                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
         for(i=1, vepp=0.;i <=nlstate;i++)               }
           for(j=1;j <=nlstate;j++)               fprintf(ficgp,")/(1");
             vepp += vareij[i][j][(int)age];               
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));               for(k1=1; k1 <=nlstate; k1++){   
         for(j=1;j <=nlstate;j++){                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));                 ij=1;
         }                 for(j=3; j <=ncovmodel; j++){
         fprintf(ficrest,"\n");                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       }                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     }                     ij++;
   }                   }
                           else
                             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
  fclose(ficreseij);               }
  fclose(ficresvij);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
   fclose(ficrest);               if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
   fclose(ficpar);               i=i+ncovmodel;
   free_vector(epj,1,nlstate+1);             }
   /*  scanf("%d ",i); */           } /* end k */
          } /* end k2 */
   /*------- Variance limit prevalence------*/         } /* end jk */
      } /* end ng */
 strcpy(fileresvpl,"vpl");     fclose(ficgp); 
   strcat(fileresvpl,fileres);  }  /* end gnuplot */
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  
     exit(0);  /*************** Moving average **************/
   }  int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  
     int i, cpt, cptcod;
  k=0;    int modcovmax =1;
  for(cptcov=1;cptcov<=i1;cptcov++){    int mobilavrange, mob;
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    double age;
      k=k+1;  
      fprintf(ficresvpl,"\n#****** ");    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
      for(j=1;j<=cptcoveff;j++)                             a covariate has 2 modalities */
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if (cptcovn<1) modcovmax=1; /* At least 1 pass */
      fprintf(ficresvpl,"******\n");  
          if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
      varpl=matrix(1,nlstate,(int) bage, (int) fage);      if(mobilav==1) mobilavrange=5; /* default */
      oldm=oldms;savm=savms;      else mobilavrange=mobilav;
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      for (age=bage; age<=fage; age++)
    }        for (i=1; i<=nlstate;i++)
  }          for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
   fclose(ficresvpl);      /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
   /*---------- End : free ----------------*/         we use a 5 terms etc. until the borders are no more concerned. 
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);      */ 
        for (mob=3;mob <=mobilavrange;mob=mob+2){
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          for (i=1; i<=nlstate;i++){
              for (cptcod=1;cptcod<=modcovmax;cptcod++){
                mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);                  mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);                }
                mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
   free_matrix(matcov,1,npar,1,npar);            }
   free_vector(delti,1,npar);          }
          }/* end age */
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);      }/* end mob */
     }else return -1;
   if(erreur >0)    return 0;
     printf("End of Imach with error %d\n",erreur);  }/* End movingaverage */
   else   printf("End of Imach\n");  
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */  
    /************** Forecasting ******************/
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
   /*printf("Total time was %d uSec.\n", total_usecs);*/    /* proj1, year, month, day of starting projection 
   /*------ End -----------*/       agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
  end:    */
 #ifdef windows    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
  chdir(pathcd);    int *popage;
 #endif    double agec; /* generic age */
      double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
  system("..\\gp37mgw\\wgnuplot graph.plt");    double *popeffectif,*popcount;
     double ***p3mat;
 #ifdef windows    double ***mobaverage;
   while (z[0] != 'q') {    char fileresf[FILENAMELENGTH];
     chdir(pathcd);  
     printf("\nType e to edit output files, c to start again, and q for exiting: ");    agelim=AGESUP;
     scanf("%s",z);    prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     if (z[0] == 'c') system("./imach");   
     else if (z[0] == 'e') {    strcpy(fileresf,"f"); 
       chdir(path);    strcat(fileresf,fileres);
       system(optionfilehtm);    if((ficresf=fopen(fileresf,"w"))==NULL) {
     }      printf("Problem with forecast resultfile: %s\n", fileresf);
     else if (z[0] == 'q') exit(0);      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
   }    }
 #endif    printf("Computing forecasting: result on file '%s' \n", fileresf);
 }    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   }
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[80],pathc[80],pathcd[80],pathtot[80],model[80];
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   #include <sys/time.h>
   #include <time.h>
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
    
     /* long total_usecs;
        struct timeval start_time, end_time;
     
        gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     getcwd(pathcd, size);
   
     printf("\n%s",version);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     replace(pathc,path);
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s",version);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       goto end;
     }
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) {
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++)
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
           fprintf(ficlog," %.5le",matcov[i][j]);
         }
         else
           fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=ivector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %d on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %d on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1;
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %d line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%d %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle==1){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
   \n
   Total number of observations=%d <br>\n
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
   <hr  size=\"2\" color=\"#EC5E5E\">
    <ul><li><h4>Parameter files</h4>\n
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
    - Log file of the run: <a href=\"%s\">%s</a><br>\n
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,agemin,agemax,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
      fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_ivector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     
     /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
     /*printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.21  
changed lines
  Added in v.1.79


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>